doc_content
stringlengths
1
386k
doc_id
stringlengths
5
188
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_get_til method distutils.ccompiler_opt.CCompilerOpt.feature_get_til(names, keyisfalse)[source] same as feature_implies_c() but stop collecting implied features when feature’s option that provided through parameter ‘keyisfalse’ is False, also sorting the returned features.
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_get_til
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_implies method distutils.ccompiler_opt.CCompilerOpt.feature_implies(names, keep_origins=False)[source] Return a set of CPU features that implied by ‘names’ Parameters names: str or sequence of str CPU feature name(s) in uppercase. keep_origins: bool if False(default) then the returned set will not contain any features from ‘names’. This case happens only when two features imply each other. Examples >>> self.feature_implies("SSE3") {'SSE', 'SSE2'} >>> self.feature_implies("SSE2") {'SSE'} >>> self.feature_implies("SSE2", keep_origins=True) # 'SSE2' found here since 'SSE' and 'SSE2' imply each other {'SSE', 'SSE2'}
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_implies
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_implies_c method distutils.ccompiler_opt.CCompilerOpt.feature_implies_c(names)[source] same as feature_implies() but combining ‘names’
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_implies_c
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_is_exist method distutils.ccompiler_opt.CCompilerOpt.feature_is_exist(name)[source] Returns True if a certain feature is exist and covered within _Config.conf_features. Parameters ‘name’: str feature name in uppercase.
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_is_exist
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_names method distutils.ccompiler_opt.CCompilerOpt.feature_names(names=None, force_flags=None, macros=[])[source] Returns a set of CPU feature names that supported by platform and the C compiler. Parameters names: sequence or None, optional Specify certain CPU features to test it against the C compiler. if None(default), it will test all current supported features. Note: feature names must be in upper-case. force_flags: list or None, optional If None(default), default compiler flags for every CPU feature will be used during the test. macroslist of tuples, optional A list of C macro definitions.
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_names
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_sorted method distutils.ccompiler_opt.CCompilerOpt.feature_sorted(names, reverse=False)[source] Sort a list of CPU features ordered by the lowest interest. Parameters ‘names’: sequence sequence of supported feature names in uppercase. ‘reverse’: bool, optional If true, the sorted features is reversed. (highest interest) Returns list, sorted CPU features
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_sorted
numpy.distutils.ccompiler_opt.CCompilerOpt.feature_untied method distutils.ccompiler_opt.CCompilerOpt.feature_untied(names)[source] same as ‘feature_ahead()’ but if both features implied each other and keep the highest interest. Parameters ‘names’: sequence sequence of CPU feature names in uppercase. Returns list of CPU features sorted as-is ‘names’ Examples >>> self.feature_untied(["SSE2", "SSE3", "SSE41"]) ["SSE2", "SSE3", "SSE41"] # assume AVX2 and FMA3 implies each other >>> self.feature_untied(["SSE2", "SSE3", "SSE41", "FMA3", "AVX2"]) ["SSE2", "SSE3", "SSE41", "AVX2"]
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.feature_untied
numpy.distutils.ccompiler_opt.CCompilerOpt.generate_dispatch_header method distutils.ccompiler_opt.CCompilerOpt.generate_dispatch_header(header_path)[source] Generate the dispatch header which contains the #definitions and headers for platform-specific instruction-sets for the enabled CPU baseline and dispatch-able features. Its highly recommended to take a look at the generated header also the generated source files via try_dispatch() in order to get the full picture.
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.generate_dispatch_header
numpy.distutils.ccompiler_opt.CCompilerOpt.is_cached method distutils.ccompiler_opt.CCompilerOpt.is_cached()[source] Returns True if the class loaded from the cache file
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.is_cached
numpy.distutils.ccompiler_opt.CCompilerOpt.parse_targets method distutils.ccompiler_opt.CCompilerOpt.parse_targets(source)[source] Fetch and parse configuration statements that required for defining the targeted CPU features, statements should be declared in the top of source in between C comment and start with a special mark @targets. Configuration statements are sort of keywords representing CPU features names, group of statements and policies, combined together to determine the required optimization. Parameters source: str the path of C source file. Returns bool, True if group has the ‘baseline’ option list, list of CPU features list, list of extra compiler flags
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.parse_targets
numpy.distutils.ccompiler_opt.CCompilerOpt.try_dispatch method distutils.ccompiler_opt.CCompilerOpt.try_dispatch(sources, src_dir=None, ccompiler=None, **kwargs)[source] Compile one or more dispatch-able sources and generates object files, also generates abstract C config headers and macros that used later for the final runtime dispatching process. The mechanism behind it is to takes each source file that specified in ‘sources’ and branching it into several files depend on special configuration statements that must be declared in the top of each source which contains targeted CPU features, then it compiles every branched source with the proper compiler flags. Parameters sourceslist Must be a list of dispatch-able sources file paths, and configuration statements must be declared inside each file. src_dirstr Path of parent directory for the generated headers and wrapped sources. If None(default) the files will generated in-place. ccompiler: CCompiler Distutils CCompiler instance to be used for compilation. If None (default), the provided instance during the initialization will be used instead. **kwargsany Arguments to pass on to the CCompiler.compile() Returns listgenerated object files Raises CompileError Raises by CCompiler.compile() on compiling failure. DistutilsError Some errors during checking the sanity of configuration statements. See also parse_targets Parsing the configuration statements of dispatch-able sources.
numpy.reference.generated.numpy.distutils.ccompiler_opt.ccompileropt.try_dispatch
numpy.distutils.ccompiler_opt.new_ccompiler_opt distutils.ccompiler_opt.new_ccompiler_opt(compiler, dispatch_hpath, **kwargs)[source] Create a new instance of ‘CCompilerOpt’ and generate the dispatch header which contains the #definitions and headers of platform-specific instruction-sets for the enabled CPU baseline and dispatch-able features. Parameters compilerCCompiler instance dispatch_hpathstr path of the dispatch header **kwargs: passed as-is to `CCompilerOpt(…)` Returns ——- new instance of CCompilerOpt
numpy.reference.generated.numpy.distutils.ccompiler_opt.new_ccompiler_opt
numpy.distutils.cpuinfo.cpu distutils.cpuinfo.cpu = <numpy.distutils.cpuinfo.LinuxCPUInfo object>
numpy.reference.generated.numpy.distutils.cpuinfo.cpu
numpy.distutils.exec_command.exec_command distutils.exec_command.exec_command(command, execute_in='', use_shell=None, use_tee=None, _with_python=1, **env)[source] Return (status,output) of executed command. Deprecated since version 1.17: Use subprocess.Popen instead Parameters commandstr A concatenated string of executable and arguments. execute_instr Before running command cd execute_in and after cd -. use_shell{bool, None}, optional If True, execute sh -c command. Default None (True) use_tee{bool, None}, optional If True use tee. Default None (True) Returns resstr Both stdout and stderr messages. Notes On NT, DOS systems the returned status is correct for external commands. Wild cards will not work for non-posix systems or when use_shell=0.
numpy.reference.generated.numpy.distutils.exec_command.exec_command
numpy.distutils.exec_command.filepath_from_subprocess_output distutils.exec_command.filepath_from_subprocess_output(output)[source] Convert bytes in the encoding used by a subprocess into a filesystem-appropriate str. Inherited from exec_command, and possibly incorrect.
numpy.reference.generated.numpy.distutils.exec_command.filepath_from_subprocess_output
numpy.distutils.exec_command.find_executable distutils.exec_command.find_executable(exe, path=None, _cache={})[source] Return full path of a executable or None. Symbolic links are not followed.
numpy.reference.generated.numpy.distutils.exec_command.find_executable
numpy.distutils.exec_command.forward_bytes_to_stdout distutils.exec_command.forward_bytes_to_stdout(val)[source] Forward bytes from a subprocess call to the console, without attempting to decode them. The assumption is that the subprocess call already returned bytes in a suitable encoding.
numpy.reference.generated.numpy.distutils.exec_command.forward_bytes_to_stdout
numpy.distutils.exec_command.get_pythonexe distutils.exec_command.get_pythonexe()[source]
numpy.reference.generated.numpy.distutils.exec_command.get_pythonexe
numpy.distutils.exec_command.temp_file_name distutils.exec_command.temp_file_name()[source]
numpy.reference.generated.numpy.distutils.exec_command.temp_file_name
numpy.distutils.log.set_verbosity distutils.log.set_verbosity(v, force=False)[source]
numpy.reference.generated.numpy.distutils.log.set_verbosity
numpy.distutils.system_info.get_info distutils.system_info.get_info(name, notfound_action=0)[source] notfound_action: 0 - do nothing 1 - display warning message 2 - raise error
numpy.reference.generated.numpy.distutils.system_info.get_info
numpy.distutils.system_info.get_standard_file distutils.system_info.get_standard_file(fname)[source] Returns a list of files named ‘fname’ from 1) System-wide directory (directory-location of this module) 2) Users HOME directory (os.environ[‘HOME’]) 3) Local directory
numpy.reference.generated.numpy.distutils.system_info.get_standard_file
DoxyLimbo(constDoxyLimbo<Tp,N>&l) Set Default behavior for copy the limbo.
numpy.dev.howto-docs#_CPPv4N9DoxyLimbo9DoxyLimboERK9DoxyLimboI2Tp1NE
numpy.dtype.__class_getitem__ method dtype.__class_getitem__(item, /) Return a parametrized wrapper around the dtype type. New in version 1.22. Returns aliastypes.GenericAlias A parametrized dtype type. See also PEP 585 Type hinting generics in standard collections. Notes This method is only available for python 3.9 and later. Examples >>> import numpy as np >>> np.dtype[np.int64] numpy.dtype[numpy.int64]
numpy.reference.generated.numpy.dtype.__class_getitem__
numpy.dtype.__ge__ method dtype.__ge__(value, /) Return self>=value.
numpy.reference.generated.numpy.dtype.__ge__
numpy.dtype.__gt__ method dtype.__gt__(value, /) Return self>value.
numpy.reference.generated.numpy.dtype.__gt__
numpy.dtype.__le__ method dtype.__le__(value, /) Return self<=value.
numpy.reference.generated.numpy.dtype.__le__
numpy.dtype.__lt__ method dtype.__lt__(value, /) Return self<value.
numpy.reference.generated.numpy.dtype.__lt__
numpy.dtype.__reduce__ method dtype.__reduce__() Helper for pickle.
numpy.reference.generated.numpy.dtype.__reduce__
numpy.dtype.__setstate__ method dtype.__setstate__()
numpy.reference.generated.numpy.dtype.__setstate__
numpy.dtype.alignment attribute dtype.alignment The required alignment (bytes) of this data-type according to the compiler. More information is available in the C-API section of the manual. Examples >>> x = np.dtype('i4') >>> x.alignment 4 >>> x = np.dtype(float) >>> x.alignment 8
numpy.reference.generated.numpy.dtype.alignment
numpy.dtype.base attribute dtype.base Returns dtype for the base element of the subarrays, regardless of their dimension or shape. See also dtype.subdtype Examples >>> x = numpy.dtype('8f') >>> x.base dtype('float32') >>> x = numpy.dtype('i2') >>> x.base dtype('int16')
numpy.reference.generated.numpy.dtype.base
numpy.dtype.byteorder attribute dtype.byteorder A character indicating the byte-order of this data-type object. One of: ‘=’ native ‘<’ little-endian ‘>’ big-endian ‘|’ not applicable All built-in data-type objects have byteorder either ‘=’ or ‘|’. Examples >>> dt = np.dtype('i2') >>> dt.byteorder '=' >>> # endian is not relevant for 8 bit numbers >>> np.dtype('i1').byteorder '|' >>> # or ASCII strings >>> np.dtype('S2').byteorder '|' >>> # Even if specific code is given, and it is native >>> # '=' is the byteorder >>> import sys >>> sys_is_le = sys.byteorder == 'little' >>> native_code = sys_is_le and '<' or '>' >>> swapped_code = sys_is_le and '>' or '<' >>> dt = np.dtype(native_code + 'i2') >>> dt.byteorder '=' >>> # Swapped code shows up as itself >>> dt = np.dtype(swapped_code + 'i2') >>> dt.byteorder == swapped_code True
numpy.reference.generated.numpy.dtype.byteorder
numpy.dtype.char attribute dtype.char A unique character code for each of the 21 different built-in types. Examples >>> x = np.dtype(float) >>> x.char 'd'
numpy.reference.generated.numpy.dtype.char
numpy.dtype.descr attribute dtype.descr __array_interface__ description of the data-type. The format is that required by the ‘descr’ key in the __array_interface__ attribute. Warning: This attribute exists specifically for __array_interface__, and passing it directly to np.dtype will not accurately reconstruct some dtypes (e.g., scalar and subarray dtypes). Examples >>> x = np.dtype(float) >>> x.descr [('', '<f8')] >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> dt.descr [('name', '<U16'), ('grades', '<f8', (2,))]
numpy.reference.generated.numpy.dtype.descr
numpy.dtype.fields attribute dtype.fields Dictionary of named fields defined for this data type, or None. The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully describing the field: (dtype, offset[, title]) Offset is limited to C int, which is signed and usually 32 bits. If present, the optional title can be any object (if it is a string or unicode then it will also be a key in the fields dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be passed directly as arguments to the ndarray.getfield and ndarray.setfield methods. See also ndarray.getfield, ndarray.setfield Examples >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> print(dt.fields) {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
numpy.reference.generated.numpy.dtype.fields
numpy.dtype.flags attribute dtype.flags Bit-flags describing how this data type is to be interpreted. Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE, ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of these flags is in C-API documentation; they are largely useful for user-defined data-types. The following example demonstrates that operations on this particular dtype requires Python C-API. Examples >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) >>> x.flags 16 >>> np.core.multiarray.NEEDS_PYAPI 16
numpy.reference.generated.numpy.dtype.flags
numpy.dtype.hasobject attribute dtype.hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes. Recall that what is actually in the ndarray memory representing the Python object is the memory address of that object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types that may contain arbitrary Python objects and data-types that won’t.
numpy.reference.generated.numpy.dtype.hasobject
numpy.dtype.isalignedstruct attribute dtype.isalignedstruct Boolean indicating whether the dtype is a struct which maintains field alignment. This flag is sticky, so when combining multiple structs together, it is preserved and produces new dtypes which are also aligned.
numpy.reference.generated.numpy.dtype.isalignedstruct
numpy.dtype.isbuiltin attribute dtype.isbuiltin Integer indicating how this dtype relates to the built-in dtypes. Read-only. 0 if this is a structured array type, with fields 1 if this is a dtype compiled into numpy (such as ints, floats etc) 2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to extend numpy to handle a new array type. See User-defined data-types in the NumPy manual. Examples >>> dt = np.dtype('i2') >>> dt.isbuiltin 1 >>> dt = np.dtype('f8') >>> dt.isbuiltin 1 >>> dt = np.dtype([('field1', 'f8')]) >>> dt.isbuiltin 0
numpy.reference.generated.numpy.dtype.isbuiltin
numpy.dtype.isnative attribute dtype.isnative Boolean indicating whether the byte order of this dtype is native to the platform.
numpy.reference.generated.numpy.dtype.isnative
numpy.dtype.itemsize attribute dtype.itemsize The element size of this data-type object. For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be anything. Examples >>> arr = np.array([[1, 2], [3, 4]]) >>> arr.dtype dtype('int64') >>> arr.itemsize 8 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> dt.itemsize 80
numpy.reference.generated.numpy.dtype.itemsize
numpy.dtype.kind attribute dtype.kind A character code (one of ‘biufcmMOSUV’) identifying the general kind of data. b boolean i signed integer u unsigned integer f floating-point c complex floating-point m timedelta M datetime O object S (byte-)string U Unicode V void Examples >>> dt = np.dtype('i4') >>> dt.kind 'i' >>> dt = np.dtype('f8') >>> dt.kind 'f' >>> dt = np.dtype([('field1', 'f8')]) >>> dt.kind 'V'
numpy.reference.generated.numpy.dtype.kind
numpy.dtype.metadata attribute dtype.metadata Either None or a readonly dictionary of metadata (mappingproxy). The metadata field can be set using any dictionary at data-type creation. NumPy currently has no uniform approach to propagating metadata; although some array operations preserve it, there is no guarantee that others will. Warning Although used in certain projects, this feature was long undocumented and is not well supported. Some aspects of metadata propagation are expected to change in the future. Examples >>> dt = np.dtype(float, metadata={"key": "value"}) >>> dt.metadata["key"] 'value' >>> arr = np.array([1, 2, 3], dtype=dt) >>> arr.dtype.metadata mappingproxy({'key': 'value'}) Adding arrays with identical datatypes currently preserves the metadata: >>> (arr + arr).dtype.metadata mappingproxy({'key': 'value'}) But if the arrays have different dtype metadata, the metadata may be dropped: >>> dt2 = np.dtype(float, metadata={"key2": "value2"}) >>> arr2 = np.array([3, 2, 1], dtype=dt2) >>> (arr + arr2).dtype.metadata is None True # The metadata field is cleared so None is returned
numpy.reference.generated.numpy.dtype.metadata
numpy.dtype.name attribute dtype.name A bit-width name for this data-type. Un-sized flexible data-type objects do not have this attribute. Examples >>> x = np.dtype(float) >>> x.name 'float64' >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) >>> x.name 'void640'
numpy.reference.generated.numpy.dtype.name
numpy.dtype.names attribute dtype.names Ordered list of field names, or None if there are no fields. The names are ordered according to increasing byte offset. This can be used, for example, to walk through all of the named fields in offset order. Examples >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) >>> dt.names ('name', 'grades')
numpy.reference.generated.numpy.dtype.names
numpy.dtype.ndim attribute dtype.ndim Number of dimensions of the sub-array if this data type describes a sub-array, and 0 otherwise. New in version 1.13.0. Examples >>> x = np.dtype(float) >>> x.ndim 0 >>> x = np.dtype((float, 8)) >>> x.ndim 1 >>> x = np.dtype(('i4', (3, 4))) >>> x.ndim 2
numpy.reference.generated.numpy.dtype.ndim
numpy.dtype.newbyteorder method dtype.newbyteorder(new_order='S', /) Return a new dtype with a different byte order. Changes are also made in all fields and sub-arrays of the data type. Parameters new_orderstring, optional Byte order to force; a value from the byte order specifications below. The default value (‘S’) results in swapping the current byte order. new_order codes can be any of: ‘S’ - swap dtype from current to opposite endian {‘<’, ‘little’} - little endian {‘>’, ‘big’} - big endian {‘=’, ‘native’} - native order {‘|’, ‘I’} - ignore (no change to byte order) Returns new_dtypedtype New dtype object with the given change to the byte order. Notes Changes are also made in all fields and sub-arrays of the data type. Examples >>> import sys >>> sys_is_le = sys.byteorder == 'little' >>> native_code = sys_is_le and '<' or '>' >>> swapped_code = sys_is_le and '>' or '<' >>> native_dt = np.dtype(native_code+'i2') >>> swapped_dt = np.dtype(swapped_code+'i2') >>> native_dt.newbyteorder('S') == swapped_dt True >>> native_dt.newbyteorder() == swapped_dt True >>> native_dt == swapped_dt.newbyteorder('S') True >>> native_dt == swapped_dt.newbyteorder('=') True >>> native_dt == swapped_dt.newbyteorder('N') True >>> native_dt == native_dt.newbyteorder('|') True >>> np.dtype('<i2') == native_dt.newbyteorder('<') True >>> np.dtype('<i2') == native_dt.newbyteorder('L') True >>> np.dtype('>i2') == native_dt.newbyteorder('>') True >>> np.dtype('>i2') == native_dt.newbyteorder('B') True
numpy.reference.generated.numpy.dtype.newbyteorder
numpy.dtype.num attribute dtype.num A unique number for each of the 21 different built-in types. These are roughly ordered from least-to-most precision. Examples >>> dt = np.dtype(str) >>> dt.num 19 >>> dt = np.dtype(float) >>> dt.num 12
numpy.reference.generated.numpy.dtype.num
numpy.dtype.shape attribute dtype.shape Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise. Examples >>> dt = np.dtype(('i4', 4)) >>> dt.shape (4,) >>> dt = np.dtype(('i4', (2, 3))) >>> dt.shape (2, 3)
numpy.reference.generated.numpy.dtype.shape
numpy.dtype.str attribute dtype.str The array-protocol typestring of this data-type object.
numpy.reference.generated.numpy.dtype.str
numpy.dtype.subdtype attribute dtype.subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise. The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the array. If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked on to the end of the retrieved array. See also dtype.base Examples >>> x = numpy.dtype('8f') >>> x.subdtype (dtype('float32'), (8,)) >>> x = numpy.dtype('i2') >>> x.subdtype >>>
numpy.reference.generated.numpy.dtype.subdtype
numpy.dtype.type attribute dtype.type = None
numpy.reference.generated.numpy.dtype.type
numpy.errstate.__call__ method errstate.__call__(func) Call self as a function.
numpy.reference.generated.numpy.errstate.__call__
numpy.distutils.exec_command exec_command Implements exec_command function that is (almost) equivalent to commands.getstatusoutput function but on NT, DOS systems the returned status is actually correct (though, the returned status values may be different by a factor). In addition, exec_command takes keyword arguments for (re-)defining environment variables. Provides functions: exec_command — execute command in a specified directory and in the modified environment. find_executable — locate a command using info from environment variable PATH. Equivalent to posix which command. Author: Pearu Peterson <[email protected]> Created: 11 January 2003 Requires: Python 2.x Successfully tested on: os.name sys.platform comments posix linux2 Debian (sid) Linux, Python 2.1.3+, 2.2.3+, 2.3.3 PyCrust 0.9.3, Idle 1.0.2 posix linux2 Red Hat 9 Linux, Python 2.1.3, 2.2.2, 2.3.2 posix sunos5 SunOS 5.9, Python 2.2, 2.3.2 posix darwin Darwin 7.2.0, Python 2.3 nt win32 Windows Me Python 2.3(EE), Idle 1.0, PyCrust 0.7.2 Python 2.1.1 Idle 0.8 nt win32 Windows 98, Python 2.1.1. Idle 0.8 nt win32 Cygwin 98-4.10, Python 2.1.1(MSC) - echo tests fail i.e. redefining environment variables may not work. FIXED: don’t use cygwin echo! Comment: also cmd /c echo will not work but redefining environment variables do work. posix cygwin Cygwin 98-4.10, Python 2.3.3(cygming special) nt win32 Windows XP, Python 2.3.3 Known bugs: Tests, that send messages to stderr, fail when executed from MSYS prompt because the messages are lost at some point. Functions exec_command(command[, execute_in, ...]) Return (status,output) of executed command. filepath_from_subprocess_output(output) Convert bytes in the encoding used by a subprocess into a filesystem-appropriate str. find_executable(exe[, path, _cache]) Return full path of a executable or None. forward_bytes_to_stdout(val) Forward bytes from a subprocess call to the console, without attempting to decode them. get_pythonexe() temp_file_name()
numpy.reference.generated.numpy.distutils.exec_command
Extending The BitGenerators have been designed to be extendable using standard tools for high-performance Python – numba and Cython. The Generator object can also be used with user-provided BitGenerators as long as these export a small set of required functions. Numba Numba can be used with either CTypes or CFFI. The current iteration of the BitGenerators all export a small set of functions through both interfaces. This example shows how numba can be used to produce gaussian samples using a pure Python implementation which is then compiled. The random numbers are provided by ctypes.next_double. import numpy as np import numba as nb from numpy.random import PCG64 from timeit import timeit bit_gen = PCG64() next_d = bit_gen.cffi.next_double state_addr = bit_gen.cffi.state_address def normals(n, state): out = np.empty(n) for i in range((n + 1) // 2): x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 f = np.sqrt(-2.0 * np.log(r2) / r2) out[2 * i] = f * x1 if 2 * i + 1 < n: out[2 * i + 1] = f * x2 return out # Compile using Numba normalsj = nb.jit(normals, nopython=True) # Must use state address not state with numba n = 10000 def numbacall(): return normalsj(n, state_addr) rg = np.random.Generator(PCG64()) def numpycall(): return rg.normal(size=n) # Check that the functions work r1 = numbacall() r2 = numpycall() assert r1.shape == (n,) assert r1.shape == r2.shape t1 = timeit(numbacall, number=1000) print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') t2 = timeit(numpycall, number=1000) print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms') Both CTypes and CFFI allow the more complicated distributions to be used directly in Numba after compiling the file distributions.c into a DLL or so. An example showing the use of a more complicated distribution is in the examples section below. Cython Cython can be used to unpack the PyCapsule provided by a BitGenerator. This example uses PCG64 and the example from above. The usual caveats for writing high-performance code using Cython – removing bounds checks and wrap around, providing array alignment information – still apply. #!/usr/bin/env python3 #cython: language_level=3 """ This file shows how the to use a BitGenerator to create a distribution. """ import numpy as np cimport numpy as np cimport cython from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer from libc.stdint cimport uint16_t, uint64_t from numpy.random cimport bitgen_t from numpy.random import PCG64 from numpy.random.c_distributions cimport ( random_standard_uniform_fill, random_standard_uniform_fill_f) @cython.boundscheck(False) @cython.wraparound(False) def uniforms(Py_ssize_t n): """ Create an array of `n` uniformly distributed doubles. A 'real' distribution would want to process the values into some non-uniform distribution """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef double[::1] random_values x = PCG64() capsule = x.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='float64') with x.lock, nogil: for i in range(n): # Call the function random_values[i] = rng.next_double(rng.state) randoms = np.asarray(random_values) return randoms The BitGenerator can also be directly accessed using the members of the bitgen_t struct. @cython.boundscheck(False) @cython.wraparound(False) def uint10_uniforms(Py_ssize_t n): """Uniform 10 bit integers stored as 16-bit unsigned integers""" cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef uint16_t[::1] random_values cdef int bits_remaining cdef int width = 10 cdef uint64_t buff, mask = 0x3FF x = PCG64() capsule = x.capsule if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='uint16') # Best practice is to release GIL and acquire the lock bits_remaining = 0 with x.lock, nogil: for i in range(n): if bits_remaining < width: buff = rng.next_uint64(rng.state) random_values[i] = buff & mask buff >>= width randoms = np.asarray(random_values) return randoms Cython can be used to directly access the functions in numpy/random/c_distributions.pxd. This requires linking with the npyrandom library located in numpy/random/lib. def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): """ Create an array of `n` uniformly distributed doubles via a "fill" function. A 'real' distribution would want to process the values into some non-uniform distribution Parameters ---------- bit_generator: BitGenerator instance n: int Output vector length dtype: {str, dtype}, optional Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The default dtype value is 'd' """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef np.ndarray randoms capsule = bit_generator.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) _dtype = np.dtype(dtype) randoms = np.empty(n, dtype=_dtype) if _dtype == np.float32: with bit_generator.lock: random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms)) elif _dtype == np.float64: with bit_generator.lock: random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms)) else: raise TypeError('Unsupported dtype %r for random' % _dtype) return randoms See Extending numpy.random via Cython for the complete listings of these examples and a minimal setup.py to build the c-extension modules. CFFI CFFI can be used to directly access the functions in include/numpy/random/distributions.h. Some “massaging” of the header file is required: """ Use cffi to access any of the underlying C functions from distributions.h """ import os import numpy as np import cffi from .parse import parse_distributions_h ffi = cffi.FFI() inc_dir = os.path.join(np.get_include(), 'numpy') # Basic numpy types ffi.cdef(''' typedef intptr_t npy_intp; typedef unsigned char npy_bool; ''') parse_distributions_h(ffi, inc_dir) Once the header is parsed by ffi.cdef, the functions can be accessed directly from the _generator shared object, using the BitGenerator.cffi interface. # Compare the distributions.h random_standard_normal_fill to # Generator.standard_random bit_gen = np.random.PCG64() rng = np.random.Generator(bit_gen) state = bit_gen.state interface = rng.bit_generator.cffi n = 100 vals_cffi = ffi.new('double[%d]' % n) lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi) # reset the state bit_gen.state = state vals = rng.standard_normal(n) for i in range(n): assert vals[i] == vals_cffi[i] New Bit Generators Generator can be used with user-provided BitGenerators. The simplest way to write a new BitGenerator is to examine the pyx file of one of the existing BitGenerators. The key structure that must be provided is the capsule which contains a PyCapsule to a struct pointer of type bitgen_t, typedef struct bitgen { void *state; uint64_t (*next_uint64)(void *st); uint32_t (*next_uint32)(void *st); double (*next_double)(void *st); uint64_t (*next_raw)(void *st); } bitgen_t; which provides 5 pointers. The first is an opaque pointer to the data structure used by the BitGenerators. The next three are function pointers which return the next 64- and 32-bit unsigned integers, the next random double and the next raw value. This final function is used for testing and so can be set to the next 64-bit unsigned integer function if not needed. Functions inside Generator use this structure as in bitgen_state->next_uint64(bitgen_state->state) Examples Numba CFFI + Numba Cython setup.py extending.pyx extending_distributions.pyx CFFI
numpy.reference.random.extending
extending.pyx #!/usr/bin/env python3 #cython: language_level=3 from libc.stdint cimport uint32_t from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer import numpy as np cimport numpy as np cimport cython from numpy.random cimport bitgen_t from numpy.random import PCG64 np.import_array() @cython.boundscheck(False) @cython.wraparound(False) def uniform_mean(Py_ssize_t n): cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef double[::1] random_values cdef np.ndarray randoms x = PCG64() capsule = x.capsule if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n) # Best practice is to acquire the lock whenever generating random values. # This prevents other threads from modifying the state. Acquiring the lock # is only necessary if if the GIL is also released, as in this example. with x.lock, nogil: for i in range(n): random_values[i] = rng.next_double(rng.state) randoms = np.asarray(random_values) return randoms.mean() # This function is declared nogil so it can be used without the GIL below cdef uint32_t bounded_uint(uint32_t lb, uint32_t ub, bitgen_t *rng) nogil: cdef uint32_t mask, delta, val mask = delta = ub - lb mask |= mask >> 1 mask |= mask >> 2 mask |= mask >> 4 mask |= mask >> 8 mask |= mask >> 16 val = rng.next_uint32(rng.state) & mask while val > delta: val = rng.next_uint32(rng.state) & mask return lb + val @cython.boundscheck(False) @cython.wraparound(False) def bounded_uints(uint32_t lb, uint32_t ub, Py_ssize_t n): cdef Py_ssize_t i cdef bitgen_t *rng cdef uint32_t[::1] out cdef const char *capsule_name = "BitGenerator" x = PCG64() out = np.empty(n, dtype=np.uint32) capsule = x.capsule if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") rng = <bitgen_t *>PyCapsule_GetPointer(capsule, capsule_name) with x.lock, nogil: for i in range(n): out[i] = bounded_uint(lb, ub, rng) return np.asarray(out)
numpy.reference.random.examples.cython.extending.pyx
extending_distributions.pyx #!/usr/bin/env python3 #cython: language_level=3 """ This file shows how the to use a BitGenerator to create a distribution. """ import numpy as np cimport numpy as np cimport cython from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer from libc.stdint cimport uint16_t, uint64_t from numpy.random cimport bitgen_t from numpy.random import PCG64 from numpy.random.c_distributions cimport ( random_standard_uniform_fill, random_standard_uniform_fill_f) @cython.boundscheck(False) @cython.wraparound(False) def uniforms(Py_ssize_t n): """ Create an array of `n` uniformly distributed doubles. A 'real' distribution would want to process the values into some non-uniform distribution """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef double[::1] random_values x = PCG64() capsule = x.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='float64') with x.lock, nogil: for i in range(n): # Call the function random_values[i] = rng.next_double(rng.state) randoms = np.asarray(random_values) return randoms # cython example 2 @cython.boundscheck(False) @cython.wraparound(False) def uint10_uniforms(Py_ssize_t n): """Uniform 10 bit integers stored as 16-bit unsigned integers""" cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef uint16_t[::1] random_values cdef int bits_remaining cdef int width = 10 cdef uint64_t buff, mask = 0x3FF x = PCG64() capsule = x.capsule if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) random_values = np.empty(n, dtype='uint16') # Best practice is to release GIL and acquire the lock bits_remaining = 0 with x.lock, nogil: for i in range(n): if bits_remaining < width: buff = rng.next_uint64(rng.state) random_values[i] = buff & mask buff >>= width randoms = np.asarray(random_values) return randoms # cython example 3 def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): """ Create an array of `n` uniformly distributed doubles via a "fill" function. A 'real' distribution would want to process the values into some non-uniform distribution Parameters ---------- bit_generator: BitGenerator instance n: int Output vector length dtype: {str, dtype}, optional Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The default dtype value is 'd' """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef np.ndarray randoms capsule = bit_generator.capsule # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) _dtype = np.dtype(dtype) randoms = np.empty(n, dtype=_dtype) if _dtype == np.float32: with bit_generator.lock: random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms)) elif _dtype == np.float64: with bit_generator.lock: random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms)) else: raise TypeError('Unsupported dtype %r for random' % _dtype) return randoms
numpy.reference.random.examples.cython.extending_distributions.pyx
numpy.fft.fft fft.fft(a, n=None, axis=- 1, norm=None)[source] Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters aarray_like Input array, can be complex. nint, optional Length of the transformed axis of the output. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. axisint, optional Axis over which to compute the FFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. Raises IndexError If axis is not a valid axis of a. See also numpy.fft for definition of the DFT and conventions used. ifft The inverse of fft. fft2 The two-dimensional FFT. fftn The n-dimensional FFT. rfftn The n-dimensional FFT of real input. fftfreq Frequency bins for given FFT parameters. Notes FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy.fft module. References CT Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19: 297-301. Examples >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j, 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j, -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j, 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j]) In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the numpy.fft documentation: >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show()
numpy.reference.generated.numpy.fft.fft
numpy.fft.fft2 fft.fft2(a, s=None, axes=(- 2, - 1), norm=None)[source] Compute the 2-dimensional discrete Fourier Transform. This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters aarray_like Input array, can be complex ssequence of ints, optional Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. axessequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in axes means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or the last two axes if axes is not given. Raises ValueError If s and axes have different length, or axes not given and len(s) != 2. IndexError If an element of axes is larger than than the number of axes of a. See also numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 The inverse two-dimensional FFT. fft The one-dimensional FFT. fftn The n-dimensional FFT. fftshift Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes fft2 is just fftn with a different default for axes. The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See fftn for details and a plotting example, and numpy.fft for definitions and conventions used. Examples >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary 0. +0.j , 0. +0.j ], [-12.5+17.20477401j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ], [-12.5 +4.0614962j , 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ], [-12.5 -4.0614962j , 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ], [-12.5-17.20477401j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ]])
numpy.reference.generated.numpy.fft.fft2
numpy.fft.fftfreq fft.fftfreq(n, d=1.0)[source] Return the Discrete Fourier Transform sample frequencies. The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second. Given a window length n and a sample spacing d: f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd Parameters nint Window length. dscalar, optional Sample spacing (inverse of the sampling rate). Defaults to 1. Returns fndarray Array of length n containing the sample frequencies. Examples >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) >>> fourier = np.fft.fft(signal) >>> n = signal.size >>> timestep = 0.1 >>> freq = np.fft.fftfreq(n, d=timestep) >>> freq array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
numpy.reference.generated.numpy.fft.fftfreq
numpy.fft.fftn fft.fftn(a, s=None, axes=None, norm=None)[source] Compute the N-dimensional discrete Fourier Transform. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). Parameters aarray_like Input array, can be complex. ssequence of ints, optional Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. axessequence of ints, optional Axes over which to compute the FFT. If not given, the last len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means that the transform over that axis is performed multiple times. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s and a, as explained in the parameters section above. Raises ValueError If s and axes have different length. IndexError If an element of axes is larger than than the number of axes of a. See also numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn The inverse of fftn, the inverse n-dimensional FFT. fft The one-dimensional FFT, with definitions and conventions used. rfftn The n-dimensional FFT of real input. fft2 The two-dimensional FFT. fftshift Shifts zero-frequency terms to centre of array Notes The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See numpy.fft for details, definitions and conventions used. Examples >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show()
numpy.reference.generated.numpy.fft.fftn
numpy.fft.fftshift fft.fftshift(x, axes=None)[source] Shift the zero-frequency component to the center of the spectrum. This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only if len(x) is even. Parameters xarray_like Input array. axesint or shape tuple, optional Axes over which to shift. Default is None, which shifts all axes. Returns yndarray The shifted array. See also ifftshift The inverse of fftshift. Examples >>> freqs = np.fft.fftfreq(10, 0.1) >>> freqs array([ 0., 1., 2., ..., -3., -2., -1.]) >>> np.fft.fftshift(freqs) array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) Shift the zero-frequency component only along the second axis: >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.fftshift(freqs, axes=(1,)) array([[ 2., 0., 1.], [-4., 3., 4.], [-1., -3., -2.]])
numpy.reference.generated.numpy.fft.fftshift
numpy.fft.hfft fft.hfft(a, n=None, axis=- 1, norm=None)[source] Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum. Parameters aarray_like The input array. nint, optional Length of the transformed axis of the output. For n output points, n//2 + 1 input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If n is not given, it is taken to be 2*(m-1) where m is the length of the input along the axis specified by axis. axisint, optional Axis over which to compute the FFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not given, 2*m - 2 where m is the length of the transformed axis of the input. To get an odd number of output points, n must be specified, for instance as 2*m - 1 in the typical case, Raises IndexError If axis is not a valid axis of a. See also rfft Compute the one-dimensional FFT for real input. ihfft The inverse of hfft. Notes hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply the length of the result if it is to be odd. even: ihfft(hfft(a, 2*len(a) - 2)) == a, within roundoff error, odd: ihfft(hfft(a, 2*len(a) - 1)) == a, within roundoff error. The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This is because each input shape could correspond to either an odd or even length signal. By default, hfft assumes an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. By Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the shape of the full signal must be given. Examples >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary >>> np.fft.hfft(signal[:4]) # Input first half of signal array([15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, -0.+0.j], # may vary [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]])
numpy.reference.generated.numpy.fft.hfft
numpy.fft.ifft fft.ifft(a, n=None, axis=- 1, norm=None)[source] Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by fft. In other words, ifft(fft(a)) == a to within numerical accuracy. For a general description of the algorithm and definitions, see numpy.fft. The input should be ordered in the same way as is returned by fft, i.e., a[0] should contain the zero frequency term, a[1:n//2] should contain the positive-frequency terms, a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most negative frequency. For an even number of input points, A[n//2] represents the sum of the values at the positive and negative Nyquist frequencies, as the two are aliased together. See numpy.fft for details. Parameters aarray_like Input array, can be complex. nint, optional Length of the transformed axis of the output. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. See notes about padding issues. axisint, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. Raises IndexError If axis is not a valid axis of a. See also numpy.fft An introduction, with definitions and general explanations. fft The one-dimensional (forward) FFT, of which ifft is the inverse ifft2 The two-dimensional inverse FFT. ifftn The n-dimensional inverse FFT. Notes If the input parameter n is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling ifft. Examples >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, label='real') [<matplotlib.lines.Line2D object at ...>] >>> plt.plot(t, s.imag, '--', label='imaginary') [<matplotlib.lines.Line2D object at ...>] >>> plt.legend() <matplotlib.legend.Legend object at ...> >>> plt.show()
numpy.reference.generated.numpy.fft.ifft
numpy.fft.ifft2 fft.ifft2(a, s=None, axes=(- 2, - 1), norm=None)[source] Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a)) == a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters aarray_like Input array, can be complex. ssequence of ints, optional Shape (length of each axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. See notes for issue on ifft zero padding. axessequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in axes means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or the last two axes if axes is not given. Raises ValueError If s and axes have different length, or axes not given and len(s) != 2. IndexError If an element of axes is larger than than the number of axes of a. See also numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 The forward 2-dimensional FFT, of which ifft2 is the inverse. ifftn The inverse of the n-dimensional FFT. fft The one-dimensional FFT. ifft The one-dimensional inverse FFT. Notes ifft2 is just ifftn with a different default for axes. See ifftn for details and a plotting example, and numpy.fft for definition and conventions used. Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before ifft2 is called. Examples >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
numpy.reference.generated.numpy.fft.ifft2
numpy.fft.ifftn fft.ifftn(a, s=None, axes=None, norm=None)[source] Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifftn(fftn(a)) == a to within numerical accuracy. For a description of the definitions and conventions used, see numpy.fft. The input, analogously to ifft, should be ordered in the same way as is returned by fftn, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters aarray_like Input array, can be complex. ssequence of ints, optional Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. See notes for issue on ifft zero padding. axessequence of ints, optional Axes over which to compute the IFFT. If not given, the last len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means that the inverse transform over that axis is performed multiple times. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s or a, as explained in the parameters section above. Raises ValueError If s and axes have different length. IndexError If an element of axes is larger than than the number of axes of a. See also numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used. fftn The forward n-dimensional FFT, of which ifftn is the inverse. ifft The one-dimensional inverse FFT. ifft2 The two-dimensional inverse FFT. ifftshift Undoes fftshift, shifts zero-frequency terms to beginning of array. Notes See numpy.fft for definitions and conventions used. Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before ifftn is called. Examples >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show()
numpy.reference.generated.numpy.fft.ifftn
numpy.fft.ifftshift fft.ifftshift(x, axes=None)[source] The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length x. Parameters xarray_like Input array. axesint or shape tuple, optional Axes over which to calculate. Defaults to None, which shifts all axes. Returns yndarray The shifted array. See also fftshift Shift zero-frequency component to the center of the spectrum. Examples >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.ifftshift(np.fft.fftshift(freqs)) array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]])
numpy.reference.generated.numpy.fft.ifftshift
numpy.fft.ihfft fft.ihfft(a, n=None, axis=- 1, norm=None)[source] Compute the inverse FFT of a signal that has Hermitian symmetry. Parameters aarray_like Input array. nint, optional Length of the inverse FFT, the number of points along transformation axis in the input to use. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. axisint, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. The length of the transformed axis is n//2 + 1. See also hfft, irfft Notes hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply the length of the result if it is to be odd: even: ihfft(hfft(a, 2*len(a) - 2)) == a, within roundoff error, odd: ihfft(hfft(a, 2*len(a) - 1)) == a, within roundoff error. Examples >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
numpy.reference.generated.numpy.fft.ihfft
numpy.fft.irfft fft.irfft(a, n=None, axis=- 1, norm=None)[source] Computes the inverse of rfft. This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input computed by rfft. In other words, irfft(rfft(a), len(a)) == a to within numerical accuracy. (See Notes below for why len(a) is necessary here.) The input is expected to be in the form returned by rfft, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters aarray_like The input array. nint, optional Length of the transformed axis of the output. For n output points, n//2+1 input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If n is not given, it is taken to be 2*(m-1) where m is the length of the input along the axis specified by axis. axisint, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not given, 2*(m-1) where m is the length of the transformed axis of the input. To get an odd number of output points, n must be specified. Raises IndexError If axis is not a valid axis of a. See also numpy.fft For definition of the DFT and conventions used. rfft The one-dimensional FFT of real input, of which irfft is inverse. fft The one-dimensional FFT. irfft2 The inverse of the two-dimensional FFT of real input. irfftn The inverse of the n-dimensional FFT of real input. Notes Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative frequency terms of a Hermitian-symmetric sequence. n is the length of the result, not the input. If you specify an n such that a must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to m points via Fourier interpolation by: a_resamp = irfft(rfft(a), m). The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This is because each input shape could correspond to either an odd or even length signal. By default, irfft assumes an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. By Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the correct length of the real input must be given. Examples >>> np.fft.ifft([1, -1j, -1, 1j]) array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary >>> np.fft.irfft([1, -1j, -1]) array([0., 1., 0., 0.]) Notice how the last term in the input to the ordinary ifft is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling irfft, the negative frequencies are not specified, and the output array is purely real.
numpy.reference.generated.numpy.fft.irfft
numpy.fft.irfft2 fft.irfft2(a, s=None, axes=(- 2, - 1), norm=None)[source] Computes the inverse of rfft2. Parameters aarray_like The input array ssequence of ints, optional Shape of the real output to the inverse FFT. axessequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outndarray The result of the inverse real 2-D FFT. See also rfft2 The forward two-dimensional FFT of real input, of which irfft2 is the inverse. rfft The one-dimensional FFT for real input. irfft The inverse of the one-dimensional FFT of real input. irfftn Compute the inverse of the N-dimensional FFT of real input. Notes This is really irfftn with different defaults. For more details see irfftn. Examples >>> a = np.mgrid[:5, :5][0] >>> A = np.fft.rfft2(a) >>> np.fft.irfft2(A, s=a.shape) array([[0., 0., 0., 0., 0.], [1., 1., 1., 1., 1.], [2., 2., 2., 2., 2.], [3., 3., 3., 3., 3.], [4., 4., 4., 4., 4.]])
numpy.reference.generated.numpy.fft.irfft2
numpy.fft.irfftn fft.irfftn(a, s=None, axes=None, norm=None)[source] Computes the inverse of rfftn. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like len(a) is for irfft, and for the same reason.) The input should be ordered in the same way as is returned by rfftn, i.e. as for irfft for the final transformation axis, and as for ifftn along all the other axes. Parameters aarray_like Input array. ssequence of ints, optional Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). s is also the number of input points used along this axis, except for the last axis, where s[-1]//2+1 points of the input are used. Along any axis, if the shape indicated by s is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If s is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be 2*(m-1) where m is the length of the input along that axis. axessequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means that the inverse transform over that axis is performed multiple times. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s or a, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of s, or the length of the input in every axis except for the last one if s is not given. In the final transformed axis the length of the output when s is not given is 2*(m-1) where m is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, s must be specified. Raises ValueError If s and axes have different length. IndexError If an element of axes is larger than than the number of axes of a. See also rfftn The forward n-dimensional FFT of real input, of which ifftn is the inverse. fft The one-dimensional FFT, with definitions and conventions used. irfft The inverse of the one-dimensional FFT of real input. irfft2 The inverse of the two-dimensional FFT of real input. Notes See fft for definitions and conventions used. See rfft for definitions and conventions used for real input. The correct interpretation of the hermitian input depends on the shape of the original data, as given by s. This is because each input shape could correspond to either an odd or even length signal. By default, irfftn assumes an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. When performing the final complex to real transform, the last value is thus treated as purely real. To avoid losing information, the correct shape of the real input must be given. Examples >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[1., 1.], [1., 1.]], [[1., 1.], [1., 1.]], [[1., 1.], [1., 1.]]])
numpy.reference.generated.numpy.fft.irfftn
numpy.fft.rfft fft.rfft(a, n=None, axis=- 1, norm=None)[source] Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters aarray_like Input array nint, optional Number of points along transformation axis in the input to use. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used. axisint, optional Axis over which to compute the FFT. If not given, the last axis is used. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. If n is even, the length of the transformed axis is (n/2)+1. If n is odd, the length is (n+1)/2. Raises IndexError If axis is not a valid axis of a. See also numpy.fft For definition of the DFT and conventions used. irfft The inverse of rfft. fft The one-dimensional FFT of general (complex) input. fftn The n-dimensional FFT. rfftn The n-dimensional FFT of real input. Notes When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore n//2 + 1. When A = rfft(a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If n is even, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If n is odd, there is no term at fs/2; A[-1] contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input a contains an imaginary part, it is silently discarded. Examples >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary Notice how the final element of the fft output is the complex conjugate of the second element, for real input. For rfft, this symmetry is exploited to compute only the non-negative frequency terms.
numpy.reference.generated.numpy.fft.rfft
numpy.fft.rfft2 fft.rfft2(a, s=None, axes=(- 2, - 1), norm=None)[source] Compute the 2-dimensional FFT of a real array. Parameters aarray Input array, taken to be real. ssequence of ints, optional Shape of the FFT. axessequence of ints, optional Axes over which to compute the FFT. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outndarray The result of the real 2-D FFT. See also rfftn Compute the N-dimensional discrete Fourier Transform for real input. Notes This is really just rfftn with different default behavior. For more details see rfftn. Examples >>> a = np.mgrid[:5, :5][0] >>> np.fft.rfft2(a) array([[ 50. +0.j , 0. +0.j , 0. +0.j ], [-12.5+17.20477401j, 0. +0.j , 0. +0.j ], [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ], [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ], [-12.5-17.20477401j, 0. +0.j , 0. +0.j ]])
numpy.reference.generated.numpy.fft.rfft2
numpy.fft.rfftfreq fft.rfftfreq(n, d=1.0)[source] Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft). The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second. Given a window length n and a sample spacing d: f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered to be positive. Parameters nint Window length. dscalar, optional Sample spacing (inverse of the sampling rate). Defaults to 1. Returns fndarray Array of length n//2 + 1 containing the sample frequencies. Examples >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., ..., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.])
numpy.reference.generated.numpy.fft.rfftfreq
numpy.fft.rfftn fft.rfftn(a, s=None, axes=None, norm=None)[source] Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters aarray_like Input array, taken to be real. ssequence of ints, optional Shape (length along each transformed axis) to use from the input. (s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for rfft(x, n), while for the remaining axes, it corresponds to n for fft(x, n). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. axessequence of ints, optional Axes over which to compute the FFT. If not given, the last len(s) axes are used, or all axes if s is also not specified. norm{“backward”, “ortho”, “forward”}, optional New in version 1.10.0. Normalization mode (see numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. New in version 1.20.0: The “backward”, “forward” values were added. Returns outcomplex ndarray The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s and a, as explained in the parameters section above. The length of the last axis transformed will be s[-1]//2+1, while the remaining transformed axes will have lengths according to s, or unchanged from the input. Raises ValueError If s and axes have different length. IndexError If an element of axes is larger than than the number of axes of a. See also irfftn The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input. fft The one-dimensional FFT, with definitions and conventions used. rfft The one-dimensional FFT of real input. fftn The n-dimensional FFT. rfft2 The two-dimensional FFT of real input. Notes The transform for real input is performed over the last transformation axis, as by rfft, then the transform over the remaining axes is performed as by fftn. The order of the output is as for rfft for the final transformation axis, and as for fftn for the remaining transformation axes. See fft for details, definitions and conventions used. Examples >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[8.+0.j, 0.+0.j], # may vary [0.+0.j, 0.+0.j]], [[0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[4.+0.j, 0.+0.j], # may vary [4.+0.j, 0.+0.j]], [[0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j]]])
numpy.reference.generated.numpy.fft.rfftn
numpy.flatiter.base attribute flatiter.base A reference to the array that is iterated over. Examples >>> x = np.arange(5) >>> fl = x.flat >>> fl.base is x True
numpy.reference.generated.numpy.flatiter.base
numpy.flatiter.coords attribute flatiter.coords An N-dimensional tuple of current coordinates. Examples >>> x = np.arange(6).reshape(2, 3) >>> fl = x.flat >>> fl.coords (0, 0) >>> next(fl) 0 >>> fl.coords (0, 1)
numpy.reference.generated.numpy.flatiter.coords
numpy.flatiter.copy method flatiter.copy() Get a copy of the iterator as a 1-D array. Examples >>> x = np.arange(6).reshape(2, 3) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> fl = x.flat >>> fl.copy() array([0, 1, 2, 3, 4, 5])
numpy.reference.generated.numpy.flatiter.copy
numpy.flatiter.index attribute flatiter.index Current flat index into the array. Examples >>> x = np.arange(6).reshape(2, 3) >>> fl = x.flat >>> fl.index 0 >>> next(fl) 0 >>> fl.index 1
numpy.reference.generated.numpy.flatiter.index
numpy.generic.__array__ method generic.__array__() sc.__array__(dtype) return 0-dim array from scalar with specified dtype
numpy.reference.generated.numpy.generic.__array__
numpy.generic.__array_interface__ attribute generic.__array_interface__ Array protocol: Python side
numpy.reference.generated.numpy.generic.__array_interface__
numpy.generic.__array_priority__ attribute generic.__array_priority__ Array priority.
numpy.reference.generated.numpy.generic.__array_priority__
numpy.generic.__array_struct__ attribute generic.__array_struct__ Array protocol: struct
numpy.reference.generated.numpy.generic.__array_struct__
numpy.generic.__array_wrap__ method generic.__array_wrap__() sc.__array_wrap__(obj) return scalar from array
numpy.reference.generated.numpy.generic.__array_wrap__
numpy.generic.__reduce__ method generic.__reduce__() Helper for pickle.
numpy.reference.generated.numpy.generic.__reduce__
numpy.generic.__setstate__ method generic.__setstate__()
numpy.reference.generated.numpy.generic.__setstate__
numpy.generic.base attribute generic.base Scalar attribute identical to the corresponding array attribute. Please see ndarray.base.
numpy.reference.generated.numpy.generic.base
numpy.generic.byteswap method generic.byteswap() Scalar method identical to the corresponding array attribute. Please see ndarray.byteswap.
numpy.reference.generated.numpy.generic.byteswap
numpy.generic.data attribute generic.data Pointer to start of data.
numpy.reference.generated.numpy.generic.data
numpy.generic.dtype attribute generic.dtype Get array data-descriptor.
numpy.reference.generated.numpy.generic.dtype
numpy.generic.flags attribute generic.flags The integer value of flags.
numpy.reference.generated.numpy.generic.flags
numpy.generic.flat attribute generic.flat A 1-D view of the scalar.
numpy.reference.generated.numpy.generic.flat
numpy.generic.imag attribute generic.imag The imaginary part of the scalar.
numpy.reference.generated.numpy.generic.imag
numpy.generic.itemsize attribute generic.itemsize The length of one element in bytes.
numpy.reference.generated.numpy.generic.itemsize
numpy.generic.ndim attribute generic.ndim The number of array dimensions.
numpy.reference.generated.numpy.generic.ndim
numpy.generic.real attribute generic.real The real part of the scalar.
numpy.reference.generated.numpy.generic.real
numpy.generic.setflags method generic.setflags() Scalar method identical to the corresponding array attribute. Please see ndarray.setflags.
numpy.reference.generated.numpy.generic.setflags
numpy.generic.shape attribute generic.shape Tuple of array dimensions.
numpy.reference.generated.numpy.generic.shape
numpy.generic.size attribute generic.size The number of elements in the gentype.
numpy.reference.generated.numpy.generic.size