title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Q-Ball: Modeling Basketball Games Using Deep Reinforcement Learning
| null |
Basketball is one of the most popular types of sports in the world. Recent technological developments have made it possible to collect large amounts of data on the game, analyze it, and discover new insights. We propose a novel approach for modeling basketball games using deep reinforcement learning. By analyzing multiple aspects of both the players and the game, we are able to model the latent connections among players' movements, actions, and performance, into a single measure - the Q-Ball. Using Q-Ball, we are able to assign scores to the performance of both players and whole teams. Our approach has multiple practical applications, including evaluating and improving players' game decisions and producing tactical recommendations. We train and evaluate our approach on a large dataset of National Basketball Association games, and show that the Q-Ball is capable of accurately assessing the performance of players and teams. Furthermore, we show that Q-Ball is highly effective in recommending alternatives to players' actions.
|
Chen Yanai, Adir Solomon, Gilad Katz, Bracha Shapira, Lior Rokach
| null | null | 2,022 |
aaai
|
Deep Incomplete Multi-View Clustering via Mining Cluster Complementarity
| null |
Incomplete multi-view clustering (IMVC) is an important unsupervised approach to group the multi-view data containing missing data in some views. Previous IMVC methods suffer from the following issues: (1) the inaccurate imputation or padding for missing data negatively affects the clustering performance, (2) the quality of features after fusion might be interfered by the low-quality views, especially the inaccurate imputed views. To avoid these issues, this work presents an imputation-free and fusion-free deep IMVC framework. First, the proposed method builds a deep embedding feature learning and clustering model for each view individually. Our method then nonlinearly maps the embedding features of complete data into a high-dimensional space to discover linear separability. Concretely, this paper provides an implementation of the high-dimensional mapping as well as shows the mechanism to mine the multi-view cluster complementarity. This complementary information is then transformed to the supervised information with high confidence, aiming to achieve the multi-view clustering consistency for the complete data and incomplete data. Furthermore, we design an EM-like optimization strategy to alternately promote feature learning and clustering. Extensive experiments on real-world multi-view datasets demonstrate that our method achieves superior clustering performance over state-of-the-art methods.
|
Jie Xu, Chao Li, Yazhou Ren, Liang Peng, Yujie Mo, Xiaoshuang Shi, Xiaofeng Zhu
| null | null | 2,022 |
aaai
|
Seizing Critical Learning Periods in Federated Learning
| null |
Federated learning (FL) is a popular technique to train machine learning (ML) models with decentralized data. Extensive works have studied the performance of the global model; however, it is still unclear how the training process affects the final test accuracy. Exacerbating this problem is the fact that FL executions differ significantly from traditional ML with heterogeneous data characteristics across clients, involving more hyperparameters. In this work, we show that the final test accuracy of FL is dramatically affected by the early phase of the training process, i.e., FL exhibits critical learning periods, in which small gradient errors can have irrecoverable impact on the final test accuracy. To further explain this phenomenon, we generalize the trace of the Fisher Information Matrix (FIM) to FL and define a new notation called FedFIM, a quantity reflecting the local curvature of each clients from the beginning of the training in FL. Our findings suggest that the initial learning phase plays a critical role in understanding the FL performance. This is in contrast to many existing works which generally do not connect the final accuracy of FL to the early phase training. Finally, seizing critical learning periods in FL is of independent interest and could be useful for other problems such as the choices of hyperparameters including but not limited to the number of client selected per round, batch size, so as to improve the performance of FL training and testing.
|
Gang Yan, Hao Wang, Jian Li
| null | null | 2,022 |
aaai
|
Towards Off-Policy Learning for Ranking Policies with Logged Feedback
| null |
Probabilistic learning to rank (LTR) has been the dominating approach for optimizing the ranking metric, but cannot maximize long-term rewards. Reinforcement learning models have been proposed to maximize user long-term rewards by formulating the recommendation as a sequential decision-making problem, but could only achieve inferior accuracy compared to LTR counterparts, primarily due to the lack of online interactions and the characteristics of ranking. In this paper, we propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline for improved sample efficiency in a unified Expectation-Maximization (EM) framework. We theoretically and empirically show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions. Extensive offline and online experiments demonstrate the effectiveness of our methods
|
Teng Xiao, Suhang Wang
| null | null | 2,022 |
aaai
|
Training a Resilient Q-network against Observational Interference
| null |
Deep reinforcement learning (DRL) has demonstrated impressive performance in various gaming simulators and real-world applications. In practice, however, a DRL agent may receive faulty observation by abrupt interferences such as black-out, frozen-screen, and adversarial perturbation. How to design a resilient DRL algorithm against these rare but mission-critical and safety-crucial scenarios is an essential yet challenging task. In this paper, we consider a deep q-network (DQN) framework training with an auxiliary task of observational interferences such as artificial noises. Inspired by causal inference for observational interference, we propose a causal inference based DQN algorithm called causal inference Q-network (CIQ). We evaluate the performance of CIQ in several benchmark DQN environments with different types of interferences as auxiliary labels. Our experimental results show that the proposed CIQ method could achieve higher performance and more resilience against observational interferences.
|
Chao-Han Huck Yang, I-Te Danny Hung, Yi Ouyang, Pin-Yu Chen
| null | null | 2,022 |
aaai
|
Linearity-Aware Subspace Clustering
| null |
Obtaining a good similarity matrix is extremely important in subspace clustering. Current state-of-the-art methods learn the similarity matrix through self-expressive strategy. However, these methods directly adopt original samples as a set of basis to represent itself linearly. It is difficult to accurately describe the linear relation between samples in the real-world applications, and thus is hard to find an ideal similarity matrix. To better represent the linear relation of samples, we present a subspace clustering model, Linearity-Aware Subspace Clustering (LASC), which can consciously learn the similarity matrix by employing a linearity-aware metric. This is a new subspace clustering method that combines metric learning and subspace clustering into a joint learning framework. In our model, we first utilize the self-expressive strategy to obtain an initial subspace structure and discover a low-dimensional representation of the original data. Subsequently, we use the proposed metric to learn an intrinsic similarity matrix with linearity-aware on the obtained subspace. Based on such a learned similarity matrix, the inter-cluster distance becomes larger than the intra-cluster distances, and thus successfully obtaining a good subspace cluster result. In addition, to enrich the similarity matrix with more consistent knowledge, we adopt a collaborative learning strategy for self-expressive subspace learning and linearity-aware subspace learning. Moreover, we provide detailed mathematical analysis to show that the metric can properly characterize the linear correlation between samples.
|
Yesong Xu, Shuo Chen, Jun Li, Jianjun Qian
| null | null | 2,022 |
aaai
|
Listwise Learning to Rank Based on Approximate Rank Indicators
| null |
We study here a way to approximate information retrieval metrics through a softmax-based approximation of the rank indicator function. Indeed, this latter function is a key component in the design of information retrieval metrics, as well as in the design of the ranking and sorting functions. Obtaining a good approximation for it thus opens the door to differentiable approximations of many evaluation measures that can in turn be used in neural end-to-end approaches. We first prove theoretically that the approximations proposed are of good quality, prior to validate them experimentally on both learning to rank and text-based information retrieval tasks.
|
Thibaut Thonet, Yagmur Gizem Cinar, Eric Gaussier, Minghan Li, Jean-Michel Renders
| null | null | 2,022 |
aaai
|
Efficient Algorithms for General Isotone Optimization
| null |
Monotonicity is often a fundamental assumption involved in the modeling of a number of real-world applications. From an optimization perspective, monotonicity is formulated as partial order constraints among the optimization variables, commonly known as isotone optimization. In this paper, we develop an efficient, provable convergent algorithm for solving isotone optimization problems. The proposed algorithm is general in the sense that it can handle any arbitrary isotonic constraints and a wide range of objective functions. We evaluate our algorithm and state-of-the-art methods with experiments involving both synthetic and real-world data. The experimental results demonstrate that our algorithm is more efficient by one to four orders of magnitude than the state-of-the-art methods.
|
Xiwen Wang, Jiaxi Ying, José Vinícius de M. Cardoso, Daniel P. Palomar
| null | null | 2,022 |
aaai
|
PrivateMail: Supervised Manifold Learning of Deep Features with Privacy for Image Retrieval
| null |
Differential Privacy offers strong guarantees such as immutable privacy under any post-processing. In this work, we propose a differentially private mechanism called PrivateMail for performing supervised manifold learning. We then apply it to the use case of private image retrieval to obtain nearest matches to a client’s target image from a server’s database. PrivateMail releases the target image as part of a differentially private manifold embedding. We give bounds on the global sensitivity of the manifold learning map in order to obfuscate and release embeddings with differential privacy inducing noise. We show that PrivateMail obtains a substantially better performance in terms of the privacy-utility trade off in comparison to several baselines on various datasets. We share code for applying PrivateMail at http://tiny.cc/PrivateMail.
|
Praneeth Vepakomma, Julia Balla, Ramesh Raskar
| null | null | 2,022 |
aaai
|
Efficient Causal Structure Learning from Multiple Interventional Datasets with Unknown Targets
| null |
We consider the problem of reducing the false discovery rate in multiple high-dimensional interventional datasets under unknown targets. Traditional algorithms merged directly multiple causal graphs learned, which ignores the contradictions of different datasets, leading to lots of inconsistent directions of edges. For reducing the contradictory information, we propose a new algorithm, which first learns an interventional Markov equivalence class (I-MEC) before merging multiple graphs. It utilizes the full power of the constraints available in interventional data and combines ideas from local learning, intervention, and search-and-score techniques in a principled and effective way in different intervention experiments. Specifically, local learning on multiple datasets is used to build a causal skeleton. Perfect intervention destroys some possible triangles, leading to the identification of more possible V-structures. And then a theoretically correct I-MEC is learned. Search and scoring techniques based on the learned I-MEC further identify the remaining unoriented edges. Both theoretical analysis and experiments on benchmark Bayesian networks with the number of variables from 20 to 724 validate that the effectiveness of our algorithm in reducing the false discovery rate in high-dimensional interventional data.
|
Yunxia Wang, Fuyuan Cao, Kui Yu, Jiye Liang
| null | null | 2,022 |
aaai
|
Robust Optimal Classification Trees against Adversarial Examples
| null |
Decision trees are a popular choice of explainable model, but just like neural networks, they suffer from adversarial examples. Existing algorithms for fitting decision trees robust against adversarial examples are greedy heuristics and lack approximation guarantees. In this paper we propose ROCT, a collection of methods to train decision trees that are optimally robust against user-specified attack models. We show that the min-max optimization problem that arises in adversarial learning can be solved using a single minimization formulation for decision trees with 0-1 loss. We propose such formulations in Mixed-Integer Linear Programming and Maximum Satisfiability, which widely available solvers can optimize. We also present a method that determines the upper bound on adversarial accuracy for any model using bipartite matching. Our experimental results demonstrate that the existing heuristics achieve close to optimal scores while ROCT achieves state-of-the-art scores.
|
Daniël Vos, Sicco Verwer
| null | null | 2,022 |
aaai
|
Amortized Generation of Sequential Algorithmic Recourses for Black-Box Models
| null |
Explainable machine learning (ML) has gained traction in recent years due to the increasing adoption of ML-based systems in many sectors. Algorithmic Recourses (ARs) provide "what if" feedback of the form "if an input datapoint were x' instead of x, then an ML-based system's output would be y' instead of y." Recourses are attractive due to their actionable feedback, amenability to existing legal frameworks, and fidelity to the underlying ML model. Yet, current recourse approaches are single shot that is, they assume x can change to x' in a single time period. We propose a novel stochastic-control-based approach that generates sequential recourses, that is, recourses that allow x to move stochastically and sequentially across intermediate states to a final state x'. Our approach is model agnostic and black box. Furthermore, the calculation of recourses is amortized such that once trained, it applies to multiple datapoints without the need for re-optimization. In addition to these primary characteristics, our approach admits optional desiderata such as adherence to the data manifold, respect for causal relations, and sparsity identified by past research as desirable properties of recourses. We evaluate our approach using three real-world datasets and show successful generation of sequential recourses that respect other recourse desiderata.
|
Sahil Verma, Keegan Hines, John P. Dickerson
| null | null | 2,022 |
aaai
|
Continual Learning through Retrieval and Imagination
| null |
Continual learning is an intellectual ability of artificial agents to learn new streaming labels from sequential data. The main impediment to continual learning is catastrophic forgetting, a severe performance degradation on previously learned tasks. Although simply replaying all previous data or continuously adding the model parameters could alleviate the issue, it is impractical in real-world applications due to the limited available resources. Inspired by the mechanism of the human brain to deepen its past impression, we propose a novel framework, Deep Retrieval and Imagination (DRI), which consists of two components: 1) an embedding network that constructs a unified embedding space without adding model parameters on the arrival of new tasks; and 2) a generative model to produce additional (imaginary) data based on the limited memory. By retrieving the past experiences and corresponding imaginary data, DRI distills knowledge and rebalances the embedding space to further mitigate forgetting. Theoretical analysis demonstrates that DRI can reduce the loss approximation error and improve the robustness through retrieval and imagination, bringing better generalizability to the network. Extensive experiments show that DRI performs significantly better than the existing state-of-the-art continual learning methods and effectively alleviates catastrophic forgetting.
|
Zhen Wang, Liu Liu, Yiqun Duan, Dacheng Tao
| null | null | 2,022 |
aaai
|
Context Uncertainty in Contextual Bandits with Applications to Recommender Systems
| null |
Recurrent neural networks have proven effective in modeling sequential user feedbacks for recommender systems. However, they usually focus solely on item relevance and fail to effectively explore diverse items for users, therefore harming the system performance in the long run. To address this problem, we propose a new type of recurrent neural networks, dubbed recurrent exploration networks (REN), to jointly perform representation learning and effective exploration in the latent space. REN tries to balance relevance and exploration while taking into account the uncertainty in the representations. Our theoretical analysis shows that REN can preserve the rate-optimal sublinear regret even when there exists uncertainty in the learned representations. Our empirical study demonstrates that REN can achieve satisfactory long-term rewards on both synthetic and real-world recommendation datasets, outperforming state-of-the-art models.
|
Hao Wang, Yifei Ma, Hao Ding, Yuyang Wang
| null | null | 2,022 |
aaai
|
Spline-PINN: Approaching PDEs without Data Using Fast, Physics-Informed Hermite-Spline CNNs
| null |
Partial Differential Equations (PDEs) are notoriously difficult to solve. In general, closed form solutions are not available and numerical approximation schemes are computationally expensive. In this paper, we propose to approach the solution of PDEs based on a novel technique that combines the advantages of two recently emerging machine learning based approaches. First, physics-informed neural networks (PINNs) learn continuous solutions of PDEs and can be trained with little to no ground truth data. However, PINNs do not generalize well to unseen domains. Second, convolutional neural networks provide fast inference and generalize but either require large amounts of training data or a physics-constrained loss based on finite differences that can lead to inaccuracies and discretization artifacts. We leverage the advantages of both of these approaches by using Hermite spline kernels in order to continuously interpolate a grid-based state representation that can be handled by a CNN. This allows for training without any precomputed training data using a physics-informed loss function only and provides fast, continuous solutions that generalize to unseen domains. We demonstrate the potential of our method at the examples of the incompressible Navier-Stokes equation and the damped wave equation. Our models are able to learn several intriguing phenomena such as Karman vortex streets, the Magnus effect, Doppler effect, interference patterns and wave reflections. Our quantitative assessment and an interactive real-time demo show that we are narrowing the gap in accuracy of unsupervised ML based methods to industrial solvers for computational fluid dynamics (CFD) while being orders of magnitude faster.
|
Nils Wandel, Michael Weinmann, Michael Neidlin, Reinhard Klein
| null | null | 2,022 |
aaai
|
Sample-Efficient Reinforcement Learning via Conservative Model-Based Actor-Critic
| null |
Model-based reinforcement learning algorithms, which aim to learn a model of the environment to make decisions, are more sample efficient than their model-free counterparts. The sample efficiency of model-based approaches relies on whether the model can well approximate the environment. However, learning an accurate model is challenging, especially in complex and noisy environments. To tackle this problem, we propose the conservative model-based actor-critic (CMBAC), a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models. Specifically, CMBAC learns multiple estimates of the Q-value function from a set of inaccurate models and uses the average of the bottom-k estimates---a conservative estimate---to optimize the policy. An appealing feature of CMBAC is that the conservative estimates effectively encourage the agent to avoid unreliable “promising actions”---whose values are high in only a small fraction of the models. Experiments demonstrate that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging control tasks, and the proposed method is more robust than previous methods in noisy environments.
|
Zhihai Wang, Jie Wang, Qi Zhou, Bin Li, Houqiang Li
| null | null | 2,022 |
aaai
|
Controlling Underestimation Bias in Reinforcement Learning via Quasi-median Operation
| null |
How to get a good value estimation is one of the key problems in reinforcement learning (RL). Current off-policy methods, such as Maxmin Q-learning, TD3 and TADD, suffer from the underestimation problem when solving the overestimation problem. In this paper, we propose the Quasi-Median Operation, a novel way to mitigate the underestimation bias by selecting the quasi-median from multiple state-action values. Based on the quasi-median operation, we propose Quasi-Median Q-learning (QMQ) for the discrete action tasks and Quasi-Median Delayed Deep Deterministic Policy Gradient (QMD3) for the continuous action tasks. Theoretically, the underestimation bias of our method is improved while the estimation variance is significantly reduced compared to Maxmin Q-learning, TD3 and TADD. We conduct extensive experiments on the discrete and continuous action tasks, and results show that our method outperforms the state-of-the-art methods.
|
Wei Wei, Yujia Zhang, Jiye Liang, Lin Li, Yyuze Li
| null | null | 2,022 |
aaai
|
Symbolic Brittleness in Sequence Models: On Systematic Generalization in Symbolic Mathematics
| null |
Neural sequence models trained with maximum likelihood estimation have led to breakthroughs in many tasks, where success is defined by the gap between training and test performance. However, their ability to achieve stronger forms of generalization remains unclear. We consider the problem of symbolic mathematical integration, as it requires generalizing systematically beyond the training set. We develop a methodology for evaluating generalization that takes advantage of the problem domain's structure and access to a verifier. Despite promising in-distribution performance of sequence-to-sequence models in this domain, we demonstrate challenges in achieving robustness, compositionality, and out-of-distribution generalization, through both carefully constructed manual test suites and a genetic algorithm that automatically finds large collections of failures in a controllable manner. Our investigation highlights the difficulty of generalizing well with the predominant modeling and learning approach, and the importance of evaluating beyond the test set, across different aspects of generalization.
|
Sean Welleck, Peter West, Jize Cao, Yejin Choi
| null | null | 2,022 |
aaai
|
Gradient-Based Novelty Detection Boosted by Self-Supervised Binary Classification
| null |
Novelty detection aims to automatically identify out-of-distribution (OOD) data, without any prior knowledge of them. It is a critical step in data monitoring, behavior analysis and other applications, helping enable continual learning in the field. Conventional methods of OOD detection perform multi-variate analysis on an ensemble of data or features, and usually resort to the supervision with OOD data to improve the accuracy. In reality, such supervision is impractical as one cannot anticipate the anomalous data. In this paper, we propose a novel, self-supervised approach that does not rely on any pre-defined OOD data: (1) The new method evaluates the Mahalanobis distance of the gradients between the in-distribution and OOD data. (2) It is assisted by a self-supervised binary classifier to guide the label selection to generate the gradients, and maximize the Mahalanobis distance. In the evaluation with multiple datasets, such as CIFAR-10, CIFAR-100, SVHN and TinyImageNet, the proposed approach consistently outperforms state-of-the-art supervised and unsupervised methods in the area under the receiver operating characteristic (AUROC) and area under the precision-recall curve (AUPR) metrics. We further demonstrate that this detector is able to accurately learn one OOD class in continual learning.
|
Jingbo Sun, Li Yang, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, Deliang Fan, Yu Cao
| null | null | 2,022 |
aaai
|
PluGeN: Multi-Label Conditional Generation from Pre-trained Models
| null |
Modern generative models achieve excellent quality in a variety of tasks including image or text generation and chemical molecule modeling. However, existing methods often lack the essential ability to generate examples with requested properties, such as the age of the person in the photo or the weight of the generated molecule. Incorporating such additional conditioning factors would require rebuilding the entire architecture and optimizing the parameters from scratch. Moreover, it is difficult to disentangle selected attributes so that to perform edits of only one attribute while leaving the others unchanged. To overcome these limitations we propose PluGeN (Plugin Generative Network), a simple yet effective generative technique that can be used as a plugin to pre-trained generative models. The idea behind our approach is to transform the entangled latent representation using a flow-based module into a multi-dimensional space where the values of each attribute are modeled as an independent one-dimensional distribution. In consequence, PluGeN can generate new samples with desired attributes as well as manipulate labeled attributes of existing examples. Due to the disentangling of the latent representation, we are even able to generate samples with rare or unseen combinations of attributes in the dataset, such as a young person with gray hair, men with make-up, or women with beards. We combined PluGeN with GAN and VAE models and applied it to conditional generation and manipulation of images and chemical molecule modeling. Experiments demonstrate that PluGeN preserves the quality of backbone models while adding the ability to control the values of labeled attributes. Implementation is available at https://github.com/gmum/plugen.
|
Maciej Wołczyk, Magdalena Proszewska, Łukasz Maziarka, Maciej Zieba, Patryk Wielopolski, Rafał Kurczab, Marek Smieja
| null | null | 2,022 |
aaai
|
QUILT: Effective Multi-Class Classification on Quantum Computers Using an Ensemble of Diverse Quantum Classifiers
| null |
Quantum computers can theoretically have significant acceleration over classical computers; but, the near-future era of quantum computing is limited due to small number of qubits that are also error prone. QUILT is a framework for performing multi-class classification task designed to work effectively on current error-prone quantum computers. QUILT is evaluated with real quantum machines as well as with projected noise levels as quantum machines become more noise free. QUILT demonstrates up to 85% multi-class classification accuracy with the MNIST dataset on a five-qubit system.
|
Daniel Silver, Tirthak Patel, Devesh Tiwari
| null | null | 2,022 |
aaai
|
Prune and Tune Ensembles: Low-Cost Ensemble Learning with Sparse Independent Subnetworks
| null |
Ensemble Learning is an effective method for improving generalization in machine learning. However, as state-of-the-art neural networks grow larger, the computational cost associated with training several independent networks becomes expensive. We introduce a fast, low-cost method for creating diverse ensembles of neural networks without needing to train multiple models from scratch. We do this by first training a single parent network. We then create child networks by cloning the parent and dramatically pruning the parameters of each child to create an ensemble of members with unique and diverse topologies. We then briefly train each child network for a small number of epochs, which now converge significantly faster when compared to training from scratch. We explore various ways to maximize diversity in the child networks, including the use of anti-random pruning and one-cycle tuning. This diversity enables "Prune and Tune" ensembles to achieve results that are competitive with traditional ensembles at a fraction of the training cost. We benchmark our approach against state of the art low-cost ensemble methods and display marked improvement in both accuracy and uncertainty estimation on CIFAR-10 and CIFAR-100.
|
Tim Whitaker, Darrell Whitley
| null | null | 2,022 |
aaai
|
Noise-Robust Learning from Multiple Unsupervised Sources of Inferred Labels
| null |
Deep Neural Networks (DNNs) generally require large-scale datasets for training. Since manually obtaining clean labels for large datasets is extremely expensive, unsupervised models based on domain-specific heuristics can be used to efficiently infer the labels for such datasets. However, the labels from such inferred sources are typically noisy, which could easily mislead and lessen the generalizability of DNNs. Most approaches proposed in the literature to address this problem assume the label noise depends only on the true class of an instance (i.e., class-conditional noise). However, this assumption is not realistic for the inferred labels as they are typically inferred based on the features of the instances. The few recent attempts to model such instance-dependent (i.e., feature-dependent) noise require auxiliary information about the label noise (e.g., noise rates or clean samples). This work proposes a theoretically motivated framework to correct label noise in the presence of multiple labels inferred from unsupervised models. The framework consists of two modules: (1) MULTI-IDNC, a novel approach to correct label noise that is instance-dependent yet not class-conditional; (2) MULTI-CCNC, which extends an existing class-conditional noise-robust approach to yield improved class-conditional noise correction using multiple noisy label sources. We conduct experiments using nine real-world datasets for three different classification tasks (images, text and graph nodes). Our results show that our approach achieves notable improvements (e.g., 6.4% in accuracy) against state-of-the-art baselines while dealing with both instance-dependent and class-conditional noise in inferred label sources.
|
Amila Silva, Ling Luo, Shanika Karunasekera, Christopher Leckie
| null | null | 2,022 |
aaai
|
Constraint-Driven Explanations for Black-Box ML Models
| null |
The need to understand the inner workings of opaque Machine Learning models has prompted researchers to devise various types of post-hoc explanations. A large class of such explainers proceed in two phases: first perturb an input instance whose explanation is sought, and then generate an interpretable artifact to explain the prediction of the opaque model on that instance. Recently, Deutch and Frost proposed to use an additional input from the user: a set of constraints over the input space to guide the perturbation phase. While this approach affords the user the ability to tailor the explanation to their needs, striking a balance between flexibility, theoretical rigor and computational cost has remained an open challenge. We propose a novel constraint-driven explanation generation approach which simultaneously addresses these issues in a modular fashion. Our framework supports the use of expressive Boolean constraints giving the user more flexibility to specify the subspace to generate perturbations from. Leveraging advances in Formal Methods, we can theoretically guarantee strict adherence of the samples to the desired distribution. This also allows us to compute fidelity in a rigorous way, while scaling much better in practice. Our empirical study demonstrates concrete uses of our tool CLIME in obtaining more meaningful explanations with high fidelity.
|
Aditya A. Shrotri, Nina Narodytska, Alexey Ignatiev, Kuldeep S Meel, Joao Marques-Silva, Moshe Y. Vardi
| null | null | 2,022 |
aaai
|
ApproxIFER: A Model-Agnostic Approach to Resilient and Robust Prediction Serving Systems
| null |
Due to the surge of cloud-assisted AI services, the problem of designing resilient prediction serving systems that can effectively cope with stragglers and minimize response delays has attracted much interest. The common approach for tackling this problem is replication which assigns the same prediction task to multiple workers. This approach, however, is inefficient and incurs significant resource overheads. Hence, a learning-based approach known as parity model (ParM) has been recently proposed which learns models that can generate ``parities’’ for a group of predictions to reconstruct the predictions of the slow/failed workers. While this learning-based approach is more resource-efficient than replication, it is tailored to the specific model hosted by the cloud and is particularly suitable for a small number of queries (typically less than four) and tolerating very few stragglers (mostly one). Moreover, ParM does not handle Byzantine adversarial workers. We propose a different approach, named Approximate Coded Inference (ApproxIFER), that does not require training any parity models, hence it is agnostic to the model hosted by the cloud and can be readily applied to different data domains and model architectures. Compared with earlier works, ApproxIFER can handle a general number of stragglers and scales significantly better with the number of queries. Furthermore, ApproxIFER is robust against Byzantine workers. Our extensive experiments on a large number of datasets and model architectures show significant degraded mode accuracy improvement by up to 58% over ParM.
|
Mahdi Soleymani, Ramy E. Ali, Hessam Mahdavifar, A. Salman Avestimehr
| null | null | 2,022 |
aaai
|
Explainable and Local Correction of Classification Models Using Decision Trees
| null |
In practical machine learning, models are frequently updated, or corrected, to adapt to new datasets. In this study, we pose two challenges to model correction. First, the effects of corrections to the end-users need to be described explicitly, similar to standard software where the corrections are described as release notes. Second, the amount of corrections need to be small so that the corrected models perform similarly to the old models. In this study, we propose the first model correction method for classification models that resolves these two challenges. Our idea is to use an additional decision tree to correct the output of the old models. Thanks to the explainability of decision trees, the corrections are describable to the end-users, which resolves the first challenge. We resolve the second challenge by incorporating the amount of corrections when training the additional decision tree so that the effects of corrections to be small. Experiments on real data confirm the effectiveness of the proposed method compared to existing correction methods.
|
Hirofumi Suzuki, Hiroaki Iwashita, Takuya Takagi, Keisuke Goto, Yuta Fujishige, Satoshi Hara
| null | null | 2,022 |
aaai
|
Deterministic and Discriminative Imitation (D2-Imitation): Revisiting Adversarial Imitation for Sample Efficiency
| null |
Sample efficiency is crucial for imitation learning methods to be applicable in real-world applications. Many studies improve sample efficiency by extending adversarial imitation to be off-policy regardless of the fact that these off-policy extensions could either change the original objective or involve complicated optimization. We revisit the foundation of adversarial imitation and propose an off-policy sample efficient approach that requires no adversarial training or min-max optimization. Our formulation capitalizes on two key insights: (1) the similarity between the Bellman equation and the stationary state-action distribution equation allows us to derive a novel temporal difference (TD) learning approach; and (2) the use of a deterministic policy simplifies the TD learning. Combined, these insights yield a practical algorithm, Deterministic and Discriminative Imitation (D2-Imitation), which oper- ates by first partitioning samples into two replay buffers and then learning a deterministic policy via off-policy reinforcement learning. Our empirical results show that D2-Imitation is effective in achieving good sample efficiency, outperforming several off-policy extension approaches of adversarial imitation on many control tasks.
|
Mingfei Sun, Sam Devlin, Katja Hofmann, Shimon Whiteson
| null | null | 2,022 |
aaai
|
Generalized Equivariance and Preferential Labeling for GNN Node Classification
| null |
Existing graph neural networks (GNNs) largely rely on node embeddings, which represent a node as a vector by its identity, type, or content. However, graphs with unattributed nodes widely exist in real-world applications (e.g., anonymized social networks). Previous GNNs either assign random labels to nodes (which introduces artefacts to the GNN) or assign one embedding to all nodes (which fails to explicitly distinguish one node from another). Further, when these GNNs are applied to unattributed node classification problems, they have an undesired equivariance property, which are fundamentally unable to address the data with multiple possible outputs. In this paper, we analyze the limitation of existing approaches to node classification problems. Inspired by our analysis, we propose a generalized equivariance property and a Preferential Labeling technique that satisfies the desired property asymptotically. Experimental results show that we achieve high performance in several unattributed node classification tasks.
|
Zeyu Sun, Wenjie Zhang, Lili Mou, Qihao Zhu, Yingfei Xiong, Lu Zhang
| null | null | 2,022 |
aaai
|
Demystifying Why Local Aggregation Helps: Convergence Analysis of Hierarchical SGD
| null |
Hierarchical SGD (H-SGD) has emerged as a new distributed SGD algorithm for multi-level communication networks. In H-SGD, before each global aggregation, workers send their updated local models to local servers for aggregations. Despite recent research efforts, the effect of local aggregation on global convergence still lacks theoretical understanding. In this work, we first introduce a new notion of "upward" and "downward" divergences. We then use it to conduct a novel analysis to obtain a worst-case convergence upper bound for two-level H-SGD with non-IID data, non-convex objective function, and stochastic gradient. By extending this result to the case with random grouping, we observe that this convergence upper bound of H-SGD is between the upper bounds of two single-level local SGD settings, with the number of local iterations equal to the local and global update periods in H-SGD, respectively. We refer to this as the "sandwich behavior". Furthermore, we extend our analytical approach based on "upward" and "downward" divergences to study the convergence for the general case of H-SGD with more than two levels, where the "sandwich behavior" still holds. Our theoretical results provide key insights of why local aggregation can be beneficial in improving the convergence of H-SGD.
|
Jiayi Wang, Shiqiang Wang, Rong-Rong Chen, Mingyue Ji
| null | null | 2,022 |
aaai
|
Regularization Guarantees Generalization in Bayesian Reinforcement Learning through Algorithmic Stability
| null |
In the Bayesian reinforcement learning (RL) setting, a prior distribution over the unknown problem parameters -- the rewards and transitions -- is assumed, and a policy that optimizes the (posterior) expected return is sought. A common approximation, which has been recently popularized as meta-RL, is to train the agent on a sample of N problem instances from the prior, with the hope that for large enough N, good generalization behavior to an unseen test instance will be obtained. In this work, we study generalization in Bayesian RL under the probably approximately correct (PAC) framework, using the method of algorithmic stability. Our main contribution is showing that by adding regularization, the optimal policy becomes uniformly stable in an appropriate sense. Most stability results in the literature build on strong convexity of the regularized loss -- an approach that is not suitable for RL as Markov decision processes (MDPs) are not convex. Instead, building on recent results of fast convergence rates for mirror descent in regularized MDPs, we show that regularized MDPs satisfy a certain quadratic growth criterion, which is sufficient to establish stability. This result, which may be of independent interest, allows us to study the effect of regularization on generalization in the Bayesian RL setting.
|
Aviv Tamar, Daniel Soudry, Ev Zisselman
| null | null | 2,022 |
aaai
|
HoD-Net: High-Order Differentiable Deep Neural Networks and Applications
| null |
We introduce a deep architecture named HoD-Net to enable high-order differentiability for deep learning. HoD-Net is based on and generalizes the complex-step finite difference (CSFD) method. While similar to classic finite difference, CSFD approaches the derivative of a function from a higher-dimension complex domain, leading to highly accurate and robust differentiation computation without numerical stability issues. This method can be coupled with backpropagation and adjoint perturbation methods for an efficient calculation of high-order derivatives. We show how this numerical scheme can be leveraged in challenging deep learning problems, such as high-order network training, deep learning-based physics simulation, and neural differential equations.
|
Siyuan Shen, Tianjia Shao, Kun Zhou, Chenfanfu Jiang, Feng Luo, Yin Yang
| null | null | 2,022 |
aaai
|
Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen Out-of-Distribution Classes
| null |
Out-of-Distribution (OOD) detection is essential in real-world applications, which has attracted increasing attention in recent years. However, most existing OOD detection methods require many labeled In-Distribution (ID) data, causing a heavy labeling cost. In this paper, we focus on the more realistic scenario, where limited labeled data and abundant unlabeled data are available, and these unlabeled data are mixed with ID and OOD samples. We propose the Adaptive In-Out-aware Learning (AIOL) method, in which we employ the appropriate temperature to adaptively select potential ID and OOD samples from the mixed unlabeled data and consider the entropy over them for OOD detection. Moreover, since the test data in realistic applications may contain OOD samples whose classes are not in the mixed unlabeled data (we call them unseen OOD classes), data augmentation techniques are brought into the method to further improve the performance. The experiments are conducted on various benchmark datasets, which demonstrate the superiority of our method.
|
Yi-Xuan Sun, Wei Wang
| null | null | 2,022 |
aaai
|
What about Inputting Policy in Value Function: Policy Representation and Policy-Extended Value Function Approximator
| null |
We study Policy-extended Value Function Approximator (PeVFA) in Reinforcement Learning (RL), which extends conventional value function approximator (VFA) to take as input not only the state (and action) but also an explicit policy representation. Such an extension enables PeVFA to preserve values of multiple policies at the same time and brings an appealing characteristic, i.e., value generalization among policies. We formally analyze the value generalization under Generalized Policy Iteration (GPI). From theoretical and empirical lens, we show that generalized value estimates offered by PeVFA may have lower initial approximation error to true values of successive policies, which is expected to improve consecutive value approximation during GPI. Based on above clues, we introduce a new form of GPI with PeVFA which leverages the value generalization along policy improvement path. Moreover, we propose a representation learning framework for RL policy, providing several approaches to learn effective policy embeddings from policy network parameters or state-action pairs. In our experiments, we evaluate the efficacy of value generalization offered by PeVFA and policy representation learning in several OpenAI Gym continuous control tasks. For a representative instance of algorithm implementation, Proximal Policy Optimization (PPO) re-implemented under the paradigm of GPI with PeVFA achieves about 40% performance improvement on its vanilla counterpart in most environments.
|
Hongyao Tang, Zhaopeng Meng, Jianye Hao, Chen Chen, Daniel Graves, Dong Li, Changmin Yu, Hangyu Mao, Wulong Liu, Yaodong Yang, Wenyuan Tao, Li Wang
| null | null | 2,022 |
aaai
|
Powering Finetuning in Few-Shot Learning: Domain-Agnostic Bias Reduction with Selected Sampling
| null |
In recent works, utilizing a deep network trained on meta-training set serves as a strong baseline in few-shot learning. In this paper, we move forward to refine novel-class features by finetuning a trained deep network. Finetuning is designed to focus on reducing biases in novel-class feature distributions, which we define as two aspects: class-agnostic and class-specific biases. Class-agnostic bias is defined as the distribution shifting introduced by domain difference, which we propose Distribution Calibration Module(DCM) to reduce. DCM owes good property of eliminating domain difference and fast feature adaptation during optimization. Class-specific bias is defined as the biased estimation using a few samples in novel classes, which we propose Selected Sampling(SS) to reduce. Without inferring the actual class distribution, SS is designed by running sampling using proposal distributions around support-set samples. By powering finetuning with DCM and SS, we achieve state-of-the-art results on Meta-Dataset with consistent performance boosts over ten datasets from different domains. We believe our simple yet effective method demonstrates its possibility to be applied on practical few-shot applications.
|
Ran Tao, Han Zhang, Yutong Zheng, Marios Savvides
| null | null | 2,022 |
aaai
|
Neural Networks Classify through the Class-Wise Means of Their Representations
| null |
In this paper, based on an asymptotic analysis of the Softmax layer, we show that when training neural networks for classification tasks, the weight vectors corre sponding to each class of the Softmax layer tend to converge to the class-wise means computed at the representation layer (for specific choices of the representation activation). We further show some consequences of our findings to the context of transfer learning, essentially by proposing a simple yet effective initialization procedure that significantly accelerates the learning of the Softmax layer weights as the target domain gets closer to the source one. Experiments are notably performed on the datasets: MNIST, Fashion MNIST, Cifar10, and Cifar100 and using a standard CNN architecture.
|
Mohamed El Amine Seddik, Mohamed Tamaazousti
| null | null | 2,022 |
aaai
|
Conditional Generative Model Based Predicate-Aware Query Approximation
| null |
The goal of Approximate Query Processing (AQP) is to provide very fast but "accurate enough" results for costly aggregate queries thereby improving user experience in interactive exploration of large datasets. Recently proposed Machine-Learning-based AQP techniques can provide very low latency as query execution only involves model inference as compared to traditional query processing on database clusters. However, with increase in the number of filtering predicates (WHERE clauses), the approximation error significantly increases for these methods. Analysts often use queries with a large number of predicates for insights discovery. Thus, maintaining low approximation error is important to prevent analysts from drawing misleading conclusions. In this paper, we propose ELECTRA, a predicate-aware AQP system that can answer analytics-style queries with a large number of predicates with much smaller approximation errors. ELECTRA uses a conditional generative model that learns the conditional distribution of the data and at run-time generates a small (≈ 1000 rows) but representative sample, on which the query is executed to compute the approximate result. Our evaluations with four different baselines on three real-world datasets show that ELECTRA provides lower AQP error for large number of predicates compared to baselines.
|
Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin Varshney, Tung Mai, Anup Rao, Vikas Maddukuri
| null | null | 2,022 |
aaai
|
Shape Prior Guided Attack: Sparser Perturbations on 3D Point Clouds
| null |
Deep neural networks are extremely vulnerable to malicious input data. As 3D data is increasingly used in vision tasks such as robots, autonomous driving and drones, the internal robustness of the classification models for 3D point cloud has received widespread attention. In this paper, we propose a novel method named SPGA (Shape Prior Guided Attack) to generate adversarial point cloud examples. We use shape prior information to make perturbations sparser and thus achieve imperceptible attacks. In particular, we propose a Spatially Logical Block (SLB) to apply adversarial points through sliding in the oriented bounding box. Moreover, we design an algorithm called FOFA for this type of task, which further refines the adversarial attack in the process of breaking down complicated problems into sub-problems. Compared with the methods of global perturbation, our attack method consumes significantly fewer computations, making it more efficient. Most importantly of all, SPGA can generate examples with a higher attack success rate (even in a defensive situation), less perturbation budget and stronger transferability.
|
Zhenbo Shi, Zhi Chen, Zhenbo Xu, Wei Yang, Zhidong Yu, Liusheng Huang
| null | null | 2,022 |
aaai
|
Learning Bounded Context-Free-Grammar via LSTM and the Transformer: Difference and the Explanations
| null |
Long Short-Term Memory (LSTM) and Transformers are two popular neural architectures used for natural language processing tasks. Theoretical results show that both are Turing-complete and can represent any context-free language (CFL).In practice, it is often observed that Transformer models have better representation power than LSTM. But the reason is barely understood. We study such practical differences between LSTM and Transformer and propose an explanation based on their latent space decomposition patterns. To achieve this goal, we introduce an oracle training paradigm, which forces the decomposition of the latent representation of LSTMand the Transformer and supervises with the transitions of the Pushdown Automaton (PDA) of the corresponding CFL. With the forced decomposition, we show that the performance upper bounds of LSTM and Transformer in learning CFL are close: both of them can simulate a stack and perform stack operation along with state transitions. However, the absence of forced decomposition leads to the failure of LSTM models to capture the stack and stack operations, while having a marginal impact on the Transformer model. Lastly, we connect the experiment on the prototypical PDA to a real-world parsing task to re-verify the conclusions
|
Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, Jishen Zhao
| null | null | 2,022 |
aaai
|
Finding Nontrivial Minimum Fixed Points in Discrete Dynamical Systems: Complexity, Special Case Algorithms and Heuristics
| null |
Networked discrete dynamical systems are often used to model the spread of contagions and decision-making by agents in coordination games. Fixed points of such dynamical systems represent configurations to which the system converges. In the dissemination of undesirable contagions (such as rumors and misinformation), convergence to fixed points with a small number of affected nodes is a desirable goal. Motivated by such considerations, we formulate a novel optimization problem of finding a nontrivial fixed point of the system with the minimum number of affected nodes. We establish that, unless P = NP, there is no polynomial-time algorithm for approximating a solution to this problem to within the factor n^(1 - epsilon) for any constant epsilon > 0. To cope with this computational intractability, we identify several special cases for which the problem can be solved efficiently. Further, we introduce an integer linear program to address the problem for networks of reasonable sizes. For solving the problem on larger networks, we propose a general heuristic framework along with greedy selection methods. Extensive experimental results on real-world networks demonstrate the effectiveness of the proposed heuristics. A full version of the manuscript, source code and data are available at: https://github.com/bridgelessqiu/NMIN-FPE
|
Zirou Qiu, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel J. Rosenkrantz, Richard Stearns, Anil Vullikanti
| null | null | 2,022 |
aaai
|
How Many Representatives Do We Need? The Optimal Size of a Congress Voting on Binary Issues
| null |
Aggregating opinions of a collection of agents is a question of interest to a broad array of researchers, ranging from ensemble-learning theorists to political scientists designing democratic institutions. This work investigates the optimal number of agents needed to decide on a binary issue under majority rule. We take an epistemic view where the issue at hand has a ground truth ``correct'' outcome and each one of n voters votes correctly with a fixed probability, known as their competence level or competence. These competencies come from a fixed distribution D. Observing the competencies, we must choose a specific group that will represent the population. Finally, voters sample a decision (either correct or not), and the group is correct as long as more than half the chosen representatives voted correctly. Assuming that we can identify the best experts, i.e., those with the highest competence, to form an epistemic congress we find that the optimal congress size should be linear in the population size. This result is striking because it holds even when allowing the top representatives to become arbitrarily accurate, choosing the correct outcome with probabilities approaching 1. We then analyze real-world data, observing that the actual sizes of representative bodies are much smaller than the optimal ones our theoretical results suggest. We conclude by examining under what conditions congresses of sub-optimal sizes would still outperform direct democracy, in which all voters vote. We find that a small congress would beat direct democracy if the rate at which the societal bias towards the ground truth decreases with the population size fast enough, and we quantify the speed needed for constant and polynomial congress sizes.
|
Manon Revel, Tao Lin, Daniel Halpern
| null | null | 2,022 |
aaai
|
Decentralized Mean Field Games
| null |
Multiagent reinforcement learning algorithms have not been widely adopted in large scale environments with many agents as they often scale poorly with the number of agents. Using mean field theory to aggregate agents has been proposed as a solution to this problem. However, almost all previous methods in this area make a strong assumption of a centralized system where all the agents in the environment learn the same policy and are effectively indistinguishable from each other. In this paper, we relax this assumption about indistinguishable agents and propose a new mean field system known as Decentralized Mean Field Games, where each agent can be quite different from others. All agents learn independent policies in a decentralized fashion, based on their local observations. We define a theoretical solution concept for this system and provide a fixed point guarantee for a Q-learning based algorithm in this system. A practical consequence of our approach is that we can address a `chicken-and-egg' problem in empirical mean field reinforcement learning algorithms. Further, we provide Q-learning and actor-critic algorithms that use the decentralized mean field learning approach and give stronger performances compared to common baselines in this area. In our setting, agents do not need to be clones of each other and learn in a fully decentralized fashion. Hence, for the first time, we show the application of mean field learning methods in fully competitive environments, large-scale continuous action space environments, and other environments with heterogeneous agents. Importantly, we also apply the mean field method in a ride-sharing problem using a real-world dataset. We propose a decentralized solution to this problem, which is more practical than existing centralized training methods.
|
Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, Pascal Poupart
| null | null | 2,022 |
aaai
|
TRF: Learning Kernels with Tuned Random Features
| null |
Random Fourier features (RFF) are a popular set of tools for constructing low-dimensional approximations of translation-invariant kernels, allowing kernel methods to be scaled to big data. Apart from their computational advantages, by working in the spectral domain random Fourier features expose the translation invariant kernel as a density function that may, in principle, be manipulated directly to tune the kernel. In this paper we propose selecting the density function from a reproducing kernel Hilbert space to allow us to search the space of all translation-invariant kernels. Our approach, which we call tuned random features (TRF), achieves this by approximating the density function as the RKHS-norm regularised least-squares best fit to an unknown ``true'' optimal density function, resulting in a RFF formulation where kernel selection is reduced to regularised risk minimisation with a novel regulariser. We derive bounds on the Rademacher complexity for our method showing that our random features approximation method converges to optimal kernel selection in the large N,D limit. Finally, we prove experimental results for a variety of real-world learning problems, demonstrating the performance of our approach compared to comparable methods.
|
Alistair Shilton, Sunil Gupta, Santu Rana, Arun Kumar Venkatesh, Svetha Venkatesh
| null | null | 2,022 |
aaai
|
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards
| null |
This paper presents a novel collaborative generative modeling (CGM) framework that incentivizes collaboration among self-interested parties to contribute data to a pool for training a generative model (e.g., GAN), from which synthetic data are drawn and distributed to the parties as rewards commensurate to their contributions. Distributing synthetic data as rewards (instead of trained models or money) offers task- and model-agnostic benefits for downstream learning tasks and is less likely to violate data privacy regulation. To realize the framework, we firstly propose a data valuation function using maximum mean discrepancy (MMD) that values data based on its quantity and quality in terms of its closeness to the true data distribution and provide theoretical results guiding the kernel choice in our MMD-based data valuation function. Then, we formulate the reward scheme as a linear optimization problem that when solved, guarantees certain incentives such as fairness in the CGM framework. We devise a weighted sampling algorithm for generating synthetic data to be distributed to each party as reward such that the value of its data and the synthetic data combined matches its assigned reward value by the reward scheme. We empirically show using simulated and real-world datasets that the parties' synthetic data rewards are commensurate to their contributions.
|
Sebastian Shenghong Tay, Xinyi Xu, Chuan Sheng Foo, Bryan Kian Hsiang Low
| null | null | 2,022 |
aaai
|
Shard Systems: Scalable, Robust and Persistent Multi-Agent Path Finding with Performance Guarantees
| null |
Modern multi-agent robotic systems increasingly require scalable, robust and persistent Multi-Agent Path Finding (MAPF) with performance guarantees. While many MAPF solvers that provide some of these properties exist, none provides them all. To fill this need, we propose a new MAPF framework, the shard system. A shard system partitions the workspace into geographic regions, called shards, linked by a novel system of buffers. Agents are routed optimally within a shard by a local controller to local goals set by a global controller. The buffer system novelly allows shards to plan with perfect parallelism, providing scalability. A novel global controller algorithm can rapidly generate an inter-shard routing plan for thousands of agents while minimizing the traffic routed through any shard. A novel workspace partitioning algorithm produces shards small enough to replan rapidly. These innovations allow a shard system to adjust its routing plan in real time if an agent is delayed or assigned a new goal, enabling robust, persistent MAPF. A shard system's local optimality and optimized inter-shard routing bring the sum-of-costs of its solutions to single-shot MAPF problems to < 20-60% of optimal on a diversity of workspaces. Its scalability allows it to plan paths for 1000s of agents in seconds. If any of their goals change or move actions fails, a shard system can replan in under a second.
|
Christopher Leet, Jiaoyang Li, Sven Koenig
| null | null | 2,022 |
aaai
|
MLink: Linking Black-Box Models for Collaborative Multi-Model Inference
| null |
The cost efficiency of model inference is critical to real-world machine learning (ML) applications, especially for delay-sensitive tasks and resource-limited devices. A typical dilemma is: in order to provide complex intelligent services (e.g. smart city), we need inference results of multiple ML models, but the cost budget (e.g. GPU memory) is not enough to run all of them. In this work, we study underlying relationships among black-box ML models and propose a novel learning task: model linking. Model linking aims to bridge the knowledge of different black-box models by learning mappings (dubbed model links) between their output spaces. Based on model links, we developed a scheduling algorithm, named MLink. Through collaborative multi-model inference enabled by model links, MLink can improve the accuracy of obtained inference results under the cost budget. We evaluated MLink on a multi-modal dataset with seven different ML models and two real-world video analytics systems with six ML models and 3,264 hours of video. Experimental results show that our proposed model links can be effectively built among various black-box models. Under the budget of GPU memory, MLink can save 66.7% inference computations while preserving 94% inference accuracy, which outperforms multi-task learning, deep reinforcement learning-based scheduler and frame filtering baselines.
|
Mu Yuan, Lan Zhang, Xiang-Yang Li
| null | null | 2,022 |
aaai
|
Hedonic Games with Fixed-Size Coalitions
| null |
In hedonic games, a set of n agents, having preferences over all possible coalition structures, needs to agree on a stable outcome. In this work, we initiate the study of hedonic games with fixed-size coalitions, where the set of possible coalition structures is restricted as follows: there are k coalitions, each coalition has a fixed size, and the sum of the sizes of all coalitions equals n. We focus on the basic model of additively separable hedonic games with symmetric preferences, where an agent's preference is captured by a utility function which sums up a contribution due to any other agent in the same coalition. In this setting, an outcome is stable if no pair of agents can exchange coalitions and improve their utilities. Conditioned on the definition of improvement, three stability notions arise: swap stability under transferable utilities, which requires to improve the sum of the utilities of both agents, swap stability, which requires to improve the utility of one agent without decreasing the utility of the other one, and strict swap stability, requiring to improve the utilities of both agents simultaneously. We analyse the fundamental questions of existence, complexity and efficiency of stable outcomes, and that of complexity of a social optimum.
|
Vittorio Bilò, Gianpiero Monaco, Luca Moscardelli
| null | null | 2,022 |
aaai
|
Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs
| null |
Active Directory is the default security management system for Windows domain networks. We study the shortest path edge interdiction problem for defending Active Directory style attack graphs. The problem is formulated as a Stackelberg game between one defender and one attacker. The attack graph contains one destination node and multiple entry nodes. The attacker's entry node is chosen by nature. The defender chooses to block a set of edges limited by his budget. The attacker then picks the shortest unblocked attack path. The defender aims to maximize the expected shortest path length for the attacker, where the expectation is taken over entry nodes. We observe that practical Active Directory attack graphs have small maximum attack path length and are structurally close to trees. We first show that even if the maximum attack path length is a constant, the problem is still w[1]-hard with respect to the defender's budget. Having a small maximum attack path length and a small budget is not enough to design fixed-parameter algorithms. If we further assume that the number of entry nodes is small, then we derive a fixed-parameter tractable algorithm. We then propose two other fixed-parameter algorithms by exploiting the tree-like features. One is based on tree decomposition and requires a small tree width. The other assumes a small number of splitting nodes (nodes with multiple out-going edges). Finally, the last algorithm is converted into a graph convolutional neural network based heuristic, which scales to larger graphs with more splitting nodes.
|
Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen
| null | null | 2,022 |
aaai
|
A Deeper Understanding of State-Based Critics in Multi-Agent Reinforcement Learning
| null |
Centralized Training for Decentralized Execution, where training is done in a centralized offline fashion, has become a popular solution paradigm in Multi-Agent Reinforcement Learning. Many such methods take the form of actor-critic with state-based critics, since centralized training allows access to the true system state, which can be useful during training despite not being available at execution time. State-based critics have become a common empirical choice, albeit one which has had limited theoretical justification or analysis. In this paper, we show that state-based critics can introduce bias in the policy gradient estimates, potentially undermining the asymptotic guarantees of the algorithm. We also show that, even if the state-based critics do not introduce any bias, they can still result in a larger gradient variance, contrary to the common intuition. Finally, we show the effects of the theories in practice by comparing different forms of centralized critics on a wide range of common benchmarks, and detail how various environmental properties are related to the effectiveness of different types of critics.
|
Xueguang Lyu, Andrea Baisero, Yuchen Xiao, Christopher Amato
| null | null | 2,022 |
aaai
|
MDPGT: Momentum-Based Decentralized Policy Gradient Tracking
| null |
We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. MDPGT provably achieves the best available sample complexity of O(N -1 e -3) for converging to an e-stationary point of the global average of N local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance e is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings.
|
Zhanhong Jiang, Xian Yeow Lee, Sin Yong Tan, Kai Liang Tan, Aditya Balu, Young M Lee, Chinmay Hegde, Soumik Sarkar
| null | null | 2,022 |
aaai
|
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
| null |
We investigate the fairness concerns of training a machine learning model using data with missing values. Even though there are a number of fairness intervention methods in the literature, most of them require a complete training set as input. In practice, data can have missing values, and data missing patterns can depend on group attributes (e.g. gender or race). Simply applying off-the-shelf fair learning algorithms to an imputed dataset may lead to an unfair model. In this paper, we first theoretically analyze different sources of discrimination risks when training with an imputed dataset. Then, we propose an integrated approach based on decision trees that does not require a separate process of imputation and learning. Instead, we train a tree with missing incorporated as attribute (MIA), which does not require explicit imputation, and we optimize a fairness-regularized objective function. We demonstrate that our approach outperforms existing fairness intervention methods applied to an imputed dataset, through several experiments on real-world datasets.
|
Haewon Jeong, Hao Wang, Flavio P. Calmon
| null | null | 2,022 |
aaai
|
Participatory Budgeting with Donations and Diversity Constraints
| null |
Participatory budgeting (PB) is a democratic process where citizens jointly decide on how to allocate public funds to indivisible projects. In this work, we focus on PB processes where citizens may provide additional money to projects they want to see funded. We introduce a formal framework for this kind of PB with donations. Our framework also allows for diversity constraints, meaning that each project belongs to one or more types, and there are lower and upper bounds on the number of projects of the same type that can be funded. We propose three general classes of methods for aggregating the citizens’ preferences in the presence of donations and analyze their axiomatic properties. Furthermore, we investigate the computational complexity of determining the outcome of a PB process with donations and of finding a citizen’s optimal donation strategy.
|
Jiehua Chen, Martin Lackner, Jan Maly
| null | null | 2,022 |
aaai
|
Concentration Network for Reinforcement Learning of Large-Scale Multi-Agent Systems
| null |
When dealing with a series of imminent issues, humans can naturally concentrate on a subset of these concerning issues by prioritizing them according to their contributions to motivational indices, e.g., the probability of winning a game. This idea of concentration offers insights into reinforcement learning of sophisticated Large-scale Multi-Agent Systems (LMAS) participated by hundreds of agents. In such an LMAS, each agent receives a long series of entity observations at each step, which can overwhelm existing aggregation networks such as graph attention networks and cause inefficiency. In this paper, we propose a concentration network called ConcNet. First, ConcNet scores the observed entities considering several motivational indices, e.g., expected survival time and state value of the agents, and then ranks, prunes, and aggregates the encodings of observed entities to extract features. Second, distinct from the well-known attention mechanism, ConcNet has a unique motivational subnetwork to explicitly consider the motivational indices when scoring the observed entities. Furthermore, we present a concentration policy gradient architecture that can learn effective policies in LMAS from scratch. Extensive experiments demonstrate that the presented architecture has excellent scalability and flexibility, and significantly outperforms existing methods on LMAS benchmarks.
|
Qingxu Fu, Tenghai Qiu, Jianqiang Yi, Zhiqiang Pu, Shiguang Wu
| null | null | 2,022 |
aaai
|
When Can the Defender Effectively Deceive Attackers in Security Games?
| null |
This paper studies defender patrol deception in general Stackelberg security games (SSGs), where a defender attempts to alter the attacker's perception of the defender's patrolling intensity so as to influence the attacker's decision making. We are interested in understanding the complexity and effectiveness of optimal defender deception under different attacker behavior models. Specifically, we consider three different attacker strategies of response (to the defender's deception) with increasing sophistication, and design efficient polynomial-time algorithms to compute the equilibrium for each. Moreover, we prove formal separation for the effectiveness of patrol deception when facing an attacker of increasing sophistication, until it becomes even harmful to the defender when facing the most intelligent attacker we consider. Our results shed light on when and how deception should be used in SSGs. We conduct extensive experiments to illustrate our theoretical results in various game settings.
|
Thanh Nguyen, Haifeng Xu
| null | null | 2,022 |
aaai
|
Multi-Agent Incentive Communication via Decentralized Teammate Modeling
| null |
Effective communication can improve coordination in cooperative multi-agent reinforcement learning (MARL). One popular communication scheme is exchanging agents' local observations or latent embeddings and using them to augment individual local policy input. Such a communication paradigm can reduce uncertainty for local decision-making and induce implicit coordination. However, it enlarges agents' local policy spaces and increases learning complexity, leading to poor coordination in complex settings. To handle this limitation, this paper proposes a novel framework named Multi-Agent Incentive Communication (MAIC) that allows each agent to learn to generate incentive messages and bias other agents' value functions directly, resulting in effective explicit coordination. Our method firstly learns targeted teammate models, with which each agent can anticipate the teammate's action selection and generate tailored messages to specific agents. We further introduce a novel regularization to leverage interaction sparsity and improve communication efficiency. MAIC is agnostic to specific MARL algorithms and can be flexibly integrated with different value function factorization methods. Empirical results demonstrate that our method significantly outperforms baselines and achieves excellent performance on multiple cooperative MARL tasks.
|
Lei Yuan, Jianhao Wang, Fuxiang Zhang, Chenghe Wang, ZongZhang Zhang, Yang Yu, Chongjie Zhang
| null | null | 2,022 |
aaai
|
Anytime Multi-Agent Path Finding via Machine Learning-Guided Large Neighborhood Search
| null |
Multi-Agent Path Finding (MAPF) is the problem of finding a set of collision-free paths for a team of agents in a common environment. MAPF is NP-hard to solve optimally and, in some cases, also bounded-suboptimally. It is thus time-consuming for (bounded-sub)optimal solvers to solve large MAPF instances. Anytime algorithms find solutions quickly for large instances and then improve them to close-to-optimal ones over time. In this paper, we improve the current state-of-the-art anytime solver MAPF-LNS, that first finds an initial solution fast and then repeatedly replans the paths of subsets of agents via Large Neighborhood Search (LNS). It generates the subsets of agents for replanning by randomized destroy heuristics, but not all of them increase the solution quality substantially. We propose to use machine learning to learn how to select a subset of agents from a collection of subsets, such that replanning increases the solution quality more. We show experimentally that our solver, MAPF-ML-LNS, significantly outperforms MAPF-LNS on the standard MAPF benchmark set in terms of both the speed of improving the solution and the final solution quality.
|
Taoan Huang, Jiaoyang Li, Sven Koenig, Bistra Dilkina
| null | null | 2,022 |
aaai
|
Certified Robustness of Nearest Neighbors against Data Poisoning and Backdoor Attacks
| null |
Data poisoning attacks and backdoor attacks aim to corrupt a machine learning classifier via modifying, adding, and/or removing some carefully selected training examples, such that the corrupted classifier makes incorrect predictions as the attacker desires. The key idea of state-of-the-art certified defenses against data poisoning attacks and backdoor attacks is to create a majority vote mechanism to predict the label of a testing example. Moreover, each voter is a base classifier trained on a subset of the training dataset. Classical simple learning algorithms such as k nearest neighbors (kNN) and radius nearest neighbors (rNN) have intrinsic majority vote mechanisms. In this work, we show that the intrinsic majority vote mechanisms in kNN and rNN already provide certified robustness guarantees against data poisoning attacks and backdoor attacks. Moreover, our evaluation results on MNIST and CIFAR10 show that the intrinsic certified robustness guarantees of kNN and rNN outperform those provided by state-of-the-art certified defenses. Our results serve as standard baselines for future certified defenses against data poisoning attacks and backdoor attacks.
|
Jinyuan Jia, Yupei Liu, Xiaoyu Cao, Neil Zhenqiang Gong
| null | null | 2,022 |
aaai
|
Achieving Long-Term Fairness in Sequential Decision Making
| null |
In this paper, we propose a framework for achieving long-term fair sequential decision making. By conducting both the hard and soft interventions, we propose to take path-specific effects on the time-lagged causal graph as a quantitative tool for measuring long-term fairness. The problem of fair sequential decision making is then formulated as a constrained optimization problem with the utility as the objective and the long-term and short-term fairness as constraints. We show that such an optimization problem can be converted to a performative risk optimization. Finally, repeated risk minimization (RRM) is used for model training, and the convergence of RRM is theoretically analyzed. The empirical evaluation shows the effectiveness of the proposed algorithm on synthetic and semi-synthetic temporal datasets.
|
Yaowei Hu, Lu Zhang
| null | null | 2,022 |
aaai
|
Equilibrium Finding in Normal-Form Games via Greedy Regret Minimization
| null |
We extend the classic regret minimization framework for approximating equilibria in normal-form games by greedily weighing iterates based on regrets observed at runtime. Theoretically, our method retains all previous convergence rate guarantees. Empirically, experiments on large randomly generated games and normal-form subgames of the AI benchmark Diplomacy show that greedy weights outperforms previous methods whenever sampling is used, sometimes by several orders of magnitude.
|
Hugh Zhang, Adam Lerer, Noam Brown
| null | null | 2,022 |
aaai
|
Why Fair Labels Can Yield Unfair Predictions: Graphical Conditions for Introduced Unfairness
| null |
In addition to reproducing discriminatory relationships in the training data, machine learning (ML) systems can also introduce or amplify discriminatory effects. We refer to this as introduced unfairness, and investigate the conditions under which it may arise. To this end, we propose introduced total variation as a measure of introduced unfairness, and establish graphical conditions under which it may be incentivised to occur. These criteria imply that adding the sensitive attribute as a feature removes the incentive for introduced variation under well-behaved loss functions. Additionally, taking a causal perspective, introduced path-specific effects shed light on the issue of when specific paths should be considered fair.
|
Carolyn Ashurst, Ryan Carey, Silvia Chiappa, Tom Everitt
| null | null | 2,022 |
aaai
|
Path-Specific Objectives for Safer Agent Incentives
| null |
We present a general framework for training safe agents whose naive incentives are unsafe. As an example, manipulative or deceptive behaviour can improve rewards but should be avoided. Most approaches fail here: agents maximize expected return by any means necessary. We formally describe settings with `delicate' parts of the state which should not be used as a means to an end. We then train agents to maximize the causal effect of actions on the expected return which is not mediated by the delicate parts of state, using Causal Influence Diagram analysis. The resulting agents have no incentive to control the delicate state. We further show how our framework unifies and generalizes existing proposals.
|
Sebastian Farquhar, Ryan Carey, Tom Everitt
| null | null | 2,022 |
aaai
|
Incorporating Item Frequency for Differentially Private Set Union
| null |
We study the problem of releasing the set union of users' items subject to differential privacy. Previous approaches consider only the set of items for each user as the input. We propose incorporating the item frequency, which is typically available in set union problems, to boost the utility of private mechanisms. However, using the global item frequency over all users would largely increase privacy loss. We propose to use the local item frequency of each user to approximate the global item frequency without incurring additional privacy loss. Local item frequency allows us to design greedy set union mechanisms that are differentially private, which is impossible for previous greedy proposals. Moreover, while all previous works have to use uniform sampling to limit the number of items each user would contribute to, our construction eliminates the sampling step completely and allows our mechanisms to consider all of the users' items. Finally, we propose to transfer the knowledge of the global item frequency from a public dataset into our mechanism, which further boosts utility even when the public and private datasets are from different domains. We evaluate the proposed methods on multiple real-life datasets.
|
Ricardo Silva Carvalho, Ke Wang, Lovedeep Singh Gondara
| null | null | 2,022 |
aaai
|
DeepAuth: A DNN Authentication Framework by Model-Unique and Fragile Signature Embedding
| null |
Along with the evolution of deep neural networks (DNNs) in many real-world applications, the complexity of model building has also dramatically increased. Therefore, it is vital to protect the intellectual property (IP) of the model builder and ensure the trustworthiness of the deployed models. Meanwhile, adversarial attacks on DNNs (e.g., backdoor and poisoning attacks) that seek to inject malicious behaviors have been investigated recently, demanding a means for verifying the integrity of the deployed model to protect the users. This paper presents a novel DNN authentication framework DeepAuth that embeds a unique and fragile signature to each protected DNN model. Our approach exploits sensitive key samples that are well crafted from the input space to latent space and then to logit space for producing signatures. After embedding, each model will respond distinctively to these key samples, which creates a model-unique signature as a strong tool for authentication and user identity. The signature embedding process is also designed to ensure the fragility of the signature, which can be used to detect malicious modifications such that an illegitimate user or an altered model should not have the intact signature. Extensive evaluations on various models over a wide range of datasets demonstrate the effectiveness and efficiency of the proposed DeepAuth.
|
Yingjie Lao, Weijie Zhao, Peng Yang, Ping Li
| null | null | 2,022 |
aaai
|
Cosine Model Watermarking against Ensemble Distillation
| null |
Many model watermarking methods have been developed to prevent valuable deployed commercial models from being stealthily stolen by model distillations. However, watermarks produced by most existing model watermarking methods can be easily evaded by ensemble distillation, because averaging the outputs of multiple ensembled models can significantly reduce or even erase the watermarks. In this paper, we focus on tackling the challenging task of defending against ensemble distillation. We propose a novel watermarking technique named CosWM to achieve outstanding model watermarking performance against ensemble distillation. CosWM is not only elegant in design, but also comes with desirable theoretical guarantees. Our extensive experiments on public data sets demonstrate the excellent performance of CosWM and its advantages over the state-of-the-art baselines.
|
Laurent Charette, Lingyang Chu, Yizhou Chen, Jian Pei, Lanjun Wang, Yong Zhang
| null | null | 2,022 |
aaai
|
Unsupervised Causal Binary Concepts Discovery with VAE for Black-Box Model Explanation
| null |
We aim to explain a black-box classifier with the form: "data X is classified as class Y because X has A, B and does not have C" in which A, B, and C are high-level concepts. The challenge is that we have to discover in an unsupervised manner a set of concepts, i.e., A, B and C, that is useful for explaining the classifier. We first introduce a structural generative model that is suitable to express and discover such concepts. We then propose a learning process that simultaneously learns the data distribution and encourages certain concepts to have a large causal influence on the classifier output. Our method also allows easy integration of user's prior knowledge to induce high interpretability of concepts. Finally, using multiple datasets, we demonstrate that the proposed method can discover useful concepts for explanation in this form.
|
Thien Q Tran, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma
| null | null | 2,022 |
aaai
|
Shaping Noise for Robust Attributions in Neural Stochastic Differential Equations
| null |
Neural SDEs with Brownian motion as noise lead to smoother attributions than traditional ResNets. Various attribution methods such as saliency maps, integrated gradients, DeepSHAP and DeepLIFT have been shown to be more robust for neural SDEs than for ResNets using the recently proposed sensitivity metric. In this paper, we show that neural SDEs with adaptive attribution-driven noise lead to even more robust attributions and smaller sensitivity metrics than traditional neural SDEs with Brownian motion as noise. In particular, attribution-driven shaping of noise leads to 6.7%, 6.9% and 19.4% smaller sensitivity metric for integrated gradients computed on three discrete approximations of neural SDEs with standard Brownian motion noise: stochastic ResNet-50, WideResNet-101 and ResNeXt-101 models respectively. The neural SDE model with adaptive attribution-driven noise leads to 25.7% and 4.8% improvement in the SIC metric over traditional ResNets and Neural SDEs with Brownian motion as noise. To the best of our knowledge, we are the first to propose the use of attributions for shaping the noise injected in neural SDEs, and demonstrate that this process leads to more robust attributions than traditional neural SDEs with standard Brownian motion as noise.
|
Sumit Kumar Jha, Rickard Ewetz, Alvaro Velasquez, Arvind Ramanathan, Susmit Jha
| null | null | 2,022 |
aaai
|
Towards Debiasing DNN Models from Spurious Feature Influence
| null |
Recent studies indicate that deep neural networks (DNNs) are prone to show discrimination towards certain demographic groups. We observe that algorithmic discrimination can be explained by the high reliance of the models on fairness sensitive features. Motivated by this observation, we propose to achieve fairness by suppressing the DNN models from capturing the spurious correlation between those fairness sensitive features with the underlying task. Specifically, we firstly train a bias-only teacher model which is explicitly encouraged to maximally employ fairness sensitive features for prediction. The teacher model then counter-teaches a debiased student model so that the interpretation of the student model is orthogonal to the interpretation of the teacher model. The key idea is that since the teacher model relies explicitly on fairness sensitive features for prediction, the orthogonal interpretation loss enforces the student network to reduce its reliance on sensitive features and instead capture more task relevant features for prediction. Experimental analysis indicates that our framework substantially reduces the model's attention on fairness sensitive features. Experimental results on four datasets further validate that our framework has consistently improved the fairness with respect to three group fairness metrics, with a comparable or even better accuracy.
|
Mengnan Du, Ruixiang Tang, Weijie Fu, Xia Hu
| null | null | 2,022 |
aaai
|
Flex Distribution for Bounded-Suboptimal Multi-Agent Path Finding
| null |
Multi-Agent Path Finding (MAPF) is the problem of finding collision-free paths for multiple agents that minimize the sum of path costs. EECBS is a leading two-level algorithm that solves MAPF bounded-suboptimally, that is, within some factor w of the minimum sum of path costs C*. It uses focal search to find bounded-suboptimal paths on the low level and Explicit Estimation Search (EES) to resolve collisions on the high level. EES keeps track of a lower bound LB on C* to find paths whose sum of path costs is at most w LB in order to solve MAPF bounded-suboptimally. However, the costs of many paths are often much smaller than w times their minimum path costs, meaning that the sum of path costs is much smaller than w C*. In this paper, we therefore propose Flexible EECBS (FEECBS), which uses a flex(ible) distribution of the path costs (that relaxes the requirement to find bounded-suboptimal paths on the low level) in order to reduce the number of collisions that need to be resolved on the high level while still guaranteeing to solve MAPF bounded suboptimally. We address the drawbacks of flex distribution via techniques such as restrictions on the flex distribution, restarts of the high-level search with EECBS, and low-level focal-A* search. Our empirical evaluation shows that FEECBS substantially improves the efficiency of EECBS on MAPF instances with large maps and large numbers of agents.
|
Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Sven Koenig
| null | null | 2,022 |
aaai
|
Fixation Maximization in the Positional Moran Process
| null |
The Moran process is a classic stochastic process that models invasion dynamics on graphs. A single mutant (e.g., a new opinion, strain, social trait etc.) invades a population of residents spread over the nodes of a graph. The mutant fitness advantage δ>=0 determines how aggressively mutants propagate to their neighbors. The quantity of interest is the fixation probability, i.e., the probability that the initial mutant eventually takes over the whole population. However, in realistic settings, the invading mutant has an advantage only in certain locations. E.g., the ability to metabolize a certain sugar is an advantageous trait to bacteria only when the sugar is actually present in their surroundings. In this paper we introduce the positional Moran process, a natural generalization in which the mutant fitness advantage is only realized on specific nodes called active nodes, and study the problem of fixation maximization: given a budget k, choose a set of k active nodes that maximize the fixation probability of the invading mutant. We show that the problem is NP-hard, while the optimization function is not submodular, thus indicating strong computational hardness. We focus on two natural limits. In the limit of δ to infinity (strong selection), although the problem remains NP-hard, the optimization function becomes submodular and thus admits a constant-factor approximation using a simple greedy algorithm. In the limit of δ to 0 (weak selection), we show that we can obtain a tight approximation in O(n^{2×ω}) time, where ω is the matrix-multiplication exponent. An experimental evaluation of the new algorithms along with some proposed heuristics corroborates our results.
|
Joachim Brendborg, Panagiotis Karras, Andreas Pavlogiannis, Asger Ullersted Rasmussen, Josef Tkadlec
| null | null | 2,022 |
aaai
|
Equity Promotion in Online Resource Allocation
| null |
We consider online resource allocation under a typical non-profit setting, where limited or even scarce resources are administered by a not-for-profit organization like a government. We focus on the internal-equity by assuming that arriving requesters are homogeneous in terms of their external factors like demands but heterogeneous for their internal attributes like demographics. Specifically, we associate each arriving requester with one or several groups based on their demographics (i.e., race, gender, and age), and we aim to design an equitable distributing strategy such that every group of requesters can receive a fair share of resources proportional to a preset target ratio. We present two LP-based sampling algorithms and investigate them both theoretically (in terms of competitive-ratio analysis) and experimentally based on real COVID-19 vaccination data maintained by the Minnesota Department of Health. Both theoretical and numerical results show that our LP-based sampling strategies can effectively promote equity, especially when the arrival population is disproportionately represented, as observed in the early stage of the COVID-19 vaccine rollout.
|
Pan Xu, Yifan Xu
| null | null | 2,022 |
aaai
|
Efficient Encoding of Cost Optimal Delete-Free Planning as SAT
| null |
We introduce a novel method for encoding cost optimal delete-free STRIPS Planning as SAT. Our method is based on representing relaxed plans as partial functions from the set of propositions to the set of actions. This function can map any proposition to a unique action that adds the proposition during execution of the relaxed plan. We show that a relaxed plan can be produced by maintaining acyclicity in the graph of all causal relations among propositions, represented by the mentioned partial function. We also show that by efficient encoding of action cost propagation and enforcing a series of upper bounds on the total costs of the output plan, an optimal plan can effectively be produced for a given delete-free STRIPS problem. Our empirical results indicate that this method is quite competitive with the state of the art, demonstrating a better coverage compared to that of competing methods on standard STRIPS planning benchmark problems.
|
Masood Feyzbakhsh Rankooh, Jussi Rintanen
| null | null | 2,022 |
aaai
|
Qubit Routing Using Graph Neural Network Aided Monte Carlo Tree Search
| null |
Near-term quantum hardware can support two-qubit operations only on the qubits that can interact with each other. Therefore, to execute an arbitrary quantum circuit on the hardware, compilers have to first perform the task of qubit routing, i.e., to transform the quantum circuit either by inserting additional SWAP gates or by reversing existing CNOT gates to satisfy the connectivity constraints of the target topology. The depth of the transformed quantum circuits is minimized by utilizing the Monte Carlo tree search (MCTS) to perform qubit routing by making it both construct each action and search over the space of all actions. It is aided in performing these tasks by a Graph neural network that evaluates the value function and action probabilities for each state. Along with this, we propose a new method of adding mutex-lock like variables in our state representation which helps factor in the parallelization of the scheduled operations, thereby pruning the depth of the output circuit. Overall, our procedure (referred to as QRoute) performs qubit routing in a hardware agnostic manner, and it outperforms other available qubit routing implementations on various circuit benchmarks.
|
Animesh Sinha, Utkarsh Azad, Harjinder Singh
| null | null | 2,022 |
aaai
|
Stochastic Goal Recognition Design Problems with Suboptimal Agents
| null |
Goal Recognition Design (GRD) problems identify the minimum number of environmental modifications aiming to force an interacting agent to reveal its goal as early as possible. Researchers proposed several extensions to the original model, some of them handling stochastic agent action outcomes. While this generalization is useful, it assumes optimal acting agents, which limits its applicability to more realistic scenarios. This paper presents the Suboptimal Stochastic GRD model, where we consider boundedly rational agents that, due to limited resources, might follow a suboptimal policy. Inspired by theories on human behavior asserting that humans are (close to) optimal when making perceptual decisions, we assume the chosen policy has at most m suboptimal actions. Our contribution includes (I) Extending the stochastic goal recognition design framework by supporting suboptimal agents in cases where an observer has either full or partial observability; (ii) Presenting methods to evaluate the ambiguity of the model under these assumptions; and (iii) Evaluating our approach on a range of benchmark applications.
|
Christabel Wayllace, William Yeoh
| null | null | 2,022 |
aaai
|
Classical Planning with Avoid Conditions
| null |
It is often natural in planning to specify conditions that should be avoided, characterizing dangerous or highly undesirable behavior. PDDL3 supports this with temporal-logic state trajectory constraints. Here we focus on the simpler case where the constraint is a non-temporal formula ? - the avoid condition - that must be false throughout the plan. We design techniques tackling such avoid conditions effectively. We show how to learn from search experience which states necessarily lead into ?, and we show how to tailor abstractions to recognize that avoiding ? will not be possible starting from a given state. We run a large-scale experiment, comparing our techniques against compilation methods and against simple state pruning using ?. The results show that our techniques are often superior.
|
Marcel Steinmetz, Jörg Hoffmann, Alisa Kovtunova, Stefan Borgwardt
| null | null | 2,022 |
aaai
|
Enhancing Column Generation by a Machine-Learning-Based Pricing Heuristic for Graph Coloring
| null |
Column Generation (CG) is an effective method for solving large-scale optimization problems. CG starts by solving a subproblem with a subset of columns (i.e., variables) and gradually includes new columns that can improve the solution of the current subproblem. The new columns are generated as needed by repeatedly solving a pricing problem, which is often NP-hard and is a bottleneck of the CG approach. To tackle this, we propose a Machine-Learning-based Pricing Heuristic (MLPH) that can generate many high-quality columns efficiently. In each iteration of CG, our MLPH leverages an ML model to predict the optimal solution of the pricing problem, which is then used to guide a sampling method to efficiently generate multiple high-quality columns. Using the graph coloring problem, we empirically show that MLPH significantly enhances CG as compared to six state-of-the-art methods, and the improvement in CG can lead to substantially better performance of the branch-and-price exact method.
|
Yunzhuang Shen, Yuan Sun, Xiaodong Li, Andrew Eberhard, Andreas Ernst
| null | null | 2,022 |
aaai
|
Efficient Device Scheduling with Multi-Job Federated Learning
| null |
Recent years have witnessed a large amount of decentralized data in multiple (edge) devices of end-users, while the aggregation of the decentralized data remains difficult for machine learning jobs due to laws or regulations. Federated Learning (FL) emerges as an effective approach to handling decentralized data without sharing the sensitive raw data, while collaboratively training global machine learning models. The servers in FL need to select (and schedule) devices during the training process. However, the scheduling of devices for multiple jobs with FL remains a critical and open problem. In this paper, we propose a novel multi-job FL framework to enable the parallel training process of multiple jobs. The framework consists of a system model and two scheduling methods. In the system model, we propose a parallel training process of multiple jobs, and construct a cost model based on the training time and the data fairness of various devices during the training process of diverse jobs. We propose a reinforcement learning-based method and a Bayesian optimization-based method to schedule devices for multiple jobs while minimizing the cost. We conduct extensive experimentation with multiple jobs and datasets. The experimental results show that our proposed approaches significantly outperform baseline approaches in terms of training time (up to 8.67 times faster) and accuracy (up to 44.6% higher).
|
Chendi Zhou, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang Zhou, Huaiyu Dai, Dejing Dou
| null | null | 2,022 |
aaai
|
Planning to Avoid Side Effects
| null |
In sequential decision making, objective specifications are often underspecified or incomplete, neglecting to take into account potential (negative) side effects. Executing plans without consideration of their side effects can lead to catastrophic outcomes -- a concern recently raised in relation to the safety of AI. In this paper we investigate how to avoid side effects in a symbolic planning setting. We study the notion of minimizing side effects in the context of a planning environment where multiple independent agents co-exist. We define (classes of) negative side effects in terms of their effect on the agency of those other agents. Finally, we show how plans which minimize side effects of different types can be computed via compilations to cost-optimizing symbolic planning, and investigate experimentally.
|
Toryn Q. Klassen, Sheila A. McIlraith, Christian Muise, Jarvis Xu
| null | null | 2,022 |
aaai
|
Formula Synthesis in Propositional Dynamic Logic with Shuffle
| null |
We introduce the formula-synthesis problem for Propositional Dynamic Logic with Shuffle (PDL || ). This problem, which generalises the model-checking problem againsts PDL || is the following: given a finite transition system and a regular term-grammar that generates (possibly infinitely many) PDL || formulas, find a formula generated by the grammar that is true in the structure (or return that there is none). We prove that the problem is undecidable in general, but add certain restrictions on the input structure or on the input grammar to yield decidability. In particular, we prove that (1) if the grammar only generates formulas in PDL (without shuffle), then the problem is EXPTIME-complete, and a further restriction to linear grammars is PSPACE-complete, and a further restriction to non-recursive grammars is NP-complete, and (2) if one restricts the input structure to have only simple paths then the problem is in 2-EXPTIME. This work is motivated by and opens up connections to other forms of synthesis from hierarchical descriptions, including HTN problems in Planning and Attack-tree Synthesis problems in Security.
|
Sophie Pinchinat, Sasha Rubin, François Schwarzentruber
| null | null | 2,022 |
aaai
|
Bridging LTLf Inference to GNN Inference for Learning LTLf Formulae
| null |
Learning linear temporal logic on finite traces (LTLf) formulae aims to learn a target formula that characterizes the high-level behavior of a system from observation traces in planning. Existing approaches to learning LTLf formulae, however, can hardly learn accurate LTLf formulae from noisy data. It is challenging to design an efficient search mechanism in the large search space in form of arbitrary LTLf formulae while alleviating the wrong search bias resulting from noisy data. In this paper, we tackle this problem by bridging LTLf inference to GNN inference. Our key theoretical contribution is showing that GNN inference can simulate LTLf inference to distinguish traces. Based on our theoretical result, we design a GNN-based approach, GLTLf, which combines GNN inference and parameter interpretation to seek the target formula in the large search space. Thanks to the non-deterministic learning process of GNNs, GLTLf is able to cope with noise. We evaluate GLTLf on various datasets with noise. Our experimental results confirm the effectiveness of GNN inference in learning LTLf formulae and show that GLTLf is superior to the state-of-the-art approaches.
|
Weilin Luo, Pingjia Liang, Jianfeng Du, Hai Wan, Bo Peng, Delong Zhang
| null | null | 2,022 |
aaai
|
MAPDP: Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems
| null |
Cooperative Pickup and Delivery Problem (PDP), as a variant of the typical Vehicle Routing Problems (VRP), is an important formulation in many real-world applications, such as on-demand delivery, industrial warehousing, etc. It is of great importance to efficiently provide high-quality solutions of cooperative PDP. However, it is not trivial to provide effective solutions directly due to two major challenges: 1) the structural dependency between pickup and delivery pairs require explicit modeling and representation. 2) the cooperation between different vehicles is highly related to the solution exploration and difficult to model. In this paper, we propose a novel multi-agent reinforcement learning based framework to solve the cooperative PDP (MAPDP). First, we design a paired context embedding to well measure the dependency of different nodes considering their structural limits. Second, we utilize cooperative multi-agent decoders to leverage the decision dependence among different vehicle agents based on a special communication embedding. Third, we design a novel cooperative A2C algorithm to train the integrated model. We conduct extensive experiments on a randomly generated dataset and a real-world dataset. Experiments result shown that the proposed MAPDP outperform all other baselines by at least 1.64% in all settings, and shows significant computation speed during solution inference.
|
Zefang Zong, Meng Zheng, Yong Li, Depeng Jin
| null | null | 2,022 |
aaai
|
Risk-Aware Stochastic Shortest Path
| null |
We treat the problem of risk-aware control for stochastic shortest path (SSP) on Markov decision processes (MDP). Typically, expectation is considered for SSP, which however is oblivious to the incurred risk. We present an alternative view, instead optimizing conditional value-at-risk (CVaR), an established risk measure. We treat both Markov chains as well as MDP and introduce, through novel insights, two algorithms, based on linear programming and value iteration, respectively. Both algorithms offer precise and provably correct solutions. Evaluation of our prototype implementation shows that risk-aware control is feasible on several moderately sized models.
|
Tobias Meggendorfer
| null | null | 2,022 |
aaai
|
A* Search and Bound-Sensitive Heuristics for Oversubscription Planning
| null |
Oversubscription planning (OSP) is the problem of finding plans that maximize the utility value of their end state while staying within a specified cost bound. Recently, it has been shown that OSP problems can be reformulated as classical planning problems with multiple cost functions but no utilities. Here we take advantage of this reformulation to show that OSP problems can be solved optimally using the A* search algorithm, in contrast to previous approaches that have used variations on branch-and-bound search. This allows many powerful techniques developed for classical planning to be applied to OSP problems. We also introduce novel bound-sensitive heuristics, which are able to reason about the primary cost of a solution while taking into account secondary cost functions and bounds, to provide superior guidance compared to heuristics that do not take these bounds into account. We propose two such bound-sensitive variants of existing classical planning heuristics, and show experimentally that the resulting search is significantly more informed than with comparable heuristics that do not consider bounds.
|
Michael Katz, Emil Keyder
| null | null | 2,022 |
aaai
|
Solving Disjunctive Temporal Networks with Uncertainty under Restricted Time-Based Controllability Using Tree Search and Graph Neural Networks
| null |
Scheduling under uncertainty is an area of interest in artificial intelligence. We study the problem of Dynamic Controllability (DC) of Disjunctive Temporal Networks with Uncertainty (DTNU), which seeks a reactive scheduling strategy to satisfy temporal constraints in response to uncontrollable action durations. We introduce new semantics for reactive scheduling: Time-based Dynamic Controllability (TDC) and a restricted subset of TDC, R-TDC. We present a tree search approach to determine whether or not a DTNU is R-TDC. Moreover, we leverage the learning capability of a Graph Neural Network (GNN) as a heuristic for tree search guidance. Finally, we conduct experiments on a known benchmark on which we show R-TDC to retain significant completeness with regard to DC, while being faster to prove. This results in the tree search processing fifty percent more DTNU problems in R-TDC than the state-of-the-art DC solver does in DC with the same time budget. We also observe that GNN tree search guidance leads to substantial performance gains on benchmarks of more complex DTNUs, with up to eleven times more problems solved than the baseline tree search.
|
Kevin Osanlou, Jeremy Frank, Andrei Bursuc, Tristan Cazenave, Eric Jacopin, Christophe Guettier, J. Benton
| null | null | 2,022 |
aaai
|
Sample-Efficient Iterative Lower Bound Optimization of Deep Reactive Policies for Planning in Continuous MDPs
| null |
Recent advances in deep learning have enabled optimization of deep reactive policies (DRPs) for continuous MDP planning by encoding a parametric policy as a deep neural network and exploiting automatic differentiation in an end-to-end model-based gradient descent framework. This approach has proven effective for optimizing DRPs in nonlinear continuous MDPs, but it requires a large number of sampled trajectories to learn effectively and can suffer from high variance in solution quality. In this work, we revisit the overall model-based DRP objective and instead take a minorization-maximization perspective to iteratively optimize the DRP w.r.t. a locally tight lower-bounded objective. This novel formulation of DRP learning as iterative lower bound optimization (ILBO) is particularly appealing because (i) each step is structurally easier to optimize than the overall objective, (ii) it guarantees a monotonically improving objective under certain theoretical conditions, and (iii) it reuses samples between iterations thus lowering sample complexity. Empirical evaluation confirms that ILBO is significantly more sample-efficient than the state-of-the-art DRP planner and consistently produces better solution quality with lower variance. We additionally demonstrate that ILBO generalizes well to new problem instances (i.e., different initial states) without requiring retraining.
|
Siow Meng Low, Akshat Kumar, Scott Sanner
| null | null | 2,022 |
aaai
|
Explainable Planner Selection for Classical Planning
| null |
Since no classical planner consistently outperforms all others, it is important to select a planner that works well for a given classical planning task. The two strongest approaches for planner selection use image and graph convolutional neural networks. They have the drawback that the learned models are complicated and uninterpretable. To obtain explainable models, we identify a small set of simple task features and show that elementary and interpretable machine learning techniques can use these features to solve roughly as many tasks as the complex approaches based on neural networks.
|
Patrick Ferber, Jendrik Seipp
| null | null | 2,022 |
aaai
|
Optimal Admission Control for Multiclass Queues with Time-Varying Arrival Rates via State Abstraction
| null |
We consider a novel queuing problem where the decision-maker must choose to accept or reject randomly arriving tasks into a no buffer queue which are processed by N identical servers. Each task has a price, which is a positive real number, and a class. Each class of task has a different price distribution, service rate, and arrives according to an inhomogenous Poisson process. The objective is to decide which tasks to accept so that the total price of tasks processed is maximised over a finite horizon. We formulate the problem using a discrete time Markov Decision Process (MDP) with a hybrid state space. We show that the optimal value function has a specific structure, which enables us to solve the hybrid MDP exactly. Moreover, we rigorously prove that as the gap between successive decision epochs grows smaller, the discrete time solution approaches the optimal solution to the original continuous time problem. To improve the scalability of our approach to a greater number of servers and task classes, we present an approximation based on state abstraction. We validate our approach on synthetic data, as well as a real financial fraud data set, which is the motivating application for this work.
|
Marc Rigter, Danial Dervovic, Parisa Hassanzadeh, Jason Long, Parisa Zehtabi, Daniele Magazzeni
| null | null | 2,022 |
aaai
|
Learning to Solve Routing Problems via Distributionally Robust Optimization
| null |
Recent deep models for solving routing problems always assume a single distribution of nodes for training, which severely impairs their cross-distribution generalization ability. In this paper, we exploit group distributionally robust optimization (group DRO) to tackle this issue, where we jointly optimize the weights for different groups of distributions and the parameters for the deep model in an interleaved manner during training. We also design a module based on convolutional neural network, which allows the deep model to learn more informative latent pattern among the nodes. We evaluate the proposed approach on two types of well-known deep models including GCN and POMO. The experimental results on the randomly synthesized instances and the ones from two benchmark dataset (i.e., TSPLib and CVRPLib) demonstrate that our approach could significantly improve the cross-distribution generalization performance over the original models.
|
Yuan Jiang, Yaoxin Wu, Zhiguang Cao, Jie Zhang
| null | null | 2,022 |
aaai
|
Differential Assessment of Black-Box AI Agents
| null |
Much of the research on learning symbolic models of AI agents focuses on agents with stationary models. This assumption fails to hold in settings where the agent's capabilities may change as a result of learning, adaptation, or other post-deployment modifications. Efficient assessment of agents in such settings is critical for learning the true capabilities of an AI system and for ensuring its safe usage. In this work, we propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models. As a starting point, we consider the fully observable and deterministic setting. We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy that selectively queries the agent and computes an updated model of its functionality. Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch. We also show that the cost of differential assessment using our method is proportional to the amount of drift in the agent's functionality.
|
Rashmeet Kaur Nayyar, Pulkit Verma, Siddharth Srivastava
| null | null | 2,022 |
aaai
|
Deciding Unsolvability in Temporal Planning under Action Non-Self-Overlapping
| null |
The field of Temporal Planning (TP) is receiving increasing interest for its many real-world applications. Most of the literature focuses on the TP problem of finding a plan, with algorithms that are not guaranteed to terminate when the problem admits no solution. In this paper, we present sound and complete decision procedures that address the dual problem of proving that no plan exists, which has important applications in oversubscription, model validation and optimization. We focus on the expressive and practically relevant semantics of action non-self-overlapping, recently proved to be PSPACE-complete. For this subclass, we propose two approaches: a reduction of the planning problem to model-checking of Timed Transition Systems, and a heuristic-search algorithm where temporal constraints are represented by Difference Bound Matrices. We implemented the approaches, and carried out an experimental evaluation against other state-of-the-art TP tools. On benchmarks that admit no plans, both approaches dramatically outperform the other planners, while the heuristic-search algorithm remains competitive on solvable benchmarks.
|
Stefan Panjkovic, Andrea Micheli, Alessandro Cimatti
| null | null | 2,022 |
aaai
|
Inconsistent Planning: When in Doubt, Toss a Coin!
| null |
One of the most widespread human behavioral biases is the present bias -- the tendency to overestimate current costs by a bias factor. Kleinberg and Oren (2014) introduced an elegant graph-theoretical model of inconsistent planning capturing the behavior of a present-biased agent accomplishing a set of actions. The essential measure of the system introduced by Kleinberg and Oren is the cost of irrationality -- the ratio of the total cost of the actions performed by the present-biased agent to the optimal cost. This measure is vital for a task designer to estimate the aftermaths of human behavior related to time-inconsistent planning, including procrastination and abandonment. As we prove in this paper, the cost of irrationality is highly susceptible to the agent's choices when faced with a few possible actions of equal estimated costs. To address this issue, we propose a modification of Kleinberg-Oren's model of inconsistent planning. In our model, when an agent selects from several options of minimum prescribed cost, he uses a randomized procedure. We explore the algorithmic complexity of computing and estimating the cost of irrationality in the new model.
|
Yuriy Dementiev, Fedor Fomin, Artur Ignatiev
| null | null | 2,022 |
aaai
|
Bounding Quality in Diverse Planning
| null |
Diverse planning is an important problem in automated planning with many real world applications. Recently, diverse planning has seen renewed interest, with work that defines a taxonomy of computational problems with respect to both plan quality and solution diversity. However, despite the recent advances in diverse planning, the variety of approaches and the number of available planners are still quite limited, even nonexistent for several computational problems. In this work, we aim to extend the portfolio of planners for various computational problems in diverse planning. To that end, we introduce a novel approach to finding solutions for three computational problems within diverse planning and present planners for these three problems. For one of these problems, our approach is the first one that is able to provide solutions to the problem. For another, we show that top-k and top quality planners can provide, albeit naive, solutions to the problem and we extend these planners to improve the diversity of the solution. Finally, for the third problem, we show that some existing diverse planners already provide solutions to that problem. We suggest another approach and empirically show it to compare favorably with these existing planners.
|
Michael Katz, Shirin Sohrabi, Octavian Udrea
| null | null | 2,022 |
aaai
|
A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs
| null |
Recent advances in efficient planning in deterministic or stochastic high-dimensional domains with continuous action spaces leverage backpropagation through a model of the environment to directly optimize action sequences. However, existing methods typically do not take risk into account when optimizing in stochastic domains, which can be incorporated efficiently in MDPs by optimizing a nonlinear utility function of the return distribution. We bridge this gap by introducing Risk-Aware Planning using PyTorch (RAPTOR), a novel unified framework for risk-sensitive planning through end-to-end optimization of commonly-studied risk-sensitive utility functions such as entropic utility, mean-variance optimization and CVaR. A key technical difficulty of our approach is that direct optimization of general risk-sensitive utility functions by backpropagation is impossible due to the presence of environment stochasticity. The novelty of RAPTOR lies in leveraging reparameterization of the state distribution, leading to a unique distributional perspective of end-to-end planning where the return distribution is utilized for sampling as well as optimizing risk-aware objectives by backpropagation in a unified framework. We evaluate and compare RAPTOR on three highly stochastic MDPs, including nonlinear navigation, HVAC control, and linear reservoir control, demonstrating the ability of RAPTOR to manage risk in complex continuous domains according to different notions of risk-sensitive utility.
|
Noah Patton, Jihwan Jeong, Mike Gimelfarb, Scott Sanner
| null | null | 2,022 |
aaai
|
Speeding Up the RUL¯ Dynamic-Controllability-Checking Algorithm for Simple Temporal Networks with Uncertainty
| null |
A Simple Temporal Network with Uncertainty (STNU) includes real-valued variables, called time-points; binary difference constraints on those time-points; and contingent links that represent actions with uncertain durations. STNUs have been used for robot control, web-service composition, and business processes. The most important property of an STNU is called dynamic controllability (DC); and algorithms for checking this property are called DC-checking algorithms. The DC-checking algorithm for STNUs with the best worst-case time-complexity is the RUL¯ algorithm due to Cairo, Hunsberger and Rizzi. Its complexity is O(mn + k²n + kn log n), where n is the number of time-points, m is the number of constraints, and k is the number of contingent links. It is expected that this worst-case complexity cannot be improved upon. However, this paper provides a new algorithm, called RUL2021, that improves its performance in practice by an order of magnitude, as demonstrated by a thorough empirical evaluation.
|
Luke Hunsberger, Roberto Posenato
| null | null | 2,022 |
aaai
|
Homomorphisms of Lifted Planning Tasks: The Case for Delete-Free Relaxation Heuristics
| null |
Classical planning tasks are modelled in PDDL which is a schematic language based on first-order logic. Most of the current planners turn this lifted representation into a propositional one via a grounding process. However, grounding may cause an exponential blowup. Therefore it is important to investigate methods for searching for plans on the lifted level. To build a lifted state-based planner, it is necessary to invent lifted heuristics. We introduce maps between PDDL tasks preserving plans allowing to transform a PDDL task into a smaller one. We propose a novel method for computing lifted (admissible) delete-free relaxed heuristics via grounding of the smaller task and computing the (admissible) delete-free relaxed heuristics there. This allows us to transfer the knowledge about relaxed heuristics from the grounded level to the lifted level.
|
Rostislav Horčík, Daniel Fišer, Álvaro Torralba
| null | null | 2,022 |
aaai
|
Online Search with Best-Price and Query-Based Predictions
| null |
In the online (time-series) search problem, a player is presented with a sequence of prices which are revealed in an online manner. In the standard definition of the problem, for each revealed price, the player must decide irrevocably whether to accept or reject it, without knowledge of future prices (other than an upper and a lower bound on their extreme values), and the objective is to minimize the competitive ratio, namely the worst case ratio between the maximum price in the sequence and the one selected by the player. The problem formulates several applications of decision-making in the face of uncertainty on the revealed samples. Previous work on this problem has largely assumed extreme scenarios in which either the player has almost no information about the input, or the player is provided with some powerful, and error-free advice. In this work, we study learning-augmented algorithms, in which there is a potentially erroneous prediction concerning the input. Specifically, we consider two different settings: the setting in which the prediction is related to the maximum price in the sequence, as well as well as the setting in which the prediction is obtained as a response to a number of binary queries. For both settings, we provide tight, or near-tight upper and lower bounds on the worst-case performance of search algorithms as a function of the prediction error. We also provide experimental results on data obtained from stock exchange markets that confirm the theoretical analysis, and explain how our techniques can be applicable to other learning-augmented applications.
|
Spyros Angelopoulos, Shahin Kamali, Dehou Zhang
| null | null | 2,022 |
aaai
|
The FF Heuristic for Lifted Classical Planning
| null |
Heuristics for lifted planning are not yet as informed as the best heuristics for ground planning. Recent work introduced the idea of using Datalog programs to compute the additive heuristic over lifted tasks. Based on this work, we show how to compute the more informed FF heuristic in a lifted manner. We extend the Datalog program with executable annotations that can also be used to define other delete-relaxation heuristics. In our experiments, we show that a planner using the lifted FF implementation produces state-of-the-art results for lifted planners. It also reduces the gap to state-of-the-art ground planners in domains where grounding is feasible.
|
Augusto B. Corrêa, Florian Pommerening, Malte Helmert, Guillem Francès
| null | null | 2,022 |
aaai
|
DeepStochLog: Neural Stochastic Logic Programming
| null |
Recent advances in neural-symbolic learning, such as DeepProbLog, extend probabilistic logic programs with neural predicates. Like graphical models, these probabilistic logic programs define a probability distribution over possible worlds, for which inference is computationally hard. We propose DeepStochLog, an alternative neural-symbolic framework based on stochastic definite clause grammars, a kind of stochastic logic program. More specifically, we introduce neural grammar rules into stochastic definite clause grammars to create a framework that can be trained end-to-end. We show that inference and learning in neural stochastic logic programming scale much better than for neural probabilistic logic programs. Furthermore, the experimental evaluation shows that DeepStochLog achieves state-of-the-art results on challenging neural-symbolic learning tasks.
|
Thomas Winters, Giuseppe Marra, Robin Manhaeve, Luc De Raedt
| null | null | 2,022 |
aaai
|
Synthesis from Satisficing and Temporal Goals
| null |
Reactive synthesis from high-level specifications that combine hard constraints expressed in Linear Temporal Logic (LTL) with soft constraints expressed by discounted sum (DS) rewards has applications in planning and reinforcement learning. An existing approach combines techniques from LTL synthesis with optimization for the DS rewards but has failed to yield a sound algorithm. An alternative approach combining LTL synthesis with satisficing DS rewards (rewards that achieve a threshold) is sound and complete for integer discount factors, but, in practice, a fractional discount factor is desired. This work extends the existing satisficing approach, presenting the first sound algorithm for synthesis from LTL and DS rewards with fractional discount factors. The utility of our algorithm is demonstrated on robotic planning domains.
|
Suguman Bansal, Lydia Kavraki, Moshe Y. Vardi, Andrew Wells
| null | null | 2,022 |
aaai
|
Formal Semantics and Formally Verified Validation for Temporal Planning
| null |
We present a simple and concise semantics for temporal planning. Our semantics are developed and formalised in the logic of the interactive theorem prover Isabelle/HOL. We derive from those semantics a validation algorithm for temporal planning and show, using a formal proof in Isabelle/HOL, that this validation algorithm implements our semantics. We experimentally evaluate our verified validation algorithm and show that it is practical.
|
Mohammad Abdulaziz, Lukas Koller
| null | null | 2,022 |
aaai
|
Competing for Resources: Estimating Adversary Strategy for Effective Plan Generation
| null |
Effective decision making while competing for limited resources in adversarial environments is important for many real-world applications (e.g. two Taxi companies competing for customers). Decision-making techniques such as Automated planning have to take into account possible actions of adversary (or competing) agents. That said, the agent should know what the competitor will likely do and then generate its plan accordingly. In this paper we propose a novel approach for estimating strategies of the adversary (or the competitor), sampling its actions that might hinder agent's goals by interfering with the agent's actions. The estimated competitor strategies are used in plan generation such that agent's actions have to be applied prior to the ones of the competitor, whose estimated times dictate the deadlines. We empirically evaluate our approach leveraging sampling of competitor's actions by comparing it to the naive approach optimising the make-span (not taking the competing agent into account at all) and to Nash Equilibrium (mixed) strategies.
|
Lukáš Chrpa, Pavel Rytíř, Rostislav Horčík, Stefan Edelkamp
| null | null | 2,022 |
aaai
|
PlanVerb: Domain-Independent Verbalization and Summary of Task Plans
| null |
For users to trust planning algorithms, they must be able to understand the planner's outputs and the reasons for each action selection. This output does not tend to be user-friendly, often consisting of sequences of parametrised actions or task networks. And these may not be practical for non-expert users who may find it easier to read natural language descriptions. In this paper, we propose PlanVerb, a domain and planner-independent method for the verbalization of task plans. It is based on semantic tagging of actions and predicates. Our method can generate natural language descriptions of plans including causal explanations. The verbalized plans can be summarized by compressing the actions that act on the same parameters. We further extend the concept of verbalization space, previously applied to robot navigation, and apply it to planning to generate different kinds of plan descriptions for different user requirements. Our method can deal with PDDL and RDDL domains, provided that they are tagged accordingly. Our user survey evaluation shows that users can read our automatically generated plan descriptions and that the explanations help them answer questions about the plan.
|
Gerard Canal, Senka Krivić, Paul Luff, Andrew Coles
| null | null | 2,022 |
aaai
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.