doc_content
stringlengths
1
386k
doc_id
stringlengths
5
188
numpy.ma.dstack ma.dstack(*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object> Stack arrays in sequence depth wise (along third axis). This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to (M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations. Parameters tupsequence of arrays The arrays must have the same shape along all but the third axis. 1-D or 2-D arrays must have the same shape. Returns stackedndarray The array formed by stacking the given arrays, will be at least 3-D. See also concatenate Join a sequence of arrays along an existing axis. stack Join a sequence of arrays along a new axis. block Assemble an nd-array from nested lists of blocks. vstack Stack arrays in sequence vertically (row wise). hstack Stack arrays in sequence horizontally (column wise). column_stack Stack 1-D arrays as columns into a 2-D array. dsplit Split array along third axis. Notes The function is applied to both the _data and the _mask, if any. Examples >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.dstack((a,b)) array([[[1, 2]], [[2, 3]], [[3, 4]]])
numpy.reference.generated.numpy.ma.dstack
numpy.ma.ediff1d ma.ediff1d(arr, to_end=None, to_begin=None)[source] Compute the differences between consecutive elements of an array. This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.ediff1d for details. See also numpy.ediff1d Equivalent function for ndarrays.
numpy.reference.generated.numpy.ma.ediff1d
numpy.ma.empty ma.empty(shape, dtype=float, order='C', *, like=None) = <numpy.ma.core._convert2ma object> Return a new array of given shape and type, without initializing entries. Parameters shapeint or tuple of int Shape of the empty array, e.g., (2, 3) or 2. dtypedata-type, optional Desired output data-type for the array, e.g, numpy.int8. Default is numpy.float64. order{‘C’, ‘F’}, optional, default: ‘C’ Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. likearray_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. New in version 1.20.0. Returns outMaskedArray Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None. See also empty_like Return an empty array with shape and type of input. ones Return a new array setting values to one. zeros Return a new array setting values to zero. full Return a new array of given shape filled with value. Notes empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution. Examples >>> np.empty([2, 2]) array([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized >>> np.empty([2, 2], dtype=int) array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #uninitialized
numpy.reference.generated.numpy.ma.empty
numpy.ma.empty_like ma.empty_like(prototype, dtype=None, order='K', subok=True, shape=None) = <numpy.ma.core._convert2ma object> Return a new array with the same shape and type as a given array. Parameters prototypearray_like The shape and data-type of prototype define these same attributes of the returned array. dtypedata-type, optional Overrides the data type of the result. New in version 1.6.0. order{‘C’, ‘F’, ‘A’, or ‘K’}, optional Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of prototype as closely as possible. New in version 1.6.0. subokbool, optional. If True, then the newly created array will use the sub-class type of prototype, otherwise it will be a base-class array. Defaults to True. shapeint or sequence of ints, optional. Overrides the shape of the result. If order=’K’ and the number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied. New in version 1.17.0. Returns outMaskedArray Array of uninitialized (arbitrary) data with the same shape and type as prototype. See also ones_like Return an array of ones with shape and type of input. zeros_like Return an array of zeros with shape and type of input. full_like Return a new array with shape of input filled with value. empty Return a new uninitialized array. Notes This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be marginally faster than the functions that do set the array values. Examples >>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) array([[-1073741821, -1073741821, 3], # uninitialized [ 0, 0, -1073741821]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
numpy.reference.generated.numpy.ma.empty_like
numpy.ma.expand_dims ma.expand_dims(a, axis)[source] Expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape. Parameters aarray_like Input array. axisint or tuple of ints Position in the expanded axes where the new axis (or axes) is placed. Deprecated since version 1.13.0: Passing an axis where axis > a.ndim will be treated as axis == a.ndim, and passing axis < -a.ndim - 1 will be treated as axis == 0. This behavior is deprecated. Changed in version 1.18.0: A tuple of axes is now supported. Out of range axes as described above are now forbidden and raise an AxisError. Returns resultndarray View of a with the number of dimensions increased. See also squeeze The inverse operation, removing singleton dimensions reshape Insert, remove, and combine dimensions, and resize existing ones doc.indexing, atleast_1d, atleast_2d, atleast_3d Examples >>> x = np.array([1, 2]) >>> x.shape (2,) The following is equivalent to x[np.newaxis, :] or x[np.newaxis]: >>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2) The following is equivalent to x[:, np.newaxis]: >>> y = np.expand_dims(x, axis=1) >>> y array([[1], [2]]) >>> y.shape (2, 1) axis may also be a tuple: >>> y = np.expand_dims(x, axis=(0, 1)) >>> y array([[[1, 2]]]) >>> y = np.expand_dims(x, axis=(2, 0)) >>> y array([[[1], [2]]]) Note that some examples may use None instead of np.newaxis. These are the same objects: >>> np.newaxis is None True
numpy.reference.generated.numpy.ma.expand_dims
numpy.ma.filled ma.filled(a, fill_value=None)[source] Return input as an array with masked data replaced by a fill value. If a is not a MaskedArray, a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is set to a.fill_value. Parameters aMaskedArray or array_like An input object. fill_valuearray_like, optional. Can be scalar or non-scalar. If non-scalar, the resulting filled array should be broadcastable over input array. Default is None. Returns andarray The filled array. See also compressed Examples >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> x.filled() array([[999999, 1, 2], [999999, 4, 5], [ 6, 7, 8]]) >>> x.filled(fill_value=333) array([[333, 1, 2], [333, 4, 5], [ 6, 7, 8]]) >>> x.filled(fill_value=np.arange(3)) array([[0, 1, 2], [0, 4, 5], [6, 7, 8]])
numpy.reference.generated.numpy.ma.filled
numpy.ma.fix_invalid ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source] Return input with invalid data masked and replaced by a fill value. Invalid data means values of nan, inf, etc. Parameters aarray_like Input array, a (subclass of) ndarray. masksequence, optional Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data. copybool, optional Whether to use a copy of a (True) or to fix a in place (False). Default is True. fill_valuescalar, optional Value used for fixing invalid data. Default is None, in which case the a.fill_value is used. Returns bMaskedArray The input array with invalid entries fixed. Notes A copy is performed by default. Examples >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) >>> x masked_array(data=[--, -1.0, nan, inf], mask=[ True, False, False, False], fill_value=1e+20) >>> np.ma.fix_invalid(x) masked_array(data=[--, -1.0, --, --], mask=[ True, False, True, True], fill_value=1e+20) >>> fixed = np.ma.fix_invalid(x) >>> fixed.data array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) >>> x.data array([ 1., -1., nan, inf])
numpy.reference.generated.numpy.ma.fix_invalid
numpy.ma.flatnotmasked_contiguous ma.flatnotmasked_contiguous(a)[source] Find contiguous unmasked data in a masked array along the given axis. Parameters anarray The input array. Returns slice_listlist A sorted sequence of slice objects (start index, end index). Changed in version 1.15.0: Now returns an empty list instead of None for a fully masked array See also flatnotmasked_edges, notmasked_contiguous, notmasked_edges clump_masked, clump_unmasked Notes Only accepts 2-D arrays at most. Examples >>> a = np.ma.arange(10) >>> np.ma.flatnotmasked_contiguous(a) [slice(0, 10, None)] >>> mask = (a < 3) | (a > 8) | (a == 5) >>> a[mask] = np.ma.masked >>> np.array(a[~a.mask]) array([3, 4, 6, 7, 8]) >>> np.ma.flatnotmasked_contiguous(a) [slice(3, 5, None), slice(6, 9, None)] >>> a[:] = np.ma.masked >>> np.ma.flatnotmasked_contiguous(a) []
numpy.reference.generated.numpy.ma.flatnotmasked_contiguous
numpy.ma.flatnotmasked_edges ma.flatnotmasked_edges(a)[source] Find the indices of the first and last unmasked values. Expects a 1-D MaskedArray, returns None if all values are masked. Parameters aarray_like Input 1-D MaskedArray Returns edgesndarray or None The indices of first and last non-masked value in the array. Returns None if all values are masked. See also flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges clump_masked, clump_unmasked Notes Only accepts 1-D arrays. Examples >>> a = np.ma.arange(10) >>> np.ma.flatnotmasked_edges(a) array([0, 9]) >>> mask = (a < 3) | (a > 8) | (a == 5) >>> a[mask] = np.ma.masked >>> np.array(a[~a.mask]) array([3, 4, 6, 7, 8]) >>> np.ma.flatnotmasked_edges(a) array([3, 8]) >>> a[:] = np.ma.masked >>> print(np.ma.flatnotmasked_edges(a)) None
numpy.reference.generated.numpy.ma.flatnotmasked_edges
numpy.ma.frombuffer ma.frombuffer(buffer, dtype=float, count=- 1, offset=0, *, like=None) = <numpy.ma.core._convert2ma object> Interpret a buffer as a 1-dimensional array. Parameters bufferbuffer_like An object that exposes the buffer interface. dtypedata-type, optional Data-type of the returned array; default: float. countint, optional Number of items to read. -1 means all data in the buffer. offsetint, optional Start reading the buffer from this offset (in bytes); default: 0. likearray_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. New in version 1.20.0. Returns out: MaskedArray Notes If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.: >>> dt = np.dtype(int) >>> dt = dt.newbyteorder('>') >>> np.frombuffer(buf, dtype=dt) The data of the resulting array will not be byteswapped, but will be interpreted correctly. Examples >>> s = b'hello world' >>> np.frombuffer(s, dtype='S1', count=5, offset=6) array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1') >>> np.frombuffer(b'\x01\x02', dtype=np.uint8) array([1, 2], dtype=uint8) >>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3) array([1, 2, 3], dtype=uint8)
numpy.reference.generated.numpy.ma.frombuffer
numpy.ma.fromfunction ma.fromfunction(function, shape, **dtype) = <numpy.ma.core._convert2ma object> Construct an array by executing a function over each coordinate. The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z). Parameters functioncallable The function is called with N parameters, where N is the rank of shape. Each parameter represents the coordinates of the array varying along a specific axis. For example, if shape were (2, 2), then the parameters would be array([[0, 0], [1, 1]]) and array([[0, 1], [0, 1]]) shape(N,) tuple of ints Shape of the output array, which also determines the shape of the coordinate arrays passed to function. dtypedata-type, optional Data-type of the coordinate arrays passed to function. By default, dtype is float. likearray_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. New in version 1.20.0. Returns fromfunction: MaskedArray The result of the call to function is passed back directly. Therefore the shape of fromfunction is completely determined by function. If function returns a scalar value, the shape of fromfunction would not match the shape parameter. See also indices, meshgrid Notes Keywords other than dtype are passed to function. Examples >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) array([[ True, False, False], [False, True, False], [False, False, True]]) >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])
numpy.reference.generated.numpy.ma.fromfunction
numpy.ma.getdata ma.getdata(a, subok=True)[source] Return the data of a masked array as an ndarray. Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass (depending on subok) if not. Parameters aarray_like Input MaskedArray, alternatively a ndarray or a subclass thereof. subokbool Whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray if appropriate (True, default). See also getmask Return the mask of a masked array, or nomask. getmaskarray Return the mask of a masked array, or full array of False. Examples >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getdata(a) array([[1, 2], [3, 4]]) Equivalently use the MaskedArray data attribute. >>> a.data array([[1, 2], [3, 4]])
numpy.reference.generated.numpy.ma.getdata
numpy.ma.getmask ma.getmask(a)[source] Return the mask of a masked array, or nomask. Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask. To guarantee a full array of booleans of the same shape as a, use getmaskarray. Parameters aarray_like Input MaskedArray for which the mask is required. See also getdata Return the data of a masked array as an ndarray. getmaskarray Return the mask of a masked array, or full array of False. Examples >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getmask(a) array([[False, True], [False, False]]) Equivalently use the MaskedArray mask attribute. >>> a.mask array([[False, True], [False, False]]) Result when mask == nomask >>> b = ma.masked_array([[1,2],[3,4]]) >>> b masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> ma.nomask False >>> ma.getmask(b) == ma.nomask True >>> b.mask == ma.nomask True
numpy.reference.generated.numpy.ma.getmask
numpy.ma.getmaskarray ma.getmaskarray(arr)[source] Return the mask of a masked array, or full boolean array of False. Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full boolean array of False of the same shape as arr. Parameters arrarray_like Input MaskedArray for which the mask is required. See also getmask Return the mask of a masked array, or nomask. getdata Return the data of a masked array as an ndarray. Examples >>> import numpy.ma as ma >>> a = ma.masked_equal([[1,2],[3,4]], 2) >>> a masked_array( data=[[1, --], [3, 4]], mask=[[False, True], [False, False]], fill_value=2) >>> ma.getmaskarray(a) array([[False, True], [False, False]]) Result when mask == nomask >>> b = ma.masked_array([[1,2],[3,4]]) >>> b masked_array( data=[[1, 2], [3, 4]], mask=False, fill_value=999999) >>> ma.getmaskarray(b) array([[False, False], [False, False]])
numpy.reference.generated.numpy.ma.getmaskarray
numpy.ma.harden_mask ma.harden_mask(self) = <numpy.ma.core._frommethod object> Force the mask to hard. Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask sets hardmask to True. See also ma.MaskedArray.hardmask
numpy.reference.generated.numpy.ma.harden_mask
numpy.ma.hsplit ma.hsplit(*args, **kwargs) = <numpy.ma.extras._fromnxfunction_single object> Split an array into multiple sub-arrays horizontally (column-wise). Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always split along the second axis regardless of the array dimension. See also split Split an array into multiple sub-arrays of equal size. Notes The function is applied to both the _data and the _mask, if any. Examples >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, np.array([3, 6])) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([], shape=(4, 0), dtype=float64)] With a higher dimensional array the split is still along the second axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.hsplit(x, 2) [array([[[0., 1.]], [[4., 5.]]]), array([[[2., 3.]], [[6., 7.]]])]
numpy.reference.generated.numpy.ma.hsplit
numpy.ma.hstack ma.hstack(*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object> Stack arrays in sequence horizontally (column wise). This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations. Parameters tupsequence of ndarrays The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. Returns stackedndarray The array formed by stacking the given arrays. See also concatenate Join a sequence of arrays along an existing axis. stack Join a sequence of arrays along a new axis. block Assemble an nd-array from nested lists of blocks. vstack Stack arrays in sequence vertically (row wise). dstack Stack arrays in sequence depth wise (along third axis). column_stack Stack 1-D arrays as columns into a 2-D array. hsplit Split an array into multiple sub-arrays horizontally (column-wise). Notes The function is applied to both the _data and the _mask, if any. Examples >>> a = np.array((1,2,3)) >>> b = np.array((4,5,6)) >>> np.hstack((a,b)) array([1, 2, 3, 4, 5, 6]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[4],[5],[6]]) >>> np.hstack((a,b)) array([[1, 4], [2, 5], [3, 6]])
numpy.reference.generated.numpy.ma.hstack
numpy.ma.identity ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma object> Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters nint Number of rows (and columns) in n x n output. dtypedata-type, optional Data-type of the output. Defaults to float. likearray_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. New in version 1.20.0. Returns outMaskedArray n x n array with its main diagonal set to one, and all other elements 0. Examples >>> np.identity(3) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
numpy.reference.generated.numpy.ma.identity
numpy.ma.indices ma.indices(dimensions, dtype=<class 'int'>, sparse=False) = <numpy.ma.core._convert2ma object> Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis. Parameters dimensionssequence of ints The shape of the grid. dtypedtype, optional Data type of the result. sparseboolean, optional Return a sparse representation of the grid instead of a dense representation. Default is False. New in version 1.17. Returns gridone MaskedArray or tuple of MaskedArrays If sparse is False: Returns one array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions). If sparse is True: Returns a tuple of arrays, with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1) with dimensions[i] in the ith place See also mgrid, ogrid, meshgrid Notes The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N, r0, ..., rN-1). The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly: grid[k, i0, i1, ..., iN-1] = ik Examples >>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]]) >>> grid[1] # column indices array([[0, 1, 2], [0, 1, 2]]) The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0, 1, 2], [4, 5, 6]]) Note that it would be more straightforward in the above example to extract the required elements directly with x[:2, :3]. If sparse is set to true, the grid will be returned in a sparse representation. >>> i, j = np.indices((2, 3), sparse=True) >>> i.shape (2, 1) >>> j.shape (1, 3) >>> i # row indices array([[0], [1]]) >>> j # column indices array([[0, 1, 2]])
numpy.reference.generated.numpy.ma.indices
numpy.ma.inner ma.inner(a, b, /)[source] Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters a, barray_like If a and b are nonscalar, their last dimensions must match. Returns outndarray If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1]) Raises ValueError If both a and b are nonscalar and their last dimensions have different sizes. See also tensordot Sum products over arbitrary axes. dot Generalised matrix product, using second last dimension of b. einsum Einstein summation convention. Notes Masked values are replaced by 0. For vectors (1-D arrays) it computes the ordinary inner-product: np.inner(a, b) = sum(a[:]*b[:]) More generally, if ndim(a) = r > 0 and ndim(b) = s > 0: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly: np.inner(a, b)[i0,...,ir-2,j0,...,js-2] = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) In addition a or b may be scalars, in which case: np.inner(a,b) = a*b Examples Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 Some multidimensional examples: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> c = np.inner(a, b) >>> c.shape (2, 3) >>> c array([[ 14, 38, 62], [ 86, 110, 134]]) >>> a = np.arange(2).reshape((1,1,2)) >>> b = np.arange(6).reshape((3,2)) >>> c = np.inner(a, b) >>> c.shape (1, 1, 3) >>> c array([[[1, 3, 5]]]) An example where b is a scalar: >>> np.inner(np.eye(2), 7) array([[7., 0.], [0., 7.]])
numpy.reference.generated.numpy.ma.inner
numpy.ma.innerproduct ma.innerproduct(a, b, /)[source] Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters a, barray_like If a and b are nonscalar, their last dimensions must match. Returns outndarray If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1]) Raises ValueError If both a and b are nonscalar and their last dimensions have different sizes. See also tensordot Sum products over arbitrary axes. dot Generalised matrix product, using second last dimension of b. einsum Einstein summation convention. Notes Masked values are replaced by 0. For vectors (1-D arrays) it computes the ordinary inner-product: np.inner(a, b) = sum(a[:]*b[:]) More generally, if ndim(a) = r > 0 and ndim(b) = s > 0: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly: np.inner(a, b)[i0,...,ir-2,j0,...,js-2] = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) In addition a or b may be scalars, in which case: np.inner(a,b) = a*b Examples Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 Some multidimensional examples: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> c = np.inner(a, b) >>> c.shape (2, 3) >>> c array([[ 14, 38, 62], [ 86, 110, 134]]) >>> a = np.arange(2).reshape((1,1,2)) >>> b = np.arange(6).reshape((3,2)) >>> c = np.inner(a, b) >>> c.shape (1, 1, 3) >>> c array([[[1, 3, 5]]]) An example where b is a scalar: >>> np.inner(np.eye(2), 7) array([[7., 0.], [0., 7.]])
numpy.reference.generated.numpy.ma.innerproduct
numpy.ma.is_mask ma.is_mask(m)[source] Return True if m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Parameters marray_like Array to test. Returns resultbool True if m.dtype.type is MaskType, False otherwise. See also ma.isMaskedArray Test whether input is an instance of MaskedArray. Examples >>> import numpy.ma as ma >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) >>> m masked_array(data=[--, 1, --, 2, 3], mask=[ True, False, True, False, False], fill_value=0) >>> ma.is_mask(m) False >>> ma.is_mask(m.mask) True Input must be an ndarray (or have similar attributes) for it to be considered a valid mask. >>> m = [False, True, False] >>> ma.is_mask(m) False >>> m = np.array([False, True, False]) >>> m array([False, True, False]) >>> ma.is_mask(m) True Arrays with complex dtypes don’t return True. >>> dtype = np.dtype({'names':['monty', 'pithon'], ... 'formats':[bool, bool]}) >>> dtype dtype([('monty', '|b1'), ('pithon', '|b1')]) >>> m = np.array([(True, False), (False, True), (True, False)], ... dtype=dtype) >>> m array([( True, False), (False, True), ( True, False)], dtype=[('monty', '?'), ('pithon', '?')]) >>> ma.is_mask(m) False
numpy.reference.generated.numpy.ma.is_mask
numpy.ma.is_masked ma.is_masked(x)[source] Determine whether input has masked values. Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Parameters xarray_like Array to check for masked values. Returns resultbool True if x is a MaskedArray with masked values, False otherwise. Examples >>> import numpy.ma as ma >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0) >>> x masked_array(data=[--, 1, --, 2, 3], mask=[ True, False, True, False, False], fill_value=0) >>> ma.is_masked(x) True >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42) >>> x masked_array(data=[0, 1, 0, 2, 3], mask=False, fill_value=42) >>> ma.is_masked(x) False Always returns False if x isn’t a MaskedArray. >>> x = [False, True, False] >>> ma.is_masked(x) False >>> x = 'a string' >>> ma.is_masked(x) False
numpy.reference.generated.numpy.ma.is_masked
numpy.ma.isarray ma.isarray(x)[source] Test whether input is an instance of MaskedArray. This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted as input. Parameters xobject Object to test. Returns resultbool True if x is a MaskedArray. See also isMA Alias to isMaskedArray. isarray Alias to isMaskedArray. Examples >>> import numpy.ma as ma >>> a = np.eye(3, 3) >>> a array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> m = ma.masked_values(a, 0) >>> m masked_array( data=[[1.0, --, --], [--, 1.0, --], [--, --, 1.0]], mask=[[False, True, True], [ True, False, True], [ True, True, False]], fill_value=0.0) >>> ma.isMaskedArray(a) False >>> ma.isMaskedArray(m) True >>> ma.isMaskedArray([0, 1, 2]) False
numpy.reference.generated.numpy.ma.isarray
numpy.ma.isMA ma.isMA(x)[source] Test whether input is an instance of MaskedArray. This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted as input. Parameters xobject Object to test. Returns resultbool True if x is a MaskedArray. See also isMA Alias to isMaskedArray. isarray Alias to isMaskedArray. Examples >>> import numpy.ma as ma >>> a = np.eye(3, 3) >>> a array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> m = ma.masked_values(a, 0) >>> m masked_array( data=[[1.0, --, --], [--, 1.0, --], [--, --, 1.0]], mask=[[False, True, True], [ True, False, True], [ True, True, False]], fill_value=0.0) >>> ma.isMaskedArray(a) False >>> ma.isMaskedArray(m) True >>> ma.isMaskedArray([0, 1, 2]) False
numpy.reference.generated.numpy.ma.isma
numpy.ma.isMaskedArray ma.isMaskedArray(x)[source] Test whether input is an instance of MaskedArray. This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted as input. Parameters xobject Object to test. Returns resultbool True if x is a MaskedArray. See also isMA Alias to isMaskedArray. isarray Alias to isMaskedArray. Examples >>> import numpy.ma as ma >>> a = np.eye(3, 3) >>> a array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> m = ma.masked_values(a, 0) >>> m masked_array( data=[[1.0, --, --], [--, 1.0, --], [--, --, 1.0]], mask=[[False, True, True], [ True, False, True], [ True, True, False]], fill_value=0.0) >>> ma.isMaskedArray(a) False >>> ma.isMaskedArray(m) True >>> ma.isMaskedArray([0, 1, 2]) False
numpy.reference.generated.numpy.ma.ismaskedarray
numpy.ma.make_mask ma.make_mask(m, copy=False, shrink=True, dtype=<class 'numpy.bool_'>)[source] Create a boolean mask from an array. Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that is convertible to integers, or nomask. Does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Parameters marray_like Potential mask. copybool, optional Whether to return a copy of m (True) or m itself (False). shrinkbool, optional Whether to shrink m to nomask if all its values are False. dtypedtype, optional Data-type of the output mask. By default, the output mask has a dtype of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when m is nomask, in which case nomask is always returned. Returns resultndarray A boolean mask derived from m. Examples >>> import numpy.ma as ma >>> m = [True, False, True, True] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 1, 1] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 2, -3] >>> ma.make_mask(m) array([ True, False, True, True]) Effect of the shrink parameter. >>> m = np.zeros(4) >>> m array([0., 0., 0., 0.]) >>> ma.make_mask(m) False >>> ma.make_mask(m, shrink=False) array([False, False, False, False]) Using a flexible dtype. >>> m = [1, 0, 1, 1] >>> n = [0, 1, 0, 0] >>> arr = [] >>> for man, mouse in zip(m, n): ... arr.append((man, mouse)) >>> arr [(1, 0), (0, 1), (1, 0), (1, 0)] >>> dtype = np.dtype({'names':['man', 'mouse'], ... 'formats':[np.int64, np.int64]}) >>> arr = np.array(arr, dtype=dtype) >>> arr array([(1, 0), (0, 1), (1, 0), (1, 0)], dtype=[('man', '<i8'), ('mouse', '<i8')]) >>> ma.make_mask(arr, dtype=dtype) array([(True, False), (False, True), (True, False), (True, False)], dtype=[('man', '|b1'), ('mouse', '|b1')])
numpy.reference.generated.numpy.ma.make_mask
numpy.ma.make_mask_descr ma.make_mask_descr(ndtype)[source] Construct a dtype description list from a given dtype. Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered. Parameters ndtypedtype The dtype to convert. Returns resultdtype A dtype that looks like ndtype, the type of all fields is boolean. Examples >>> import numpy.ma as ma >>> dtype = np.dtype({'names':['foo', 'bar'], ... 'formats':[np.float32, np.int64]}) >>> dtype dtype([('foo', '<f4'), ('bar', '<i8')]) >>> ma.make_mask_descr(dtype) dtype([('foo', '|b1'), ('bar', '|b1')]) >>> ma.make_mask_descr(np.float32) dtype('bool')
numpy.reference.generated.numpy.ma.make_mask_descr
numpy.ma.make_mask_none ma.make_mask_none(newshape, dtype=None)[source] Return a boolean mask of the given shape, filled with False. This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If a complex dtype is specified, the type of each field is converted to a boolean type. Parameters newshapetuple A tuple indicating the shape of the mask. dtype{None, dtype}, optional If None, use a MaskType instance. Otherwise, use a new datatype with the same fields as dtype, converted to boolean types. Returns resultndarray An ndarray of appropriate shape and dtype, filled with False. See also make_mask Create a boolean mask from an array. make_mask_descr Construct a dtype description list from a given dtype. Examples >>> import numpy.ma as ma >>> ma.make_mask_none((3,)) array([False, False, False]) Defining a more complex dtype. >>> dtype = np.dtype({'names':['foo', 'bar'], ... 'formats':[np.float32, np.int64]}) >>> dtype dtype([('foo', '<f4'), ('bar', '<i8')]) >>> ma.make_mask_none((3,), dtype=dtype) array([(False, False), (False, False), (False, False)], dtype=[('foo', '|b1'), ('bar', '|b1')])
numpy.reference.generated.numpy.ma.make_mask_none
numpy.ma.mask_cols ma.mask_cols(a, axis=<no value>)[source] Mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. See also mask_rowcols Mask rows and/or columns of a 2D array. masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_cols(a) masked_array( data=[[0, --, 0], [0, --, 0], [0, --, 0]], mask=[[False, True, False], [False, True, False], [False, True, False]], fill_value=1)
numpy.reference.generated.numpy.ma.mask_cols
numpy.ma.mask_or ma.mask_or(m1, m2, copy=False, shrink=True)[source] Combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Parameters m1, m2array_like Input masks. copybool, optional If copy is False and one of the inputs is nomask, return a view of the other input mask. Defaults to False. shrinkbool, optional Whether to shrink the output to nomask if all its values are False. Defaults to True. Returns maskoutput mask The result masks values that are masked in either m1 or m2. Raises ValueError If m1 and m2 have different flexible dtypes. Examples >>> m1 = np.ma.make_mask([0, 1, 1, 0]) >>> m2 = np.ma.make_mask([1, 0, 0, 0]) >>> np.ma.mask_or(m1, m2) array([ True, True, True, False])
numpy.reference.generated.numpy.ma.mask_or
numpy.ma.mask_rowcols ma.mask_rowcols(a, axis=None)[source] Mask rows and/or columns of a 2D array that contain masked values. Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter. If axis is None, rows and columns are masked. If axis is 0, only rows are masked. If axis is 1 or -1, only columns are masked. Parameters aarray_like, MaskedArray The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with mask set to nomask (False). Must be a 2D array. axisint, optional Axis along which to perform the operation. If None, applies to a flattened version of the array. Returns aMaskedArray A modified version of the input array, masked depending on the value of the axis parameter. Raises NotImplementedError If input array a is not 2D. See also mask_rows Mask rows of a 2D array that contain masked values. mask_cols Mask cols of a 2D array that contain masked values. masked_where Mask where a condition is met. Notes The input array’s mask is modified by this function. Examples >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1)
numpy.reference.generated.numpy.ma.mask_rowcols
numpy.ma.mask_rows ma.mask_rows(a, axis=<no value>)[source] Mask rows of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 0. See also mask_rowcols Mask rows and/or columns of a 2D array. masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rows(a) masked_array( data=[[0, 0, 0], [--, --, --], [0, 0, 0]], mask=[[False, False, False], [ True, True, True], [False, False, False]], fill_value=1)
numpy.reference.generated.numpy.ma.mask_rows
numpy.ma.masked_all ma.masked_all(shape, dtype=<class 'float'>)[source] Empty masked array with all elements masked. Return an empty masked array of the given shape and dtype, where all the data are masked. Parameters shapetuple Shape of the required MaskedArray. dtypedtype, optional Data type of the output. Returns aMaskedArray A masked array with all data masked. See also masked_all_like Empty masked array modelled on an existing array. Examples >>> import numpy.ma as ma >>> ma.masked_all((3, 3)) masked_array( data=[[--, --, --], [--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float64) The dtype parameter defines the underlying data type. >>> a = ma.masked_all((3, 3)) >>> a.dtype dtype('float64') >>> a = ma.masked_all((3, 3), dtype=np.int32) >>> a.dtype dtype('int32')
numpy.reference.generated.numpy.ma.masked_all
numpy.ma.masked_all_like ma.masked_all_like(arr)[source] Empty masked array with the properties of an existing array. Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked. Parameters arrndarray An array describing the shape and dtype of the required MaskedArray. Returns aMaskedArray A masked array with all data masked. Raises AttributeError If arr doesn’t have a shape attribute (i.e. not an ndarray) See also masked_all Empty masked array with all elements masked. Examples >>> import numpy.ma as ma >>> arr = np.zeros((2, 3), dtype=np.float32) >>> arr array([[0., 0., 0.], [0., 0., 0.]], dtype=float32) >>> ma.masked_all_like(arr) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float32) The dtype of the masked array matches the dtype of arr. >>> arr.dtype dtype('float32') >>> ma.masked_all_like(arr).dtype dtype('float32')
numpy.reference.generated.numpy.ma.masked_all_like
numpy.ma.masked_equal ma.masked_equal(x, value, copy=True)[source] Mask an array where equal to a given value. This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays, consider using masked_values(x, value). See also masked_where Mask where a condition is met. masked_values Mask using floating point equality. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_equal(a, 2) masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=2)
numpy.reference.generated.numpy.ma.masked_equal
numpy.ma.masked_greater ma.masked_greater(x, value, copy=True)[source] Mask an array where greater than a given value. This function is a shortcut to masked_where, with condition = (x > value). See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater(a, 2) masked_array(data=[0, 1, 2, --], mask=[False, False, False, True], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_greater
numpy.ma.masked_greater_equal ma.masked_greater_equal(x, value, copy=True)[source] Mask an array where greater than or equal to a given value. This function is a shortcut to masked_where, with condition = (x >= value). See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater_equal(a, 2) masked_array(data=[0, 1, --, --], mask=[False, False, True, True], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_greater_equal
numpy.ma.masked_inside ma.masked_inside(x, v1, v2, copy=True)[source] Mask an array inside a given interval. Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2 can be given in either order. See also masked_where Mask where a condition is met. Notes The array x is prefilled with its filling value. Examples >>> import numpy.ma as ma >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] >>> ma.masked_inside(x, -0.3, 0.3) masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], mask=[False, False, True, True, False, False], fill_value=1e+20) The order of v1 and v2 doesn’t matter. >>> ma.masked_inside(x, 0.3, -0.3) masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], mask=[False, False, True, True, False, False], fill_value=1e+20)
numpy.reference.generated.numpy.ma.masked_inside
numpy.ma.masked_invalid ma.masked_invalid(a, copy=True)[source] Mask an array where invalid values occur (NaNs or infs). This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts any array_like object. See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(5, dtype=float) >>> a[2] = np.NaN >>> a[3] = np.PINF >>> a array([ 0., 1., nan, inf, 4.]) >>> ma.masked_invalid(a) masked_array(data=[0.0, 1.0, --, --, 4.0], mask=[False, False, True, True, False], fill_value=1e+20)
numpy.reference.generated.numpy.ma.masked_invalid
numpy.ma.masked_less ma.masked_less(x, value, copy=True)[source] Mask an array where less than a given value. This function is a shortcut to masked_where, with condition = (x < value). See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_less(a, 2) masked_array(data=[--, --, 2, 3], mask=[ True, True, False, False], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_less
numpy.ma.masked_less_equal ma.masked_less_equal(x, value, copy=True)[source] Mask an array where less than or equal to a given value. This function is a shortcut to masked_where, with condition = (x <= value). See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_less_equal(a, 2) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_less_equal
numpy.ma.masked_not_equal ma.masked_not_equal(x, value, copy=True)[source] Mask an array where not equal to a given value. This function is a shortcut to masked_where, with condition = (x != value). See also masked_where Mask where a condition is met. Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_not_equal(a, 2) masked_array(data=[--, --, 2, --], mask=[ True, True, False, True], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_not_equal
numpy.ma.masked_object ma.masked_object(x, value, copy=True, shrink=True)[source] Mask the array x where the data are exactly equal to value. This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead. Parameters xarray_like Array to mask valueobject Comparison value copy{True, False}, optional Whether to return a copy of x. shrink{True, False}, optional Whether to collapse a mask full of False to nomask Returns resultMaskedArray The result of masking x where equal to value. See also masked_where Mask where a condition is met. masked_equal Mask where equal to a given value (integers). masked_values Mask using floating point equality. Examples >>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object) Note that mask is set to nomask if possible. >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
numpy.reference.generated.numpy.ma.masked_object
numpy.ma.masked_outside ma.masked_outside(x, v1, v2, copy=True)[source] Mask an array outside a given interval. Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2). The boundaries v1 and v2 can be given in either order. See also masked_where Mask where a condition is met. Notes The array x is prefilled with its filling value. Examples >>> import numpy.ma as ma >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] >>> ma.masked_outside(x, -0.3, 0.3) masked_array(data=[--, --, 0.01, 0.2, --, --], mask=[ True, True, False, False, True, True], fill_value=1e+20) The order of v1 and v2 doesn’t matter. >>> ma.masked_outside(x, 0.3, -0.3) masked_array(data=[--, --, 0.01, 0.2, --, --], mask=[ True, True, False, False, True, True], fill_value=1e+20)
numpy.reference.generated.numpy.ma.masked_outside
numpy.ma.masked_values ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source] Mask using floating point equality. Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose. For integer types, exact equality is used, in the same way as masked_equal. The fill_value is set to value and the mask is set to nomask if possible. Parameters xarray_like Array to mask. valuefloat Masking value. rtol, atolfloat, optional Tolerance parameters passed on to isclose copybool, optional Whether to return a copy of x. shrinkbool, optional Whether to collapse a mask full of False to nomask. Returns resultMaskedArray The result of masking x where approximately equal to value. See also masked_where Mask where a condition is met. masked_equal Mask where equal to a given value (integers). Examples >>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1) Note that mask is set to nomask if possible. >>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5) For integers, the fill value will be different in general to the result of masked_equal. >>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2)
numpy.reference.generated.numpy.ma.masked_values
numpy.ma.masked_where ma.masked_where(condition, a, copy=True)[source] Mask an array where a condition is met. Return a as an array masked where condition is True. Any masked values of a or condition are also masked in the output. Parameters conditionarray_like Masking condition. When condition tests floating point values for equality, consider using masked_values instead. aarray_like Array to mask. copybool If True (default) make a copy of a in the result. If False modify a in place and return a view. Returns resultMaskedArray The result of masking a where condition is True. See also masked_values Mask using floating point equality. masked_equal Mask where equal to a given value. masked_not_equal Mask where not equal to a given value. masked_less_equal Mask where less than or equal to a given value. masked_greater_equal Mask where greater than or equal to a given value. masked_less Mask where less than a given value. masked_greater Mask where greater than a given value. masked_inside Mask inside a given interval. masked_outside Mask outside a given interval. masked_invalid Mask invalid values (NaNs or infs). Examples >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_where(a <= 2, a) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) Mask array b conditional on a. >>> b = ['a', 'b', 'c', 'd'] >>> ma.masked_where(a == 2, b) masked_array(data=['a', 'b', --, 'd'], mask=[False, False, True, False], fill_value='N/A', dtype='<U1') Effect of the copy argument. >>> c = ma.masked_where(a <= 2, a) >>> c masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([0, 1, 2, 3]) >>> c = ma.masked_where(a <= 2, a, copy=False) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([99, 1, 2, 3]) When condition or a contain masked values. >>> a = np.arange(4) >>> a = ma.masked_where(a == 2, a) >>> a masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=999999) >>> b = np.arange(4) >>> b = ma.masked_where(b == 0, b) >>> b masked_array(data=[--, 1, 2, 3], mask=[ True, False, False, False], fill_value=999999) >>> ma.masked_where(a == 3, b) masked_array(data=[--, 1, --, --], mask=[ True, False, True, True], fill_value=999999)
numpy.reference.generated.numpy.ma.masked_where
numpy.ma.MaskedArray.__abs__ method ma.MaskedArray.__abs__(self)
numpy.reference.generated.numpy.ma.maskedarray.__abs__
numpy.ma.MaskedArray.__add__ method ma.MaskedArray.__add__(other)[source] Add self to other, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__add__
numpy.ma.MaskedArray.__and__ method ma.MaskedArray.__and__(value, /) Return self&value.
numpy.reference.generated.numpy.ma.maskedarray.__and__
numpy.ma.MaskedArray.__array__ method ma.MaskedArray.__array__([dtype, ]/) → reference if type unchanged, copy otherwise. Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array.
numpy.reference.generated.numpy.ma.maskedarray.__array__
numpy.ma.MaskedArray.__array_priority__ attribute ma.MaskedArray.__array_priority__ = 15
numpy.reference.generated.numpy.ma.maskedarray.__array_priority__
numpy.ma.MaskedArray.__array_wrap__ method ma.MaskedArray.__array_wrap__(obj, context=None)[source] Special hook for ufuncs. Wraps the numpy array and sets the mask according to context.
numpy.reference.generated.numpy.ma.maskedarray.__array_wrap__
numpy.ma.MaskedArray.__bool__ method ma.MaskedArray.__bool__(/) self != 0
numpy.reference.generated.numpy.ma.maskedarray.__bool__
numpy.ma.MaskedArray.__contains__ method ma.MaskedArray.__contains__(key, /) Return key in self.
numpy.reference.generated.numpy.ma.maskedarray.__contains__
numpy.ma.MaskedArray.__copy__ method ma.MaskedArray.__copy__() Used if copy.copy is called on an array. Returns a copy of the array. Equivalent to a.copy(order='K').
numpy.reference.generated.numpy.ma.maskedarray.__copy__
numpy.ma.MaskedArray.__deepcopy__ method ma.MaskedArray.__deepcopy__(memo, /) → Deep copy of array.[source] Used if copy.deepcopy is called on an array.
numpy.reference.generated.numpy.ma.maskedarray.__deepcopy__
numpy.ma.MaskedArray.__delitem__ method ma.MaskedArray.__delitem__(key, /) Delete self[key].
numpy.reference.generated.numpy.ma.maskedarray.__delitem__
numpy.ma.MaskedArray.__div__ method ma.MaskedArray.__div__(other)[source] Divide other into self, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__div__
numpy.ma.MaskedArray.__divmod__ method ma.MaskedArray.__divmod__(value, /) Return divmod(self, value).
numpy.reference.generated.numpy.ma.maskedarray.__divmod__
numpy.ma.MaskedArray.__eq__ method ma.MaskedArray.__eq__(other)[source] Check whether other equals self elementwise. When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set, with self and other considered equal if both are masked, and unequal otherwise. For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were masked, with self and other considered equal only if both were fully masked.
numpy.reference.generated.numpy.ma.maskedarray.__eq__
numpy.ma.MaskedArray.__float__ method ma.MaskedArray.__float__()[source] Convert to float.
numpy.reference.generated.numpy.ma.maskedarray.__float__
numpy.ma.MaskedArray.__floordiv__ method ma.MaskedArray.__floordiv__(other)[source] Divide other into self, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__floordiv__
numpy.ma.MaskedArray.__ge__ method ma.MaskedArray.__ge__(value, /) Return self>=value.
numpy.reference.generated.numpy.ma.maskedarray.__ge__
numpy.ma.MaskedArray.__getitem__ method ma.MaskedArray.__getitem__(indx)[source] x.__getitem__(y) <==> x[y] Return the item described by i, as a masked array.
numpy.reference.generated.numpy.ma.maskedarray.__getitem__
numpy.ma.MaskedArray.__getstate__ method ma.MaskedArray.__getstate__()[source] Return the internal state of the masked array, for pickling purposes.
numpy.reference.generated.numpy.ma.maskedarray.__getstate__
numpy.ma.MaskedArray.__gt__ method ma.MaskedArray.__gt__(value, /) Return self>value.
numpy.reference.generated.numpy.ma.maskedarray.__gt__
numpy.ma.MaskedArray.__iadd__ method ma.MaskedArray.__iadd__(other)[source] Add other to self in-place.
numpy.reference.generated.numpy.ma.maskedarray.__iadd__
numpy.ma.MaskedArray.__iand__ method ma.MaskedArray.__iand__(value, /) Return self&=value.
numpy.reference.generated.numpy.ma.maskedarray.__iand__
numpy.ma.MaskedArray.__idiv__ method ma.MaskedArray.__idiv__(other)[source] Divide self by other in-place.
numpy.reference.generated.numpy.ma.maskedarray.__idiv__
numpy.ma.MaskedArray.__ifloordiv__ method ma.MaskedArray.__ifloordiv__(other)[source] Floor divide self by other in-place.
numpy.reference.generated.numpy.ma.maskedarray.__ifloordiv__
numpy.ma.MaskedArray.__ilshift__ method ma.MaskedArray.__ilshift__(value, /) Return self<<=value.
numpy.reference.generated.numpy.ma.maskedarray.__ilshift__
numpy.ma.MaskedArray.__imod__ method ma.MaskedArray.__imod__(value, /) Return self%=value.
numpy.reference.generated.numpy.ma.maskedarray.__imod__
numpy.ma.MaskedArray.__imul__ method ma.MaskedArray.__imul__(other)[source] Multiply self by other in-place.
numpy.reference.generated.numpy.ma.maskedarray.__imul__
numpy.ma.MaskedArray.__int__ method ma.MaskedArray.__int__()[source] Convert to int.
numpy.reference.generated.numpy.ma.maskedarray.__int__
numpy.ma.MaskedArray.__ior__ method ma.MaskedArray.__ior__(value, /) Return self|=value.
numpy.reference.generated.numpy.ma.maskedarray.__ior__
numpy.ma.MaskedArray.__ipow__ method ma.MaskedArray.__ipow__(other)[source] Raise self to the power other, in place.
numpy.reference.generated.numpy.ma.maskedarray.__ipow__
numpy.ma.MaskedArray.__irshift__ method ma.MaskedArray.__irshift__(value, /) Return self>>=value.
numpy.reference.generated.numpy.ma.maskedarray.__irshift__
numpy.ma.MaskedArray.__isub__ method ma.MaskedArray.__isub__(other)[source] Subtract other from self in-place.
numpy.reference.generated.numpy.ma.maskedarray.__isub__
numpy.ma.MaskedArray.__itruediv__ method ma.MaskedArray.__itruediv__(other)[source] True divide self by other in-place.
numpy.reference.generated.numpy.ma.maskedarray.__itruediv__
numpy.ma.MaskedArray.__ixor__ method ma.MaskedArray.__ixor__(value, /) Return self^=value.
numpy.reference.generated.numpy.ma.maskedarray.__ixor__
numpy.ma.MaskedArray.__le__ method ma.MaskedArray.__le__(value, /) Return self<=value.
numpy.reference.generated.numpy.ma.maskedarray.__le__
numpy.ma.MaskedArray.__len__ method ma.MaskedArray.__len__(/) Return len(self).
numpy.reference.generated.numpy.ma.maskedarray.__len__
numpy.ma.MaskedArray.__lshift__ method ma.MaskedArray.__lshift__(value, /) Return self<<value.
numpy.reference.generated.numpy.ma.maskedarray.__lshift__
numpy.ma.MaskedArray.__lt__ method ma.MaskedArray.__lt__(value, /) Return self<value.
numpy.reference.generated.numpy.ma.maskedarray.__lt__
numpy.ma.MaskedArray.__mod__ method ma.MaskedArray.__mod__(value, /) Return self%value.
numpy.reference.generated.numpy.ma.maskedarray.__mod__
numpy.ma.MaskedArray.__mul__ method ma.MaskedArray.__mul__(other)[source] Multiply self by other, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__mul__
numpy.ma.MaskedArray.__ne__ method ma.MaskedArray.__ne__(other)[source] Check whether other does not equal self elementwise. When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set, with self and other considered equal if both are masked, and unequal otherwise. For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were masked, with self and other considered equal only if both were fully masked.
numpy.reference.generated.numpy.ma.maskedarray.__ne__
numpy.ma.MaskedArray.__or__ method ma.MaskedArray.__or__(value, /) Return self|value.
numpy.reference.generated.numpy.ma.maskedarray.__or__
numpy.ma.MaskedArray.__pow__ method ma.MaskedArray.__pow__(other)[source] Raise self to the power other, masking the potential NaNs/Infs
numpy.reference.generated.numpy.ma.maskedarray.__pow__
numpy.ma.MaskedArray.__radd__ method ma.MaskedArray.__radd__(other)[source] Add other to self, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__radd__
numpy.ma.MaskedArray.__rand__ method ma.MaskedArray.__rand__(value, /) Return value&self.
numpy.reference.generated.numpy.ma.maskedarray.__rand__
numpy.ma.MaskedArray.__rdivmod__ method ma.MaskedArray.__rdivmod__(value, /) Return divmod(value, self).
numpy.reference.generated.numpy.ma.maskedarray.__rdivmod__
numpy.ma.MaskedArray.__reduce__ method ma.MaskedArray.__reduce__()[source] Return a 3-tuple for pickling a MaskedArray.
numpy.reference.generated.numpy.ma.maskedarray.__reduce__
numpy.ma.MaskedArray.__repr__ method ma.MaskedArray.__repr__()[source] Literal string representation.
numpy.reference.generated.numpy.ma.maskedarray.__repr__
numpy.ma.MaskedArray.__rfloordiv__ method ma.MaskedArray.__rfloordiv__(other)[source] Divide self into other, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__rfloordiv__
numpy.ma.MaskedArray.__rlshift__ method ma.MaskedArray.__rlshift__(value, /) Return value<<self.
numpy.reference.generated.numpy.ma.maskedarray.__rlshift__
numpy.ma.MaskedArray.__rmod__ method ma.MaskedArray.__rmod__(value, /) Return value%self.
numpy.reference.generated.numpy.ma.maskedarray.__rmod__
numpy.ma.MaskedArray.__rmul__ method ma.MaskedArray.__rmul__(other)[source] Multiply other by self, and return a new masked array.
numpy.reference.generated.numpy.ma.maskedarray.__rmul__
numpy.ma.MaskedArray.__ror__ method ma.MaskedArray.__ror__(value, /) Return value|self.
numpy.reference.generated.numpy.ma.maskedarray.__ror__