text
stringlengths 17
4.49k
| code
stringlengths 49
5.46k
|
---|---|
QuickSort | C ++ implementation of QuickSort ; A utility function to swap two elements ; This function takes last element as pivot , places the pivot element at its correct position in sorted array , and places all smaller ( smaller than pivot ) to left of pivot and all greater elements to right of pivot ; pivot ; Index of smaller element and indicates the right position of pivot found so far ; If current element is smaller than the pivot ; i ++ ; increment index of smaller element ; The main function that implements QuickSort arr [ ] -- > Array to be sorted , low -- > Starting index , high -- > Ending index ; pi is partitioning index , arr [ p ] is now at right place ; Separately sort elements before partition and after partition ; Function to print an array ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void swap ( int * a , int * b ) { int t = * a ; * a = * b ; * b = t ; } int partition ( int arr [ ] , int low , int high ) { int pivot = arr [ high ] ; int i = ( low - 1 ) ; for ( int j = low ; j <= high - 1 ; j ++ ) { if ( arr [ j ] < pivot ) { swap ( & arr [ i ] , & arr [ j ] ) ; } } swap ( & arr [ i + 1 ] , & arr [ high ] ) ; return ( i + 1 ) ; } void quickSort ( int arr [ ] , int low , int high ) { if ( low < high ) { int pi = partition ( arr , low , high ) ; quickSort ( arr , low , pi - 1 ) ; quickSort ( arr , pi + 1 , high ) ; } } void printArray ( int arr [ ] , int size ) { int i ; for ( i = 0 ; i < size ; i ++ ) cout << arr [ i ] << " β " ; cout << endl ; } int main ( ) { int arr [ ] = { 10 , 7 , 8 , 9 , 1 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; quickSort ( arr , 0 , n - 1 ) ; cout << " Sorted β array : β STRNEWLINE " ; printArray ( arr , n ) ; return 0 ; } |
Rearrange an array such that ' arr [ j ] ' becomes ' i ' if ' arr [ i ] ' is ' j ' | Set 1 | A simple C ++ program to rearrange contents of arr [ ] such that arr [ j ] becomes j if arr [ i ] is j ; A simple method to rearrange ' arr [ 0 . . n - 1 ] ' so that ' arr [ j ] ' becomes ' i ' if ' arr [ i ] ' is ' j ' ; retrieving old value and storing with the new one ; retrieving new value ; A utility function to print contents of arr [ 0. . n - 1 ] ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) { arr [ arr [ i ] % n ] += i * n ; } for ( int i = 0 ; i < n ; i ++ ) { arr [ i ] /= n ; } } void printArray ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; cout << endl ; } int main ( ) { int arr [ ] = { 2 , 0 , 1 , 4 , 5 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Given β array β is β : β " << endl ; printArray ( arr , n ) ; rearrange ( arr , n ) ; cout << " Modified β array β is β : " << endl ; printArray ( arr , n ) ; return 0 ; } |
Rearrange an array in maximum minimum form | Set 1 | C ++ program to rearrange an array in minimum maximum form ; Prints max at first position , min at second position second max at third position , second min at fourth position and so on . ; Auxiliary array to hold modified array ; Indexes of smallest and largest elements from remaining array . ; To indicate whether we need to copy rmaining largest or remaining smallest at next position ; Store result in temp [ ] ; Copy temp [ ] to arr [ ] ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n ) { int temp [ n ] ; int small = 0 , large = n - 1 ; int flag = true ; for ( int i = 0 ; i < n ; i ++ ) { if ( flag ) temp [ i ] = arr [ large -- ] ; else temp [ i ] = arr [ small ++ ] ; flag = ! flag ; } for ( int i = 0 ; i < n ; i ++ ) arr [ i ] = temp [ i ] ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Original β Array STRNEWLINE " ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; rearrange ( arr , n ) ; cout << " Modified Array " for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Minimum number of coins needed to remove all the elements of the array based on given rules | C ++ implementation for the above approach ; Function to calculate minimum number of coins needed ; Consider the first element separately , add 1 to the total if it 's of type 1 ; Iterate from the second element ; If the current element is of type 2 then any Player can remove the element ; Second pointer to reach end of type 1 elements ; Increment j until arr [ j ] is equal to 1 and j is not out of bounds ; Number of type 1 elements in a continious chunk ; From next iteration i pointer will start from index of j ; Return the minimum count of coins ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minimumcoins ( int arr [ ] , int N ) { int coins = 0 ; int j = 0 ; if ( arr [ 0 ] == 1 ) coins ++ ; for ( int i = 1 ; i < N ; i ++ ) { if ( arr [ i ] == 2 ) continue ; j = i ; while ( j < N && arr [ j ] == 1 ) { j ++ ; } int x = ( j - i ) ; coins += x / 3 ; i = j - 1 ; } return coins ; } int main ( ) { int N = 8 ; int arr [ ] = { 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1 } ; cout << minimumcoins ( arr , N ) ; return 0 ; } |
Rearrange an array in maximum minimum form | Set 2 ( O ( 1 ) extra space ) | C ++ program to rearrange an array in minimum maximum form ; Prints max at first position , min at second position second max at third position , second min at fourth position and so on . ; initialize index of first minimum and first maximum element ; store maximum element of array ; traverse array elements ; at even index : we have to put maximum element ; at odd index : we have to put minimum element ; array elements back to it 's original form ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n ) { int max_idx = n - 1 , min_idx = 0 ; int max_elem = arr [ n - 1 ] + 1 ; for ( int i = 0 ; i < n ; i ++ ) { if ( i % 2 == 0 ) { arr [ i ] += ( arr [ max_idx ] % max_elem ) * max_elem ; max_idx -- ; } else { arr [ i ] += ( arr [ min_idx ] % max_elem ) * max_elem ; min_idx ++ ; } } for ( int i = 0 ; i < n ; i ++ ) arr [ i ] = arr [ i ] / max_elem ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Original β Arrayn " ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; rearrange ( arr , n ) ; cout << " Modified Array " for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Rearrange an array in maximum minimum form | Set 2 ( O ( 1 ) extra space ) | C ++ program to rearrange an array in minimum maximum form ; Prints max at first position , min at second position second max at third position , second min at fourth position and so on . ; initialize index of first minimum and first maximum element ; traverse array elements ; at even index : we have to put maximum element ; at odd index : we have to put minimum element ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n ) { int max_ele = arr [ n - 1 ] ; int min_ele = arr [ 0 ] ; for ( int i = 0 ; i < n ; i ++ ) { if ( i % 2 == 0 ) { arr [ i ] = max_ele ; max_ele -= 1 ; } else { arr [ i ] = min_ele ; min_ele += 1 ; } } } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Original β Array STRNEWLINE " ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; rearrange ( arr , n ) ; cout << " Modified Array " for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Find sum of all left leaves in a given Binary Tree | A C ++ program to find sum of all left leaves ; A binary tree Node has key , pointer to left and right children ; Helper function that allocates a new node with the given data and NULL left and right pointer . ; A utility function to check if a given node is leaf or not ; This function returns sum of all left leaves in a given binary tree ; Initialize result ; Update result if root is not NULL ; If left of root is NULL , then add key of left child ; Else recur for left child of root ; Recur for right child of root and update res ; return result ; Driver program to test above functions | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int key ; struct Node * left , * right ; } ; Node * newNode ( char k ) { Node * node = new Node ; node -> key = k ; node -> right = node -> left = NULL ; return node ; } bool isLeaf ( Node * node ) { if ( node == NULL ) return false ; if ( node -> left == NULL && node -> right == NULL ) return true ; return false ; } int leftLeavesSum ( Node * root ) { int res = 0 ; if ( root != NULL ) { if ( isLeaf ( root -> left ) ) res += root -> left -> key ; else res += leftLeavesSum ( root -> left ) ; res += leftLeavesSum ( root -> right ) ; } return res ; } int main ( ) { struct Node * root = newNode ( 20 ) ; root -> left = newNode ( 9 ) ; root -> right = newNode ( 49 ) ; root -> right -> left = newNode ( 23 ) ; root -> right -> right = newNode ( 52 ) ; root -> right -> right -> left = newNode ( 50 ) ; root -> left -> left = newNode ( 5 ) ; root -> left -> right = newNode ( 12 ) ; root -> left -> right -> right = newNode ( 12 ) ; cout << " Sum β of β left β leaves β is β " << leftLeavesSum ( root ) ; return 0 ; } |
Move all negative numbers to beginning and positive to end with constant extra space | A C ++ program to put all negative numbers before positive numbers ; A utility function to print an array ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int arr [ ] , int n ) { int j = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] < 0 ) { if ( i != j ) swap ( arr [ i ] , arr [ j ] ) ; j ++ ; } } } void printArray ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) printf ( " % d β " , arr [ i ] ) ; } int main ( ) { int arr [ ] = { -1 , 2 , -3 , 4 , 5 , 6 , -7 , 8 , 9 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; rearrange ( arr , n ) ; printArray ( arr , n ) ; return 0 ; } |
Maximize the diamonds by choosing different colour diamonds from adjacent boxes | C ++ implementation of the approach ; Function to return the maximized value ; Number of rows and columns ; Creating the Dp array ; Populating the first column ; Iterating over all the rows ; Getting the ( i - 1 ) th max value ; Adding it to the current cell ; Getting the max sum from the last column ; Driver code ; Columns are indexed 1 - based | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxSum ( vector < vector < int > > arr ) { int m = ( int ) arr . size ( ) ; int n = ( int ) arr [ 0 ] . size ( ) - 1 ; int dp [ m ] [ n + 1 ] ; memset ( arr , 0 , sizeof ( arr ) ) ; memset ( dp , 0 , sizeof ( dp ) ) ; for ( int i = 1 ; i < m ; ++ i ) dp [ i ] [ 1 ] = arr [ i ] [ 1 ] ; for ( int i = 1 ; i < n + 1 ; ++ i ) { for ( int j = 1 ; j < m ; ++ j ) { int mx = 0 ; for ( int k = 1 ; k < m ; ++ k ) { if ( k != j ) { if ( dp [ k ] [ i - 1 ] > mx ) { mx = dp [ k ] [ i - 1 ] ; } } } if ( mx and arr [ j ] [ i ] ) { dp [ j ] [ i ] = arr [ j ] [ i ] + mx ; } } } int ans = -1 ; for ( int i = 1 ; i <= m ; ++ i ) { if ( dp [ i ] [ n ] ) ans = max ( ans , dp [ i ] [ n ] ) ; } return ans ; } int main ( ) { vector < vector < int > > arr = { { 0 , 0 , 0 , 0 , 0 } , { 0 , 10 , 2 , 20 , 0 } , { 0 , 0 , 0 , 5 , 0 } , { 0 , 0 , 0 , 0 , 6 } , { 0 , 4 , 0 , 11 , 5 } , { 0 , 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 , 0 } } ; cout << maxSum ( arr ) ; return 0 ; } |
Move all negative elements to end in order with extra space allowed | C ++ program to Move All - ve Element At End Without changing order Of Array Element ; Moves all - ve element to end of array in same order . ; Create an empty array to store result ; Traversal array and store + ve element in temp array index of temp ; If array contains all positive or all negative . ; Store - ve element in temp array ; Copy contents of temp [ ] to arr [ ] ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; void segregateElements ( int arr [ ] , int n ) { int temp [ n ] ; int j = 0 ; for ( int i = 0 ; i < n ; i ++ ) if ( arr [ i ] >= 0 ) temp [ j ++ ] = arr [ i ] ; if ( j == n j == 0 ) return ; for ( int i = 0 ; i < n ; i ++ ) if ( arr [ i ] < 0 ) temp [ j ++ ] = arr [ i ] ; memcpy ( arr , temp , sizeof ( temp ) ) ; } int main ( ) { int arr [ ] = { 1 , -1 , -3 , -2 , 7 , 5 , 11 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; segregateElements ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Rearrange array such that even index elements are smaller and odd index elements are greater | CPP code to rearrange an array such that even index elements are smaller and odd index elements are greater than their next . ; Rearrange ; Utility that prints out an array in a line ; Driver function to test above functions | #include <iostream> NEW_LINE using namespace std ; void rearrange ( int * arr , int n ) { for ( int i = 0 ; i < n - 1 ; i ++ ) { if ( i % 2 == 0 && arr [ i ] > arr [ i + 1 ] ) swap ( arr [ i ] , arr [ i + 1 ] ) ; if ( i % 2 != 0 && arr [ i ] < arr [ i + 1 ] ) swap ( arr [ i ] , arr [ i + 1 ] ) ; } } void printArray ( int arr [ ] , int size ) { for ( int i = 0 ; i < size ; i ++ ) cout << arr [ i ] << " β " ; cout << endl ; } int main ( ) { int arr [ ] = { 6 , 4 , 2 , 1 , 8 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Before β rearranging : β STRNEWLINE " ; printArray ( arr , n ) ; rearrange ( arr , n ) ; cout << " After β rearranging : β STRNEWLINE " ; printArray ( arr , n ) ; return 0 ; } |
Minimum distance between duplicates in a String | C ++ program for the above approach ; This function is used to find minimum distance between same repeating characters ; Store minimum distance between same repeating characters ; For loop to consider each element of string ; Comparison of string characters and updating the minDis value ; As this value would be least therefore break ; If minDis value is not updated that means no repeating characters ; Minimum distance is minDis - 1 ; Driver Code ; Given Input ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int shortestDistance ( string S , int N ) { int minDis = S . length ( ) ; for ( int i = 0 ; i < N ; i ++ ) { for ( int j = i + 1 ; j < N ; j ++ ) { if ( S [ i ] == S [ j ] and ( j - i ) < minDis ) { minDis = j - i ; break ; } } } if ( minDis == S . length ( ) ) return -1 ; else return minDis - 1 ; } int main ( ) { string S = " geeksforgeeks " ; int N = 13 ; cout << ( shortestDistance ( S , N ) ) ; } |
Positive elements at even and negative at odd positions ( Relative order not maintained ) | C ++ program to rearrange positive and negative numbers ; Move forward the positive pointer till negative number number not encountered ; Move forward the negative pointer till positive number number not encountered ; Swap array elements to fix their position . ; Break from the while loop when any index exceeds the size of the array ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void rearrange ( int a [ ] , int size ) { int positive = 0 , negative = 1 ; while ( true ) { while ( positive < size && a [ positive ] >= 0 ) positive += 2 ; while ( negative < size && a [ negative ] <= 0 ) negative += 2 ; if ( positive < size && negative < size ) swap ( a [ positive ] , a [ negative ] ) ; else break ; } } int main ( ) { int arr [ ] = { 1 , -3 , 5 , 6 , -3 , 6 , 7 , -4 , 9 , 10 } ; int n = ( sizeof ( arr ) / sizeof ( arr [ 0 ] ) ) ; rearrange ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Print all numbers that can be obtained by adding A or B to N exactly M times | C ++ program for the above approach ; Function to find all possible numbers that can be obtained by adding A or B to N exactly M times ; For maintaining increasing order ; Smallest number that can be achieved ; If A and B are equal , the only number that can be onbtained is N + M * A ; For finding other numbers , subtract A from number 1 time and add B to number 1 time ; Driver Code ; Given Input ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void possibleNumbers ( int N , int M , int A , int B ) { if ( A > B ) { swap ( A , B ) ; } int number = N + M * A ; cout << number << " β " ; if ( A != B ) { for ( int i = 0 ; i < M ; i ++ ) { number = number - A + B ; cout << number << " β " ; } } } int main ( ) { int N = 5 , M = 3 , A = 4 , B = 6 ; possibleNumbers ( N , M , A , B ) ; return 0 ; } |
Positive elements at even and negative at odd positions ( Relative order not maintained ) | C ++ program to rearrange positive and negative numbers ; Swap function ; Print array function ; Driver code ; before modification ; out of order positive element ; find out of order negative element in remaining array ; out of order negative element ; find out of order positive element in remaining array ; after modification | #include <iostream> NEW_LINE using namespace std ; void swap ( int * a , int i , int j ) { int temp = a [ i ] ; a [ i ] = a [ j ] ; a [ j ] = temp ; return ; } void printArray ( int * a , int n ) { for ( int i = 0 ; i < n ; i ++ ) cout << a [ i ] << " β " ; cout << endl ; return ; } int main ( ) { int arr [ ] = { 1 , -3 , 5 , 6 , -3 , 6 , 7 , -4 , 9 , 10 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; printArray ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] >= 0 && i % 2 == 1 ) { for ( int j = i + 1 ; j < n ; j ++ ) { if ( arr [ j ] < 0 && j % 2 == 0 ) { swap ( arr , i , j ) ; break ; } } } else if ( arr [ i ] < 0 && i % 2 == 0 ) { for ( int j = i + 1 ; j < n ; j ++ ) { if ( arr [ j ] >= 0 && j % 2 == 1 ) { swap ( arr , i , j ) ; break ; } } } } printArray ( arr , n ) ; return 0 ; } |
Segregate even and odd numbers | Set 3 | C ++ Implementation of the above approach ; Driver code ; Function call | #include <iostream> NEW_LINE using namespace std ; void arrayEvenAndOdd ( int arr [ ] , int n ) { int a [ n ] , ind = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] % 2 == 0 ) { a [ ind ] = arr [ i ] ; ind ++ ; } } for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] % 2 != 0 ) { a [ ind ] = arr [ i ] ; ind ++ ; } } for ( int i = 0 ; i < n ; i ++ ) { cout << a [ i ] << " β " ; } cout << endl ; } int main ( ) { int arr [ ] = { 1 , 3 , 2 , 4 , 7 , 6 , 9 , 10 } ; int n = sizeof ( arr ) / sizeof ( int ) ; arrayEvenAndOdd ( arr , n ) ; return 0 ; } |
Segregate even and odd numbers | Set 3 | CPP code to segregate even odd numbers in an array ; Function to segregate even odd numbers ; Swapping even and odd numbers ; Printing segregated array ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void arrayEvenAndOdd ( int arr [ ] , int n ) { int i = -1 , j = 0 ; int t ; while ( j != n ) { if ( arr [ j ] % 2 == 0 ) { i ++ ; swap ( arr [ i ] , arr [ j ] ) ; } j ++ ; } for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; } int main ( ) { int arr [ ] = { 1 , 3 , 2 , 4 , 7 , 6 , 9 , 10 } ; int n = sizeof ( arr ) / sizeof ( int ) ; arrayEvenAndOdd ( arr , n ) ; return 0 ; } |
Find sum of all left leaves in a given Binary Tree | A C ++ program to find sum of all left leaves ; A binary tree Node has key , pointer to left and right children ; Helper function that allocates a new node with the given data and NULL left and right pointer . ; Pass in a sum variable as an accumulator ; Check whether this node is a leaf node and is left . ; Pass 1 for left and 0 for right ; A wrapper over above recursive function ; use the above recursive function to evaluate sum ; Driver program to test above functions ; Let us construct the Binary Tree shown in the above figure | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int key ; struct Node * left , * right ; } ; Node * newNode ( char k ) { Node * node = new Node ; node -> key = k ; node -> right = node -> left = NULL ; return node ; } void leftLeavesSumRec ( Node * root , bool isleft , int * sum ) { if ( ! root ) return ; if ( ! root -> left && ! root -> right && isleft ) * sum += root -> key ; leftLeavesSumRec ( root -> left , 1 , sum ) ; leftLeavesSumRec ( root -> right , 0 , sum ) ; } int leftLeavesSum ( Node * root ) { int sum = 0 ; leftLeavesSumRec ( root , 0 , & sum ) ; return sum ; } int main ( ) { int sum = 0 ; struct Node * root = newNode ( 20 ) ; root -> left = newNode ( 9 ) ; root -> right = newNode ( 49 ) ; root -> right -> left = newNode ( 23 ) ; root -> right -> right = newNode ( 52 ) ; root -> right -> right -> left = newNode ( 50 ) ; root -> left -> left = newNode ( 5 ) ; root -> left -> right = newNode ( 12 ) ; root -> left -> right -> right = newNode ( 12 ) ; cout << " Sum β of β left β leaves β is β " << leftLeavesSum ( root ) << endl ; return 0 ; } |
Symmetric Tree ( Mirror Image of itself ) | C ++ program to check if a given Binary Tree is symmetric or not ; A Binary Tree Node ; Utility function to create new Node ; Returns true if trees with roots as root1 and root2 are mirror ; If both trees are emptu , then they are mirror images ; For two trees to be mirror images , the following three conditions must be true 1 - Their root node 's key must be same 2 - left subtree of left tree and right subtree of right tree have to be mirror images 3 - right subtree of left tree and left subtree of right tree have to be mirror images ; if none of above conditions is true then root1 and root2 are not mirror images ; Returns true if a tree is symmetric i . e . mirror image of itself ; Check if tree is mirror of itself ; Driver code ; Let us construct the Tree shown in the above figure | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int key ; struct Node * left , * right ; } ; Node * newNode ( int key ) { Node * temp = new Node ; temp -> key = key ; temp -> left = temp -> right = NULL ; return ( temp ) ; } bool isMirror ( struct Node * root1 , struct Node * root2 ) { if ( root1 == NULL && root2 == NULL ) return true ; if ( root1 && root2 && root1 -> key == root2 -> key ) return isMirror ( root1 -> left , root2 -> right ) && isMirror ( root1 -> right , root2 -> left ) ; return false ; } bool isSymmetric ( struct Node * root ) { return isMirror ( root , root ) ; } int main ( ) { Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 2 ) ; root -> left -> left = newNode ( 3 ) ; root -> left -> right = newNode ( 4 ) ; root -> right -> left = newNode ( 4 ) ; root -> right -> right = newNode ( 3 ) ; if ( isSymmetric ( root ) ) cout << " Symmetric " ; else cout << " Not β symmetric " ; return 0 ; } |
Minimize cost to convert all occurrences of each distinct character to lowercase or uppercase | C ++ program for the above approach ; Function to find the minimum cost to convert all distinct characters to either uppercase or lowercase ; Store the size of the string ; Stores the frequency of lowercase & uppercase characters respectively ; Traverse the string S ; Update uppercase frequency of s [ i ] ; Otherwise , update lowercase frequency of s [ i ] ; Stores if the i - th character should be lowercase or not ; Iterate over the range [ 0 , 25 ] ; If the character is present in the string ; Store the cost to convert every occurence of i to uppercase and lowercase ; Update result [ i ] to 1 if lowercase cost is less ; Traverse the string S ; Store the index of the character ; Convert the current character to uppercase or lowercase according to the condition ; Update s [ i ] ; Update s [ i ] ; Print the modified string ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void minimumCost ( string s , int L , int U ) { int N = s . size ( ) ; string ans = " " ; int lowerFreq [ 26 ] = { 0 } ; int upperFreq [ 26 ] = { 0 } ; for ( int i = 0 ; i < N ; i ++ ) { if ( isupper ( s [ i ] ) ) upperFreq [ s [ i ] - ' A ' ] ++ ; else lowerFreq [ s [ i ] - ' a ' ] ++ ; } int result [ 26 ] = { 0 } ; for ( int i = 0 ; i < 26 ; i ++ ) { if ( lowerFreq [ i ] != 0 upperFreq [ i ] != 0 ) { int costToUpper = U * lowerFreq [ i ] ; int costToLower = L * upperFreq [ i ] ; if ( costToLower < costToUpper ) { result [ i ] = 1 ; } } } for ( int i = 0 ; i < N ; i ++ ) { int index = 0 ; if ( islower ( s [ i ] ) ) index = s [ i ] - ' a ' ; else index = s [ i ] - ' A ' ; if ( result [ index ] == 1 ) { s [ i ] = tolower ( s [ i ] ) ; } else { s [ i ] = toupper ( s [ i ] ) ; } } cout << s ; } int main ( ) { string S = " aabbAA " ; int L = 1 , U = 1 ; minimumCost ( S , L , U ) ; return 0 ; } |
Check if a matrix can be converted to another by repeatedly adding any value to X consecutive elements in a row or column | C ++ Program for the above approach ; Function to check whether Matrix A [ ] [ ] can be transformed to Matrix B [ ] [ ] or not ; Traverse the matrix to perform horizontal operations ; Calculate difference ; Update next X elements ; Traverse the matrix to perform vertical operations ; Calculate difference ; Update next K elements ; A [ i ] [ j ] is not equal to B [ i ] [ j ] ; Conversion is not possible ; Conversion is possible ; Driver Code ; Input | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool Check ( int A [ ] [ 2 ] , int B [ ] [ 2 ] , int M , int N , int X ) { for ( int i = 0 ; i < M ; i ++ ) { for ( int j = 0 ; j <= N - X ; j ++ ) { if ( A [ i ] [ j ] != B [ i ] [ j ] ) { int diff = B [ i ] [ j ] - A [ i ] [ j ] ; for ( int k = 0 ; k < X ; k ++ ) { A [ i ] [ j + k ] = A [ i ] [ j + k ] + diff ; } } } } for ( int i = 0 ; i <= M - X ; i ++ ) { for ( int j = 0 ; j < N ; j ++ ) { if ( A [ i ] [ j ] != B [ i ] [ j ] ) { int diff = B [ i ] [ j ] - A [ i ] [ j ] ; for ( int k = 0 ; k < X ; k ++ ) { A [ i + k ] [ j ] = A [ i + k ] [ j ] + diff ; } } } } for ( int i = 0 ; i < M ; i ++ ) { for ( int j = 0 ; j < N ; j ++ ) { if ( A [ i ] [ j ] != B [ i ] [ j ] ) { return 0 ; } } } return 1 ; } int main ( ) { int M = 2 , N = 2 , X = 2 ; int A [ 2 ] [ 2 ] = { { 0 , 0 } , { 0 , 0 } } ; int B [ 2 ] [ 2 ] = { { 1 , 2 } , { 0 , 1 } } ; if ( Check ( A , B , M , N , X ) ) { cout << " Yes " << endl ; } else { cout << " No " << endl ; } return 0 ; } |
Kth smallest element in a row | kth largest element in a 2d array sorted row - wise and column - wise ; A structure to store entry of heap . The entry contains value from 2D array , row and column numbers of the value ; value to be stored ; Row number of value in 2D array ; Column number of value in 2D array ; A utility function to swap two HeapNode items . ; A utility function to minheapify the node harr [ i ] of a heap stored in harr [ ] ; This function returns kth smallest element in a 2D array mat [ ] [ ] ; k must be greater than 0 and smaller than n * n ; Create a min heap of elements from first row of 2D array ; Get current heap root ; Get next value from column of root 's value. If the value stored at root was last value in its column, then assign INFINITE as next value ; Update heap root with next value ; Heapify root ; Return the value at last extracted root ; driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct HeapNode { int val ; int r ; int c ; } ; void swap ( HeapNode * x , HeapNode * y ) { HeapNode z = * x ; * x = * y ; * y = z ; } void minHeapify ( HeapNode harr [ ] , int i , int heap_size ) { int l = i * 2 + 1 ; int r = i * 2 + 2 ; if ( l < heap_size && r < heap_size && harr [ l ] . val < harr [ i ] . val && harr [ r ] . val < harr [ i ] . val ) { HeapNode temp = harr [ r ] ; harr [ r ] = harr [ i ] ; harr [ i ] = harr [ l ] ; harr [ l ] = temp ; minHeapify ( harr , l , heap_size ) ; minHeapify ( harr , r , heap_size ) ; } if ( l < heap_size && harr [ l ] . val < harr [ i ] . val ) { HeapNode temp = harr [ i ] ; harr [ i ] = harr [ l ] ; harr [ l ] = temp ; minHeapify ( harr , l , heap_size ) ; } } int kthSmallest ( int mat [ 4 ] [ 4 ] , int n , int k ) { if ( k < 0 && k >= n * n ) return INT_MAX ; HeapNode harr [ n ] ; for ( int i = 0 ; i < n ; i ++ ) harr [ i ] = { mat [ 0 ] [ i ] , 0 , i } ; HeapNode hr ; for ( int i = 0 ; i < k ; i ++ ) { hr = harr [ 0 ] ; int nextval = ( hr . r < ( n - 1 ) ) ? mat [ hr . r + 1 ] [ hr . c ] : INT_MAX ; harr [ 0 ] = { nextval , ( hr . r ) + 1 , hr . c } ; minHeapify ( harr , 0 , n ) ; } return hr . val ; } int main ( ) { int mat [ 4 ] [ 4 ] = { { 10 , 20 , 30 , 40 } , { 15 , 25 , 35 , 45 } , { 25 , 29 , 37 , 48 } , { 32 , 33 , 39 , 50 } , } ; cout << "7th β smallest β element β is β " << kthSmallest ( mat , 4 , 7 ) ; return 0 ; } |
Make all array elements equal by reducing array elements to half minimum number of times | C ++ program for the above approach ; Function to find minimum number of operations ; Initialize map ; Traverse the array ; Divide current array element until it reduces to 1 ; Traverse the map ; Find the maximum element having frequency equal to N ; Stores the minimum number of operations required ; Count operations required to convert current element to mx ; Print the answer ; Driver Code ; Given array ; Size of the array | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minOperations ( int arr [ ] , int N ) { map < int , int > mp ; for ( int i = 0 ; i < N ; i ++ ) { int res = arr [ i ] ; while ( res ) { mp [ res ] ++ ; res /= 2 ; } } int mx = 1 ; for ( auto it : mp ) { if ( it . second == N ) { mx = it . first ; } } int ans = 0 ; for ( int i = 0 ; i < N ; i ++ ) { int res = arr [ i ] ; while ( res != mx ) { ans ++ ; res /= 2 ; } } cout << ans ; } int main ( ) { int arr [ ] = { 3 , 1 , 1 , 3 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; minOperations ( arr , N ) ; } |
Find the player to reach at least N by multiplying with any value from given range | C ++ program for the above approach ; Function to find the winner ; Backtrack from N to 1 ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; char Winner ( int N ) { bool player = true ; while ( N > 1 ) { int den = ( player ) ? 9 : 2 ; int X = N / den , Y = N % den ; N = ( Y ) ? X + 1 : X ; player = ! player ; } if ( player ) return ' B ' ; else return ' A ' ; } int main ( ) { int N = 10 ; cout << Winner ( N ) ; return 0 ; } |
Program to find largest element in an array | C ++ program to find maximum in arr [ ] of size n ; Method to find maximum in arr [ ] ; Initialize maximum element ; Traverse array elements from second and compare every element with current max ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int largest ( int arr [ ] , int n ) { int i ; int max = arr [ 0 ] ; for ( i = 1 ; i < n ; i ++ ) if ( arr [ i ] > max ) max = arr [ i ] ; return max ; } int main ( ) { int arr [ ] = { 10 , 324 , 45 , 90 , 9808 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << " Largest β in β given β array β is β " << largest ( arr , n ) ; return 0 ; } |
Minimize steps required to reach the value N | C ++ program for the above approach ; Function to find the minimum steps required to reach N by either moving i steps forward or 1 steps backward ; Stores the required count ; IF total moves required is less than double of N ; Update steps ; Steps required to reach N ; Update steps ; Driver Code ; Given value of N | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minimumsteps ( int N ) { int steps = 0 ; while ( steps * ( steps + 1 ) < 2 * N ) { steps ++ ; } if ( steps * ( steps + 1 ) / 2 == N + 1 ) { steps ++ ; } cout << steps ; } int main ( ) { int N = 18 ; minimumsteps ( N ) ; } |
Program to find largest element in an array | C ++ program to find maximum in arr [ ] of size n ; returns maximum in arr [ ] of size n ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int largest ( int arr [ ] , int n ) { return * max_element ( arr , arr + n ) ; } int main ( ) { int arr [ ] = { 10 , 324 , 45 , 90 , 9808 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << largest ( arr , n ) ; return 0 ; } |
Find the largest three distinct elements in an array | C ++ code to find largest three elements in an array ; It uses Tuned Quicksort with ; avg . case Time complexity = O ( nLogn ) ; to handle duplicate values ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void find3largest ( int arr [ ] , int n ) { sort ( arr , arr + n ) ; int check = 0 , count = 1 ; for ( int i = 1 ; i <= n ; i ++ ) { if ( count < 4 ) { if ( check != arr [ n - i ] ) { cout << arr [ n - i ] << " β " ; check = arr [ n - i ] ; count ++ ; } } else break ; } } int main ( ) { int arr [ ] = { 12 , 45 , 1 , -1 , 45 , 54 , 23 , 5 , 0 , -10 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; find3largest ( arr , n ) ; } |
Minimum characters required to be removed to make frequency of each character unique | C ++ program to implement the above approach ; Function to find the minimum count of characters required to be deleted to make frequencies of all characters unique ; Stores frequency of each distinct character of str ; Store frequency of each distinct character such that the largest frequency is present at the top ; Stores minimum count of characters required to be deleted to make frequency of each character unique ; Traverse the string ; Update frequency of str [ i ] ; Traverse the map ; Insert current frequency into pq ; Traverse the priority_queue ; Stores topmost element of pq ; Pop the topmost element ; If pq is empty ; Return cntChar ; If frequent and topmost element of pq are equal ; If frequency of the topmost element is greater than 1 ; Insert the decremented value of frequent ; Update cntChar ; Driver Code ; Stores length of str | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minCntCharDeletionsfrequency ( string & str , int N ) { unordered_map < char , int > mp ; priority_queue < int > pq ; int cntChar = 0 ; for ( int i = 0 ; i < N ; i ++ ) { mp [ str [ i ] ] ++ ; } for ( auto it : mp ) { pq . push ( it . second ) ; } while ( ! pq . empty ( ) ) { int frequent = pq . top ( ) ; pq . pop ( ) ; if ( pq . empty ( ) ) { return cntChar ; } if ( frequent == pq . top ( ) ) { if ( frequent > 1 ) { pq . push ( frequent - 1 ) ; } cntChar ++ ; } } return cntChar ; } int main ( ) { string str = " abbbcccd " ; int N = str . length ( ) ; cout << minCntCharDeletionsfrequency ( str , N ) ; return 0 ; } |
Replace specified matrix elements such that no two adjacent elements are equal | C ++ program for the above approach ; Function to check if current position is safe or not ; Directions for adjacent cells ; Check if any adjacent cell is same ; Current index is valid ; Recursive function for backtracking ; Free cell ; All positions covered ; If position is valid for 1 ; If position is valid for 2 ; Recursive call for next unoccupied position ; If above conditions fails ; Function to print valid matrix ; Driver Code ; Give dimensions ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool issafe ( vector < vector < char > > & v , int i , int j , int n , int m , char ch ) { int rowN [ ] = { 1 , -1 , 0 , 0 } ; int colN [ ] = { 0 , 0 , 1 , -1 } ; for ( int k = 0 ; k < 4 ; k ++ ) { if ( i + rowN [ k ] >= 0 && i + rowN [ k ] < n && j + colN [ k ] >= 0 && j + colN [ k ] < m && v [ i + rowN [ k ] ] [ j + colN [ k ] ] == ch ) { return false ; } } return true ; } bool place ( vector < vector < char > > & v , int n , int m ) { int i , j ; for ( i = 0 ; i < n ; i ++ ) { for ( j = 0 ; j < m ; j ++ ) { if ( v [ i ] [ j ] == ' F ' ) { break ; } } if ( j != m ) { break ; } } if ( i == n && j == m ) { return true ; } if ( issafe ( v , i , j , n , m , '1' ) ) { v [ i ] [ j ] = '1' ; if ( place ( v , n , m ) ) { return true ; } v [ i ] [ j ] = ' F ' ; } if ( issafe ( v , i , j , n , m , '2' ) ) { v [ i ] [ j ] = '2' ; if ( place ( v , n , m ) ) { return true ; } v [ i ] [ j ] = ' F ' ; } return false ; } void printMatrix ( vector < vector < char > > arr , int n , int m ) { place ( arr , n , m ) ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < m ; j ++ ) { cout << arr [ i ] [ j ] ; } cout << endl ; } } int main ( ) { vector < vector < char > > arr = { { ' F ' , ' F ' , ' F ' , ' F ' } , { ' F ' , ' O ' , ' F ' , ' F ' } , { ' F ' , ' F ' , ' O ' , ' F ' } , { ' F ' , ' F ' , ' F ' , ' F ' } , } ; int n = 4 , m = 4 ; printMatrix ( arr , n , m ) ; return 0 ; } |
Program for Mean and median of an unsorted array | CPP program to find mean and median of an array ; Function for calculating mean ; Function for calculating median ; First we sort the array ; check for even case ; Driver code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; double findMean ( int a [ ] , int n ) { int sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) sum += a [ i ] ; return ( double ) sum / ( double ) n ; } double findMedian ( int a [ ] , int n ) { sort ( a , a + n ) ; if ( n % 2 != 0 ) return ( double ) a [ n / 2 ] ; return ( double ) ( a [ ( n - 1 ) / 2 ] + a [ n / 2 ] ) / 2.0 ; } int main ( ) { int a [ ] = { 1 , 3 , 4 , 2 , 7 , 5 , 8 , 6 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << " Mean β = β " << findMean ( a , n ) << endl ; cout << " Median β = β " << findMedian ( a , n ) << endl ; return 0 ; } |
Find sum of all left leaves in a given Binary Tree | C ++ program to find sum of all left leaves ; A binary tree node ; A constructor to create a new Node ; Return the sum of left leaf nodes ; Using a stack_ for Depth - First Traversal of the tree ; sum holds the sum of all the left leaves ; Check if currentNode 's left child is a leaf node ; if currentNode is a leaf , add its data to the sum ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; class Node { public : int key ; Node * left , * right ; Node ( int key_ ) { key = key_ ; left = NULL ; right = NULL ; } } ; int sumOfLeftLeaves ( Node * root ) { if ( root == NULL ) return 0 ; stack < Node * > stack_ ; stack_ . push ( root ) ; int sum = 0 ; while ( stack_ . size ( ) > 0 ) { Node * currentNode = stack_ . top ( ) ; stack_ . pop ( ) ; if ( currentNode -> left != NULL ) { stack_ . push ( currentNode -> left ) ; if ( currentNode -> left -> left == NULL && currentNode -> left -> right == NULL ) { sum = sum + currentNode -> left -> key ; } } if ( currentNode -> right != NULL ) stack_ . push ( currentNode -> right ) ; } return sum ; } int main ( ) { Node * root = new Node ( 20 ) ; root -> left = new Node ( 9 ) ; root -> right = new Node ( 49 ) ; root -> right -> left = new Node ( 23 ) ; root -> right -> right = new Node ( 52 ) ; root -> right -> right -> left = new Node ( 50 ) ; root -> left -> left = new Node ( 5 ) ; root -> left -> right = new Node ( 12 ) ; root -> left -> right -> right = new Node ( 12 ) ; cout << " Sum β of β left β leaves β is β " << sumOfLeftLeaves ( root ) << endl ; return 0 ; } |
Find a pair with sum N having minimum absolute difference | C ++ program to implement the above approach ; Function to find the value of X and Y having minimum value of abs ( X - Y ) ; If N is an odd number ; If N is an even number ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void findXandYwithminABSX_Y ( int N ) { if ( N % 2 == 1 ) { cout << ( N / 2 ) << " β " << ( N / 2 + 1 ) ; } else { cout << ( N / 2 - 1 ) << " β " << ( N / 2 + 1 ) ; } } int main ( ) { int N = 12 ; findXandYwithminABSX_Y ( N ) ; } |
Maximum sum possible by assigning alternate positive and negative sign to elements in a subsequence | C ++ program for the above approach ; Function to find the maximum sum subsequence ; Base Case ; If current state is already calculated then use it ; If current element is positive ; Update ans and recursively call with update value of flag ; Else current element is negative ; Update ans and recursively call with update value of flag ; Return maximum sum subsequence ; Function that finds the maximum sum of element of the subsequence with alternate + ve and - ve signs ; Create auxiliary array dp [ ] [ ] ; Initialize dp [ ] [ ] ; Function Call ; Driver Code ; Given array arr [ ] ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findMax ( vector < int > & a , int dp [ ] [ 2 ] , int i , int flag ) { if ( i == ( int ) a . size ( ) ) { return 0 ; } if ( dp [ i ] [ flag ] != -1 ) { return dp [ i ] [ flag ] ; } int ans ; if ( flag == 0 ) { ans = max ( findMax ( a , dp , i + 1 , 0 ) , a [ i ] + findMax ( a , dp , i + 1 , 1 ) ) ; } else { ans = max ( findMax ( a , dp , i + 1 , 1 ) , -1 * a [ i ] + findMax ( a , dp , i + 1 , 0 ) ) ; } return dp [ i ] [ flag ] = ans ; } void findMaxSumUtil ( vector < int > & arr , int N ) { int dp [ N ] [ 2 ] ; memset ( dp , -1 , sizeof dp ) ; cout << findMax ( arr , dp , 0 , 0 ) ; } int main ( ) { vector < int > arr = { 1 , 2 , 3 , 4 , 1 , 2 } ; int N = arr . size ( ) ; findMaxSumUtil ( arr , N ) ; return 0 ; } |
Find the player to last modify a string such that even number of consonants and no vowels are left in the string | C ++ program for the above approach ; Function to find a winner of the game if both the player plays optimally ; Stores the count of vowels and consonants ; Traverse the string ; Check if character is vowel ; Increment vowels count ; Otherwise increment the consonants count ; Check if Player B wins ; Check if Player A wins ; Check if Player A wins ; If game ends in a Draw ; Driver Code ; Given string s ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void findWinner ( string s ) { int vowels_count = 0 , consonants_count = 0 ; for ( int i = 0 ; i < s . size ( ) ; i ++ ) { if ( s [ i ] == ' a ' s [ i ] == ' e ' s [ i ] == ' i ' s [ i ] == ' o ' s [ i ] == ' u ' ) { vowels_count ++ ; } else { consonants_count ++ ; } } if ( vowels_count == 0 ) { if ( consonants_count % 2 == 0 ) { cout << " Player β B " ; } else { cout << " Player β A " ; } } else if ( vowels_count == 1 && consonants_count % 2 != 0 ) { cout << " Player β A " ; } else { cout << " D " ; } } int main ( ) { string s = " abcd " ; findWinner ( s ) ; return 0 ; } |
Lexicographically smallest permutation of size A having B integers exceeding all preceding integers | C ++ program for the above approach ; Function to find lexicographically smallest permutation of [ 1 , A ] having B integers greater than all the previous elements ; Initial array ; Resultant array ; Append the first ( B - 1 ) elements to the resultant array ; Append the maximum from the initial array ; Copy the remaining elements ; Return the answer ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < int > getSmallestArray ( int A , int B ) { vector < int > arr ( A ) ; for ( int i = 0 ; i < A ; i ++ ) arr [ i ] = i + 1 ; vector < int > ans ( A ) ; for ( int i = 0 ; i < B - 1 ; i ++ ) ans [ i ] = arr [ i ] ; ans [ B - 1 ] = arr [ A - 1 ] ; for ( int i = B ; i < A ; i ++ ) ans [ i ] = arr [ i - 1 ] ; return ans ; } int main ( ) { int A = 3 ; int B = 2 ; vector < int > ans = getSmallestArray ( A , B ) ; for ( auto i : ans ) cout << i << " β " ; } |
K maximum sums of overlapping contiguous sub | C ++ program to find out k maximum sum of overlapping sub - arrays ; Function to compute prefix - sum of the input array ; Update maxi by k maximum values from maxi and cand ; Here cand and maxi arrays are in non - increasing order beforehand . Now , j is the index of the next cand element and i is the index of next maxi element . Traverse through maxi array . If cand [ j ] > maxi [ i ] insert cand [ j ] at the ith position in the maxi array and remove the minimum element of the maxi array i . e . the last element and increase j by 1 i . e . take the next element from cand . ; Insert prefix_sum [ i ] to mini array if needed ; Traverse the mini array from left to right . If prefix_sum [ i ] is less than any element then insert prefix_sum [ i ] at that position and delete maximum element of the mini array i . e . the rightmost element from the array . ; Function to compute k maximum overlapping sub - array sums ; Compute the prefix sum of the input array . ; Set all the elements of mini as + infinite except 0 th . Set the 0 th element as 0. ; Set all the elements of maxi as - infinite . ; Initialize cand array . ; For each element of the prefix_sum array do : compute the cand array . take k maximum values from maxi and cand using maxmerge function . insert prefix_sum [ i ] to mini array if needed using insertMini function . ; Elements of maxi array is the k maximum overlapping sub - array sums . Print out the elements of maxi array . ; Driver Program ; Test case 1 ; Test case 2 | #include <iostream> NEW_LINE #include <limits> NEW_LINE #include <vector> NEW_LINE using namespace std ; vector < int > prefix_sum ( vector < int > arr , int n ) { vector < int > pre_sum ; pre_sum . push_back ( arr [ 0 ] ) ; for ( int i = 1 ; i < n ; i ++ ) pre_sum . push_back ( pre_sum [ i - 1 ] + arr [ i ] ) ; return pre_sum ; } void maxMerge ( vector < int > & maxi , vector < int > cand ) { int k = maxi . size ( ) ; int j = 0 ; for ( int i = 0 ; i < k ; i ++ ) { if ( cand [ j ] > maxi [ i ] ) { maxi . insert ( maxi . begin ( ) + i , cand [ j ] ) ; maxi . erase ( maxi . begin ( ) + k ) ; j += 1 ; } } } void insertMini ( vector < int > & mini , int pre_sum ) { int k = mini . size ( ) ; for ( int i = 0 ; i < k ; i ++ ) { if ( pre_sum < mini [ i ] ) { mini . insert ( mini . begin ( ) + i , pre_sum ) ; mini . erase ( mini . begin ( ) + k ) ; break ; } } } void kMaxOvSubArray ( vector < int > arr , int k ) { int n = arr . size ( ) ; vector < int > pre_sum = prefix_sum ( arr , n ) ; vector < int > mini ( k , numeric_limits < int > :: max ( ) ) ; mini [ 0 ] = 0 ; vector < int > maxi ( k , numeric_limits < int > :: min ( ) ) ; vector < int > cand ( k ) ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < k ; j ++ ) { if ( pre_sum [ i ] < 0 && mini [ j ] == numeric_limits < int > :: max ( ) ) cand [ j ] = ( - pre_sum [ i ] ) - mini [ j ] ; else cand [ j ] = pre_sum [ i ] - mini [ j ] ; } maxMerge ( maxi , cand ) ; insertMini ( mini , pre_sum [ i ] ) ; } for ( int ele : maxi ) cout << ele << " β " ; cout << endl ; } int main ( ) { vector < int > arr1 = { 4 , -8 , 9 , -4 , 1 , -8 , -1 , 6 } ; int k1 = 4 ; kMaxOvSubArray ( arr1 , k1 ) ; vector < int > arr2 = { -2 , -3 , 4 , -1 , -2 , 1 , 5 , -3 } ; int k2 = 3 ; kMaxOvSubArray ( arr2 , k2 ) ; return 0 ; } |
k smallest elements in same order using O ( 1 ) extra space | CPP for printing smallest k numbers in order ; Function to print smallest k numbers in arr [ 0. . n - 1 ] ; For each arr [ i ] find whether it is a part of n - smallest with insertion sort concept ; find largest from first k - elements ; if largest is greater than arr [ i ] shift all element one place left ; make arr [ k - 1 ] = arr [ i ] ; print result ; Driver program | #include <algorithm> NEW_LINE #include <iostream> NEW_LINE using namespace std ; void printSmall ( int arr [ ] , int n , int k ) { for ( int i = k ; i < n ; ++ i ) { int max_var = arr [ k - 1 ] ; int pos = k - 1 ; for ( int j = k - 2 ; j >= 0 ; j -- ) { if ( arr [ j ] > max_var ) { max_var = arr [ j ] ; pos = j ; } } if ( max_var > arr [ i ] ) { int j = pos ; while ( j < k - 1 ) { arr [ j ] = arr [ j + 1 ] ; j ++ ; } arr [ k - 1 ] = arr [ i ] ; } } for ( int i = 0 ; i < k ; i ++ ) cout << arr [ i ] << " β " ; } int main ( ) { int arr [ ] = { 1 , 5 , 8 , 9 , 6 , 7 , 3 , 4 , 2 , 0 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 5 ; printSmall ( arr , n , k ) ; return 0 ; } |
Find k pairs with smallest sums in two arrays | C ++ program to prints first k pairs with least sum from two arrays . ; Function to find k pairs with least sum such that one elemennt of a pair is from arr1 [ ] and other element is from arr2 [ ] ; Stores current index in arr2 [ ] for every element of arr1 [ ] . Initially all values are considered 0. Here current index is the index before which all elements are considered as part of output . ; Initialize current pair sum as infinite ; To pick next pair , traverse for all elements of arr1 [ ] , for every element , find corresponding current element in arr2 [ ] and pick minimum of all formed pairs . ; Check if current element of arr1 [ ] plus element of array2 to be used gives minimum sum ; Update index that gives minimum ; update minimum sum ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void kSmallestPair ( int arr1 [ ] , int n1 , int arr2 [ ] , int n2 , int k ) { if ( k > n1 * n2 ) { cout << " k β pairs β don ' t β exist " ; return ; } int index2 [ n1 ] ; memset ( index2 , 0 , sizeof ( index2 ) ) ; while ( k > 0 ) { int min_sum = INT_MAX ; int min_index = 0 ; for ( int i1 = 0 ; i1 < n1 ; i1 ++ ) { if ( index2 [ i1 ] < n2 && arr1 [ i1 ] + arr2 [ index2 [ i1 ] ] < min_sum ) { min_index = i1 ; min_sum = arr1 [ i1 ] + arr2 [ index2 [ i1 ] ] ; } } cout << " ( " << arr1 [ min_index ] << " , β " << arr2 [ index2 [ min_index ] ] << " ) β " ; index2 [ min_index ] ++ ; k -- ; } } int main ( ) { int arr1 [ ] = { 1 , 3 , 11 } ; int n1 = sizeof ( arr1 ) / sizeof ( arr1 [ 0 ] ) ; int arr2 [ ] = { 2 , 4 , 8 } ; int n2 = sizeof ( arr2 ) / sizeof ( arr2 [ 0 ] ) ; int k = 4 ; kSmallestPair ( arr1 , n1 , arr2 , n2 , k ) ; return 0 ; } |
Maximize count of strings of length 3 that can be formed from N 1 s and M 0 s | C ++ program for the above approach ; Function that counts the number of strings of length 3 that can be made with given m 0 s and n 1 s ; Print the count of strings ; Driver Code ; Given count of 1 s and 0 s ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void number_of_strings ( int N , int M ) { cout << min ( N , min ( M , ( N + M ) / 3 ) ) ; } int main ( ) { int N = 4 , M = 19 ; number_of_strings ( N , M ) ; return 0 ; } |
Maximize count of subsets having product of smallest element and size of the subset at least X | C ++ Program to implement the above approach ; Comparator function to return the greater of two numbers ; Function to return the maximum count of subsets possible which satisfy the above condition ; Sort the array in descending order ; Stores the count of subsets ; Stores the size of the current subset ; Check for the necessary conditions ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool comp ( int a , int b ) { return a > b ; } int maxSubset ( int arr [ ] , int N , int X ) { sort ( arr , arr + N , comp ) ; int counter = 0 ; int sz = 0 ; for ( int i = 0 ; i < N ; i ++ ) { sz ++ ; if ( arr [ i ] * sz >= X ) { counter ++ ; sz = 0 ; } } return counter ; } int main ( ) { int arr [ ] = { 7 , 11 , 2 , 9 , 5 } ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int X = 10 ; cout << maxSubset ( arr , N , X ) ; } |
Maximize modulus by replacing adjacent pairs with their modulus for any permutation of given Array | C ++ Program to implement the above approach ; Function to find the minimum of two numbers ; Function to find the maximum value possible of the given expression from all permutations of the array ; Stores the minimum value from the array ; Return the answer ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int min ( int a , int b ) { return ( a > b ) ? b : a ; } int maximumModuloValue ( int A [ ] , int n ) { int mn = INT_MAX ; for ( int i = 0 ; i < n ; i ++ ) { mn = min ( A [ i ] , mn ) ; } return mn ; } int main ( ) { int A [ ] = { 7 , 10 , 12 } ; int n = ( sizeof ( A ) / ( sizeof ( A [ 0 ] ) ) ) ; cout << maximumModuloValue ( A , n ) << endl ; return 0 ; } |
Final Matrix after incrementing submatrices by K in range given by Q queries | C ++ program for the above approach ; Query data type ; Function to update the given query ; Update top cell ; Update bottom left cell ; Update bottom right cell ; Update top right cell ; Function that updates the matrix mat [ ] [ ] by adding elements of aux [ ] [ ] ; Compute the prefix sum of all columns ; Compute the prefix sum of all rows ; Get the final matrix by adding mat and aux matrix at each cell ; Function that prints matrix mat [ ] ; Traverse each row ; Traverse each columns ; Function that performs each query in the given matrix and print the updated matrix after each operation performed ; Initialize all elements to 0 ; Update auxiliary matrix by traversing each query ; Update Query ; Compute the final answer ; Print the updated matrix ; Driver Code ; Given Matrix ; Given Queries ; Function Call | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 3 NEW_LINE #define M 4 NEW_LINE struct query { int x1 , x2 , y1 , y2 , K ; } ; void updateQuery ( int from_x , int from_y , int to_x , int to_y , int k , int aux [ ] [ M ] ) { aux [ from_x ] [ from_y ] += k ; if ( to_x + 1 < N ) aux [ to_x + 1 ] [ from_y ] -= k ; if ( to_x + 1 < N && to_y + 1 < M ) aux [ to_x + 1 ] [ to_y + 1 ] += k ; if ( to_y + 1 < M ) aux [ from_x ] [ to_y + 1 ] -= k ; } void updateMatrix ( int mat [ ] [ M ] , int aux [ ] [ M ] ) { for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 1 ; j < M ; j ++ ) { aux [ i ] [ j ] += aux [ i ] [ j - 1 ] ; } } for ( int i = 0 ; i < M ; i ++ ) { for ( int j = 1 ; j < N ; j ++ ) { aux [ j ] [ i ] += aux [ j - 1 ] [ i ] ; } } for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < M ; j ++ ) { mat [ i ] [ j ] += aux [ i ] [ j ] ; } } } void printMatrix ( int mat [ ] [ M ] ) { for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < M ; j ++ ) { cout << mat [ i ] [ j ] << " β " ; } cout << " STRNEWLINE " ; } } void matrixQuery ( int mat [ ] [ M ] , int Q , query q [ ] ) { int aux [ N ] [ M ] = { } ; for ( int i = 0 ; i < Q ; i ++ ) { updateQuery ( q [ i ] . x1 , q [ i ] . x2 , q [ i ] . y1 , q [ i ] . y2 , q [ i ] . K , aux ) ; } updateMatrix ( mat , aux ) ; printMatrix ( mat ) ; } int main ( ) { int mat [ N ] [ M ] = { { 1 , 0 , 1 , 2 } , { 0 , 2 , 4 , 1 } , { 1 , 2 , 1 , 0 } } ; int Q = 1 ; query q [ ] = { { 0 , 0 , 1 , 1 , 2 } } ; matrixQuery ( mat , Q , q ) ; return 0 ; } |
Find Second largest element in an array | C ++ program to find second largest element in an array ; Function to print the second largest elements ; There should be atleast two elements ; sort the array ; start from second last element as the largest element is at last ; if the element is not equal to largest element ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void print2largest ( int arr [ ] , int arr_size ) { int i , first , second ; if ( arr_size < 2 ) { printf ( " β Invalid β Input β " ) ; return ; } sort ( arr , arr + arr_size ) ; for ( i = arr_size - 2 ; i >= 0 ; i -- ) { if ( arr [ i ] != arr [ arr_size - 1 ] ) { printf ( " The β second β largest β element β is β % d STRNEWLINE " , arr [ i ] ) ; return ; } } printf ( " There β is β no β second β largest β element STRNEWLINE " ) ; } int main ( ) { int arr [ ] = { 12 , 35 , 1 , 10 , 34 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; print2largest ( arr , n ) ; return 0 ; } |
Find sum of all left leaves in a given Binary Tree | C ++ program to find sum of all left leaves ; A binary tree node ; constructor to create a new Node ; Return the sum of left leaf nodes ; A queue of pairs to do bfs traversal and keep track if the node is a left or right child if boolean value is true then it is a left child . ; do bfs traversal ; if temp is a leaf node and left child of its parent ; if it is not leaf then push its children nodes into queue ; boolean value is true here because it is left child of its parent ; boolean value is false here because it is right child of its parent ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; class Node { public : int key ; Node * left , * right ; Node ( int key_ ) { key = key_ ; left = NULL ; right = NULL ; } } ; int sumOfLeftLeaves ( Node * root ) { if ( root == NULL ) return 0 ; queue < pair < Node * , bool > > q ; q . push ( { root , 0 } ) ; int sum = 0 ; while ( ! q . empty ( ) ) { Node * temp = q . front ( ) . first ; bool is_left_child = q . front ( ) . second ; q . pop ( ) ; if ( ! temp -> left && ! temp -> right && is_left_child ) sum = sum + temp -> key ; if ( temp -> left ) { q . push ( { temp -> left , 1 } ) ; } if ( temp -> right ) { q . push ( { temp -> right , 0 } ) ; } } return sum ; } int main ( ) { Node * root = new Node ( 20 ) ; root -> left = new Node ( 9 ) ; root -> right = new Node ( 49 ) ; root -> right -> left = new Node ( 23 ) ; root -> right -> right = new Node ( 52 ) ; root -> right -> right -> left = new Node ( 50 ) ; root -> left -> left = new Node ( 5 ) ; root -> left -> right = new Node ( 12 ) ; root -> left -> right -> right = new Node ( 12 ) ; cout << " Sum β of β left β leaves β is β " << sumOfLeftLeaves ( root ) << endl ; return 0 ; } |
Count of nested polygons that can be drawn by joining vertices internally | C ++ program for the above approach ; Function that counts the nested polygons inside another polygons ; Stores the count ; Child polygons can only existss if parent polygon has sides > 5 ; Get next nested polygon ; Return the count ; Driver Code ; Given side of polygon ; Function Call | #include <iostream> NEW_LINE using namespace std ; int countNestedPolygons ( int sides ) { int count = 0 ; while ( sides > 5 ) { sides /= 2 ; count += 1 ; } return count ; } int main ( ) { int N = 12 ; cout << countNestedPolygons ( N ) ; return 0 ; } |
Find Second largest element in an array | C ++ program to find second largest element in an array ; Function to print the second largest elements ; There should be atleast two elements ; find the largest element ; find the second largest element ; Driver program to test above function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void print2largest ( int arr [ ] , int arr_size ) { int i , first , second ; if ( arr_size < 2 ) { printf ( " β Invalid β Input β " ) ; return ; } int largest = second = INT_MIN ; for ( int i = 0 ; i < arr_size ; i ++ ) { largest = max ( largest , arr [ i ] ) ; } for ( int i = 0 ; i < arr_size ; i ++ ) { if ( arr [ i ] != largest ) second = max ( second , arr [ i ] ) ; } if ( second == INT_MIN ) printf ( " There β is β no β second β largest β element STRNEWLINE " ) ; else printf ( " The β second β largest β element β is β % d STRNEWLINE " , second ) ; } int main ( ) { int arr [ ] = { 12 , 35 , 1 , 10 , 34 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; print2largest ( arr , n ) ; return 0 ; } |
Find Second largest element in an array | C ++ program to find second largest element in an array ; Function to print the second largest elements ; There should be atleast two elements ; If current element is greater than first then update both first and second ; If arr [ i ] is in between first and second then update second ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void print2largest ( int arr [ ] , int arr_size ) { int i , first , second ; if ( arr_size < 2 ) { cout << " β Invalid β Input β " ; return ; } first = second = INT_MIN ; for ( i = 0 ; i < arr_size ; i ++ ) { if ( arr [ i ] > first ) { second = first ; first = arr [ i ] ; } else if ( arr [ i ] > second && arr [ i ] != first ) { second = arr [ i ] ; } } if ( second == INT_MIN ) cout << " There β is β no β second β largest " " element STRNEWLINE " ; else cout << " The β second β largest β element β is β " << second ; } int main ( ) { int arr [ ] = { 12 , 35 , 1 , 10 , 34 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; print2largest ( arr , n ) ; return 0 ; } |
Queries to count characters having odd frequency in a range [ L , R ] | C ++ Program to implement the above problem ; Function to print the number of characters having odd frequencies for each query ; A function to construct the arr [ ] and prefix [ ] ; Stores array length ; Stores the unique powers of 2 associated to each character ; Prefix array to store the XOR values from array elements ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void queryResult ( int prefix [ ] , pair < int , int > Q ) { int l = Q . first ; int r = Q . second ; if ( l == 0 ) { int xorval = prefix [ r ] ; cout << __builtin_popcount ( xorval ) << endl ; } else { int xorval = prefix [ r ] ^ prefix [ l - 1 ] ; cout << __builtin_popcount ( xorval ) << endl ; } } void calculateCount ( string S , pair < int , int > Q [ ] , int m ) { int n = S . length ( ) ; int arr [ n ] ; for ( int i = 0 ; i < n ; i ++ ) { arr [ i ] = ( 1 << ( S [ i ] - ' a ' ) ) ; } int prefix [ n ] ; int x = 0 ; for ( int i = 0 ; i < n ; i ++ ) { x ^= arr [ i ] ; prefix [ i ] = x ; } for ( int i = 0 ; i < m ; i ++ ) { queryResult ( prefix , Q [ i ] ) ; } } int main ( ) { string S = " geeksforgeeks " ; pair < int , int > Q [ ] = { { 2 , 4 } , { 0 , 3 } , { 0 , 12 } } ; calculateCount ( S , Q , 3 ) ; } |
Count of Binary Strings possible as per given conditions | C ++ Program to implement the above approach ; Function to generate maximum possible strings that can be generated ; Maximum possible strings ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; long long countStrings ( long long A , long long B , long long K ) { long long X = ( A + B ) / ( K + 1 ) ; return ( min ( A , min ( B , X ) ) * ( K + 1 ) ) ; } int main ( ) { long long N = 101 , M = 231 , K = 15 ; cout << countStrings ( N , M , K ) ; return 0 ; } |
Construct a Matrix N x N with first N ^ 2 natural numbers for an input N | C ++ program for the above approach ; Function to print the desired matrix ; Iterate ove all [ 0 , N ] ; If is even ; If row number is even print the row in forward order ; If row number is odd print the row in reversed order ; Driver Code ; Given matrix size ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void UniqueMatrix ( int N ) { int element_value = 1 ; int i = 0 ; while ( i < N ) { if ( i % 2 == 0 ) { for ( int f = element_value ; f < element_value + N ; f ++ ) { cout << f << " β " ; } element_value += N ; } else { for ( int k = element_value + N - 1 ; k > element_value - 1 ; k -- ) { cout << k << " β " ; } element_value += N ; } cout << endl ; i = i + 1 ; } } int main ( ) { int N = 4 ; UniqueMatrix ( N ) ; } |
Maximum and minimum of an array using minimum number of comparisons | C ++ program of above implementation ; Pair struct is used to return two values from getMinMax ( ) ; If there is only one element then return it as min and max both ; If there are more than one elements , then initialize min and max ; Driver code | #include <iostream> NEW_LINE using namespace std ; struct Pair { int min ; int max ; } ; struct Pair getMinMax ( int arr [ ] , int n ) { struct Pair minmax ; int i ; if ( n == 1 ) { minmax . max = arr [ 0 ] ; minmax . min = arr [ 0 ] ; return minmax ; } if ( arr [ 0 ] > arr [ 1 ] ) { minmax . max = arr [ 0 ] ; minmax . min = arr [ 1 ] ; } else { minmax . max = arr [ 1 ] ; minmax . min = arr [ 0 ] ; } for ( i = 2 ; i < n ; i ++ ) { if ( arr [ i ] > minmax . max ) minmax . max = arr [ i ] ; else if ( arr [ i ] < minmax . min ) minmax . min = arr [ i ] ; } return minmax ; } int main ( ) { int arr [ ] = { 1000 , 11 , 445 , 1 , 330 , 3000 } ; int arr_size = 6 ; struct Pair minmax = getMinMax ( arr , arr_size ) ; cout << " Minimum β element β is β " << minmax . min << endl ; cout << " Maximum β element β is β " << minmax . max ; return 0 ; } |
Find sum of all nodes of the given perfect binary tree | ; function to find sum of all of the nodes of given perfect binary tree ; no of leaf nodes ; list of vector to store nodes of all of the levels ; store the nodes of last level i . e . , the leaf nodes ; store nodes of rest of the level by moving in bottom - up manner ; loop to calculate values of parent nodes from the children nodes of lower level ; store the value of parent node as sum of children nodes ; traverse the list of vector and calculate the sum ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int sumNodes ( int l ) { int leafNodeCount = pow ( 2 , l - 1 ) ; vector < int > vec [ l ] ; for ( int i = 1 ; i <= leafNodeCount ; i ++ ) vec [ l - 1 ] . push_back ( i ) ; for ( int i = l - 2 ; i >= 0 ; i -- ) { int k = 0 ; while ( k < vec [ i + 1 ] . size ( ) - 1 ) { vec [ i ] . push_back ( vec [ i + 1 ] [ k ] + vec [ i + 1 ] [ k + 1 ] ) ; k += 2 ; } } int sum = 0 ; for ( int i = 0 ; i < l ; i ++ ) { for ( int j = 0 ; j < vec [ i ] . size ( ) ; j ++ ) sum += vec [ i ] [ j ] ; } return sum ; } int main ( ) { int l = 3 ; cout << sumNodes ( l ) ; return 0 ; } |
Maximum and minimum of an array using minimum number of comparisons | C ++ program of above implementation ; Structure is used to return two values from minMax ( ) ; If array has even number of elements then initialize the first two elements as minimum and maximum ; Set the starting index for loop ; If array has odd number of elements then initialize the first element as minimum and maximum ; Set the starting index for loop ; In the while loop , pick elements in pair and compare the pair with max and min so far ; Increment the index by 2 as two elements are processed in loop ; Driver code | #include <iostream> NEW_LINE using namespace std ; struct Pair { int min ; int max ; } ; struct Pair getMinMax ( int arr [ ] , int n ) { struct Pair minmax ; int i ; if ( n % 2 == 0 ) { if ( arr [ 0 ] > arr [ 1 ] ) { minmax . max = arr [ 0 ] ; minmax . min = arr [ 1 ] ; } else { minmax . min = arr [ 0 ] ; minmax . max = arr [ 1 ] ; } i = 2 ; } else { minmax . min = arr [ 0 ] ; minmax . max = arr [ 0 ] ; i = 1 ; } while ( i < n - 1 ) { if ( arr [ i ] > arr [ i + 1 ] ) { if ( arr [ i ] > minmax . max ) minmax . max = arr [ i ] ; if ( arr [ i + 1 ] < minmax . min ) minmax . min = arr [ i + 1 ] ; } else { if ( arr [ i + 1 ] > minmax . max ) minmax . max = arr [ i + 1 ] ; if ( arr [ i ] < minmax . min ) minmax . min = arr [ i ] ; } i += 2 ; } return minmax ; } int main ( ) { int arr [ ] = { 1000 , 11 , 445 , 1 , 330 , 3000 } ; int arr_size = 6 ; Pair minmax = getMinMax ( arr , arr_size ) ; cout << " nMinimum β element β is β " << minmax . min << endl ; cout << " nMaximum β element β is β " << minmax . max ; return 0 ; } |
MO 's Algorithm (Query Square Root Decomposition) | Set 1 (Introduction) | Program to compute sum of ranges for different range queries . ; Structure to represent a query range ; Prints sum of all query ranges . m is number of queries n is the size of the array . ; One by one compute sum of all queries ; Left and right boundaries of current range ; Compute sum of current query range ; Print sum of current query range ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Query { int L , R ; } ; void printQuerySums ( int a [ ] , int n , Query q [ ] , int m ) { for ( int i = 0 ; i < m ; i ++ ) { int L = q [ i ] . L , R = q [ i ] . R ; int sum = 0 ; for ( int j = L ; j <= R ; j ++ ) sum += a [ j ] ; cout << " Sum β of β [ " << L << " , β " << R << " ] β is β " << sum << endl ; } } int main ( ) { int a [ ] = { 1 , 1 , 2 , 1 , 3 , 4 , 5 , 2 , 8 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; Query q [ ] = { { 0 , 4 } , { 1 , 3 } , { 2 , 4 } } ; int m = sizeof ( q ) / sizeof ( q [ 0 ] ) ; printQuerySums ( a , n , q , m ) ; return 0 ; } |
Count of unique palindromic strings of length X from given string | C ++ implementation to count different palindromic string of length X from the given string S ; Function to count different palindromic string of length X from the given string S ; Base case ; Create the frequency array ; Intitalise frequency array with 0 ; Count the frequency in the string ; Store frequency of the char ; check the frequency which is greater than zero ; No . of different char we can put at the position of the i and x - i ; Iterator pointing to the last element of the set ; decrease the value of the char we put on the position i and n - i ; different no of char we can put at the position x / 2 ; Return total no of different string ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; long long findways ( string s , int x ) { if ( x > ( int ) s . length ( ) ) return 0 ; long long int n = ( int ) s . length ( ) ; int freq [ 26 ] ; memset ( freq , 0 , sizeof freq ) ; for ( int i = 0 ; i < n ; ++ i ) freq [ s [ i ] - ' a ' ] ++ ; multiset < int > se ; for ( int i = 0 ; i < 26 ; ++ i ) if ( freq [ i ] > 0 ) se . insert ( freq [ i ] ) ; long long ans = 1 ; for ( int i = 0 ; i < x / 2 ; ++ i ) { long long int count = 0 ; for ( auto u : se ) { if ( u >= 2 ) count ++ ; } if ( count == 0 ) return 0 ; else ans = ans * count ; auto p = se . end ( ) ; p -- ; int val = * p ; se . erase ( p ) ; if ( val > 2 ) se . insert ( val - 2 ) ; } if ( x % 2 != 0 ) { long long int count = 0 ; for ( auto u : se ) if ( u > 0 ) count ++ ; ans = ans * count ; } return ans ; } int main ( ) { string s = " aaa " ; int x = 2 ; cout << findways ( s , x ) ; return 0 ; } |
Min operations to reduce N to 1 by multiplying by A or dividing by B | C ++ program for the above approach ; Function to check if it is possible to convert a number N to 1 by a minimum use of the two operations ; For the Case b % a != 0 ; Check if n equal to 1 ; Check if n is not divisible by b ; Initialize a variable ' c ' ; Loop until n is divisible by b ; Count number of divisions ; Loop until n is divisible by c ; Count number of operations ; Check if n is reduced to 1 ; Count steps ; Return the total number of steps ; Driver Code ; Given n , a and b ; Function Call | #include <iostream> NEW_LINE using namespace std ; int findIfPossible ( int n , int a , int b ) { if ( b % a != 0 ) { if ( n == 1 ) return 0 ; else if ( n % b != 0 ) return -1 ; else return ( int ) n / b ; } int c = b / a ; int x = 0 , y = 0 ; while ( n % b == 0 ) { n = n / b ; x ++ ; } while ( n % c == 0 ) { n = n / c ; y ++ ; } if ( n == 1 ) { int total_steps = x + ( 2 * y ) ; return total_steps ; } else return -1 ; } int main ( ) { int n = 48 ; int a = 3 , b = 12 ; cout << findIfPossible ( n , a , b ) ; return 0 ; } |
Sqrt ( or Square Root ) Decomposition Technique | Set 1 ( Introduction ) | C ++ program to demonstrate working of Square Root Decomposition . ; original array ; decomposed array ; block size ; Time Complexity : O ( 1 ) ; Time Complexity : O ( sqrt ( n ) ) ; traversing first block in range ; traversing completely overlapped blocks in range ; traversing last block in range ; Fills values in input [ ] ; initiating block pointer ; calculating size of block ; building the decomposed array ; entering next block incementing block pointer ; Driver code ; We have used separate array for input because the purpose of this code is to explain SQRT decomposition in competitive programming where we have multiple inputs . | #include " iostream " NEW_LINE #include " math . h " NEW_LINE using namespace std ; #define MAXN 10000 NEW_LINE #define SQRSIZE 100 NEW_LINE int arr [ MAXN ] ; int block [ SQRSIZE ] ; int blk_sz ; void update ( int idx , int val ) { int blockNumber = idx / blk_sz ; block [ blockNumber ] += val - arr [ idx ] ; arr [ idx ] = val ; } int query ( int l , int r ) { int sum = 0 ; while ( l < r and l % blk_sz != 0 and l != 0 ) { sum += arr [ l ] ; l ++ ; } while ( l + blk_sz <= r ) { sum += block [ l / blk_sz ] ; l += blk_sz ; } while ( l <= r ) { sum += arr [ l ] ; l ++ ; } return sum ; } void preprocess ( int input [ ] , int n ) { int blk_idx = -1 ; blk_sz = sqrt ( n ) ; for ( int i = 0 ; i < n ; i ++ ) { arr [ i ] = input [ i ] ; if ( i % blk_sz == 0 ) { blk_idx ++ ; } block [ blk_idx ] += arr [ i ] ; } } int main ( ) { int input [ ] = { 1 , 5 , 2 , 4 , 6 , 1 , 3 , 5 , 7 , 10 } ; int n = sizeof ( input ) / sizeof ( input [ 0 ] ) ; preprocess ( input , n ) ; cout << " query ( 3,8 ) β : β " << query ( 3 , 8 ) << endl ; cout << " query ( 1,6 ) β : β " << query ( 1 , 6 ) << endl ; update ( 8 , 0 ) ; cout << " query ( 8,8 ) β : β " << query ( 8 , 8 ) << endl ; return 0 ; } |
Find two numbers with sum N such that neither of them contains digit K | C ++ implementation of the above approach ; Count leading zeros ; It removes i characters starting from index 0 ; Check each digit of the N ; If digit is K break it ; For odd numbers ; Add D1 to A and D2 to B ; If the digit is not K , no need to break string D in A and 0 in B ; Remove leading zeros ; Print the answer ; Driver code | #include <iostream> NEW_LINE using namespace std ; string removeLeadingZeros ( string str ) { int i = 0 ; int n = str . length ( ) ; while ( str [ i ] == '0' && i < n ) i ++ ; str . erase ( 0 , i ) ; return str ; } void findPairs ( int sum , int K ) { string A , B ; A = " " ; B = " " ; string N = to_string ( sum ) ; int n = N . length ( ) ; for ( int i = 0 ; i < n ; i ++ ) { int D = N [ i ] - '0' ; if ( D == K ) { int D1 , D2 ; D1 = D / 2 ; D2 = D / 2 + D % 2 ; A = A + char ( D1 + '0' ) ; B = B + char ( D2 + '0' ) ; } else { A = A + char ( D + '0' ) ; B = B + '0' ; } } A = removeLeadingZeros ( A ) ; B = removeLeadingZeros ( B ) ; cout << A << " , β " << B << endl ; } int main ( ) { int N = 33673 ; int K = 3 ; findPairs ( N , K ) ; return 0 ; } |
Range Minimum Query ( Square Root Decomposition and Sparse Table ) | C ++ program to do range minimum query in O ( 1 ) time with O ( n * n ) extra space and O ( n * n ) preprocessing time . ; lookup [ i ] [ j ] is going to store index of minimum value in arr [ i . . j ] ; Structure to represent a query range ; Fills lookup array lookup [ n ] [ n ] for all possible values of query ranges ; Initialize lookup [ ] [ ] for the intervals with length 1 ; Fill rest of the entries in bottom up manner ; To find minimum of [ 0 , 4 ] , we compare minimum of arr [ lookup [ 0 ] [ 3 ] ] with arr [ 4 ] . ; Prints minimum of given m query ranges in arr [ 0. . n - 1 ] ; Fill lookup table for all possible input queries ; One by one compute sum of all queries ; Left and right boundaries of current range ; Print sum of current query range ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 500 NEW_LINE int lookup [ MAX ] [ MAX ] ; struct Query { int L , R ; } ; void preprocess ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) lookup [ i ] [ i ] = i ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i + 1 ; j < n ; j ++ ) if ( arr [ lookup [ i ] [ j - 1 ] ] < arr [ j ] ) lookup [ i ] [ j ] = lookup [ i ] [ j - 1 ] ; else lookup [ i ] [ j ] = j ; } } void RMQ ( int arr [ ] , int n , Query q [ ] , int m ) { preprocess ( arr , n ) ; for ( int i = 0 ; i < m ; i ++ ) { int L = q [ i ] . L , R = q [ i ] . R ; cout << " Minimum β of β [ " << L << " , β " << R << " ] β is β " << arr [ lookup [ L ] [ R ] ] << endl ; } } int main ( ) { int a [ ] = { 7 , 2 , 3 , 0 , 5 , 10 , 3 , 12 , 18 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; Query q [ ] = { { 0 , 4 } , { 4 , 7 } , { 7 , 8 } } ; int m = sizeof ( q ) / sizeof ( q [ 0 ] ) ; RMQ ( a , n , q , m ) ; return 0 ; } |
Range Minimum Query ( Square Root Decomposition and Sparse Table ) | C ++ program to do range minimum query in O ( 1 ) time with O ( n Log n ) extra space and O ( n Log n ) preprocessing time ; lookup [ i ] [ j ] is going to store index of minimum value in arr [ i . . j ] . Ideally lookup table size should not be fixed and should be determined using n Log n . It is kept constant to keep code simple . ; Structure to represent a query range ; Fills lookup array lookup [ ] [ ] in bottom up manner . ; Initialize M for the intervals with length 1 ; Compute values from smaller to bigger intervals ; Compute minimum value for all intervals with size 2 ^ j ; For arr [ 2 ] [ 10 ] , we compare arr [ lookup [ 0 ] [ 3 ] ] and arr [ lookup [ 3 ] [ 3 ] ] ; Returns minimum of arr [ L . . R ] ; For [ 2 , 10 ] , j = 3 ; For [ 2 , 10 ] , we compare arr [ lookup [ 0 ] [ 3 ] ] and arr [ lookup [ 3 ] [ 3 ] ] , ; Prints minimum of given m query ranges in arr [ 0. . n - 1 ] ; Fills table lookup [ n ] [ Log n ] ; One by one compute sum of all queries ; Left and right boundaries of current range ; Print sum of current query range ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 500 NEW_LINE int lookup [ MAX ] [ MAX ] ; struct Query { int L , R ; } ; void preprocess ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) lookup [ i ] [ 0 ] = i ; for ( int j = 1 ; ( 1 << j ) <= n ; j ++ ) { for ( int i = 0 ; ( i + ( 1 << j ) - 1 ) < n ; i ++ ) { if ( arr [ lookup [ i ] [ j - 1 ] ] < arr [ lookup [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] ] ) lookup [ i ] [ j ] = lookup [ i ] [ j - 1 ] ; else lookup [ i ] [ j ] = lookup [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] ; } } } int query ( int arr [ ] , int L , int R ) { int j = ( int ) log2 ( R - L + 1 ) ; if ( arr [ lookup [ L ] [ j ] ] <= arr [ lookup [ R - ( 1 << j ) + 1 ] [ j ] ] ) return arr [ lookup [ L ] [ j ] ] ; else return arr [ lookup [ R - ( 1 << j ) + 1 ] [ j ] ] ; } void RMQ ( int arr [ ] , int n , Query q [ ] , int m ) { preprocess ( arr , n ) ; for ( int i = 0 ; i < m ; i ++ ) { int L = q [ i ] . L , R = q [ i ] . R ; cout << " Minimum β of β [ " << L << " , β " << R << " ] β is β " << query ( arr , L , R ) << endl ; } } int main ( ) { int a [ ] = { 7 , 2 , 3 , 0 , 5 , 10 , 3 , 12 , 18 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; Query q [ ] = { { 0 , 4 } , { 4 , 7 } , { 7 , 8 } } ; int m = sizeof ( q ) / sizeof ( q [ 0 ] ) ; RMQ ( a , n , q , m ) ; return 0 ; } |
Find sum of all nodes of the given perfect binary tree | ; function to find sum of all of the nodes of given perfect binary tree ; no of leaf nodes ; sum of nodes at last level ; sum of all nodes ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int sumNodes ( int l ) { int leafNodeCount = pow ( 2 , l - 1 ) ; int sumLastLevel = 0 ; sumLastLevel = ( leafNodeCount * ( leafNodeCount + 1 ) ) / 2 ; int sum = sumLastLevel * l ; return sum ; } int main ( ) { int l = 3 ; cout << sumNodes ( l ) ; return 0 ; } |
Longest subsequence with different adjacent characters | C ++ program for the above approach ; dp table ; A recursive function to find the update the dp [ ] [ ] table ; If we reach end of the string ; If subproblem has been computed ; Initialise variable to find the maximum length ; Choose the current character ; Omit the current character ; Return the store answer to the current subproblem ; Function to find the longest Subsequence with different adjacent character ; Length of the string s ; Initialise the memoisation table ; Return the final ans after every recursive call ; Driver Code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int dp [ 100005 ] [ 27 ] ; int calculate ( int pos , int prev , string & s ) { if ( pos == s . length ( ) ) { return 0 ; } if ( dp [ pos ] [ prev ] != -1 ) return dp [ pos ] [ prev ] ; int val = 0 ; if ( s [ pos ] - ' a ' + 1 != prev ) { val = max ( val , 1 + calculate ( pos + 1 , s [ pos ] - ' a ' + 1 , s ) ) ; } val = max ( val , calculate ( pos + 1 , prev , s ) ) ; return dp [ pos ] [ prev ] = val ; } int longestSubsequence ( string s ) { int n = s . length ( ) ; memset ( dp , -1 , sizeof ( dp ) ) ; return calculate ( 0 , 0 , s ) ; } int main ( ) { string str = " ababa " ; cout << longestSubsequence ( str ) ; return 0 ; } |
Constant time range add operation on an array | C ++ program to get updated array after many array range add operation ; Utility method to add value val , to range [ lo , hi ] ; Utility method to get actual array from operation array ; convert array into prefix sum array ; method to print final updated array ; Driver code ; Range add Queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; void add ( int arr [ ] , int N , int lo , int hi , int val ) { arr [ lo ] += val ; if ( hi != N - 1 ) arr [ hi + 1 ] -= val ; } void updateArray ( int arr [ ] , int N ) { for ( int i = 1 ; i < N ; i ++ ) arr [ i ] += arr [ i - 1 ] ; } void printArr ( int arr [ ] , int N ) { updateArray ( arr , N ) ; for ( int i = 0 ; i < N ; i ++ ) cout << arr [ i ] << " β " ; cout << endl ; } int main ( ) { int N = 6 ; int arr [ N ] = { 0 } ; add ( arr , N , 0 , 2 , 100 ) ; add ( arr , N , 1 , 5 , 100 ) ; add ( arr , N , 2 , 3 , 100 ) ; printArr ( arr , N ) ; return 0 ; } |
Count of elements in an Array whose set bits are in a multiple of K | C ++ implementation of above approach ; Function to find the count of numbers ; Get the set - bits count of each element ; Check if the setbits count is divisible by K ; Increment the count of required numbers by 1 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int find_count ( vector < int > arr , int k ) { int ans = 0 ; for ( int i : arr ) { int x = __builtin_popcount ( i ) ; if ( x % k == 0 ) ans += 1 ; } return ans ; } int main ( ) { vector < int > arr = { 12 , 345 , 2 , 68 , 7896 } ; int K = 2 ; cout << find_count ( arr , K ) ; return 0 ; } |
Check if a number can be expressed as a product of exactly K prime divisors | CPP implementation to Check if a number can be expressed as a product of exactly K prime divisors ; function to find K prime divisors ; count number of 2 s that divide N ; N must be odd at this point . So we can skip one element ; divide the value of N ; increment count ; Condition to handle the case when n is a prime number greater than 2 ; check if maximum_split is less than K then it not possible ; Driver code ; initialise N and K | #include <bits/stdc++.h> NEW_LINE using namespace std ; void KPrimeDivisors ( int N , int K ) { int maximum_split = 0 ; while ( N % 2 == 0 ) { maximum_split ++ ; N /= 2 ; } for ( int i = 3 ; i * i <= N ; i = i + 2 ) { while ( N % i == 0 ) { N = N / i ; maximum_split ++ ; } } if ( N > 2 ) maximum_split ++ ; if ( maximum_split < K ) { printf ( " No STRNEWLINE " ) ; return ; } printf ( " Yes STRNEWLINE " ) ; } int main ( ) { int N = 12 ; int K = 3 ; KPrimeDivisors ( N , K ) ; return 0 ; } |
Maximum profit by buying and selling a share at most K times | Greedy Approach | C ++ program to find out maximum profit by buying and selling a share at most k times given the stock price of n days ; Function to return the maximum profit ; Find the farthest decreasing span of prices before prices rise ; Find the farthest increasing span of prices before prices fall again ; Check if the current buying price is greater than that of the previous transaction ; Store the profit ; Remove the previous transaction ; Check if the current selling price is less than that of the previous transactions ; Store the new profit ; Remove the previous transaction ; Add the new transactions ; Finally store the profits of all the transactions ; Add the highest K profits ; Return the maximum profit ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxProfit ( int n , int k , int prices [ ] ) { int ans = 0 , buy = 0 , sell = 0 ; stack < pair < int , int > > transaction ; priority_queue < int > profits ; while ( sell < n ) { buy = sell ; while ( buy < n - 1 && prices [ buy ] >= prices [ buy + 1 ] ) buy ++ ; sell = buy + 1 ; while ( sell < n && prices [ sell ] >= prices [ sell - 1 ] ) sell ++ ; while ( ! transaction . empty ( ) && prices [ buy ] < prices [ transaction . top ( ) . first ] ) { pair < int , int > p = transaction . top ( ) ; profits . push ( prices [ p . second - 1 ] - prices [ p . first ] ) ; transaction . pop ( ) ; } while ( ! transaction . empty ( ) && prices [ sell - 1 ] > prices [ transaction . top ( ) . second - 1 ] ) { pair < int , int > p = transaction . top ( ) ; profits . push ( prices [ p . second - 1 ] - prices [ buy ] ) ; buy = p . first ; transaction . pop ( ) ; } transaction . push ( { buy , sell } ) ; } while ( ! transaction . empty ( ) ) { profits . push ( prices [ transaction . top ( ) . second - 1 ] - prices [ transaction . top ( ) . first ] ) ; transaction . pop ( ) ; } while ( k && ! profits . empty ( ) ) { ans += profits . top ( ) ; profits . pop ( ) ; -- k ; } return ans ; } int main ( ) { int k = 3 ; int prices [ ] = { 1 , 12 , 10 , 7 , 10 , 13 , 11 , 10 , 7 , 6 , 9 } ; int n = sizeof ( prices ) / sizeof ( prices [ 0 ] ) ; cout << " Maximum β profit β is β " << maxProfit ( n , k , prices ) ; return 0 ; } |
GCDs of given index ranges in an array | C ++ Program to find GCD of a number in a given Range using segment Trees ; To store segment tree ; A recursive function that constructs Segment Tree for array [ ss . . se ] . si is index of current node in segment tree st ; Function to construct segment tree from given array . This function allocates memory for segment tree and calls constructSTUtil ( ) to fill the allocated memory ; A recursive function to get gcd of given range of array indexes . The following are parameters for this function . st -- > Pointer to segment tree si -- > Index of current node in the segment tree . Initially 0 is passed as root is always at index 0 ss & se -- > Starting and ending indexes of the segment represented by current node , i . e . , st [ index ] qs & qe -- > Starting and ending indexes of query range ; Finding The gcd of given Range ; Driver program to test above functions ; Starting index of range . These indexes are 0 based . ; Last index of range . These indexes are 0 based . | #include <bits/stdc++.h> NEW_LINE using namespace std ; int * st ; int constructST ( int arr [ ] , int ss , int se , int si ) { if ( ss == se ) { st [ si ] = arr [ ss ] ; return st [ si ] ; } int mid = ss + ( se - ss ) / 2 ; st [ si ] = __gcd ( constructST ( arr , ss , mid , si * 2 + 1 ) , constructST ( arr , mid + 1 , se , si * 2 + 2 ) ) ; return st [ si ] ; } int * constructSegmentTree ( int arr [ ] , int n ) { int height = ( int ) ( ceil ( log2 ( n ) ) ) ; int size = 2 * ( int ) pow ( 2 , height ) - 1 ; st = new int [ size ] ; constructST ( arr , 0 , n - 1 , 0 ) ; return st ; } int findGcd ( int ss , int se , int qs , int qe , int si ) { if ( ss > qe se < qs ) return 0 ; if ( qs <= ss && qe >= se ) return st [ si ] ; int mid = ss + ( se - ss ) / 2 ; return __gcd ( findGcd ( ss , mid , qs , qe , si * 2 + 1 ) , findGcd ( mid + 1 , se , qs , qe , si * 2 + 2 ) ) ; } int findRangeGcd ( int ss , int se , int arr [ ] , int n ) { if ( ss < 0 se > n -1 ss > se ) { cout << " Invalid β Arguments " << " STRNEWLINE " ; return - 1 ; } return findGcd ( 0 , n - 1 , ss , se , 0 ) ; } int main ( ) { int a [ ] = { 2 , 3 , 6 , 9 , 5 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; constructSegmentTree ( a , n ) ; int l = 1 ; int r = 3 ; cout << " GCD β of β the β given β range β is : " ; cout << findRangeGcd ( l , r , a , n ) << " STRNEWLINE " ; return 0 ; } |
Find sum in range L to R in given sequence of integers | C ++ program to find the sum in given range L to R ; Function to find the sum within the given range ; generating array from given sequence ; calculate the desired sum ; return the sum ; Driven code ; initialise the range | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findSum ( int L , int R ) { vector < int > arr ; int i = 0 ; int x = 2 ; while ( i <= R ) { arr . push_back ( i + x ) ; if ( i + 1 <= R ) arr . push_back ( i + 1 + x ) ; x *= -1 ; i += 2 ; } int sum = 0 ; for ( int i = L ; i <= R ; ++ i ) sum += arr [ i ] ; return sum ; } int main ( ) { int L = 0 , R = 5 ; cout << findSum ( L , R ) ; return 0 ; } |
Queries for GCD of all numbers of an array except elements in a given range | C ++ program for queries of GCD excluding given range of elements . ; Filling the prefix and suffix array ; Filling the prefix array following relation prefix ( i ) = __gcd ( prefix ( i - 1 ) , arr ( i ) ) ; Filling the suffix array following the relation suffix ( i ) = __gcd ( suffix ( i + 1 ) , arr ( i ) ) ; To calculate gcd of the numbers outside range ; If l = 0 , we need to tell GCD of numbers from r + 1 to n ; If r = n - 1 we need to return the gcd of numbers from 1 to l ; Driver function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void FillPrefixSuffix ( int prefix [ ] , int arr [ ] , int suffix [ ] , int n ) { prefix [ 0 ] = arr [ 0 ] ; for ( int i = 1 ; i < n ; i ++ ) prefix [ i ] = __gcd ( prefix [ i - 1 ] , arr [ i ] ) ; suffix [ n - 1 ] = arr [ n - 1 ] ; for ( int i = n - 2 ; i >= 0 ; i -- ) suffix [ i ] = __gcd ( suffix [ i + 1 ] , arr [ i ] ) ; } int GCDoutsideRange ( int l , int r , int prefix [ ] , int suffix [ ] , int n ) { if ( l == 0 ) return suffix [ r + 1 ] ; if ( r == n - 1 ) return prefix [ l - 1 ] ; return __gcd ( prefix [ l - 1 ] , suffix [ r + 1 ] ) ; } int main ( ) { int arr [ ] = { 2 , 6 , 9 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int prefix [ n ] , suffix [ n ] ; FillPrefixSuffix ( prefix , arr , suffix , n ) ; int l = 0 , r = 0 ; cout << GCDoutsideRange ( l , r , prefix , suffix , n ) << endl ; l = 1 ; r = 1 ; cout << GCDoutsideRange ( l , r , prefix , suffix , n ) << endl ; l = 1 ; r = 2 ; cout << GCDoutsideRange ( l , r , prefix , suffix , n ) << endl ; return 0 ; } |
Count of pairs from arrays A and B such that element in A is greater than element in B at that index | C ++ program to find the maximum count of values that follow the given condition ; Function to find the maximum count of values that follow the given condition ; Initializing the max - heap for the array A [ ] ; Adding the values of A [ ] into max heap ; Adding the values of B [ ] into max heap ; Counter variable ; Loop to iterate through the heap ; Comparing the values at the top . If the value of heap A [ ] is greater , then counter is incremented ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int check ( int A [ ] , int B [ ] , int N ) { priority_queue < int > pq1 , pq2 ; for ( int i = 0 ; i < N ; i ++ ) { pq1 . push ( A [ i ] ) ; } for ( int i = 0 ; i < N ; i ++ ) { pq2 . push ( B [ i ] ) ; } int c = 0 ; for ( int i = 0 ; i < N ; i ++ ) { if ( pq1 . top ( ) > pq2 . top ( ) ) { c ++ ; pq1 . pop ( ) ; pq2 . pop ( ) ; } else { if ( pq2 . size ( ) == 0 ) { break ; } pq2 . pop ( ) ; } } return ( c ) ; } int main ( ) { int A [ ] = { 10 , 3 , 7 , 5 , 8 } ; int B [ ] = { 8 , 6 , 2 , 5 , 9 } ; int N = sizeof ( A ) / sizeof ( A [ 0 ] ) ; cout << ( check ( A , B , N ) ) ; } |
Number of elements less than or equal to a given number in a given subarray | Set 2 ( Including Updates ) | Number of elements less than or equal to a given number in a given subarray and allowing update operations . ; updating the bit array of a valid block ; answering the query ; traversing the first block in range ; Traversing completely overlapped blocks in range for such blocks bit array of that block is queried ; Traversing the last block ; Preprocessing the array ; updating the bit array at the original and new value of array ; driver function ; size of block size will be equal to square root of n ; initialising bit array of each block as elements of array cannot exceed 10 ^ 4 so size of bit array is accordingly | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 10001 ; void update ( int idx , int blk , int val , int bit [ ] [ MAX ] ) { for ( ; idx < MAX ; idx += ( idx & - idx ) ) bit [ blk ] [ idx ] += val ; } int query ( int l , int r , int k , int arr [ ] , int blk_sz , int bit [ ] [ MAX ] ) { int sum = 0 ; while ( l < r && l % blk_sz != 0 && l != 0 ) { if ( arr [ l ] <= k ) sum ++ ; l ++ ; } while ( l + blk_sz <= r ) { int idx = k ; for ( ; idx > 0 ; idx -= idx & - idx ) sum += bit [ l / blk_sz ] [ idx ] ; l += blk_sz ; } while ( l <= r ) { if ( arr [ l ] <= k ) sum ++ ; l ++ ; } return sum ; } void preprocess ( int arr [ ] , int blk_sz , int n , int bit [ ] [ MAX ] ) { for ( int i = 0 ; i < n ; i ++ ) update ( arr [ i ] , i / blk_sz , 1 , bit ) ; } void preprocessUpdate ( int i , int v , int blk_sz , int arr [ ] , int bit [ ] [ MAX ] ) { update ( arr [ i ] , i / blk_sz , -1 , bit ) ; update ( v , i / blk_sz , 1 , bit ) ; arr [ i ] = v ; } int main ( ) { int arr [ ] = { 5 , 1 , 2 , 3 , 4 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int blk_sz = sqrt ( n ) ; int bit [ blk_sz + 1 ] [ MAX ] ; memset ( bit , 0 , sizeof ( bit ) ) ; preprocess ( arr , blk_sz , n , bit ) ; cout << query ( 1 , 3 , 1 , arr , blk_sz , bit ) << endl ; preprocessUpdate ( 3 , 10 , blk_sz , arr , bit ) ; cout << query ( 3 , 3 , 4 , arr , blk_sz , bit ) << endl ; preprocessUpdate ( 2 , 1 , blk_sz , arr , bit ) ; preprocessUpdate ( 0 , 2 , blk_sz , arr , bit ) ; cout << query ( 0 , 4 , 5 , arr , blk_sz , bit ) << endl ; return 0 ; } |
Queries for counts of array elements with values in given range | Simple C ++ program to count number of elements with values in given range . ; function to count elements within given range ; initialize result ; check if element is in range ; driver function ; Answer queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countInRange ( int arr [ ] , int n , int x , int y ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] >= x && arr [ i ] <= y ) count ++ ; } return count ; } int main ( ) { int arr [ ] = { 1 , 3 , 4 , 9 , 10 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int i = 1 , j = 4 ; cout << countInRange ( arr , n , i , j ) << endl ; i = 9 , j = 12 ; cout << countInRange ( arr , n , i , j ) << endl ; return 0 ; } |
Path with smallest product of edges with weight >= 1 | C ++ implementation of the approach ; Function to return the smallest product of edges ; If the source is equal to the destination ; Initialise the priority queue ; Visited array ; While the priority - queue is not empty ; Current node ; Current product of distance ; Popping the top - most element ; If already visited continue ; Marking the node as visited ; If it is a destination node ; Traversing the current node ; If no path exists ; Driver code ; Graph as adjacency matrix ; Input edges ; Source and destination ; Dijkstra | #include <bits/stdc++.h> NEW_LINE using namespace std ; double dijkstra ( int s , int d , vector < vector < pair < int , double > > > gr ) { if ( s == d ) return 0 ; set < pair < int , int > > pq ; pq . insert ( { 1 , s } ) ; bool v [ gr . size ( ) ] = { 0 } ; while ( pq . size ( ) ) { int curr = pq . begin ( ) -> second ; int dist = pq . begin ( ) -> first ; pq . erase ( pq . begin ( ) ) ; if ( v [ curr ] ) continue ; v [ curr ] = 1 ; if ( curr == d ) return dist ; for ( auto it : gr [ curr ] ) pq . insert ( { dist * it . second , it . first } ) ; } return -1 ; } int main ( ) { int n = 3 ; vector < vector < pair < int , double > > > gr ( n + 1 ) ; gr [ 1 ] . push_back ( { 3 , 9 } ) ; gr [ 2 ] . push_back ( { 3 , 1 } ) ; gr [ 1 ] . push_back ( { 2 , 5 } ) ; int s = 1 , d = 3 ; cout << dijkstra ( s , d , gr ) ; return 0 ; } |
Queries for counts of array elements with values in given range | Efficient C ++ program to count number of elements with values in given range . ; function to find first index >= x ; function to find last index <= y ; function to count elements within given range ; initialize result ; driver function ; Preprocess array ; Answer queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; int lowerIndex ( int arr [ ] , int n , int x ) { int l = 0 , h = n - 1 ; while ( l <= h ) { int mid = ( l + h ) / 2 ; if ( arr [ mid ] >= x ) h = mid - 1 ; else l = mid + 1 ; } return l ; } int upperIndex ( int arr [ ] , int n , int y ) { int l = 0 , h = n - 1 ; while ( l <= h ) { int mid = ( l + h ) / 2 ; if ( arr [ mid ] <= y ) l = mid + 1 ; else h = mid - 1 ; } return h ; } int countInRange ( int arr [ ] , int n , int x , int y ) { int count = 0 ; count = upperIndex ( arr , n , y ) - lowerIndex ( arr , n , x ) + 1 ; return count ; } int main ( ) { int arr [ ] = { 1 , 4 , 4 , 9 , 10 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; sort ( arr , arr + n ) ; int i = 1 , j = 4 ; cout << countInRange ( arr , n , i , j ) << endl ; i = 9 , j = 12 ; cout << countInRange ( arr , n , i , j ) << endl ; return 0 ; } |
Queries for decimal values of subarrays of a binary array | C ++ implementation of finding number represented by binary subarray ; Fills pre [ ] ; returns the number represented by a binary subarray l to r ; if r is equal to n - 1 r + 1 does not exist ; Driver Function | #include <bits/stdc++.h> NEW_LINE using namespace std ; void precompute ( int arr [ ] , int n , int pre [ ] ) { memset ( pre , 0 , n * sizeof ( int ) ) ; pre [ n - 1 ] = arr [ n - 1 ] * pow ( 2 , 0 ) ; for ( int i = n - 2 ; i >= 0 ; i -- ) pre [ i ] = pre [ i + 1 ] + arr [ i ] * ( 1 << ( n - 1 - i ) ) ; } int decimalOfSubarr ( int arr [ ] , int l , int r , int n , int pre [ ] ) { if ( r != n - 1 ) return ( pre [ l ] - pre [ r + 1 ] ) / ( 1 << ( n - 1 - r ) ) ; return pre [ l ] / ( 1 << ( n - 1 - r ) ) ; } int main ( ) { int arr [ ] = { 1 , 0 , 1 , 0 , 1 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int pre [ n ] ; precompute ( arr , n , pre ) ; cout << decimalOfSubarr ( arr , 2 , 4 , n , pre ) << endl ; cout << decimalOfSubarr ( arr , 4 , 5 , n , pre ) << endl ; return 0 ; } |
Count elements which divide all numbers in range L | CPP program to Count elements which divides all numbers in range L - R ; function to count element Time complexity O ( n ^ 2 ) worst case ; answer for query ; 0 based index ; iterate for all elements ; check if the element divides all numbers in range ; no of elements ; if all elements are divisible by a [ i ] ; answer for every query ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int answerQuery ( int a [ ] , int n , int l , int r ) { int count = 0 ; l = l - 1 ; for ( int i = l ; i < r ; i ++ ) { int element = a [ i ] ; int divisors = 0 ; for ( int j = l ; j < r ; j ++ ) { if ( a [ j ] % a [ i ] == 0 ) divisors ++ ; else break ; } if ( divisors == ( r - l ) ) count ++ ; } return count ; } int main ( ) { int a [ ] = { 1 , 2 , 3 , 5 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int l = 1 , r = 4 ; cout << answerQuery ( a , n , l , r ) << endl ; l = 2 , r = 4 ; cout << answerQuery ( a , n , l , r ) << endl ; return 0 ; } |
Minimum number of Binary strings to represent a Number | C ++ program to find the minimum number of binary strings to represent a number ; Function to find the minimum number of binary strings to represent a number ; Storing digits in correct order ; Find the maximum digit in the array ; Traverse for all the binary strings ; If digit at jth position is greater than 0 then substitute 1 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void minBinary ( int n ) { int digit [ 10 ] , len = 0 ; while ( n > 0 ) { digit [ len ++ ] = n % 10 ; n /= 10 ; } reverse ( digit , digit + len ) ; int ans = 0 ; for ( int i = 0 ; i < len ; i ++ ) { ans = max ( ans , digit [ i ] ) ; } cout << " Minimum β Number β of β binary β strings β needed : β " << ans << endl ; for ( int i = 1 ; i <= ans ; i ++ ) { int num = 0 ; for ( int j = 0 ; j < len ; j ++ ) { if ( digit [ j ] > 0 ) { num = num * 10 + 1 ; digit [ j ] -- ; } else { num *= 10 ; } } cout << num << " β " ; } } int main ( ) { int n = 564 ; minBinary ( n ) ; return 0 ; } |
Number whose sum of XOR with given array range is maximum | CPP program to find smallest integer X such that sum of its XOR with range is maximum . ; Function to make prefix array which counts 1 's of each bit up to that number ; Making a prefix array which sums number of 1 's up to that position ; If j - th bit of a number is set then add one to previously counted 1 's ; Function to find X ; Initially taking maximum value all bits 1 ; Iterating over each bit ; get 1 ' s β at β ith β bit β between β the β β range β L - R β by β subtracting β 1' s till Rth number - 1 's till L-1th number ; If 1 ' s β are β more β than β or β equal β to β 0' s then unset the ith bit from answer ; Set ith bit to 0 by doing Xor with 1 ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 2147483647 NEW_LINE int one [ 100001 ] [ 32 ] ; void make_prefix ( int A [ ] , int n ) { for ( int j = 0 ; j < 32 ; j ++ ) one [ 0 ] [ j ] = 0 ; for ( int i = 1 ; i <= n ; i ++ ) { int a = A [ i - 1 ] ; for ( int j = 0 ; j < 32 ; j ++ ) { int x = pow ( 2 , j ) ; if ( a & x ) one [ i ] [ j ] = 1 + one [ i - 1 ] [ j ] ; else one [ i ] [ j ] = one [ i - 1 ] [ j ] ; } } } int Solve ( int L , int R ) { int l = L , r = R ; int tot_bits = r - l + 1 ; int X = MAX ; for ( int i = 0 ; i < 31 ; i ++ ) { int x = one [ r ] [ i ] - one [ l - 1 ] [ i ] ; if ( x >= tot_bits - x ) { int ith_bit = pow ( 2 , i ) ; X = X ^ ith_bit ; } } return X ; } int main ( ) { int n = 5 , q = 3 ; int A [ ] = { 210 , 11 , 48 , 22 , 133 } ; int L [ ] = { 1 , 4 , 2 } , R [ ] = { 3 , 14 , 4 } ; make_prefix ( A , n ) ; for ( int j = 0 ; j < q ; j ++ ) cout << Solve ( L [ j ] , R [ j ] ) << endl ; return 0 ; } |
Array range queries over range queries | CPP program to perform range queries over range queries . ; Function to execute type 1 query ; incrementing the array by 1 for type 1 queries ; Function to execute type 2 query ; If the query is of type 1 function call to type 1 query ; If the query is of type 2 recursive call to type 2 query ; Driver code ; Input size of array amd number of queries ; Build query matrix ; Perform queries ; printing the result | #include <bits/stdc++.h> NEW_LINE using namespace std ; void type1 ( int arr [ ] , int start , int limit ) { for ( int i = start ; i <= limit ; i ++ ) arr [ i ] ++ ; } void type2 ( int arr [ ] , int query [ ] [ 3 ] , int start , int limit ) { for ( int i = start ; i <= limit ; i ++ ) { if ( query [ i ] [ 0 ] == 1 ) type1 ( arr , query [ i ] [ 1 ] , query [ i ] [ 2 ] ) ; else if ( query [ i ] [ 0 ] == 2 ) type2 ( arr , query , query [ i ] [ 1 ] , query [ i ] [ 2 ] ) ; } } int main ( ) { int n = 5 , m = 5 ; int arr [ n + 1 ] ; for ( int i = 1 ; i <= n ; i ++ ) arr [ i ] = 0 ; int temp [ 15 ] = { 1 , 1 , 2 , 1 , 4 , 5 , 2 , 1 , 2 , 2 , 1 , 3 , 2 , 3 , 4 } ; int query [ 5 ] [ 3 ] ; int j = 0 ; for ( int i = 1 ; i <= m ; i ++ ) { query [ i ] [ 0 ] = temp [ j ++ ] ; query [ i ] [ 1 ] = temp [ j ++ ] ; query [ i ] [ 2 ] = temp [ j ++ ] ; } for ( int i = 1 ; i <= m ; i ++ ) if ( query [ i ] [ 0 ] == 1 ) type1 ( arr , query [ i ] [ 1 ] , query [ i ] [ 2 ] ) ; else if ( query [ i ] [ 0 ] == 2 ) type2 ( arr , query , query [ i ] [ 1 ] , query [ i ] [ 2 ] ) ; for ( int i = 1 ; i <= n ; i ++ ) cout << arr [ i ] << " β " ; return 0 ; } |
Array range queries over range queries | CPP program to perform range queries over range queries . ; Function to create the record array ; Driver Code ; Build query matrix ; If query is of type 2 then function call to record_sum ; If query is of type 1 then simply add 1 to the record array ; for type 1 queries adding the contains of record array to the main array record array ; printing the array | #include <bits/stdc++.h> NEW_LINE using namespace std ; void record_sum ( int record [ ] , int l , int r , int n , int adder ) { for ( int i = l ; i <= r ; i ++ ) record [ i ] += adder ; } int main ( ) { int n = 5 , m = 5 ; int arr [ n ] ; memset ( arr , 0 , sizeof arr ) ; int query [ 5 ] [ 3 ] = { { 1 , 1 , 2 } , { 1 , 4 , 5 } , { 2 , 1 , 2 } , { 2 , 1 , 3 } , { 2 , 3 , 4 } } ; int record [ m ] ; memset ( record , 0 , sizeof record ) ; for ( int i = m - 1 ; i >= 0 ; i -- ) { if ( query [ i ] [ 0 ] == 2 ) record_sum ( record , query [ i ] [ 1 ] - 1 , query [ i ] [ 2 ] - 1 , m , record [ i ] + 1 ) ; else record_sum ( record , i , i , m , 1 ) ; } for ( int i = 0 ; i < m ; i ++ ) { if ( query [ i ] [ 0 ] == 1 ) record_sum ( arr , query [ i ] [ 1 ] - 1 , query [ i ] [ 2 ] - 1 , n , record [ i ] ) ; } for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << ' β ' ; return 0 ; } |
Array range queries over range queries | CPP program to perform range queries over range queries . ; For prefix sum array ; This function is used to apply square root decomposition in the record array ; traversing first block in range ; traversing completely overlapped blocks in range ; traversing last block in range ; Function to print the resultant array ; Driver code ; If query is of type 2 then function call to record_func ; If query is of type 1 then simply add 1 to the record array ; Merging the value of the block in the record array ; If query is of type 1 then the array elements are over - written by the record array ; The prefix sum of the array ; Printing the resultant array | #include <bits/stdc++.h> NEW_LINE #define max 10000 NEW_LINE using namespace std ; void update ( int arr [ ] , int l ) { arr [ l ] += arr [ l - 1 ] ; } void record_func ( int block_size , int block [ ] , int record [ ] , int l , int r , int value ) { while ( l < r && l % block_size != 0 && l != 0 ) { record [ l ] += value ; l ++ ; } while ( l + block_size <= r + 1 ) { block [ l / block_size ] += value ; l += block_size ; } while ( l <= r ) { record [ l ] += value ; l ++ ; } } void print ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) cout << arr [ i ] << " β " ; } int main ( ) { int n = 5 , m = 5 ; int arr [ n ] , record [ m ] ; int block_size = sqrt ( m ) ; int block [ max ] ; int command [ 5 ] [ 3 ] = { { 1 , 1 , 2 } , { 1 , 4 , 5 } , { 2 , 1 , 2 } , { 2 , 1 , 3 } , { 2 , 3 , 4 } } ; memset ( arr , 0 , sizeof arr ) ; memset ( record , 0 , sizeof record ) ; memset ( block , 0 , sizeof block ) ; for ( int i = m - 1 ; i >= 0 ; i -- ) { if ( command [ i ] [ 0 ] == 2 ) { int x = i / ( block_size ) ; record_func ( block_size , block , record , command [ i ] [ 1 ] - 1 , command [ i ] [ 2 ] - 1 , ( block [ x ] + record [ i ] + 1 ) ) ; } else record [ i ] ++ ; } for ( int i = 0 ; i < m ; i ++ ) { int check = ( i / block_size ) ; record [ i ] += block [ check ] ; } for ( int i = 0 ; i < m ; i ++ ) { if ( command [ i ] [ 0 ] == 1 ) { arr [ command [ i ] [ 1 ] - 1 ] += record [ i ] ; if ( ( command [ i ] [ 2 ] - 1 ) < n - 1 ) arr [ ( command [ i ] [ 2 ] ) ] -= record [ i ] ; } } for ( int i = 1 ; i < n ; i ++ ) update ( arr , i ) ; print ( arr , n ) ; return 0 ; } |
Array range queries over range queries | C ++ program to perform range queries over range queries . ; Updates a node in Binary Index Tree ( BITree ) at given index in BITree . The given value ' val ' is added to BITree [ i ] and all of its ancestors in tree . ; index in BITree [ ] is 1 more than the index in arr [ ] ; Traverse all ancestors and add ' val ' ; Add ' val ' to current node of BI Tree ; Update index to that of parent in update View ; Constructs and returns a Binary Indexed Tree for given array of size n . ; Create and initialize BITree [ ] as 0 ; Returns sum of arr [ 0. . index ] . This function assumes that the array is preprocessed and partial sums of array elements are stored in BITree [ ] ; index in BITree [ ] is 1 more than the index in arr [ ] ; Traverse ancestors of BITree [ index ] ; Add element of BITree to sum ; Move index to parent node in getSum View ; Function to update the BITree ; Driver code ; BITree for query of type 2 ; BITree for query of type 1 ; Input the queries in a 2D matrix ; If query is of type 2 then function call to update with BITree ; If query is of type 1 then function call to update with BITree2 | #include <bits/stdc++.h> NEW_LINE using namespace std ; void updateBIT ( int BITree [ ] , int n , int index , int val ) { index = index + 1 ; while ( index <= n ) { BITree [ index ] = ( val + BITree [ index ] ) ; index = ( index + ( index & ( - index ) ) ) ; } return ; } int * constructBITree ( int n ) { int * BITree = new int [ n + 1 ] ; for ( int i = 1 ; i <= n ; i ++ ) BITree [ i ] = 0 ; return BITree ; } int getSum ( int BITree [ ] , int index ) { int sum = 0 ; index = index + 1 ; while ( index > 0 ) { sum = ( sum + BITree [ index ] ) ; index -= index & ( - index ) ; } return sum ; } void update ( int BITree [ ] , int l , int r , int n , int val ) { updateBIT ( BITree , n , l , val ) ; updateBIT ( BITree , n , r + 1 , - val ) ; return ; } int main ( ) { int n = 5 , m = 5 ; int temp [ 15 ] = { 1 , 1 , 2 , 1 , 4 , 5 , 2 , 1 , 2 , 2 , 1 , 3 , 2 , 3 , 4 } ; int q [ 5 ] [ 3 ] ; int j = 0 ; for ( int i = 1 ; i <= m ; i ++ ) { q [ i ] [ 0 ] = temp [ j ++ ] ; q [ i ] [ 1 ] = temp [ j ++ ] ; q [ i ] [ 2 ] = temp [ j ++ ] ; } int * BITree = constructBITree ( m ) ; int * BITree2 = constructBITree ( n ) ; for ( int i = 1 ; i <= m ; i ++ ) cin >> q [ i ] [ 0 ] >> q [ i ] [ 1 ] >> q [ i ] [ 2 ] ; for ( int i = m ; i >= 1 ; i -- ) if ( q [ i ] [ 0 ] == 2 ) update ( BITree , q [ i ] [ 1 ] - 1 , q [ i ] [ 2 ] - 1 , m , 1 ) ; for ( int i = m ; i >= 1 ; i -- ) { if ( q [ i ] [ 0 ] == 2 ) { long int val = getSum ( BITree , i - 1 ) ; update ( BITree , q [ i ] [ 1 ] - 1 , q [ i ] [ 2 ] - 1 , m , val ) ; } } for ( int i = m ; i >= 1 ; i -- ) { if ( q [ i ] [ 0 ] == 1 ) { long int val = getSum ( BITree , i - 1 ) ; update ( BITree2 , q [ i ] [ 1 ] - 1 , q [ i ] [ 2 ] - 1 , n , ( val + 1 ) ) ; } } for ( int i = 1 ; i <= n ; i ++ ) cout << ( getSum ( BITree2 , i - 1 ) ) << " β " ; return 0 ; } |
Array range queries for searching an element | Program to determine if the element exists for different range queries ; Structure to represent a query range ; Find the root of the group containing the element at index x ; merge the two groups containing elements at indices x and y into one group ; make n subsets with every element as its root ; consecutive elements equal in value are merged into one single group ; Driver code ; check if the current element in consideration is equal to x or not if it is equal , then x exists in the range ; Print if x exists or not | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Query { int L , R , X ; } ; const int maxn = 100 ; int root [ maxn ] ; int find ( int x ) { return x == root [ x ] ? x : root [ x ] = find ( root [ x ] ) ; } int uni ( int x , int y ) { int p = find ( x ) , q = find ( y ) ; if ( p != q ) { root [ p ] = root [ q ] ; } } void initialize ( int a [ ] , int n , Query q [ ] , int m ) { for ( int i = 0 ; i < n ; i ++ ) root [ i ] = i ; for ( int i = 1 ; i < n ; i ++ ) if ( a [ i ] == a [ i - 1 ] ) uni ( i , i - 1 ) ; } int main ( ) { int a [ ] = { 1 , 1 , 5 , 4 , 5 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; Query q [ ] = { { 0 , 2 , 2 } , { 1 , 4 , 1 } , { 2 , 4 , 5 } } ; int m = sizeof ( q ) / sizeof ( q [ 0 ] ) ; initialize ( a , n , q , m ) ; for ( int i = 0 ; i < m ; i ++ ) { int flag = 0 ; int l = q [ i ] . L , r = q [ i ] . R , x = q [ i ] . X ; int p = r ; while ( p >= l ) { if ( a [ p ] == x ) { flag = 1 ; break ; } p = find ( p ) - 1 ; } if ( flag != 0 ) cout << x << " β exists β between β [ " << l << " , β " << r << " ] β " << endl ; else cout << x << " β does β not β exist β between β [ " << l << " , β " << r << " ] β " << endl ; } } |
Count of pairs from 1 to a and 1 to b whose sum is divisible by N | C ++ implementation of above approach ; Function to find the distinct pairs from 1 - a & 1 - b such that their sum is divisible by n . ; Iterate over 1 to a to find distinct pairs ; For each integer from 1 to a b / n integers exists such that pair sum is divisible by n ; If ( i % n + b % n ) >= n one more pair is possible ; Return answer ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findCountOfPairs ( int a , int b , int n ) { int ans = 0 ; for ( int i = 1 ; i <= a ; i ++ ) { ans += b / n ; ans += ( i % n + b % n ) >= n ? 1 : 0 ; } return ans ; } int main ( ) { int a = 5 , b = 13 , n = 3 ; cout << findCountOfPairs ( a , b , n ) ; return 0 ; } |
Count of pairs from 1 to a and 1 to b whose sum is divisible by N | C ++ implementation of above approach ; Function to find the distinct pairs from 1 - a & 1 - b such that their sum is divisible by n . ; if first element is bigger then swap ; count is store the number of pair . ; we use temp for breaking a loop . ; count when a is greater . ; Count when a is smaller but b is greater ; Count when a and b both are smaller ; breaking condition ; For storing The pair in count . ; return the number of pairs . ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findCountOfPairs ( int a , int b , int n ) { if ( a > b ) { swap ( a , b ) ; } int temp = 1 , count = 0 ; for ( int i = n ; temp > 0 ; i += n ) { if ( a >= i ) { temp = i - 1 ; } else if ( b >= i ) { temp = a ; } else if ( i > b ) { temp = a - ( i - b ) + 1 ; } if ( temp > 0 ) { count += temp ; } } return count ; } int main ( ) { int a = 5 , b = 13 , n = 3 ; cout << findCountOfPairs ( a , b , n ) ; return 0 ; } |
Array range queries for elements with frequency same as value | C ++ Program to answer Q queries to find number of times an element x appears x times in a Query subarray ; Returns the count of number x with frequency x in the subarray from start to end ; map for frequency of elements ; store frequency of each element in arr [ start ; end ] ; Count elements with same frequency as value ; Driver code ; 2D array of queries with 2 columns ; calculating number of queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; int solveQuery ( int start , int end , int arr [ ] ) { unordered_map < int , int > frequency ; for ( int i = start ; i <= end ; i ++ ) frequency [ arr [ i ] ] ++ ; int count = 0 ; for ( auto x : frequency ) if ( x . first == x . second ) count ++ ; return count ; } int main ( ) { int A [ ] = { 1 , 2 , 2 , 3 , 3 , 3 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; int queries [ ] [ 3 ] = { { 0 , 1 } , { 1 , 1 } , { 0 , 2 } , { 1 , 3 } , { 3 , 5 } , { 0 , 5 } } ; int q = sizeof ( queries ) / sizeof ( queries [ 0 ] ) ; for ( int i = 0 ; i < q ; i ++ ) { int start = queries [ i ] [ 0 ] ; int end = queries [ i ] [ 1 ] ; cout << " Answer β for β Query β " << ( i + 1 ) << " β = β " << solveQuery ( start , end , A ) << endl ; } return 0 ; } |
Buy minimum items without change and given coins | ; See if we can buy less than 10 items Using 10 Rs coins and one r Rs coin ; We can always buy 10 items ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minItems ( int k , int r ) { for ( int i = 1 ; i < 10 ; i ++ ) if ( ( i * k - r ) % 10 == 0 || ( i * k ) % 10 == 0 ) return i ; return 10 ; } int main ( ) { int k = 15 ; int r = 2 ; cout << minItems ( k , r ) ; return 0 ; } |
Number of indexes with equal elements in given range | CPP program to count the number of indexes in range L R such that Ai = Ai + 1 ; function that answers every query in O ( r - l ) ; traverse from l to r and count the required indexes ; Driver Code ; 1 - st query ; 2 nd query | #include <bits/stdc++.h> NEW_LINE using namespace std ; int answer_query ( int a [ ] , int n , int l , int r ) { int count = 0 ; for ( int i = l ; i < r ; i ++ ) if ( a [ i ] == a [ i + 1 ] ) count += 1 ; return count ; } int main ( ) { int a [ ] = { 1 , 2 , 2 , 2 , 3 , 3 , 4 , 4 , 4 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int L , R ; L = 1 ; R = 8 ; cout << answer_query ( a , n , L , R ) << endl ; L = 0 ; R = 4 ; cout << answer_query ( a , n , L , R ) << endl ; return 0 ; } |
Diagonal Sum of a Binary Tree | C ++ Program to calculate the sum of diagonal nodes . ; Node Structure ; to map the node with level - index ; Function to create new node ; recursvise function to calculate sum of elements where level - index is same . ; if there is no child then return ; add the element in the group of node whose level - index is equal ; left child call ; right child call ; Function call ; for different values of level - index add te sum of those node to answer ; Driver code ; build binary tree ; Function Call ; print the daigonal sums | #include <bits/stdc++.h> NEW_LINE using namespace std ; struct Node { int data ; Node * left , * right ; } ; map < int , int > grid ; struct Node * newNode ( int data ) { struct Node * Node = ( struct Node * ) malloc ( sizeof ( struct Node ) ) ; Node -> data = data ; Node -> left = Node -> right = NULL ; return Node ; } void addConsideringGrid ( Node * root , int level , int index ) { if ( root == NULL ) return ; grid [ level - index ] += ( root -> data ) ; addConsideringGrid ( root -> left , level + 1 , index - 1 ) ; addConsideringGrid ( root -> right , level + 1 , index + 1 ) ; } vector < int > diagonalSum ( Node * root ) { grid . clear ( ) ; addConsideringGrid ( root , 0 , 0 ) ; vector < int > ans ; for ( auto x : grid ) { ans . push_back ( x . second ) ; } return ans ; } int main ( ) { struct Node * root = newNode ( 1 ) ; root -> left = newNode ( 2 ) ; root -> right = newNode ( 3 ) ; root -> left -> left = newNode ( 9 ) ; root -> left -> right = newNode ( 6 ) ; root -> right -> left = newNode ( 4 ) ; root -> right -> right = newNode ( 5 ) ; root -> right -> left -> right = newNode ( 7 ) ; root -> right -> left -> left = newNode ( 12 ) ; root -> left -> right -> left = newNode ( 11 ) ; root -> left -> left -> right = newNode ( 10 ) ; vector < int > v = diagonalSum ( root ) ; for ( int i = 0 ; i < v . size ( ) ; i ++ ) cout << v [ i ] << " β " ; return 0 ; } |
Number of indexes with equal elements in given range | CPP program to count the number of indexes in range L R such that Ai = Ai + 1 ; array to store count of index from 0 to i that obey condition ; precomputing prefixans [ ] array ; traverse to compute the prefixans [ ] array ; function that answers every query in O ( 1 ) ; Driver Code ; pre - computation ; 1 - st query ; 2 nd query | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int N = 1000 ; int prefixans [ N ] ; int countIndex ( int a [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) { if ( a [ i ] == a [ i + 1 ] ) prefixans [ i ] = 1 ; if ( i != 0 ) prefixans [ i ] += prefixans [ i - 1 ] ; } } int answer_query ( int l , int r ) { if ( l == 0 ) return prefixans [ r - 1 ] ; else return prefixans [ r - 1 ] - prefixans [ l - 1 ] ; } int main ( ) { int a [ ] = { 1 , 2 , 2 , 2 , 3 , 3 , 4 , 4 , 4 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; countIndex ( a , n ) ; int L , R ; L = 1 ; R = 8 ; cout << answer_query ( L , R ) << endl ; L = 0 ; R = 4 ; cout << answer_query ( L , R ) << endl ; return 0 ; } |
Count subarrays with Prime sum | C ++ program to count subarrays with Prime sum ; Function to count subarrays with Prime sum ; USE SIEVE TO FIND ALL PRIME NUMBERS LESS THAN OR EQUAL TO max_val Create a boolean array " prime [ 0 . . n ] " . A value in prime [ i ] will finally be false if i is Not a prime , else true . ; Remaining part of SIEVE ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of p ; Initialize result ; Traverse through the array ; return answer ; Driver program | #include <bits/stdc++.h> NEW_LINE using namespace std ; int primeSubarrays ( int A [ ] , int n ) { int max_val = int ( pow ( 10 , 7 ) ) ; vector < bool > prime ( max_val + 1 , true ) ; prime [ 0 ] = false ; prime [ 1 ] = false ; for ( int p = 2 ; p * p <= max_val ; p ++ ) { if ( prime [ p ] == true ) { for ( int i = p * 2 ; i <= max_val ; i += p ) prime [ i ] = false ; } } int cnt = 0 ; for ( int i = 0 ; i < n - 1 ; ++ i ) { int val = A [ i ] ; for ( int j = i + 1 ; j < n ; ++ j ) { val += A [ j ] ; if ( prime [ val ] ) ++ cnt ; } } return cnt ; } int main ( ) { int A [ ] = { 1 , 2 , 3 , 4 , 5 } ; int n = sizeof ( A ) / sizeof ( A [ 0 ] ) ; cout << primeSubarrays ( A , n ) ; return 0 ; } |
Total numbers with no repeated digits in a range | C ++ implementation of brute force solution . ; Function to check if the given number has repeated digit or not ; Traversing through each digit ; if the digit is present more than once in the number ; return 0 if the number has repeated digit ; return 1 if the number has no repeated digit ; Function to find total number in the given range which has no repeated digit ; Traversing through the range ; Add 1 to the answer if i has no repeated digit else 0 ; Driver Code ; Calling the calculate | #include <bits/stdc++.h> NEW_LINE using namespace std ; int repeated_digit ( int n ) { unordered_set < int > s ; while ( n != 0 ) { int d = n % 10 ; if ( s . find ( d ) != s . end ( ) ) { return 0 ; } s . insert ( d ) ; n = n / 10 ; } return 1 ; } int calculate ( int L , int R ) { int answer = 0 ; for ( int i = L ; i < R + 1 ; ++ i ) { answer = answer + repeated_digit ( i ) ; } return answer ; } int main ( ) { int L = 1 , R = 100 ; cout << calculate ( L , R ) ; return 0 ; } |
Minimum swaps required to make a binary string alternating | CPP implementation of the approach ; returns the minimum number of swaps of a binary string passed as the argument to make it alternating ; counts number of zeroes at odd and even positions ; counts number of ones at odd and even positions ; alternating string starts with 0 ; alternating string starts with 1 ; calculates the minimum number of swaps ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countMinSwaps ( string st ) { int min_swaps = 0 ; int odd_0 = 0 , even_0 = 0 ; int odd_1 = 0 , even_1 = 0 ; int n = st . length ( ) ; for ( int i = 0 ; i < n ; i ++ ) { if ( i % 2 == 0 ) { if ( st [ i ] == '1' ) even_1 ++ ; else even_0 ++ ; } else { if ( st [ i ] == '1' ) odd_1 ++ ; else odd_0 ++ ; } } int cnt_swaps_1 = min ( even_0 , odd_1 ) ; int cnt_swaps_2 = min ( even_1 , odd_0 ) ; return min ( cnt_swaps_1 , cnt_swaps_2 ) ; } int main ( ) { string st = "000111" ; cout << countMinSwaps ( st ) << endl ; return 0 ; } |
Total numbers with no repeated digits in a range | C ++ implementation of above idea ; Maximum ; Prefix Array ; Function to check if the given number has repeated digit or not ; Traversing through each digit ; if the digit is present more than once in the number ; return 0 if the number has repeated digit ; return 1 if the number has no repeated digit ; Function to pre calculate the Prefix array ; Traversing through the numbers from 2 to MAX ; Generating the Prefix array ; Calclute Function ; Answer ; Driver code ; Pre - calculating the Prefix array . ; Calling the calculate function to find the total number of number which has no repeated digit | #include <bits/stdc++.h> NEW_LINE using namespace std ; int MAX = 1000 ; vector < int > Prefix = { 0 } ; int repeated_digit ( int n ) { unordered_set < int > a ; int d ; while ( n != 0 ) { d = n % 10 ; if ( a . find ( d ) != a . end ( ) ) return 0 ; a . insert ( d ) ; n = n / 10 ; } return 1 ; } void pre_calculation ( int MAX ) { Prefix . push_back ( repeated_digit ( 1 ) ) ; for ( int i = 2 ; i < MAX + 1 ; i ++ ) Prefix . push_back ( repeated_digit ( i ) + Prefix [ i - 1 ] ) ; } int calculate ( int L , int R ) { return Prefix [ R ] - Prefix [ L - 1 ] ; } int main ( ) { int L = 1 , R = 100 ; pre_calculation ( MAX ) ; cout << calculate ( L , R ) << endl ; return 0 ; } |
Difference Array | Range update query in O ( 1 ) | C ++ code to demonstrate Difference Array ; Creates a diff array D [ ] for A [ ] and returns it after filling initial values . ; We use one extra space because update ( l , r , x ) updates D [ r + 1 ] ; Does range update ; Prints updated Array ; Note that A [ 0 ] or D [ 0 ] decides values of rest of the elements . ; Driver Code ; Array to be updated ; Create and fill difference Array ; After below update ( l , r , x ) , the elements should become 20 , 15 , 20 , 40 ; After below updates , the array should become 30 , 35 , 70 , 60 | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < int > initializeDiffArray ( vector < int > & A ) { int n = A . size ( ) ; vector < int > D ( n + 1 ) ; D [ 0 ] = A [ 0 ] , D [ n ] = 0 ; for ( int i = 1 ; i < n ; i ++ ) D [ i ] = A [ i ] - A [ i - 1 ] ; return D ; } void update ( vector < int > & D , int l , int r , int x ) { D [ l ] += x ; D [ r + 1 ] -= x ; } int printArray ( vector < int > & A , vector < int > & D ) { for ( int i = 0 ; i < A . size ( ) ; i ++ ) { if ( i == 0 ) A [ i ] = D [ i ] ; else A [ i ] = D [ i ] + A [ i - 1 ] ; cout << A [ i ] << " β " ; } cout << endl ; } int main ( ) { vector < int > A { 10 , 5 , 20 , 40 } ; vector < int > D = initializeDiffArray ( A ) ; update ( D , 0 , 1 , 10 ) ; printArray ( A , D ) ; update ( D , 1 , 3 , 20 ) ; update ( D , 2 , 2 , 30 ) ; printArray ( A , D ) ; return 0 ; } |
Find the value of the function Y = ( X ^ 6 + X ^ 2 + 9894845 ) % 971 | CPP implementation of above approach ; computing ( a ^ b ) % c ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; long long int modpow ( long long int base , long long int exp , long long int modulus ) { base %= modulus ; long long int result = 1 ; while ( exp > 0 ) { if ( exp & 1 ) result = ( result * base ) % modulus ; base = ( base * base ) % modulus ; exp >>= 1 ; } return result ; } int main ( ) { long long int n = 654654 , mod = 971 ; cout << ( ( ( modpow ( n , 6 , mod ) + modpow ( n , 2 , mod ) ) % mod + 355 ) % mod ) ; return 0 ; } |
Largest Sum Contiguous Subarray | C ++ program to print largest contiguous array sum ; Driver program to test maxSubArraySum | #include <iostream> NEW_LINE #include <climits> NEW_LINE using namespace std ; int maxSubArraySum ( int a [ ] , int size ) { int max_so_far = INT_MIN , max_ending_here = 0 ; for ( int i = 0 ; i < size ; i ++ ) { max_ending_here = max_ending_here + a [ i ] ; if ( max_so_far < max_ending_here ) max_so_far = max_ending_here ; if ( max_ending_here < 0 ) max_ending_here = 0 ; } return max_so_far ; } int main ( ) { int a [ ] = { -2 , -3 , 4 , -1 , -2 , 1 , 5 , -3 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int max_sum = maxSubArraySum ( a , n ) ; cout << " Maximum β contiguous β sum β is β " << max_sum ; return 0 ; } |
Place N ^ 2 numbers in matrix such that every row has an equal sum | C ++ program to distribute n ^ 2 numbers to n people ; 2D array for storing the final result ; Using modulo to go to the firs column after the last column ; Making a 2D array containing numbers ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; vector < vector < int > > solve ( vector < vector < int > > arr , int n ) { vector < vector < int > > ans ( n , vector < int > ( n , 0 ) ) ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { ans [ i ] [ j ] = arr [ j ] [ ( i + j ) % n ] ; } } return ans ; } void show ( vector < vector < int > > arr , int n ) { vector < vector < int > > res = solve ( arr , n ) ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { cout << res [ i ] [ j ] << " β " ; } cout << endl ; } } vector < vector < int > > makeArray ( int n ) { vector < vector < int > > arr ( n , vector < int > ( n , 0 ) ) ; int c = 1 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { arr [ i ] [ j ] = c ; c ++ ; } } return arr ; } int main ( ) { int n = 5 ; vector < vector < int > > arr = makeArray ( n ) ; show ( arr , n ) ; return 0 ; } |
Largest Sum Contiguous Subarray | ; Else start the max subarry from current element | #include <climits> NEW_LINE int maxSubarraySum ( int arr [ ] , int size ) { int max_ending_here = 0 , max_so_far = INT_MIN ; for ( int i = 0 ; i < size ; i ++ ) { if ( arr [ i ] <= max_ending_here + arr [ i ] ) { max_ending_here += arr [ i ] ; } else { max_ending_here = arr [ i ] ; } if ( max_ending_here > max_so_far ) max_so_far = max_ending_here ; } return max_so_far ; } |
Subsets and Splits