modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Sebabrata/lmv2-g-pan-143doc-06-12
2c06639aac44ec6f299462ce11ffa7dd5d28fd87
2022-06-12T18:40:51.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
Sebabrata
null
Sebabrata/lmv2-g-pan-143doc-06-12
7
null
transformers
14,500
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-pan-143doc-06-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-pan-143doc-06-12 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0443 - Dob Precision: 1.0 - Dob Recall: 1.0 - Dob F1: 1.0 - Dob Number: 27 - Fname Precision: 1.0 - Fname Recall: 0.9643 - Fname F1: 0.9818 - Fname Number: 28 - Name Precision: 0.9630 - Name Recall: 0.9630 - Name F1: 0.9630 - Name Number: 27 - Pan Precision: 1.0 - Pan Recall: 1.0 - Pan F1: 1.0 - Pan Number: 26 - Overall Precision: 0.9907 - Overall Recall: 0.9815 - Overall F1: 0.9860 - Overall Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dob Precision | Dob Recall | Dob F1 | Dob Number | Fname Precision | Fname Recall | Fname F1 | Fname Number | Name Precision | Name Recall | Name F1 | Name Number | Pan Precision | Pan Recall | Pan F1 | Pan Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------:|:------------:|:--------:|:------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.274 | 1.0 | 114 | 0.9098 | 0.9310 | 1.0 | 0.9643 | 27 | 0.1481 | 0.1429 | 0.1455 | 28 | 0.1639 | 0.3704 | 0.2273 | 27 | 0.8125 | 1.0 | 0.8966 | 26 | 0.4497 | 0.6204 | 0.5214 | 0.9143 | | 0.7133 | 2.0 | 228 | 0.5771 | 0.9310 | 1.0 | 0.9643 | 27 | 0.2093 | 0.3214 | 0.2535 | 28 | 0.6562 | 0.7778 | 0.7119 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.6336 | 0.7685 | 0.6946 | 0.9443 | | 0.4593 | 3.0 | 342 | 0.4018 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8276 | 0.8571 | 0.8421 | 28 | 0.9259 | 0.9259 | 0.9259 | 27 | 1.0 | 1.0 | 1.0 | 26 | 0.9273 | 0.9444 | 0.9358 | 0.9655 | | 0.3011 | 4.0 | 456 | 0.2638 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.9259 | 0.9259 | 0.9259 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9630 | 0.9630 | 0.9630 | 0.9811 | | 0.2209 | 5.0 | 570 | 0.2108 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8621 | 0.8929 | 0.8772 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9204 | 0.9630 | 0.9412 | 0.9811 | | 0.1724 | 6.0 | 684 | 0.1671 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9286 | 0.9286 | 0.9286 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9130 | 0.9722 | 0.9417 | 0.9844 | | 0.1285 | 7.0 | 798 | 0.1754 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9455 | 0.9630 | 0.9541 | 0.9788 | | 0.0999 | 8.0 | 912 | 0.1642 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9615 | 0.8929 | 0.9259 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9630 | 0.9630 | 0.9630 | 0.9811 | | 0.0862 | 9.0 | 1026 | 0.1417 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9292 | 0.9722 | 0.9502 | 0.9788 | | 0.0722 | 10.0 | 1140 | 0.1317 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9545 | 0.9722 | 0.9633 | 0.9822 | | 0.0748 | 11.0 | 1254 | 0.1220 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.8929 | 0.9434 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9720 | 0.9630 | 0.9674 | 0.9833 | | 0.0549 | 12.0 | 1368 | 0.1157 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9052 | 0.9722 | 0.9375 | 0.9811 | | 0.0444 | 13.0 | 1482 | 0.1198 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.8929 | 0.9434 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.9630 | 1.0 | 0.9811 | 26 | 0.9720 | 0.9630 | 0.9674 | 0.9811 | | 0.0371 | 14.0 | 1596 | 0.1082 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.7879 | 1.0 | 0.8814 | 26 | 0.8824 | 0.9722 | 0.9251 | 0.9833 | | 0.036 | 15.0 | 1710 | 0.1257 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9800 | | 0.0291 | 16.0 | 1824 | 0.0930 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8667 | 1.0 | 0.9286 | 26 | 0.9386 | 0.9907 | 0.9640 | 0.9900 | | 0.0267 | 17.0 | 1938 | 0.0993 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9286 | 0.9286 | 0.9286 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9375 | 0.9722 | 0.9545 | 0.9844 | | 0.023 | 18.0 | 2052 | 0.1240 | 0.9643 | 1.0 | 0.9818 | 27 | 0.7941 | 0.9643 | 0.8710 | 28 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8387 | 1.0 | 0.9123 | 26 | 0.8843 | 0.9907 | 0.9345 | 0.9800 | | 0.0379 | 19.0 | 2166 | 0.1154 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9545 | 0.9722 | 0.9633 | 0.9833 | | 0.0199 | 20.0 | 2280 | 0.1143 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 0.8966 | 0.9630 | 0.9286 | 27 | 0.8667 | 1.0 | 0.9286 | 26 | 0.9292 | 0.9722 | 0.9502 | 0.9844 | | 0.0256 | 21.0 | 2394 | 0.1175 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8667 | 0.9286 | 0.8966 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9211 | 0.9722 | 0.9459 | 0.9811 | | 0.0388 | 22.0 | 2508 | 0.0964 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.9310 | 1.0 | 0.9643 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9217 | 0.9815 | 0.9507 | 0.9855 | | 0.0334 | 23.0 | 2622 | 0.1186 | 0.9643 | 1.0 | 0.9818 | 27 | 1.0 | 0.9286 | 0.9630 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9633 | 0.9722 | 0.9677 | 0.9833 | | 0.0134 | 24.0 | 2736 | 0.1193 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9630 | 0.9286 | 0.9455 | 28 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 1.0 | 0.9630 | 26 | 0.9633 | 0.9722 | 0.9677 | 0.9822 | | 0.0157 | 25.0 | 2850 | 0.1078 | 1.0 | 1.0 | 1.0 | 27 | 0.9259 | 0.8929 | 0.9091 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9369 | 0.9630 | 0.9498 | 0.9833 | | 0.0157 | 26.0 | 2964 | 0.0758 | 1.0 | 1.0 | 1.0 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 1.0 | 1.0 | 1.0 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9911 | | 0.0096 | 27.0 | 3078 | 0.0766 | 1.0 | 1.0 | 1.0 | 27 | 0.8929 | 0.8929 | 0.8929 | 28 | 1.0 | 1.0 | 1.0 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9459 | 0.9722 | 0.9589 | 0.9889 | | 0.0135 | 28.0 | 3192 | 0.0443 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9643 | 0.9818 | 28 | 0.9630 | 0.9630 | 0.9630 | 27 | 1.0 | 1.0 | 1.0 | 26 | 0.9907 | 0.9815 | 0.9860 | 0.9978 | | 0.012 | 29.0 | 3306 | 0.1153 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.8667 | 0.9630 | 0.9123 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9052 | 0.9722 | 0.9375 | 0.9822 | | 0.0069 | 30.0 | 3420 | 0.1373 | 0.9643 | 1.0 | 0.9818 | 27 | 0.8966 | 0.9286 | 0.9123 | 28 | 0.9286 | 0.9630 | 0.9455 | 27 | 0.8966 | 1.0 | 0.9455 | 26 | 0.9211 | 0.9722 | 0.9459 | 0.9777 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Pennywise881/distilbert-base-uncased-finetuned-emotion
be547c9a781bdcfb7e76f890de325633573f8773
2022-06-13T12:11:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Pennywise881
null
Pennywise881/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,501
Entry not found
ghadeermobasher/CRAFT-Original-PubMedBERT-512
a2a603ac54cc1e98f85b198072b5295acffddb84
2022-06-14T00:10:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Original-PubMedBERT-512
7
null
transformers
14,502
Entry not found
ghadeermobasher/CRAFT-Original-BlueBERT-512
0b44315fd69bdb62c3fb14fcab5a5a7b7e164a6f
2022-06-14T00:04:33.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Original-BlueBERT-512
7
null
transformers
14,503
Entry not found
ghadeermobasher/CRAFT-Modified-BlueBERT-384
0df9d8c07d8c723f1874ff26b17ec78a4c0c5304
2022-06-13T23:06:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Modified-BlueBERT-384
7
null
transformers
14,504
Entry not found
ghadeermobasher/CRAFT-Modified-SciBERT-512
da1423b23942111e7ceb3f6c2353b6791484706e
2022-06-14T00:21:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Modified-SciBERT-512
7
null
transformers
14,505
Entry not found
ghadeermobasher/BioNLP13-Modified-BlueBERT-512
80badaa39d6ece2d64a3fdea9a7c8ee198f730b5
2022-06-13T22:12:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13-Modified-BlueBERT-512
7
null
transformers
14,506
Entry not found
ghadeermobasher/BioNLP13-Modified-SciBERT-384
77cb621ddbd3418d994893d14388b4a472b4c073
2022-06-13T22:48:32.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13-Modified-SciBERT-384
7
null
transformers
14,507
Entry not found
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-BlueBERT-512
34f8acb500117515630cc5b4ed7abe2e7771b43e
2022-06-13T23:22:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-BlueBERT-512
7
null
transformers
14,508
Entry not found
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-BioBERT-512
3842c6ea9603dac545628123747dfba84073431e
2022-06-13T23:23:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-BioBERT-512
7
null
transformers
14,509
Entry not found
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-SciBERT-384
9aa2162c1d9610eb91e370c6523199007cbfbb04
2022-06-13T23:59:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BIONLP13CG-CHEM-Chem-Original-SciBERT-384
7
null
transformers
14,510
Entry not found
Hermite/DialoGPT-large-hermite
e4af5007c1efeda83fd40e055f11c50f4e6dd6de
2022-06-14T16:16:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hermite
null
Hermite/DialoGPT-large-hermite
7
null
transformers
14,511
--- tags: - conversational --- # Hermite DialoGPT Model
Happyb/distilbert-base-uncased-finetuned-emotion
0826a4676cd5a297d60e0b40881abfec881f100a
2022-06-15T07:57:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Happyb
null
Happyb/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,512
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Modified-BioBERT-384
2bd86a9d4e034d5012c718a94a0e80df252dd905
2022-06-15T10:04:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Modified-BioBERT-384
7
null
transformers
14,513
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Original-BioBERT-384
d6089c5f7961d7341c62d73e621f10f1c3d720d4
2022-06-15T10:35:46.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Original-BioBERT-384
7
null
transformers
14,514
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Modified-PubMedBERT-384
f706088251988b27578eb636cae174db586339e8
2022-06-15T10:46:53.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Modified-PubMedBERT-384
7
null
transformers
14,515
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Modified-PubMedBERT-512
32b807834ca64acf5b5fd0a7b4dcf9eb54869bc5
2022-06-15T12:25:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Modified-PubMedBERT-512
7
null
transformers
14,516
Entry not found
microsoft/swinv2-large-patch4-window12-192-22k
1695b54afb11e8358082d0a586a0c7b041311a7c
2022-07-09T06:00:31.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-large-patch4-window12-192-22k
7
null
transformers
14,517
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Original-PubMedBERT-512
6b903647bf77de58a8d581978b1cfa48a9aa36bf
2022-06-15T23:08:09.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Original-PubMedBERT-512
7
null
transformers
14,518
Entry not found
eslamxm/mbert2mbert-finetune-fa
e96f0b9ecdcf7420c36f4b64d0ed87a78d845043
2022-06-16T05:28:50.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:pn_summary", "transformers", "summarization", "fa", "mbert", "mbert2mbert", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mbert2mbert-finetune-fa
7
null
transformers
14,519
--- tags: - summarization - fa - mbert - mbert2mbert - Abstractive Summarization - generated_from_trainer datasets: - pn_summary model-index: - name: mbert2mbert-finetune-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert2mbert-finetune-fa This model is a fine-tuned version of [](https://huggingface.co/) on the pn_summary dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ali2066/sentence_bert-base-uncased-finetuned-SENTENCE
b3e8cf12312a11aa7a86d4b896b12b8a80318bbd
2022-06-16T11:57:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ali2066
null
ali2066/sentence_bert-base-uncased-finetuned-SENTENCE
7
null
transformers
14,520
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: sentence_bert-base-uncased-finetuned-SENTENCE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence_bert-base-uncased-finetuned-SENTENCE This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4834 - Precision: 0.8079 - Recall: 1.0 - F1: 0.8938 - Accuracy: 0.8079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.3520 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 2.0 | 26 | 0.3761 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 3.0 | 39 | 0.3683 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 4.0 | 52 | 0.3767 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 5.0 | 65 | 0.3834 | 0.8889 | 1.0 | 0.9412 | 0.8889 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
Suva/uptag-url-model-v2
0ceb50d5e0a0fc646fa0a68df7b62eb74185124b
2022-06-22T05:48:40.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:arxiv", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Suva
null
Suva/uptag-url-model-v2
7
null
transformers
14,521
--- datasets: - arxiv widget: - text: "summarize: We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machinelearning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems." license: mit --- ## Usage: ```python abstract = """We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machine learning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems. """ ``` ### Using Transformers🤗 ```python model_name = "Suva/uptag-url-model-v2" from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_ids = tokenizer.encode("summarize: " + abstract, return_tensors="pt", add_special_tokens=True) generated_ids = model.generate(input_ids=input_ids,num_beams=5,max_length=100,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=3) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) # output ["Overton: Building, Deploying, and Monitoring Machine Learning Systems for Engineers", "Overton: A System for Building, Monitoring, and Improving Production Machine Learning Systems", "Overton: Building, Monitoring, and Improving Production Machine Learning Systems"] ```
ahujaniharika95/tinyroberta-squad2-finetuned-squad
f77b0bb37f9aa05439b0c8499e23183420743a81
2022-07-06T10:22:19.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ahujaniharika95
null
ahujaniharika95/tinyroberta-squad2-finetuned-squad
7
null
transformers
14,522
Entry not found
raedinkhaled/vit-base-mri
e2a64e0c1a6c11c8082fe295384cb75ff0c37330
2022-06-18T03:33:44.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
raedinkhaled
null
raedinkhaled/vit-base-mri
7
null
transformers
14,523
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-mri results: - task: name: Image Classification type: image-classification dataset: name: mriDataSet type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9827025893699549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-mri This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mriDataSet dataset. It achieves the following results on the evaluation set: - Loss: 0.0453 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.04 | 0.3 | 500 | 0.0828 | 0.9690 | | 0.0765 | 0.59 | 1000 | 0.0623 | 0.9750 | | 0.0479 | 0.89 | 1500 | 0.0453 | 0.9827 | | 0.0199 | 1.18 | 2000 | 0.0524 | 0.9857 | | 0.0114 | 1.48 | 2500 | 0.0484 | 0.9861 | | 0.008 | 1.78 | 3000 | 0.0566 | 0.9852 | | 0.0051 | 2.07 | 3500 | 0.0513 | 0.9874 | | 0.0008 | 2.37 | 4000 | 0.0617 | 0.9874 | | 0.0021 | 2.66 | 4500 | 0.0664 | 0.9870 | | 0.0005 | 2.96 | 5000 | 0.0639 | 0.9872 | | 0.001 | 3.25 | 5500 | 0.0644 | 0.9879 | | 0.0004 | 3.55 | 6000 | 0.0672 | 0.9875 | | 0.0003 | 3.85 | 6500 | 0.0690 | 0.9879 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M6_MLM_cross
9bcb2dd7d6af60627df2196447c05127c26fc9d5
2022-06-18T09:44:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
S2312dal
null
S2312dal/M6_MLM_cross
7
null
transformers
14,524
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M6_MLM_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M6_MLM_cross This model is a fine-tuned version of [S2312dal/M6_MLM](https://huggingface.co/S2312dal/M6_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0197 - Pearson: 0.9680 - Spearmanr: 0.9098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0723 | 1.0 | 131 | 0.0646 | 0.8674 | 0.8449 | | 0.0433 | 2.0 | 262 | 0.0322 | 0.9475 | 0.9020 | | 0.0015 | 3.0 | 393 | 0.0197 | 0.9680 | 0.9098 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nestoralvaro/mt5-small-test-ged-mlsum_max_target_length_10
6d4cf4355e64adb57bff92e6bc5c81e31b0d9461
2022-06-19T06:39:24.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:mlsum", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
nestoralvaro
null
nestoralvaro/mt5-small-test-ged-mlsum_max_target_length_10
7
null
transformers
14,525
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-small-test-ged-mlsum_max_target_length_10 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum args: es metrics: - name: Rouge1 type: rouge value: 74.8229 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-ged-mlsum_max_target_length_10 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: 0.3341 - Rouge1: 74.8229 - Rouge2: 68.1808 - Rougel: 74.8297 - Rougelsum: 74.8414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.5565 | 1.0 | 33296 | 0.3827 | 69.9041 | 62.821 | 69.8709 | 69.8924 | | 0.2636 | 2.0 | 66592 | 0.3552 | 72.0701 | 65.4937 | 72.0787 | 72.091 | | 0.2309 | 3.0 | 99888 | 0.3525 | 72.5071 | 65.8026 | 72.5132 | 72.512 | | 0.2109 | 4.0 | 133184 | 0.3346 | 74.0842 | 67.4776 | 74.0887 | 74.0968 | | 0.1972 | 5.0 | 166480 | 0.3398 | 74.6051 | 68.6024 | 74.6177 | 74.6365 | | 0.1867 | 6.0 | 199776 | 0.3283 | 74.9022 | 68.2146 | 74.9023 | 74.926 | | 0.1785 | 7.0 | 233072 | 0.3325 | 74.8631 | 68.2468 | 74.8843 | 74.9026 | | 0.1725 | 8.0 | 266368 | 0.3341 | 74.8229 | 68.1808 | 74.8297 | 74.8414 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Emanuel/mdeberta-v3-base-finetuned-pos
c54d6d34c3964462b7637acd8e5ebff833f6baf8
2022-06-18T21:15:47.000Z
[ "pytorch", "deberta-v2", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Emanuel
null
Emanuel/mdeberta-v3-base-finetuned-pos
7
null
transformers
14,526
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: mdeberta-v3-base-finetuned-pos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-finetuned-pos This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0887 - Acc: 0.9814 - F1: 0.8861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 439 | 0.0965 | 0.9749 | 0.8471 | | 0.3317 | 2.0 | 878 | 0.0815 | 0.9783 | 0.8702 | | 0.0775 | 3.0 | 1317 | 0.0780 | 0.9812 | 0.8825 | | 0.0568 | 4.0 | 1756 | 0.0769 | 0.9809 | 0.8827 | | 0.0444 | 5.0 | 2195 | 0.0799 | 0.9811 | 0.8885 | | 0.0339 | 6.0 | 2634 | 0.0834 | 0.9813 | 0.8821 | | 0.0278 | 7.0 | 3073 | 0.0845 | 0.9817 | 0.8843 | | 0.0222 | 8.0 | 3512 | 0.0866 | 0.9814 | 0.8863 | | 0.0222 | 9.0 | 3951 | 0.0885 | 0.9814 | 0.8862 | | 0.0188 | 10.0 | 4390 | 0.0887 | 0.9814 | 0.8861 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/notch
9bee1a8e6ab9317c7a5d18f07a63263a3d1816a1
2022-06-19T17:55:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/notch
7
null
transformers
14,527
--- language: en thumbnail: http://www.huggingtweets.com/notch/1655661312216/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523817638706700288/tVCx9ZP1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Notch</div> <div style="text-align: center; font-size: 14px;">@notch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Notch. | Data | Notch | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 62 | | Short tweets | 307 | | Tweets kept | 2879 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6thbin0e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @notch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tffryipu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tffryipu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/notch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Danastos/nq_squad_bert_el_4
96d23632566dbf347e7dc6cad41e903e134a4e27
2022-06-20T09:42:30.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/nq_squad_bert_el_4
7
null
transformers
14,528
Entry not found
huggingtweets/bts_twt
9a4efb54896c52baf1e2624151be5c2f15e69d5a
2022-06-19T23:54:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bts_twt
7
null
transformers
14,529
--- language: en thumbnail: http://www.huggingtweets.com/bts_twt/1655682892675/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522592324785557504/yllnHgtN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">방탄소년단</div> <div style="text-align: center; font-size: 14px;">@bts_twt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 방탄소년단. | Data | 방탄소년단 | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 379 | | Short tweets | 1284 | | Tweets kept | 1554 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/db6x6xue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bts_twt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28y0ojch) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28y0ojch/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bts_twt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Danastos/nq_squad_bert_el_3
c8ab7c65d252f907fa7051d5992b788c93dd95cf
2022-06-20T11:31:29.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/nq_squad_bert_el_3
7
null
transformers
14,530
Entry not found
skpawar1305/wav2vec2-base-finetuned-digits
c65994478dfea3b393d65cf17a4ad646aad70418
2022-06-22T05:07:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
skpawar1305
null
skpawar1305/wav2vec2-base-finetuned-digits
7
null
transformers
14,531
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-digits results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-digits This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Accuracy: 0.9846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4808 | 1.0 | 620 | 0.3103 | 0.9696 | | 0.1877 | 2.0 | 1240 | 0.1043 | 0.9791 | | 0.1478 | 3.0 | 1860 | 0.0727 | 0.9827 | | 0.1611 | 4.0 | 2480 | 0.0644 | 0.9842 | | 0.0993 | 5.0 | 3100 | 0.0605 | 0.9846 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
skylord/swin-finetuned-food101
490c9d67095b36fb709dbd553946e8eb5d97390c
2022-06-20T14:20:56.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:food101", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
skylord
null
skylord/swin-finetuned-food101
7
null
transformers
14,532
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 args: default metrics: - name: Accuracy type: accuracy value: 0.9214257425742575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Accuracy: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5646 | 1.0 | 1183 | 0.3937 | 0.8861 | | 0.3327 | 2.0 | 2366 | 0.3024 | 0.9124 | | 0.1042 | 3.0 | 3549 | 0.2779 | 0.9214 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Jeevesh8/std_0pnt2_bert_ft_cola-69
414b4919d011a6053f839c1c1b6ea5c2a25cf6b6
2022-06-21T13:28:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-69
7
null
transformers
14,533
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-66
fd95196498775ff6edc971ca4443e105f9b37e12
2022-06-21T13:28:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-66
7
null
transformers
14,534
Entry not found
M-Chimiste/MiniLM-L-12-StackOverflow
639ac83b7ba0d4708906c3e8c20cb582c03230bf
2022-06-21T14:05:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
M-Chimiste
null
M-Chimiste/MiniLM-L-12-StackOverflow
7
null
transformers
14,535
--- license: apache-2.0 --- # Cross-Encoder for MS Marco This model is a generic masked language model fine tuned on stack overflow data. It's base pre-trained model was the cross-encoder/ms-marco-MiniLM-L-12-v2 model. The model can be used for creating vectors for search applications. It was trained to be used in conjunction with a knn search with OpenSearch for a pet project I've been working on. It's easiest to create document embeddings with the flair package as shown below. ## Usage with Transformers ```python from flair.data import Sentence from flair.embeddings import TransformerDocumentEmbeddings sentence = Sentence("Text to be embedded.") model = TransformerDocumentEmbeddings("model-name") model.embed(sentence) embeddings = sentence.embedding ```
davidcechak/DNADeberta_finehuman_nontata_promoters
b3a1bfa6462a9d28d7d346eb7c48ee2168e2aae0
2022-06-22T21:00:19.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
davidcechak
null
davidcechak/DNADeberta_finehuman_nontata_promoters
7
null
transformers
14,536
Entry not found
shahma/distilbert-base-uncased-finetuned-squad
99b1eae9dec0fc17d01bc4879ce330fa5521454e
2022-06-22T07:22:39.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
shahma
null
shahma/distilbert-base-uncased-finetuned-squad
7
null
transformers
14,537
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Elron/deberta-v3-large-hate
db034e2f0af5354009dfb05671a6253a4aad7641
2022-06-22T09:47:20.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Elron
null
Elron/deberta-v3-large-hate
7
null
transformers
14,538
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6362 | 0.18 | 100 | 0.5481 | 0.7197 | | 0.4264 | 0.36 | 200 | 0.4550 | 0.8008 | | 0.4174 | 0.53 | 300 | 0.4524 | 0.7868 | | 0.4197 | 0.71 | 400 | 0.4586 | 0.7918 | | 0.3819 | 0.89 | 500 | 0.4368 | 0.8078 | | 0.3558 | 1.07 | 600 | 0.4525 | 0.8068 | | 0.2982 | 1.24 | 700 | 0.4999 | 0.7928 | | 0.2885 | 1.42 | 800 | 0.5129 | 0.8108 | | 0.253 | 1.6 | 900 | 0.5873 | 0.8208 | | 0.3354 | 1.78 | 1000 | 0.4244 | 0.8178 | | 0.3083 | 1.95 | 1100 | 0.4853 | 0.8058 | | 0.2301 | 2.13 | 1200 | 0.7209 | 0.8018 | | 0.2167 | 2.31 | 1300 | 0.8090 | 0.7778 | | 0.1863 | 2.49 | 1400 | 0.6812 | 0.8038 | | 0.2181 | 2.66 | 1500 | 0.6958 | 0.8138 | | 0.2159 | 2.84 | 1600 | 0.6315 | 0.8118 | | 0.1828 | 3.02 | 1700 | 0.7173 | 0.8138 | | 0.1287 | 3.2 | 1800 | 0.9081 | 0.8018 | | 0.1711 | 3.37 | 1900 | 0.8858 | 0.8068 | | 0.1598 | 3.55 | 2000 | 0.7878 | 0.8028 | | 0.1467 | 3.73 | 2100 | 0.9003 | 0.7948 | | 0.127 | 3.91 | 2200 | 0.9066 | 0.8048 | | 0.1134 | 4.09 | 2300 | 0.9646 | 0.8118 | | 0.1017 | 4.26 | 2400 | 0.9778 | 0.8048 | | 0.085 | 4.44 | 2500 | 1.0529 | 0.8088 | | 0.0996 | 4.62 | 2600 | 1.0082 | 0.8058 | | 0.1054 | 4.8 | 2700 | 0.9698 | 0.8108 | | 0.1375 | 4.97 | 2800 | 0.9334 | 0.8048 | | 0.0487 | 5.15 | 2900 | 1.1273 | 0.8108 | | 0.0611 | 5.33 | 3000 | 1.1528 | 0.8058 | | 0.0668 | 5.51 | 3100 | 1.0148 | 0.8118 | | 0.0582 | 5.68 | 3200 | 1.1333 | 0.8108 | | 0.0869 | 5.86 | 3300 | 1.0607 | 0.8088 | | 0.0623 | 6.04 | 3400 | 1.1880 | 0.8068 | | 0.0317 | 6.22 | 3500 | 1.2836 | 0.8008 | | 0.0546 | 6.39 | 3600 | 1.2148 | 0.8058 | | 0.0486 | 6.57 | 3700 | 1.3348 | 0.8008 | | 0.0332 | 6.75 | 3800 | 1.3734 | 0.8018 | | 0.051 | 6.93 | 3900 | 1.2966 | 0.7978 | | 0.0217 | 7.1 | 4000 | 1.3853 | 0.8048 | | 0.0109 | 7.28 | 4100 | 1.4803 | 0.8068 | | 0.0345 | 7.46 | 4200 | 1.4906 | 0.7998 | | 0.0365 | 7.64 | 4300 | 1.4347 | 0.8028 | | 0.0265 | 7.82 | 4400 | 1.3977 | 0.8128 | | 0.0257 | 7.99 | 4500 | 1.3705 | 0.8108 | | 0.0036 | 8.17 | 4600 | 1.4353 | 0.8168 | | 0.0269 | 8.35 | 4700 | 1.4826 | 0.8068 | | 0.0231 | 8.53 | 4800 | 1.4811 | 0.8118 | | 0.0204 | 8.7 | 4900 | 1.5245 | 0.8028 | | 0.0263 | 8.88 | 5000 | 1.5123 | 0.8018 | | 0.0138 | 9.06 | 5100 | 1.5113 | 0.8028 | | 0.0089 | 9.24 | 5200 | 1.5846 | 0.7978 | | 0.029 | 9.41 | 5300 | 1.5362 | 0.8008 | | 0.0058 | 9.59 | 5400 | 1.5759 | 0.8018 | | 0.0084 | 9.77 | 5500 | 1.5679 | 0.8018 | | 0.0065 | 9.95 | 5600 | 1.5683 | 0.8028 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Mizew/EN-RSK
f2987afdddc608581d83c6608acab260d60d76ea
2022-06-24T11:13:10.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "es", "dataset:Mizew/autotrain-data-rusyn2", "transformers", "autotrain", "translation", "co2_eq_emissions", "autotrain_compatible" ]
translation
false
Mizew
null
Mizew/EN-RSK
7
null
transformers
14,539
--- tags: - autotrain - translation language: - en - es datasets: - Mizew/autotrain-data-rusyn2 co2_eq_emissions: 19.740487511182447 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1018434345 - CO2 Emissions (in grams): 19.740487511182447 ## Validation Metrics - Loss: 0.9978321194648743 - SacreBLEU: 13.8459 - Gen len: 6.0588 ## Description This is a model for the Pannonian Rusyn language, Albeit the data i trained it on also had a bit of Carpathian Rusyn in it, so don't expect the translator give out pure pannonian. and also it's not very good.
Andyrasika/xlm-roberta-base-finetuned-panx-de
aaf44df2e6344b404767765111c63730d2508c37
2022-06-23T04:54:40.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Andyrasika
null
Andyrasika/xlm-roberta-base-finetuned-panx-de
7
1
transformers
14,540
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8588964027959312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1383 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2631 | 1.0 | 525 | 0.1596 | 0.8218 | | 0.1296 | 2.0 | 1050 | 0.1353 | 0.8479 | | 0.0821 | 3.0 | 1575 | 0.1383 | 0.8589 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/scibert-finetuned-DAGPap22
0825f92bc5c449474af271ace8b20b7113e4ce70
2022-06-23T10:50:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/scibert-finetuned-DAGPap22
7
null
transformers
14,541
--- tags: - text-classification - generated_from_trainer model-index: - name: scibert-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-finetuned-DAGPap22 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
cjbarrie/autotrain-atc
3e964ae123603afbfea619e575e8578b4f7b2832
2022-06-23T08:00:44.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:cjbarrie/autotrain-data-traintest-sentiment-split", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
cjbarrie
null
cjbarrie/autotrain-atc
7
null
transformers
14,542
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - cjbarrie/autotrain-data-traintest-sentiment-split co2_eq_emissions: 2.288443953210163 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1024534822 - CO2 Emissions (in grams): 2.288443953210163 ## Validation Metrics - Loss: 0.5510443449020386 - Accuracy: 0.7619047619047619 - Precision: 0.6761363636363636 - Recall: 0.7345679012345679 - AUC: 0.7936883912336109 - F1: 0.7041420118343196 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-traintest-sentiment-split-1024534822 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534822", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534822", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
cjbarrie/autotrain-atc2
b0088256bc6edcee5b56c6233d9cf9109f3e5a52
2022-06-23T08:01:58.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:cjbarrie/autotrain-data-traintest-sentiment-split", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
cjbarrie
null
cjbarrie/autotrain-atc2
7
null
transformers
14,543
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - cjbarrie/autotrain-data-traintest-sentiment-split co2_eq_emissions: 3.1566482249518177 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1024534825 - CO2 Emissions (in grams): 3.1566482249518177 ## Validation Metrics - Loss: 0.5167999267578125 - Accuracy: 0.7523809523809524 - Precision: 0.7377049180327869 - Recall: 0.5555555555555556 - AUC: 0.8142525600535937 - F1: 0.6338028169014086 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-traintest-sentiment-split-1024534825 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
vaibhavagg303/Bart_for_summarization_2
89dc8fb1e6e026f1259c9fe5f0aecd9eddc849c8
2022-06-23T17:59:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vaibhavagg303
null
vaibhavagg303/Bart_for_summarization_2
7
null
transformers
14,544
Entry not found
AlekseyKorshuk/books-short-model
68fb5e2050ce8960f8b067e53c4b8b9a0499f3ba
2022-06-24T10:10:19.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/books-short-model
7
1
transformers
14,545
Entry not found
Chemsseddine/bert2gpt2_med_v3
22c8a6ba607098b04ce1ce3b9b46d318b40450ea
2022-06-30T20:11:24.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chemsseddine
null
Chemsseddine/bert2gpt2_med_v3
7
null
transformers
14,546
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: bert2gpt2_med_v3 results: [] --- <img src="https://huggingface.co/Chemsseddine/bert2gpt2_med_fr/resolve/main/logobert2gpt2.png" alt="Map of positive probabilities per country." width="200"/> <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert2gpt2_med_v3 This model is a fine-tuned version of [Chemsseddine/bert2gpt2_med_v2](https://huggingface.co/Chemsseddine/bert2gpt2_med_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5474 - Rouge1: 31.8871 - Rouge2: 14.4411 - Rougel: 31.6716 - Rougelsum: 31.579 - Gen Len: 22.8412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.5621 | 1.0 | 900 | 1.9724 | 30.3731 | 13.8412 | 29.9606 | 29.9716 | 22.6353 | | 1.3692 | 2.0 | 1800 | 1.9634 | 29.6409 | 13.7674 | 29.5202 | 29.5207 | 22.5059 | | 0.8308 | 3.0 | 2700 | 2.1431 | 30.9317 | 14.5594 | 30.8021 | 30.7287 | 22.6118 | | 0.4689 | 4.0 | 3600 | 2.2970 | 30.1132 | 14.6407 | 29.9657 | 30.0182 | 23.3235 | | 0.2875 | 5.0 | 4500 | 2.3787 | 30.9378 | 14.7108 | 30.861 | 30.9097 | 22.7529 | | 0.1564 | 6.0 | 5400 | 2.4137 | 30.5338 | 13.9702 | 30.1252 | 30.1975 | 23.1588 | | 0.1007 | 7.0 | 6300 | 2.4822 | 30.872 | 14.9353 | 30.835 | 30.7694 | 23.0529 | | 0.0783 | 8.0 | 7200 | 2.4974 | 29.9825 | 14.1702 | 29.7507 | 29.7271 | 23.1882 | | 0.0504 | 9.0 | 8100 | 2.5175 | 31.96 | 15.0705 | 31.9669 | 31.9839 | 23.0588 | | 0.0339 | 10.0 | 9000 | 2.5474 | 31.8871 | 14.4411 | 31.6716 | 31.579 | 22.8412 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SoDehghan/supmpn-bert-base-uncased
7cd19c922cfcf0b5bf0538eeba43a3910460a8ae
2022-06-27T06:39:52.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
SoDehghan
null
SoDehghan/supmpn-bert-base-uncased
7
null
transformers
14,547
--- license: apache-2.0 ---
Parsa/LD50-prediction
a51d10706addebc0f9dd713ce331b06553cac454
2022-06-27T02:34:13.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Parsa
null
Parsa/LD50-prediction
7
null
transformers
14,548
Toxicity LD50 prediction (regression model) based on <a href = "https://tdcommons.ai/single_pred_tasks/tox/"> Acute Toxicity LD50 </a> dataset. For now, for the purpose of prediction, download the model. In the future, an easy colab notebook will be available.
Moo/kogpt2-proofreader
df3a61eed6bdac4f500db4a5a013532a4101e86e
2022-06-27T03:25:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
Moo
null
Moo/kogpt2-proofreader
7
null
transformers
14,549
--- license: apache-2.0 ---
chisun/mt5-small-finetuned-amazon-en-es-accelerate2
7640cd720dd3d34b001f132400d5e19464217e86
2022-06-27T08:49:35.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
chisun
null
chisun/mt5-small-finetuned-amazon-en-es-accelerate2
7
null
transformers
14,550
Entry not found
BritishLibraryLabs/distilbert-base-cased-fine-tuned-blbooksgenre
f8f28c9933c6bf233a206edd39133aecdeabff9a
2022-06-27T10:08:45.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:blbooksgenre", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
BritishLibraryLabs
null
BritishLibraryLabs/distilbert-base-cased-fine-tuned-blbooksgenre
7
null
transformers
14,551
--- license: apache-2.0 tags: - generated_from_trainer datasets: - blbooksgenre model-index: - name: distilbert-base-cased-fine-tuned-blbooksgenre results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-fine-tuned-blbooksgenre This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the blbooksgenre dataset. It achieves the following results on the evaluation set: - Loss: 1.9631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2575 | 1.0 | 6226 | 2.1388 | | 2.0548 | 2.0 | 12452 | 2.0312 | | 1.988 | 3.0 | 18678 | 1.9631 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
elliotthwang/t5-small-finetuned-xlsum-chinese-tradition
2017b16a84971fd58dcc91eea99c36213188cd3e
2022-06-27T21:51:47.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
elliotthwang
null
elliotthwang/t5-small-finetuned-xlsum-chinese-tradition
7
null
transformers
14,552
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-chinese-tradition results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 0.8887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-chinese-tradition This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.2061 - Rouge1: 0.8887 - Rouge2: 0.0671 - Rougel: 0.889 - Rougelsum: 0.8838 - Gen Len: 6.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.4231 | 1.0 | 2336 | 1.2586 | 0.711 | 0.0528 | 0.7029 | 0.7053 | 7.3368 | | 1.378 | 2.0 | 4672 | 1.2281 | 0.9688 | 0.05 | 0.9574 | 0.9656 | 7.0392 | | 1.3567 | 3.0 | 7008 | 1.2182 | 0.9534 | 0.1035 | 0.9531 | 0.9472 | 6.7437 | | 1.3339 | 4.0 | 9344 | 1.2096 | 0.9969 | 0.0814 | 0.9969 | 0.9938 | 7.4503 | | 1.3537 | 5.0 | 11680 | 1.2072 | 0.8429 | 0.0742 | 0.8372 | 0.838 | 6.8049 | | 1.3351 | 6.0 | 14016 | 1.2061 | 0.8887 | 0.0671 | 0.889 | 0.8838 | 6.8779 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-finetuned-misogyny
a9560f18d77d2d75cee28c8aa48a8891b6b5b42d
2022-06-27T21:20:05.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-finetuned-misogyny
7
null
transformers
14,553
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7913 - Accuracy: 0.8925 - F1: 0.8280 - Precision: 0.8240 - Recall: 0.8320 - Mae: 0.1075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.328 | 1.0 | 828 | 0.3477 | 0.8732 | 0.7831 | 0.8366 | 0.7359 | 0.1268 | | 0.273 | 2.0 | 1656 | 0.2921 | 0.8910 | 0.8269 | 0.8171 | 0.8369 | 0.1090 | | 0.2342 | 3.0 | 2484 | 0.3222 | 0.8834 | 0.8176 | 0.7965 | 0.8398 | 0.1166 | | 0.2132 | 4.0 | 3312 | 0.3801 | 0.8852 | 0.8223 | 0.7933 | 0.8534 | 0.1148 | | 0.1347 | 5.0 | 4140 | 0.5474 | 0.8955 | 0.8314 | 0.8346 | 0.8282 | 0.1045 | | 0.1187 | 6.0 | 4968 | 0.5853 | 0.8886 | 0.8137 | 0.8475 | 0.7825 | 0.1114 | | 0.0968 | 7.0 | 5796 | 0.6378 | 0.8916 | 0.8267 | 0.8223 | 0.8311 | 0.1084 | | 0.0533 | 8.0 | 6624 | 0.7397 | 0.8831 | 0.8191 | 0.7899 | 0.8505 | 0.1169 | | 0.06 | 9.0 | 7452 | 0.8112 | 0.8861 | 0.8224 | 0.7987 | 0.8476 | 0.1139 | | 0.0287 | 10.0 | 8280 | 0.7913 | 0.8925 | 0.8280 | 0.8240 | 0.8320 | 0.1075 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Aalaa/distilgpt2-finetuned-wikitext2
07feec3d0c88d587837f3fa540a80396941cd091
2022-06-28T21:26:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Aalaa
null
Aalaa/distilgpt2-finetuned-wikitext2
7
null
transformers
14,554
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gciaffoni/wav2vec2-large-xls-r-300m-it-colab6
f4ba7cb076ced73066eb8d9ddf6a3742908b3854
2022-07-22T14:59:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gciaffoni
null
gciaffoni/wav2vec2-large-xls-r-300m-it-colab6
7
null
transformers
14,555
Entry not found
Lamine/bert-finetuned-ner2
09782e547f3a7ddba31ab82dda1f2c7275828bf0
2022-06-28T09:22:42.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Lamine
null
Lamine/bert-finetuned-ner2
7
null
transformers
14,556
Entry not found
okite97/distilbert-base-uncased-finetuned-emotion
7bedf2fd1abab1e601f7997982fa206d33c86bcf
2022-07-23T00:06:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
okite97
null
okite97/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,557
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.9328468818264821 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1659 - Accuracy: 0.9325 - F1: 0.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1057 | 1.0 | 250 | 0.1865 | 0.9275 | 0.9275 | | 0.1059 | 2.0 | 500 | 0.1659 | 0.9325 | 0.9328 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dexay/fNER
6bc65d0d8f0c0491a1fc3b047e4a18fbaff65717
2022-06-29T06:28:17.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dexay
null
dexay/fNER
7
null
transformers
14,558
Entry not found
cwkeam/m-ctc-t-large-lid
697f6693403448e004f80f3be1fb769c0a95500e
2022-06-29T08:11:14.000Z
[ "pytorch", "mctct", "en", "dataset:librispeech_asr", "dataset:common_voice", "arxiv:2111.00161", "transformers", "speech", "license:apache-2.0" ]
null
false
cwkeam
null
cwkeam/m-ctc-t-large-lid
7
null
transformers
14,559
--- language: en datasets: - librispeech_asr - common_voice tags: - speech license: apache-2.0 --- # M-CTC-T ​ Massively multilingual speech recognizer from Meta AI. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal. ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-arch.png) ​ The original Flashlight code, model checkpoints, and Colab notebook can be found at https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl . ​ ​ ## Citation ​ [Paper](https://arxiv.org/abs/2111.00161) ​ Authors: Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert ​ ``` @article{lugosch2021pseudo, title={Pseudo-Labeling for Massively Multilingual Speech Recognition}, author={Lugosch, Loren and Likhomanenko, Tatiana and Synnaeve, Gabriel and Collobert, Ronan}, journal={ICASSP}, year={2022} } ``` ​ Additional thanks to [Chan Woo Kim](https://huggingface.co/cwkeam) and [Patrick von Platen](https://huggingface.co/patrickvonplaten) for porting the model from Flashlight to PyTorch. ​ # Training method ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-slimipl.png) TO-DO: replace with the training diagram from paper ​ For more information on how the model was trained, please take a look at the [official paper](https://arxiv.org/abs/2111.00161). ​ # Usage ​ To transcribe audio files the model can be used as a standalone acoustic model as follows: ​ ```python import torch import torchaudio from datasets import load_dataset from transformers import MCTCTForCTC, MCTCTProcessor model = MCTCTForCTC.from_pretrained("speechbrain/mctct-large") processor = MCTCTProcessor.from_pretrained("speechbrain/mctct-large") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features # retrieve logits logits = model(input_features).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` Results for Common Voice, averaged over all languages: ​ *Character error rate (CER)*: ​ | Valid | Test | |-------|------| | 21.4 | 23.3 |
Abonia/finetuning-sentiment-model-3000-samples
6c78e5636149b7510d4e2d296f284e753edaab19
2022-06-29T15:27:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Abonia
null
Abonia/finetuning-sentiment-model-3000-samples
7
null
transformers
14,560
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877076411960133 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Shivagowri/vit-snacks
7d4c06f4fbeb0f5ee3486808ace75b48769a2cf1
2022-06-30T06:56:00.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:snacks", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
Shivagowri
null
Shivagowri/vit-snacks
7
null
transformers
14,561
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - snacks metrics: - accuracy model-index: - name: vit-snacks results: - task: name: Image Classification type: image-classification dataset: name: Matthijs/snacks type: snacks args: default metrics: - name: Accuracy type: accuracy value: 0.9392670157068063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-snacks This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Matthijs/snacks dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Accuracy: 0.9393 ## Model description upload any image of your fave yummy snack ## Intended uses & limitations there are only 20 different varieties of snacks ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8724 | 0.33 | 100 | 0.9118 | 0.8670 | | 0.5628 | 0.66 | 200 | 0.6873 | 0.8471 | | 0.4421 | 0.99 | 300 | 0.4995 | 0.8691 | | 0.2837 | 1.32 | 400 | 0.4008 | 0.9026 | | 0.1645 | 1.65 | 500 | 0.3702 | 0.9058 | | 0.1604 | 1.98 | 600 | 0.3981 | 0.8921 | | 0.0498 | 2.31 | 700 | 0.3185 | 0.9204 | | 0.0406 | 2.64 | 800 | 0.3427 | 0.9141 | | 0.1049 | 2.97 | 900 | 0.3444 | 0.9173 | | 0.0272 | 3.3 | 1000 | 0.3168 | 0.9246 | | 0.0186 | 3.63 | 1100 | 0.3142 | 0.9288 | | 0.0203 | 3.96 | 1200 | 0.2931 | 0.9298 | | 0.007 | 4.29 | 1300 | 0.2754 | 0.9393 | | 0.0072 | 4.62 | 1400 | 0.2778 | 0.9403 | | 0.0073 | 4.95 | 1500 | 0.2782 | 0.9393 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-512
761e217fdc90f4759a8020cf4d67cf0d9a84cd56
2022-06-29T17:56:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-512
7
null
transformers
14,562
Entry not found
Jeevesh8/goog_bert_ft_cola-2
e5be45949b6c392ca7e1e9e2f895636dc4a1950a
2022-06-29T17:31:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-2
7
null
transformers
14,563
Entry not found
Gansukh/dlub-2022-mlm-full
e816312e88c9f162b19bfece769a1658a79ed254
2022-06-30T03:59:08.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Gansukh
null
Gansukh/dlub-2022-mlm-full
7
null
transformers
14,564
--- tags: - generated_from_trainer model-index: - name: dlub-2022-mlm-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dlub-2022-mlm-full This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.4321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.7318 | 1.0 | 21 | 9.4453 | | 9.3594 | 2.0 | 42 | 9.1713 | | 9.1176 | 3.0 | 63 | 9.0082 | | 8.9335 | 4.0 | 84 | 8.8166 | | 8.7735 | 5.0 | 105 | 8.7055 | | 8.6841 | 6.0 | 126 | 8.6051 | | 8.6166 | 7.0 | 147 | 8.5337 | | 8.5258 | 8.0 | 168 | 8.4790 | | 8.5259 | 9.0 | 189 | 8.4290 | | 8.4628 | 10.0 | 210 | 8.4321 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ricardo-filho/bert_base_tcm_0.5
f9f26c02cd00dec16d30adb04aa000421b35e6a2
2022-06-30T19:37:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ricardo-filho
null
ricardo-filho/bert_base_tcm_0.5
7
null
transformers
14,565
--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_tcm_0.5 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0165 - Criterio Julgamento Precision: 0.7708 - Criterio Julgamento Recall: 0.8740 - Criterio Julgamento F1: 0.8192 - Criterio Julgamento Number: 127 - Data Sessao Precision: 0.7692 - Data Sessao Recall: 0.8571 - Data Sessao F1: 0.8108 - Data Sessao Number: 70 - Modalidade Licitacao Precision: 0.9002 - Modalidade Licitacao Recall: 0.9651 - Modalidade Licitacao F1: 0.9315 - Modalidade Licitacao Number: 430 - Numero Exercicio Precision: 0.8578 - Numero Exercicio Recall: 0.8698 - Numero Exercicio F1: 0.8637 - Numero Exercicio Number: 215 - Objeto Licitacao Precision: 0.4245 - Objeto Licitacao Recall: 0.5488 - Objeto Licitacao F1: 0.4787 - Objeto Licitacao Number: 82 - Valor Objeto Precision: 0.76 - Valor Objeto Recall: 0.8444 - Valor Objeto F1: 0.8 - Valor Objeto Number: 45 - Overall Precision: 0.8098 - Overall Recall: 0.8834 - Overall F1: 0.8450 - Overall Accuracy: 0.9960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Objeto Licitacao Precision | Objeto Licitacao Recall | Objeto Licitacao F1 | Objeto Licitacao Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0257 | 1.0 | 3996 | 0.0197 | 0.7724 | 0.8819 | 0.8235 | 127 | 0.7033 | 0.9143 | 0.7950 | 70 | 0.8820 | 0.9558 | 0.9174 | 430 | 0.8932 | 0.9721 | 0.9310 | 215 | 0.32 | 0.4878 | 0.3865 | 82 | 0.4722 | 0.7556 | 0.5812 | 45 | 0.7679 | 0.8978 | 0.8278 | 0.9952 | | 0.0159 | 2.0 | 7992 | 0.0212 | 0.7883 | 0.8504 | 0.8182 | 127 | 0.7097 | 0.9429 | 0.8098 | 70 | 0.8551 | 0.9605 | 0.9047 | 430 | 0.9539 | 0.9628 | 0.9583 | 215 | 0.2484 | 0.4756 | 0.3264 | 82 | 0.5797 | 0.8889 | 0.7018 | 45 | 0.7552 | 0.9009 | 0.8216 | 0.9942 | | 0.0099 | 3.0 | 11988 | 0.0177 | 0.7868 | 0.8425 | 0.8137 | 127 | 0.7439 | 0.8714 | 0.8026 | 70 | 0.8841 | 0.9581 | 0.9196 | 430 | 0.9414 | 0.9721 | 0.9565 | 215 | 0.3333 | 0.5976 | 0.4279 | 82 | 0.6557 | 0.8889 | 0.7547 | 45 | 0.7882 | 0.9061 | 0.8430 | 0.9957 | | 0.0075 | 4.0 | 15984 | 0.0165 | 0.7708 | 0.8740 | 0.8192 | 127 | 0.7692 | 0.8571 | 0.8108 | 70 | 0.9002 | 0.9651 | 0.9315 | 430 | 0.8578 | 0.8698 | 0.8637 | 215 | 0.4245 | 0.5488 | 0.4787 | 82 | 0.76 | 0.8444 | 0.8 | 45 | 0.8098 | 0.8834 | 0.8450 | 0.9960 | | 0.0044 | 5.0 | 19980 | 0.0185 | 0.8271 | 0.8661 | 0.8462 | 127 | 0.8529 | 0.8286 | 0.8406 | 70 | 0.8991 | 0.9535 | 0.9255 | 430 | 0.9720 | 0.9674 | 0.9697 | 215 | 0.4324 | 0.5854 | 0.4974 | 82 | 0.6545 | 0.8 | 0.7200 | 45 | 0.8390 | 0.8978 | 0.8674 | 0.9962 | | 0.0053 | 6.0 | 23976 | 0.0191 | 0.8168 | 0.8425 | 0.8295 | 127 | 0.8148 | 0.9429 | 0.8742 | 70 | 0.8896 | 0.9558 | 0.9215 | 430 | 0.9589 | 0.9767 | 0.9677 | 215 | 0.4032 | 0.6098 | 0.4854 | 82 | 0.7255 | 0.8222 | 0.7708 | 45 | 0.8249 | 0.9092 | 0.8650 | 0.9959 | | 0.0029 | 7.0 | 27972 | 0.0226 | 0.8102 | 0.8740 | 0.8409 | 127 | 0.8 | 0.9143 | 0.8533 | 70 | 0.8926 | 0.9279 | 0.9099 | 430 | 0.9579 | 0.9535 | 0.9557 | 215 | 0.4519 | 0.5732 | 0.5054 | 82 | 0.7647 | 0.8667 | 0.8125 | 45 | 0.8374 | 0.8927 | 0.8641 | 0.9960 | | 0.0016 | 8.0 | 31968 | 0.0231 | 0.8268 | 0.8268 | 0.8268 | 127 | 0.7215 | 0.8143 | 0.7651 | 70 | 0.8838 | 0.9372 | 0.9097 | 430 | 0.9498 | 0.9674 | 0.9585 | 215 | 0.4952 | 0.6341 | 0.5561 | 82 | 0.8085 | 0.8444 | 0.8261 | 45 | 0.8354 | 0.8906 | 0.8621 | 0.9964 | | 0.0023 | 9.0 | 35964 | 0.0248 | 0.8321 | 0.8583 | 0.8450 | 127 | 0.8056 | 0.8286 | 0.8169 | 70 | 0.8969 | 0.9302 | 0.9132 | 430 | 0.9671 | 0.9581 | 0.9626 | 215 | 0.5 | 0.5976 | 0.5444 | 82 | 0.8085 | 0.8444 | 0.8261 | 45 | 0.8540 | 0.8875 | 0.8704 | 0.9963 | | 0.001 | 10.0 | 39960 | 0.0260 | 0.8308 | 0.8504 | 0.8405 | 127 | 0.8286 | 0.8286 | 0.8286 | 70 | 0.8989 | 0.9302 | 0.9143 | 430 | 0.9717 | 0.9581 | 0.9649 | 215 | 0.51 | 0.6220 | 0.5604 | 82 | 0.8298 | 0.8667 | 0.8478 | 45 | 0.8586 | 0.8896 | 0.8738 | 0.9963 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bayartsogt/roberta-base-ner-demo
360bf2fa1dc6706fd41bfa7aebc0d81b649bba82
2022-07-01T03:54:37.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "mn", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
bayartsogt
null
bayartsogt/roberta-base-ner-demo
7
null
transformers
14,566
--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0833 - Precision: 0.8885 - Recall: 0.9070 - F1: 0.8976 - Accuracy: 0.9752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1666 | 1.0 | 477 | 0.0833 | 0.8885 | 0.9070 | 0.8976 | 0.9752 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Buyandelger/roberta-base-ner-demo
340861dd9df933fb38018ea4707e4e99bc7a19fc
2022-07-01T03:58:26.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "mn", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Buyandelger
null
Buyandelger/roberta-base-ner-demo
7
null
transformers
14,567
--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0771 - Precision: 0.8802 - Recall: 0.8951 - F1: 0.8876 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0336 | 1.0 | 477 | 0.0771 | 0.8802 | 0.8951 | 0.8876 | 0.9798 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ryo0634/luke-base-embedding_predictor-20181220
36f636cf99cf99b41cef5e1fc9d0a776509aaa55
2022-07-02T02:05:02.000Z
[ "pytorch", "luke", "transformers" ]
null
false
ryo0634
null
ryo0634/luke-base-embedding_predictor-20181220
7
null
transformers
14,568
Entry not found
jdang/distilbert-base-uncased-finetuned-emotion
444bf7c533e794cfcb533e69940d1f9583428c82
2022-07-05T13:44:29.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jdang
null
jdang/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,569
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9206916294520199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9205 - F1: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8546 | 1.0 | 250 | 0.3252 | 0.906 | 0.9028 | | 0.2551 | 2.0 | 500 | 0.2235 | 0.9205 | 0.9207 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Neha2608/xlm-roberta-base-finetuned-panx-all
26ae3b70c603e85c5c72bc621a9c1b4def0eaa15
2022-07-02T13:00:24.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Neha2608
null
Neha2608/xlm-roberta-base-finetuned-panx-all
7
null
transformers
14,570
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1862 | 0.8114 | | 0.1552 | 2.0 | 1670 | 0.1758 | 0.8426 | | 0.1002 | 3.0 | 2505 | 0.1752 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
tner/bertweet-large-tweetner-2020
4e520fd9e826a156d07241f339f517f80c0bdfe1
2022-07-08T06:26:08.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-large-tweetner-2020
7
null
transformers
14,571
Entry not found
tner/roberta-base-tweetner-2020
c0060e794a826edf75563297e7f2843ddfed172a
2022-07-07T23:33:14.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-base-tweetner-2020
7
null
transformers
14,572
Entry not found
tner/twitter-roberta-base-dec2021-tweetner-2020
3a2e4d3c587b2d1d5384cda8aefe4303dc72a3ab
2022-07-07T10:10:13.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/twitter-roberta-base-dec2021-tweetner-2020
7
null
transformers
14,573
Entry not found
Siqi/marian-finetuned-kde4-en-to-fr-2
bf3d1b9a994b9940e1ef9c04e68ddc309e76d9c8
2022-07-03T22:53:13.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
Siqi
null
Siqi/marian-finetuned-kde4-en-to-fr-2
7
null
transformers
14,574
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr-2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.932594546181996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr-2 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8559 - Bleu: 52.9326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lucataco/DialoGPT-med-geoff
f88dd8a09183ca91d7d7faee9b1ec7b05ea6d465
2022-07-03T23:34:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lucataco
null
lucataco/DialoGPT-med-geoff
7
null
transformers
14,575
--- tags: - conversational --- # Geoff Dialog GPT Model Medium 12 # Trained on discord channels: # Dragalia, casuo chat
seoyoung/BART_BaseModel
124805b36e098f4ac80eea296427ef3dab351261
2022-07-03T23:56:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seoyoung
null
seoyoung/BART_BaseModel
7
null
transformers
14,576
Entry not found
Aktsvigun/bart-base_xsum_705525
9fb92ecac6636726a30a88c5099cf8e3f407eda8
2022-07-07T14:40:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_xsum_705525
7
null
transformers
14,577
Entry not found
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-256-5
b92efbdfe808fea3753114c32a02ddbd859f25ff
2022-07-04T10:10:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-256-5
7
null
transformers
14,578
Entry not found
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-256-13
a4809225781534924edb548911af014854a317ef
2022-07-04T10:33:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-256-13
7
null
transformers
14,579
Entry not found
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-256-5
6447e25ad4935f2d4029d8f48de311effcb8d50d
2022-07-04T10:27:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-256-5
7
null
transformers
14,580
Entry not found
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-256-13
d47320335c3d46c7eec4337963ccd7f26779deb6
2022-07-04T10:41:18.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-256-13
7
null
transformers
14,581
Entry not found
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-384-8
1e0387d2d04e341524f9cb26d516dab22675acdf
2022-07-04T11:26:29.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-384-8
7
null
transformers
14,582
Entry not found
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-384-8
c5dd08b17a5e819f4c1e5d974531c7f6e784405b
2022-07-04T11:27:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-384-8
7
null
transformers
14,583
Entry not found
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-320-8
31600a9a620376161afb870ce4384a99a2e94f8d
2022-07-04T13:22:27.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-320-8
7
null
transformers
14,584
Entry not found
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-128-32
e8ff09638cc4b825bf5515f7ca7678ec3a81d561
2022-07-04T13:25:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Original-PubMedBERT-128-32
7
null
transformers
14,585
Entry not found
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-128-32
bfed117b82bc3ace83f5effec561d8fecc773ee3
2022-07-04T13:28:21.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-128-32
7
null
transformers
14,586
Entry not found
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-128-10
09d3a512a5fb4520875a4fec0e944eab165e558f
2022-07-04T14:32:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-128-10
7
null
transformers
14,587
Entry not found
Samlit/rare-puppers
3d83792ec87f8aacd2bfbed6031163cd1fc6ebf6
2022-07-04T16:51:00.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Samlit
null
Samlit/rare-puppers
7
null
transformers
14,588
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4285714328289032 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Marcelle Lender doing the Bolero in Chilperic ![Marcelle Lender doing the Bolero in Chilperic](images/Marcelle_Lender_doing_the_Bolero_in_Chilperic.jpg) #### Moulin Rouge: La Goulue - Henri Toulouse-Lautrec ![Moulin Rouge: La Goulue - Henri Toulouse-Lautrec](images/Moulin_Rouge:_La_Goulue_-_Henri_Toulouse-Lautrec.jpg) #### Salon at the Rue des Moulins - Henri de Toulouse-Lautrec ![Salon at the Rue des Moulins - Henri de Toulouse-Lautrec](images/Salon_at_the_Rue_des_Moulins_-_Henri_de_Toulouse-Lautrec.jpg) #### aristide bruant - Henri de Toulouse-Lautrec ![aristide bruant - Henri de Toulouse-Lautrec](images/aristide_bruant_-_Henri_de_Toulouse-Lautrec.jpg) #### la goulue - Henri de Toulouse-Lautrec ![la goulue - Henri de Toulouse-Lautrec](images/la_goulue_-_Henri_de_Toulouse-Lautrec.jpg)
moonzi/finetuning-sentiment-model-3000-samples
3a53d8f03fbb657d7f3e1db14e52dd9d077a5d4a
2022-07-05T03:13:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
moonzi
null
moonzi/finetuning-sentiment-model-3000-samples
7
null
transformers
14,589
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3288 - Accuracy: 0.8467 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
tho-clare/autotrain-Text-Generate-1089139622
23d9365c2c3d9338483eeb354824d5795fe7ff48
2022-07-05T14:47:38.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:tho-clare/autotrain-data-Text-Generate", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
tho-clare
null
tho-clare/autotrain-Text-Generate-1089139622
7
null
transformers
14,590
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - tho-clare/autotrain-data-Text-Generate co2_eq_emissions: 7.2566545568791945 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1089139622 - CO2 Emissions (in grams): 7.2566545568791945 ## Validation Metrics - Loss: 2.4398036003112793 - Rouge1: 15.4155 - Rouge2: 6.5786 - RougeL: 12.3257 - RougeLsum: 13.9424 - Gen Len: 19.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/tho-clare/autotrain-Text-Generate-1089139622 ```
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-sexism
8acdcc2fbd12061fd495878997cef0df30e801bf
2022-07-06T02:53:18.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
annahaz
null
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-sexism
7
null
transformers
14,591
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-multilingual-cased-finetuned-misogyny-sexism results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-misogyny-sexism This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Accuracy: 0.9995 - F1: 0.9995 - Precision: 0.9989 - Recall: 1.0 - Mae: 0.0005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.301 | 1.0 | 1759 | 0.3981 | 0.8194 | 0.8268 | 0.7669 | 0.8968 | 0.1806 | | 0.2573 | 2.0 | 3518 | 0.2608 | 0.8887 | 0.8902 | 0.8463 | 0.9389 | 0.1113 | | 0.1818 | 3.0 | 5277 | 0.1608 | 0.9418 | 0.9426 | 0.8965 | 0.9937 | 0.0582 | | 0.1146 | 4.0 | 7036 | 0.0667 | 0.9793 | 0.9787 | 0.9652 | 0.9926 | 0.0207 | | 0.0829 | 5.0 | 8795 | 0.0292 | 0.9924 | 0.9921 | 0.9875 | 0.9968 | 0.0076 | | 0.059 | 6.0 | 10554 | 0.0221 | 0.9939 | 0.9937 | 0.9916 | 0.9958 | 0.0061 | | 0.0434 | 7.0 | 12313 | 0.0177 | 0.9954 | 0.9953 | 0.9916 | 0.9989 | 0.0046 | | 0.0165 | 8.0 | 14072 | 0.0014 | 0.9995 | 0.9995 | 0.9989 | 1.0 | 0.0005 | | 0.0144 | 9.0 | 15831 | 0.0008 | 0.9995 | 0.9995 | 0.9989 | 1.0 | 0.0005 | | 0.012 | 10.0 | 17590 | 0.0013 | 0.9995 | 0.9995 | 0.9989 | 1.0 | 0.0005 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Sayan01/tiny-bert-qqp-128-distilled
a0ac7b8ebf3b8d77db29e8561970ca3d104d4b45
2022-07-08T01:27:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-qqp-128-distilled
7
null
transformers
14,592
Entry not found
sumitrsch/Indic-bert_multiconer22_hi
7f88bc1db8075fcd2496af0fe0f121ac87519f56
2022-07-06T10:00:34.000Z
[ "pytorch", "albert", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
sumitrsch
null
sumitrsch/Indic-bert_multiconer22_hi
7
1
transformers
14,593
--- license: afl-3.0 --- Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task. https://colab.research.google.com/drive/17WyqwdoRNnzImeik6wTRE5uuj9QQnkXA#scrollTo=nYtUtmyDFAqP
paola-md/recipe-distilbert-is
1d03c901c6d880f8fec8975c7c1d7345b3d3d85e
2022-07-07T08:34:16.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-distilbert-is
7
null
transformers
14,594
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-is This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9409 | 1.0 | 1 | 4.0558 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ltrctelugu/tree_topconstituents
3340ffb20aa6891279480a2e9712f918a0511db7
2022-07-06T23:02:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ltrctelugu
null
ltrctelugu/tree_topconstituents
7
null
transformers
14,595
hello
Aktsvigun/bart-base_aeslc_3878022
6513a339d9a39a1a2f410b7d96a939f8d4c07e5f
2022-07-07T15:18:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_3878022
7
null
transformers
14,596
Entry not found
Aktsvigun/bart-base_aeslc_9467153
f4149ea0ec1f254b7cac5feca95a4d36fcbfb325
2022-07-07T15:34:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_9467153
7
null
transformers
14,597
Entry not found
huggingtweets/joviex
e19e1e8d6d791d8cc441b8da39d84a223405d9fa
2022-07-07T01:05:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/joviex
7
null
transformers
14,598
--- language: en thumbnail: http://www.huggingtweets.com/joviex/1657155904240/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1481464434123894785/YmWpO9TE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lɐǝɹ sı ǝʌıʇɔǝdsɹǝd</div> <div style="text-align: center; font-size: 14px;">@joviex</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lɐǝɹ sı ǝʌıʇɔǝdsɹǝd. | Data | lɐǝɹ sı ǝʌıʇɔǝdsɹǝd | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 36 | | Short tweets | 259 | | Tweets kept | 2953 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xrk357z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joviex's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25r2lx70) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25r2lx70/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joviex') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aktsvigun/bart-base_aeslc_5537116
3253455e50ab652b693b76bb1924d3aa386a830b
2022-07-07T15:06:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_5537116
7
null
transformers
14,599
Entry not found