text
stringlengths 17
4.49k
| code
stringlengths 49
5.46k
|
---|---|
Count the number of possible triangles | C ++ code to count the number of possible triangles using brute force approach ; Function to count all possible triangles with arr [ ] elements ; Count of triangles ; The three loops select three different values from array ; The innermost loop checks for the triangle property ; Sum of two sides is greater than the third ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findNumberOfTriangles ( int arr [ ] , int n ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i + 1 ; j < n ; j ++ ) { for ( int k = j + 1 ; k < n ; k ++ ) if ( arr [ i ] + arr [ j ] > arr [ k ] && arr [ i ] + arr [ k ] > arr [ j ] && arr [ k ] + arr [ j ] > arr [ i ] ) count ++ ; } } return count ; } int main ( ) { int arr [ ] = { 10 , 21 , 22 , 100 , 101 , 200 , 300 } ; int size = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Total β number β of β triangles β possible β is β " << findNumberOfTriangles ( arr , size ) ; return 0 ; } |
Count the number of possible triangles | C ++ program to count number of triangles that can be formed from given array ; Following function is needed for library function qsort ( ) . Refer www . cplusplus . com / reference / clibrary / cstdlib / qsort / ; Function to count all possible triangles with arr [ ] elements ; Sort the array elements in non - decreasing order ; Initialize count of triangles ; Fix the first element . We need to run till n - 3 as the other two elements are selected from arr [ i + 1. . . n - 1 ] ; Initialize index of the rightmost third element ; Fix the second element ; Find the rightmost element which is smaller than the sum of two fixed elements The important thing to note here is , we use the previous value of k . If value of arr [ i ] + arr [ j - 1 ] was greater than arr [ k ] , then arr [ i ] + arr [ j ] must be greater than k , because the array is sorted . ; Total number of possible triangles that can be formed with the two fixed elements is k - j - 1. The two fixed elements are arr [ i ] and arr [ j ] . All elements between arr [ j + 1 ] / to arr [ k - 1 ] can form a triangle with arr [ i ] and arr [ j ] . One is subtracted from k because k is incremented one extra in above while loop . k will always be greater than j . If j becomes equal to k , then above loop will increment k , because arr [ k ] + arr [ i ] is always greater than arr [ k ] ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int comp ( const void * a , const void * b ) { return * ( int * ) a > * ( int * ) b ; } int findNumberOfTriangles ( int arr [ ] , int n ) { qsort ( arr , n , sizeof ( arr [ 0 ] ) , comp ) ; int count = 0 ; for ( int i = 0 ; i < n - 2 ; ++ i ) { int k = i + 2 ; for ( int j = i + 1 ; j < n ; ++ j ) { while ( k < n && arr [ i ] + arr [ j ] > arr [ k ] ) ++ k ; if ( k > j ) count += k - j - 1 ; } } return count ; } int main ( ) { int arr [ ] = { 10 , 21 , 22 , 100 , 101 , 200 , 300 } ; int size = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Total β number β of β triangles β possible β is β " << findNumberOfTriangles ( arr , size ) ; return 0 ; } |
Count the number of possible triangles | C ++ implementation of the above approach ; CountTriangles function ; If it is possible with a [ l ] , a [ r ] and a [ i ] then it is also possible with a [ l + 1 ] . . a [ r - 1 ] , a [ r ] and a [ i ] ; checking for more possible solutions ; if not possible check for higher values of arr [ l ] ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void CountTriangles ( vector < int > A ) { int n = A . size ( ) ; sort ( A . begin ( ) , A . end ( ) ) ; int count = 0 ; for ( int i = n - 1 ; i >= 1 ; i -- ) { int l = 0 , r = i - 1 ; while ( l < r ) { if ( A [ l ] + A [ r ] > A [ i ] ) { count += r - l ; r -- ; } else l ++ ; } } cout << " No β of β possible β solutions : β " << count ; } int main ( ) { vector < int > A = { 4 , 3 , 5 , 7 , 6 } ; CountTriangles ( A ) ; } |
Maximum sum of nodes in Binary tree such that no two are adjacent | C ++ program to find maximum sum from a subset of nodes of binary tree ; A binary tree node structure ; Utility function to create a new Binary Tree node ; Declaration of methods ; method returns maximum sum possible from subtrees rooted at grandChildrens of node ' node ' ; call for children of left child only if it is not NULL ; call for children of right child only if it is not NULL ; Utility method to return maximum sum rooted at node ' node ' ; If node is already processed then return calculated value from map ; take current node value and call for all grand children ; don 't take current node value and call for all children ; choose maximum from both above calls and store that in map ; Returns maximum sum from subset of nodes of binary tree under given constraints ; Driver code to test above methods | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct node { int data ; struct node * left , * right ; } ; struct node * newNode ( int data ) { struct node * temp = new struct node ; temp -> data = data ; temp -> left = temp -> right = NULL ; return temp ; } int sumOfGrandChildren ( node * node ) ; int getMaxSum ( node * node ) ; int getMaxSumUtil ( node * node , map < struct node * , int > & mp ) ; int sumOfGrandChildren ( node * node , map < struct node * , int > & mp ) { int sum = 0 ; if ( node -> left ) sum += getMaxSumUtil ( node -> left -> left , mp ) + getMaxSumUtil ( node -> left -> right , mp ) ; if ( node -> right ) sum += getMaxSumUtil ( node -> right -> left , mp ) + getMaxSumUtil ( node -> right -> right , mp ) ; return sum ; } int getMaxSumUtil ( node * node , map < struct node * , int > & mp ) { if ( node == NULL ) return 0 ; if ( mp . find ( node ) != mp . end ( ) ) return mp [ node ] ; int incl = node -> data + sumOfGrandChildren ( node , mp ) ; int excl = getMaxSumUtil ( node -> left , mp ) + getMaxSumUtil ( node -> right , mp ) ; mp [ node ] = max ( incl , excl ) ; return mp [ node ] ; } int getMaxSum ( node * node ) { if ( node == NULL ) return 0 ; map < struct node * , int > mp ; return getMaxSumUtil ( node , mp ) ; } int main ( ) { node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> right -> left = newNode ( 4 ) ; root -> right -> right = newNode ( 5 ) ; root -> left -> left = newNode ( 1 ) ; cout << getMaxSum ( root ) << endl ; return 0 ; } |
Flip minimum signs of array elements to get minimum sum of positive elements possible | C ++ implementation of the approach ; Function to return the minimum number of elements whose sign must be flipped to get the positive sum of array elements as close to 0 as possible ; boolean variable used for toggling between maps ; Calculate the sum of all elements of the array ; Initializing first map ( dp [ 0 ] ) with INT_MAX because for i = 0 , there are no elements in the array to flip ; Base Case ; For toggling ; Required sum is minimum non - negative So , we iterate from i = 0 to sum and find the first i where dp [ flag ^ 1 ] [ i ] != INT_MAX ; In worst case we will flip max n - 1 elements ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int solve ( int A [ ] , int n ) { unordered_map < int , int > dp [ 2 ] ; bool flag = 1 ; int sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) sum += A [ i ] ; for ( int i = - sum ; i <= sum ; i ++ ) dp [ 0 ] [ i ] = INT_MAX ; dp [ 0 ] [ 0 ] = 0 ; for ( int i = 1 ; i <= n ; i ++ ) { for ( int j = - sum ; j <= sum ; j ++ ) { dp [ flag ] [ j ] = INT_MAX ; if ( j - A [ i - 1 ] <= sum && j - A [ i - 1 ] >= - sum ) dp [ flag ] [ j ] = dp [ flag ^ 1 ] [ j - A [ i - 1 ] ] ; if ( j + A [ i - 1 ] <= sum && j + A [ i - 1 ] >= - sum && dp [ flag ^ 1 ] [ j + A [ i - 1 ] ] != INT_MAX ) dp [ flag ] [ j ] = min ( dp [ flag ] [ j ] , dp [ flag ^ 1 ] [ j + A [ i - 1 ] ] + 1 ) ; } flag = flag ^ 1 ; } for ( int i = 0 ; i <= sum ; i ++ ) { if ( dp [ flag ^ 1 ] [ i ] != INT_MAX ) return dp [ flag ^ 1 ] [ i ] ; } return n - 1 ; } int main ( ) { int arr [ ] = { 10 , 22 , 9 , 33 , 21 , 50 , 41 , 60 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << solve ( arr , n ) ; return 0 ; } |
Find number of pairs ( x , y ) in an array such that x ^ y > y ^ x | | #include <bits/stdc++.h> NEW_LINE long long countPairsBruteForce ( long long X [ ] , long long Y [ ] , long long m , long long n ) { long long ans = 0 ; for ( int i = 0 ; i < m ; i ++ ) for ( int j = 0 ; j < n ; j ++ ) if ( pow ( X [ i ] , Y [ j ] ) > pow ( Y [ j ] , X [ i ] ) ) ans ++ ; return ans ; } |
Iterative approach to print all permutations of an Array | C ++ implementation of the approach ; The input array for permutation ; Length of the input array ; Index array to store indexes of input array ; The index of the first " increase " in the Index array which is the smallest i such that Indexes [ i ] < Indexes [ i + 1 ] ; Constructor ; Destructor ; Initialize and output the first permutation ; Allocate memory for Indexes array ; Initialize the values in Index array from 0 to n - 1 ; Set the Increase to 0 since Indexes [ 0 ] = 0 < Indexes [ 1 ] = 1 ; Output the first permutation ; Function that returns true if it is possible to generate the next permutation ; When Increase is in the end of the array , it is not possible to have next one ; Output the next permutation ; Increase is at the very beginning ; Swap Index [ 0 ] and Index [ 1 ] ; Update Increase ; Value at Indexes [ Increase + 1 ] is greater than Indexes [ 0 ] no need for binary search , just swap Indexes [ Increase + 1 ] and Indexes [ 0 ] ; Binary search to find the greatest value which is less than Indexes [ Increase + 1 ] ; Swap ; Invert 0 to Increase ; Reset Increase ; Function to output the input array ; Indexes of the input array are at the Indexes array ; Swap two values in the Indexes array ; Driver code | #include <iostream> NEW_LINE using namespace std ; template < typename T > class AllPermutation { private : const T * Arr ; const int Length ; int * Indexes ; int Increase ; public : AllPermutation ( T * arr , int length ) : Arr ( arr ) , Length ( length ) { this -> Indexes = nullptr ; this -> Increase = -1 ; } ~ AllPermutation ( ) { if ( this -> Indexes != nullptr ) { delete [ ] this -> Indexes ; } } void GetFirst ( ) { this -> Indexes = new int [ this -> Length ] ; for ( int i = 0 ; i < this -> Length ; ++ i ) { this -> Indexes [ i ] = i ; } this -> Increase = 0 ; this -> Output ( ) ; } bool HasNext ( ) { return this -> Increase != ( this -> Length - 1 ) ; } void GetNext ( ) { if ( this -> Increase == 0 ) { this -> Swap ( this -> Increase , this -> Increase + 1 ) ; this -> Increase += 1 ; while ( this -> Increase < this -> Length - 1 && this -> Indexes [ this -> Increase ] > this -> Indexes [ this -> Increase + 1 ] ) { ++ this -> Increase ; } } else { if ( this -> Indexes [ this -> Increase + 1 ] > this -> Indexes [ 0 ] ) { this -> Swap ( this -> Increase + 1 , 0 ) ; } else { int start = 0 ; int end = this -> Increase ; int mid = ( start + end ) / 2 ; int tVal = this -> Indexes [ this -> Increase + 1 ] ; while ( ! ( this -> Indexes [ mid ] < tVal && this -> Indexes [ mid - 1 ] > tVal ) ) { if ( this -> Indexes [ mid ] < tVal ) { end = mid - 1 ; } else { start = mid + 1 ; } mid = ( start + end ) / 2 ; } this -> Swap ( this -> Increase + 1 , mid ) ; } for ( int i = 0 ; i <= this -> Increase / 2 ; ++ i ) { this -> Swap ( i , this -> Increase - i ) ; } this -> Increase = 0 ; } this -> Output ( ) ; } private : void Output ( ) { for ( int i = 0 ; i < this -> Length ; ++ i ) { cout << ( this -> Arr [ this -> Indexes [ i ] ] ) << " β " ; } cout << endl ; } void Swap ( int p , int q ) { int tmp = this -> Indexes [ p ] ; this -> Indexes [ p ] = this -> Indexes [ q ] ; this -> Indexes [ q ] = tmp ; } } ; int main ( ) { int arr [ ] = { 0 , 1 , 2 } ; AllPermutation < int > perm ( arr , sizeof ( arr ) / sizeof ( int ) ) ; perm . GetFirst ( ) ; while ( perm . HasNext ( ) ) { perm . GetNext ( ) ; } return 0 ; } |
Maximum items that can be filled in K Knapsacks of given Capacity | ; 2 - d array to store states of DP ; 2 - d array to store if a state has been solved ; Vector to store power of variable ' C ' . ; function to compute the states ; Base case ; Checking if a state has been solved ; Setting a state as solved ; Recurrence relation ; Returning the solved state ; Function to initialize global variables and find the initial value of ' R ' ; Resizing the variables ; Variable to store the initial value of R ; Driver Code ; Input array ; number of knapsacks and capacity ; Performing required pre - computation ; finding the required answer | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < vector < int > > dp ; vector < vector < bool > > v ; vector < int > exp_c ; int FindMax ( int i , int r , int w [ ] , int n , int c , int k ) { if ( i >= n ) return 0 ; if ( v [ i ] [ r ] ) return dp [ i ] [ r ] ; v [ i ] [ r ] = 1 ; dp [ i ] [ r ] = FindMax ( i + 1 , r , w , n , c , k ) ; for ( int j = 0 ; j < k ; j ++ ) { int x = ( r / exp_c [ j ] ) % ( c + 1 ) ; if ( x - w [ i ] >= 0 ) dp [ i ] [ r ] = max ( dp [ i ] [ r ] , w [ i ] + FindMax ( i + 1 , r - w [ i ] * exp_c [ j ] , w , n , c , k ) ) ; } return dp [ i ] [ r ] ; } int PreCompute ( int n , int c , int k ) { exp_c . resize ( k ) ; exp_c [ 0 ] = 1 ; for ( int i = 1 ; i < k ; i ++ ) { exp_c [ i ] = ( exp_c [ i - 1 ] * ( c + 1 ) ) ; } dp . resize ( n ) ; for ( int i = 0 ; i < n ; i ++ ) { dp [ i ] . resize ( exp_c [ k - 1 ] * ( c + 1 ) , 0 ) ; } v . resize ( n ) ; for ( int i = 0 ; i < n ; i ++ ) { v [ i ] . resize ( exp_c [ k - 1 ] * ( c + 1 ) , 0 ) ; } int R = 0 ; for ( int i = 0 ; i < k ; i ++ ) { R += exp_c [ i ] * c ; } return R ; } int main ( ) { int w [ ] = { 3 , 8 , 9 } ; int k = 1 , c = 11 ; int n = sizeof ( w ) / sizeof ( int ) ; int r = PreCompute ( n , c , k ) ; cout << FindMax ( 0 , r , w , n , c , k ) ; return 0 ; } |
Find number of pairs ( x , y ) in an array such that x ^ y > y ^ x | C ++ program to finds the number of pairs ( x , y ) in an array such that x ^ y > y ^ x ; Function to return count of pairs with x as one element of the pair . It mainly looks for all values in Y [ ] where x ^ Y [ i ] > Y [ i ] ^ x ; If x is 0 , then there cannot be any value in Y such that x ^ Y [ i ] > Y [ i ] ^ x ; If x is 1 , then the number of pais is equal to number of zeroes in Y [ ] ; Find number of elements in Y [ ] with values greater than x upper_bound ( ) gets address of first greater element in Y [ 0. . n - 1 ] ; If we have reached here , then x must be greater than 1 , increase number of pairs for y = 0 and y = 1 ; Decrease number of pairs for x = 2 and ( y = 4 or y = 3 ) ; Increase number of pairs for x = 3 and y = 2 ; Function to return count of pairs ( x , y ) such that x belongs to X [ ] , y belongs to Y [ ] and x ^ y > y ^ x ; To store counts of 0 , 1 , 2 , 3 and 4 in array Y ; Sort Y [ ] so that we can do binary search in it ; Initialize result ; Take every element of X and count pairs with it ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int count ( int x , int Y [ ] , int n , int NoOfY [ ] ) { if ( x == 0 ) return 0 ; if ( x == 1 ) return NoOfY [ 0 ] ; int * idx = upper_bound ( Y , Y + n , x ) ; int ans = ( Y + n ) - idx ; ans += ( NoOfY [ 0 ] + NoOfY [ 1 ] ) ; if ( x == 2 ) ans -= ( NoOfY [ 3 ] + NoOfY [ 4 ] ) ; if ( x == 3 ) ans += NoOfY [ 2 ] ; return ans ; } int countPairs ( int X [ ] , int Y [ ] , int m , int n ) { int NoOfY [ 5 ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) if ( Y [ i ] < 5 ) NoOfY [ Y [ i ] ] ++ ; sort ( Y , Y + n ) ; int total_pairs = 0 ; for ( int i = 0 ; i < m ; i ++ ) total_pairs += count ( X [ i ] , Y , n , NoOfY ) ; return total_pairs ; } int main ( ) { int X [ ] = { 2 , 1 , 6 } ; int Y [ ] = { 1 , 5 } ; int m = sizeof ( X ) / sizeof ( X [ 0 ] ) ; int n = sizeof ( Y ) / sizeof ( Y [ 0 ] ) ; cout << " Total β pairs β = β " << countPairs ( X , Y , m , n ) ; return 0 ; } |
Count all distinct pairs with difference equal to k | A simple program to count pairs with difference k ; Pick all elements one by one ; See if there is a pair of this picked element ; Driver program to test above function | #include <iostream> NEW_LINE using namespace std ; int countPairsWithDiffK ( int arr [ ] , int n , int k ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i + 1 ; j < n ; j ++ ) if ( arr [ i ] - arr [ j ] == k arr [ j ] - arr [ i ] == k ) count ++ ; } return count ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 4 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 3 ; cout << " Count β of β pairs β with β given β diff β is β " << countPairsWithDiffK ( arr , n , k ) ; return 0 ; } |
Count all distinct pairs with difference equal to k | A sorting based program to count pairs with difference k ; Standard binary search function ; Returns count of pairs with difference k in arr [ ] of size n . ; Sort array elements ; Pick a first element point ; Driver program | #include <iostream> NEW_LINE #include <algorithm> NEW_LINE using namespace std ; int binarySearch ( int arr [ ] , int low , int high , int x ) { if ( high >= low ) { int mid = low + ( high - low ) / 2 ; if ( x == arr [ mid ] ) return mid ; if ( x > arr [ mid ] ) return binarySearch ( arr , ( mid + 1 ) , high , x ) ; else return binarySearch ( arr , low , ( mid - 1 ) , x ) ; } return -1 ; } int countPairsWithDiffK ( int arr [ ] , int n , int k ) { int count = 0 , i ; sort ( arr , arr + n ) ; for ( i = 0 ; i < n - 1 ; i ++ ) if ( binarySearch ( arr , i + 1 , n - 1 , arr [ i ] + k ) != -1 ) count ++ ; return count ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 4 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 3 ; cout << " Count β of β pairs β with β given β diff β is β " << countPairsWithDiffK ( arr , n , k ) ; return 0 ; } |
Count all distinct pairs with difference equal to k | An efficient program to count pairs with difference k when the range numbers is small ; Initialize count ; Initialize empty hashmap . ; Insert array elements to hashmap | #define MAX 100000 NEW_LINE int countPairsWithDiffK ( int arr [ ] , int n , int k ) { int count = 0 ; bool hashmap [ MAX ] = { false } ; for ( int i = 0 ; i < n ; i ++ ) hashmap [ arr [ i ] ] = true ; for ( int i = 0 ; i < n ; i ++ ) { int x = arr [ i ] ; if ( x - k >= 0 && hashmap [ x - k ] ) count ++ ; if ( x + k < MAX && hashmap [ x + k ] ) count ++ ; hashmap [ x ] = false ; } return count ; } |
Count all distinct pairs with difference equal to k | A sorting based program to count pairs with difference k ; Returns count of pairs with difference k in arr [ ] of size n . ; Sort array elements ; arr [ r ] - arr [ l ] < sum ; Driver program to test above function | #include <iostream> NEW_LINE #include <algorithm> NEW_LINE using namespace std ; int countPairsWithDiffK ( int arr [ ] , int n , int k ) { int count = 0 ; sort ( arr , arr + n ) ; int l = 0 ; int r = 0 ; while ( r < n ) { if ( arr [ r ] - arr [ l ] == k ) { count ++ ; l ++ ; r ++ ; } else if ( arr [ r ] - arr [ l ] > k ) l ++ ; else r ++ ; } return count ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 4 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 3 ; cout << " Count β of β pairs β with β given β diff β is β " << countPairsWithDiffK ( arr , n , k ) ; return 0 ; } |
Sum of Bitwise | C ++ program to find sum of Bitwise - OR of all submatrices ; Function to find prefix - count for each row from right to left ; Function to create a boolean matrix set_bit which stores a 1 aTM at an index ( R , C ) if ith bit of arr [ R ] [ C ] is set . ; array to store prefix count of zeros from right to left for boolean array ; variable to store the count of submatrices with OR value 0 ; For each index of a column we will try to determine the number of sub - matrices starting from that index and has all 1 s ; stack to store elements and the count of the numbers they popped First part of pair will be the value of inserted element . Second part will be the count of the number of elements pushed before with a greater value ; variable to store the number of submatrices with all 0 s ; Function to find sum of Bitwise - OR of all submatrices ; matrix to store the status of ith bit of each element of matrix arr ; Driver Code | #include <iostream> NEW_LINE #include <stack> NEW_LINE using namespace std ; #define n 3 NEW_LINE void findPrefixCount ( int p_arr [ ] [ n ] , bool set_bit [ ] [ n ] ) { for ( int i = 0 ; i < n ; i ++ ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( set_bit [ i ] [ j ] ) continue ; if ( j != n - 1 ) p_arr [ i ] [ j ] += p_arr [ i ] [ j + 1 ] ; p_arr [ i ] [ j ] += ( int ) ( ! set_bit [ i ] [ j ] ) ; } } } int matrixOrValueOne ( bool set_bit [ ] [ n ] ) { int p_arr [ n ] [ n ] = { 0 } ; findPrefixCount ( p_arr , set_bit ) ; int count_zero_submatrices = 0 ; for ( int j = 0 ; j < n ; j ++ ) { int i = n - 1 ; stack < pair < int , int > > q ; int to_sum = 0 ; while ( i >= 0 ) { int c = 0 ; while ( q . size ( ) != 0 and q . top ( ) . first > p_arr [ i ] [ j ] ) { to_sum -= ( q . top ( ) . second + 1 ) * ( q . top ( ) . first - p_arr [ i ] [ j ] ) ; c += q . top ( ) . second + 1 ; q . pop ( ) ; } to_sum += p_arr [ i ] [ j ] ; count_zero_submatrices += to_sum ; q . push ( { p_arr [ i ] [ j ] , c } ) ; i -- ; } } return ( n * ( n + 1 ) * n * ( n + 1 ) ) / 4 - count_zero_submatrices ; } int sumOrMatrix ( int arr [ ] [ n ] ) { int sum = 0 ; int mul = 1 ; for ( int i = 0 ; i < 30 ; i ++ ) { bool set_bit [ n ] [ n ] ; for ( int R = 0 ; R < n ; R ++ ) for ( int C = 0 ; C < n ; C ++ ) set_bit [ R ] [ C ] = ( ( arr [ R ] [ C ] & ( 1 << i ) ) != 0 ) ; sum += ( mul * matrixOrValueOne ( set_bit ) ) ; mul *= 2 ; } return sum ; } int main ( ) { int arr [ ] [ n ] = { { 9 , 7 , 4 } , { 8 , 9 , 2 } , { 11 , 11 , 5 } } ; cout << sumOrMatrix ( arr ) ; return 0 ; } |
Count of sub | C ++ implementation of the approach ; Function to return the total number of required sub - sets ; Variable to store total elements which on dividing by 3 give remainder 0 , 1 and 2 respectively ; Create a dp table ; Process for n states and store the sum ( mod 3 ) for 0 , 1 and 2 ; Use of MOD for large numbers ; Final answer store at dp [ n - 1 ] [ 0 ] ; Driver Program | #include <bits/stdc++.h> NEW_LINE #define MOD 1000000007 NEW_LINE #define ll long long int NEW_LINE using namespace std ; int totalSubSets ( ll n , ll l , ll r ) { ll zero = floor ( ( double ) r / 3 ) - ceil ( ( double ) l / 3 ) + 1 ; ll one = floor ( ( double ) ( r - 1 ) / 3 ) - ceil ( ( double ) ( l - 1 ) / 3 ) + 1 ; ll two = floor ( ( double ) ( r - 2 ) / 3 ) - ceil ( ( double ) ( l - 2 ) / 3 ) + 1 ; ll dp [ n ] [ 3 ] ; memset ( dp , 0 , sizeof ( dp ) ) ; dp [ 0 ] [ 0 ] = zero ; dp [ 0 ] [ 1 ] = one ; dp [ 0 ] [ 2 ] = two ; for ( ll i = 1 ; i < n ; ++ i ) { dp [ i ] [ 0 ] = ( ( dp [ i - 1 ] [ 0 ] * zero ) + ( dp [ i - 1 ] [ 1 ] * two ) + ( dp [ i - 1 ] [ 2 ] * one ) ) % MOD ; dp [ i ] [ 1 ] = ( ( dp [ i - 1 ] [ 0 ] * one ) + ( dp [ i - 1 ] [ 1 ] * zero ) + ( dp [ i - 1 ] [ 2 ] * two ) ) % MOD ; dp [ i ] [ 2 ] = ( ( dp [ i - 1 ] [ 0 ] * two ) + ( dp [ i - 1 ] [ 1 ] * one ) + ( dp [ i - 1 ] [ 2 ] * zero ) ) % MOD ; } return dp [ n - 1 ] [ 0 ] ; } int main ( ) { ll n = 5 ; ll l = 10 ; ll r = 100 ; cout << totalSubSets ( n , l , r ) ; return 0 ; } |
Maximum sum of nodes in Binary tree such that no two are adjacent | C ++ program to find maximum sum in Binary Tree such that no two nodes are adjacent . ; A binary tree node structure ; maxSumHelper function ; This node is included ( Left and right children are not included ) ; This node is excluded ( Either left or right child is included ) ; Returns maximum sum from subset of nodes of binary tree under given constraints ; Driver code | #include <iostream> NEW_LINE using namespace std ; class Node { public : int data ; Node * left , * right ; Node ( int data ) { this -> data = data ; left = NULL ; right = NULL ; } } ; pair < int , int > maxSumHelper ( Node * root ) { if ( root == NULL ) { pair < int , int > sum ( 0 , 0 ) ; return sum ; } pair < int , int > sum1 = maxSumHelper ( root -> left ) ; pair < int , int > sum2 = maxSumHelper ( root -> right ) ; pair < int , int > sum ; sum . first = sum1 . second + sum2 . second + root -> data ; sum . second = max ( sum1 . first , sum1 . second ) + max ( sum2 . first , sum2 . second ) ; return sum ; } int maxSum ( Node * root ) { pair < int , int > res = maxSumHelper ( root ) ; return max ( res . first , res . second ) ; } int main ( ) { Node * root = new Node ( 10 ) ; root -> left = new Node ( 1 ) ; root -> left -> left = new Node ( 2 ) ; root -> left -> left -> left = new Node ( 1 ) ; root -> left -> right = new Node ( 3 ) ; root -> left -> right -> left = new Node ( 4 ) ; root -> left -> right -> right = new Node ( 5 ) ; cout << maxSum ( root ) ; return 0 ; } |
Check if a word exists in a grid or not | C ++ program to check if the word exists in the grid or not ; Function to check if a word exists in a grid starting from the first match in the grid level : index till which pattern is matched x , y : current position in 2D array ; Pattern matched ; Out of Boundary ; If grid matches with a letter while recursion ; Marking this cell as visited ; finding subpattern in 4 directions ; marking this cell as unvisited again ; else Not matching then false ; Function to check if the word exists in the grid or not ; if total characters in matrix is less then pattern lenghth ; Traverse in the grid ; If first letter matches , then recur and check ; Driver Code ; Function to check if word exists or not | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define r 4 NEW_LINE #define c 5 NEW_LINE bool findmatch ( char mat [ r ] , string pat , int x , int y , int nrow , int ncol , int level ) { int l = pat . length ( ) ; if ( level == l ) return true ; if ( x < 0 y < 0 x > = nrow y > = ncol ) return false ; if ( mat [ x ] [ y ] == pat [ level ] ) { char temp = mat [ x ] [ y ] ; mat [ x ] [ y ] = ' # ' ; bool res = findmatch ( mat , pat , x - 1 , y , nrow , ncol , level + 1 ) | findmatch ( mat , pat , x + 1 , y , nrow , ncol , level + 1 ) | findmatch ( mat , pat , x , y - 1 , nrow , ncol , level + 1 ) | findmatch ( mat , pat , x , y + 1 , nrow , ncol , level + 1 ) ; mat [ x ] [ y ] = temp ; return res ; } return false ; } bool checkMatch ( char mat [ r ] , string pat , int nrow , int ncol ) { int l = pat . length ( ) ; if ( l > nrow * ncol ) return false ; for ( int i = 0 ; i < nrow ; i ++ ) { for ( int j = 0 ; j < ncol ; j ++ ) { if ( mat [ i ] [ j ] == pat [ 0 ] ) if ( findmatch ( mat , pat , i , j , nrow , ncol , 0 ) ) return true ; } } return false ; } int main ( ) { char grid [ r ] = { " axmy " , " bgdf " , " xeet " , " raks " } ; if ( checkMatch ( grid , " geeks " , r , c ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Construct an array from its pair | ; Fills element in arr [ ] from its pair sum array pair [ ] . n is size of arr [ ] ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void constructArr ( int arr [ ] , int pair [ ] , int n ) { arr [ 0 ] = ( pair [ 0 ] + pair [ 1 ] - pair [ n - 1 ] ) / 2 ; for ( int i = 1 ; i < n ; i ++ ) arr [ i ] = pair [ i - 1 ] - arr [ 0 ] ; } int main ( ) { int pair [ ] = { 15 , 13 , 11 , 10 , 12 , 10 , 9 , 8 , 7 , 5 } ; int n = 5 ; int arr [ n ] ; constructArr ( arr , pair , n ) ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Merge two sorted arrays with O ( 1 ) extra space | C ++ program to merge two sorted arrays with O ( 1 ) extra space . ; Merge ar1 [ ] and ar2 [ ] with O ( 1 ) extra space ; Iterate through all elements of ar2 [ ] starting from the last element ; Find the smallest element greater than ar2 [ i ] . Move all elements one position ahead till the smallest greater element is not found ; If there was a greater element ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; void merge ( int ar1 [ ] , int ar2 [ ] , int m , int n ) { for ( int i = n - 1 ; i >= 0 ; i -- ) { int j , last = ar1 [ m - 1 ] ; for ( j = m - 2 ; j >= 0 && ar1 [ j ] > ar2 [ i ] ; j -- ) ar1 [ j + 1 ] = ar1 [ j ] ; if ( j != m - 2 last > ar2 [ i ] ) { ar1 [ j + 1 ] = ar2 [ i ] ; ar2 [ i ] = last ; } } } int main ( ) { int ar1 [ ] = { 1 , 5 , 9 , 10 , 15 , 20 } ; int ar2 [ ] = { 2 , 3 , 8 , 13 } ; int m = sizeof ( ar1 ) / sizeof ( ar1 [ 0 ] ) ; int n = sizeof ( ar2 ) / sizeof ( ar2 [ 0 ] ) ; merge ( ar1 , ar2 , m , n ) ; cout << " After β Merging β nFirst β Array : β " ; for ( int i = 0 ; i < m ; i ++ ) cout << ar1 [ i ] << " β " ; cout << " nSecond β Array : β " ; for ( int i = 0 ; i < n ; i ++ ) cout << ar2 [ i ] << " β " ; return 0 ; } |
Merge two sorted arrays with O ( 1 ) extra space | CPP program for the above approach ; Function to merge two arrays ; Untill i less than equal to k or j is less tha m ; Sort first array ; Sort second array ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void merge ( int arr1 [ ] , int arr2 [ ] , int n , int m ) { int i = 0 , j = 0 , k = n - 1 ; while ( i <= k and j < m ) { if ( arr1 [ i ] < arr2 [ j ] ) i ++ ; else { swap ( arr2 [ j ++ ] , arr1 [ k -- ] ) ; } } sort ( arr1 , arr1 + n ) ; sort ( arr2 , arr2 + m ) ; } int main ( ) { int ar1 [ ] = { 1 , 5 , 9 , 10 , 15 , 20 } ; int ar2 [ ] = { 2 , 3 , 8 , 13 } ; int m = sizeof ( ar1 ) / sizeof ( ar1 [ 0 ] ) ; int n = sizeof ( ar2 ) / sizeof ( ar2 [ 0 ] ) ; merge ( ar1 , ar2 , m , n ) ; cout << " After β Merging β STRNEWLINE First β Array : β " ; for ( int i = 0 ; i < m ; i ++ ) cout << ar1 [ i ] << " β " ; cout << " Second Array : " for ( int i = 0 ; i < n ; i ++ ) cout << ar2 [ i ] << " β " ; return 0 ; } |
Gould 's Sequence | CPP program to generate Gould 's Sequence ; Function to generate gould 's Sequence ; loop to generate each row of pascal 's Triangle up to nth row ; Loop to generate each element of ith row ; if c is odd increment count ; print count of odd elements ; Driver code ; Get n ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void gouldSequence ( int n ) { for ( int row_num = 1 ; row_num <= n ; row_num ++ ) { int count = 1 ; int c = 1 ; for ( int i = 1 ; i <= row_num ; i ++ ) { c = c * ( row_num - i ) / i ; if ( c % 2 == 1 ) count ++ ; } cout << count << " β " ; } } int main ( ) { int n = 16 ; gouldSequence ( n ) ; return 0 ; } |
Product of maximum in first array and minimum in second | C ++ program to calculate the product of max element of first array and min element of second array ; Function to calculate the product ; Sort the arrays to find the maximum and minimum elements in given arrays ; Return product of maximum and minimum . ; Driven code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minMaxProduct ( int arr1 [ ] , int arr2 [ ] , int n1 , int n2 ) { sort ( arr1 , arr1 + n1 ) ; sort ( arr2 , arr2 + n2 ) ; return arr1 [ n1 - 1 ] * arr2 [ 0 ] ; } int main ( ) { int arr1 [ ] = { 10 , 2 , 3 , 6 , 4 , 1 } ; int arr2 [ ] = { 5 , 1 , 4 , 2 , 6 , 9 } ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n2 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; cout << minMaxProduct ( arr1 , arr2 , n1 , n2 ) ; return 0 ; } |
Minimum odd cost path in a matrix | C ++ program to find Minimum odd cost path in a matrix ; Function to find the minimum cost ; leftmost element ; rightmost element ; Any element except leftmost and rightmost element of a row is reachable from direct upper or left upper or right upper row 's block ; Counting the minimum cost ; Find the minimum cost ; Driver code | #include <bits/stdc++.h> NEW_LINE #define M 100 NEW_LINE #define N 100 NEW_LINE using namespace std ; int find_min_odd_cost ( int given [ M ] [ N ] , int m , int n ) { int floor [ M ] [ N ] = { { 0 } , { 0 } } ; int min_odd_cost = 0 ; int i , j , temp ; for ( j = 0 ; j < n ; j ++ ) floor [ 0 ] [ j ] = given [ 0 ] [ j ] ; for ( i = 1 ; i < m ; i ++ ) for ( j = 0 ; j < n ; j ++ ) { if ( j == 0 ) { floor [ i ] [ j ] = given [ i ] [ j ] ; floor [ i ] [ j ] += min ( floor [ i - 1 ] [ j ] , floor [ i - 1 ] [ j + 1 ] ) ; } else if ( j == n - 1 ) { floor [ i ] [ j ] = given [ i ] [ j ] ; floor [ i ] [ j ] += min ( floor [ i - 1 ] [ j ] , floor [ i - 1 ] [ j - 1 ] ) ; } else { temp = min ( floor [ i - 1 ] [ j ] , floor [ i - 1 ] [ j - 1 ] ) ; temp = min ( temp , floor [ i - 1 ] [ j + 1 ] ) ; floor [ i ] [ j ] = given [ i ] [ j ] + temp ; } } min_odd_cost = INT_MAX ; for ( j = 0 ; j < n ; j ++ ) { if ( floor [ n - 1 ] [ j ] % 2 == 1 ) { if ( min_odd_cost > floor [ n - 1 ] [ j ] ) min_odd_cost = floor [ n - 1 ] [ j ] ; } } if ( min_odd_cost == INT_MIN ) return -1 ; return min_odd_cost ; } int main ( ) { int m = 5 , n = 5 ; int given [ M ] [ N ] = { { 1 , 2 , 3 , 4 , 6 } , { 1 , 2 , 3 , 4 , 5 } , { 1 , 2 , 3 , 4 , 5 } , { 1 , 2 , 3 , 4 , 5 } , { 100 , 2 , 3 , 4 , 5 } } ; cout << " Minimum β odd β cost β is β " << find_min_odd_cost ( given , m , n ) ; return 0 ; } |
Product of maximum in first array and minimum in second | C ++ program to find the to calculate the product of max element of first array and min element of second array ; Function to calculate the product ; Initialize max of first array ; initialize min of second array ; To find the maximum element in first array ; To find the minimum element in second array ; Process remaining elements ; Driven code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minMaxProduct ( int arr1 [ ] , int arr2 [ ] , int n1 , int n2 ) { int max = arr1 [ 0 ] ; int min = arr2 [ 0 ] ; int i ; for ( i = 1 ; i < n1 && i < n2 ; ++ i ) { if ( arr1 [ i ] > max ) max = arr1 [ i ] ; if ( arr2 [ i ] < min ) min = arr2 [ i ] ; } while ( i < n1 ) { if ( arr1 [ i ] > max ) max = arr1 [ i ] ; i ++ ; } while ( i < n2 ) { if ( arr2 [ i ] < min ) min = arr2 [ i ] ; i ++ ; } return max * min ; } int main ( ) { int arr1 [ ] = { 10 , 2 , 3 , 6 , 4 , 1 } ; int arr2 [ ] = { 5 , 1 , 4 , 2 , 6 , 9 } ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n2 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; cout << minMaxProduct ( arr1 , arr2 , n1 , n2 ) << endl ; return 0 ; } |
Burst Balloon to maximize coins | C ++ program burst balloon problem ; Add Bordering Balloons ; Declare DP Array ; For a sub - array from indices left , right This innermost loop finds the last balloon burst ; Driver code ; Size of the array ; Calling function | #include <bits/stdc++.h> NEW_LINE #include <iostream> NEW_LINE using namespace std ; int getMax ( int A [ ] , int N ) { int B [ N + 2 ] ; B [ 0 ] = 1 ; B [ N + 1 ] = 1 ; for ( int i = 1 ; i <= N ; i ++ ) B [ i ] = A [ i - 1 ] ; int dp [ N + 2 ] [ N + 2 ] ; memset ( dp , 0 , sizeof ( dp ) ) ; for ( int length = 1 ; length < N + 1 ; length ++ ) { for ( int left = 1 ; left < N - length + 2 ; left ++ ) { int right = left + length - 1 ; for ( int last = left ; last < right + 1 ; last ++ ) { dp [ left ] [ right ] = max ( dp [ left ] [ right ] , dp [ left ] [ last - 1 ] + B [ left - 1 ] * B [ last ] * B [ right + 1 ] + dp [ last + 1 ] [ right ] ) ; } } } return dp [ 1 ] [ N ] ; } int main ( ) { int A [ ] = { 1 , 2 , 3 , 4 , 5 } ; int N = sizeof ( A ) / sizeof ( A [ 0 ] ) ; cout << getMax ( A , N ) << endl ; } |
Search , insert and delete in an unsorted array | C ++ program to implement linear search in unsorted array ; Function to implement search operation ; Driver Code ; Using a last element as search element | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findElement ( int arr [ ] , int n , int key ) { int i ; for ( i = 0 ; i < n ; i ++ ) if ( arr [ i ] == key ) return i ; return -1 ; } int main ( ) { int arr [ ] = { 12 , 34 , 10 , 6 , 40 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int key = 40 ; int position = findElement ( arr , n , key ) ; if ( position == - 1 ) cout << " Element β not β found " ; else cout << " Element β Found β at β Position : β " << position + 1 ; return 0 ; } |
Search , insert and delete in an unsorted array | C ++ program to implement insert operation in an unsorted array . ; Inserts a key in arr [ ] of given capacity . n is current size of arr [ ] . This function returns n + 1 if insertion is successful , else n . ; Cannot insert more elements if n is already more than or equal to capcity ; Driver Code ; Inserting key | #include <iostream> NEW_LINE using namespace std ; int insertSorted ( int arr [ ] , int n , int key , int capacity ) { if ( n >= capacity ) return n ; arr [ n ] = key ; return ( n + 1 ) ; } int main ( ) { int arr [ 20 ] = { 12 , 16 , 20 , 40 , 50 , 70 } ; int capacity = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int n = 6 ; int i , key = 26 ; cout << " Before Insertion : " for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; n = insertSorted ( arr , n , key , capacity ) ; cout << " After Insertion : " for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Search , insert and delete in an unsorted array | C ++ program to implement delete operation in a unsorted array ; Function to implement search operation ; Function to delete an element ; Find position of element to be deleted ; Deleting element ; Driver code | #include <iostream> NEW_LINE using namespace std ; int findElement ( int arr [ ] , int n , int key ) { int i ; for ( i = 0 ; i < n ; i ++ ) if ( arr [ i ] == key ) return i ; return - 1 ; } int deleteElement ( int arr [ ] , int n , int key ) { int pos = findElement ( arr , n , key ) ; if ( pos == - 1 ) { cout << " Element β not β found " ; return n ; } int i ; for ( i = pos ; i < n - 1 ; i ++ ) arr [ i ] = arr [ i + 1 ] ; return n - 1 ; } int main ( ) { int i ; int arr [ ] = { 10 , 50 , 30 , 40 , 20 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int key = 30 ; cout << " Array β before β deletion STRNEWLINE " ; for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; n = deleteElement ( arr , n , key ) ; cout << " Array after deletion " ; for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Search , insert and delete in a sorted array | C ++ program to implement binary search in sorted array ; function to implement binary search ; low + ( high - low ) / 2 ; ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int binarySearch ( int arr [ ] , int low , int high , int key ) { if ( high < low ) return -1 ; int mid = ( low + high ) / 2 ; if ( key == arr [ mid ] ) return mid ; if ( key > arr [ mid ] ) return binarySearch ( arr , ( mid + 1 ) , high , key ) ; return binarySearch ( arr , low , ( mid - 1 ) , key ) ; } int main ( ) { int arr [ ] = { 5 , 6 , 7 , 8 , 9 , 10 } ; int n , key ; n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; key = 10 ; cout << " Index : β " << binarySearch ( arr , 0 , n - 1 , key ) << endl ; return 0 ; } |
Search , insert and delete in a sorted array | C ++ program to implement insert operation in an sorted array . ; Inserts a key in arr [ ] of given capacity . n is current size of arr [ ] . This function returns n + 1 if insertion is successful , else n . ; Cannot insert more elements if n is already more than or equal to capcity ; Driver code ; Inserting key | #include <iostream> NEW_LINE using namespace std ; int insertSorted ( int arr [ ] , int n , int key , int capacity ) { if ( n >= capacity ) return n ; int i ; for ( i = n - 1 ; ( i >= 0 && arr [ i ] > key ) ; i -- ) arr [ i + 1 ] = arr [ i ] ; arr [ i + 1 ] = key ; return ( n + 1 ) ; } int main ( ) { int arr [ 20 ] = { 12 , 16 , 20 , 40 , 50 , 70 } ; int capacity = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int n = 6 ; int i , key = 26 ; cout << " Before Insertion : " for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; n = insertSorted ( arr , n , key , capacity ) ; cout << " After Insertion : " for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Search , insert and delete in a sorted array | C ++ program to implement delete operation in a sorted array ; To search a ley to be deleted ; Function to delete an element ; Find position of element to be deleted ; Deleting element ; Driver code | #include <iostream> NEW_LINE using namespace std ; int binarySearch ( int arr [ ] , int low , int high , int key ) ; int binarySearch ( int arr [ ] , int low , int high , int key ) { if ( high < low ) return -1 ; int mid = ( low + high ) / 2 ; if ( key == arr [ mid ] ) return mid ; if ( key > arr [ mid ] ) return binarySearch ( arr , ( mid + 1 ) , high , key ) ; return binarySearch ( arr , low , ( mid - 1 ) , key ) ; } int deleteElement ( int arr [ ] , int n , int key ) { int pos = binarySearch ( arr , 0 , n - 1 , key ) ; if ( pos == -1 ) { cout << " Element β not β found " ; return n ; } int i ; for ( i = pos ; i < n - 1 ; i ++ ) arr [ i ] = arr [ i + 1 ] ; return n - 1 ; } int main ( ) { int i ; int arr [ ] = { 10 , 20 , 30 , 40 , 50 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int key = 30 ; cout << " Array β before β deletion STRNEWLINE " ; for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; n = deleteElement ( arr , n , key ) ; cout << " Array after deletion " ; for ( i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; } |
Queries on number of Binary sub | CPP Program to answer queries on number of submatrix of given size ; Return the minimum of three numbers ; Solve each query on matrix ; For each of the cell . ; finding submatrix size of oth row and column . ; intermediate cells . ; Find frequency of each distinct size for 0 s and 1 s . ; Find the Cumulative Sum . ; Output the answer for each query ; Driver Program | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 100 NEW_LINE #define N 5 NEW_LINE #define M 4 NEW_LINE int min ( int a , int b , int c ) { return min ( a , min ( b , c ) ) ; } void solveQuery ( int n , int m , int mat [ N ] [ M ] , int q , int a [ ] , int binary [ ] ) { int dp [ n ] [ m ] , max = 1 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < m ; j ++ ) { if ( i == 0 j == 0 ) dp [ i ] [ j ] = 1 ; else if ( ( mat [ i ] [ j ] == mat [ i - 1 ] [ j ] ) && ( mat [ i ] [ j ] == mat [ i ] [ j - 1 ] ) && ( mat [ i ] [ j ] == mat [ i - 1 ] [ j - 1 ] ) ) { dp [ i ] [ j ] = min ( dp [ i - 1 ] [ j ] , dp [ i - 1 ] [ j - 1 ] , dp [ i ] [ j - 1 ] ) + 1 ; if ( max < dp [ i ] [ j ] ) max = dp [ i ] [ j ] ; } else dp [ i ] [ j ] = 1 ; } } int freq0 [ MAX ] = { 0 } , freq1 [ MAX ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < m ; j ++ ) { if ( mat [ i ] [ j ] == 0 ) freq0 [ dp [ i ] [ j ] ] ++ ; else freq1 [ dp [ i ] [ j ] ] ++ ; } } for ( int i = max - 1 ; i >= 0 ; i -- ) { freq0 [ i ] += freq0 [ i + 1 ] ; freq1 [ i ] += freq1 [ i + 1 ] ; } for ( int i = 0 ; i < q ; i ++ ) { if ( binary [ i ] == 0 ) cout << freq0 [ a [ i ] ] << endl ; else cout << freq1 [ a [ i ] ] << endl ; } } int main ( ) { int n = 5 , m = 4 ; int mat [ N ] [ M ] = { { 0 , 0 , 1 , 1 } , { 0 , 0 , 1 , 0 } , { 0 , 1 , 1 , 1 } , { 1 , 1 , 1 , 1 } , { 0 , 1 , 1 , 1 } } ; int q = 2 ; int a [ ] = { 2 , 2 } ; int binary [ ] = { 1 , 0 } ; solveQuery ( n , m , mat , q , a , binary ) ; return 0 ; } |
Dynamic Programming | Wildcard Pattern Matching | Linear Time and Constant Space | C ++ program to implement wildcard pattern matching algorithm ; Function that matches input text with given wildcard pattern ; empty pattern can only match with empty string . Base Case : ; step - 1 : initialize markers : ; For step - ( 2 , 5 ) ; For step - ( 3 ) ; For step - ( 4 ) ; For step - ( 5 ) ; For step - ( 6 ) ; For step - ( 7 ) ; Final Check ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool strmatch ( char txt [ ] , char pat [ ] , int n , int m ) { if ( m == 0 ) return ( n == 0 ) ; int i = 0 , j = 0 , index_txt = -1 , index_pat = -1 ; while ( i < n ) { if ( j < m && txt [ i ] == pat [ j ] ) { i ++ ; j ++ ; } else if ( j < m && pat [ j ] == ' ? ' ) { i ++ ; j ++ ; } else if ( j < m && pat [ j ] == ' * ' ) { index_txt = i ; index_pat = j ; j ++ ; } else if ( index_pat != -1 ) { j = index_pat + 1 ; i = index_txt + 1 ; index_txt ++ ; } else { return false ; } } while ( j < m && pat [ j ] == ' * ' ) { j ++ ; } if ( j == m ) { return true ; } return false ; } int main ( ) { char str [ ] = " baaabab " ; char pattern [ ] = " * * * * * ba * * * * * ab " ; char pattern [ ] = " ba * * * * * ab " ; char pattern [ ] = " ba * ab " ; char pattern [ ] = " a * ab " ; if ( strmatch ( str , pattern , strlen ( str ) , strlen ( pattern ) ) ) cout << " Yes " << endl ; else cout << " No " << endl ; char pattern2 [ ] = " a * * * * * ab " ; if ( strmatch ( str , pattern2 , strlen ( str ) , strlen ( pattern2 ) ) ) cout << " Yes " << endl ; else cout << " No " << endl ; return 0 ; } |
Find n | Program to find the nth element of Stern 's Diatomic Series ; function to find nth stern ' diatomic series ; Initializing the DP array ; SET the Base case ; Traversing the array from 2 nd Element to nth Element ; Case 1 : for even n ; Case 2 : for odd n ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findSDSFunc ( int n ) { int DP [ n + 1 ] ; DP [ 0 ] = 0 ; DP [ 1 ] = 1 ; for ( int i = 2 ; i <= n ; i ++ ) { if ( i % 2 == 0 ) DP [ i ] = DP [ i / 2 ] ; else DP [ i ] = DP [ ( i - 1 ) / 2 ] + DP [ ( i + 1 ) / 2 ] ; } return DP [ n ] ; } int main ( ) { int n = 15 ; cout << findSDSFunc ( n ) << endl ; return 0 ; } |
Find common elements in three sorted arrays | C ++ program to print common elements in three arrays ; This function prints common elements in ar1 ; Initialize starting indexes for ar1 [ ] , ar2 [ ] and ar3 [ ] ; Iterate through three arrays while all arrays have elements ; If x = y and y = z , print any of them and move ahead in all arrays ; x < y ; y < z ; We reach here when x > y and z < y , i . e . , z is smallest ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void findCommon ( int ar1 [ ] , int ar2 [ ] , int ar3 [ ] , int n1 , int n2 , int n3 ) { int i = 0 , j = 0 , k = 0 ; while ( i < n1 && j < n2 && k < n3 ) { if ( ar1 [ i ] == ar2 [ j ] && ar2 [ j ] == ar3 [ k ] ) { cout << ar1 [ i ] << " β " ; i ++ ; j ++ ; k ++ ; } else if ( ar1 [ i ] < ar2 [ j ] ) i ++ ; else if ( ar2 [ j ] < ar3 [ k ] ) j ++ ; else k ++ ; } } int main ( ) { int ar1 [ ] = { 1 , 5 , 10 , 20 , 40 , 80 } ; int ar2 [ ] = { 6 , 7 , 20 , 80 , 100 } ; int ar3 [ ] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 } ; int n1 = sizeof ( ar1 ) / sizeof ( ar1 [ 0 ] ) ; int n2 = sizeof ( ar2 ) / sizeof ( ar2 [ 0 ] ) ; int n3 = sizeof ( ar3 ) / sizeof ( ar3 [ 0 ] ) ; cout << " Common β Elements β are β " ; findCommon ( ar1 , ar2 , ar3 , n1 , n2 , n3 ) ; return 0 ; } |
Dynamic Programming on Trees | Set | C ++ code to find the maximum path sum ; function for dfs traversal and to store the maximum value in dp [ ] for every node till the leaves ; initially dp [ u ] is always a [ u ] ; stores the maximum value from nodes ; traverse the tree ; if child is parent , then we continue without recursing further ; call dfs for further traversal ; store the maximum of previous visited node and present visited node ; add the maximum value returned to the parent node ; function that returns the maximum value ; Driver Code ; number of nodes ; adjacency list ; create undirected edges initialize the tree given in the diagram ; values of node 1 , 2 , 3. ... 14 ; initialise dp ; function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < int > dp ; void dfs ( int a [ ] , vector < int > v [ ] , int u , int parent ) { dp [ u ] = a [ u - 1 ] ; int maximum = 0 ; for ( int child : v [ u ] ) { if ( child == parent ) continue ; dfs ( a , v , child , u ) ; maximum = max ( maximum , dp [ child ] ) ; } dp [ u ] += maximum ; } int maximumValue ( int a [ ] , vector < int > v [ ] ) { dfs ( a , v , 1 , 0 ) ; return dp [ 1 ] ; } int main ( ) { int n = 14 ; vector < int > v [ n + 1 ] ; v [ 1 ] . push_back ( 2 ) , v [ 2 ] . push_back ( 1 ) ; v [ 1 ] . push_back ( 3 ) , v [ 3 ] . push_back ( 1 ) ; v [ 1 ] . push_back ( 4 ) , v [ 4 ] . push_back ( 1 ) ; v [ 2 ] . push_back ( 5 ) , v [ 5 ] . push_back ( 2 ) ; v [ 2 ] . push_back ( 6 ) , v [ 6 ] . push_back ( 2 ) ; v [ 3 ] . push_back ( 7 ) , v [ 7 ] . push_back ( 3 ) ; v [ 4 ] . push_back ( 8 ) , v [ 8 ] . push_back ( 4 ) ; v [ 4 ] . push_back ( 9 ) , v [ 9 ] . push_back ( 4 ) ; v [ 4 ] . push_back ( 10 ) , v [ 10 ] . push_back ( 4 ) ; v [ 5 ] . push_back ( 11 ) , v [ 11 ] . push_back ( 5 ) ; v [ 5 ] . push_back ( 12 ) , v [ 12 ] . push_back ( 5 ) ; v [ 7 ] . push_back ( 13 ) , v [ 13 ] . push_back ( 7 ) ; v [ 7 ] . push_back ( 14 ) , v [ 14 ] . push_back ( 7 ) ; int a [ ] = { 3 , 2 , 1 , 10 , 1 , 3 , 9 , 1 , 5 , 3 , 4 , 5 , 9 , 8 } ; dp = vector < int > ( n + 1 , 0 ) ; cout << maximumValue ( a , v ) ; return 0 ; } |
Find common elements in three sorted arrays | C ++ program to print common elements in three arrays ; This function prints common elements in ar1 ; Initialize starting indexes for ar1 [ ] , ar2 [ ] and ar3 [ ] ; Declare three variables prev1 , prev2 , prev3 to track previous element ; Initialize prev1 , prev2 , prev3 with INT_MIN ; Iterate through three arrays while all arrays have elements ; If ar1 [ i ] = prev1 and i < n1 , keep incrementing i ; If ar2 [ j ] = prev2 and j < n2 , keep incrementing j ; If ar3 [ k ] = prev3 and k < n3 , keep incrementing k ; If x = y and y = z , print any of them , update prev1 prev2 , prev3 and move ahead in each array ; If x < y , update prev1 and increment i ; If y < z , update prev2 and increment j ; We reach here when x > y and z < y , i . e . , z is smallest update prev3 and imcrement k ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void findCommon ( int ar1 [ ] , int ar2 [ ] , int ar3 [ ] , int n1 , int n2 , int n3 ) { int i = 0 , j = 0 , k = 0 ; int prev1 , prev2 , prev3 ; prev1 = prev2 = prev3 = INT_MIN ; while ( i < n1 && j < n2 && k < n3 ) { while ( ar1 [ i ] == prev1 && i < n1 ) i ++ ; while ( ar2 [ j ] == prev2 && j < n2 ) j ++ ; while ( ar3 [ k ] == prev3 && k < n3 ) k ++ ; if ( ar1 [ i ] == ar2 [ j ] && ar2 [ j ] == ar3 [ k ] ) { cout << ar1 [ i ] << " β " ; prev1 = ar1 [ i ] ; prev2 = ar2 [ j ] ; prev3 = ar3 [ k ] ; i ++ ; j ++ ; k ++ ; } else if ( ar1 [ i ] < ar2 [ j ] ) { prev1 = ar1 [ i ] ; i ++ ; } else if ( ar2 [ j ] < ar3 [ k ] ) { prev2 = ar2 [ j ] ; j ++ ; } else { prev3 = ar3 [ k ] ; k ++ ; } } } int main ( ) { int ar1 [ ] = { 1 , 5 , 10 , 20 , 40 , 80 , 80 } ; int ar2 [ ] = { 6 , 7 , 20 , 80 , 80 , 100 } ; int ar3 [ ] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 80 , 120 } ; int n1 = sizeof ( ar1 ) / sizeof ( ar1 [ 0 ] ) ; int n2 = sizeof ( ar2 ) / sizeof ( ar2 [ 0 ] ) ; int n3 = sizeof ( ar3 ) / sizeof ( ar3 [ 0 ] ) ; cout << " Common β Elements β are β " ; findCommon ( ar1 , ar2 , ar3 , n1 , n2 , n3 ) ; return 0 ; } |
Jacobsthal and Jacobsthal | A DP based solution to find Jacobsthal and Jacobsthal - Lucas numbers ; Return nth Jacobsthal number . ; base case ; Return nth Jacobsthal - Lucas number . ; base case ; Driven Program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int Jacobsthal ( int n ) { int dp [ n + 1 ] ; dp [ 0 ] = 0 ; dp [ 1 ] = 1 ; for ( int i = 2 ; i <= n ; i ++ ) dp [ i ] = dp [ i - 1 ] + 2 * dp [ i - 2 ] ; return dp [ n ] ; } int Jacobsthal_Lucas ( int n ) { int dp [ n + 1 ] ; dp [ 0 ] = 2 ; dp [ 1 ] = 1 ; for ( int i = 2 ; i <= n ; i ++ ) dp [ i ] = dp [ i - 1 ] + 2 * dp [ i - 2 ] ; return dp [ n ] ; } int main ( ) { int n = 5 ; cout << " Jacobsthal β number : β " << Jacobsthal ( n ) << endl ; cout << " Jacobsthal - Lucas β number : β " << Jacobsthal_Lucas ( n ) << endl ; return 0 ; } |
Find position of an element in a sorted array of infinite numbers | C ++ program to demonstrate working of an algorithm that finds an element in an array of infinite size ; Simple binary search algorithm ; function takes an infinite size array and a key to be searched and returns its position if found else - 1. We don 't know size of arr[] and we can assume size to be infinite in this function. NOTE THAT THIS FUNCTION ASSUMES arr[] TO BE OF INFINITE SIZE THEREFORE, THERE IS NO INDEX OUT OF BOUND CHECKING ; Find h to do binary search ; store previous high ; double high index ; update new val ; at this point we have updated low and high indices , Thus use binary search between them ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int binarySearch ( int arr [ ] , int l , int r , int x ) { if ( r >= l ) { int mid = l + ( r - l ) / 2 ; if ( arr [ mid ] == x ) return mid ; if ( arr [ mid ] > x ) return binarySearch ( arr , l , mid - 1 , x ) ; return binarySearch ( arr , mid + 1 , r , x ) ; } return -1 ; } int findPos ( int arr [ ] , int key ) { int l = 0 , h = 1 ; int val = arr [ 0 ] ; while ( val < key ) { l = h ; h = 2 * h ; val = arr [ h ] ; } return binarySearch ( arr , l , h , key ) ; } int main ( ) { int arr [ ] = { 3 , 5 , 7 , 9 , 10 , 90 , 100 , 130 , 140 , 160 , 170 } ; int ans = findPos ( arr , 10 ) ; if ( ans == -1 ) cout << " Element β not β found " ; else cout << " Element β found β at β index β " << ans ; return 0 ; } |
Count of possible hexagonal walks | C ++ implementation of counting number of possible hexagonal walks ; We initialize our origin with 1 ; For each N = 1 to 14 , we traverse in all possible direction . Using this 3D array we calculate the number of ways at each step and the total ways for a given step shall be found at ways [ step number ] [ 8 ] [ 8 ] because all the steps after that will be used to trace back to the original point index 0 : 0 according to the image . ; This array stores the number of ways possible for a given step ; Driver function ; Preprocessing all possible ways | #include <iostream> NEW_LINE using namespace std ; int depth = 16 ; int ways [ 16 ] [ 16 ] [ 16 ] ; int stepNum ; void preprocess ( int list [ ] ) { ways [ 0 ] [ 8 ] [ 8 ] = 1 ; for ( int N = 1 ; N <= 14 ; N ++ ) { for ( int i = 1 ; i <= depth ; i ++ ) { for ( int j = 1 ; j <= depth ; j ++ ) { ways [ N ] [ i ] [ j ] = ways [ N - 1 ] [ i ] [ j + 1 ] + ways [ N - 1 ] [ i ] [ j - 1 ] + ways [ N - 1 ] [ i + 1 ] [ j ] + ways [ N - 1 ] [ i - 1 ] [ j ] + ways [ N - 1 ] [ i + 1 ] [ j - 1 ] + ways [ N - 1 ] [ i - 1 ] [ j + 1 ] ; } } list [ N ] = ways [ N ] [ 8 ] [ 8 ] ; } } int main ( ) { int list [ 15 ] ; preprocess ( list ) ; int steps = 4 ; cout << " Number β of β walks β possible β is / are β " << list [ steps ] << endl ; return 0 ; } |
Check if possible to cross the matrix with given power | CPP program to find if it is possible to cross the matrix with given power ; Initializing array dp with false value . ; For each value of dp [ i ] [ j ] [ k ] ; For first cell and for each value of k ; For first cell of each row ; For first cell of each column ; For rest of the cell ; Down movement . ; Right movement . ; Diagonal movement . ; Finding maximum k . ; Driver Code | #include <bits/stdc++.h> NEW_LINE #define N 105 NEW_LINE #define R 3 NEW_LINE #define C 4 NEW_LINE using namespace std ; int maximumValue ( int n , int m , int p , int grid [ R ] [ C ] ) { bool dp [ N ] [ N ] [ N ] ; for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < N ; j ++ ) { for ( int k = 0 ; k < N ; k ++ ) dp [ i ] [ j ] [ k ] = false ; } } for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < m ; j ++ ) { for ( int k = grid [ i ] [ j ] ; k <= p ; k ++ ) { if ( i == 0 && j == 0 ) { if ( k == grid [ i ] [ j ] ) dp [ i ] [ j ] [ k ] = true ; } else if ( i == 0 ) { dp [ i ] [ j ] [ k ] = ( dp [ i ] [ j ] [ k ] dp [ i ] [ j - 1 ] [ k - grid [ i ] [ j ] ] ) ; } else if ( j == 0 ) { dp [ i ] [ j ] [ k ] = ( dp [ i ] [ j ] [ k ] dp [ i - 1 ] [ j ] [ k - grid [ i ] [ j ] ] ) ; } else { dp [ i ] [ j ] [ k ] = ( dp [ i ] [ j ] [ k ] dp [ i ] [ j - 1 ] [ k - grid [ i ] [ j ] ] ) ; dp [ i ] [ j ] [ k ] = ( dp [ i ] [ j ] [ k ] dp [ i - 1 ] [ j ] [ k - grid [ i ] [ j ] ] ) ; dp [ i ] [ j ] [ k ] = ( dp [ i ] [ j ] [ k ] dp [ i - 1 ] [ j - 1 ] [ k - grid [ i ] [ j ] ] ) ; } } } } int ans = 0 ; for ( ans = k ; ans >= 0 ; ans -- ) if ( dp [ n - 1 ] [ m - 1 ] [ ans ] ) break ; return ans ; } int main ( ) { int n = 3 , m = 4 , p = 9 ; int grid [ R ] [ C ] = { { 2 , 3 , 4 , 1 } , { 6 , 5 , 5 , 3 } , { 5 , 2 , 3 , 4 } } ; cout << maximumValue ( n , m , p , grid ) << endl ; return 0 ; } |
Number of n digit stepping numbers | CPP program to calculate the number of n digit stepping numbers . ; function that calculates the answer ; dp [ i ] [ j ] stores count of i digit stepping numbers ending with digit j . ; if n is 1 then answer will be 10. ; Initialize values for count of digits equal to 1. ; Compute values for count of digits more than 1. ; If ending digit is 0 ; If ending digit is 9 ; For other digits . ; stores the final answer ; driver program to test the above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; long long answer ( int n ) { int dp [ n + 1 ] [ 10 ] ; if ( n == 1 ) return 10 ; for ( int j = 0 ; j <= 9 ; j ++ ) dp [ 1 ] [ j ] = 1 ; for ( int i = 2 ; i <= n ; i ++ ) { for ( int j = 0 ; j <= 9 ; j ++ ) { if ( j == 0 ) dp [ i ] [ j ] = dp [ i - 1 ] [ j + 1 ] ; else if ( j == 9 ) dp [ i ] [ j ] = dp [ i - 1 ] [ j - 1 ] ; else dp [ i ] [ j ] = dp [ i - 1 ] [ j - 1 ] + dp [ i - 1 ] [ j + 1 ] ; } } long long sum = 0 ; for ( int j = 1 ; j <= 9 ; j ++ ) sum += dp [ n ] [ j ] ; return sum ; } int main ( ) { int n = 2 ; cout << answer ( n ) ; return 0 ; } |
Print Longest Palindromic Subsequence | CPP program to print longest palindromic subsequence ; Returns LCS X and Y ; Following steps build L [ m + 1 ] [ n + 1 ] in bottom up fashion . Note that L [ i ] [ j ] contains length of LCS of X [ 0. . i - 1 ] and Y [ 0. . j - 1 ] ; Following code is used to print LCS ; Create a string length index + 1 and fill it with \ 0 ; Start from the right - most - bottom - most corner and one by one store characters in lcs [ ] ; If current character in X [ ] and Y are same , then current character is part of LCS ; Put current character in result ; reduce values of i , j and index ; If not same , then find the larger of two and go in the direction of larger value ; Returns longest palindromic subsequence of str ; Find reverse of str ; Return LCS of str and its reverse ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; string lcs ( string & X , string & Y ) { int m = X . length ( ) ; int n = Y . length ( ) ; int L [ m + 1 ] [ n + 1 ] ; for ( int i = 0 ; i <= m ; i ++ ) { for ( int j = 0 ; j <= n ; j ++ ) { if ( i == 0 j == 0 ) L [ i ] [ j ] = 0 ; else if ( X [ i - 1 ] == Y [ j - 1 ] ) L [ i ] [ j ] = L [ i - 1 ] [ j - 1 ] + 1 ; else L [ i ] [ j ] = max ( L [ i - 1 ] [ j ] , L [ i ] [ j - 1 ] ) ; } } int index = L [ m ] [ n ] ; string lcs ( index + 1 , ' \0' ) ; int i = m , j = n ; while ( i > 0 && j > 0 ) { if ( X [ i - 1 ] == Y [ j - 1 ] ) { lcs [ index - 1 ] = X [ i - 1 ] ; i -- ; j -- ; index -- ; } else if ( L [ i - 1 ] [ j ] > L [ i ] [ j - 1 ] ) i -- ; else j -- ; } return lcs ; } string longestPalSubseq ( string & str ) { string rev = str ; reverse ( rev . begin ( ) , rev . end ( ) ) ; return lcs ( str , rev ) ; } int main ( ) { string str = " GEEKSFORGEEKS " ; cout << longestPalSubseq ( str ) ; return 0 ; } |
Count all subsequences having product less than K | CPP program to find number of subarrays having product less than k . ; Function to count numbers of such subsequences having product less than k . ; number of subsequence using j - 1 terms ; if arr [ j - 1 ] > i it will surely make product greater thus it won 't contribute then ; number of subsequence using 1 to j - 1 terms and j - th term ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int productSubSeqCount ( vector < int > & arr , int k ) { int n = arr . size ( ) ; int dp [ k + 1 ] [ n + 1 ] ; memset ( dp , 0 , sizeof ( dp ) ) ; for ( int i = 1 ; i <= k ; i ++ ) { for ( int j = 1 ; j <= n ; j ++ ) { dp [ i ] [ j ] = dp [ i ] [ j - 1 ] ; if ( arr [ j - 1 ] <= i ) dp [ i ] [ j ] += dp [ i / arr [ j - 1 ] ] [ j - 1 ] + 1 ; } } return dp [ k ] [ n ] ; } int main ( ) { vector < int > A ; A . push_back ( 1 ) ; A . push_back ( 2 ) ; A . push_back ( 3 ) ; A . push_back ( 4 ) ; int k = 10 ; cout << productSubSeqCount ( A , k ) << endl ; } |
Find the element that appears once in an array where every other element appears twice | C ++ program to find the array element that appears only once ; Return the maximum Sum of difference between consecutive elements . ; Do XOR of all elements and return ; Driver code | #include <iostream> NEW_LINE using namespace std ; int findSingle ( int ar [ ] , int ar_size ) { int res = ar [ 0 ] ; for ( int i = 1 ; i < ar_size ; i ++ ) res = res ^ ar [ i ] ; return res ; } int main ( ) { int ar [ ] = { 2 , 3 , 5 , 4 , 5 , 3 , 4 } ; int n = sizeof ( ar ) / sizeof ( ar [ 0 ] ) ; cout << " Element β occurring β once β is β " << findSingle ( ar , n ) ; return 0 ; } |
Count all triplets whose sum is equal to a perfect cube | C ++ program to calculate all triplets whose sum is perfect cube . ; Function to calculate all occurrence of a number in a given range ; if i == 0 assign 1 to present state ; else add + 1 to current state with previous state ; Function to calculate triplets whose sum is equal to the perfect cube ; Initialize answer ; count all occurrence of third triplet in range from j + 1 to n ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 1001 ] [ 15001 ] ; void computeDpArray ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; ++ i ) { for ( int j = 1 ; j <= 15000 ; ++ j ) { if ( i == 0 ) dp [ i ] [ j ] = ( j == arr [ i ] ) ; else dp [ i ] [ j ] = dp [ i - 1 ] [ j ] + ( arr [ i ] == j ) ; } } } int countTripletSum ( int arr [ ] , int n ) { computeDpArray ( arr , n ) ; int ans = 0 ; for ( int i = 0 ; i < n - 2 ; ++ i ) { for ( int j = i + 1 ; j < n - 1 ; ++ j ) { for ( int k = 1 ; k <= 24 ; ++ k ) { int cube = k * k * k ; int rem = cube - ( arr [ i ] + arr [ j ] ) ; if ( rem > 0 ) ans += dp [ n - 1 ] [ rem ] - dp [ j ] [ rem ] ; } } } return ans ; } int main ( ) { int arr [ ] = { 2 , 5 , 1 , 20 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << countTripletSum ( arr , n ) ; return 0 ; } |
Find the element that appears once in an array where every other element appears twice | C ++ program to find element that appears once ; function which find number ; applying the formula . ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int singleNumber ( int nums [ ] , int n ) { map < int , int > m ; long sum1 = 0 , sum2 = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( m [ nums [ i ] ] == 0 ) { sum1 += nums [ i ] ; m [ nums [ i ] ] ++ ; } sum2 += nums [ i ] ; } return 2 * ( sum1 ) - sum2 ; } int main ( ) { int a [ ] = { 2 , 3 , 5 , 4 , 5 , 3 , 4 } ; int n = 7 ; cout << singleNumber ( a , n ) << " STRNEWLINE " ; int b [ ] = { 15 , 18 , 16 , 18 , 16 , 15 , 89 } ; cout << singleNumber ( b , n ) ; return 0 ; } |
Maximum Subarray Sum Excluding Certain Elements | C ++ Program to find max subarray sum excluding some elements ; Function to check the element present in array B ; Utility function for findMaxSubarraySum ( ) with the following parameters A = > Array A , B = > Array B , n = > Number of elements in Array A , m = > Number of elements in Array B ; set max_so_far to INT_MIN ; if the element is present in B , set current max to 0 and move to the next element ; Proceed as in Kadane 's Algorithm ; Wrapper for findMaxSubarraySumUtil ( ) ; This case will occour when all elements of A are present in B , thus no subarray can be formed ; Driver Code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPresent ( int B [ ] , int m , int x ) { for ( int i = 0 ; i < m ; i ++ ) if ( B [ i ] == x ) return true ; return false ; } int findMaxSubarraySumUtil ( int A [ ] , int B [ ] , int n , int m ) { int max_so_far = INT_MIN , curr_max = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( isPresent ( B , m , A [ i ] ) ) { curr_max = 0 ; continue ; } curr_max = max ( A [ i ] , curr_max + A [ i ] ) ; max_so_far = max ( max_so_far , curr_max ) ; } return max_so_far ; } void findMaxSubarraySum ( int A [ ] , int B [ ] , int n , int m ) { int maxSubarraySum = findMaxSubarraySumUtil ( A , B , n , m ) ; if ( maxSubarraySum == INT_MIN ) { cout << " Maximum β Subarray β Sum β cant β be β found " << endl ; } else { cout << " The β Maximum β Subarray β Sum β = β " << maxSubarraySum << endl ; } } int main ( ) { int A [ ] = { 3 , 4 , 5 , -4 , 6 } ; int B [ ] = { 1 , 8 , 5 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; int m = sizeof ( B ) / sizeof ( B [ 0 ] ) ; findMaxSubarraySum ( A , B , n , m ) ; return 0 ; } |
Maximum Subarray Sum Excluding Certain Elements | C ++ Program to find max subarray sum excluding some elements ; Utility function for findMaxSubarraySum ( ) with the following parameters A = > Array A , B = > Array B , n = > Number of elements in Array A , m = > Number of elements in Array B ; set max_so_far to INT_MIN ; if the element is present in B , set current max to 0 and move to the next element ; Proceed as in Kadane 's Algorithm ; Wrapper for findMaxSubarraySumUtil ( ) ; sort array B to apply Binary Search ; This case will occour when all elements of A are present in B , thus no subarray can be formed ; Driver Code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findMaxSubarraySumUtil ( int A [ ] , int B [ ] , int n , int m ) { int max_so_far = INT_MIN , curr_max = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( binary_search ( B , B + m , A [ i ] ) ) { curr_max = 0 ; continue ; } curr_max = max ( A [ i ] , curr_max + A [ i ] ) ; max_so_far = max ( max_so_far , curr_max ) ; } return max_so_far ; } void findMaxSubarraySum ( int A [ ] , int B [ ] , int n , int m ) { sort ( B , B + m ) ; int maxSubarraySum = findMaxSubarraySumUtil ( A , B , n , m ) ; if ( maxSubarraySum == INT_MIN ) { cout << " Maximum β subarray β sum β cant β be β found " << endl ; } else { cout << " The β Maximum β subarray β sum β = β " << maxSubarraySum << endl ; } } int main ( ) { int A [ ] = { 3 , 4 , 5 , -4 , 6 } ; int B [ ] = { 1 , 8 , 5 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; int m = sizeof ( B ) / sizeof ( B [ 0 ] ) ; findMaxSubarraySum ( A , B , n , m ) ; return 0 ; } |
Number of n | C ++ program for counting n digit numbers with non decreasing digits ; Returns count of non - decreasing numbers with n digits . ; a [ i ] [ j ] = count of all possible number with i digits having leading digit as j ; Initialization of all 0 - digit number ; Initialization of all i - digit non - decreasing number leading with 9 ; for all digits we should calculate number of ways depending upon leading digits ; driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int nonDecNums ( int n ) { int a [ n + 1 ] [ 10 ] ; for ( int i = 0 ; i <= 9 ; i ++ ) a [ 0 ] [ i ] = 1 ; for ( int i = 1 ; i <= n ; i ++ ) a [ i ] [ 9 ] = 1 ; for ( int i = 1 ; i <= n ; i ++ ) for ( int j = 8 ; j >= 0 ; j -- ) a [ i ] [ j ] = a [ i - 1 ] [ j ] + a [ i ] [ j + 1 ] ; return a [ n ] [ 0 ] ; } int main ( ) { int n = 2 ; cout << " Non - decreasing β digits β = β " << nonDecNums ( n ) << endl ; return 0 ; } |
Count Balanced Binary Trees of Height h | C ++ program to count number of balanced binary trees of height h . ; base cases ; Driver program | #include <bits/stdc++.h> NEW_LINE #define mod 1000000007 NEW_LINE using namespace std ; long long int countBT ( int h ) { long long int dp [ h + 1 ] ; dp [ 0 ] = dp [ 1 ] = 1 ; for ( int i = 2 ; i <= h ; i ++ ) { dp [ i ] = ( dp [ i - 1 ] * ( ( 2 * dp [ i - 2 ] ) % mod + dp [ i - 1 ] ) % mod ) % mod ; } return dp [ h ] ; } int main ( ) { int h = 3 ; cout << " No . β of β balanced β binary β trees " " β of β height β h β is : β " << countBT ( h ) << endl ; } |
Maximum Subarray Sum Excluding Certain Elements | C ++ Program implementation of the above idea ; Function to calculate the max sum of contigous subarray of B whose elements are not present in A ; mark all the elements present in B ; initialize max_so_far with INT_MIN ; traverse the array A ; if current max is greater than max so far then update max so far ; Driver Code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findMaxSubarraySum ( vector < int > A , vector < int > B ) { unordered_map < int , int > m ; for ( int i = 0 ; i < B . size ( ) ; i ++ ) { m [ B [ i ] ] = 1 ; } int max_so_far = INT_MIN ; int currmax = 0 ; for ( int i = 0 ; i < A . size ( ) ; i ++ ) { if ( currmax < 0 m [ A [ i ] ] == 1 ) { currmax = 0 ; continue ; } currmax = max ( A [ i ] , A [ i ] + currmax ) ; if ( max_so_far < currmax ) { max_so_far = currmax ; } } return max_so_far ; } int main ( ) { vector < int > a = { 3 , 4 , 5 , -4 , 6 } ; vector < int > b = { 1 , 8 , 5 } ; cout << findMaxSubarraySum ( a , b ) ; return 0 ; } |
Print all k | C ++ program to print all paths with sum k . ; utility function to print contents of a vector from index i to it 's end ; binary tree node ; This function prints all paths that have sum k ; empty node ; add current node to the path ; check if there 's any k sum path in the left sub-tree. ; check if there 's any k sum path in the right sub-tree. ; check if there 's any k sum path that terminates at this node Traverse the entire path as there can be negative elements too ; If path sum is k , print the path ; Remove the current element from the path ; A wrapper over printKPathUtil ( ) ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void printVector ( const vector < int > & v , int i ) { for ( int j = i ; j < v . size ( ) ; j ++ ) cout << v [ j ] << " β " ; cout << endl ; } struct Node { int data ; Node * left , * right ; Node ( int x ) { data = x ; left = right = NULL ; } } ; void printKPathUtil ( Node * root , vector < int > & path , int k ) { if ( ! root ) return ; path . push_back ( root -> data ) ; printKPathUtil ( root -> left , path , k ) ; printKPathUtil ( root -> right , path , k ) ; int f = 0 ; for ( int j = path . size ( ) - 1 ; j >= 0 ; j -- ) { f += path [ j ] ; if ( f == k ) printVector ( path , j ) ; } path . pop_back ( ) ; } void printKPath ( Node * root , int k ) { vector < int > path ; printKPathUtil ( root , path , k ) ; } int main ( ) { Node * root = new Node ( 1 ) ; root -> left = new Node ( 3 ) ; root -> left -> left = new Node ( 2 ) ; root -> left -> right = new Node ( 1 ) ; root -> left -> right -> left = new Node ( 1 ) ; root -> right = new Node ( -1 ) ; root -> right -> left = new Node ( 4 ) ; root -> right -> left -> left = new Node ( 1 ) ; root -> right -> left -> right = new Node ( 2 ) ; root -> right -> right = new Node ( 5 ) ; root -> right -> right -> right = new Node ( 2 ) ; int k = 5 ; printKPath ( root , k ) ; return 0 ; } |
Number of substrings divisible by 8 but not by 3 | CPP Program to count substrings which are divisible by 8 but not by 3 ; Returns count of substrings divisible by 8 but not by 3. ; Iterating the string . ; Prefix sum of number of substrings whose sum of digits mudolo 3 is 0 , 1 , 2. ; Iterating the string . ; Since single digit 8 is divisible by 8 and not by 3. ; Taking two digit number . ; 10 th position ; Complete 2 digit ; Taking 3 digit number . ; 100 th position ; 10 th position ; Complete 3 digit number . ; If number formed is divisible by 8 then last 3 digits are also divisible by 8. Then all the substring ending at this index is divisible . ; But those substring also contain number which are not divisible by 3 so remove them . ; Driven Program | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 1000 NEW_LINE int count ( char s [ ] , int len ) { int cur = 0 , dig = 0 ; int sum [ MAX ] , dp [ MAX ] [ 3 ] ; memset ( sum , 0 , sizeof ( sum ) ) ; memset ( dp , 0 , sizeof ( dp ) ) ; dp [ 0 ] [ 0 ] = 1 ; for ( int i = 1 ; i <= len ; i ++ ) { dig = int ( s [ i - 1 ] ) - 48 ; cur += dig ; cur %= 3 ; sum [ i ] = cur ; dp [ i ] [ 0 ] = dp [ i - 1 ] [ 0 ] ; dp [ i ] [ 1 ] = dp [ i - 1 ] [ 1 ] ; dp [ i ] [ 2 ] = dp [ i - 1 ] [ 2 ] ; dp [ i ] [ sum [ i ] ] ++ ; } int ans = 0 , dprev = 0 , value = 0 , dprev2 = 0 ; for ( int i = 1 ; i <= len ; i ++ ) { dig = int ( s [ i - 1 ] ) - 48 ; if ( dig == 8 ) ans ++ ; if ( i - 2 >= 0 ) { dprev = int ( s [ i - 2 ] ) - 48 ; value = dprev * 10 + dig ; if ( ( value % 8 == 0 ) && ( value % 3 != 0 ) ) ans ++ ; } if ( i - 3 >= 0 ) { dprev2 = int ( s [ i - 3 ] ) - 48 ; dprev = int ( s [ i - 2 ] ) - 48 ; value = dprev2 * 100 + dprev * 10 + dig ; if ( value % 8 != 0 ) continue ; ans += ( i - 2 ) ; ans -= ( dp [ i - 3 ] [ sum [ i ] ] ) ; } } return ans ; } int main ( ) { char str [ ] = "6564525600" ; int len = strlen ( str ) ; cout << count ( str , len ) << endl ; return 0 ; } |
Print all distinct characters of a string in order ( 3 Methods ) | C ++ program to find all distinct characters in a string ; Function to print distinct characters in given string str [ ] ; count [ x ] is going to store count of character ' x ' in str . If x is not present , then it is going to store 0. ; index [ x ] is going to store index of character ' x ' in str . If x is not present or x is more than once , then it is going to store a value ( for example , length of string ) that cannot be a valid index in str [ ] ; Initialize counts of all characters and indexes of distinct characters . ; index [ i ] = n ; A value more than any index in str [ ] ; Traverse the input string ; Find current character and increment its count ; If this is first occurrence , then set value in index as index of it . ; If character repeats , then remove it from index [ ] ; Since size of index is constant , below operations take constant time . ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX_CHAR = 256 ; void printDistinct ( string str ) { int n = str . length ( ) ; int count [ MAX_CHAR ] ; int index [ MAX_CHAR ] ; for ( int i = 0 ; i < MAX_CHAR ; i ++ ) { count [ i ] = 0 ; } for ( int i = 0 ; i < n ; i ++ ) { char x = str [ i ] ; ++ count [ x ] ; if ( count [ x ] == 1 && x != ' β ' ) index [ x ] = i ; if ( count [ x ] == 2 ) index [ x ] = n ; } sort ( index , index + MAX_CHAR ) ; for ( int i = 0 ; i < MAX_CHAR && index [ i ] != n ; i ++ ) cout << str [ index [ i ] ] ; } int main ( ) { string str = " GeeksforGeeks " ; printDistinct ( str ) ; return 0 ; } |
Smallest length string with repeated replacement of two distinct adjacent | C ++ program to find smallest possible length of a string of only three characters ; Program to find length of reduced string in a string made of three characters . ; To store results of subproblems ; A memoized function find result recursively . a , b and c are counts of ' a ' s , ' b ' s and ' c ' s in str ; If this subproblem is already evaluated ; If there is only one type of character ; If only two types of characters are present ; If all types of characters are present . Try combining all pairs . ; Returns smallest possible length with given operation allowed . ; Counting occurrences of three different characters ' a ' , ' b ' and ' c ' in str ; Initialize DP [ ] [ ] entries as - 1 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX_LEN 110 NEW_LINE int DP [ MAX_LEN ] [ MAX_LEN ] [ MAX_LEN ] ; int length ( int a , int b , int c ) { if ( DP [ a ] [ b ] != -1 ) return DP [ a ] [ b ] ; if ( a == 0 && b == 0 ) return ( DP [ a ] [ b ] = c ) ; if ( a == 0 && c == 0 ) return ( DP [ a ] [ b ] = b ) ; if ( b == 0 && c == 0 ) return ( DP [ a ] [ b ] = a ) ; if ( a == 0 ) return ( DP [ a ] [ b ] = length ( a + 1 , b - 1 , c - 1 ) ) ; if ( b == 0 ) return ( DP [ a ] [ b ] = length ( a - 1 , b + 1 , c - 1 ) ) ; if ( c == 0 ) return ( DP [ a ] [ b ] = length ( a - 1 , b - 1 , c + 1 ) ) ; return ( DP [ a ] [ b ] = min ( length ( a - 1 , b - 1 , c + 1 ) , min ( length ( a - 1 , b + 1 , c - 1 ) , length ( a + 1 , b - 1 , c - 1 ) ) ) ) ; } int stringReduction ( string str ) { int n = str . length ( ) ; int count [ 3 ] = { 0 } ; for ( int i = 0 ; i < n ; ++ i ) count [ str [ i ] - ' a ' ] ++ ; for ( int i = 0 ; i <= count [ 0 ] ; ++ i ) for ( int j = 0 ; j < count [ 1 ] ; ++ j ) for ( int k = 0 ; k < count [ 2 ] ; ++ k ) DP [ i ] [ j ] [ k ] = -1 ; return length ( count [ 0 ] , count [ 1 ] , count [ 2 ] ) ; } int main ( ) { string str = " abcbbaacb " ; cout << stringReduction ( str ) ; return 0 ; } |
Equilibrium index of an array | C ++ program to find equilibrium index of an array ; function to find the equilibrium index ; Check for indexes one by one until an equilibrium index is found ; get left sum ; get right sum ; if leftsum and rightsum are same , then we are done ; return - 1 if no equilibrium index is found ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int equilibrium ( int arr [ ] , int n ) { int i , j ; int leftsum , rightsum ; for ( i = 0 ; i < n ; ++ i ) { leftsum = 0 ; rightsum = 0 ; for ( j = 0 ; j < i ; j ++ ) leftsum += arr [ j ] ; for ( j = i + 1 ; j < n ; j ++ ) rightsum += arr [ j ] ; if ( leftsum == rightsum ) return i ; } return -1 ; } int main ( ) { int arr [ ] = { -7 , 1 , 5 , 2 , -4 , 3 , 0 } ; int arr_size = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << equilibrium ( arr , arr_size ) ; return 0 ; } |
Find number of endless points | C ++ program to find count of endless points ; Returns count of endless points ; Fills column matrix . For every column , start from every last row and fill every entry as blockage after a 0 is found . ; flag which will be zero once we get a '0' and it will be 1 otherwise ; encountered a '0' , set the isEndless variable to false ; Similarly , fill row matrix ; Calculate total count of endless points ; If there is NO blockage in row or column after this point , increment result . ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 100 ; int countEndless ( bool input [ ] [ MAX ] , int n ) { bool row [ n ] [ n ] , col [ n ] [ n ] ; for ( int j = 0 ; j < n ; j ++ ) { bool isEndless = 1 ; for ( int i = n - 1 ; i >= 0 ; i -- ) { if ( input [ i ] [ j ] == 0 ) isEndless = 0 ; col [ i ] [ j ] = isEndless ; } } for ( int i = 0 ; i < n ; i ++ ) { bool isEndless = 1 ; for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( input [ i ] [ j ] == 0 ) isEndless = 0 ; row [ i ] [ j ] = isEndless ; } } int ans = 0 ; for ( int i = 0 ; i < n ; i ++ ) for ( int j = 1 ; j < n ; j ++ ) if ( row [ i ] [ j ] && col [ i ] [ j ] ) ans ++ ; return ans ; } int main ( ) { bool input [ ] [ MAX ] = { { 1 , 0 , 1 , 1 } , { 0 , 1 , 1 , 1 } , { 1 , 1 , 1 , 1 } , { 0 , 1 , 1 , 0 } } ; int n = 4 ; cout << countEndless ( input , n ) ; return 0 ; } |
Equilibrium index of an array | C ++ program to find equilibrium index of an array ; function to find the equilibrium index ; initialize sum of whole array ; initialize leftsum ; Find sum of the whole array ; sum is now right sum for index i ; If no equilibrium index found , then return 0 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int equilibrium ( int arr [ ] , int n ) { int sum = 0 ; int leftsum = 0 ; for ( int i = 0 ; i < n ; ++ i ) sum += arr [ i ] ; for ( int i = 0 ; i < n ; ++ i ) { sum -= arr [ i ] ; if ( leftsum == sum ) return i ; leftsum += arr [ i ] ; } return -1 ; } int main ( ) { int arr [ ] = { -7 , 1 , 5 , 2 , -4 , 3 , 0 } ; int arr_size = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " First β equilibrium β index β is β " << equilibrium ( arr , arr_size ) ; return 0 ; } |
Sum of all substrings of a string representing a number | Set 1 | C ++ program to print sum of all substring of a number represented as a string ; Utility method to convert character digit to integer digit ; Returns sum of all substring of num ; allocate memory equal to length of string ; initialize first value with first digit ; loop over all digits of string ; update each sumofdigit from previous value ; add current value to the result ; Driver code to test above methods | #include <bits/stdc++.h> NEW_LINE using namespace std ; int toDigit ( char ch ) { return ( ch - '0' ) ; } int sumOfSubstrings ( string num ) { int n = num . length ( ) ; int sumofdigit [ n ] ; sumofdigit [ 0 ] = toDigit ( num [ 0 ] ) ; int res = sumofdigit [ 0 ] ; for ( int i = 1 ; i < n ; i ++ ) { int numi = toDigit ( num [ i ] ) ; sumofdigit [ i ] = ( i + 1 ) * numi + 10 * sumofdigit [ i - 1 ] ; res += sumofdigit [ i ] ; } return res ; } int main ( ) { string num = "1234" ; cout << sumOfSubstrings ( num ) << endl ; return 0 ; } |
Sum of all substrings of a string representing a number | Set 1 | C ++ program to print sum of all substring of a number represented as a string ; Utility method to convert character digit to integer digit ; Returns sum of all substring of num ; storing prev value ; substrings sum upto current index loop over all digits of string ; update each sumofdigit from previous value ; add current value to the result ; prev = current ; update previous ; Driver code to test above methods | #include <bits/stdc++.h> NEW_LINE using namespace std ; int toDigit ( char ch ) { return ( ch - '0' ) ; } int sumOfSubstrings ( string num ) { int n = num . length ( ) ; int prev = toDigit ( num [ 0 ] ) ; int res = prev ; int current = 0 ; for ( int i = 1 ; i < n ; i ++ ) { int numi = toDigit ( num [ i ] ) ; current = ( i + 1 ) * numi + 10 * prev ; res += current ; } return res ; } int main ( ) { string num = "1234" ; cout << sumOfSubstrings ( num ) << endl ; return 0 ; } |
Equilibrium index of an array | C ++ program to find equilibrium index of an array ; Taking the prefixsum from front end array ; Taking the prefixsum from back end of array ; Checking if forward prefix sum is equal to rev prefix sum ; If You want all the points of equilibrium create vector and push all equilibrium points in it and return the vector ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int equilibrium ( int a [ ] , int n ) { if ( n == 1 ) return ( 0 ) ; int forward [ n ] = { 0 } ; int rev [ n ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) { if ( i ) { forward [ i ] = forward [ i - 1 ] + a [ i ] ; } else { forward [ i ] = a [ i ] ; } } for ( int i = n - 1 ; i > 0 ; i -- ) { if ( i <= n - 2 ) { rev [ i ] = rev [ i + 1 ] + a [ i ] ; } else { rev [ i ] = a [ i ] ; } } for ( int i = 0 ; i < n ; i ++ ) { if ( forward [ i ] == rev [ i ] ) { return i ; } } return -1 ; } int main ( ) { int arr [ ] = { -7 , 1 , 5 , 2 , -4 , 3 , 0 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " First β Point β of β equilibrium β is β at β index β " << equilibrium ( arr , n ) << " STRNEWLINE " ; return 0 ; } |
Leaders in an array | C ++ Function to print leaders in an array ; the loop didn 't break ; Driver program to test above function | #include <iostream> NEW_LINE using namespace std ; void printLeaders ( int arr [ ] , int size ) { for ( int i = 0 ; i < size ; i ++ ) { int j ; for ( j = i + 1 ; j < size ; j ++ ) { if ( arr [ i ] <= arr [ j ] ) break ; } if ( j == size ) cout << arr [ i ] << " β " ; } } int main ( ) { int arr [ ] = { 16 , 17 , 4 , 3 , 5 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; printLeaders ( arr , n ) ; return 0 ; } |
Minimize cost to reach end of an N | C ++ program for the above approach ; For priority_queue ; Function to calculate the minimum cost required to reach the end of Line ; Checks if possible to reach end or not ; Stores the stations and respective rate of fuel ; Stores the station index and cost of fuel and litres of petrol which is being fueled ; Iterate through the entire line ; Check if there is a station at current index ; Remove all the stations where fuel cannot be pumped ; If there is no station left to fill fuel in tank , it is not possible to reach end ; Stores the best station visited so far ; Pump fuel from the best station ; Update the count of litres taken from that station ; Update the bunk in queue ; Print the cost ; Driven Program ; Given value of N , K & M ; Given arrays ; Function call to calculate minimum cost to reach end of the line | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Compare { bool operator() ( array < int , 3 > a , array < int , 3 > b ) { return a [ 1 ] > b [ 1 ] ; } } ; void minCost ( int N , int K , int M , int a [ ] , int b [ ] ) { bool flag = true ; unordered_map < int , int > map ; for ( int i = 0 ; i < M ; i ++ ) { map [ a [ i ] ] = b [ i ] ; if ( i == M - 1 && K < N - a [ i ] ) { flag = false ; break ; } else if ( i < M - 1 && K < a [ i + 1 ] - a [ i ] ) { flag = false ; break ; } } if ( ! flag ) { cout << -1 ; return ; } priority_queue < array < int , 3 > , vector < array < int , 3 > > , Compare > pq ; int cost = 0 ; flag = false ; for ( int i = 0 ; i < N ; i ++ ) { if ( map . find ( i ) != map . end ( ) ) { array < int , 3 > arr = { i , map [ i ] , 0 } ; pq . push ( arr ) ; } while ( pq . size ( ) > 0 && pq . top ( ) [ 2 ] == K ) pq . pop ( ) ; if ( pq . size ( ) == 0 ) { flag = true ; break ; } array < int , 3 > best_bunk = pq . top ( ) ; pq . pop ( ) ; cost += best_bunk [ 1 ] ; best_bunk [ 2 ] ++ ; pq . push ( best_bunk ) ; } if ( flag ) { cout << -1 << " STRNEWLINE " ; return ; } cout << cost << " STRNEWLINE " ; } int main ( ) { int N = 10 , K = 3 , M = 4 ; int a [ ] = { 0 , 1 , 4 , 6 } ; int b [ ] = { 5 , 2 , 2 , 4 } ; minCost ( N , K , M , a , b ) ; return 0 ; } |
Leaders in an array | ; C ++ Function to print leaders in an array ; Rightmost element is always leader ; Driver program to test above function | #include <iostream> NEW_LINE using namespace std ; void printLeaders ( int arr [ ] , int size ) { int max_from_right = arr [ size - 1 ] ; cout << max_from_right << " β " ; for ( int i = size - 2 ; i >= 0 ; i -- ) { if ( max_from_right < arr [ i ] ) { max_from_right = arr [ i ] ; cout << max_from_right << " β " ; } } } int main ( ) { int arr [ ] = { 16 , 17 , 4 , 3 , 5 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; printLeaders ( arr , n ) ; return 0 ; } |
Unbounded Knapsack ( Repetition of items allowed ) | C ++ program to find maximum achievable value with a knapsack of weight W and multiple instances allowed . ; Returns the maximum value with knapsack of W capacity ; dp [ i ] is going to store maximum value with knapsack capacity i . ; Fill dp [ ] using above recursive formula ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int unboundedKnapsack ( int W , int n , int val [ ] , int wt [ ] ) { int dp [ W + 1 ] ; memset ( dp , 0 , sizeof dp ) ; for ( int i = 0 ; i <= W ; i ++ ) for ( int j = 0 ; j < n ; j ++ ) if ( wt [ j ] <= i ) dp [ i ] = max ( dp [ i ] , dp [ i - wt [ j ] ] + val [ j ] ) ; return dp [ W ] ; } int main ( ) { int W = 100 ; int val [ ] = { 10 , 30 , 20 } ; int wt [ ] = { 5 , 10 , 15 } ; int n = sizeof ( val ) / sizeof ( val [ 0 ] ) ; cout << unboundedKnapsack ( W , n , val , wt ) ; return 0 ; } |
Ceiling in a sorted array | C ++ implementation of above approach ; Function to get index of ceiling of x in arr [ low . . high ] ; If x is smaller than or equal to first element , then return the first element ; Otherwise , linearly search for ceil value ; if x lies between arr [ i ] and arr [ i + 1 ] including arr [ i + 1 ] , then return arr [ i + 1 ] ; If we reach here then x is greater than the last element of the array , return - 1 in this case ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int ceilSearch ( int arr [ ] , int low , int high , int x ) { int i ; if ( x <= arr [ low ] ) return low ; for ( i = low ; i < high ; i ++ ) { if ( arr [ i ] == x ) return i ; if ( arr [ i ] < x && arr [ i + 1 ] >= x ) return i + 1 ; } return -1 ; } int main ( ) { int arr [ ] = { 1 , 2 , 8 , 10 , 10 , 12 , 19 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int x = 3 ; int index = ceilSearch ( arr , 0 , n - 1 , x ) ; if ( index == -1 ) cout << " Ceiling β of β " << x << " β doesn ' t β exist β in β array β " ; else cout << " ceiling β of β " << x << " β is β " << arr [ index ] ; return 0 ; } |
Ceiling in a sorted array | ; Function to get index of ceiling of x in arr [ low . . high ] ; If x is smaller than or equal to the first element , then return the first element ; If x is greater than the last element , then return - 1 ; get the index of middle element of arr [ low . . high ] ; If x is same as middle element , then return mid ; If x is greater than arr [ mid ] , then either arr [ mid + 1 ] is ceiling of x or ceiling lies in arr [ mid + 1. . . high ] ; If x is smaller than arr [ mid ] , then either arr [ mid ] is ceiling of x or ceiling lies in arr [ low ... mid - 1 ] ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int ceilSearch ( int arr [ ] , int low , int high , int x ) { int mid ; if ( x <= arr [ low ] ) return low ; if ( x > arr [ high ] ) return -1 ; mid = ( low + high ) / 2 ; if ( arr [ mid ] == x ) return mid ; else if ( arr [ mid ] < x ) { if ( mid + 1 <= high && x <= arr [ mid + 1 ] ) return mid + 1 ; else return ceilSearch ( arr , mid + 1 , high , x ) ; } else { if ( mid - 1 >= low && x > arr [ mid - 1 ] ) return mid ; else return ceilSearch ( arr , low , mid - 1 , x ) ; } } int main ( ) { int arr [ ] = { 1 , 2 , 8 , 10 , 10 , 12 , 19 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int x = 20 ; int index = ceilSearch ( arr , 0 , n - 1 , x ) ; if ( index == -1 ) cout << " Ceiling β of β " << x << " β doesn ' t β exist β in β array β " ; else cout << " ceiling β of β " << x << " β is β " << arr [ index ] ; return 0 ; } |
Sum of heights of all individual nodes in a binary tree | C ++ program to find sum of heights of all nodes in a binary tree ; A binary tree Node has data , pointer to left child and a pointer to right child ; Compute the " maxHeight " of a particular Node ; compute the height of each subtree ; use the larger one ; Helper function that allocates a new Node with the given data and NULL left and right pointers . ; Function to sum of heights of individual Nodes Uses Inorder traversal ; Driver code | #include <bits/stdc++.h> NEW_LINE struct Node { int data ; struct Node * left ; struct Node * right ; } ; int getHeight ( struct Node * Node ) { if ( Node == NULL ) return 0 ; else { int lHeight = getHeight ( Node -> left ) ; int rHeight = getHeight ( Node -> right ) ; if ( lHeight > rHeight ) return ( lHeight + 1 ) ; else return ( rHeight + 1 ) ; } } struct Node * newNode ( int data ) { struct Node * Node = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; Node -> data = data ; Node -> left = NULL ; Node -> right = NULL ; return ( Node ) ; } int getTotalHeight ( struct Node * root ) { if ( root == NULL ) return 0 ; return getTotalHeight ( root -> left ) + getHeight ( root ) + getTotalHeight ( root -> right ) ; } int main ( ) { struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 5 ) ; printf ( " Sum β of β heights β of β all β Nodes β = β % d " , getTotalHeight ( root ) ) ; return 0 ; } |
Path with maximum average value | C / C ++ program to find maximum average cost path ; Maximum number of rows and / or columns ; method returns maximum average of all path of cost matrix ; Initialize first column of total cost ( dp ) array ; Initialize first row of dp array ; Construct rest of the dp array ; divide maximum sum by constant path length : ( 2 N - 1 ) for getting average ; Driver program to test above functions | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int M = 100 ; double maxAverageOfPath ( int cost [ M ] [ M ] , int N ) { int dp [ N + 1 ] [ N + 1 ] ; dp [ 0 ] [ 0 ] = cost [ 0 ] [ 0 ] ; for ( int i = 1 ; i < N ; i ++ ) dp [ i ] [ 0 ] = dp [ i - 1 ] [ 0 ] + cost [ i ] [ 0 ] ; for ( int j = 1 ; j < N ; j ++ ) dp [ 0 ] [ j ] = dp [ 0 ] [ j - 1 ] + cost [ 0 ] [ j ] ; for ( int i = 1 ; i < N ; i ++ ) for ( int j = 1 ; j <= N ; j ++ ) dp [ i ] [ j ] = max ( dp [ i - 1 ] [ j ] , dp [ i ] [ j - 1 ] ) + cost [ i ] [ j ] ; return ( double ) dp [ N - 1 ] [ N - 1 ] / ( 2 * N - 1 ) ; } int main ( ) { int cost [ M ] [ M ] = { { 1 , 2 , 3 } , { 6 , 5 , 4 } , { 7 , 3 , 9 } } ; printf ( " % f " , maxAverageOfPath ( cost , 3 ) ) ; return 0 ; } |
Maximum weight path ending at any element of last row in a matrix | C ++ program to find the path having the maximum weight in matrix ; Function which return the maximum weight path sum ; creat 2D matrix to store the sum of the path ; Initialize first column of total weight array ( dp [ i to N ] [ 0 ] ) ; Calculate rest paht sum of weight matrix ; find the max weight path sum to rech the last row ; return maximum weight path sum ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 1000 ; int maxCost ( int mat [ ] [ MAX ] , int N ) { int dp [ N ] [ N ] ; memset ( dp , 0 , sizeof ( dp ) ) ; dp [ 0 ] [ 0 ] = mat [ 0 ] [ 0 ] ; for ( int i = 1 ; i < N ; i ++ ) dp [ i ] [ 0 ] = mat [ i ] [ 0 ] + dp [ i - 1 ] [ 0 ] ; for ( int i = 1 ; i < N ; i ++ ) for ( int j = 1 ; j < i + 1 && j < N ; j ++ ) dp [ i ] [ j ] = mat [ i ] [ j ] + max ( dp [ i - 1 ] [ j - 1 ] , dp [ i - 1 ] [ j ] ) ; int result = 0 ; for ( int i = 0 ; i < N ; i ++ ) if ( result < dp [ N - 1 ] [ i ] ) result = dp [ N - 1 ] [ i ] ; return result ; } int main ( ) { int mat [ MAX ] [ MAX ] = { { 4 , 1 , 5 , 6 , 1 } , { 2 , 9 , 2 , 11 , 10 } , { 15 , 1 , 3 , 15 , 2 } , { 16 , 92 , 41 , 4 , 3 } , { 8 , 142 , 6 , 4 , 8 } } ; int N = 5 ; cout << " Maximum β Path β Sum β : β " << maxCost ( mat , N ) << endl ; return 0 ; } |
Number of permutation with K inversions | C ++ program to find number of permutation with K inversion using Memoization ; Limit on N and K ; 2D array memo for stopping solving same problem again ; method recursively calculates permutation with K inversion ; base cases ; if already solved then return result directly ; calling recursively all subproblem of permutation size N - 1 ; Call recursively only if total inversion to be made are less than size ; store result into memo ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int M = 100 ; int memo [ M ] [ M ] ; int numberOfPermWithKInversion ( int N , int K ) { if ( N == 0 ) return 0 ; if ( K == 0 ) return 1 ; if ( memo [ N ] [ K ] != 0 ) return memo [ N ] [ K ] ; int sum = 0 ; for ( int i = 0 ; i <= K ; i ++ ) { if ( i <= N - 1 ) sum += numberOfPermWithKInversion ( N - 1 , K - i ) ; } memo [ N ] [ K ] = sum ; return sum ; } int main ( ) { int N = 4 ; int K = 2 ; cout << numberOfPermWithKInversion ( N , K ) ; return 0 ; } |
A Space Optimized DP solution for 0 | C ++ program of a space optimized DP solution for 0 - 1 knapsack problem . ; val [ ] is for storing maximum profit for each weight wt [ ] is for storing weights n number of item W maximum capacity of bag mat [ 2 ] [ W + 1 ] to store final result ; matrix to store final result ; iterate through all items ; one by one traverse each element ; traverse all weights j <= W ; if i is odd that mean till now we have odd number of elements so we store result in 1 th indexed row ; check for each value ; include element ; exclude element ; if i is even that mean till now we have even number of elements so we store result in 0 th indexed row ; Return mat [ 0 ] [ W ] if n is odd , else mat [ 1 ] [ W ] ; Driver program to test the cases | #include <bits/stdc++.h> NEW_LINE using namespace std ; int KnapSack ( int val [ ] , int wt [ ] , int n , int W ) { int mat [ 2 ] [ W + 1 ] ; memset ( mat , 0 , sizeof ( mat ) ) ; int i = 0 ; while ( i < n ) { int j = 0 ; if ( i % 2 != 0 ) { while ( ++ j <= W ) { if ( wt [ i ] <= j ) mat [ 1 ] [ j ] = max ( val [ i ] + mat [ 0 ] [ j - wt [ i ] ] , mat [ 0 ] [ j ] ) ; else mat [ 1 ] [ j ] = mat [ 0 ] [ j ] ; } } else { while ( ++ j <= W ) { if ( wt [ i ] <= j ) mat [ 0 ] [ j ] = max ( val [ i ] + mat [ 1 ] [ j - wt [ i ] ] , mat [ 1 ] [ j ] ) ; else mat [ 0 ] [ j ] = mat [ 1 ] [ j ] ; } } i ++ ; } return ( n % 2 != 0 ) ? mat [ 0 ] [ W ] : mat [ 1 ] [ W ] ; } int main ( ) { int val [ ] = { 7 , 8 , 4 } , wt [ ] = { 3 , 8 , 6 } , W = 10 , n = 3 ; cout << KnapSack ( val , wt , n , W ) << endl ; return 0 ; } |
Maximum profit by buying and selling a share at most k times | C ++ program to find out maximum profit by buying and / selling a share atmost k times given stock price of n days ; Function to find out maximum profit by buying & selling / a share atmost k times given stock price of n days ; table to store results of subproblems profit [ t ] [ i ] stores maximum profit using atmost t transactions up to day i ( including day i ) ; For day 0 , you can 't earn money irrespective of how many times you trade ; profit is 0 if we don 't do any transaction (i.e. k =0) ; fill the table in bottom - up fashion ; Driver Code | #include <climits> NEW_LINE #include <iostream> NEW_LINE using namespace std ; int maxProfit ( int price [ ] , int n , int k ) { int profit [ k + 1 ] [ n + 1 ] ; for ( int i = 0 ; i <= k ; i ++ ) profit [ i ] [ 0 ] = 0 ; for ( int j = 0 ; j <= n ; j ++ ) profit [ 0 ] [ j ] = 0 ; for ( int i = 1 ; i <= k ; i ++ ) { int prevDiff = INT_MIN ; for ( int j = 1 ; j < n ; j ++ ) { prevDiff = max ( prevDiff , profit [ i - 1 ] [ j - 1 ] - price [ j - 1 ] ) ; profit [ i ] [ j ] = max ( profit [ i ] [ j - 1 ] , price [ j ] + prevDiff ) ; } } return profit [ k ] [ n - 1 ] ; } int main ( ) { int k = 3 ; int price [ ] = { 12 , 14 , 17 , 10 , 14 , 13 , 12 , 15 } ; int n = sizeof ( price ) / sizeof ( price [ 0 ] ) ; cout << " Maximum β profit β is : β " << maxProfit ( price , n , k ) ; return 0 ; } |
Check if an array has a majority element | Hashing based C ++ program to find if there is a majority element in input array . ; Returns true if there is a majority element in a [ ] ; Insert all elements in a hash table ; Check if frequency of any element is n / 2 or more . ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isMajority ( int a [ ] , int n ) { unordered_map < int , int > mp ; for ( int i = 0 ; i < n ; i ++ ) mp [ a [ i ] ] ++ ; for ( auto x : mp ) if ( x . second >= n / 2 ) return true ; return false ; } int main ( ) { int a [ ] = { 2 , 3 , 9 , 2 , 2 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; if ( isMajority ( a , n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Count even length binary sequences with same sum of first and second half bits | A Naive Recursive C ++ program to count even length binary sequences such that the sum of first and second half bits is same ; diff is difference between sums first n bits and last n bits respectively ; We can 't cover difference of more than n with 2n bits ; n == 1 , i . e . , 2 bit long sequences ; First bit is 0 & last bit is 1 ; First and last bits are same ; First bit is 1 & last bit is 0 ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countSeq ( int n , int diff ) { if ( abs ( diff ) > n ) return 0 ; if ( n == 1 && diff == 0 ) return 2 ; if ( n == 1 && abs ( diff ) == 1 ) return 1 ; int res = countSeq ( n - 1 , diff + 1 ) + 2 * countSeq ( n - 1 , diff ) + countSeq ( n - 1 , diff - 1 ) ; return res ; } int main ( ) { int n = 2 ; cout << " Count β of β sequences β is β " << countSeq ( 2 , 0 ) ; return 0 ; } |
Count even length binary sequences with same sum of first and second half bits | A memoization based C ++ program to count even length binary sequences such that the sum of first and second half bits is same ; A lookup table to store the results of subproblems ; dif is difference between sums of first n bits and last n bits i . e . , dif = ( Sum of first n bits ) - ( Sum of last n bits ) ; We can 't cover difference of more than n with 2n bits ; n == 1 , i . e . , 2 bit long sequences ; Check if this subproblem is already solved n is added to dif to make sure index becomes positive ; int res = First bit is 0 & last bit is 1 ; First and last bits are same ; First bit is 1 & last bit is 0 ; Store result in lookup table and return the result ; A Wrapper over countSeqUtil ( ) . It mainly initializes lookup table , then calls countSeqUtil ( ) ; Initialize all entries of lookup table as not filled ; call countSeqUtil ( ) ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 1000 NEW_LINE int lookup [ MAX ] [ MAX ] ; int countSeqUtil ( int n , int dif ) { if ( abs ( dif ) > n ) return 0 ; if ( n == 1 && dif == 0 ) return 2 ; if ( n == 1 && abs ( dif ) == 1 ) return 1 ; if ( lookup [ n ] [ n + dif ] != -1 ) return lookup [ n ] [ n + dif ] ; countSeqUtil ( n - 1 , dif + 1 ) + 2 * countSeqUtil ( n - 1 , dif ) + countSeqUtil ( n - 1 , dif - 1 ) ; return lookup [ n ] [ n + dif ] = res ; } int countSeq ( int n ) { memset ( lookup , -1 , sizeof ( lookup ) ) ; return countSeqUtil ( n , 0 ) ; } int main ( ) { int n = 2 ; cout << " Count β of β sequences β is β " << countSeq ( 2 ) ; return 0 ; } |
Two Pointers Technique | Naive solution to find if there is a pair in A [ 0. . N - 1 ] with given sum . ; as equal i and j means same element ; pair exists ; as the array is sorted ; No pair found with given sum . ; Driver code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPairSum ( int A [ ] , int N , int X ) { for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < N ; j ++ ) { if ( i == j ) continue ; if ( A [ i ] + A [ j ] == X ) return true ; if ( A [ i ] + A [ j ] > X ) break ; } } return false ; } int main ( ) { int arr [ ] = { 3 , 5 , 9 , 2 , 8 , 10 , 11 } ; int val = 17 ; int arrSize = * ( & arr + 1 ) - arr ; sort ( arr , arr + arrSize ) ; cout << isPairSum ( arr , arrSize , val ) ; return 0 ; } |
Remove minimum elements from either side such that 2 * min becomes more than max | C ++ implementation of above approach ; A utility function to find minimum of two numbers ; A utility function to find minimum in arr [ l . . h ] ; A utility function to find maximum in arr [ l . . h ] ; Returns the minimum number of removals from either end in arr [ l . . h ] so that 2 * min becomes greater than max . ; If there is 1 or less elements , return 0 For a single element , 2 * min > max ( Assumption : All elements are positive in arr [ ] ) ; 1 ) Find minimum and maximum in arr [ l . . h ] ; If the property is followed , no removals needed ; Otherwise remove a character from left end and recur , then remove a character from right end and recur , take the minimum of two is returned ; Driver program to test above functions | #include <iostream> NEW_LINE using namespace std ; int min ( int a , int b ) { return ( a < b ) ? a : b ; } int min ( int arr [ ] , int l , int h ) { int mn = arr [ l ] ; for ( int i = l + 1 ; i <= h ; i ++ ) if ( mn > arr [ i ] ) mn = arr [ i ] ; return mn ; } int max ( int arr [ ] , int l , int h ) { int mx = arr [ l ] ; for ( int i = l + 1 ; i <= h ; i ++ ) if ( mx < arr [ i ] ) mx = arr [ i ] ; return mx ; } int minRemovals ( int arr [ ] , int l , int h ) { if ( l >= h ) return 0 ; int mn = min ( arr , l , h ) ; int mx = max ( arr , l , h ) ; if ( 2 * mn > mx ) return 0 ; return min ( minRemovals ( arr , l + 1 , h ) , minRemovals ( arr , l , h - 1 ) ) + 1 ; } int main ( ) { int arr [ ] = { 4 , 5 , 100 , 9 , 10 , 11 , 12 , 15 , 200 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << minRemovals ( arr , 0 , n - 1 ) ; return 0 ; } |
Two Pointers Technique | ; Two pointer technique based solution to find if there is a pair in A [ 0. . N - 1 ] with a given sum . ; represents first pointer ; represents second pointer ; If we find a pair ; If sum of elements at current pointers is less , we move towards higher values by doing i ++ ; If sum of elements at current pointers is more , we move towards lower values by doing j -- ; Driver code ; array declaration ; value to search ; size of the array ; Function call | #include <iostream> NEW_LINE using namespace std ; int isPairSum ( int A [ ] , int N , int X ) { int i = 0 ; int j = N - 1 ; while ( i < j ) { if ( A [ i ] + A [ j ] == X ) return 1 ; else if ( A [ i ] + A [ j ] < X ) i ++ ; else j -- ; } return 0 ; } int main ( ) { int arr [ ] = { 3 , 5 , 9 , 2 , 8 , 10 , 11 } ; int val = 17 ; int arrSize = * ( & arr + 1 ) - arr ; cout << ( bool ) isPairSum ( arr , arrSize , val ) ; return 0 ; } |
Sum of heights of all individual nodes in a binary tree | C ++ program to find sum of heights of all nodes in a binary tree ; A binary tree Node has data , pointer to left child and a pointer to right child ; Helper function that allocates a new Node with the given data and NULL left and right pointers . ; Function to sum of heights of individual Nodes Uses Inorder traversal ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left ; struct Node * right ; } ; struct Node * newNode ( int data ) { struct Node * Node = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; Node -> data = data ; Node -> left = NULL ; Node -> right = NULL ; return ( Node ) ; } int getTotalHeightUtil ( struct Node * root , int & sum ) { if ( root == NULL ) return 0 ; int lh = getTotalHeightUtil ( root -> left , sum ) ; int rh = getTotalHeightUtil ( root -> right , sum ) ; int h = max ( lh , rh ) + 1 ; sum = sum + h ; return h ; } int getTotalHeight ( Node * root ) { int sum = 0 ; getTotalHeightUtil ( root , sum ) ; return sum ; } int main ( ) { struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 5 ) ; printf ( " Sum β of β heights β of β all β Nodes β = β % d " , getTotalHeight ( root ) ) ; return 0 ; } |
Inorder Tree Traversal without Recursion | C ++ program to print inorder traversal using stack . ; A binary tree Node has data , pointer to left child and a pointer to right child ; Iterative function for inorder tree traversal ; traverse the tree ; Reach the left most Node of the curr Node ; place pointer to a tree node on the stack before traversing the node 's left subtree ; Current must be NULL at this point ; we have visited the node and its left subtree . Now , it ' s β right β β subtree ' s turn ; Driver program to test above functions ; Constructed binary tree is 1 / \ 2 3 / \ 4 5 | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left ; struct Node * right ; Node ( int data ) { this -> data = data ; left = right = NULL ; } } ; void inOrder ( struct Node * root ) { stack < Node * > s ; Node * curr = root ; while ( curr != NULL || s . empty ( ) == false ) { while ( curr != NULL ) { s . push ( curr ) ; curr = curr -> left ; } curr = s . top ( ) ; s . pop ( ) ; cout << curr -> data << " β " ; curr = curr -> right ; } } int main ( ) { struct Node * root = new Node ( 1 ) ; root -> left = new Node ( 2 ) ; root -> right = new Node ( 3 ) ; root -> left -> left = new Node ( 4 ) ; root -> left -> right = new Node ( 5 ) ; inOrder ( root ) ; return 0 ; } |
Count all possible paths from top left to bottom right of a mXn matrix | A C ++ program to count all possible paths from top left to bottom right ; Returns count of possible paths to reach cell at row number m and column number n from the topmost leftmost cell ( cell at 1 , 1 ) ; Create a 2D table to store results of subproblems ; Count of paths to reach any cell in first column is 1 ; Count of paths to reach any cell in first row is 1 ; Calculate count of paths for other cells in bottom - up manner using the recursive solution ; By uncommenting the last part the code calculates the total possible paths if the diagonal Movements are allowed count [ i ] [ j ] = count [ i - 1 ] [ j ] + count [ i ] [ j - 1 ] ; + count [ i - 1 ] [ j - 1 ] ; ; Driver program to test above functions | #include <iostream> NEW_LINE using namespace std ; int numberOfPaths ( int m , int n ) { int count [ m ] [ n ] ; for ( int i = 0 ; i < m ; i ++ ) count [ i ] [ 0 ] = 1 ; for ( int j = 0 ; j < n ; j ++ ) count [ 0 ] [ j ] = 1 ; for ( int i = 1 ; i < m ; i ++ ) { for ( int j = 1 ; j < n ; j ++ ) } return count [ m - 1 ] [ n - 1 ] ; } int main ( ) { cout << numberOfPaths ( 3 , 3 ) ; return 0 ; } |
Split array into two equal length subsets such that all repetitions of a number lies in a single subset | C ++ program for the above approach ; Function to create the frequency array of the given array arr [ ] ; Hashmap to store the frequencies ; Store freq for each element ; Get the total frequencies ; Store frequencies in subset [ ] array ; Return frequency array ; Function to check is sum N / 2 can be formed using some subset ; dp [ i ] [ j ] store the answer to form sum j using 1 st i elements ; Initialize dp [ ] [ ] with true ; Fill the subset table in the bottom up manner ; If current element is less than j ; Update current state ; Return the result ; Function to check if the given array can be split into required sets ; Store frequencies of arr [ ] ; If size of arr [ ] is odd then print " Yes " ; Check if answer is true or not ; Print the result ; Driver Code ; Given array arr [ ] ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < int > findSubsets ( vector < int > arr , int N ) { map < int , int > M ; for ( int i = 0 ; i < N ; i ++ ) { M [ arr [ i ] ] ++ ; } vector < int > subsets ; int I = 0 ; for ( auto playerEntry = M . begin ( ) ; playerEntry != M . end ( ) ; playerEntry ++ ) { subsets . push_back ( playerEntry -> second ) ; I ++ ; } return subsets ; } bool subsetSum ( vector < int > subsets , int N , int target ) { bool dp [ N + 1 ] [ target + 1 ] ; for ( int i = 0 ; i < N + 1 ; i ++ ) dp [ i ] [ 0 ] = true ; for ( int i = 1 ; i <= N ; i ++ ) { for ( int j = 1 ; j <= target ; j ++ ) { dp [ i ] [ j ] = dp [ i - 1 ] [ j ] ; if ( j >= subsets [ i - 1 ] ) { dp [ i ] [ j ] |= dp [ i - 1 ] [ j - subsets [ i - 1 ] ] ; } } } return dp [ N ] [ target ] ; } void divideInto2Subset ( vector < int > arr , int N ) { vector < int > subsets = findSubsets ( arr , N ) ; if ( ( N ) % 2 == 1 ) { cout << " No " << endl ; return ; } int subsets_size = subsets . size ( ) ; bool isPossible = subsetSum ( subsets , subsets_size , N / 2 ) ; if ( isPossible ) { cout << " Yes " << endl ; } else { cout << " No " << endl ; } } int main ( ) { vector < int > arr { 2 , 1 , 2 , 3 } ; int N = arr . size ( ) ; divideInto2Subset ( arr , N ) ; return 0 ; } |
Maximum Product Cutting | DP | A Naive Recursive method to find maximum product ; Utility function to get the maximum of two and three integers ; The main function that returns maximum product obtainable from a rope of length n ; Base cases ; Make a cut at different places and take the maximum of all ; Return the maximum of all values ; Driver program to test above functions | #include <iostream> NEW_LINE using namespace std ; int max ( int a , int b ) { return ( a > b ) ? a : b ; } int max ( int a , int b , int c ) { return max ( a , max ( b , c ) ) ; } int maxProd ( int n ) { if ( n == 0 n == 1 ) return 0 ; int max_val = 0 ; for ( int i = 1 ; i < n ; i ++ ) max_val = max ( max_val , i * ( n - i ) , maxProd ( n - i ) * i ) ; return max_val ; } int main ( ) { cout << " Maximum β Product β is β " << maxProd ( 10 ) ; return 0 ; } |
Assembly Line Scheduling | DP | A C ++ program to find minimum possible time by the car chassis to complete ; Utility function to find a minimum of two numbers ; time taken to leave first station in line 1 ; time taken to leave first station in line 2 ; Fill tables T1 [ ] and T2 [ ] using the above given recursive relations ; Consider exit times and retutn minimum ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define NUM_LINE 2 NEW_LINE #define NUM_STATION 4 NEW_LINE int min ( int a , int b ) { return a < b ? a : b ; } int carAssembly ( int a [ ] [ NUM_STATION ] , int t [ ] [ NUM_STATION ] , int * e , int * x ) { int T1 [ NUM_STATION ] , T2 [ NUM_STATION ] , i ; T1 [ 0 ] = e [ 0 ] + a [ 0 ] [ 0 ] ; T2 [ 0 ] = e [ 1 ] + a [ 1 ] [ 0 ] ; for ( i = 1 ; i < NUM_STATION ; ++ i ) { T1 [ i ] = min ( T1 [ i - 1 ] + a [ 0 ] [ i ] , T2 [ i - 1 ] + t [ 1 ] [ i ] + a [ 0 ] [ i ] ) ; T2 [ i ] = min ( T2 [ i - 1 ] + a [ 1 ] [ i ] , T1 [ i - 1 ] + t [ 0 ] [ i ] + a [ 1 ] [ i ] ) ; } return min ( T1 [ NUM_STATION - 1 ] + x [ 0 ] , T2 [ NUM_STATION - 1 ] + x [ 1 ] ) ; } int main ( ) { int a [ ] [ NUM_STATION ] = { { 4 , 5 , 3 , 2 } , { 2 , 10 , 1 , 4 } } ; int t [ ] [ NUM_STATION ] = { { 0 , 7 , 4 , 5 } , { 0 , 9 , 2 , 8 } } ; int e [ ] = { 10 , 12 } , x [ ] = { 18 , 7 } ; cout << carAssembly ( a , t , e , x ) ; return 0 ; } |
Longest Common Substring | DP | Dynamic Programming solution to find length of the longest common substring ; Returns length of longest common substring of X [ 0. . m - 1 ] and Y [ 0. . n - 1 ] ; Create a table to store lengths of longest common suffixes of substrings . Note that LCSuff [ i ] [ j ] contains length of longest common suffix of X [ 0. . i - 1 ] and Y [ 0. . j - 1 ] . ; To store length of the longest common substring ; Following steps build LCSuff [ m + 1 ] [ n + 1 ] in bottom up fashion . ; Driver code | #include <iostream> NEW_LINE #include <string.h> NEW_LINE using namespace std ; int LCSubStr ( char * X , char * Y , int m , int n ) { int LCSuff [ m + 1 ] [ n + 1 ] ; int result = 0 ; for ( int i = 0 ; i <= m ; i ++ ) { for ( int j = 0 ; j <= n ; j ++ ) { if ( i == 0 j == 0 ) LCSuff [ i ] [ j ] = 0 ; else if ( X [ i - 1 ] == Y [ j - 1 ] ) { LCSuff [ i ] [ j ] = LCSuff [ i - 1 ] [ j - 1 ] + 1 ; result = max ( result , LCSuff [ i ] [ j ] ) ; } else LCSuff [ i ] [ j ] = 0 ; } } return result ; } int main ( ) { char X [ ] = " OldSite : GeeksforGeeks . org " ; char Y [ ] = " NewSite : GeeksQuiz . com " ; int m = strlen ( X ) ; int n = strlen ( Y ) ; cout << " Length β of β Longest β Common β Substring β is β " << LCSubStr ( X , Y , m , n ) ; return 0 ; } |
Minimum insertions to form a palindrome | DP | A Dynamic Programming based program to find minimum number insertions needed to make a string palindrome ; A DP function to find minimum number of insertions ; Create a table of size n * n . table [ i ] [ j ] will store minimum number of insertions needed to convert str [ i . . j ] to a palindrome . ; Fill the table ; Return minimum number of insertions for str [ 0. . n - 1 ] ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinInsertionsDP ( char str [ ] , int n ) { int table [ n ] [ n ] , l , h , gap ; memset ( table , 0 , sizeof ( table ) ) ; for ( gap = 1 ; gap < n ; ++ gap ) for ( l = 0 , h = gap ; h < n ; ++ l , ++ h ) table [ l ] [ h ] = ( str [ l ] == str [ h ] ) ? table [ l + 1 ] [ h - 1 ] : ( min ( table [ l ] [ h - 1 ] , table [ l + 1 ] [ h ] ) + 1 ) ; return table [ 0 ] [ n - 1 ] ; } int main ( ) { char str [ ] = " geeks " ; cout << findMinInsertionsDP ( str , strlen ( str ) ) ; return 0 ; } |
Maximum Subarray Sum using Divide and Conquer algorithm | A Divide and Conquer based program for maximum subarray sum problem ; A utility function to find maximum of two integers ; A utility function to find maximum of three integers ; Find the maximum possible sum in arr [ ] auch that arr [ m ] is part of it ; Include elements on left of mid . ; Include elements on right of mid ; Return sum of elements on left and right of mid returning only left_sum + right_sum will fail for [ - 2 , 1 ] ; Returns sum of maximum sum subarray in aa [ l . . h ] ; Base Case : Only one element ; Find middle point ; Return maximum of following three possible cases a ) Maximum subarray sum in left half b ) Maximum subarray sum in right half c ) Maximum subarray sum such that the subarray crosses the midpoint ; Driver program to test maxSubArraySum | #include <limits.h> NEW_LINE #include <stdio.h> NEW_LINE int max ( int a , int b ) { return ( a > b ) ? a : b ; } int max ( int a , int b , int c ) { return max ( max ( a , b ) , c ) ; } int maxCrossingSum ( int arr [ ] , int l , int m , int h ) { int sum = 0 ; int left_sum = INT_MIN ; for ( int i = m ; i >= l ; i -- ) { sum = sum + arr [ i ] ; if ( sum > left_sum ) left_sum = sum ; } sum = 0 ; int right_sum = INT_MIN ; for ( int i = m + 1 ; i <= h ; i ++ ) { sum = sum + arr [ i ] ; if ( sum > right_sum ) right_sum = sum ; } return max ( left_sum + right_sum , left_sum , right_sum ) ; } int maxSubArraySum ( int arr [ ] , int l , int h ) { if ( l == h ) return arr [ l ] ; int m = ( l + h ) / 2 ; return max ( maxSubArraySum ( arr , l , m ) , maxSubArraySum ( arr , m + 1 , h ) , maxCrossingSum ( arr , l , m , h ) ) ; } int main ( ) { int arr [ ] = { 2 , 3 , 4 , 5 , 7 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int max_sum = maxSubArraySum ( arr , 0 , n - 1 ) ; printf ( " Maximum β contiguous β sum β is β % d STRNEWLINE " , max_sum ) ; getchar ( ) ; return 0 ; } |
Largest Independent Set Problem | DP | A naive recursive implementation of Largest Independent Set problem ; A utility function to find max of two integers ; A binary tree node has data , pointer to left child and a pointer to right child ; The function returns size of the largest independent set in a given binary tree ; Calculate size excluding the current node ; Calculate size including the current node ; Return the maximum of two sizes ; A utility function to create a node ; Driver Code ; Let us construct the tree given in the above diagram | #include <bits/stdc++.h> NEW_LINE using namespace std ; int max ( int x , int y ) { return ( x > y ) ? x : y ; } class node { public : int data ; node * left , * right ; } ; int LISS ( node * root ) { if ( root == NULL ) return 0 ; int size_excl = LISS ( root -> left ) + LISS ( root -> right ) ; int size_incl = 1 ; if ( root -> left ) size_incl += LISS ( root -> left -> left ) + LISS ( root -> left -> right ) ; if ( root -> right ) size_incl += LISS ( root -> right -> left ) + LISS ( root -> right -> right ) ; return max ( size_incl , size_excl ) ; } node * newNode ( int data ) { node * temp = new node ( ) ; temp -> data = data ; temp -> left = temp -> right = NULL ; return temp ; } int main ( ) { node * root = newNode ( 20 ) ; root -> left = newNode ( 8 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 12 ) ; root -> left -> right -> left = newNode ( 10 ) ; root -> left -> right -> right = newNode ( 14 ) ; root -> right = newNode ( 22 ) ; root -> right -> right = newNode ( 25 ) ; cout << " Size β of β the β Largest " << " β Independent β Set β is β " << LISS ( root ) ; return 0 ; } |
Program to find amount of water in a given glass | Program to find the amount of water in j - th glass of i - th row ; Returns the amount of water in jth glass of ith row ; A row number i has maximum i columns . So input column number must be less than i ; There will be i * ( i + 1 ) / 2 glasses till ith row ( including ith row ) ; Initialize all glasses as empty ; Put all water in first glass ; Now let the water flow to the downward glasses till the row number is less than or / equal to i ( given row ) correction : X can be zero for side glasses as they have lower rate to fill ; Fill glasses in a given row . Number of columns in a row is equal to row number ; Get the water from current glass ; Keep the amount less than or equal to capacity in current glass ; Get the remaining amount ; Distribute the remaining amount to the down two glasses ; The index of jth glass in ith row will be i * ( i - 1 ) / 2 + j - 1 ; Driver program to test above function ; Total amount of water | #include <stdio.h> NEW_LINE #include <stdlib.h> NEW_LINE #include <string.h> NEW_LINE float findWater ( int i , int j , float X ) { if ( j > i ) { printf ( " Incorrect β Inputn " ) ; exit ( 0 ) ; } float glass [ i * ( i + 1 ) / 2 ] ; memset ( glass , 0 , sizeof ( glass ) ) ; int index = 0 ; glass [ index ] = X ; for ( int row = 1 ; row <= i ; ++ row ) { for ( int col = 1 ; col <= row ; ++ col , ++ index ) { X = glass [ index ] ; glass [ index ] = ( X >= 1.0f ) ? 1.0f : X ; X = ( X >= 1.0f ) ? ( X - 1 ) : 0.0f ; glass [ index + row ] += X / 2 ; glass [ index + row + 1 ] += X / 2 ; } } return glass [ i * ( i - 1 ) / 2 + j - 1 ] ; } int main ( ) { int i = 2 , j = 2 ; float X = 2.0 ; printf ( " Amount β of β water β in β jth β glass β of β ith β row β is : β % f " , findWater ( i , j , X ) ) ; return 0 ; } |
Maximum Length Chain of Pairs | DP | CPP program for above approach ; This function assumes that arr [ ] is sorted in increasing order according the first ( or smaller ) values in Pairs . ; Initialize MCL ( max chain length ) values for all indexes ; Compute optimized chain length values in bottom up manner ; Pick maximum of all MCL values ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; class Pair { public : int a ; int b ; } ; int maxChainLength ( Pair arr [ ] , int n ) { int i , j , max = 0 ; int * mcl = new int [ sizeof ( int ) * n ] ; for ( i = 0 ; i < n ; i ++ ) mcl [ i ] = 1 ; for ( i = 1 ; i < n ; i ++ ) for ( j = 0 ; j < i ; j ++ ) if ( arr [ i ] . a > arr [ j ] . b && mcl [ i ] < mcl [ j ] + 1 ) mcl [ i ] = mcl [ j ] + 1 ; for ( i = 0 ; i < n ; i ++ ) if ( max < mcl [ i ] ) max = mcl [ i ] ; return max ; } int main ( ) { Pair arr [ ] = { { 5 , 24 } , { 15 , 25 } , { 27 , 40 } , { 50 , 60 } } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Length β of β maximum β size β chain β is β " << maxChainLength ( arr , n ) ; return 0 ; } |
Palindrome Partitioning | DP | Dynamic Programming Solution for Palindrome Partitioning Problem ; Returns the minimum number of cuts needed to partition a string such that every part is a palindrome ; Get the length of the string ; Create two arrays to build the solution in bottom up manner C [ i ] [ j ] = Minimum number of cuts needed for palindrome partitioning of substring str [ i . . j ] P [ i ] [ j ] = true if substring str [ i . . j ] is palindrome , else false Note that C [ i ] [ j ] is 0 if P [ i ] [ j ] is true ; Every substring of length 1 is a palindrome ; L is substring length . Build the solution in bottom up manner by considering all substrings of length starting from 2 to n . The loop structure is same as Matrix Chain Multiplication problem ( See https : www . geeksforgeeks . org / matrix - chain - multiplication - dp - 8 / ) ; For substring of length L , set different possible starting indexes ; Set ending index ; If L is 2 , then we just need to compare two characters . Else need to check two corner characters and value of P [ i + 1 ] [ j - 1 ] ; IF str [ i . . j ] is palindrome , then C [ i ] [ j ] is 0 ; Make a cut at every possible location starting from i to j , and get the minimum cost cut . ; Return the min cut value for complete string . i . e . , str [ 0. . n - 1 ] ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minPalPartion ( string str ) { int n = str . length ( ) ; int C [ n ] [ n ] ; bool P [ n ] [ n ] ; for ( int i = 0 ; i < n ; i ++ ) { P [ i ] [ i ] = true ; C [ i ] [ i ] = 0 ; } for ( int L = 2 ; L <= n ; L ++ ) { for ( int i = 0 ; i < n - L + 1 ; i ++ ) { int j = i + L - 1 ; if ( L == 2 ) P [ i ] [ j ] = ( str [ i ] == str [ j ] ) ; else P [ i ] [ j ] = ( str [ i ] == str [ j ] ) && P [ i + 1 ] [ j - 1 ] ; if ( P [ i ] [ j ] == true ) C [ i ] [ j ] = 0 ; else { C [ i ] [ j ] = INT_MAX ; for ( int k = i ; k <= j - 1 ; k ++ ) C [ i ] [ j ] = min ( C [ i ] [ j ] , C [ i ] [ k ] + C [ k + 1 ] [ j ] + 1 ) ; } } } return C [ 0 ] [ n - 1 ] ; } int main ( ) { string str = " ababbbabbababa " ; cout << " Min β cuts β needed β for β Palindrome " " β Partitioning β is β " << minPalPartion ( str ) ; return 0 ; } |
Count subtrees that sum up to a given value x only using single recursive function | C ++ implementation to count subtress that sum up to a given value x ; structure of a node of binary tree ; function to get a new node ; allocate space ; put in the data ; function to count subtress that sum up to a given value x ; if tree is empty ; sum of nodes in the left subtree ; sum of nodes in the right subtree ; sum of nodes in the subtree rooted with ' root - > data ' ; if true ; return subtree 's nodes sum ; utility function to count subtress that sum up to a given value x ; if tree is empty ; sum of nodes in the left subtree ; sum of nodes in the right subtree ; if tree 's nodes sum == x ; required count of subtrees ; Driver program to test above ; binary tree creation 5 / \ - 10 3 / \ / \ 9 8 - 4 7 | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; Node * left , * right ; } ; Node * getNode ( int data ) { Node * newNode = ( Node * ) malloc ( sizeof ( Node ) ) ; newNode -> data = data ; newNode -> left = newNode -> right = NULL ; return newNode ; } int countSubtreesWithSumX ( Node * root , int & count , int x ) { if ( ! root ) return 0 ; int ls = countSubtreesWithSumX ( root -> left , count , x ) ; int rs = countSubtreesWithSumX ( root -> right , count , x ) ; int sum = ls + rs + root -> data ; if ( sum == x ) count ++ ; return sum ; } int countSubtreesWithSumXUtil ( Node * root , int x ) { if ( ! root ) return 0 ; int count = 0 ; int ls = countSubtreesWithSumX ( root -> left , count , x ) ; int rs = countSubtreesWithSumX ( root -> right , count , x ) ; if ( ( ls + rs + root -> data ) == x ) count ++ ; return count ; } int main ( ) { Node * root = getNode ( 5 ) ; root -> left = getNode ( -10 ) ; root -> right = getNode ( 3 ) ; root -> left -> left = getNode ( 9 ) ; root -> left -> right = getNode ( 8 ) ; root -> right -> left = getNode ( -4 ) ; root -> right -> right = getNode ( 7 ) ; int x = 7 ; cout << " Count β = β " << countSubtreesWithSumXUtil ( root , x ) ; return 0 ; } |
Minimum replacements required to make given Matrix palindromic | C ++ program for the above approach ; Function to count minimum changes to make the matrix palindromic ; Rows in the matrix ; Columns in the matrix ; Traverse the given matrix ; Store the frequency of the four cells ; Iterate over the map ; Min changes to do to make all ; Four elements equal ; Make the middle row palindromic ; Make the middle column palindromic ; Print minimum changes ; Driver Code ; Given matrix ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minchanges ( vector < vector < int > > mat ) { int N = mat . size ( ) ; int M = mat [ 0 ] . size ( ) ; int i , j , ans = 0 , x ; map < int , int > mp ; for ( i = 0 ; i < N / 2 ; i ++ ) { for ( j = 0 ; j < M / 2 ; j ++ ) { mp [ mat [ i ] [ M - 1 - j ] ] ++ ; mp [ mat [ i ] [ j ] ] ++ ; mp [ mat [ N - 1 - i ] [ M - 1 - j ] ] ++ ; mp [ mat [ N - 1 - i ] [ j ] ] ++ ; x = 0 ; for ( auto it = mp . begin ( ) ; it != mp . end ( ) ; it ++ ) { x = max ( x , it -> second ) ; } ans = ans + 4 - x ; mp . clear ( ) ; } } if ( N % 2 == 1 ) { for ( i = 0 ; i < M / 2 ; i ++ ) { if ( mat [ N / 2 ] [ i ] != mat [ N / 2 ] [ M - 1 - i ] ) ans ++ ; } } if ( M % 2 == 1 ) { for ( i = 0 ; i < N / 2 ; i ++ ) { if ( mat [ i ] [ M / 2 ] != mat [ N - 1 - i ] [ M / 2 ] ) ans ++ ; } } cout << ans ; } int main ( ) { vector < vector < int > > mat { { 1 , 2 , 3 } , { 4 , 5 , 3 } , { 1 , 2 , 1 } } ; minchanges ( mat ) ; } |
Check if a number starts with another number or not | C ++ program for the above approach ; Function to check if B is a prefix of A or not ; Convert numbers into strings ; Check if s2 is a prefix of s1 or not using starts_with ( ) function ; If result is true , print " Yes " ; Driver Code ; Given numbers ; Function Call | #include <bits/stdc++.h> NEW_LINE #include <boost/algorithm/string.hpp> NEW_LINE using namespace std ; void checkprefix ( int A , int B ) { string s1 = to_string ( A ) ; string s2 = to_string ( B ) ; bool result ; result = boost :: algorithm :: starts_with ( s1 , s2 ) ; if ( result ) { cout << " Yes " ; } else { cout << " No " ; } } int main ( ) { int A = 12345 , B = 12 ; checkprefix ( A , B ) ; return 0 ; } |
Check three or more consecutive identical characters or numbers | C ++ program to check three or more consecutive identical characters or numbers using Regular Expression ; Function to check three or more consecutive identical characters or numbers . ; Regex to check valid three or more consecutive identical characters or numbers . ; If the three or more consecutive identical characters or numbers is empty return false ; Return true if the three or more consecutive identical characters or numbers matched the ReGex ; Driver Code ; Test Case 1 : ; Test Case 2 : ; Test Case 3 : ; Test Case 4 : ; Test Case 5 : | #include <iostream> NEW_LINE #include <regex> NEW_LINE using namespace std ; bool isIdentical ( string str ) { const regex pattern ( " \\ b ( [ a - zA - Z0-9 ] ) \\ 1 \\ 1 + \\ b " ) ; if ( str . empty ( ) ) { return false ; } if ( regex_match ( str , pattern ) ) { return true ; } else { return false ; } } int main ( ) { string str1 = " aaa " ; cout << isIdentical ( str1 ) << endl ; string str2 = "11111" ; cout << isIdentical ( str2 ) << endl ; string str3 = " aaab " ; cout << isIdentical ( str3 ) << endl ; string str4 = " abc " ; cout << isIdentical ( str4 ) << endl ; string str5 = " aa " ; cout << isIdentical ( str5 ) << endl ; return 0 ; } |
How to validate MAC address using Regular Expression | C ++ program to validate the MAC address using Regular Expression ; Function to validate the MAC address ; Regex to check valid MAC address ; If the MAC address is empty return false ; Return true if the MAC address matched the ReGex ; Driver Code ; Test Case 1 : ; Test Case 2 : ; Test Case 3 : ; Test Case 4 : ; Test Case 5 : | #include <iostream> NEW_LINE #include <regex> NEW_LINE using namespace std ; bool isValidMACAddress ( string str ) { const regex pattern ( " ^ ( [0-9A - Fa - f ] { 2 } [ : - ] ) { 5 } " " ( [0-9A - Fa - f ] { 2 } ) | ( [0-9a - " " fA - F ] { 4 } \\ . [0-9a - fA - F ] " " { 4 } \\ . [0-9a - fA - F ] { 4 } ) $ " ) ; if ( str . empty ( ) ) { return false ; } if ( regex_match ( str , pattern ) ) { return true ; } else { return false ; } } int main ( ) { string str1 = "01-23-45-67-89 - AB " ; cout << isValidMACAddress ( str1 ) << endl ; string str2 = "01:23:45:67:89 : AB " ; cout << isValidMACAddress ( str2 ) << endl ; string str3 = "0123.4567.89AB " ; cout << isValidMACAddress ( str3 ) << endl ; string str4 = "01-23-45-67-89 - AH " ; cout << isValidMACAddress ( str4 ) << endl ; string str5 = "01-23-45-67 - AH " ; cout << isValidMACAddress ( str5 ) << endl ; return 0 ; } |
How to validate GUID ( Globally Unique Identifier ) using Regular Expression | C ++ program to validate the GUID ( Globally Unique Identifier ) using Regular Expression ; Function to validate the GUID ( Globally Unique Identifier ) . ; Regex to check valid GUID ( Globally Unique Identifier ) . ; If the GUID ( Globally Unique Identifier ) is empty return false ; Return true if the GUID ( Globally Unique Identifier ) matched the ReGex ; Driver Code ; Test Case 1 : ; Test Case 2 : ; Test Case 3 : ; Test Case 4 : | #include <iostream> NEW_LINE #include <regex> NEW_LINE using namespace std ; bool isValidGUID ( string str ) { const regex pattern ( " ^ [ { ] ? [ 0-9a - fA - F ] { 8 } - ( [ 0-9a - fA - F ] { 4 } - ) { 3 } [ 0-9a - fA - F ] { 12 } [ } ] ? $ " ) ; if ( str . empty ( ) ) { return false ; } if ( regex_match ( str , pattern ) ) { return true ; } else { return false ; } } int main ( ) { string str1 = "123e4567 - e89b - 12d3 - a456-9AC7CBDCEE52" ; cout << isValidGUID ( str1 ) << endl ; string str2 = " { 123e4567 - e89b - 12d3 - a456-9AC7CBDCEE52 } " ; cout << isValidGUID ( str2 ) << endl ; string str3 = "123e4567 - h89b - 12d3 - a456-9AC7CBDCEE52" ; cout << isValidGUID ( str3 ) << endl ; string str4 = "123e4567 - h89b - 12d3 - a456" ; cout << isValidGUID ( str4 ) << endl ; return 0 ; } |
How to validate Indian driving license number using Regular Expression | C ++ program to validate the Indian driving license number using Regular Expression ; Function to validate the Indian driving license number ; Regex to check valid Indian driving license number ; If the Indian driving license number is empty return false ; Return true if the Indian driving license number matched the ReGex ; Driver Code ; Test Case 1 : ; Test Case 2 : ; Test Case 3 : ; Test Case 4 : ; Test Case 5 : | #include <iostream> NEW_LINE #include <regex> NEW_LINE using namespace std ; bool isValidLicenseNo ( string str ) { const regex pattern ( " ^ ( ( [ A - Z ] { 2 } [ 0-9 ] { 2 } ) ( β " " ) | ( [ A - Z ] { 2 } - [0-9 ] { 2 } ) ) " " ( (19 β 20 ) [ 0 - " "9 ] [ 0-9 ] ) [0-9 ] { 7 } $ " ) ; if ( str . empty ( ) ) { return false ; } if ( regex_match ( str , pattern ) ) { return true ; } else { return false ; } } int main ( ) { string str1 = " HR - 0619850034761" ; cout << isValidLicenseNo ( str1 ) << endl ; string str2 = " UP14 β 20160034761" ; cout << isValidLicenseNo ( str2 ) << endl ; string str3 = "12HR - 37200602347" ; cout << isValidLicenseNo ( str3 ) << endl ; string str4 = " MH27 β 30123476102" ; cout << isValidLicenseNo ( str4 ) << endl ; string str5 = " GJ - 2420180" ; cout << isValidLicenseNo ( str5 ) << endl ; return 0 ; } |
Subsets and Splits