text
stringlengths
17
4.49k
code
stringlengths
49
5.46k
Minimum rooms for m events of n batches with given schedule | CPP program to find minimum number of rooms required ; Returns minimum number of rooms required to perform classes of n groups in m slots with given schedule . ; Store count of classes happening in every slot . ; initialize all values to zero ; Number of rooms required is equal to maximum classes happening in a particular slot . ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinRooms ( string slots [ ] , int n , int m ) { int counts [ m ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) for ( int j = 0 ; j < m ; j ++ ) if ( slots [ i ] [ j ] == '1' ) counts [ j ] ++ ; return * max_element ( counts , counts + m ) ; } int main ( ) { int n = 3 , m = 7 ; string slots [ n ] = { "0101011" , "0011001" , "0110111" } ; cout << findMinRooms ( slots , n , m ) ; return 0 ; }
Largest Sum Contiguous Subarray | ; Driver program to test maxSubArraySum
#include <iostream> NEW_LINE using namespace std ; int maxSubArraySum ( int a [ ] , int size ) { int max_so_far = a [ 0 ] ; int curr_max = a [ 0 ] ; for ( int i = 1 ; i < size ; i ++ ) { curr_max = max ( a [ i ] , curr_max + a [ i ] ) ; max_so_far = max ( max_so_far , curr_max ) ; } return max_so_far ; } int main ( ) { int a [ ] = { -2 , -3 , 4 , -1 , -2 , 1 , 5 , -3 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int max_sum = maxSubArraySum ( a , n ) ; cout << " Maximum ▁ contiguous ▁ sum ▁ is ▁ " << max_sum ; return 0 ; }
Largest Sum Contiguous Subarray | C ++ program to print largest contiguous array sum ; Driver program to test maxSubArraySum
#include <iostream> NEW_LINE #include <climits> NEW_LINE using namespace std ; int maxSubArraySum ( int a [ ] , int size ) { int max_so_far = INT_MIN , max_ending_here = 0 , start = 0 , end = 0 , s = 0 ; for ( int i = 0 ; i < size ; i ++ ) { max_ending_here += a [ i ] ; if ( max_so_far < max_ending_here ) { max_so_far = max_ending_here ; start = s ; end = i ; } if ( max_ending_here < 0 ) { max_ending_here = 0 ; s = i + 1 ; } } cout << " Maximum ▁ contiguous ▁ sum ▁ is ▁ " << max_so_far << endl ; cout << " Starting ▁ index ▁ " << start << endl << " Ending ▁ index ▁ " << end << endl ; } int main ( ) { int a [ ] = { -2 , -3 , 4 , -1 , -2 , 1 , 5 , -3 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int max_sum = maxSubArraySum ( a , n ) ; return 0 ; }
Find minimum number of currency notes and values that sum to given amount | C ++ program to accept an amount and count number of notes ; function to count and print currency notes ; count notes using Greedy approach ; Print notes ; Driver function
#include <bits/stdc++.h> NEW_LINE using namespace std ; void countCurrency ( int amount ) { int notes [ 9 ] = { 2000 , 500 , 200 , 100 , 50 , 20 , 10 , 5 , 1 } ; int noteCounter [ 9 ] = { 0 } ; for ( int i = 0 ; i < 9 ; i ++ ) { if ( amount >= notes [ i ] ) { noteCounter [ i ] = amount / notes [ i ] ; amount = amount - noteCounter [ i ] * notes [ i ] ; } } cout << " Currency ▁ Count ▁ - > " << endl ; for ( int i = 0 ; i < 9 ; i ++ ) { if ( noteCounter [ i ] != 0 ) { cout << notes [ i ] << " ▁ : ▁ " << noteCounter [ i ] << endl ; } } } int main ( ) { int amount = 868 ; countCurrency ( amount ) ; return 0 ; }
Minimum sum by choosing minimum of pairs from array | CPP program to minimize the cost of array minimization ; Returns minimum possible sum in array B [ ] ; driver function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minSum ( int A [ ] , int n ) { int min_val = * min_element ( A , A + n ) ; return ( min_val * ( n - 1 ) ) ; } int main ( ) { int A [ ] = { 3 , 6 , 2 , 8 , 7 , 5 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; cout << minSum ( A , n ) ; return 0 ; }
Program for Next Fit algorithm in Memory Management | C / C ++ program for next fit memory management algorithm ; Function to allocate memory to blocks as per Next fit algorithm ; Stores block id of the block allocated to a process ; Initially no block is assigned to any process ; pick each process and find suitable blocks according to its size ad assign to it ; Do not start from beginning ; allocate block j to p [ i ] process ; Reduce available memory in this block . ; mod m will help in traversing the blocks from starting block after we reach the end . ; Driver program
#include <bits/stdc++.h> NEW_LINE using namespace std ; void NextFit ( int blockSize [ ] , int m , int processSize [ ] , int n ) { int allocation [ n ] , j = 0 ; memset ( allocation , -1 , sizeof ( allocation ) ) ; for ( int i = 0 ; i < n ; i ++ ) { while ( j < m ) { if ( blockSize [ j ] >= processSize [ i ] ) { allocation [ i ] = j ; blockSize [ j ] -= processSize [ i ] ; break ; } j = ( j + 1 ) % m ; } } cout << " Process No . Process Size Block no . " ; for ( int i = 0 ; i < n ; i ++ ) { cout << " ▁ " << i + 1 << " TABSYMBOL TABSYMBOL " << processSize [ i ] << " TABSYMBOL TABSYMBOL " ; if ( allocation [ i ] != -1 ) cout << allocation [ i ] + 1 ; else cout << " Not ▁ Allocated " ; cout << endl ; } } int main ( ) { int blockSize [ ] = { 5 , 10 , 20 } ; int processSize [ ] = { 10 , 20 , 5 } ; int m = sizeof ( blockSize ) / sizeof ( blockSize [ 0 ] ) ; int n = sizeof ( processSize ) / sizeof ( processSize [ 0 ] ) ; NextFit ( blockSize , m , processSize , n ) ; return 0 ; }
Maximum profit by buying and selling a share at most twice | ; adding array ; 80 / 30 / / \ 25 / 15 / / \ / 2 10 / \ / 8 ; traversing through array from ( i + 1 ) th position
#include <iostream> NEW_LINE using namespace std ; int main ( ) { int price [ ] = { 2 , 30 , 15 , 10 , 8 , 25 , 80 } ; int n = 7 ; int profit = 0 ; for ( int i = 1 ; i < n ; i ++ ) { int sub = price [ i ] - price [ i - 1 ] ; if ( sub > 0 ) profit += sub ; } cout << " Maximum ▁ Profit = " << profit ; return 0 ; }
Find if there is a pair in root to a leaf path with sum equals to root 's data | C ++ program to find if there is a pair in any root to leaf path with sum equals to root 's key. ; A binary tree node has data , pointer to left child and a pointer to right child ; utility that allocates a new node with the given data and NULL left and right pointers . ; Function to print root to leaf path which satisfies the condition ; Base condition ; Check if current node makes a pair with any of the existing elements in set . ; Insert current node in set ; If result returned by either left or right child is true , return true . ; Remove current node from hash table ; A wrapper over printPathUtil ( ) ; create an empty hash table ; Recursively check in left and right subtrees . ; Driver program to run the case
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left , * right ; } ; struct Node * newnode ( int data ) { struct Node * node = new Node ; node -> data = data ; node -> left = node -> right = NULL ; return ( node ) ; } bool printPathUtil ( Node * node , unordered_set < int > & s , int root_data ) { if ( node == NULL ) return false ; int rem = root_data - node -> data ; if ( s . find ( rem ) != s . end ( ) ) return true ; s . insert ( node -> data ) ; bool res = printPathUtil ( node -> left , s , root_data ) || printPathUtil ( node -> right , s , root_data ) ; s . erase ( node -> data ) ; return res ; } bool isPathSum ( Node * root ) { unordered_set < int > s ; return printPathUtil ( root -> left , s , root -> data ) || printPathUtil ( root -> right , s , root -> data ) ; } int main ( ) { struct Node * root = newnode ( 8 ) ; root -> left = newnode ( 5 ) ; root -> right = newnode ( 4 ) ; root -> left -> left = newnode ( 9 ) ; root -> left -> right = newnode ( 7 ) ; root -> left -> right -> left = newnode ( 1 ) ; root -> left -> right -> right = newnode ( 12 ) ; root -> left -> right -> right -> right = newnode ( 2 ) ; root -> right -> right = newnode ( 11 ) ; root -> right -> right -> left = newnode ( 3 ) ; isPathSum ( root ) ? cout << " Yes " : cout << " No " ; return 0 ; }
Find the subarray with least average | A Simple C ++ program to find minimum average subarray ; Prints beginning and ending indexes of subarray of size k with minimum average ; k must be smaller than or equal to n ; Initialize beginning index of result ; Compute sum of first subarray of size k ; Initialize minimum sum as current sum ; Traverse from ( k + 1 ) ' th ▁ element ▁ to ▁ n ' th element ; Add current item and remove first item of previous subarray ; Update result if needed ; Driver program ; Subarray size
#include <bits/stdc++.h> NEW_LINE using namespace std ; void findMinAvgSubarray ( int arr [ ] , int n , int k ) { if ( n < k ) return ; int res_index = 0 ; int curr_sum = 0 ; for ( int i = 0 ; i < k ; i ++ ) curr_sum += arr [ i ] ; int min_sum = curr_sum ; for ( int i = k ; i < n ; i ++ ) { curr_sum += arr [ i ] - arr [ i - k ] ; if ( curr_sum < min_sum ) { min_sum = curr_sum ; res_index = ( i - k + 1 ) ; } } cout << " Subarray ▁ between ▁ [ " << res_index << " , ▁ " << res_index + k - 1 << " ] ▁ has ▁ minimum ▁ average " ; } int main ( ) { int arr [ ] = { 3 , 7 , 90 , 20 , 10 , 50 , 40 } ; int k = 3 ; int n = sizeof arr / sizeof arr [ 0 ] ; findMinAvgSubarray ( arr , n , k ) ; return 0 ; }
Find element using minimum segments in Seven Segment Display | C ++ program to find minimum number of segments required ; Precomputed values of segment used by digit 0 to 9. ; Return the number of segments used by x . ; Finding sum of the segment used by each digit of a number . ; Initialising the minimum segment and minimum number index . ; Finding and comparing segment used by each number arr [ i ] . ; If arr [ i ] used less segment then update minimum segment and minimum number . ; Driven Program
#include <bits/stdc++.h> NEW_LINE using namespace std ; const int seg [ 10 ] = { 6 , 2 , 5 , 5 , 4 , 5 , 6 , 3 , 7 , 6 } ; int computeSegment ( int x ) { if ( x == 0 ) return seg [ 0 ] ; int count = 0 ; while ( x ) { count += seg [ x % 10 ] ; x /= 10 ; } return count ; } int elementMinSegment ( int arr [ ] , int n ) { int minseg = computeSegment ( arr [ 0 ] ) ; int minindex = 0 ; for ( int i = 1 ; i < n ; i ++ ) { int temp = computeSegment ( arr [ i ] ) ; if ( temp < minseg ) { minseg = temp ; minindex = i ; } } return arr [ minindex ] ; } int main ( ) { int arr [ ] = { 489 , 206 , 745 , 123 , 756 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << elementMinSegment ( arr , n ) << endl ; return 0 ; }
Find the Largest number with given number of digits and sum of digits | C ++ program to find the largest number that can be formed from given sum of digits and number of digits . ; Prints the smalles possible number with digit sum ' s ' and ' m ' number of digits . ; If sum of digits is 0 , then a number is possible only if number of digits is 1. ; Sum greater than the maximum possible sum . ; Create an array to store digits of result ; Fill from most significant digit to least significant digit . ; Fill 9 first to make the number largest ; If remaining sum becomes less than 9 , then fill the remaining sum ; Driver code
#include <iostream> NEW_LINE using namespace std ; void findLargest ( int m , int s ) { if ( s == 0 ) { ( m == 1 ) ? cout << " Largest ▁ number ▁ is ▁ " << 0 : cout << " Not ▁ possible " ; return ; } if ( s > 9 * m ) { cout << " Not ▁ possible " ; return ; } int res [ m ] ; for ( int i = 0 ; i < m ; i ++ ) { if ( s >= 9 ) { res [ i ] = 9 ; s -= 9 ; } else { res [ i ] = s ; s = 0 ; } } cout << " Largest ▁ number ▁ is ▁ " ; for ( int i = 0 ; i < m ; i ++ ) cout << res [ i ] ; } int main ( ) { int s = 9 , m = 2 ; findLargest ( m , s ) ; return 0 ; }
Shortest Superstring Problem | C ++ program to find shortest superstring using Greedy Approximate Algorithm ; Utility function to calculate minimum of two numbers ; Function to calculate maximum overlap in two given strings ; Max will store maximum overlap i . e maximum length of the matching prefix and suffix ; Check suffix of str1 matches with prefix of str2 ; Compare last i characters in str1 with first i characters in str2 ; Update max and str ; Check prefix of str1 matches with suffix of str2 ; compare first i characters in str1 with last i characters in str2 ; Update max and str ; Function to calculate smallest string that contains each string in the given set as substring . ; Run len - 1 times to consider every pair ; To store maximum overlap ; To store array index of strings ; to store resultant string after maximum overlap ; res will store maximum length of the matching prefix and suffix str is passed by reference and will store the resultant string after maximum overlap of arr [ i ] and arr [ j ] , if any . ; check for maximum overlap ; Ignore last element in next cycle ; If no overlap , append arr [ len ] to arr [ 0 ] ; Copy resultant string to index l ; Copy string at last index to index r ; Driver program
#include <bits/stdc++.h> NEW_LINE using namespace std ; int min ( int a , int b ) { return ( a < b ) ? a : b ; } int findOverlappingPair ( string str1 , string str2 , string & str ) { int max = INT_MIN ; int len1 = str1 . length ( ) ; int len2 = str2 . length ( ) ; for ( int i = 1 ; i <= min ( len1 , len2 ) ; i ++ ) { if ( str1 . compare ( len1 - i , i , str2 , 0 , i ) == 0 ) { if ( max < i ) { max = i ; str = str1 + str2 . substr ( i ) ; } } } for ( int i = 1 ; i <= min ( len1 , len2 ) ; i ++ ) { if ( str1 . compare ( 0 , i , str2 , len2 - i , i ) == 0 ) { if ( max < i ) { max = i ; str = str2 + str1 . substr ( i ) ; } } } return max ; } string findShortestSuperstring ( string arr [ ] , int len ) { while ( len != 1 ) { int max = INT_MIN ; int l , r ; string resStr ; for ( int i = 0 ; i < len ; i ++ ) { for ( int j = i + 1 ; j < len ; j ++ ) { string str ; int res = findOverlappingPair ( arr [ i ] , arr [ j ] , str ) ; if ( max < res ) { max = res ; resStr . assign ( str ) ; l = i , r = j ; } } } len -- ; if ( max == INT_MIN ) arr [ 0 ] += arr [ len ] ; else { arr [ l ] = resStr ; arr [ r ] = arr [ len ] ; } } return arr [ 0 ] ; } int main ( ) { string arr [ ] = { " catgc " , " ctaagt " , " gcta " , " ttca " , " atgcatc " } ; int len = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " The ▁ Shortest ▁ Superstring ▁ is ▁ " << findShortestSuperstring ( arr , len ) ; return 0 ; }
Minimum number of jumps to reach end | C ++ program to find Minimum number of jumps to reach end ; Function to return the minimum number of jumps to reach arr [ h ] from arr [ l ] ; Base case : when source and destination are same ; Traverse through all the points reachable from arr [ l ] Recursively , get the minimum number of jumps needed to reach arr [ h ] from these reachable points ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minJumps ( int arr [ ] , int n ) { if ( n == 1 ) return 0 ; int res = INT_MAX ; for ( int i = n - 2 ; i >= 0 ; i -- ) { if ( i + arr [ i ] >= n - 1 ) { int sub_res = minJumps ( arr , i + 1 ) ; if ( sub_res != INT_MAX ) res = min ( res , sub_res + 1 ) ; } } return res ; } int main ( ) { int arr [ ] = { 1 , 3 , 6 , 3 , 2 , 3 , 6 , 8 , 9 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Minimum ▁ number ▁ of ▁ jumps ▁ to " ; cout << " ▁ reach ▁ the ▁ end ▁ is ▁ " << minJumps ( arr , n ) ; return 0 ; }
Camel and Banana Puzzle | DP | C ++ program of the above approach ; Stores the overlapping state ; Recursive function to find the maximum number of bananas that can be transferred to A distance using memoization ; Base Case where count of bananas is less that the given distance ; Base Case where count of bananas is less that camel 's capacity ; Base Case where distance = 0 ; If the current state is already calculated ; Stores the maximum count of bananas ; Stores the number of trips to transfer B bananas using a camel of capacity C ; Loop to iterate over all the breakpoints in range [ 1 , A ] ; Recursive call over the remaining path ; Update the maxCount ; Memoize the current value ; Return answer ; Function to find the maximum number of bananas that can be transferred ; Initialize dp array with - 1 ; Function Call ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 1001 ] [ 3001 ] ; int recBananaCnt ( int A , int B , int C ) { if ( B <= A ) { return 0 ; } if ( B <= C ) { return B - A ; } if ( A == 0 ) { return B ; } if ( dp [ A ] [ B ] != -1 ) { return dp [ A ] [ B ] ; } int maxCount = INT_MIN ; int tripCount = B % C == 0 ? ( ( 2 * B ) / C ) - 1 : ( ( 2 * B ) / C ) + 1 ; for ( int i = 1 ; i <= A ; i ++ ) { int curCount = recBananaCnt ( A - i , B - tripCount * i , C ) ; if ( curCount > maxCount ) { maxCount = curCount ; dp [ A ] [ B ] = maxCount ; } } return maxCount ; } int maxBananaCnt ( int A , int B , int C ) { memset ( dp , -1 , sizeof ( dp ) ) ; return recBananaCnt ( A , B , C ) ; } int main ( ) { int A = 1000 ; int B = 3000 ; int C = 1000 ; cout << maxBananaCnt ( A , B , C ) ; return 0 ; }
Count of valid arrays of size P with elements in range [ 1 , N ] having duplicates at least M distance apart | C ++ program for the above approach ; Function to calculate the total number of arrays ; If the size of the array is P ; Check if all elements are used atlease once ; Check if this state is already calculated ; Initialize the result ; Use a number from the list of unused numbers ; There are ' unused ' number of favourable choices ; Use a number from already present number atlease M distance back ; There are ' used ▁ - ▁ M ' number of favourable choices ; Store the result ; Function to solve the problem ; Initialize DP table : dp [ i ] [ j ] [ j ] i : current position / index j : number of used elements k : number of unused elements ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int calculate ( int position , int used , int unused , int P , int M , vector < vector < vector < int > > > & dp ) { if ( position == P ) { return unused == 0 ? 1 : 0 ; } if ( dp [ position ] [ used ] [ unused ] != -1 ) return dp [ position ] [ used ] [ unused ] ; int result = 0 ; if ( unused > 0 ) { result += calculate ( position + 1 , used + 1 , unused - 1 , P , M , dp ) * unused ; } if ( used > M ) { result += calculate ( position + 1 , used , unused , P , M , dp ) * ( used - M ) ; } return dp [ position ] [ used ] [ unused ] = result ; } int solve ( int N , int P , int M ) { vector < vector < vector < int > > > dp ( 101 , vector < vector < int > > ( 101 , vector < int > ( 101 , -1 ) ) ) ; return calculate ( 0 , 0 , N , P , M , dp ) ; } int main ( ) { int N = 2 , M = 0 , P = 3 ; cout << solve ( N , P , M ) ; }
Minimum number of jumps to reach end | C ++ program to find Minimum number of jumps to reach end ; Returns Minimum number of jumps to reach end ; jumps [ 0 ] will hold the result ; Minimum number of jumps needed to reach last element from last elements itself is always 0 ; Start from the second element , move from right to left and construct the jumps [ ] array where jumps [ i ] represents minimum number of jumps needed to reach arr [ m - 1 ] from arr [ i ] ; If arr [ i ] is 0 then arr [ n - 1 ] can 't be reached from here ; If we can direcly reach to the end point from here then jumps [ i ] is 1 ; Otherwise , to find out the minimum number of jumps needed to reach arr [ n - 1 ] , check all the points reachable from here and jumps [ ] value for those points ; initialize min value ; following loop checks with all reachable points and takes the minimum ; Handle overflow ; or INT_MAX ; Driver program to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minJumps ( int arr [ ] , int n ) { int * jumps = new int [ n ] ; int min ; jumps [ n - 1 ] = 0 ; for ( int i = n - 2 ; i >= 0 ; i -- ) { if ( arr [ i ] == 0 ) jumps [ i ] = INT_MAX ; else if ( arr [ i ] >= n - i - 1 ) jumps [ i ] = 1 ; else { min = INT_MAX ; for ( int j = i + 1 ; j < n && j <= arr [ i ] + i ; j ++ ) { if ( min > jumps [ j ] ) min = jumps [ j ] ; } if ( min != INT_MAX ) jumps [ i ] = min + 1 ; else jumps [ i ] = min ; } } return jumps [ 0 ] ; } int main ( ) { int arr [ ] = { 1 , 3 , 6 , 1 , 0 , 9 } ; int size = sizeof ( arr ) / sizeof ( int ) ; cout << " Minimum ▁ number ▁ of ▁ jumps ▁ to ▁ reach " << " ▁ end ▁ is ▁ " << minJumps ( arr , size ) ; return 0 ; }
Count N | ; Stores the dp states ; Check if a number is a prime or not ; Function to generate all prime numbers that are less than or equal to n ; Base cases . ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of as non - prime ; Function to find the count of N - digit numbers such that the sum of digits is a prime number ; If end of array is reached ; If the sum is equal to a prime number ; Otherwise ; If the dp - states are already computed ; If index = 1 , any digit from [ 1 - 9 ] can be placed . If N = 1 , 0 also can be placed . ; Otherwise , any digit from [ 0 - 9 ] can be placed . ; Return the answer . ; Driver Code ; Initializing dp array with - 1 ; Initializing prime array to true ; Find all primes less than or equal to 1000 , which is sufficient for N upto 100 ; Given Input ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 100 ] [ 1000 ] ; bool prime [ 1005 ] ; void SieveOfEratosthenes ( int n ) { prime [ 0 ] = prime [ 1 ] = false ; for ( int p = 2 ; p * p <= n ; p ++ ) { if ( prime [ p ] == true ) { for ( int i = p * p ; i <= n ; i += p ) prime [ i ] = false ; } } } int countOfNumbers ( int index , int sum , int N ) { if ( index == N + 1 ) { if ( prime [ sum ] == true ) { return 1 ; } return 0 ; } int & val = dp [ index ] [ sum ] ; if ( val != -1 ) { return val ; } val = 0 ; if ( index == 1 ) { for ( int digit = ( N == 1 ? 0 : 1 ) ; digit <= 9 ; ++ digit ) { val += countOfNumbers ( index + 1 , sum + digit , N ) ; } } else { for ( int digit = 0 ; digit <= 9 ; ++ digit ) { val += countOfNumbers ( index + 1 , sum + digit , N ) ; } } return val ; } int main ( ) { memset ( dp , -1 , sizeof dp ) ; memset ( prime , true , sizeof ( prime ) ) ; SieveOfEratosthenes ( 1000 ) ; int N = 6 ; cout << countOfNumbers ( 1 , 0 , N ) ; return 0 ; }
Maximum number of groups that can receive fresh donuts distributed in batches of size K | C ++ program for the above approach ; Stores the result of the same recursive calls ; Recursive function to find the maximum number of groups that will receive fresh donuts ; Store the result for the current state ; Store the key and check if it is present in the hashmap ; If already calculated ; If left is 0 ; Traverse the array [ ] arr ; Decrement arr [ i ] ; Update the maximum number of groups ; Increment arr [ i ] by 1 ; Otherwise , traverse the given array [ ] arr ; Decrement arr [ i ] ; Update the maximum number of groups ; Increment arr [ i ] by 1 ; Memoize the result and return it ; Function to find the maximum number of groups that will receive fresh donuts ; Stores count of remainder by K ; Traverse the array [ ] arr ; Store the maximum number of groups ; Return the answer ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; map < string , int > memo ; int dfs ( int V [ ] , int left , int K ) { int q = 0 ; string key = " " ; for ( int i = 0 ; i < K ; i ++ ) { key = key + to_string ( V [ i ] ) ; } key += to_string ( left ) ; if ( memo . find ( key ) != memo . end ( ) ) return memo [ key ] ; else if ( left == 0 ) { for ( int i = 1 ; i < K ; ++ i ) if ( V [ i ] > 0 ) { V [ i ] -- ; q = max ( q , 1 + dfs ( V , K - i , K ) ) ; V [ i ] ++ ; } } else { for ( int i = 1 ; i < K ; ++ i ) { if ( V [ i ] > 0 ) { V [ i ] -- ; int nleft = i <= left ? left - i : K + left - i ; q = max ( q , dfs ( V , nleft , K ) ) ; V [ i ] ++ ; } } } if ( memo . find ( key ) != memo . end ( ) ) memo [ key ] = q ; else memo [ key ] = q ; return q ; } int maxGroups ( int K , int arr [ ] ) { int V [ K ] ; memset ( V , 0 , sizeof ( V ) ) ; for ( int i = 0 ; i < 6 ; i ++ ) V [ arr [ i ] % K ] ++ ; int ans = V [ 0 ] + dfs ( V , 0 , K ) ; return ans ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 , 6 } ; int K = 3 ; cout << maxGroups ( K , arr ) ; return 0 ; }
Maximum Sum Alternating Subarray | C ++ implementation for the above approach ; Function to find the maximum alternating sum of a subarray for the given array ; Traverse the array ; Store sum of subarrays starting at even indices ; Update sum ; Traverse the array ; Store sum of subarrays starting at odd indices ; Update sum ; Driver code ; Given Input ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int alternatingSum ( int arr [ ] , int n ) { int sum = 0 ; int sumSoFar = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( i % 2 == 1 ) { sumSoFar -= arr [ i ] ; } else { sumSoFar = max ( sumSoFar + arr [ i ] , arr [ i ] ) ; } sum = max ( sum , sumSoFar ) ; } sumSoFar = 0 ; for ( int i = 1 ; i < n ; i ++ ) { if ( i % 2 == 0 ) { sumSoFar -= arr [ i ] ; } else { sumSoFar = max ( sumSoFar + arr [ i ] , arr [ i ] ) ; } sum = max ( sum , sumSoFar ) ; } return sum ; } int main ( ) { int arr [ ] = { -4 , -10 , 3 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int ans = alternatingSum ( arr , n ) ; cout << ans << endl ; return 0 ; }
Smallest subarray with sum greater than a given value | O ( n ) solution for finding smallest subarray with sum greater than x ; Returns length of smallest subarray with sum greater than x . If there is no subarray with given sum , then returns n + 1 ; Initialize current sum and minimum length ; Initialize starting and ending indexes ; Keep adding array elements while current sum is smaller than or equal to x ; If current sum becomes greater than x . ; Update minimum length if needed ; remove starting elements ; Driver program to test above function
#include <iostream> NEW_LINE using namespace std ; int smallestSubWithSum ( int arr [ ] , int n , int x ) { int curr_sum = 0 , min_len = n + 1 ; int start = 0 , end = 0 ; while ( end < n ) { while ( curr_sum <= x && end < n ) curr_sum += arr [ end ++ ] ; while ( curr_sum > x && start < n ) { if ( end - start < min_len ) min_len = end - start ; curr_sum -= arr [ start ++ ] ; } } return min_len ; } int main ( ) { int arr1 [ ] = { 1 , 4 , 45 , 6 , 10 , 19 } ; int x = 51 ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int res1 = smallestSubWithSum ( arr1 , n1 , x ) ; ( res1 == n1 + 1 ) ? cout << " Not ▁ possible STRNEWLINE " : cout << res1 << endl ; int arr2 [ ] = { 1 , 10 , 5 , 2 , 7 } ; int n2 = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; x = 9 ; int res2 = smallestSubWithSum ( arr2 , n2 , x ) ; ( res2 == n2 + 1 ) ? cout << " Not ▁ possible STRNEWLINE " : cout << res2 << endl ; int arr3 [ ] = { 1 , 11 , 100 , 1 , 0 , 200 , 3 , 2 , 1 , 250 } ; int n3 = sizeof ( arr3 ) / sizeof ( arr3 [ 0 ] ) ; x = 280 ; int res3 = smallestSubWithSum ( arr3 , n3 , x ) ; ( res3 == n3 + 1 ) ? cout << " Not ▁ possible STRNEWLINE " : cout << res3 << endl ; return 0 ; }
Sum of nodes on the longest path from root to leaf node | C ++ implementation to find the sum of nodes on the longest path from root to leaf node ; Node of a binary tree ; function to get a new node ; allocate memory for the node ; put in the data ; function to find the sum of nodes on the longest path from root to leaf node ; if true , then we have traversed a root to leaf path ; update maximum length and maximum sum according to the given conditions ; recur for left subtree ; recur for right subtree ; utility function to find the sum of nodes on the longest path from root to leaf node ; if tree is NULL , then sum is 0 ; finding the maximum sum ' maxSum ' for the maximum length root to leaf path ; required maximum sum ; Driver program to test above ; binary tree formation ; 4 ; / \ ; 2 5 ; / \ / \ ; 7 1 2 3 ; 6
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; Node * left , * right ; } ; Node * getNode ( int data ) { Node * newNode = ( Node * ) malloc ( sizeof ( Node ) ) ; newNode -> data = data ; newNode -> left = newNode -> right = NULL ; return newNode ; } void sumOfLongRootToLeafPath ( Node * root , int sum , int len , int & maxLen , int & maxSum ) { if ( ! root ) { if ( maxLen < len ) { maxLen = len ; maxSum = sum ; } else if ( maxLen == len && maxSum < sum ) maxSum = sum ; return ; } sumOfLongRootToLeafPath ( root -> left , sum + root -> data , len + 1 , maxLen , maxSum ) ; sumOfLongRootToLeafPath ( root -> right , sum + root -> data , len + 1 , maxLen , maxSum ) ; } int sumOfLongRootToLeafPathUtil ( Node * root ) { if ( ! root ) return 0 ; int maxSum = INT_MIN , maxLen = 0 ; sumOfLongRootToLeafPath ( root , 0 , 0 , maxLen , maxSum ) ; return maxSum ; } int main ( ) { Node * root = getNode ( 4 ) ; root -> left = getNode ( 2 ) ; root -> right = getNode ( 5 ) ; root -> left -> left = getNode ( 7 ) ; root -> left -> right = getNode ( 1 ) ; root -> right -> left = getNode ( 2 ) ; root -> right -> right = getNode ( 3 ) ; root -> left -> right -> left = getNode ( 6 ) ; cout << " Sum ▁ = ▁ " << sumOfLongRootToLeafPathUtil ( root ) ; return 0 ; }
Count L | C ++ program for the above approach ; Fumction to find the number of arrays of length L such that each element divides the next element ; Stores the number of sequences of length i that ends with j ; Initialize 2D array dp [ ] [ ] as 0 ; Base Case ; Iterate over the range [ 0 , l ] ; Iterate for all multiples of j ; Incrementing dp [ i + 1 ] [ k ] by dp [ i ] [ j ] as the next element is multiple of j ; Stores the number of arrays ; Add all array of length L that ends with i ; Return the resultant count ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int numberOfArrays ( int n , int l ) { int dp [ l + 1 ] [ n + 1 ] ; memset ( dp , 0 , sizeof dp ) ; dp [ 0 ] [ 1 ] = 1 ; for ( int i = 0 ; i < l ; i ++ ) { for ( int j = 1 ; j <= n ; j ++ ) { for ( int k = j ; k <= n ; k += j ) { dp [ i + 1 ] [ k ] += dp [ i ] [ j ] ; } } } int ans = 0 ; for ( int i = 1 ; i <= n ; i ++ ) { ans += dp [ l ] [ i ] ; } return ans ; } int main ( ) { int N = 2 , L = 4 ; cout << numberOfArrays ( N , L ) ; return 0 ; }
Count minimum steps to get the given desired array | C ++ program to count minimum number of operations to get the given target array ; Returns count of minimum operations to convert a zero array to target array with increment and doubling operations . This function computes count by doing reverse steps , i . e . , convert target to zero array . ; Initialize result ( Count of minimum moves ) ; Keep looping while all elements of target don 't become 0. ; To store count of zeroes in current target array ; To find first odd element ; If odd number found ; If 0 , then increment zero_count ; All numbers are 0 ; All numbers are even ; Divide the whole array by 2 and increment result ; Make all odd numbers even by subtracting one and increment result . ; Driver program to test above functions
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countMinOperations ( unsigned int target [ ] , int n ) { int result = 0 ; while ( 1 ) { int zero_count = 0 ; int i ; for ( i = 0 ; i < n ; i ++ ) { if ( target [ i ] & 1 ) break ; else if ( target [ i ] == 0 ) zero_count ++ ; } if ( zero_count == n ) return result ; if ( i == n ) { for ( int j = 0 ; j < n ; j ++ ) target [ j ] = target [ j ] / 2 ; result ++ ; } for ( int j = i ; j < n ; j ++ ) { if ( target [ j ] & 1 ) { target [ j ] -- ; result ++ ; } } } } int main ( ) { unsigned int arr [ ] = { 16 , 16 , 16 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Minimum ▁ number ▁ of ▁ steps ▁ required ▁ to ▁ " " get ▁ the ▁ given ▁ target ▁ array ▁ is ▁ " << countMinOperations ( arr , n ) ; return 0 ; }
Maximize sum of odd | C ++ program for the above approach ; Function to find the maximum sum of array elements chosen by Player A according to the given criteria ; Store the key ; Corner Case ; Check if all the elements can be taken or not ; If the difference is less than or equal to the available chances then pick all numbers ; Find the sum of array elements over the range [ start , N ] ; If yes then return that value ; Traverse over the range [ 1 , 2 * M ] ; Sum of elements for Player A ; Even chance sum can be obtained by subtracting the odd chances sum - total and picking up the maximum from that ; Storing the value in dictionary ; Return the maximum sum of odd chances ; Driver code ; Stores the precomputed values ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int recursiveChoosing ( int arr [ ] , int start , int M , map < pair < int , int > , int > dp , int N ) { pair < int , int > key ( start , M ) ; if ( start >= N ) { return 0 ; } if ( N - start <= 2 * M ) { int Sum = 0 ; for ( int i = start ; i < N ; i ++ ) { Sum = Sum + arr [ i ] ; } return Sum ; } int sum = 0 ; for ( int i = start ; i < N ; i ++ ) { sum = sum + arr [ i ] ; } int total = sum ; if ( dp . find ( key ) != dp . end ( ) ) { return dp [ key ] ; } int psa = 0 ; for ( int x = 1 ; x < 2 * M + 1 ; x ++ ) { int psb = recursiveChoosing ( arr , start + x , max ( x , M ) , dp , N ) ; psa = max ( psa , total - psb ) ; } dp [ key ] = psa ; return dp [ key ] ; } int main ( ) { int arr [ ] = { 2 , 7 , 9 , 4 , 4 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; map < pair < int , int > , int > dp ; cout << recursiveChoosing ( arr , 0 , 1 , dp , N ) ; return 0 ; }
Number of subsets with product less than k | CPP to find the count subset having product less than k ; declare four vector for dividing array into two halves and storing product value of possible subsets for them ; ignore element greater than k and divide array into 2 halves ; ignore element if greater than k ; generate all subsets for 1 st half ( vect1 ) ; push only in case subset product is less than equal to k ; generate all subsets for 2 nd half ( vect2 ) ; push only in case subset product is less than equal to k ; sort subset2 ; for null subset decrement the value of count ; return count ; driver program
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findSubset ( long long int arr [ ] , int n , long long int k ) { vector < long long int > vect1 , vect2 , subset1 , subset2 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] > k ) continue ; if ( i <= n / 2 ) vect1 . push_back ( arr [ i ] ) ; else vect2 . push_back ( arr [ i ] ) ; } for ( int i = 0 ; i < ( 1 << vect1 . size ( ) ) ; i ++ ) { long long value = 1 ; for ( int j = 0 ; j < vect1 . size ( ) ; j ++ ) { if ( i & ( 1 << j ) ) value *= vect1 [ j ] ; } if ( value <= k ) subset1 . push_back ( value ) ; } for ( int i = 0 ; i < ( 1 << vect2 . size ( ) ) ; i ++ ) { long long value = 1 ; for ( int j = 0 ; j < vect2 . size ( ) ; j ++ ) { if ( i & ( 1 << j ) ) value *= vect2 [ j ] ; } if ( value <= k ) subset2 . push_back ( value ) ; } sort ( subset2 . begin ( ) , subset2 . end ( ) ) ; long long count = 0 ; for ( int i = 0 ; i < subset1 . size ( ) ; i ++ ) count += upper_bound ( subset2 . begin ( ) , subset2 . end ( ) , ( k / subset1 [ i ] ) ) - subset2 . begin ( ) ; count -- ; return count ; } int main ( ) { long long int arr [ ] = { 4 , 2 , 3 , 6 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; long long int k = 25 ; cout << findSubset ( arr , n , k ) ; return 0 ; }
Maximum Sum Subsequence made up of consecutive elements of different parity | C ++ program for the above approach ; Function to find the maximum sum of subsequence with consecutive terms having different parity ; Base Case ; Store the parity of number at the ith position ; If the dp state has already been calculated , return it ; If the array is traversed and no element has been selected yet then select the current element ; If the parity of the current and previously selected element are different , then select the current element ; Skip the current element and move to the next element ; Return the result ; Function to calculate the maximum sum subsequence with consecutive terms having different parity ; Initialize the dp [ ] array with - 1 ; Initially the prev value is set to say 2 , as the first element can anyways be selected ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 100 ] [ 3 ] ; int maxSum ( int * arr , int i , int n , int prev , bool is_selected ) { if ( i == n ) { return 0 ; } int cur = abs ( arr [ i ] ) % 2 ; if ( dp [ i ] [ prev ] != -1 ) { return dp [ i ] [ prev ] ; } if ( i == n - 1 && is_selected == 0 ) return dp [ i ] [ prev ] = arr [ i ] ; if ( cur != prev ) { dp [ i ] [ prev ] = arr [ i ] + maxSum ( arr , i + 1 , n , cur , 1 ) ; } dp [ i ] [ prev ] = max ( dp [ i ] [ prev ] , maxSum ( arr , i + 1 , n , prev , is_selected ) ) ; return dp [ i ] [ prev ] ; } void maxSumUtil ( int arr [ ] , int n ) { memset ( dp , -1 , sizeof ( dp ) ) ; cout << maxSum ( arr , 0 , n , 2 , 0 ) ; } int main ( ) { int arr [ ] = { 1 , 2 , 6 , 8 , -5 , 10 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; maxSumUtil ( arr , N ) ; return 0 ; }
Find minimum number of merge operations to make an array palindrome | C ++ program to find number of operations to make an array palindrome ; Returns minimum number of count operations required to make arr [ ] palindrome ; Initialize result ; Start from two corners ; If corner elements are same , problem reduces arr [ i + 1. . j - 1 ] ; If left element is greater , then we merge right two elements ; need to merge from tail . ; Else we merge left two elements ; Driver program to test above
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinOps ( int arr [ ] , int n ) { int ans = 0 ; for ( int i = 0 , j = n - 1 ; i <= j ; ) { if ( arr [ i ] == arr [ j ] ) { i ++ ; j -- ; } else if ( arr [ i ] > arr [ j ] ) { j -- ; arr [ j ] += arr [ j + 1 ] ; ans ++ ; } else { i ++ ; arr [ i ] += arr [ i - 1 ] ; ans ++ ; } } return ans ; } int main ( ) { int arr [ ] = { 1 , 4 , 5 , 9 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Count ▁ of ▁ minimum ▁ operations ▁ is ▁ " << findMinOps ( arr , n ) << endl ; return 0 ; }
Find the smallest positive integer value that cannot be represented as sum of any subset of a given array | C ++ program to find the smallest positive value that cannot be represented as sum of subsets of a given sorted array ; Returns the smallest number that cannot be represented as sum of subset of elements from set represented by sorted array arr [ 0. . n - 1 ] ; Initialize result ; Traverse the array and increment ' res ' if arr [ i ] is smaller than or equal to ' res ' . ; Driver program to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findSmallest ( int arr [ ] , int n ) { int res = 1 ; for ( int i = 0 ; i < n && arr [ i ] <= res ; i ++ ) res = res + arr [ i ] ; return res ; } int main ( ) { int arr1 [ ] = { 1 , 3 , 4 , 5 } ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; cout << findSmallest ( arr1 , n1 ) << endl ; int arr2 [ ] = { 1 , 2 , 6 , 10 , 11 , 15 } ; int n2 = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; cout << findSmallest ( arr2 , n2 ) << endl ; int arr3 [ ] = { 1 , 1 , 1 , 1 } ; int n3 = sizeof ( arr3 ) / sizeof ( arr3 [ 0 ] ) ; cout << findSmallest ( arr3 , n3 ) << endl ; int arr4 [ ] = { 1 , 1 , 3 , 4 } ; int n4 = sizeof ( arr4 ) / sizeof ( arr4 [ 0 ] ) ; cout << findSmallest ( arr4 , n4 ) << endl ; return 0 ; }
Count distinct possible Bitwise XOR values of subsets of an array | C ++ program for the above approach ; Stores the Bitwise XOR of every possible subset ; Function to generate all combinations of subsets and store their Bitwise XOR in set S ; If the end of the subset is reached ; Stores the Bitwise XOR of the current subset ; Iterate comb [ ] to find XOR ; Insert the Bitwise XOR of R elements ; Otherwise , iterate to generate all possible subsets ; Recursive call for next index ; Function to find the size of the set having Bitwise XOR of all the subsets of the given array ; Iterate ove the given array ; Generate all possible subsets ; Print the size of the set ; Driver Code ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; unordered_set < int > s ; void countXOR ( int arr [ ] , int comb [ ] , int start , int end , int index , int r ) { if ( index == r ) { int new_xor = 0 ; for ( int j = 0 ; j < r ; j ++ ) { new_xor ^= comb [ j ] ; } s . insert ( new_xor ) ; return ; } for ( int i = start ; i <= end && end - i + 1 >= r - index ; i ++ ) { comb [ index ] = arr [ i ] ; countXOR ( arr , comb , i + 1 , end , index + 1 , r ) ; } } void maxSizeSet ( int arr [ ] , int N ) { for ( int r = 2 ; r <= N ; r ++ ) { int comb [ r + 1 ] ; countXOR ( arr , comb , 0 , N - 1 , 0 , r ) ; } cout << s . size ( ) << endl ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; maxSizeSet ( arr , N ) ; return 0 ; }
Size of The Subarray With Maximum Sum | C ++ program to print length of the largest contiguous array sum ; Function to find maximum subarray sum ; Driver program to test maxSubArraySum
#include <bits/stdc++.h> NEW_LINE using namespace std ; int maxSubArraySum ( int a [ ] , int size ) { int max_so_far = INT_MIN , max_ending_here = 0 , start = 0 , end = 0 , s = 0 ; for ( int i = 0 ; i < size ; i ++ ) { max_ending_here += a [ i ] ; if ( max_so_far < max_ending_here ) { max_so_far = max_ending_here ; start = s ; end = i ; } if ( max_ending_here < 0 ) { max_ending_here = 0 ; s = i + 1 ; } } return ( end - start + 1 ) ; } int main ( ) { int a [ ] = { -2 , -3 , 4 , -1 , -2 , 1 , 5 , -3 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << maxSubArraySum ( a , n ) ; return 0 ; }
Longest subarray of an array which is a subsequence in another array | C ++ program for the above approach ; Function to find the length of the longest subarray in arr1 [ ] which is a subsequence in arr2 [ ] ; Length of the required longest subarray ; Initialize DP [ ] array ; Traverse array arr1 [ ] ; Traverse array arr2 [ ] ; arr1 [ i - 1 ] contributes to the length of the subarray ; Otherwise ; Find the maximum value present in DP [ ] [ ] ; Return the result ; Driver Code ; Function call to find the length of the longest required subarray
#include <bits/stdc++.h> NEW_LINE using namespace std ; int LongSubarrSeq ( int arr1 [ ] , int arr2 [ ] , int M , int N ) { int maxL = 0 ; int DP [ M + 1 ] [ N + 1 ] ; for ( int i = 1 ; i <= M ; i ++ ) { for ( int j = 1 ; j <= N ; j ++ ) { if ( arr1 [ i - 1 ] == arr2 [ j - 1 ] ) { DP [ i ] [ j ] = 1 + DP [ i - 1 ] [ j - 1 ] ; } else { DP [ i ] [ j ] = DP [ i ] [ j - 1 ] ; } } } for ( int i = 1 ; i <= M ; i ++ ) { for ( int j = 1 ; j <= N ; j ++ ) { maxL = max ( maxL , DP [ i ] [ j ] ) ; } } return maxL ; } int main ( ) { int arr1 [ ] = { 4 , 2 , 3 , 1 , 5 , 6 } ; int M = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int arr2 [ ] = { 3 , 1 , 4 , 6 , 5 , 2 } ; int N = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; cout << LongSubarrSeq ( arr1 , arr2 , M , N ) << endl ; return 0 ; }
Find minimum difference between any two elements | C ++ implementation of simple method to find minimum difference between any pair ; Returns minimum difference between any pair ; Initialize difference as infinite ; Find the min diff by comparing difference of all possible pairs in given array ; Return min diff ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinDiff ( int arr [ ] , int n ) { int diff = INT_MAX ; for ( int i = 0 ; i < n - 1 ; i ++ ) for ( int j = i + 1 ; j < n ; j ++ ) if ( abs ( arr [ i ] - arr [ j ] ) < diff ) diff = abs ( arr [ i ] - arr [ j ] ) ; return diff ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 19 , 18 , 25 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Minimum ▁ difference ▁ is ▁ " << findMinDiff ( arr , n ) ; return 0 ; }
Minimize removal or insertions required to make two strings equal | C ++ program for the above approach ; Function to find the longest substring in string A which is a subsequence in B ; If the indices are out of bounds ; If an already computed subproblem occurred ; Required answer if the all the characters of A and B are the same ; Required answer if there is no substring A which is a subsequence in B ; Required answer if the current character in B is skipped ; The answer for the subproblem is the maximum among the three ; Function to return the minimum strings operations required to make two strings equal ; Initialize the dp vector ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findLongestSubstring ( int posA , int posB , string & A , string & B , bool canSkip , int n , vector < vector < vector < int > > > & dp ) { if ( posA >= n posB >= n ) { return 0 ; } if ( dp [ posA ] [ posB ] [ canSkip ] != -1 ) { return dp [ posA ] [ posB ] [ canSkip ] ; } int op1 = 0 ; int op2 = 0 ; int op3 = 0 ; if ( A [ posA ] == B [ posB ] ) { op1 = 1 + findLongestSubstring ( posA + 1 , posB + 1 , A , B , 0 , n , dp ) ; } if ( canSkip ) { op2 = findLongestSubstring ( posA + 1 , posB , A , B , canSkip , n , dp ) ; } op3 = findLongestSubstring ( posA , posB + 1 , A , B , canSkip , n , dp ) ; return dp [ posA ] [ posB ] [ canSkip ] = max ( op1 , max ( op2 , op3 ) ) ; } void minOperations ( string A , string B , int N ) { vector < vector < vector < int > > > dp ( N , vector < vector < int > > ( N , vector < int > ( 2 , -1 ) ) ) ; cout << N - findLongestSubstring ( 0 , 0 , A , B , 1 , N , dp ) ; } int main ( ) { string A = " abab " ; string B = " baba " ; int N = A . size ( ) ; minOperations ( A , B , N ) ; return 0 ; }
Count possible N | C ++ program for the above approach ; Macros for modulus ; DP array for memoization ; Utility function to count N digit numbers with digit i not appearing more than max_digit [ i ] consecutively ; If number with N digits is generated ; Create a reference variable ; Check if the current state is already computed before ; Initialize ans as zero ; Check if count of previous digit has reached zero or not ; Fill current position only with digits that are unequal to previous digit ; Else set the value of count for this new digit accordingly from max_digit [ ] ; Function to count N digit numbers with digit i not appearing more than max_digit [ i ] consecutive times ; Stores the final count ; Print the total count ; Driver Code ; Initialize the dp array with - 1 ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define MOD 1000000007 NEW_LINE int dp [ 5005 ] [ 12 ] [ 12 ] ; int findCountUtil ( int N , int maxDigit [ ] , int position = 0 , int previous = 0 , int count = 1 ) { if ( position == N ) { return 1 ; } int & ans = dp [ position ] [ previous ] [ count ] ; if ( ans != -1 ) { return ans ; } ans = 0 ; for ( int i = 0 ; i <= 9 ; ++ i ) { if ( count == 0 && previous != i ) { ans = ( ans + ( findCountUtil ( N , maxDigit , position + 1 , i , maxDigit [ i ] - 1 ) ) % MOD ) % MOD ; } else if ( count != 0 ) { ans = ( ans + ( findCountUtil ( N , maxDigit , position + 1 , i , ( previous == i && position != 0 ) ? count - 1 : maxDigit [ i ] - 1 ) ) % MOD ) % MOD ; } } return ans ; } void findCount ( int N , int maxDigit [ ] ) { int ans = findCountUtil ( N , maxDigit ) ; cout << ans ; } int main ( ) { int N = 2 ; int maxDigit [ 10 ] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } ; memset ( dp , -1 , sizeof ( dp ) ) ; findCount ( N , maxDigit ) ; return 0 ; }
Find minimum difference between any two elements | C ++ program to find minimum difference between any pair in an unsorted array ; Returns minimum difference between any pair ; Sort array in non - decreasing order ; Initialize difference as infinite ; Find the min diff by comparing adjacent pairs in sorted array ; Return min diff ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinDiff ( int arr [ ] , int n ) { sort ( arr , arr + n ) ; int diff = INT_MAX ; for ( int i = 0 ; i < n - 1 ; i ++ ) if ( arr [ i + 1 ] - arr [ i ] < diff ) diff = arr [ i + 1 ] - arr [ i ] ; return diff ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 19 , 18 , 25 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Minimum ▁ difference ▁ is ▁ " << findMinDiff ( arr , n ) ; return 0 ; }
Space optimization using bit manipulations | C ++ program to mark numbers as multiple of 2 or 5 ; Driver code ; Iterate through a to b , If it is a multiple of 2 or 5 Mark index in array as 1
#include <bits/stdc++.h> NEW_LINE using namespace std ; int main ( ) { int a = 2 , b = 10 ; int size = abs ( b - a ) + 1 ; int * array = new int [ size ] ; for ( int i = a ; i <= b ; i ++ ) if ( i % 2 == 0 i % 5 == 0 ) array [ i - a ] = 1 ; cout << " MULTIPLES ▁ of ▁ 2 ▁ and ▁ 5 : STRNEWLINE " ; for ( int i = a ; i <= b ; i ++ ) if ( array [ i - a ] == 1 ) cout << i << " ▁ " ; return 0 ; }
Remove all nodes which don 't lie in any path with sum>= k | ; A utility function to get maximum of two integers ; A Binary Tree Node ; A utility function to create a new Binary Tree node with given data ; print the tree in LVR ( Inorder traversal ) way . ; Main function which truncates the binary tree . ; Base Case ; Initialize left and right sums as sum from root to this node ( including this node ) ; Recursively prune left and right subtrees ; Get the maximum of left and right sums ; If maximum is smaller than k , then this node must be deleted ; A wrapper over pruneUtil ( ) ; Driver program to test above function ; k is 45
#include <stdio.h> NEW_LINE #include <stdlib.h> NEW_LINE int max ( int l , int r ) { return ( l > r ? l : r ) ; } struct Node { int data ; struct Node * left , * right ; } ; struct Node * newNode ( int data ) { struct Node * node = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; node -> data = data ; node -> left = node -> right = NULL ; return node ; } void print ( struct Node * root ) { if ( root != NULL ) { print ( root -> left ) ; printf ( " % d ▁ " , root -> data ) ; print ( root -> right ) ; } } struct Node * pruneUtil ( struct Node * root , int k , int * sum ) { if ( root == NULL ) return NULL ; int lsum = * sum + ( root -> data ) ; int rsum = lsum ; root -> left = pruneUtil ( root -> left , k , & lsum ) ; root -> right = pruneUtil ( root -> right , k , & rsum ) ; * sum = max ( lsum , rsum ) ; if ( * sum < k ) { free ( root ) ; root = NULL ; } return root ; } struct Node * prune ( struct Node * root , int k ) { int sum = 0 ; return pruneUtil ( root , k , & sum ) ; } int main ( ) { int k = 45 ; struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 5 ) ; root -> right -> left = newNode ( 6 ) ; root -> right -> right = newNode ( 7 ) ; root -> left -> left -> left = newNode ( 8 ) ; root -> left -> left -> right = newNode ( 9 ) ; root -> left -> right -> left = newNode ( 12 ) ; root -> right -> right -> left = newNode ( 10 ) ; root -> right -> right -> left -> right = newNode ( 11 ) ; root -> left -> left -> right -> left = newNode ( 13 ) ; root -> left -> left -> right -> right = newNode ( 14 ) ; root -> left -> left -> right -> right -> left = newNode ( 15 ) ; printf ( " Tree ▁ before ▁ truncation STRNEWLINE " ) ; print ( root ) ; root = prune ( root , k ) ; printf ( " Tree after truncation " print ( root ) ; return 0 ; }
Tree Traversals ( Inorder , Preorder and Postorder ) | C ++ program for different tree traversals ; A binary tree node has data , pointer to left child and a pointer to right child ; Given a binary tree , print its nodes according to the " bottom - up " postorder traversal . ; first recur on left subtree ; then recur on right subtree ; now deal with the node ; Given a binary tree , print its nodes in inorder ; first recur on left child ; then print the data of node ; now recur on right child ; Given a binary tree , print its nodes in preorder ; first print data of node ; then recur on left sutree ; now recur on right subtree ; Driver program to test above functions
#include <iostream> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left , * right ; Node ( int data ) { this -> data = data ; left = right = NULL ; } } ; void printPostorder ( struct Node * node ) { if ( node == NULL ) return ; printPostorder ( node -> left ) ; printPostorder ( node -> right ) ; cout << node -> data << " ▁ " ; } void printInorder ( struct Node * node ) { if ( node == NULL ) return ; printInorder ( node -> left ) ; cout << node -> data << " ▁ " ; printInorder ( node -> right ) ; } void printPreorder ( struct Node * node ) { if ( node == NULL ) return ; cout << node -> data << " ▁ " ; printPreorder ( node -> left ) ; printPreorder ( node -> right ) ; } int main ( ) { struct Node * root = new Node ( 1 ) ; root -> left = new Node ( 2 ) ; root -> right = new Node ( 3 ) ; root -> left -> left = new Node ( 4 ) ; root -> left -> right = new Node ( 5 ) ; cout << " Preorder traversal of binary tree is " ; printPreorder ( root ) ; cout << " Inorder traversal of binary tree is " ; printInorder ( root ) ; cout << " Postorder traversal of binary tree is " ; printPostorder ( root ) ; return 0 ; }
Rearrange array by interchanging positions of even and odd elements in the given array | C ++ program for the above approach ; Function to replace odd elements with even elements and vice versa ; Push the first element to stack ; iterate the array and swap even and odd ; pop and swap ; print the arr [ ] ; Driven Program ; Given array arr [ ] ; Stores the length of array ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; void swapEvenOdd ( int arr [ ] , int N ) { stack < pair < int , int > > stack ; stack . push ( { 0 , arr [ 0 ] } ) ; for ( int i = 1 ; i < N ; i ++ ) { if ( ! stack . empty ( ) ) { if ( arr [ i ] % 2 != stack . top ( ) . second % 2 ) { pair < int , int > pop = stack . top ( ) ; stack . pop ( ) ; int index = pop . first , val = pop . second ; arr [ index ] = arr [ i ] ; arr [ i ] = val ; } else stack . push ( { i , arr [ i ] } ) ; } else stack . push ( { i , arr [ i ] } ) ; } for ( int i = 0 ; i < N ; i ++ ) cout << arr [ i ] << " ▁ " ; } int main ( ) { int arr [ ] = { 1 , 3 , 2 , 4 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; swapEvenOdd ( arr , N ) ; return 0 ; }
Maximum subarray sum possible after removing at most K array elements | C ++ program to implement the above approach ; Function to find the maximum subarray sum greater than or equal to 0 by removing K array elements ; Base case ; If overlapping subproblems already occurred ; Include current element in the subarray ; If K elements already removed from the subarray ; Remove current element from the subarray ; Utility function to find the maximum subarray sum by removing at most K array elements ; Stores overlapping subproblems of the recurrence relation ; Initialize dp [ ] [ ] to - 1 ; Stores maximum subarray sum by removing at most K elements ; Calculate maximum element in dp [ ] [ ] ; Update res ; If all array elements are negative ; Update res ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define M 100 NEW_LINE int mxSubSum ( int i , int * arr , int j , int dp [ ] [ M ] ) { if ( i == 0 ) { return dp [ i ] [ j ] = max ( 0 , arr [ i ] ) ; } if ( dp [ i ] [ j ] != -1 ) { return dp [ i ] [ j ] ; } int X = max ( 0 , arr [ i ] + mxSubSum ( i - 1 , arr , j , dp ) ) ; if ( j == 0 ) { return dp [ i ] [ j ] = X ; } int Y = mxSubSum ( i - 1 , arr , j - 1 , dp ) ; return dp [ i ] [ j ] = max ( X , Y ) ; } int MaximumSubarraySum ( int n , int * arr , int k ) { int dp [ M ] [ M ] ; memset ( dp , -1 , sizeof ( dp ) ) ; mxSubSum ( n - 1 , arr , k , dp ) ; int res = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j <= k ; j ++ ) { res = max ( res , dp [ i ] [ j ] ) ; } } if ( * max_element ( arr , arr + n ) < 0 ) { res = * max_element ( arr , arr + n ) ; } return res ; } int main ( ) { int arr [ ] = { -2 , 1 , 3 , -2 , 4 , -7 , 20 } ; int K = 1 ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << MaximumSubarraySum ( N , arr , K ) << endl ; return 0 ; }
Minimize cost to empty given array where cost of removing an element is its absolute difference with Time instant | C ++ program for the above approach ; Function to find the minimum cost to delete all array elements ; Sort the input array ; Store the maximum time to delete the array in the worst case ; Store the result in cost [ ] [ ] table ; Initialize the table cost [ ] [ ] ; Base Case ; Store the minimum of all cost values of the previous index ; Iterate from range [ 1 , n ] using variable i ; Update prev ; Iterate from range [ 1 , m ] using variable j ; Update cost [ i ] [ j ] ; Update the prev ; Store the minimum cost to delete all elements ; Find the minimum of all values of cost [ n ] [ j ] ; Print minimum cost ; Driver Code ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define INF 10000 NEW_LINE void minCost ( int arr [ ] , int n ) { sort ( arr , arr + n ) ; int m = 2 * n ; int cost [ n + 1 ] [ m + 1 ] ; for ( int i = 0 ; i <= n ; i ++ ) { for ( int j = 0 ; j <= m ; j ++ ) { cost [ i ] [ j ] = INF ; } } cost [ 0 ] [ 0 ] = 0 ; int prev = 0 ; for ( int i = 1 ; i <= n ; i ++ ) { prev = cost [ i - 1 ] [ 0 ] ; for ( int j = 1 ; j <= m ; j ++ ) { cost [ i ] [ j ] = min ( cost [ i ] [ j ] , prev + abs ( j - arr [ i - 1 ] ) ) ; prev = min ( prev , cost [ i - 1 ] [ j ] ) ; } } int minCost = INF ; for ( int j = 1 ; j <= m ; j ++ ) { minCost = min ( minCost , cost [ n ] [ j ] ) ; } cout << minCost ; } int main ( ) { int arr [ ] = { 4 , 2 , 4 , 4 , 5 , 2 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; minCost ( arr , N ) ; return 0 ; }
Space optimization using bit manipulations | C ++ code to for marking multiples ; index >> 5 corresponds to dividing index by 32 index & 31 corresponds to modulo operation of index by 32 Function to check value of bit position whether it is zero or one ; Sets value of bit for corresponding index ; Driver program to test above functions ; Size that will be used is actual_size / 32 ceil is used to initialize the array with positive number ; Array is dynamically initialized as we are calculating size at run time ; Iterate through every index from a to b and call setbit ( ) if it is a multiple of 2 or 5
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool checkbit ( int array [ ] , int index ) { return array [ index >> 5 ] & ( 1 << ( index & 31 ) ) ; } void setbit ( int array [ ] , int index ) { array [ index >> 5 ] |= ( 1 << ( index & 31 ) ) ; } int main ( ) { int a = 2 , b = 10 ; int size = abs ( b - a ) ; size = ceil ( size / 32 ) ; int * array = new int [ size ] ; for ( int i = a ; i <= b ; i ++ ) if ( i % 2 == 0 i % 5 == 0 ) setbit ( array , i - a ) ; cout << " MULTIPLES ▁ of ▁ 2 ▁ and ▁ 5 : STRNEWLINE " ; for ( int i = a ; i <= b ; i ++ ) if ( checkbit ( array , i - a ) ) cout << i << " ▁ " ; return 0 ; }
Longest Span with same Sum in two Binary arrays | A Simple C ++ program to find longest common subarray of two binary arrays with same sum ; Returns length of the longest common subarray with same sum ; Initialize result ; One by one pick all possible starting points of subarrays ; Initialize sums of current subarrays ; Conider all points for starting with arr [ i ] ; Update sums ; If sums are same and current length is more than maxLen , update maxLen ; Driver program to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int longestCommonSum ( bool arr1 [ ] , bool arr2 [ ] , int n ) { int maxLen = 0 ; for ( int i = 0 ; i < n ; i ++ ) { int sum1 = 0 , sum2 = 0 ; for ( int j = i ; j < n ; j ++ ) { sum1 += arr1 [ j ] ; sum2 += arr2 [ j ] ; if ( sum1 == sum2 ) { int len = j - i + 1 ; if ( len > maxLen ) maxLen = len ; } } } return maxLen ; } int main ( ) { bool arr1 [ ] = { 0 , 1 , 0 , 1 , 1 , 1 , 1 } ; bool arr2 [ ] = { 1 , 1 , 1 , 1 , 1 , 0 , 1 } ; int n = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; cout << " Length ▁ of ▁ the ▁ longest ▁ common ▁ span ▁ with ▁ same ▁ " " sum ▁ is ▁ " << longestCommonSum ( arr1 , arr2 , n ) ; return 0 ; }
Number of Longest Increasing Subsequences | C ++ program for the above approach ; Function to count the number of LIS in the array nums [ ] ; Base Case ; Initialize dp_l array with 1 s ; Initialize dp_c array with 1 s ; If current element is smaller ; Store the maximum element from dp_l ; Stores the count of LIS ; Traverse dp_l and dp_c simultaneously ; Update the count ; Return the count of LIS ; Driver code ; Given array arr [ ] ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findNumberOfLIS ( vector < int > nums ) { if ( nums . size ( ) == 0 ) return 0 ; int n = nums . size ( ) ; vector < int > dp_l ( n , 1 ) ; vector < int > dp_c ( n , 1 ) ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < i ; j ++ ) { if ( nums [ i ] <= nums [ j ] ) continue ; if ( dp_l [ j ] + 1 > dp_l [ i ] ) { dp_l [ i ] = dp_l [ j ] + 1 ; dp_c [ i ] = dp_c [ j ] ; } else if ( dp_l [ j ] + 1 == dp_l [ i ] ) dp_c [ i ] += dp_c [ j ] ; } } int max_length = 0 ; for ( int i : dp_l ) max_length = max ( i , max_length ) ; int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( dp_l [ i ] == max_length ) count += dp_c [ i ] ; } return count ; } int main ( ) { vector < int > arr = { 1 , 3 , 5 , 4 , 7 } ; cout << findNumberOfLIS ( arr ) << endl ; }
Check if a Binary Tree contains node values in strictly increasing and decreasing order at even and odd levels | C ++ program for the above approach ; Function to check if given binary tree satisfies the required conditions ; Queue to store nodes of each level ; Stores the current level of the binary tree ; Traverse until the queue is empty ; Stores the number of nodes present in the current level ; Insert left and right child of node into the queue ; If the level is even ; If the nodes in this level are in strictly increasing order or not ; If the level is odd ; If the nodes in this level are in strictly decreasing order or not ; Increment the level count ; Driver Code ; Construct a Binary Tree ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int val ; Node * left , * right ; } ; struct Node * newNode ( int data ) { struct Node * temp = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; temp -> val = data ; temp -> left = NULL ; temp -> right = NULL ; return temp ; } bool checkEvenOddLevel ( Node * root ) { if ( root == NULL ) return true ; queue < Node * > q ; q . push ( root ) ; int level = 0 ; while ( q . empty ( ) ) { vector < int > vec ; int size = q . size ( ) ; for ( int i = 0 ; i < size ; i ++ ) { Node * node = q . front ( ) ; vec . push_back ( node -> val ) ; if ( node -> left != NULL ) q . push ( node -> left ) ; if ( node -> right != NULL ) q . push ( node -> right ) ; } if ( level % 2 == 0 ) { for ( int i = 0 ; i < vec . size ( ) - 1 ; i ++ ) { if ( vec [ i + 1 ] > vec [ i ] ) continue ; return false ; } } else if ( level % 2 == 1 ) { for ( int i = 0 ; i < vec . size ( ) - 1 ; i ++ ) { if ( vec [ i + 1 ] < vec [ i ] ) continue ; return false ; } } level ++ ; } return true ; } int main ( ) { Node * root = NULL ; root = newNode ( 2 ) ; root -> left = newNode ( 6 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 7 ) ; root -> right -> right = newNode ( 11 ) ; root -> left -> left -> left = newNode ( 10 ) ; root -> left -> left -> right = newNode ( 5 ) ; root -> left -> right -> right = newNode ( 1 ) ; if ( checkEvenOddLevel ( root ) ) cout << " YES " ; else cout << " NO " ; }
Longest Span with same Sum in two Binary arrays | C ++ program to find largest subarray with equal number of 0 ' s ▁ and ▁ 1' s . ; Returns largest common subarray with equal number of 0 s and 1 s in both of t ; Find difference between the two ; Creates an empty hashMap hM ; Initialize sum of elements ; Initialize result ; Traverse through the given array ; Add current element to sum ; To handle sum = 0 at last index ; If this sum is seen before , then update max_len if required ; Else put this sum in hash table ; Driver progra + m to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int longestCommonSum ( bool arr1 [ ] , bool arr2 [ ] , int n ) { int arr [ n ] ; for ( int i = 0 ; i < n ; i ++ ) arr [ i ] = arr1 [ i ] - arr2 [ i ] ; unordered_map < int , int > hM ; int sum = 0 ; int max_len = 0 ; for ( int i = 0 ; i < n ; i ++ ) { sum += arr [ i ] ; if ( sum == 0 ) max_len = i + 1 ; if ( hM . find ( sum ) != hM . end ( ) ) max_len = max ( max_len , i - hM [ sum ] ) ; else hM [ sum ] = i ; } return max_len ; } int main ( ) { bool arr1 [ ] = { 0 , 1 , 0 , 1 , 1 , 1 , 1 } ; bool arr2 [ ] = { 1 , 1 , 1 , 1 , 1 , 0 , 1 } ; int n = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; cout << longestCommonSum ( arr1 , arr2 , n ) ; return 0 ; }
Minimum length of Run Length Encoding possible by removing at most K characters from a given string | C ++ Program to implement the above approach ; Function which solves the desired problem ; Base Case ; If the entire string has been traversed ; If precomputed subproblem occurred ; Minimum run length encoding by removing the current character ; Minimum run length encoding by retaining the current character ; If the current and the previous characters match ; Otherwise ; Function to return minimum run - length encoding for string s by removing atmost k characters ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define maxN 20 NEW_LINE int dp [ maxN ] [ maxN ] [ 27 ] [ maxN ] ; int solve ( string & s , int n , int idx , int k , char last = 123 , int count = 0 ) { if ( k < 0 ) return n + 1 ; if ( idx == n ) return 0 ; int & ans = dp [ idx ] [ k ] [ last - ' a ' ] [ count ] ; if ( ans != -1 ) return ans ; ans = n + 1 ; ans = min ( ans , solve ( s , n , idx + 1 , k - 1 , last , count ) ) ; int inc = 0 ; if ( count == 1 count == 9 count == 99 ) inc = 1 ; if ( last == s [ idx ] ) { ans = min ( ans , inc + solve ( s , n , idx + 1 , k , s [ idx ] , count + 1 ) ) ; } else { ans = min ( ans , 1 + solve ( s , n , idx + 1 , k , s [ idx ] , 1 ) ) ; } return ans ; } int MinRunLengthEncoding ( string & s , int n , int k ) { memset ( dp , -1 , sizeof ( dp ) ) ; return solve ( s , n , 0 , k ) ; } int main ( ) { string S = " abbbcdcdd " ; int N = 9 , K = 2 ; cout << MinRunLengthEncoding ( S , N , K ) ; return 0 ; }
Maximize sum by selecting M elements from the start or end of rows of a Matrix | C ++ program for the above approach ; Function to select m elements having maximum sum ; Base case ; If precomputed subproblem occurred ; Either skip the current row ; Iterate through all the possible segments of current row ; Check if it is possible to select elements from i to j ; Compuete the sum of i to j as calculated ; Store the computed answer and return ; Function to precompute the prefix sum for every row of the matrix ; Preprocessing to calculate sum from i to j ; Utility function to select m elements having maximum sum ; Preprocessing step ; Initialize dp array with - 1 ; Stores maximum sum of M elements ; Driver Code ; Given N ; Given M ; Given matrix ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; long mElementsWithMaxSum ( vector < vector < int > > matrix , int M , int block , vector < vector < int > > dp ) { if ( block == matrix . size ( ) ) return 0 ; if ( dp [ block ] [ M ] != -1 ) return dp [ block ] [ M ] ; long ans = mElementsWithMaxSum ( matrix , M , block + 1 , dp ) ; for ( int i = 0 ; i < matrix [ block ] . size ( ) ; i ++ ) { for ( int j = i ; j < matrix [ block ] . size ( ) ; j ++ ) { if ( j - i + 1 <= M ) { ans = max ( ans , matrix [ block ] [ j ] - ( ( i - 1 ) >= 0 ? matrix [ block ] [ i - 1 ] : 0 ) + mElementsWithMaxSum ( matrix , M - j + i - 1 , block + 1 , dp ) ) ; } } } return dp [ block ] [ M ] = ans ; } void preComputing ( vector < vector < int > > matrix , int N ) { for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < matrix [ i ] . size ( ) ; j ++ ) { matrix [ i ] [ j ] = ( j > 0 ? matrix [ i ] [ j - 1 ] : 0 ) + matrix [ i ] [ j ] ; } } } void mElementsWithMaxSumUtil ( vector < vector < int > > matrix , int M , int N ) { preComputing ( matrix , N ) ; long sum = 10 ; vector < vector < int > > dp ; dp . resize ( N + 5 ) ; for ( int i = 0 ; i < N + 5 ; i ++ ) for ( int j = 0 ; j < M + 5 ; j ++ ) dp [ i ] . push_back ( -1 ) ; sum += mElementsWithMaxSum ( matrix , M , 0 , dp ) ; cout << sum ; } int main ( ) { int N = 3 ; int M = 4 ; vector < vector < int > > matrix = { { 2 , 3 , 5 } , { -1 , 7 } , { 8 , 10 } } ; mElementsWithMaxSumUtil ( matrix , M , N ) ; }
Find the last remaining element after repeated removal of odd and even indexed elements alternately | C ++ 14 program for the above approach ; Function to calculate the last remaining element from the sequence ; If dp [ n ] is already calculated ; Base Case : ; Recursive call ; Return the value of dp [ n ] ; Driver Code ; Given N ; Stores the ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int lastRemaining ( int n , map < int , int > & dp ) { if ( dp . find ( n ) != dp . end ( ) ) return dp [ n ] ; if ( n == 1 ) return 1 ; else dp [ n ] = 2 * ( 1 + n / 2 - lastRemaining ( n / 2 , dp ) ) ; return dp [ n ] ; } int main ( ) { int N = 5 ; map < int , int > dp ; cout << lastRemaining ( N , dp ) ; return 0 ; }
Maximum subsequence sum possible by multiplying each element by its index | C ++ program for the above approach ; Initialize dp array ; Function to find the maximum sum of the subsequence formed ; Base Case ; If already calculated state occurs ; Include the current element ; Exclude the current element ; Update the maximum ans ; Function to calculate maximum sum of the subsequence obtained ; Initialise the dp array with - 1 ; Print the maximum sum possible ; Driver Code ; Given array ; Size of the array ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 1005 ] [ 1005 ] ; int maximumSumUtil ( int a [ ] , int index , int count , int n ) { if ( index > n count > n + 1 ) { return 0 ; } if ( dp [ index ] [ count ] != -1 ) return dp [ index ] [ count ] ; int ans1 = maximumSumUtil ( a , index + 1 , count + 1 , n ) + a [ index ] * count ; int ans2 = maximumSumUtil ( a , index + 1 , count , n ) ; return ( dp [ index ] [ count ] = max ( ans1 , ans2 ) ) ; } int maximumSum ( int arr [ ] , int N ) { memset ( dp , -1 , sizeof ( dp ) ) ; cout << maximumSumUtil ( arr , 0 , 1 , N - 1 ) ; } int main ( ) { int arr [ ] = { -1 , 2 , -10 , 4 , -20 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; maximumSum ( arr , N ) ; return 0 ; }
Sort an array according to absolute difference with given value | C ++ program to sort an array according absolute difference with x . ; Function to sort an array according absolute difference with x . ; Store values in a map with the difference with X as key ; Update the values of array ; Function to print the array ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n , int x ) { multimap < int , int > m ; multimap < int , int > :: iterator it ; for ( int i = 0 ; i < n ; i ++ ) m . insert ( make_pair ( abs ( x - arr [ i ] ) , arr [ i ] ) ) ; int i = 0 ; for ( it = m . begin ( ) ; it != m . end ( ) ; it ++ ) arr [ i ++ ] = ( * it ) . second ; } void printArray ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " ▁ " ; } int main ( ) { int arr [ ] = { 10 , 5 , 3 , 9 , 2 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int x = 7 ; rearrange ( arr , n , x ) ; printArray ( arr , n ) ; return 0 ; }
Minimum Steps to obtain N from 1 by the given operations | C ++ program to implement the above approach ; Base Case ; Recursive Call for n - 1 ; Check if n is divisible by 2 ; Check if n is divisible by 3 ; Returns a tuple ( a , b ) , where a : Minimum steps to obtain x from 1 b : Previous number ; Function that find the optimal solution ; Print the length ; Exit condition for loop = - 1 when n has reached 1 ; Return the sequence in reverse order ; Driver Code ; Given N ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; vector < int > find_sequence ( int n ) { if ( n == 1 ) return { 1 , -1 } ; auto arr = find_sequence ( n - 1 ) ; vector < int > ans = { arr [ 0 ] + 1 , n - 1 } ; if ( n % 2 == 0 ) { vector < int > div_by_2 = find_sequence ( n / 2 ) ; if ( div_by_2 [ 0 ] < ans [ 0 ] ) ans = { div_by_2 [ 0 ] + 1 , n / 2 } ; } if ( n % 3 == 0 ) { vector < int > div_by_3 = find_sequence ( n / 3 ) ; if ( div_by_3 [ 0 ] < ans [ 0 ] ) vector < int > ans = { div_by_3 [ 0 ] + 1 , n / 3 } ; } return ans ; } vector < int > find_solution ( int n ) { auto a = find_sequence ( n ) ; cout << a [ 0 ] << endl ; vector < int > sequence ; sequence . push_back ( n ) ; while ( a [ 1 ] != -1 ) { sequence . push_back ( a [ 1 ] ) ; auto arr = find_sequence ( a [ 1 ] ) ; a [ 1 ] = arr [ 1 ] ; } reverse ( sequence . begin ( ) , sequence . end ( ) ) ; return sequence ; } int main ( ) { int n = 5 ; auto i = find_solution ( n ) ; for ( int j : i ) cout << j << " ▁ " ; }
Count of vessels completely filled after a given time | C ++ program to implement the above approach ; Function to find the number of completely filled vessels ; Store the vessels ; Assuming all water is present in the vessel at the first level ; Store the number of vessel that are completely full ; Traverse all the levels ; Number of vessel at each level is j ; Calculate the exceeded amount of water ; If current vessel has less than 1 unit of water then continue ; One more vessel is full ; If left bottom vessel present ; If right bottom vessel present ; Driver Code ; Number of levels ; Number of seconds ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int n , t ; int FindNoOfFullVessels ( int n , int t ) { double Matrix [ n ] [ n ] ; Matrix [ 0 ] [ 0 ] = t * 1.0 ; int ans = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j <= i ; j ++ ) { double exceededwater = Matrix [ i ] [ j ] - 1.0 ; if ( exceededwater < 0 ) continue ; ans ++ ; if ( i + 1 < n ) Matrix [ i + 1 ] [ j ] += exceededwater / 2 ; if ( i + 1 < n && j + 1 < n ) Matrix [ i + 1 ] [ j + 1 ] += exceededwater / 2 ; } } return ans ; } int main ( ) { int N = 3 ; int T = 4 ; cout << FindNoOfFullVessels ( N , T ) << endl ; return 0 ; }
Sort an array in wave form | A C ++ program to sort an array in wave form using a sorting function ; A utility method to swap two numbers . ; This function sorts arr [ 0. . n - 1 ] in wave form , i . e . , arr [ 0 ] >= arr [ 1 ] <= arr [ 2 ] >= arr [ 3 ] <= arr [ 4 ] >= arr [ 5 ] . . ; Sort the input array ; Swap adjacent elements ; Driver program to test above function
#include <iostream> NEW_LINE #include <algorithm> NEW_LINE using namespace std ; void swap ( int * x , int * y ) { int temp = * x ; * x = * y ; * y = temp ; } void sortInWave ( int arr [ ] , int n ) { sort ( arr , arr + n ) ; for ( int i = 0 ; i < n - 1 ; i += 2 ) swap ( & arr [ i ] , & arr [ i + 1 ] ) ; } int main ( ) { int arr [ ] = { 10 , 90 , 49 , 2 , 1 , 5 , 23 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; sortInWave ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " ▁ " ; return 0 ; }
Count of maximum occurring subsequence using only those characters whose indices are in GP | C ++ program for the above approach ; Function to count maximum occurring subsequence using only those characters whose indexes are in GP ; Initialize 1 - D array and 2 - D dp array to 0 ; Iterate till the length of the given string ; Update ans for 1 - length subsequence ; Update ans for 2 - length subsequence ; Return the answer ; Driver Code ; Given string s ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMaxTimes ( string S ) { long long int arr [ 26 ] ; long long int dp [ 26 ] [ 26 ] ; memset ( arr , 0 , sizeof ( arr ) ) ; memset ( dp , 0 , sizeof ( dp ) ) ; for ( int i = 0 ; i < S . size ( ) ; i ++ ) { int now = S [ i ] - ' a ' ; for ( int j = 0 ; j < 26 ; j ++ ) { dp [ j ] [ now ] += arr [ j ] ; } arr [ now ] ++ ; } long long int ans = 0 ; for ( int i = 0 ; i < 26 ; i ++ ) ans = max ( ans , arr [ i ] ) ; for ( int i = 0 ; i < 26 ; i ++ ) { for ( int j = 0 ; j < 26 ; j ++ ) { ans = max ( ans , dp [ i ] [ j ] ) ; } } return ans ; } int main ( ) { string S = " ddee " ; cout << findMaxTimes ( S ) ; return 0 ; }
Sort an array in wave form | A O ( n ) program to sort an input array in wave form ; A utility method to swap two numbers . ; This function sorts arr [ 0. . n - 1 ] in wave form , i . e . , arr [ 0 ] >= arr [ 1 ] <= arr [ 2 ] >= arr [ 3 ] <= arr [ 4 ] >= arr [ 5 ] ... . ; Traverse all even elements ; If current even element is smaller than previous ; If current even element is smaller than next ; Driver program to test above function
#include <iostream> NEW_LINE using namespace std ; void swap ( int * x , int * y ) { int temp = * x ; * x = * y ; * y = temp ; } void sortInWave ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i += 2 ) { if ( i > 0 && arr [ i - 1 ] > arr [ i ] ) swap ( & arr [ i ] , & arr [ i - 1 ] ) ; if ( i < n - 1 && arr [ i ] < arr [ i + 1 ] ) swap ( & arr [ i ] , & arr [ i + 1 ] ) ; } } int main ( ) { int arr [ ] = { 10 , 90 , 49 , 2 , 1 , 5 , 23 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; sortInWave ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " ▁ " ; return 0 ; }
Remove all nodes which don 't lie in any path with sum>= k | ; A Binary Tree Node ; A utility function to create a new Binary Tree node with given data ; print the tree in LVR ( Inorder traversal ) way . ; Main function which truncates the binary tree . ; Base Case ; Recur for left and right subtrees ; If we reach leaf whose data is smaller than sum , we delete the leaf . An important thing to note is a non - leaf node can become leaf when its chilren are deleted . ; Driver program to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left , * right ; } ; struct Node * newNode ( int data ) { struct Node * node = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; node -> data = data ; node -> left = node -> right = NULL ; return node ; } void print ( struct Node * root ) { if ( root != NULL ) { print ( root -> left ) ; cout << root -> data << " ▁ " ; print ( root -> right ) ; } } struct Node * prune ( struct Node * root , int sum ) { if ( root == NULL ) return NULL ; root -> left = prune ( root -> left , sum - root -> data ) ; root -> right = prune ( root -> right , sum - root -> data ) ; if ( root -> left == NULL && root -> right == NULL ) { if ( root -> data < sum ) { free ( root ) ; return NULL ; } } return root ; } int main ( ) { int k = 45 ; struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 4 ) ; root -> left -> right = newNode ( 5 ) ; root -> right -> left = newNode ( 6 ) ; root -> right -> right = newNode ( 7 ) ; root -> left -> left -> left = newNode ( 8 ) ; root -> left -> left -> right = newNode ( 9 ) ; root -> left -> right -> left = newNode ( 12 ) ; root -> right -> right -> left = newNode ( 10 ) ; root -> right -> right -> left -> right = newNode ( 11 ) ; root -> left -> left -> right -> left = newNode ( 13 ) ; root -> left -> left -> right -> right = newNode ( 14 ) ; root -> left -> left -> right -> right -> left = newNode ( 15 ) ; cout << " Tree ▁ before ▁ truncation STRNEWLINE " ; print ( root ) ; root = prune ( root , k ) ; cout << " Tree after truncation " ; print ( root ) ; return 0 ; }
Count all possible unique sum of series K , K + 1 , K + 2 , K + 3 , K + 4 , ... , K + N | C ++ program for the above approach ; Function to count the unique sum ; Initialize array fsum [ ] with 0 ; Initialize array rsum [ ] with 0 ; Set fsum [ 0 ] as ar [ 0 ] ; Set rsum [ 0 ] as ar [ n ] ; For each i update fsum [ i ] with ar [ i ] + fsum [ i - 1 ] ; For each i from n - 1 , update rsum [ i ] with ar [ i ] + fsum [ i + 1 ] ; K represent size of subset as explained above ; Using above relation ; Return the result ; Driver Code ; Given a number N ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int count_unique_sum ( int n ) { int i , ar [ n + 1 ] , fsum [ n + 1 ] ; int rsum [ n + 1 ] , ans = 1 ; memset ( fsum , 0 , sizeof fsum ) ; memset ( rsum , 0 , sizeof rsum ) ; for ( i = 0 ; i <= n ; i ++ ) { ar [ i ] = i ; } fsum [ 0 ] = ar [ 0 ] ; rsum [ n ] = ar [ n ] ; for ( i = 1 ; i <= n ; i ++ ) { fsum [ i ] = ar [ i ] + fsum [ i - 1 ] ; } for ( i = n - 1 ; i >= 0 ; i -- ) { rsum [ i ] = ar [ i ] + rsum [ i + 1 ] ; } for ( int k = 2 ; k <= n ; k ++ ) { ans += 1 + rsum [ n + 1 - k ] - fsum [ k - 1 ] ; } return ans ; } int main ( ) { int N = 4 ; cout << count_unique_sum ( N ) ; return 0 ; }
Merge an array of size n into another array of size m + n | C ++ program to Merge an array of size n into another array of size m + n ; Assuming - 1 is filled for the places where element is not available ; Function to move m elements at the end of array mPlusN [ ] ; Merges array N [ ] of size n into array mPlusN [ ] of size m + n ; Current index of i / p part of mPlusN [ ] ; Current index of N [ ] ; Current index of output mPlusN [ ] ; Take an element from mPlusN [ ] if a ) value of the picked element is smaller and we have not reached end of it b ) We have reached end of N [ ] ; Otherwise take element from N [ ] ; Utility that prints out an array on a line ; Driver code ; Initialize arrays ; Move the m elements at the end of mPlusN ; Merge N [ ] into mPlusN [ ] ; Print the resultant mPlusN
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define NA -1 NEW_LINE void moveToEnd ( int mPlusN [ ] , int size ) { int j = size - 1 ; for ( int i = size - 1 ; i >= 0 ; i -- ) if ( mPlusN [ i ] != NA ) { mPlusN [ j ] = mPlusN [ i ] ; j -- ; } } int merge ( int mPlusN [ ] , int N [ ] , int m , int n ) { int i = n ; int j = 0 ; int k = 0 ; while ( k < ( m + n ) ) { if ( ( j == n ) || ( i < ( m + n ) && mPlusN [ i ] <= N [ j ] ) ) { mPlusN [ k ] = mPlusN [ i ] ; k ++ ; i ++ ; } else { mPlusN [ k ] = N [ j ] ; k ++ ; j ++ ; } } } void printArray ( int arr [ ] , int size ) { for ( int i = 0 ; i < size ; i ++ ) cout << arr [ i ] << " ▁ " ; cout << endl ; } int main ( ) { int mPlusN [ ] = { 2 , 8 , NA , NA , NA , 13 , NA , 15 , 20 } ; int N [ ] = { 5 , 7 , 9 , 25 } ; int n = sizeof ( N ) / sizeof ( N [ 0 ] ) ; int m = sizeof ( mPlusN ) / sizeof ( mPlusN [ 0 ] ) - n ; moveToEnd ( mPlusN , m + n ) ; merge ( mPlusN , N , m , n ) ; printArray ( mPlusN , m + n ) ; return 0 ; }
Count of N | C ++ Program to implement the above approach ; Function to find maximum between two numbers ; Function to find minimum between two numbers ; Function to return the count of such numbers ; For 1 - digit numbers , the count is 10 irrespective of K ; dp [ j ] stores the number of such i - digit numbers ending with j ; Stores the results of length i ; Initialize count for 1 - digit numbers ; Compute values for count of digits greater than 1 ; Find the range of allowed numbers if last digit is j ; Perform Range update ; Prefix sum to find actual count of i - digit numbers ending with j ; Update dp [ ] ; Stores the final answer ; Return the final answer ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int max ( int num1 , int num2 ) { return ( num1 > num2 ) ? num1 : num2 ; } int min ( int num1 , int num2 ) { return ( num1 > num2 ) ? num2 : num1 ; } int getCount ( int n , int k ) { if ( n == 1 ) return 10 ; int dp [ 11 ] = { 0 } ; int next [ 11 ] = { 0 } ; for ( int i = 1 ; i <= 9 ; i ++ ) dp [ i ] = 1 ; for ( int i = 2 ; i <= n ; i ++ ) { for ( int j = 0 ; j <= 9 ; j ++ ) { int l = max ( 0 , ( j - k ) ) ; int r = min ( 9 , ( j + k ) ) ; next [ l ] += dp [ j ] ; next [ r + 1 ] -= dp [ j ] ; } for ( int j = 1 ; j <= 9 ; j ++ ) next [ j ] += next [ j - 1 ] ; for ( int j = 0 ; j < 10 ; j ++ ) { dp [ j ] = next [ j ] ; next [ j ] = 0 ; } } int count = 0 ; for ( int i = 0 ; i <= 9 ; i ++ ) count += dp [ i ] ; return count ; } int main ( ) { int n = 2 , k = 1 ; cout << getCount ( n , k ) ; return 0 ; }
Sort 1 to N by swapping adjacent elements | CPP program to test whether array can be sorted by swapping adjacent elements using boolean array ; Return true if array can be sorted otherwise false ; Check bool array B and sorts elements for continuous sequence of 1 ; Sort array A from i to j ; Check if array is sorted or not ; Driver program to test sortedAfterSwap ( )
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool sortedAfterSwap ( int A [ ] , bool B [ ] , int n ) { int i , j ; for ( i = 0 ; i < n - 1 ; i ++ ) { if ( B [ i ] ) { j = i ; while ( B [ j ] ) j ++ ; sort ( A + i , A + 1 + j ) ; i = j ; } } for ( i = 0 ; i < n ; i ++ ) { if ( A [ i ] != i + 1 ) return false ; } return true ; } int main ( ) { int A [ ] = { 1 , 2 , 5 , 3 , 4 , 6 } ; bool B [ ] = { 0 , 1 , 1 , 1 , 0 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; if ( sortedAfterSwap ( A , B , n ) ) cout << " A ▁ can ▁ be ▁ sorted STRNEWLINE " ; else cout << " A ▁ can ▁ not ▁ be ▁ sorted STRNEWLINE " ; return 0 ; }
Print negative weight cycle in a Directed Graph | C ++ program for the above approach ; Structure to represent a weighted edge in graph ; Structure to represent a directed and weighted graph ; V -> Number of vertices , E -> Number of edges ; Graph is represented as an array of edges ; Creates a new graph with V vertices and E edges ; Function runs Bellman - Ford algorithm and prints negative cycle ( if present ) ; Initialize distances from src to all other vertices as INFINITE and all parent as - 1 ; Relax all edges | V | - 1 times . ; Check for negative - weight cycles ; Store one of the vertex of the negative weight cycle ; To store the cycle vertex ; Reverse cycle [ ] ; Printing the negative cycle ; Driver Code ; Number of vertices in graph ; Number of edges in graph ; Given Graph ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Edge { int src , dest , weight ; } ; struct Graph { int V , E ; struct Edge * edge ; } ; struct Graph * createGraph ( int V , int E ) { struct Graph * graph = new Graph ; graph -> V = V ; graph -> E = E ; graph -> edge = new Edge [ graph -> E ] ; return graph ; } void NegCycleBellmanFord ( struct Graph * graph , int src ) { int V = graph -> V ; int E = graph -> E ; int dist [ V ] ; int parent [ V ] ; for ( int i = 0 ; i < V ; i ++ ) { dist [ i ] = INT_MAX ; parent [ i ] = -1 ; } dist [ src ] = 0 ; for ( int i = 1 ; i <= V - 1 ; i ++ ) { for ( int j = 0 ; j < E ; j ++ ) { int u = graph -> edge [ j ] . src ; int v = graph -> edge [ j ] . dest ; int weight = graph -> edge [ j ] . weight ; if ( dist [ u ] != INT_MAX && dist [ u ] + weight < dist [ v ] ) { dist [ v ] = dist [ u ] + weight ; parent [ v ] = u ; } } } int C = -1 ; for ( int i = 0 ; i < E ; i ++ ) { int u = graph -> edge [ i ] . src ; int v = graph -> edge [ i ] . dest ; int weight = graph -> edge [ i ] . weight ; if ( dist [ u ] != INT_MAX && dist [ u ] + weight < dist [ v ] ) { C = v ; break ; } } if ( C != -1 ) { for ( int i = 0 ; i < V ; i ++ ) C = parent [ C ] ; vector < int > cycle ; for ( int v = C ; ; v = parent [ v ] ) { cycle . push_back ( v ) ; if ( v == C && cycle . size ( ) > 1 ) break ; } reverse ( cycle . begin ( ) , cycle . end ( ) ) ; for ( int v : cycle ) cout << v << ' ▁ ' ; cout << endl ; } else cout << " - 1" << endl ; } int main ( ) { int V = 5 ; int E = 5 ; struct Graph * graph = createGraph ( V , E ) ; graph -> edge [ 0 ] . src = 0 ; graph -> edge [ 0 ] . dest = 1 ; graph -> edge [ 0 ] . weight = 1 ; graph -> edge [ 1 ] . src = 1 ; graph -> edge [ 1 ] . dest = 2 ; graph -> edge [ 1 ] . weight = 2 ; graph -> edge [ 2 ] . src = 2 ; graph -> edge [ 2 ] . dest = 3 ; graph -> edge [ 2 ] . weight = 3 ; graph -> edge [ 3 ] . src = 3 ; graph -> edge [ 3 ] . dest = 4 ; graph -> edge [ 3 ] . weight = -3 ; graph -> edge [ 4 ] . src = 4 ; graph -> edge [ 4 ] . dest = 1 ; graph -> edge [ 4 ] . weight = -3 ; NegCycleBellmanFord ( graph , 0 ) ; return 0 ; }
Sort 1 to N by swapping adjacent elements | CPP program to test whether array can be sorted by swapping adjacent elements using boolean array ; Return true if array can be sorted otherwise false ; Check if array is sorted or not ; Driver program to test sortedAfterSwap ( )
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool sortedAfterSwap ( int A [ ] , bool B [ ] , int n ) { for ( int i = 0 ; i < n - 1 ; i ++ ) { if ( B [ i ] ) { if ( A [ i ] != i + 1 ) swap ( A [ i ] , A [ i + 1 ] ) ; } } for ( int i = 0 ; i < n ; i ++ ) { if ( A [ i ] != i + 1 ) return false ; } return true ; } int main ( ) { int A [ ] = { 1 , 2 , 5 , 3 , 4 , 6 } ; bool B [ ] = { 0 , 1 , 1 , 1 , 0 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; if ( sortedAfterSwap ( A , B , n ) ) cout << " A ▁ can ▁ be ▁ sorted STRNEWLINE " ; else cout << " A ▁ can ▁ not ▁ be ▁ sorted STRNEWLINE " ; return 0 ; }
Sort an array containing two types of elements | CPP program to sort an array with two types of values in one traversal . ; Method for segregation 0 and 1 given input array ; Driver program
#include <bits/stdc++.h> NEW_LINE using namespace std ; void segregate0and1 ( int arr [ ] , int n ) { int type0 = 0 ; int type1 = n - 1 ; while ( type0 < type1 ) { if ( arr [ type0 ] == 1 ) { swap ( arr [ type0 ] , arr [ type1 ] ) ; type1 -- ; } else { type0 ++ ; } } } int main ( ) { int arr [ ] = { 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; segregate0and1 ( arr , n ) ; for ( int a : arr ) cout << a << " ▁ " ; }
Pentanacci Numbers | A simple recursive program to print Nth Pentanacci number ; Recursive function to find the Nth Pentanacci number ; Function to print the Nth Pentanacci number ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int printpentaRec ( int n ) { if ( n == 0 n == 1 n == 2 n == 3 n == 4 ) return 0 ; else if ( n == 5 ) return 1 ; else return ( printpentaRec ( n - 1 ) + printpentaRec ( n - 2 ) + printpentaRec ( n - 3 ) + printpentaRec ( n - 4 ) + printpentaRec ( n - 5 ) ) ; } void printPenta ( int n ) { cout << printpentaRec ( n ) << " STRNEWLINE " ; } int main ( ) { int n = 10 ; printPenta ( n ) ; return 0 ; }
Count Inversions in an array | Set 1 ( Using Merge Sort ) | C ++ program to Count Inversions in an array ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int getInvCount ( int arr [ ] , int n ) { int inv_count = 0 ; for ( int i = 0 ; i < n - 1 ; i ++ ) for ( int j = i + 1 ; j < n ; j ++ ) if ( arr [ i ] > arr [ j ] ) inv_count ++ ; return inv_count ; } int main ( ) { int arr [ ] = { 1 , 20 , 6 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " ▁ Number ▁ of ▁ inversions ▁ are ▁ " << getInvCount ( arr , n ) ; return 0 ; }
Find if there is a path between two vertices in an undirected graph | C ++ program to check if there is exist a path between two vertices of an undirected graph . ; function to add an edge to graph ; A BFS based function to check whether d is reachable from s . ; Base case ; Mark all the vertices as not visited ; Create a queue for BFS ; Mark the current node as visited and enqueue it ; Dequeue a vertex from queue and print it ; Get all adjacent vertices of the dequeued vertex s If a adjacent has not been visited , then mark it visited and enqueue it ; If this adjacent node is the destination node , then return true ; Else , continue to do BFS ; If BFS is complete without visiting d ; Driver program to test methods of graph class ; Create a graph in the above diagram
#include <bits/stdc++.h> NEW_LINE using namespace std ; vector < vector < int > > adj ; void addEdge ( int v , int w ) { adj [ v ] . push_back ( w ) ; adj [ w ] . push_back ( v ) ; } bool isReachable ( int s , int d ) { if ( s == d ) return true ; int n = ( int ) adj . size ( ) ; vector < bool > visited ( n , false ) ; queue < int > q ; visited [ s ] = true ; q . push ( s ) ; while ( ! q . empty ( ) ) { s = q . front ( ) ; q . pop ( ) ; for ( auto x : adj [ s ] ) { if ( x == d ) return true ; if ( ! visited [ x ] ) { visited [ x ] = true ; q . push ( x ) ; } } } return false ; } int main ( ) { int n = 4 ; adj = vector < vector < int > > ( n ) ; addEdge ( 0 , 1 ) ; addEdge ( 0 , 2 ) ; addEdge ( 1 , 2 ) ; addEdge ( 2 , 0 ) ; addEdge ( 2 , 3 ) ; addEdge ( 3 , 3 ) ; int u = 1 , v = 3 ; if ( isReachable ( u , v ) ) cout << " There is a path from " ▁ < < ▁ u ▁ < < ▁ " to " ▁ < < ▁ v ; STRNEWLINE TABSYMBOL else STRNEWLINE TABSYMBOL TABSYMBOL cout ▁ < < ▁ " There is no path from " ▁ < < ▁ u ▁ < < ▁ " to " return 0 ; }
Range queries for alternatively addition and subtraction on given Array | C ++ program for the above approach ; Structure to represent a range query ; Function to find the result of alternatively adding and subtracting elements in the range [ L , R ] ; A boolean variable flag to alternatively add and subtract ; Iterate from [ L , R ] ; if flag is false , then add & toggle the flag ; if flag is true subtract and toggle the flag ; Return the final result ; Function to find the value for each query ; Iterate for each query ; Driver Code ; Given array ; Given Queries ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Query { int L , R ; } ; int findResultUtil ( int arr [ ] , int L , int R ) { int result = 0 ; bool flag = false ; for ( int i = L ; i <= R ; i ++ ) { if ( flag == false ) { result = result + arr [ i ] ; flag = true ; } else { result = result - arr [ i ] ; flag = false ; } } return result ; } void findResult ( int arr [ ] , int n , Query q [ ] , int m ) { for ( int i = 0 ; i < m ; i ++ ) { cout << findResultUtil ( arr , q [ i ] . L , q [ i ] . R ) << " ▁ " ; } } int main ( ) { int arr [ ] = { 10 , 13 , 15 , 2 , 45 , 31 , 22 , 3 , 27 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; Query q [ ] = { { 2 , 5 } , { 6 , 8 } , { 1 , 7 } , { 4 , 8 } , { 0 , 5 } } ; int m = sizeof ( q ) / sizeof ( q [ 0 ] ) ; findResult ( arr , n , q , m ) ; return 0 ; }
Two elements whose sum is closest to zero | C ++ code to find Two elements whose sum is closest to zero ; Array should have at least two elements ; Initialization of values ; Driver Code
# include <bits/stdc++.h> NEW_LINE # include <stdlib.h> NEW_LINE # include <math.h> NEW_LINE using namespace std ; void minAbsSumPair ( int arr [ ] , int arr_size ) { int inv_count = 0 ; int l , r , min_sum , sum , min_l , min_r ; if ( arr_size < 2 ) { cout << " Invalid ▁ Input " ; return ; } min_l = 0 ; min_r = 1 ; min_sum = arr [ 0 ] + arr [ 1 ] ; for ( l = 0 ; l < arr_size - 1 ; l ++ ) { for ( r = l + 1 ; r < arr_size ; r ++ ) { sum = arr [ l ] + arr [ r ] ; if ( abs ( min_sum ) > abs ( sum ) ) { min_sum = sum ; min_l = l ; min_r = r ; } } } cout << " The ▁ two ▁ elements ▁ whose ▁ sum ▁ is ▁ minimum ▁ are ▁ " << arr [ min_l ] << " ▁ and ▁ " << arr [ min_r ] ; } int main ( ) { int arr [ ] = { 1 , 60 , -10 , 70 , -80 , 85 } ; minAbsSumPair ( arr , 6 ) ; return 0 ; }
Maximize sum of topmost elements of S stacks by popping at most N elements | C ++ Program to maximize the sum of top of the stack values of S stacks by popping at most N elements ; Function for computing the maximum sum at the top of the stacks after popping at most N elements from S stack ; Constructing a dp matrix of dimensions ( S + 1 ) x ( N + 1 ) ; Initialize all states ; Loop over all i stacks ; Store the maximum of popping j elements up to the current stack by popping k elements from current stack and j - k elements from all previous stacks combined ; Store the maximum sum of popping N elements across all stacks ; dp [ S ] [ N ] has the maximum sum ; Driver Program ; Number of stacks ; Length of each stack ; Maximum elements that can be popped
#include <bits/stdc++.h> NEW_LINE using namespace std ; int maximumSum ( int S , int M , int N , vector < vector < int > > & stacks ) { int dp [ S + 1 ] [ N + 1 ] ; memset ( dp , INT_MIN , sizeof ( dp ) ) ; for ( int i = 0 ; i < S ; i ++ ) { for ( int j = 0 ; j <= N ; j ++ ) { for ( int k = 0 ; k <= min ( j , M ) ; k ++ ) { dp [ i + 1 ] [ j ] = max ( dp [ i + 1 ] [ j ] , stacks [ i ] [ k ] + dp [ i ] [ j - k ] ) ; } } } int result = INT_MIN ; for ( int i = 0 ; i <= N ; i ++ ) { result = max ( result , dp [ S ] [ i ] ) ; } return result ; } int main ( ) { int S = 2 ; int M = 4 ; vector < vector < int > > stacks = { { 2 , 6 , 4 , 5 } , { 1 , 6 , 15 , 10 } } ; int N = 3 ; cout << maximumSum ( S , M , N , stacks ) ; return 0 ; }
Abstraction of Binary Search | C ++ program for the above example ; Function to find X such that it is less than the target value and function is f ( x ) = x ^ 2 ; Initialise start and end ; Loop till start <= end ; Find the mid ; Check for the left half ; Store the result ; Reinitialize the start point ; Check for the right half ; Print the maximum value of x such that x ^ 2 is less than the targetValue ; Driver Code ; Given targetValue ; ; Function Call
#include " bits / stdc + + . h " NEW_LINE using namespace std ; void findX ( int targetValue ) { int start = 0 , end = targetValue ; int mid , result ; while ( start <= end ) { mid = start + ( end - start ) / 2 ; if ( mid * mid <= targetValue ) { result = mid ; start = mid + 1 ; } else { end = mid - 1 ; } } cout << result << endl ; } int main ( ) { int targetValue = 81 ; findX ( targetValue ) ; }
Two elements whose sum is closest to zero | C ++ implementation using STL ; Modified to sort by abolute values ; Absolute value shows how close it is to zero ; if found an even close value update min and store the index ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool compare ( int x , int y ) { return abs ( x ) < abs ( y ) ; } void findMinSum ( int arr [ ] , int n ) { sort ( arr , arr + n , compare ) ; int min = INT_MAX , x , y ; for ( int i = 1 ; i < n ; i ++ ) { if ( abs ( arr [ i - 1 ] + arr [ i ] ) <= min ) { min = abs ( arr [ i - 1 ] + arr [ i ] ) ; x = i - 1 ; y = i ; } } cout << " The ▁ two ▁ elements ▁ whose ▁ sum ▁ is ▁ minimum ▁ are ▁ " << arr [ x ] << " ▁ and ▁ " << arr [ y ] ; } int main ( ) { int arr [ ] = { 1 , 60 , -10 , 70 , -80 , 85 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; findMinSum ( arr , n ) ; return 0 ; }
Number of ways to paint K cells in 3 x N grid such that no P continuous columns are left unpainted | C ++ implementation to find the number of ways to paint K cells of 3 x N grid such that No two adjacent cells are painted ; Visited array to keep track of which columns were painted ; Recursive Function to compute the number of ways to paint the K cells of the 3 x N grid ; Condition to check if total cells painted are K ; Check if any P continuous columns were left unpainted ; Condition to check if no P continuous columns were left unpainted ; return 0 if there are P continuous columns are left unpainted ; Condition to check if No further cells can be painted , so return 0 ; if already calculated the value return the val instead of calculating again ; Previous column was not painted ; Column is painted so , make vis [ col ] = true ; Condition to check if the number of cells to be painted is equal to or more than 2 , then we can paint first and third row ; Condition to check if number of previous continuous columns left unpainted is less than P ; Condition to check if first row was painted in previous column ; Condition to check if second row was painted in previous column ; Condition to check if the number of cells to be painted is equal to or more than 2 , then we can paint first and third row ; Condition to check if third row was painted in previous column ; Condition to check if first and third row were painted in previous column ; Memoize the data and return the Computed value ; Function to find the number of ways to paint 3 x N grid ; Set all values of dp to - 1 ; ; Set all values of Visited array to false ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int mod = 1e9 + 7 ; #define MAX 301 NEW_LINE #define MAXP 3 NEW_LINE #define MAXK 600 NEW_LINE #define MAXPREV 4 NEW_LINE int dp [ MAX ] [ MAXP + 1 ] [ MAXK ] [ MAXPREV + 1 ] ; bool vis [ MAX ] ; int helper ( int col , int prevCol , int painted , int prev , int N , int P , int K ) { if ( painted >= K ) { int continuousCol = 0 ; int maxContinuousCol = 0 ; for ( int i = 0 ; i < N ; i ++ ) { if ( vis [ i ] == false ) continuousCol ++ ; else { maxContinuousCol = max ( maxContinuousCol , continuousCol ) ; continuousCol = 0 ; } } maxContinuousCol = max ( maxContinuousCol , continuousCol ) ; if ( maxContinuousCol < P ) return 1 ; return 0 ; } if ( col >= N ) return 0 ; if ( dp [ col ] [ prevCol ] [ painted ] [ prev ] != -1 ) return dp [ col ] [ prevCol ] [ painted ] [ prev ] ; int res = 0 ; if ( prev == 0 ) { vis [ col ] = true ; res += ( helper ( col + 1 , 0 , painted + 1 , 1 , N , P , K ) ) % mod ; res += ( helper ( col + 1 , 0 , painted + 1 , 2 , N , P , K ) ) % mod ; res += ( helper ( col + 1 , 0 , painted + 1 , 3 , N , P , K ) ) % mod ; if ( painted + 2 <= K ) { res += ( helper ( col + 1 , 0 , painted + 2 , 4 , N , P , K ) ) % mod ; } vis [ col ] = false ; if ( prevCol + 1 < P ) { res += ( helper ( col + 1 , prevCol + 1 , painted , 0 , N , P , K ) ) % mod ; } } else if ( prev == 1 ) { vis [ col ] = true ; res += ( helper ( col + 1 , 0 , painted + 1 , 2 , N , P , K ) ) % mod ; res += ( helper ( col + 1 , 0 , painted + 1 , 3 , N , P , K ) ) % mod ; vis [ col ] = false ; if ( prevCol + 1 < P ) { res += ( helper ( col + 1 , prevCol + 1 , painted , 0 , N , P , K ) ) % mod ; } } else if ( prev == 2 ) { vis [ col ] = true ; res += ( helper ( col + 1 , 0 , painted + 1 , 1 , N , P , K ) ) % mod ; res += ( helper ( col + 1 , 0 , painted + 1 , 3 , N , P , K ) ) % mod ; if ( painted + 2 <= K ) { res += ( helper ( col + 1 , 0 , painted + 2 , 4 , N , P , K ) ) % mod ; } vis [ col ] = false ; if ( prevCol + 1 < P ) { res += ( helper ( col + 1 , prevCol + 1 , painted , 0 , N , P , K ) ) % mod ; } } else if ( prev == 3 ) { vis [ col ] = true ; res += ( helper ( col + 1 , 0 , painted + 1 , 1 , N , P , K ) ) % mod ; res += ( helper ( col + 1 , 0 , painted + 1 , 2 , N , P , K ) ) % mod ; vis [ col ] = false ; if ( prevCol + 1 < P ) { res += ( helper ( col + 1 , prevCol + 1 , painted , 0 , N , P , K ) ) % mod ; } } else { vis [ col ] = true ; res += ( helper ( col + 1 , 0 , painted + 1 , 2 , N , P , K ) ) % mod ; vis [ col ] = false ; if ( prevCol + 1 < P ) { res += ( helper ( col + 1 , prevCol + 1 , painted , 0 , N , P , K ) ) % mod ; } } return dp [ col ] [ prevCol ] [ painted ] [ prev ] = res % mod ; } int solve ( int n , int p , int k ) { memset ( dp , -1 , sizeof ( dp ) ) ; memset ( vis , false , sizeof ( vis ) ) ; return helper ( 0 , 0 , 0 , 0 , n , p , k ) ; } int main ( ) { int N = 2 , K = 2 , P = 2 ; cout << solve ( N , P , K ) << endl ; return 0 ; }
Probability of getting all possible values on throwing N dices | C ++ Program to calculate the probability of all the possible values that can be obtained throwing N dices ; Store the probabilities ; Precompute the probabilities for values possible using 1 dice ; Compute the probabilies for all values from 2 to N ; Print the result ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void dicesSum ( int n ) { vector < map < int , double > > dp ( n + 1 ) ; dp [ 1 ] = { { 1 , 1 / 6.0 } , { 2 , 1 / 6.0 } , { 3 , 1 / 6.0 } , { 4 , 1 / 6.0 } , { 5 , 1 / 6.0 } , { 6 , 1 / 6.0 } } ; for ( int i = 2 ; i <= n ; i ++ ) { for ( auto a1 : dp [ i - 1 ] ) { for ( auto a2 : dp [ 1 ] ) { dp [ i ] [ a1 . first + a2 . first ] += a1 . second * a2 . second ; } } } for ( auto a : dp [ n ] ) { cout << a . first << " ▁ " << setprecision ( 2 ) << a . second << endl ; } } int main ( ) { int n = 2 ; dicesSum ( n ) ; return 0 ; }
Convert undirected connected graph to strongly connected directed graph | C ++ program for the above approach ; To store the assigned Edges ; Flag variable to check Bridges ; Function to implement DFS Traversal ; Mark the current node as visited ; Update the order of node v ; Update the bridge_detect for node v ; Traverse the adjacency list of Node v ; Ignores if same edge is traversed ; Ignores the edge u -- > v as v -- > u is already processed ; Finds a back Edges , cycle present ; Update the bridge_detect [ v ] ; Else DFS traversal for current node in the adjacency list ; Update the bridge_detect [ v ] ; Store the current directed Edge ; Condition for Bridges ; Return flag ; Function to print the direction of edges to make graph SCCs ; Arrays to store the visited , bridge_detect and order of Nodes ; DFS Traversal from vertex 1 ; If flag is zero , then Bridge is present in the graph ; Else print the direction of Edges assigned ; Function to create graph ; Traverse the Edges ; Push the edges in an adjacency list ; Driver Code ; N vertices and M Edges ; To create Adjacency List ; Create an undirected graph ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; vector < pair < int , int > > ans ; int flag = 1 ; int dfs ( vector < int > adj [ ] , int * order , int * bridge_detect , bool * mark , int v , int l ) { mark [ v ] = 1 ; order [ v ] = order [ l ] + 1 ; bridge_detect [ v ] = order [ v ] ; for ( int i = 0 ; i < adj [ v ] . size ( ) ; i ++ ) { int u = adj [ v ] [ i ] ; if ( u == l ) { continue ; } if ( order [ v ] < order [ u ] ) { continue ; } if ( mark [ u ] ) { bridge_detect [ v ] = min ( order [ u ] , bridge_detect [ v ] ) ; } else { dfs ( adj , order , bridge_detect , mark , u , v ) ; } bridge_detect [ v ] = min ( bridge_detect [ u ] , bridge_detect [ v ] ) ; ans . push_back ( make_pair ( v , u ) ) ; } if ( bridge_detect [ v ] == order [ v ] && l != 0 ) { flag = 0 ; } return flag ; } void convert ( vector < int > adj [ ] , int n ) { int order [ n ] = { 0 } ; int bridge_detect [ n ] = { 0 } ; bool mark [ n ] ; memset ( mark , false , sizeof ( mark ) ) ; int flag = dfs ( adj , order , bridge_detect , mark , 1 , 0 ) ; if ( flag == 0 ) { cout << " - 1" ; } else { for ( auto & it : ans ) { cout << it . first << " - > " << it . second << ' ' ; } } } void createGraph ( int Edges [ ] [ 2 ] , vector < int > adj [ ] , int M ) { for ( int i = 0 ; i < M ; i ++ ) { int u = Edges [ i ] [ 0 ] ; int v = Edges [ i ] [ 1 ] ; adj [ u ] . push_back ( v ) ; adj [ v ] . push_back ( u ) ; } } int main ( ) { int N = 5 , M = 6 ; int Edges [ M ] [ 2 ] = { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } , { 1 , 4 } , { 2 , 3 } , { 3 , 4 } } ; vector < int > adj [ N ] ; createGraph ( Edges , adj , M ) ; convert ( adj , N ) ; return 0 ; }
Shortest Un | CPP program to find shortest subarray which is unsorted . ; bool function for checking an array elements are in increasing . ; bool function for checking an array elements are in decreasing . ; increasing and decreasing are two functions . if function return true value then print 0 otherwise 3. ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool increasing ( int a [ ] , int n ) { for ( int i = 0 ; i < n - 1 ; i ++ ) if ( a [ i ] >= a [ i + 1 ] ) return false ; return true ; } bool decreasing ( int a [ ] , int n ) { for ( int i = 0 ; i < n - 1 ; i ++ ) if ( a [ i ] < a [ i + 1 ] ) return false ; return true ; } int shortestUnsorted ( int a [ ] , int n ) { if ( increasing ( a , n ) == true || decreasing ( a , n ) == true ) return 0 ; else return 3 ; } int main ( ) { int ar [ ] = { 7 , 9 , 10 , 8 , 11 } ; int n = sizeof ( ar ) / sizeof ( ar [ 0 ] ) ; cout << shortestUnsorted ( ar , n ) ; return 0 ; }
Find the maximum path sum between two leaves of a binary tree | C ++ program to find maximum path sum between two leaves of a binary tree ; A binary tree node ; Utility function to allocate memory for a new node ; Utility function to find maximum of two integers ; A utility function to find the maximum sum between anytwo leaves . This function calculates two values : 1 ) Maximum path sum between two leaves which is stored in res . 2 ) The maximum root to leaf path sum which is returned . If one side of root is empty , then it returns INT_MIN ; Base cases ; Find maximum sum in left and right subtree . Also find maximum root to leaf sums in left and right subtrees and store them in ls and rs ; If both left and right children exist ; Update result if needed ; Return maxium possible value for root being on one side ; If any of the two children is empty , return root sum for root being on one side ; The main function which returns sum of the maximum sum path between two leaves . This function mainly uses maxPathSumUtil ( ) ; -- - for test case -- - 7 / \ Null - 3 ( case - 1 ) value of res will be INT_MIN but the answer is 4 , which is returned by the function maxPathSumUtil ( ) . ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left , * right ; } ; struct Node * newNode ( int data ) { struct Node * node = new ( struct Node ) ; node -> data = data ; node -> left = node -> right = NULL ; return ( node ) ; } int max ( int a , int b ) { return ( a >= b ) ? a : b ; } int maxPathSumUtil ( struct Node * root , int & res ) { if ( root == NULL ) return 0 ; if ( ! root -> left && ! root -> right ) return root -> data ; int ls = maxPathSumUtil ( root -> left , res ) ; int rs = maxPathSumUtil ( root -> right , res ) ; if ( root -> left && root -> right ) { res = max ( res , ls + rs + root -> data ) ; return max ( ls , rs ) + root -> data ; } return ( ! root -> left ) ? rs + root -> data : ls + root -> data ; } int maxPathSum ( struct Node * root ) { int res = INT_MIN ; int val = maxPathSumUtil ( root , res ) ; if ( res == INT_MIN ) { return val ; } return res ; } int main ( ) { struct Node * root = newNode ( -15 ) ; root -> left = newNode ( 5 ) ; root -> right = newNode ( 6 ) ; root -> left -> left = newNode ( -8 ) ; root -> left -> right = newNode ( 1 ) ; root -> left -> left -> left = newNode ( 2 ) ; root -> left -> left -> right = newNode ( 6 ) ; root -> right -> left = newNode ( 3 ) ; root -> right -> right = newNode ( 9 ) ; root -> right -> right -> right = newNode ( 0 ) ; root -> right -> right -> right -> left = newNode ( 4 ) ; root -> right -> right -> right -> right = newNode ( -1 ) ; root -> right -> right -> right -> right -> left = newNode ( 10 ) ; cout << " Max ▁ pathSum ▁ of ▁ the ▁ given ▁ binary ▁ tree ▁ is ▁ " << maxPathSum ( root ) ; return 0 ; }
Minimum number of swaps required to sort an array | C ++ program to find minimum number of swaps required to sort an array ; Function returns the minimum number of swaps required to sort the array ; Create an array of pairs where first element is array element and second element is position of first element ; Sort the array by array element values to get right position of every element as second element of pair . ; To keep track of visited elements . Initialize all elements as not visited or false . ; Initialize result ; Traverse array elements ; already swapped and corrected or already present at correct pos ; find out the number of node in this cycle and add in ans ; move to next node ; Update answer by adding current cycle . ; Return result ; Driver program to test the above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minSwaps ( int arr [ ] , int n ) { pair < int , int > arrPos [ n ] ; for ( int i = 0 ; i < n ; i ++ ) { arrPos [ i ] . first = arr [ i ] ; arrPos [ i ] . second = i ; } sort ( arrPos , arrPos + n ) ; vector < bool > vis ( n , false ) ; int ans = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( vis [ i ] arrPos [ i ] . second == i ) continue ; int cycle_size = 0 ; int j = i ; while ( ! vis [ j ] ) { vis [ j ] = 1 ; j = arrPos [ j ] . second ; cycle_size ++ ; } if ( cycle_size > 0 ) { ans += ( cycle_size - 1 ) ; } } return ans ; } int main ( ) { int arr [ ] = { 1 , 5 , 4 , 3 , 2 } ; int n = ( sizeof ( arr ) / sizeof ( int ) ) ; cout << minSwaps ( arr , n ) ; return 0 ; }
Minimum number of swaps required to sort an array | C ++ program to find minimum number of swaps required to sort an array ; swap function ; indexOf function ; Return the minimum number of swaps required to sort the array ; This is checking whether the current element is at the right place or not ; Swap the current element with the right index so that arr [ 0 ] to arr [ i ] is sorted ; Driver Code ; Output will be 5
#include <bits/stdc++.h> NEW_LINE using namespace std ; void swap ( vector < int > & arr , int i , int j ) { int temp = arr [ i ] ; arr [ i ] = arr [ j ] ; arr [ j ] = temp ; } int indexOf ( vector < int > & arr , int ele ) { for ( int i = 0 ; i < arr . size ( ) ; i ++ ) { if ( arr [ i ] == ele ) { return i ; } } return -1 ; } int minSwaps ( vector < int > arr , int N ) { int ans = 0 ; vector < int > temp ( arr . begin ( ) , arr . end ( ) ) ; sort ( temp . begin ( ) , temp . end ( ) ) ; for ( int i = 0 ; i < N ; i ++ ) { if ( arr [ i ] != temp [ i ] ) { ans ++ ; swap ( arr , i , indexOf ( arr , temp [ i ] ) ) ; } } return ans ; } int main ( ) { vector < int > a = { 101 , 758 , 315 , 730 , 472 , 619 , 460 , 479 } ; int n = a . size ( ) ; cout << minSwaps ( a , n ) ; }
Minimum number of swaps required to sort an array | C ++ program to find minimum number of swaps required to sort an array ; Return the minimum number of swaps required to sort the array ; Hashmap which stores the indexes of the input array ; This is checking whether the current element is at the right place or not ; If not , swap this element with the index of the element which should come here ; Update the indexes in the hashmap accordingly ; Driver class ; Driver program to test the above function ; Output will be 5
#include <bits/stdc++.h> NEW_LINE using namespace std ; void swap ( vector < int > & arr , int i , int j ) { int temp = arr [ i ] ; arr [ i ] = arr [ j ] ; arr [ j ] = temp ; } int minSwaps ( vector < int > arr , int N ) { int ans = 0 ; vector < int > temp = arr ; map < int , int > h ; sort ( temp . begin ( ) , temp . end ( ) ) ; for ( int i = 0 ; i < N ; i ++ ) { h [ arr [ i ] ] = i ; } for ( int i = 0 ; i < N ; i ++ ) { if ( arr [ i ] != temp [ i ] ) { ans ++ ; int init = arr [ i ] ; swap ( arr , i , h [ temp [ i ] ] ) ; h [ init ] = h [ temp [ i ] ] ; h [ temp [ i ] ] = i ; } } return ans ; } int main ( ) { vector < int > a = { 101 , 758 , 315 , 730 , 472 , 619 , 460 , 479 } ; int n = a . size ( ) ; cout << minSwaps ( a , n ) ; }
Union and Intersection of two sorted arrays | C ++ program to find union of two sorted arrays ; Function prints union of arr1 [ ] and arr2 [ ] m is the number of elements in arr1 [ ] n is the number of elements in arr2 [ ] ; Print remaining elements of the larger array ; Driver program to test above function
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printUnion ( int arr1 [ ] , int arr2 [ ] , int m , int n ) { int i = 0 , j = 0 ; while ( i < m && j < n ) { if ( arr1 [ i ] < arr2 [ j ] ) cout << arr1 [ i ++ ] << " ▁ " ; else if ( arr2 [ j ] < arr1 [ i ] ) cout << arr2 [ j ++ ] << " ▁ " ; else { cout << arr2 [ j ++ ] << " ▁ " ; i ++ ; } } while ( i < m ) cout << arr1 [ i ++ ] << " ▁ " ; while ( j < n ) cout << arr2 [ j ++ ] << " ▁ " ; } int main ( ) { int arr1 [ ] = { 1 , 2 , 4 , 5 , 6 } ; int arr2 [ ] = { 2 , 3 , 5 , 7 } ; int m = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; printUnion ( arr1 , arr2 , m , n ) ; return 0 ; }
Check if N can be converted to the form K power K by the given operation | C ++ implementation to Check whether a given number N can be converted to the form K power K by the given operation ; Function to check if a number is converatable ; Check if n is of the form k ^ k ; Check if the subproblem has been solved before ; Iterate through each digit of n ; Check if it is possible to obtain number of given form ; Reduce the number each time ; Store and return the answer to this subproblem ; Fcuntion to check the above method ; Initialise the dp table ; Check if conversion if possible ; Driver code ; Pre store K power K form of numbers Loop till 8 , because 8 ^ 8 > 10 ^ 7
#include <bits/stdc++.h> NEW_LINE using namespace std ; unordered_set < int > kPowKform ; int dp [ 100005 ] ; int func ( int n ) { if ( n <= 0 ) return 0 ; if ( kPowKform . count ( n ) ) return 1 ; if ( dp [ n ] != -1 ) return dp [ n ] ; int answer = 0 ; int x = n ; while ( x > 0 ) { int d = x % 10 ; if ( d != 0 ) { if ( func ( n - d * d ) ) { answer = 1 ; break ; } } x /= 10 ; } return dp [ n ] = answer ; } void canBeConverted ( int n ) { memset ( dp , -1 , sizeof ( dp ) ) ; if ( func ( n ) ) cout << " Yes " ; else cout << " No " ; } int main ( ) { int N = 13 ; for ( int i = 1 ; i <= 8 ; i ++ ) { int val = 1 ; for ( int j = 1 ; j <= i ; j ++ ) val *= i ; kPowKform . insert ( val ) ; } canBeConverted ( N ) ; return 0 ; }
Number of ways to arrange N numbers which are in a range from 1 to K under given constraints . | C ++ program to calculate Number of ways to arrange N numbers under given constraints . ; For favourable nodes ( ending at Q ) ; For Non - favourable nodes ( NOT ending at Q ) ; Function to print Total number of ways ; If the First number and the last number is same . ; DP approach to find current state with the help of previous state . ; Driver code ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; class element { public : int A ; int B ; } ; void NumberOfWays ( int n , int k , int p , int q ) { element * dp = new element [ n ] ; if ( p == q ) { dp [ 0 ] . A = 1 ; dp [ 0 ] . B = 0 ; } else { dp [ 0 ] . A = 0 ; dp [ 0 ] . B = 1 ; } for ( int i = 1 ; i < n ; i ++ ) { dp [ i ] . A = dp [ i - 1 ] . B ; dp [ i ] . B = ( dp [ i - 1 ] . A * ( k - 1 ) ) + ( dp [ i - 1 ] . B * ( k - 2 ) ) ; } cout << dp [ n - 1 ] . A << endl ; return ; } int main ( ) { int N = 5 ; int K = 3 ; int P = 2 ; int Q = 1 ; NumberOfWays ( N , K , P , Q ) ; }
Union and Intersection of two sorted arrays | C ++ program to find intersection of two sorted arrays ; Function prints Intersection of arr1 [ ] and arr2 [ ] m is the number of elements in arr1 [ ] n is the number of elements in arr2 [ ] ; Driver program to test above function ; Function calling
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printIntersection ( int arr1 [ ] , int arr2 [ ] , int m , int n ) { int i = 0 , j = 0 ; while ( i < m && j < n ) { if ( arr1 [ i ] < arr2 [ j ] ) i ++ ; else if ( arr2 [ j ] < arr1 [ i ] ) j ++ ; else { cout << arr2 [ j ] << " ▁ " ; i ++ ; j ++ ; } } } int main ( ) { int arr1 [ ] = { 1 , 2 , 4 , 5 , 6 } ; int arr2 [ ] = { 2 , 3 , 5 , 7 } ; int m = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; printIntersection ( arr1 , arr2 , m , n ) ; return 0 ; }
Find the Nth Pure number | CPP program to find the Nth pure num ; Function to check if it is a power of 2 or not ; if a number belongs to 4 series it should lie between 2 ^ blocks - 1 to 2 ^ blocks + 2 ^ ( blocks - 1 ) - 1 ; Method to find pure number ; Iterate from 1 to N ; Check if number is power of two ; Distance to previous block numbers ; Distance to previous block numbers ; Driver Code ; Function call to find the Nth pure number
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPowerOfTwo ( int N ) { double number = log ( N ) / log ( 2 ) ; int checker = int ( number ) ; return number - checker == 0 ; } bool isSeriesFour ( int N , int digits ) { int upperBound = int ( pow ( 2 , digits ) + pow ( 2 , digits - 1 ) - 1 ) ; int lowerBound = int ( pow ( 2 , digits ) - 1 ) ; return ( N >= lowerBound ) && ( N < upperBound ) ; } string getPureNumber ( int N ) { string numbers [ N + 1 ] ; numbers [ 0 ] = " " ; int blocks = 0 ; int displacement = 0 ; for ( int i = 1 ; i < N + 1 ; i ++ ) { if ( isPowerOfTwo ( i + 1 ) ) { blocks = blocks + 1 ; } if ( isSeriesFour ( i , blocks ) ) { displacement = int ( pow ( 2 , blocks - 1 ) ) ; numbers [ i ] = "4" + numbers [ i - displacement ] + "4" ; } else { displacement = int ( pow ( 2 , blocks ) ) ; numbers [ i ] = "5" + numbers [ i - displacement ] + "5" ; } } return numbers [ N ] ; } int main ( ) { int N = 5 ; string pure = getPureNumber ( N ) ; cout << pure << endl ; }
Count numbers less than N containing digits from the given set : Digit DP | C ++ implementation to find the count of numbers possible less than N , such that every digit is from the given set of digits ; Function to convert integer into the string ; Recursive function to find the count of numbers possible less than N , such that every digit is from the given set of digits ; Base case ; Condition when the subproblem is computed previously ; Condition when the number chosen till now is definietly smaller than the given number N ; Loop to traverse all the digits of the given set ; Loop to traverse all the digits from the given set ; Store the solution for current subproblem ; Function to count the numbers less then N from given set of digits ; Converting the number to string ; Initially no subproblem is solved till now ; Find the solution of all the number equal to the length of the given number N ; Loop to find the number less in in the length of the given number ; Driver Code ; Function Call
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 15 ] [ 2 ] ; string convertToString ( int num ) { stringstream ss ; ss << num ; string s = ss . str ( ) ; return s ; } int calculate ( int pos , int tight , int D [ ] , int sz , string & num ) { if ( pos == num . length ( ) ) return 1 ; if ( dp [ pos ] [ tight ] != -1 ) return dp [ pos ] [ tight ] ; int val = 0 ; if ( tight == 0 ) { for ( int i = 0 ; i < sz ; i ++ ) { if ( D [ i ] < ( num [ pos ] - '0' ) ) { val += calculate ( pos + 1 , 1 , D , sz , num ) ; } else if ( D [ i ] == num [ pos ] - '0' ) val += calculate ( pos + 1 , tight , D , sz , num ) ; } } else { for ( int i = 0 ; i < sz ; i ++ ) { val += calculate ( pos + 1 , tight , D , sz , num ) ; } } return dp [ pos ] [ tight ] = val ; } int countNumbers ( int D [ ] , int N , int sz ) { string num = convertToString ( N ) ; int len = num . length ( ) ; memset ( dp , -1 , sizeof ( dp ) ) ; int ans = calculate ( 0 , 0 , D , sz , num ) ; for ( int i = 1 ; i < len ; i ++ ) ans += calculate ( i , 1 , D , sz , num ) ; return ans ; } int main ( ) { int sz = 3 ; int D [ sz ] = { 1 , 4 , 9 } ; int N = 10 ; cout << countNumbers ( D , N , sz ) ; return 0 ; }
Find Union and Intersection of two unsorted arrays | C ++ program for the above approach ; Defining map container mp ; Inserting array elements in mp ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printUnion ( int * a , int n , int * b , int m ) { map < int , int > mp ; for ( int i = 0 ; i < n ; i ++ ) mp . insert ( { a [ i ] , i } ) ; for ( int i = 0 ; i < m ; i ++ ) mp . insert ( { b [ i ] , i } ) ; cout << " The ▁ union ▁ set ▁ of ▁ both ▁ arrays ▁ is ▁ : " << endl ; for ( auto itr = mp . begin ( ) ; itr != mp . end ( ) ; itr ++ ) cout << itr -> first << " ▁ " ; } int main ( ) { int a [ 7 ] = { 1 , 2 , 5 , 6 , 2 , 3 , 5 } ; int b [ 9 ] = { 2 , 4 , 5 , 6 , 8 , 9 , 4 , 6 , 5 } ; printUnion ( a , 7 , b , 9 ) ; }
Maximum sum of elements divisible by K from the given array | ; Function to return the maximum sum divisible by k from elements of v ; check if sum of elements excluding the current one is divisible by k ; check if sum of elements including the current one is divisible by k ; Store the maximum ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 1001 ] [ 1001 ] ; int find_max ( int i , int sum , vector < int > & v , int k ) { if ( i == v . size ( ) ) return 0 ; if ( dp [ i ] [ sum ] != -1 ) return dp [ i ] [ sum ] ; int ans = 0 ; if ( ( sum + find_max ( i + 1 , sum , v , k ) ) % k == 0 ) ans = find_max ( i + 1 , sum , v , k ) ; if ( ( sum + v [ i ] + find_max ( i + 1 , ( sum + v [ i ] ) % k , v , k ) ) % k == 0 ) ans = max ( ans , v [ i ] + find_max ( i + 1 , ( sum + v [ i ] ) % k , v , k ) ) ; return dp [ i ] [ sum ] = ans ; } int main ( ) { vector < int > arr = { 43 , 1 , 17 , 26 , 15 } ; int k = 16 ; memset ( dp , -1 , sizeof ( dp ) ) ; cout << find_max ( 0 , 0 , arr , k ) ; }
Find Union and Intersection of two unsorted arrays | A C ++ program to print union and intersection of two unsorted arrays ; Prints union of arr1 [ 0. . m - 1 ] and arr2 [ 0. . n - 1 ] ; Before finding union , make sure arr1 [ 0. . m - 1 ] is smaller ; Now arr1 [ ] is smaller Sort the first array and print its elements ( these two steps can be swapped as order in output is not important ) ; Search every element of bigger array in smaller array and print the element if not found ; Prints intersection of arr1 [ 0. . m - 1 ] and arr2 [ 0. . n - 1 ] ; Before finding intersection , make sure arr1 [ 0. . m - 1 ] is smaller ; Now arr1 [ ] is smaller Sort smaller array arr1 [ 0. . m - 1 ] ; Search every element of bigger array in smaller array and print the element if found ; A recursive binary search function . It returns location of x in given array arr [ l . . r ] is present , otherwise - 1 ; If the element is present at the middle itself ; If element is smaller than mid , then it can only be presen in left subarray ; Else the element can only be present in right subarray ; We reach here when element is not present in array ; Driver program to test above function ; Function call
#include <algorithm> NEW_LINE #include <iostream> NEW_LINE using namespace std ; int binarySearch ( int arr [ ] , int l , int r , int x ) ; void printUnion ( int arr1 [ ] , int arr2 [ ] , int m , int n ) { if ( m > n ) { int * tempp = arr1 ; arr1 = arr2 ; arr2 = tempp ; int temp = m ; m = n ; n = temp ; } sort ( arr1 , arr1 + m ) ; for ( int i = 0 ; i < m ; i ++ ) cout << arr1 [ i ] << " ▁ " ; for ( int i = 0 ; i < n ; i ++ ) if ( binarySearch ( arr1 , 0 , m - 1 , arr2 [ i ] ) == -1 ) cout << arr2 [ i ] << " ▁ " ; } void printIntersection ( int arr1 [ ] , int arr2 [ ] , int m , int n ) { if ( m > n ) { int * tempp = arr1 ; arr1 = arr2 ; arr2 = tempp ; int temp = m ; m = n ; n = temp ; } sort ( arr1 , arr1 + m ) ; for ( int i = 0 ; i < n ; i ++ ) if ( binarySearch ( arr1 , 0 , m - 1 , arr2 [ i ] ) != -1 ) cout << arr2 [ i ] << " ▁ " ; } int binarySearch ( int arr [ ] , int l , int r , int x ) { if ( r >= l ) { int mid = l + ( r - l ) / 2 ; if ( arr [ mid ] == x ) return mid ; if ( arr [ mid ] > x ) return binarySearch ( arr , l , mid - 1 , x ) ; return binarySearch ( arr , mid + 1 , r , x ) ; } return -1 ; } int main ( ) { int arr1 [ ] = { 7 , 1 , 5 , 2 , 3 , 6 } ; int arr2 [ ] = { 3 , 8 , 6 , 20 , 7 } ; int m = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; cout << " Union ▁ of ▁ two ▁ arrays ▁ is ▁ n " ; printUnion ( arr1 , arr2 , m , n ) ; cout << " nIntersection ▁ of ▁ two ▁ arrays ▁ is ▁ n " ; printIntersection ( arr1 , arr2 , m , n ) ; return 0 ; }
Find the maximum sum leaf to root path in a Binary Tree | CPP program to find maximum sum leaf to root path in Binary Tree ; A tree node structure ; A utility function that prints all nodes on the path from root to target_leaf ; base case ; return true if this node is the target_leaf or target leaf is present in one of its descendants ; This function Sets the target_leaf_ref to refer the leaf node of the maximum path sum . Also , returns the max_sum using max_sum_ref ; Update current sum to hold sum of nodes on path from root to this node ; If this is a leaf node and path to this node has maximum sum so far , then make this node target_leaf ; If this is not a leaf node , then recur down to find the target_leaf ; Returns the maximum sum and prints the nodes on max sum path ; base case ; find the target leaf and maximum sum ; print the path from root to the target leaf ; return maximum sum ; Utility function to create a new Binary Tree node ; Driver function to test above functions
#include <bits/stdc++.h> NEW_LINE using namespace std ; class node { public : int data ; node * left ; node * right ; } ; bool printPath ( node * root , node * target_leaf ) { if ( root == NULL ) return false ; if ( root == target_leaf || printPath ( root -> left , target_leaf ) || printPath ( root -> right , target_leaf ) ) { cout << root -> data << " ▁ " ; return true ; } return false ; } void getTargetLeaf ( node * Node , int * max_sum_ref , int curr_sum , node * * target_leaf_ref ) { if ( Node == NULL ) return ; curr_sum = curr_sum + Node -> data ; if ( Node -> left == NULL && Node -> right == NULL ) { if ( curr_sum > * max_sum_ref ) { * max_sum_ref = curr_sum ; * target_leaf_ref = Node ; } } getTargetLeaf ( Node -> left , max_sum_ref , curr_sum , target_leaf_ref ) ; getTargetLeaf ( Node -> right , max_sum_ref , curr_sum , target_leaf_ref ) ; } int maxSumPath ( node * Node ) { if ( Node == NULL ) return 0 ; node * target_leaf ; int max_sum = INT_MIN ; getTargetLeaf ( Node , & max_sum , 0 , & target_leaf ) ; printPath ( Node , target_leaf ) ; return max_sum ; } node * newNode ( int data ) { node * temp = new node ; temp -> data = data ; temp -> left = NULL ; temp -> right = NULL ; return temp ; } int main ( ) { node * root = NULL ; root = newNode ( 10 ) ; root -> left = newNode ( -2 ) ; root -> right = newNode ( 7 ) ; root -> left -> left = newNode ( 8 ) ; root -> left -> right = newNode ( -4 ) ; cout << " Following ▁ are ▁ the ▁ nodes ▁ on ▁ the ▁ maximum ▁ " " sum ▁ path ▁ STRNEWLINE " ; int sum = maxSumPath ( root ) ; cout << " Sum of the nodes is " return 0 ; }
Find Union and Intersection of two unsorted arrays | C ++ code to find intersection when elements may not be distinct ; Function to find intersection ; when both are equal ; Driver Code ; sort ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; void intersection ( int a [ ] , int b [ ] , int n , int m ) { int i = 0 , j = 0 ; while ( i < n && j < m ) { if ( a [ i ] > b [ j ] ) { j ++ ; } else if ( b [ j ] > a [ i ] ) { i ++ ; } else { cout << a [ i ] << " ▁ " ; i ++ ; j ++ ; } } } int main ( ) { int a [ ] = { 1 , 3 , 2 , 3 , 3 , 4 , 5 , 5 , 6 } ; int b [ ] = { 3 , 3 , 5 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int m = sizeof ( b ) / sizeof ( b [ 0 ] ) ; sort ( a , a + n ) ; sort ( b , b + m ) ; intersection ( a , b , n , m ) ; }
Count of 1 's in any path in a Binary Tree | C ++ implementation of the above approach ; A binary tree node ; A utility function to allocate a new node ; This function updates overall count of 1 in ' res ' And returns count 1 s going through root . ; Base Case ; l and r store count of 1 s going through left and right child of root respectively ; maxCount represents the count of 1 s when the Node under consideration is the root of the maxCount path and no ancestors of the root are there in maxCount path ; if the value at node is 1 then its count will be considered including the leftCount and the rightCount ; Store the Maximum Result . ; if the value at node is 1 then its count will be considered including the maximum of leftCount or the rightCount ; Returns maximum count of 1 in any path in tree with given root ; Initialize result ; Compute and return result ; Driver program
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; struct Node * left , * right ; } ; struct Node * newNode ( int data ) { struct Node * newNode = new Node ; newNode -> data = data ; newNode -> left = newNode -> right = NULL ; return ( newNode ) ; } int countUntil ( Node * root , int & res ) { if ( root == NULL ) return 0 ; int l = countUntil ( root -> left , res ) ; int r = countUntil ( root -> right , res ) ; int maxCount ; if ( root -> data == 1 ) maxCount = l + r + 1 ; else maxCount = l + r ; res = max ( res , maxCount ) ; if ( root -> data == 1 ) return max ( l , r ) + 1 ; else return max ( l , r ) ; } int findMaxCount ( Node * root ) { int res = INT_MIN ; countUntil ( root , res ) ; return res ; } int main ( void ) { struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 0 ) ; root -> right = newNode ( 1 ) ; root -> left -> left = newNode ( 1 ) ; root -> left -> right = newNode ( 1 ) ; root -> left -> right -> left = newNode ( 1 ) ; root -> left -> right -> right = newNode ( 0 ) ; cout << findMaxCount ( root ) ; return 0 ; }
Find Union and Intersection of two unsorted arrays | CPP program to find union and intersection using sets ; Prints union of arr1 [ 0. . n1 - 1 ] and arr2 [ 0. . n2 - 1 ] ; Prints intersection of arr1 [ 0. . n1 - 1 ] and arr2 [ 0. . n2 - 1 ] ; Driver Program ; Function call
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printUnion ( int arr1 [ ] , int arr2 [ ] , int n1 , int n2 ) { set < int > hs ; for ( int i = 0 ; i < n1 ; i ++ ) hs . insert ( arr1 [ i ] ) ; for ( int i = 0 ; i < n2 ; i ++ ) hs . insert ( arr2 [ i ] ) ; for ( auto it = hs . begin ( ) ; it != hs . end ( ) ; it ++ ) cout << * it << " ▁ " ; cout << endl ; } void printIntersection ( int arr1 [ ] , int arr2 [ ] , int n1 , int n2 ) { set < int > hs ; for ( int i = 0 ; i < n1 ; i ++ ) hs . insert ( arr1 [ i ] ) ; for ( int i = 0 ; i < n2 ; i ++ ) if ( hs . find ( arr2 [ i ] ) != hs . end ( ) ) cout << arr2 [ i ] << " ▁ " ; } int main ( ) { int arr1 [ ] = { 7 , 1 , 5 , 2 , 3 , 6 } ; int arr2 [ ] = { 3 , 8 , 6 , 20 , 7 } ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int n2 = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; printUnion ( arr1 , arr2 , n1 , n2 ) ; printIntersection ( arr1 , arr2 , n1 , n2 ) ; return 0 ; }
Minimum number of coins that can generate all the values in the given range | C ++ implementation of the approach ; Function to return the count of minimum coins required ; To store the required sequence ; Creating list of the sum of all previous bit values including that bit value ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int index ( vector < int > vec , int value ) { vector < int > :: iterator it ; it = find ( vec . begin ( ) , vec . end ( ) , value ) ; return ( it - vec . begin ( ) ) ; } int findCount ( int N ) { vector < int > list ; int sum = 0 ; int i ; for ( i = 0 ; i < 20 ; i ++ ) { sum += pow ( 2 , i ) ; list . push_back ( sum ) ; } for ( i = 0 ; i < 20 ; i ++ ) { if ( list [ i ] >= N ) { return ( index ( list , list [ i ] ) + 1 ) ; } } } int main ( ) { int N = 10 ; cout << findCount ( N ) << endl ; return 0 ; }
Sort an array of 0 s , 1 s and 2 s | C ++ program to sort an array with 0 , 1 and 2 in a single pass ; Function to sort the input array , the array is assumed to have values in { 0 , 1 , 2 } ; Function to print array arr [ ] ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void sort012 ( int a [ ] , int arr_size ) { int lo = 0 ; int hi = arr_size - 1 ; int mid = 0 ; while ( mid <= hi ) { switch ( a [ mid ] ) { case 0 : swap ( a [ lo ++ ] , a [ mid ++ ] ) ; break ; case 1 : mid ++ ; break ; case 2 : swap ( a [ mid ] , a [ hi -- ] ) ; break ; } } } void printArray ( int arr [ ] , int arr_size ) { for ( int i = 0 ; i < arr_size ; i ++ ) cout << arr [ i ] << " ▁ " ; } int main ( ) { int arr [ ] = { 0 , 1 , 1 , 0 , 1 , 2 , 1 , 2 , 0 , 0 , 0 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; sort012 ( arr , n ) ; cout << " array ▁ after ▁ segregation ▁ " ; printArray ( arr , n ) ; return 0 ; }
Calculate the number of set bits for every number from 0 to N | C ++ implementation of the approach ; Function to find the count of set bits in all the integers from 0 to n ; dp [ i ] will store the count of set bits in i ; Count of set bits in 0 is 0 ; For every number starting from 1 ; If current number is even ; Count of set bits in i is equal to the count of set bits in ( i / 2 ) ; If current element is odd ; Count of set bits in i is equal to the count of set bits in ( i / 2 ) + 1 ; Print the count of set bits in i ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void findSetBits ( int n ) { int dp [ n + 1 ] ; memset ( dp , 0 , sizeof ( dp ) ) ; cout << dp [ 0 ] << " ▁ " ; for ( int i = 1 ; i <= n ; i ++ ) { if ( i % 2 == 0 ) { dp [ i ] = dp [ i / 2 ] ; } else { dp [ i ] = dp [ i / 2 ] + 1 ; } cout << dp [ i ] << " ▁ " ; } } int main ( ) { int n = 5 ; findSetBits ( n ) ; return 0 ; }
Sort an array of 0 s , 1 s and 2 s | C ++ implementation of the approach ; Utility function to print the contents of an array ; Function to sort the array of 0 s , 1 s and 2 s ; Count the number of 0 s , 1 s and 2 s in the array ; Update the array ; Store all the 0 s in the beginning ; Then all the 1 s ; Finally all the 2 s ; Print the sorted array ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printArr ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " ▁ " ; } void sortArr ( int arr [ ] , int n ) { int i , cnt0 = 0 , cnt1 = 0 , cnt2 = 0 ; for ( i = 0 ; i < n ; i ++ ) { switch ( arr [ i ] ) { case 0 : cnt0 ++ ; break ; case 1 : cnt1 ++ ; break ; case 2 : cnt2 ++ ; break ; } } i = 0 ; while ( cnt0 > 0 ) { arr [ i ++ ] = 0 ; cnt0 -- ; } while ( cnt1 > 0 ) { arr [ i ++ ] = 1 ; cnt1 -- ; } while ( cnt2 > 0 ) { arr [ i ++ ] = 2 ; cnt2 -- ; } printArr ( arr , n ) ; } int main ( ) { int arr [ ] = { 0 , 1 , 1 , 0 , 1 , 2 , 1 , 2 , 0 , 0 , 0 , 1 } ; int n = sizeof ( arr ) / sizeof ( int ) ; sortArr ( arr , n ) ; return 0 ; }
Count of subsets with sum equal to X | ; Initializing the matrix ; Initializing the first value of matrix ; if the value is greater than the sum ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int subsetSum ( int a [ ] , int n , int sum ) { int tab [ n + 1 ] [ sum + 1 ] ; tab [ 0 ] [ 0 ] = 1 ; for ( int i = 1 ; i <= sum ; i ++ ) tab [ 0 ] [ i ] = 0 ; for ( int i = 1 ; i <= n ; i ++ ) tab [ i ] [ 0 ] = 1 ; for ( int i = 1 ; i <= n ; i ++ ) { for ( int j = 1 ; j <= sum ; j ++ ) { if ( a [ i - 1 ] > j ) tab [ i ] [ j ] = tab [ i - 1 ] [ j ] ; else { tab [ i ] [ j ] = tab [ i - 1 ] [ j ] + tab [ i - 1 ] [ j - a [ i - 1 ] ] ; } } } return tab [ n ] [ sum ] ; } int main ( ) { int n = 4 ; int a [ ] = { 3 , 3 , 3 , 3 } ; int sum = 6 ; cout << ( subsetSum ( a , n , sum ) ) ; }
Largest sub | C ++ implementation of the approach ; Function to find the maximum rectangular area under given histogram with n bars ; Create an empty stack . The stack holds indexes of hist [ ] array . The bars stored in stack are always in increasing order of their heights . ; Initialize max area ; To store top of the stack ; To store area with top bar ; Run through all bars of given histogram ; If this bar is higher than the bar on top stack , push it to stack ; If this bar is lower than top of stack , then calculate area of rectangle with stack top as the smallest ( or minimum height ) bar . ' i ' is ' right ▁ index ' for the top and element before top in stack is ' left ▁ index ' ; Store the top index ; Pop the top ; Calculate the area with hist [ tp ] stack as smallest bar ; Update max area , if needed ; Now pop the remaining bars from stack and calculate area with every popped bar as the smallest bar ; Function to find largest sub matrix with all equal elements ; To find largest sub matrix with all elements 1 ; Fill dp [ ] [ ] by traversing each column from bottom to up ; Maintain the histogram array ; Find maximum area rectangle in Histogram ; To fill dp [ ] [ ] for finding largest sub matrix with all elements 0 ; Maintain the histogram array ; Find maximum area rectangle in Histogram ; Driver code
#include <bits/stdc++.h> NEW_LINE #define row 6 NEW_LINE #define col 8 NEW_LINE using namespace std ; int cal ( int hist [ ] , int n ) { stack < int > s ; int max_area = 0 ; int tp ; int area_with_top ; int i = 0 ; while ( i < n ) { if ( s . empty ( ) || hist [ s . top ( ) ] <= hist [ i ] ) s . push ( i ++ ) ; else { tp = s . top ( ) ; s . pop ( ) ; area_with_top = hist [ tp ] * ( s . empty ( ) ? i : i - s . top ( ) - 1 ) ; if ( max_area < area_with_top ) max_area = area_with_top ; } } while ( s . empty ( ) == false ) { tp = s . top ( ) ; s . pop ( ) ; area_with_top = hist [ tp ] * ( s . empty ( ) ? i : i - s . top ( ) - 1 ) ; if ( max_area < area_with_top ) max_area = area_with_top ; } return max_area ; } int largestMatrix ( int a [ ] [ col ] ) { int dp [ row ] [ col ] ; for ( int i = 0 ; i < col ; i ++ ) { int cnt = 0 ; for ( int j = row - 1 ; j >= 0 ; j -- ) { dp [ j ] [ i ] = 0 ; if ( a [ j ] [ i ] == 1 ) { cnt ++ ; dp [ j ] [ i ] = cnt ; } else { cnt = 0 ; } } } int ans = -1 ; for ( int i = 0 ; i < row ; i ++ ) { int hist [ col ] ; for ( int j = 0 ; j < col ; j ++ ) { hist [ j ] = dp [ i ] [ j ] ; } ans = max ( ans , cal ( hist , col ) ) ; } for ( int i = 0 ; i < col ; i ++ ) { int cnt = 0 ; for ( int j = row - 1 ; j >= 0 ; j -- ) { dp [ j ] [ i ] = 0 ; if ( a [ j ] [ i ] == 0 ) { cnt ++ ; dp [ j ] [ i ] = cnt ; } else { cnt = 0 ; } } } for ( int i = 0 ; i < row ; i ++ ) { int hist [ col ] ; for ( int j = 0 ; j < col ; j ++ ) { hist [ j ] = dp [ i ] [ j ] ; } ans = max ( ans , cal ( hist , col ) ) ; } return ans ; } int main ( ) { int a [ row ] [ col ] = { { 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 } , { 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 } , { 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 } , { 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 } , { 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 } , { 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 } } ; cout << largestMatrix ( a ) ; return 0 ; }
Find the Minimum length Unsorted Subarray , sorting which makes the complete array sorted | C ++ program to find the Minimum length Unsorted Subarray , sorting which makes the complete array sorted ; step 1 ( a ) of above algo ; step 1 ( b ) of above algo ; step 2 ( a ) of above algo ; step 2 ( b ) of above algo ; step 2 ( c ) of above algo ; step 3 of above algo
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printUnsorted ( int arr [ ] , int n ) { int s = 0 , e = n - 1 , i , max , min ; for ( s = 0 ; s < n - 1 ; s ++ ) { if ( arr [ s ] > arr [ s + 1 ] ) break ; } if ( s == n - 1 ) { cout << " The ▁ complete ▁ array ▁ is ▁ sorted " ; return ; } for ( e = n - 1 ; e > 0 ; e -- ) { if ( arr [ e ] < arr [ e - 1 ] ) break ; } max = arr [ s ] ; min = arr [ s ] ; for ( i = s + 1 ; i <= e ; i ++ ) { if ( arr [ i ] > max ) max = arr [ i ] ; if ( arr [ i ] < min ) min = arr [ i ] ; } for ( i = 0 ; i < s ; i ++ ) { if ( arr [ i ] > min ) { s = i ; break ; } } for ( i = n - 1 ; i >= e + 1 ; i -- ) { if ( arr [ i ] < max ) { e = i ; break ; } } cout << " The ▁ unsorted ▁ subarray ▁ which " << " ▁ makes ▁ the ▁ given ▁ array " << endl << " sorted ▁ lies ▁ between ▁ the ▁ indees ▁ " << s << " ▁ and ▁ " << e ; return ; } int main ( ) { int arr [ ] = { 10 , 12 , 20 , 30 , 25 , 40 , 32 , 31 , 35 , 50 , 60 } ; int arr_size = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; printUnsorted ( arr , arr_size ) ; getchar ( ) ; return 0 ; }