doc_content
stringlengths
1
386k
doc_id
stringlengths
5
188
numpy.char.chararray.reshape method char.chararray.reshape(shape, order='C') Returns an array containing the same data with a new shape. Refer to numpy.reshape for full documentation. See also numpy.reshape equivalent function Notes Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.reshape((10, 11)).
numpy.reference.generated.numpy.char.chararray.reshape
numpy.char.chararray.resize method char.chararray.resize(new_shape, refcheck=True) Change shape and size of array in-place. Parameters new_shapetuple of ints, or n ints Shape of resized array. refcheckbool, optional If False, reference count will not be checked. Default is True. Returns None Raises ValueError If a does not own its own data or references or views to it exist, and the data memory must be changed. PyPy only: will always raise if the data memory must be changed, since there is no reliable way to determine if references or views to it exist. SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy. See also resize Return a new array with the specified shape. Notes This reallocates space for the data area if necessary. Only contiguous arrays (data elements consecutive in memory) can be resized. The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set refcheck to False. Examples Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped: >>> a = np.array([[0, 1], [2, 3]], order='C') >>> a.resize((2, 1)) >>> a array([[0], [1]]) >>> a = np.array([[0, 1], [2, 3]], order='F') >>> a.resize((2, 1)) >>> a array([[0], [2]]) Enlarging an array: as above, but missing entries are filled with zeros: >>> b = np.array([[0, 1], [2, 3]]) >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple >>> b array([[0, 1, 2], [3, 0, 0]]) Referencing an array prevents resizing… >>> c = a >>> a.resize((1, 1)) Traceback (most recent call last): ... ValueError: cannot resize an array that references or is referenced ... Unless refcheck is False: >>> a.resize((1, 1), refcheck=False) >>> a array([[0]]) >>> c array([[0]])
numpy.reference.generated.numpy.char.chararray.resize
numpy.char.chararray.rfind method char.chararray.rfind(sub, start=0, end=None)[source] For each element in self, return the highest index in the string where substring sub is found, such that sub is contained within [start, end]. See also char.rfind
numpy.reference.generated.numpy.char.chararray.rfind
numpy.char.chararray.rindex method char.chararray.rindex(sub, start=0, end=None)[source] Like rfind, but raises ValueError when the substring sub is not found. See also char.rindex
numpy.reference.generated.numpy.char.chararray.rindex
numpy.char.chararray.rjust method char.chararray.rjust(width, fillchar=' ')[source] Return an array with the elements of self right-justified in a string of length width. See also char.rjust
numpy.reference.generated.numpy.char.chararray.rjust
numpy.char.chararray.rsplit method char.chararray.rsplit(sep=None, maxsplit=None)[source] For each element in self, return a list of the words in the string, using sep as the delimiter string. See also char.rsplit
numpy.reference.generated.numpy.char.chararray.rsplit
numpy.char.chararray.rstrip method char.chararray.rstrip(chars=None)[source] For each element in self, return a copy with the trailing characters removed. See also char.rstrip
numpy.reference.generated.numpy.char.chararray.rstrip
numpy.char.chararray.searchsorted method char.chararray.searchsorted(v, side='left', sorter=None) Find indices where elements of v should be inserted in a to maintain order. For full documentation, see numpy.searchsorted See also numpy.searchsorted equivalent function
numpy.reference.generated.numpy.char.chararray.searchsorted
numpy.char.chararray.setfield method char.chararray.setfield(val, dtype, offset=0) Put a value into a specified place in a field defined by a data-type. Place val into a’s field defined by dtype and beginning offset bytes into the field. Parameters valobject Value to be placed in field. dtypedtype object Data-type of the field in which to place val. offsetint, optional The number of bytes into the field at which to place val. Returns None See also getfield Examples >>> x = np.eye(3) >>> x.getfield(np.float64) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> x.setfield(3, np.int32) >>> x.getfield(np.int32) array([[3, 3, 3], [3, 3, 3], [3, 3, 3]], dtype=int32) >>> x array([[1.0e+000, 1.5e-323, 1.5e-323], [1.5e-323, 1.0e+000, 1.5e-323], [1.5e-323, 1.5e-323, 1.0e+000]]) >>> x.setfield(np.eye(3), np.int32) >>> x array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
numpy.reference.generated.numpy.char.chararray.setfield
numpy.char.chararray.setflags method char.chararray.setflags(write=None, align=None, uic=None) Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively. These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.) Parameters writebool, optional Describes whether or not a can be written to. alignbool, optional Describes whether or not a is aligned properly for its type. uicbool, optional Describes whether or not a is a copy of another “base” array. Notes Array flags provide information about how the memory area used for the array is to be interpreted. There are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED. WRITEABLE (W) the data area can be written to; ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler); UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY; WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this array. All flags can be accessed using the single (upper case) letter as well as the full name. Examples >>> y = np.array([[3, 1, 7], ... [2, 0, 0], ... [8, 5, 9]]) >>> y array([[3, 1, 7], [2, 0, 0], [8, 5, 9]]) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False >>> y.setflags(write=0, align=0) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : False ALIGNED : False WRITEBACKIFCOPY : False UPDATEIFCOPY : False >>> y.setflags(uic=1) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: cannot set WRITEBACKIFCOPY flag to True
numpy.reference.generated.numpy.char.chararray.setflags
numpy.char.chararray.shape attribute char.chararray.shape Tuple of array dimensions. The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required. See also numpy.reshape similar function ndarray.reshape similar method Examples >>> x = np.array([1, 2, 3, 4]) >>> x.shape (4,) >>> y = np.zeros((2, 3, 4)) >>> y.shape (2, 3, 4) >>> y.shape = (3, 8) >>> y array([[ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.]]) >>> y.shape = (3, 6) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: total size of new array must be unchanged >>> np.zeros((4,2))[::2].shape = (-1,) Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: Incompatible shape for in-place modification. Use `.reshape()` to make a copy with the desired shape.
numpy.reference.generated.numpy.char.chararray.shape
numpy.char.chararray.size attribute char.chararray.size Number of elements in the array. Equal to np.prod(a.shape), i.e., the product of the array’s dimensions. Notes a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_), and may be relevant if the value is used further in calculations that may overflow a fixed size integer type. Examples >>> x = np.zeros((3, 5, 2), dtype=np.complex128) >>> x.size 30 >>> np.prod(x.shape) 30
numpy.reference.generated.numpy.char.chararray.size
numpy.char.chararray.sort method char.chararray.sort(axis=- 1, kind=None, order=None) Sort an array in-place. Refer to numpy.sort for full documentation. Parameters axisint, optional Axis along which to sort. Default is -1, which means sort along the last axis. kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option is retained for backwards compatibility. Changed in version 1.15.0: The ‘stable’ option was added. orderstr or list of str, optional When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. See also numpy.sort Return a sorted copy of an array. numpy.argsort Indirect sort. numpy.lexsort Indirect stable sort on multiple keys. numpy.searchsorted Find elements in sorted array. numpy.partition Partial sort. Notes See numpy.sort for notes on the different sorting algorithms. Examples >>> a = np.array([[1,4], [3,1]]) >>> a.sort(axis=1) >>> a array([[1, 4], [1, 3]]) >>> a.sort(axis=0) >>> a array([[1, 3], [1, 4]]) Use the order keyword to specify a field to use when sorting a structured array: >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) >>> a.sort(order='y') >>> a array([(b'c', 1), (b'a', 2)], dtype=[('x', 'S1'), ('y', '<i8')])
numpy.reference.generated.numpy.char.chararray.sort
numpy.char.chararray.split method char.chararray.split(sep=None, maxsplit=None)[source] For each element in self, return a list of the words in the string, using sep as the delimiter string. See also char.split
numpy.reference.generated.numpy.char.chararray.split
numpy.char.chararray.splitlines method char.chararray.splitlines(keepends=None)[source] For each element in self, return a list of the lines in the element, breaking at line boundaries. See also char.splitlines
numpy.reference.generated.numpy.char.chararray.splitlines
numpy.char.chararray.squeeze method char.chararray.squeeze(axis=None) Remove axes of length one from a. Refer to numpy.squeeze for full documentation. See also numpy.squeeze equivalent function
numpy.reference.generated.numpy.char.chararray.squeeze
numpy.char.chararray.startswith method char.chararray.startswith(prefix, start=0, end=None)[source] Returns a boolean array which is True where the string element in self starts with prefix, otherwise False. See also char.startswith
numpy.reference.generated.numpy.char.chararray.startswith
numpy.char.chararray.strides attribute char.chararray.strides Tuple of bytes to step in each dimension when traversing an array. The byte offset of element (i[0], i[1], ..., i[n]) in an array a is: offset = sum(np.array(i) * a.strides) A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide. See also numpy.lib.stride_tricks.as_strided Notes Imagine an array of 32-bit integers (each 4 bytes): x = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int32) This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4). Examples >>> y = np.reshape(np.arange(2*3*4), (2,3,4)) >>> y array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) >>> y.strides (48, 16, 4) >>> y[1,1,1] 17 >>> offset=sum(y.strides * np.array((1,1,1))) >>> offset/y.itemsize 17 >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) >>> x.strides (32, 4, 224, 1344) >>> i = np.array([3,5,2,2]) >>> offset = sum(i * x.strides) >>> x[3,5,2,2] 813 >>> offset / x.itemsize 813
numpy.reference.generated.numpy.char.chararray.strides
numpy.char.chararray.strip method char.chararray.strip(chars=None)[source] For each element in self, return a copy with the leading and trailing characters removed. See also char.strip
numpy.reference.generated.numpy.char.chararray.strip
numpy.char.chararray.swapaxes method char.chararray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged. Refer to numpy.swapaxes for full documentation. See also numpy.swapaxes equivalent function
numpy.reference.generated.numpy.char.chararray.swapaxes
numpy.char.chararray.swapcase method char.chararray.swapcase()[source] For each element in self, return a copy of the string with uppercase characters converted to lowercase and vice versa. See also char.swapcase
numpy.reference.generated.numpy.char.chararray.swapcase
numpy.char.chararray.T attribute char.chararray.T The transposed array. Same as self.transpose(). See also transpose Examples >>> x = np.array([[1.,2.],[3.,4.]]) >>> x array([[ 1., 2.], [ 3., 4.]]) >>> x.T array([[ 1., 3.], [ 2., 4.]]) >>> x = np.array([1.,2.,3.,4.]) >>> x array([ 1., 2., 3., 4.]) >>> x.T array([ 1., 2., 3., 4.])
numpy.reference.generated.numpy.char.chararray.t
numpy.char.chararray.take method char.chararray.take(indices, axis=None, out=None, mode='raise') Return an array formed from the elements of a at the given indices. Refer to numpy.take for full documentation. See also numpy.take equivalent function
numpy.reference.generated.numpy.char.chararray.take
numpy.char.chararray.title method char.chararray.title()[source] For each element in self, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase. See also char.title
numpy.reference.generated.numpy.char.chararray.title
numpy.char.chararray.tobytes method char.chararray.tobytes(order='C') Construct Python bytes containing the raw data bytes in the array. Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced in C-order by default. This behavior is controlled by the order parameter. New in version 1.9.0. Parameters order{‘C’, ‘F’, ‘A’}, optional Controls the memory layout of the bytes object. ‘C’ means C-order, ‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. Default is ‘C’. Returns sbytes Python bytes exhibiting a copy of a’s raw data. Examples >>> x = np.array([[0, 1], [2, 3]], dtype='<u2') >>> x.tobytes() b'\x00\x00\x01\x00\x02\x00\x03\x00' >>> x.tobytes('C') == x.tobytes() True >>> x.tobytes('F') b'\x00\x00\x02\x00\x01\x00\x03\x00'
numpy.reference.generated.numpy.char.chararray.tobytes
numpy.char.chararray.tofile method char.chararray.tofile(fid, sep='', format='%s') Write array to a file as text or binary (default). Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile(). Parameters fidfile or str or Path An open file object, or a string containing a filename. Changed in version 1.17.0: pathlib.Path objects are now accepted. sepstr Separator between array items for text output. If “” (empty), a binary file is written, equivalent to file.write(a.tobytes()). formatstr Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item. Notes This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size. When fid is a file object, array contents are directly written to the file, bypassing the file object’s write method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-like objects that do not support fileno() (e.g., BytesIO).
numpy.reference.generated.numpy.char.chararray.tofile
numpy.char.chararray.tolist method char.chararray.tolist() Return the array as an a.ndim-levels deep nested list of Python scalars. Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the item function. If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar. Parameters none Returns yobject, or list of object, or list of list of object, or … The possibly nested list of array elements. Notes The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose precision. Examples For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars to Python scalars: >>> a = np.uint32([1, 2]) >>> a_list = list(a) >>> a_list [1, 2] >>> type(a_list[0]) <class 'numpy.uint32'> >>> a_tolist = a.tolist() >>> a_tolist [1, 2] >>> type(a_tolist[0]) <class 'int'> Additionally, for a 2D array, tolist applies recursively: >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]] The base case for this recursion is a 0D array: >>> a = np.array(1) >>> list(a) Traceback (most recent call last): ... TypeError: iteration over a 0-d array >>> a.tolist() 1
numpy.reference.generated.numpy.char.chararray.tolist
numpy.char.chararray.tostring method char.chararray.tostring(order='C') A compatibility alias for tobytes, with exactly the same behavior. Despite its name, it returns bytes not strs. Deprecated since version 1.19.0.
numpy.reference.generated.numpy.char.chararray.tostring
numpy.char.chararray.translate method char.chararray.translate(table, deletechars=None)[source] For each element in self, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table. See also char.translate
numpy.reference.generated.numpy.char.chararray.translate
numpy.char.chararray.transpose method char.chararray.transpose(*axes) Returns a view of the array with axes transposed. For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]). Parameters axesNone, tuple of ints, or n ints None or no argument: reverses the order of the axes. tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis. n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form) Returns outndarray View of a, with axes suitably permuted. See also transpose Equivalent function ndarray.T Array property returning the array transposed. ndarray.reshape Give a new shape to an array without changing its data. Examples >>> a = np.array([[1, 2], [3, 4]]) >>> a array([[1, 2], [3, 4]]) >>> a.transpose() array([[1, 3], [2, 4]]) >>> a.transpose((1, 0)) array([[1, 3], [2, 4]]) >>> a.transpose(1, 0) array([[1, 3], [2, 4]])
numpy.reference.generated.numpy.char.chararray.transpose
numpy.char.chararray.upper method char.chararray.upper()[source] Return an array with the elements of self converted to uppercase. See also char.upper
numpy.reference.generated.numpy.char.chararray.upper
numpy.char.chararray.view method char.chararray.view([dtype][, type]) New view of array with the same data. Note Passing None for dtype is different from omitting the parameter, since the former invokes dtype(None) which is an alias for dtype('float_'). Parameters dtypedata-type or ndarray sub-class, optional Data-type descriptor of the returned view, e.g., float32 or int16. Omitting it results in the view having the same data-type as a. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the type parameter). typePython type, optional Type of the returned view, e.g., ndarray or matrix. Again, omission of the parameter results in type preservation. Notes a.view() is used two different ways: a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory. a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory. For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results. Examples >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) Viewing array data using a different type and dtype: >>> y = x.view(dtype=np.int16, type=np.matrix) >>> y matrix([[513]], dtype=int16) >>> print(type(y)) <class 'numpy.matrix'> Creating a view on a structured array so it can be used in calculations >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) >>> xv = x.view(dtype=np.int8).reshape(-1,2) >>> xv array([[1, 2], [3, 4]], dtype=int8) >>> xv.mean(0) array([2., 3.]) Making changes to the view changes the underlying array >>> xv[0,1] = 20 >>> x array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')]) Using a view to convert an array to a recarray: >>> z = x.view(np.recarray) >>> z.a array([1, 3], dtype=int8) Views share data: >>> x[0] = (9, 10) >>> z[0] (9, 10) Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.: >>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16) >>> y = x[:, 0:2] >>> y array([[1, 2], [4, 5]], dtype=int16) >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) Traceback (most recent call last): ... ValueError: To change to a dtype of a different size, the array must be C-contiguous >>> z = y.copy() >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) array([[(1, 2)], [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
numpy.reference.generated.numpy.char.chararray.view
numpy.char.chararray.zfill method char.chararray.zfill(width)[source] Return the numeric string left-filled with zeros in a string of length width. See also char.zfill
numpy.reference.generated.numpy.char.chararray.zfill
numpy.char.compare_chararrays char.compare_chararrays(a1, a2, cmp, rstrip) Performs element-wise comparison of two string arrays using the comparison operator specified by cmp_op. Parameters a1, a2array_like Arrays to be compared. cmp{“<”, “<=”, “==”, “>=”, “>”, “!=”} Type of comparison. rstripBoolean If True, the spaces at the end of Strings are removed before the comparison. Returns outndarray The output array of type Boolean with the same shape as a and b. Raises ValueError If cmp_op is not valid. TypeError If at least one of a or b is a non-string array Examples >>> a = np.array(["a", "b", "cde"]) >>> b = np.array(["a", "a", "dec"]) >>> np.compare_chararrays(a, b, ">", True) array([False, True, False])
numpy.reference.generated.numpy.char.compare_chararrays
numpy.char.count char.count(a, sub, start=0, end=None)[source] Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end]. Calls str.count element-wise. Parameters aarray_like of str or unicode substr or unicode The substring to search for. start, endint, optional Optional arguments start and end are interpreted as slice notation to specify the range in which to count. Returns outndarray Output array of ints. See also str.count Examples >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7') >>> np.char.count(c, 'A') array([3, 1, 1]) >>> np.char.count(c, 'aA') array([3, 1, 0]) >>> np.char.count(c, 'A', start=1, end=4) array([2, 1, 1]) >>> np.char.count(c, 'A', start=1, end=3) array([1, 0, 0])
numpy.reference.generated.numpy.char.count
numpy.char.decode char.decode(a, encoding=None, errors=None)[source] Calls str.decode element-wise. The set of available codecs comes from the Python standard library, and may be extended at runtime. For more information, see the codecs module. Parameters aarray_like of str or unicode encodingstr, optional The name of an encoding errorsstr, optional Specifies how to handle encoding errors Returns outndarray See also str.decode Notes The type of the result will depend on the encoding specified. Examples >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7') >>> np.char.encode(c, encoding='cp037') array(['\x81\xc1\x81\xc1\x81\xc1', '@@\x81\xc1@@', '\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
numpy.reference.generated.numpy.char.decode
numpy.char.encode char.encode(a, encoding=None, errors=None)[source] Calls str.encode element-wise. The set of available codecs comes from the Python standard library, and may be extended at runtime. For more information, see the codecs module. Parameters aarray_like of str or unicode encodingstr, optional The name of an encoding errorsstr, optional Specifies how to handle encoding errors Returns outndarray See also str.encode Notes The type of the result will depend on the encoding specified.
numpy.reference.generated.numpy.char.encode
numpy.char.endswith char.endswith(a, suffix, start=0, end=None)[source] Returns a boolean array which is True where the string element in a ends with suffix, otherwise False. Calls str.endswith element-wise. Parameters aarray_like of str or unicode suffixstr start, endint, optional With optional start, test beginning at that position. With optional end, stop comparing at that position. Returns outndarray Outputs an array of bools. See also str.endswith Examples >>> s = np.array(['foo', 'bar']) >>> s[0] = 'foo' >>> s[1] = 'bar' >>> s array(['foo', 'bar'], dtype='<U3') >>> np.char.endswith(s, 'ar') array([False, True]) >>> np.char.endswith(s, 'a', start=1, end=2) array([False, True])
numpy.reference.generated.numpy.char.endswith
numpy.char.equal char.equal(x1, x2)[source] Return (x1 == x2) element-wise. Unlike numpy.equal, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also not_equal, greater_equal, less_equal, greater, less
numpy.reference.generated.numpy.char.equal
numpy.char.expandtabs char.expandtabs(a, tabsize=8)[source] Return a copy of each string element where all tab characters are replaced by one or more spaces. Calls str.expandtabs element-wise. Return a copy of each string element where all tab characters are replaced by one or more spaces, depending on the current column and the given tabsize. The column number is reset to zero after each newline occurring in the string. This doesn’t understand other non-printing characters or escape sequences. Parameters aarray_like of str or unicode Input array tabsizeint, optional Replace tabs with tabsize number of spaces. If not given defaults to 8 spaces. Returns outndarray Output array of str or unicode, depending on input type See also str.expandtabs
numpy.reference.generated.numpy.char.expandtabs
numpy.char.find char.find(a, sub, start=0, end=None)[source] For each element, return the lowest index in the string where substring sub is found. Calls str.find element-wise. For each element, return the lowest index in the string where substring sub is found, such that sub is contained in the range [start, end]. Parameters aarray_like of str or unicode substr or unicode start, endint, optional Optional arguments start and end are interpreted as in slice notation. Returns outndarray or int Output array of ints. Returns -1 if sub is not found. See also str.find
numpy.reference.generated.numpy.char.find
numpy.char.greater char.greater(x1, x2)[source] Return (x1 > x2) element-wise. Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also equal, not_equal, greater_equal, less_equal, less
numpy.reference.generated.numpy.char.greater
numpy.char.greater_equal char.greater_equal(x1, x2)[source] Return (x1 >= x2) element-wise. Unlike numpy.greater_equal, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also equal, not_equal, less_equal, greater, less
numpy.reference.generated.numpy.char.greater_equal
numpy.char.index char.index(a, sub, start=0, end=None)[source] Like find, but raises ValueError when the substring is not found. Calls str.index element-wise. Parameters aarray_like of str or unicode substr or unicode start, endint, optional Returns outndarray Output array of ints. Returns -1 if sub is not found. See also find, str.find
numpy.reference.generated.numpy.char.index
numpy.char.isalnum char.isalnum(a)[source] Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise. Calls str.isalnum element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of str or unicode, depending on input type See also str.isalnum
numpy.reference.generated.numpy.char.isalnum
numpy.char.isalpha char.isalpha(a)[source] Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise. Calls str.isalpha element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.isalpha
numpy.reference.generated.numpy.char.isalpha
numpy.char.isdecimal char.isdecimal(a)[source] For each element, return True if there are only decimal characters in the element. Calls unicode.isdecimal element-wise. Decimal characters include digit characters, and all characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO. Parameters aarray_like, unicode Input array. Returns outndarray, bool Array of booleans identical in shape to a. See also unicode.isdecimal
numpy.reference.generated.numpy.char.isdecimal
numpy.char.isdigit char.isdigit(a)[source] Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise. Calls str.isdigit element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.isdigit
numpy.reference.generated.numpy.char.isdigit
numpy.char.islower char.islower(a)[source] Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise. Calls str.islower element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.islower
numpy.reference.generated.numpy.char.islower
numpy.char.isnumeric char.isnumeric(a)[source] For each element, return True if there are only numeric characters in the element. Calls unicode.isnumeric element-wise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Parameters aarray_like, unicode Input array. Returns outndarray, bool Array of booleans of same shape as a. See also unicode.isnumeric
numpy.reference.generated.numpy.char.isnumeric
numpy.char.isspace char.isspace(a)[source] Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise. Calls str.isspace element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.isspace
numpy.reference.generated.numpy.char.isspace
numpy.char.istitle char.istitle(a)[source] Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise. Call str.istitle element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.istitle
numpy.reference.generated.numpy.char.istitle
numpy.char.isupper char.isupper(a)[source] Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise. Call str.isupper element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like of str or unicode Returns outndarray Output array of bools See also str.isupper
numpy.reference.generated.numpy.char.isupper
numpy.char.join char.join(sep, seq)[source] Return a string which is the concatenation of the strings in the sequence seq. Calls str.join element-wise. Parameters separray_like of str or unicode seqarray_like of str or unicode Returns outndarray Output array of str or unicode, depending on input types See also str.join
numpy.reference.generated.numpy.char.join
numpy.char.less char.less(x1, x2)[source] Return (x1 < x2) element-wise. Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also equal, not_equal, greater_equal, less_equal, greater
numpy.reference.generated.numpy.char.less
numpy.char.less_equal char.less_equal(x1, x2)[source] Return (x1 <= x2) element-wise. Unlike numpy.less_equal, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also equal, not_equal, greater_equal, greater, less
numpy.reference.generated.numpy.char.less_equal
numpy.char.ljust char.ljust(a, width, fillchar=' ')[source] Return an array with the elements of a left-justified in a string of length width. Calls str.ljust element-wise. Parameters aarray_like of str or unicode widthint The length of the resulting strings fillcharstr or unicode, optional The character to use for padding Returns outndarray Output array of str or unicode, depending on input type See also str.ljust
numpy.reference.generated.numpy.char.ljust
numpy.char.lower char.lower(a)[source] Return an array with the elements converted to lowercase. Call str.lower element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like, {str, unicode} Input array. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type See also str.lower Examples >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c array(['A1B C', '1BCA', 'BCA1'], dtype='<U5') >>> np.char.lower(c) array(['a1b c', '1bca', 'bca1'], dtype='<U5')
numpy.reference.generated.numpy.char.lower
numpy.char.lstrip char.lstrip(a, chars=None)[source] For each element in a, return a copy with the leading characters removed. Calls str.lstrip element-wise. Parameters aarray-like, {str, unicode} Input array. chars{str, unicode}, optional The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type See also str.lstrip Examples >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7') The ‘a’ variable is unstripped from c[1] because whitespace leading. >>> np.char.lstrip(c, 'a') array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7') >>> np.char.lstrip(c, 'A') # leaves c unchanged array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7') >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all() ... # XXX: is this a regression? This used to return True ... # np.char.lstrip(c,'') does not modify c at all. False >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all() True
numpy.reference.generated.numpy.char.lstrip
numpy.char.mod char.mod(a, values)[source] Return (a % i), that is pre-Python 2.6 string formatting (interpolation), element-wise for a pair of array_likes of str or unicode. Parameters aarray_like of str or unicode valuesarray_like of values These values will be element-wise interpolated into the string. Returns outndarray Output array of str or unicode, depending on input types See also str.__mod__
numpy.reference.generated.numpy.char.mod
numpy.char.multiply char.multiply(a, i)[source] Return (a * i), that is string multiple concatenation, element-wise. Values in i of less than 0 are treated as 0 (which yields an empty string). Parameters aarray_like of str or unicode iarray_like of ints Returns outndarray Output array of str or unicode, depending on input types
numpy.reference.generated.numpy.char.multiply
numpy.char.not_equal char.not_equal(x1, x2)[source] Return (x1 != x2) element-wise. Unlike numpy.not_equal, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters x1, x2array_like of str or unicode Input arrays of the same shape. Returns outndarray Output array of bools. See also equal, greater_equal, less_equal, greater, less
numpy.reference.generated.numpy.char.not_equal
numpy.char.partition char.partition(a, sep)[source] Partition each element in a around sep. Calls str.partition element-wise. For each element in a, split the element as the first occurrence of sep, and return 3 strings containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings containing the string itself, followed by two empty strings. Parameters aarray_like, {str, unicode} Input array sep{str, unicode} Separator to split each string element in a. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type. The output array will have an extra dimension with 3 elements per input element. See also str.partition
numpy.reference.generated.numpy.char.partition
numpy.char.replace char.replace(a, old, new, count=None)[source] For each element in a, return a copy of the string with all occurrences of substring old replaced by new. Calls str.replace element-wise. Parameters aarray-like of str or unicode old, newstr or unicode countint, optional If the optional argument count is given, only the first count occurrences are replaced. Returns outndarray Output array of str or unicode, depending on input type See also str.replace
numpy.reference.generated.numpy.char.replace
numpy.char.rfind char.rfind(a, sub, start=0, end=None)[source] For each element in a, return the highest index in the string where substring sub is found, such that sub is contained within [start, end]. Calls str.rfind element-wise. Parameters aarray-like of str or unicode substr or unicode start, endint, optional Optional arguments start and end are interpreted as in slice notation. Returns outndarray Output array of ints. Return -1 on failure. See also str.rfind
numpy.reference.generated.numpy.char.rfind
numpy.char.rindex char.rindex(a, sub, start=0, end=None)[source] Like rfind, but raises ValueError when the substring sub is not found. Calls str.rindex element-wise. Parameters aarray-like of str or unicode substr or unicode start, endint, optional Returns outndarray Output array of ints. See also rfind, str.rindex
numpy.reference.generated.numpy.char.rindex
numpy.char.rjust char.rjust(a, width, fillchar=' ')[source] Return an array with the elements of a right-justified in a string of length width. Calls str.rjust element-wise. Parameters aarray_like of str or unicode widthint The length of the resulting strings fillcharstr or unicode, optional The character to use for padding Returns outndarray Output array of str or unicode, depending on input type See also str.rjust
numpy.reference.generated.numpy.char.rjust
numpy.char.rpartition char.rpartition(a, sep)[source] Partition (split) each element around the right-most separator. Calls str.rpartition element-wise. For each element in a, split the element as the last occurrence of sep, and return 3 strings containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings containing the string itself, followed by two empty strings. Parameters aarray_like of str or unicode Input array sepstr or unicode Right-most separator to split each element in array. Returns outndarray Output array of string or unicode, depending on input type. The output array will have an extra dimension with 3 elements per input element. See also str.rpartition
numpy.reference.generated.numpy.char.rpartition
numpy.char.rsplit char.rsplit(a, sep=None, maxsplit=None)[source] For each element in a, return a list of the words in the string, using sep as the delimiter string. Calls str.rsplit element-wise. Except for splitting from the right, rsplit behaves like split. Parameters aarray_like of str or unicode sepstr or unicode, optional If sep is not specified or None, any whitespace string is a separator. maxsplitint, optional If maxsplit is given, at most maxsplit splits are done, the rightmost ones. Returns outndarray Array of list objects See also str.rsplit, split
numpy.reference.generated.numpy.char.rsplit
numpy.char.rstrip char.rstrip(a, chars=None)[source] For each element in a, return a copy with the trailing characters removed. Calls str.rstrip element-wise. Parameters aarray-like of str or unicode charsstr or unicode, optional The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped. Returns outndarray Output array of str or unicode, depending on input type See also str.rstrip Examples >>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c array(['aAaAaA', 'abBABba'], dtype='|S7') >>> np.char.rstrip(c, b'a') array(['aAaAaA', 'abBABb'], dtype='|S7') >>> np.char.rstrip(c, b'A') array(['aAaAa', 'abBABba'], dtype='|S7')
numpy.reference.generated.numpy.char.rstrip
numpy.char.split char.split(a, sep=None, maxsplit=None)[source] For each element in a, return a list of the words in the string, using sep as the delimiter string. Calls str.split element-wise. Parameters aarray_like of str or unicode sepstr or unicode, optional If sep is not specified or None, any whitespace string is a separator. maxsplitint, optional If maxsplit is given, at most maxsplit splits are done. Returns outndarray Array of list objects See also str.split, rsplit
numpy.reference.generated.numpy.char.split
numpy.char.splitlines char.splitlines(a, keepends=None)[source] For each element in a, return a list of the lines in the element, breaking at line boundaries. Calls str.splitlines element-wise. Parameters aarray_like of str or unicode keependsbool, optional Line breaks are not included in the resulting list unless keepends is given and true. Returns outndarray Array of list objects See also str.splitlines
numpy.reference.generated.numpy.char.splitlines
numpy.char.startswith char.startswith(a, prefix, start=0, end=None)[source] Returns a boolean array which is True where the string element in a starts with prefix, otherwise False. Calls str.startswith element-wise. Parameters aarray_like of str or unicode prefixstr start, endint, optional With optional start, test beginning at that position. With optional end, stop comparing at that position. Returns outndarray Array of booleans See also str.startswith
numpy.reference.generated.numpy.char.startswith
numpy.char.str_len char.str_len(a)[source] Return len(a) element-wise. Parameters aarray_like of str or unicode Returns outndarray Output array of integers See also builtins.len
numpy.reference.generated.numpy.char.str_len
numpy.char.strip char.strip(a, chars=None)[source] For each element in a, return a copy with the leading and trailing characters removed. Calls str.strip element-wise. Parameters aarray-like of str or unicode charsstr or unicode, optional The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped. Returns outndarray Output array of str or unicode, depending on input type See also str.strip Examples >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7') >>> np.char.strip(c) array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7') >>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7') >>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')
numpy.reference.generated.numpy.char.strip
numpy.char.swapcase char.swapcase(a)[source] Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa. Calls str.swapcase element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like, {str, unicode} Input array. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type See also str.swapcase Examples >>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'], dtype='|S5') >>> np.char.swapcase(c) array(['A1b C', '1B cA', 'B cA1', 'Ca1B'], dtype='|S5')
numpy.reference.generated.numpy.char.swapcase
numpy.char.title char.title(a)[source] Return element-wise title cased version of string or unicode. Title case words start with uppercase characters, all remaining cased characters are lowercase. Calls str.title element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like, {str, unicode} Input array. Returns outndarray Output array of str or unicode, depending on input type See also str.title Examples >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c array(['a1b c', '1b ca', 'b ca1', 'ca1b'], dtype='|S5') >>> np.char.title(c) array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'], dtype='|S5')
numpy.reference.generated.numpy.char.title
numpy.char.translate char.translate(a, table, deletechars=None)[source] For each element in a, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table. Calls str.translate element-wise. Parameters aarray-like of str or unicode tablestr of length 256 deletecharsstr Returns outndarray Output array of str or unicode, depending on input type See also str.translate
numpy.reference.generated.numpy.char.translate
numpy.char.upper char.upper(a)[source] Return an array with the elements converted to uppercase. Calls str.upper element-wise. For 8-bit strings, this method is locale-dependent. Parameters aarray_like, {str, unicode} Input array. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type See also str.upper Examples >>> c = np.array(['a1b c', '1bca', 'bca1']); c array(['a1b c', '1bca', 'bca1'], dtype='<U5') >>> np.char.upper(c) array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
numpy.reference.generated.numpy.char.upper
numpy.char.zfill char.zfill(a, width)[source] Return the numeric string left-filled with zeros Calls str.zfill element-wise. Parameters aarray_like, {str, unicode} Input array. widthint Width of string to left-fill elements in a. Returns outndarray, {str, unicode} Output array of str or unicode, depending on input type See also str.zfill
numpy.reference.generated.numpy.char.zfill
numpy.chararray.argsort method chararray.argsort(axis=- 1, kind=None, order=None)[source] Returns the indices that would sort this array. Refer to numpy.argsort for full documentation. See also numpy.argsort equivalent function
numpy.reference.generated.numpy.chararray.argsort
numpy.chararray.astype method chararray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) Copy of the array, cast to a specified type. Parameters dtypestr or dtype Typecode or data-type to which the array is cast. order{‘C’, ‘F’, ‘A’, ‘K’}, optional Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible. Default is ‘K’. casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done. subokbool, optional If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array. copybool, optional By default, astype always returns a newly allocated array. If this is set to false, and the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy. Returns arr_tndarray Unless copy is False and the other conditions for returning the input array are satisfied (see description for copy input parameter), arr_t is a new array of the same shape as the input array, with dtype, order given by dtype, order. Raises ComplexWarning When casting from complex to float or int. To avoid this, one should use a.real.astype(t). Notes Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for “unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not. Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string dtype length is long enough to store the max integer/float value converted. Examples >>> x = np.array([1, 2, 2.5]) >>> x array([1. , 2. , 2.5]) >>> x.astype(int) array([1, 2, 2])
numpy.reference.generated.numpy.chararray.astype
numpy.chararray.base attribute chararray.base Base object if memory is from some other object. Examples The base of an array that owns its memory is None: >>> x = np.array([1,2,3,4]) >>> x.base is None True Slicing creates a view, whose memory is shared with x: >>> y = x[2:] >>> y.base is x True
numpy.reference.generated.numpy.chararray.base
numpy.chararray.copy method chararray.copy(order='C') Return a copy of the array. Parameters order{‘C’, ‘F’, ‘A’, ‘K’}, optional Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible. (Note that this function and numpy.copy are very similar but have different default values for their order= arguments, and this function always passes sub-classes through.) See also numpy.copy Similar function with different default behavior numpy.copyto Notes This function is the preferred method for creating an array copy. The function numpy.copy is similar, but it defaults to using order ‘K’, and will not pass sub-classes through by default. Examples >>> x = np.array([[1,2,3],[4,5,6]], order='F') >>> y = x.copy() >>> x.fill(0) >>> x array([[0, 0, 0], [0, 0, 0]]) >>> y array([[1, 2, 3], [4, 5, 6]]) >>> y.flags['C_CONTIGUOUS'] True
numpy.reference.generated.numpy.chararray.copy
numpy.chararray.count method chararray.count(sub, start=0, end=None)[source] Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end]. See also char.count
numpy.reference.generated.numpy.chararray.count
numpy.chararray.ctypes attribute chararray.ctypes An object to simplify the interaction of the array with the ctypes module. This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library. Parameters None Returns cPython object Possessing attributes data, shape, strides, etc. See also numpy.ctypeslib Notes Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes): _ctypes.data A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as self._array_interface_['data'][0]. Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p((a + b).ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b).ctypes.data_as(ctypes.c_void_p) _ctypes.shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to dtype('p') on this platform (see c_intp). This base-type could be ctypes.c_int, ctypes.c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of the underlying array. _ctypes.strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array. _ctypes.data_as(obj)[source] Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)). The returned pointer will keep a reference to the array. _ctypes.shape_as(obj)[source] Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.c_short). _ctypes.strides_as(obj)[source] Return the strides tuple as an array of some other c-types type. For example: self.strides_as(ctypes.c_longlong). If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as_parameter attribute which will return an integer equal to the data attribute. Examples >>> import ctypes >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32) >>> x array([[0, 1], [2, 3]], dtype=int32) >>> x.ctypes.data 31962608 # may vary >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)) <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents c_uint(0) >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents c_ulong(4294967296) >>> x.ctypes.shape <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary >>> x.ctypes.strides <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary
numpy.reference.generated.numpy.chararray.ctypes
numpy.chararray.data attribute chararray.data Python buffer object pointing to the start of the array’s data.
numpy.reference.generated.numpy.chararray.data
numpy.chararray.decode method chararray.decode(encoding=None, errors=None)[source] Calls str.decode element-wise. See also char.decode
numpy.reference.generated.numpy.chararray.decode
numpy.chararray.dump method chararray.dump(file) Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load. Parameters filestr or Path A string naming the dump file. Changed in version 1.17.0: pathlib.Path objects are now accepted.
numpy.reference.generated.numpy.chararray.dump
numpy.chararray.dumps method chararray.dumps() Returns the pickle of the array as a string. pickle.loads will convert the string back to an array. Parameters None
numpy.reference.generated.numpy.chararray.dumps
numpy.chararray.encode method chararray.encode(encoding=None, errors=None)[source] Calls str.encode element-wise. See also char.encode
numpy.reference.generated.numpy.chararray.encode
numpy.chararray.endswith method chararray.endswith(suffix, start=0, end=None)[source] Returns a boolean array which is True where the string element in self ends with suffix, otherwise False. See also char.endswith
numpy.reference.generated.numpy.chararray.endswith
numpy.chararray.expandtabs method chararray.expandtabs(tabsize=8)[source] Return a copy of each string element where all tab characters are replaced by one or more spaces. See also char.expandtabs
numpy.reference.generated.numpy.chararray.expandtabs
numpy.chararray.fill method chararray.fill(value) Fill the array with a scalar value. Parameters valuescalar All elements of a will be assigned this value. Examples >>> a = np.array([1, 2]) >>> a.fill(0) >>> a array([0, 0]) >>> a = np.empty(2) >>> a.fill(1) >>> a array([1., 1.])
numpy.reference.generated.numpy.chararray.fill
numpy.chararray.find method chararray.find(sub, start=0, end=None)[source] For each element, return the lowest index in the string where substring sub is found. See also char.find
numpy.reference.generated.numpy.chararray.find
numpy.chararray.flags attribute chararray.flags Information about the memory layout of the array. Notes The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access. Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags. The array flags cannot be set arbitrarily: UPDATEIFCOPY can only be set False. WRITEBACKIFCOPY can only be set False. ALIGNED can only be set True if the data is truly aligned. WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory exposes a writeable buffer interface or is a string. Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but can also be true for higher dimensional arrays. Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true. Attributes C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment. F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment. OWNDATA (O) The array owns the memory it uses or borrows it from another object. WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception. ALIGNED (A) The data and all elements are aligned appropriately for the hardware. WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will be updated with the contents of this array. UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array. FNC F_CONTIGUOUS and not C_CONTIGUOUS. FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). BEHAVED (B) ALIGNED and WRITEABLE. CARRAY (CA) BEHAVED and C_CONTIGUOUS. FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
numpy.reference.generated.numpy.chararray.flags
numpy.chararray.flat attribute chararray.flat A 1-D iterator over the array. This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object. See also flatten Return a copy of the array collapsed into one dimension. flatiter Examples >>> x = np.arange(1, 7).reshape(2, 3) >>> x array([[1, 2, 3], [4, 5, 6]]) >>> x.flat[3] 4 >>> x.T array([[1, 4], [2, 5], [3, 6]]) >>> x.T.flat[3] 5 >>> type(x.flat) <class 'numpy.flatiter'> An assignment example: >>> x.flat = 3; x array([[3, 3, 3], [3, 3, 3]]) >>> x.flat[[1,4]] = 1; x array([[3, 1, 3], [3, 1, 3]])
numpy.reference.generated.numpy.chararray.flat
numpy.chararray.flatten method chararray.flatten(order='C') Return a copy of the array collapsed into one dimension. Parameters order{‘C’, ‘F’, ‘A’, ‘K’}, optional ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’. Returns yndarray A copy of the input array, flattened to one dimension. See also ravel Return a flattened array. flat A 1-D flat iterator over the array. Examples >>> a = np.array([[1,2], [3,4]]) >>> a.flatten() array([1, 2, 3, 4]) >>> a.flatten('F') array([1, 3, 2, 4])
numpy.reference.generated.numpy.chararray.flatten
numpy.chararray.getfield method chararray.getfield(dtype, offset=0) Returns a field of the given array as a certain type. A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes. Parameters dtypestr or dtype The data type of the view. The dtype size of the view can not be larger than that of the array itself. offsetint Number of bytes to skip before beginning the element view. Examples >>> x = np.diag([1.+1.j]*2) >>> x[1, 1] = 2 + 4.j >>> x array([[1.+1.j, 0.+0.j], [0.+0.j, 2.+4.j]]) >>> x.getfield(np.float64) array([[1., 0.], [0., 2.]]) By choosing an offset of 8 bytes we can select the complex part of the array for our view: >>> x.getfield(np.float64, offset=8) array([[1., 0.], [0., 4.]])
numpy.reference.generated.numpy.chararray.getfield
numpy.chararray.index method chararray.index(sub, start=0, end=None)[source] Like find, but raises ValueError when the substring is not found. See also char.index
numpy.reference.generated.numpy.chararray.index