title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
null
Multi-agent reinforcement learning (MARL) provides an efficient way for simultaneously learning policies for multiple agents interacting with each other. However, in scenarios requiring complex interactions, existing algorithms can suffer from an inability to accurately anticipate the influence of self-actions on other agents. Incorporating an ability to reason about other agents' potential responses can allow an agent to formulate more effective strategies. This paper adopts a recursive reasoning model in a centralized-training-decentralized-execution framework to help learning agents better cooperate with or compete against others. The proposed algorithm, referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art performance on multiple multi-agent particle and robotics games.
Xiaobai Ma, David Isele, Jayesh K. Gupta, Kikuo Fujimura, Mykel J. Kochenderfer
null
null
2,022
aaai
When AI Difficulty Is Easy: The Explanatory Power of Predicting IRT Difficulty
null
One of challenges of artificial intelligence as a whole is robustness. Many issues such as adversarial examples, out of distribution performance, Clever Hans phenomena, and the wider areas of AI evaluation and explainable AI, have to do with the following question: Did the system fail because it is a hard instance or because something else? In this paper we address this question with a generic method for estimating IRT-based instance difficulty for a wide range of AI domains covering several areas, from supervised feature-based classification to automated reasoning. We show how to estimate difficulty systematically using off-the-shelf machine learning regression models. We illustrate the usefulness of this estimation for a range of applications.
Fernando Martínez-Plumed, David Castellano, Carlos Monserrat-Aranda, José Hernández-Orallo
null
null
2,022
aaai
Coordinate Descent on the Orthogonal Group for Recurrent Neural Network Training
null
We address the poor scalability of learning algorithms for orthogonal recurrent neural networks via the use of stochastic coordinate descent on the orthogonal group, leading to a cost per iteration that increases linearly with the number of recurrent states. This contrasts with the cubic dependency of typical feasible algorithms such as stochastic Riemannian gradient descent, which prohibits the use of big network architectures. Coordinate descent rotates successively two columns of the recurrent matrix. When the coordinate (i.e., indices of rotated columns) is selected uniformly at random at each iteration, we prove convergence of the algorithm under standard assumptions on the loss function, stepsize and minibatch noise. In addition, we numerically show that the Riemannian gradient has an approximately sparse structure. Leveraging this observation, we propose a variant of our proposed algorithm that relies on the Gauss-Southwell coordinate selection rule. Experiments on a benchmark recurrent neural network training problem show that the proposed approach is a very promising step towards the training of orthogonal recurrent neural networks with big architectures.
Estelle Massart, Vinayak Abrol
null
null
2,022
aaai
Being Friends Instead of Adversaries: Deep Networks Learn from Data Simplified by Other Networks
null
Amongst a variety of approaches aimed at making the learning procedure of neural networks more effective, the scientific community developed strategies to order the examples according to their estimated complexity, to distil knowledge from larger networks, or to exploit the principles behind adversarial machine learning. A different idea has been recently proposed, named Friendly Training, which consists in altering the input data by adding an automatically estimated perturbation, with the goal of facilitating the learning process of a neural classifier. The transformation progressively fades-out as long as training proceeds, until it completely vanishes. In this work we revisit and extend this idea, introducing a radically different and novel approach inspired by the effectiveness of neural generators in the context of Adversarial Machine Learning. We propose an auxiliary multi-layer network that is responsible of altering the input data to make them easier to be handled by the classifier at the current stage of the training procedure. The auxiliary network is trained jointly with the neural classifier, thus intrinsically increasing the 'depth' of the classifier, and it is expected to spot general regularities in the data alteration process. The effect of the auxiliary network is progressively reduced up to the end of training, when it is fully dropped and the classifier is deployed for applications. We refer to this approach as Neural Friendly Training. An extended experimental procedure involving several datasets and different neural architectures shows that Neural Friendly Training overcomes the originally proposed Friendly Training technique, improving the generalization of the classifier, especially in the case of noisy data.
Simone Marullo, Matteo Tiezzi, Marco Gori, Stefano Melacci
null
null
2,022
aaai
Chunk Dynamic Updating for Group Lasso with ODEs
null
Group Lasso is an important sparse regression method in machine learning which encourages selecting key explanatory factors in a grouped manner because of the use of L-2,1 norm. In real-world learning tasks, some chunks of data would be added into or removed from the training set in sequence due to the existence of new or obsolete historical data, which is normally called dynamic or lifelong learning scenario. However, most of existing algorithms of group Lasso are limited to offline updating, and only one is online algorithm which can only handle newly added samples inexactly. Due to the complexity of L-2,1 norm, how to achieve accurate chunk incremental and decremental learning efficiently for group Lasso is still an open question. To address this challenging problem, in this paper, we propose a novel accurate dynamic updating algorithm for group Lasso by utilizing the technique of Ordinary Differential Equations (ODEs), which can incorporate or eliminate a chunk of samples from original training set without retraining the model from scratch. Specifically, we introduce a new formulation to reparameterize the adjustment procedures of chunk incremental and decremental learning simultaneously. Based on the new formulation, we propose a path following algorithm for group Lasso regarding to the adjustment parameter. Importantly, we prove that our path following algorithm can exactly track the piecewise smooth solutions thanks to the technique of ODEs, so that the accurate chunk incremental and decremental learning can be achieved. Extensive experimental results not only confirm the effectiveness of proposed algorithm for the chunk incremental and decremental learning, but also validate its efficiency compared to the existing offline and online algorithms.
Diyang Li, Bin Gu
null
null
2,022
aaai
A Hybrid Causal Structure Learning Algorithm for Mixed-Type Data
null
Inferring the causal structure of a set of random variables is a crucial problem in many disciplines of science. Over the past two decades, various approaches have been pro- posed for causal discovery from observational data. How- ever, most of the existing methods are designed for either purely discrete or continuous data, which limit their practical usage. In this paper, we target the problem of causal structure learning from observational mixed-type data. Although there are a few methods that are able to handle mixed-type data, they suffer from restrictions, such as linear assumption and poor scalability. To overcome these weaknesses, we formulate the causal mechanisms via mixed structure equation model and prove its identifiability under mild conditions. A novel locally consistent score, named CVMIC, is proposed for causal directed acyclic graph (DAG) structure learning. Moreover, we propose an efficient conditional independence test, named MRCIT, for mixed-type data, which is used in causal skeleton learning and final pruning to further improve the computational efficiency and precision of our model. Experimental results on both synthetic and real-world data demonstrate that our proposed hybrid model outperforms the other state-of-the-art methods. Our source code is available at https://github.com/DAMO-DI-ML/AAAI2022-HCM.
Yan Li, Rui Xia, Chunchen Liu, Liang Sun
null
null
2,022
aaai
Zeroth-Order Optimization for Composite Problems with Functional Constraints
null
In many real-world problems, first-order (FO) derivative evaluations are too expensive or even inaccessible. For solving these problems, zeroth-order (ZO) methods that only need function evaluations are often more efficient than FO methods or sometimes the only options. In this paper, we propose a novel zeroth-order inexact augmented Lagrangian method (ZO-iALM) to solve black-box optimization problems, which involve a composite (i.e., smooth+nonsmooth) objective and functional constraints. This appears to be the first work that develops an iALM-based ZO method for functional constrained optimization and meanwhile achieves query complexity results matching the best-known FO complexity results up to a factor of variable dimension. With an extensive experimental study, we show the effectiveness of our method. The applications of our method span from classical optimization problems to practical machine learning examples such as resource allocation in sensor networks and adversarial example generation.
Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu
null
null
2,022
aaai
On the Use of Unrealistic Predictions in Hundreds of Papers Evaluating Graph Representations
null
Prediction using the ground truth sounds like an oxymoron in machine learning. However, such an unrealistic setting was used in hundreds, if not thousands of papers in the area of finding graph representations. To evaluate the multi-label problem of node classification by using the obtained representations, many works assume that the number of labels of each test instance is known in the prediction stage. In practice such ground truth information is rarely available, but we point out that such an inappropriate setting is now ubiquitous in this research area. We detailedly investigate why the situation occurs. Our analysis indicates that with unrealistic information, the performance is likely over-estimated. To see why suitable predictions were not used, we identify difficulties in applying some multi-label techniques. For the use in future studies, we propose simple and effective settings without using practically unknown information. Finally, we take this chance to compare major graph representation learning methods on multi-label node classification.
Li-Chung Lin, Cheng-Hung Liu, Chih-Ming Chen, Kai-Chin Hsu, I-Feng Wu, Ming-Feng Tsai, Chih-Jen Lin
null
null
2,022
aaai
Robust Graph-Based Multi-View Clustering
null
Graph-based multi-view clustering (G-MVC) constructs a graphical representation of each view and then fuses them to a unified graph for clustering. Though demonstrating promising clustering performance in various applications, we observe that their formulations are usually non-convex, leading to a local optimum. In this paper, we propose a novel MVC algorithm termed robust graph-based multi-view clustering (RG-MVC) to address this issue. In particular, we define a min-max formulation for robust learning and then rewrite it as a convex and differentiable objective function whose convexity and differentiability are carefully proved. Thus, we can efficiently solve the resultant problem using a reduced gradient descent algorithm, and the corresponding solution is guaranteed to be globally optimal. As a consequence, although our algorithm is free of hyper-parameters, it has shown good robustness against noisy views. Extensive experiments on benchmark datasets verify the superiority of the proposed method against the compared state-of-the-art algorithms. Our codes and appendix are available at https://github.com/wx-liang/RG-MVC.
Weixuan Liang, Xinwang Liu, Sihang Zhou, Jiyuan Liu, Siwei Wang, En Zhu
null
null
2,022
aaai
SCRIB: Set-Classifier with Class-Specific Risk Bounds for Blackbox Models
null
Despite deep learning (DL) success in classification problems, DL classifiers do not provide a sound mechanism to decide when to refrain from predicting. Recent works tried to control the overall prediction risk with classification with rejection options. However, existing works overlook the different significance of different classes. We introduce Set-classifier with class-specific RIsk Bounds (SCRIB) to tackle this problem, assigning multiple labels to each example. Given the output of a black-box model on the validation set, SCRIB constructs a set-classifier that controls the class-specific prediction risks. The key idea is to reject when the set classifier returns more than one label. We validated SCRIB on several medical applications, including sleep staging on electroencephalogram(EEG) data, X-ray COVID image classification, and atrial fibrillation detection based on electrocardiogram (ECG) data.SCRIB obtained desirable class-specific risks, which are 35%-88% closer to the target risks than baseline methods.
Zhen Lin, Lucas Glass, M. Brandon Westover, Cao Xiao, Jimeng Sun
null
null
2,022
aaai
An Experimental Design Approach for Regret Minimization in Logistic Bandits
null
In this work we consider the problem of regret minimization for logistic bandits. The main challenge of logistic bandits is reducing the dependence on a potentially large problem dependent constant that can at worst scale exponentially with the norm of the unknown parameter vector. Previous works have applied self-concordance of the logistic function to remove this worst-case dependence providing regret guarantees that move the reduce the dependence on this worst case parameter to lower order terms with only polylogarithmic dependence on the main term and as well as linear dependence on the dimension of the unknown parameter. This work improves upon the prior art by 1) removing all scaling of the worst case term on the main term and 2) reducing the dependence on the dependence to scale with the square root of dimension in the fixed arm setting by employing an experimental design procedure. Our regret bound in fact takes a tighter instance (i.e., gap) dependent regret bound for the first time in logistic bandits. We also propose a new warmup sampling algorithm that can dramatically reduce the lower order term in the regret in general and prove that it can exponentially reduce the lower order term's dependency on the worst case parameter in some instances. Finally, we discuss the impact of the bias of the MLE on the logistic bandit problem in d dimensions, providing an example where d^2 lower order regret (cf., it is d for linear bandits) may not be improved as long as the MLE is used and how bias-corrected estimators may be used to make it closer to d.
Blake Mason, Kwang-Sung Jun, Lalit Jain
null
null
2,022
aaai
Deep Unsupervised Hashing with Latent Semantic Components
null
Deep unsupervised hashing has been appreciated in the regime of image retrieval. However, most prior arts failed to detect the semantic components and their relationships behind the images, which makes them lack discriminative power. To make up the defect, we propose a novel Deep Semantic Components Hashing (DSCH), which involves a common sense that an image normally contains a bunch of semantic components with homology and co-occurrence relationships. Based on this prior, DSCH regards the semantic components as latent variables under the Expectation-Maximization framework and designs a two-step iterative algorithm with the objective of maximum likelihood of training data. Firstly, DSCH constructs a semantic component structure by uncovering the fine-grained semantics components of images with a Gaussian Mixture Modal~(GMM), where an image is represented as a mixture of multiple components, and the semantics co-occurrence are exploited. Besides, coarse-grained semantics components, are discovered by considering the homology relationships between fine-grained components, and the hierarchy organization is then constructed. Secondly, DSCH makes the images close to their semantic component centers at both fine-grained and coarse-grained levels, and also makes the images share similar semantic components close to each other. Extensive experiments on three benchmark datasets demonstrate that the proposed hierarchical semantic components indeed facilitate the hashing model to achieve superior performance.
Qinghong Lin, Xiaojun Chen, Qin Zhang, Shaotian Cai, Wenzhe Zhao, Hongfa Wang
null
null
2,022
aaai
Exploring Safer Behaviors for Deep Reinforcement Learning
null
We consider Reinforcement Learning (RL) problems where an agent attempts to maximize a reward signal while minimizing a cost function that models unsafe behaviors. Such formalization is addressed in the literature using constrained optimization on the cost, limiting the exploration and leading to a significant trade-off between cost and reward. In contrast, we propose a Safety-Oriented Search that complements Deep RL algorithms to bias the policy toward safety within an evolutionary cost optimization. We leverage evolutionary exploration benefits to design a novel concept of safe mutations that use visited unsafe states to explore safer actions. We further characterize the behaviors of the policies over desired specifics with a sample-based bound estimation, which makes prior verification analysis tractable in the training loop. Hence, driving the learning process towards safer regions of the policy space. Empirical evidence on the Safety Gym benchmark shows that we successfully avoid drawbacks on the return while improving the safety of the policy.
Enrico Marchesini, Davide Corsi, Alessandro Farinelli
null
null
2,022
aaai
Conditional Local Convolution for Spatio-Temporal Meteorological Forecasting
null
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc. The source code is available at https://github.com/BIRD-TAO/CLCRN.
Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, Stan Z. Li
null
null
2,022
aaai
Conjugated Discrete Distributions for Distributional Reinforcement Learning
null
In this work we continue to build upon recent advances in reinforcement learning for finite Markov processes. A common approach among previous existing algorithms, both single-actor and distributed, is to either clip rewards or to apply a transformation method on Q-functions to handle a large variety of magnitudes in real discounted returns. We theoretically show that one of the most successful methods may not yield an optimal policy if we have a non-deterministic process. As a solution, we argue that distributional reinforcement learning lends itself to remedy this situation completely. By the introduction of a conjugated distributional operator we may handle a large class of transformations for real returns with guaranteed theoretical convergence. We propose an approximating single-actor algorithm based on this operator that trains agents directly on unaltered rewards using a proper distributional metric given by the Cramér distance. To evaluate its performance in a stochastic setting we train agents on a suite of 55 Atari 2600 games using sticky-actions and obtain state-of-the-art performance compared to other well-known algorithms in the Dopamine framework.
Björn Lindenberg, Jonas Nordqvist, Karl-Olof Lindahl
null
null
2,022
aaai
Lifelong Hyper-Policy Optimization with Multiple Importance Sampling Regularization
null
Learning in a lifelong setting, where the dynamics continually evolve, is a hard challenge for current reinforcement learning algorithms. Yet this would be a much needed feature for practical applications. In this paper, we propose an approach which learns a hyper-policy, whose input is time, that outputs the parameters of the policy to be queried at that time. This hyper-policy is trained to maximize the estimated future performance, efficiently reusing past data by means of importance sampling, at the cost of introducing a controlled bias. We combine the future performance estimate with the past performance to mitigate catastrophic forgetting. To avoid overfitting the collected data, we derive a differentiable variance bound that we embed as a penalization term. Finally, we empirically validate our approach, in comparison with state-of-the-art algorithms, on realistic environments, including water resource management and trading.
Pierre Liotet, Francesco Vidaich, Alberto Maria Metelli, Marcello Restelli
null
null
2,022
aaai
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method
null
The Jobs Shop Scheduling problem (JSP) is a canonical combinatorial optimization problem that is routinely solved for a variety of industrial purposes. It models the optimal scheduling of multiple sequences of tasks, each under a fixed order of operations, in which individual tasks require exclusive access to a predetermined resource for a specified processing time. The problem is NP-hard and computationally challenging even for medium-sized instances. Motivated by the increased stochasticity in production chains, this paper explores a deep learning approach to deliver efficient and accurate approximations to the JSP. In particular, this paper proposes the design of a deep neural network architecture to exploit the problem structure, its integration with Lagrangian duality to capture the problem constraints, and a post-processing optimization, to guarantee solution feasibility. The resulting method, called JSP-DNN, is evaluated on hard JSP instances from the JSPLIB benchmark library and is shown to produce JSP approximations of high quality at negligible computational costs.
James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck
null
null
2,022
aaai
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian Inverse
null
In this paper, we propose a novel Hessian inverse free Fully Single Loop Algorithm (FSLA) for bilevel optimization problems. Classic algorithms for bilevel optimization admit a double loop structure which is computationally expensive. Recently, several single loop algorithms have been proposed with optimizing the inner and outer variable alternatively. However, these algorithms not yet achieve fully single loop. As they overlook the loop needed to evaluate the hyper-gradient for a given inner and outer state. In order to develop a fully single loop algorithm, we first study the structure of the hyper-gradient and identify a general approximation formulation of hyper-gradient computation that encompasses several previous common approaches, e.g. back-propagation through time, conjugate gradient, etc. Based on this formulation, we introduce a new state variable to maintain the historical hyper-gradient information. Combining our new formulation with the alternative update of the inner and outer variables, we propose an efficient fully single loop algorithm. We theoretically show that the error generated by the new state can be bounded and our algorithm converges. Finally, we verify the efficacy our algorithm empirically through multiple bilevel optimization based machine learning tasks. A long version of this paper can be found in: https://arxiv.org/abs/2112.04660.
Junyi Li, Bin Gu, Heng Huang
null
null
2,022
aaai
Policy Learning for Robust Markov Decision Process with a Mismatched Generative Model
null
In high-stake scenarios like medical treatment and auto-piloting, it's risky or even infeasible to collect online experimental data to train the agent. Simulation-based training can alleviate this issue, but may suffer from its inherent mismatches from the simulator and real environment. It is therefore imperative to utilize the simulator to learn a robust policy for the real-world deployment. In this work, we consider policy learning for Robust Markov Decision Processes (RMDP), where the agent tries to seek a robust policy with respect to unexpected perturbations on the environments. Specifically, we focus on the setting where the training environment can be characterized as a generative model and a constrained perturbation can be added to the model during testing. Our goal is to identify a near-optimal robust policy for the perturbed testing environment, which introduces additional technical difficulties as we need to simultaneously estimate the training environment uncertainty from samples and find the worst-case perturbation for testing. To solve this issue, we propose a generic method which formalizes the perturbation as an opponent to obtain a two-player zero-sum game, and further show that the Nash Equilibrium corresponds to the robust policy. We prove that, with a polynomial number of samples from the generative model, our algorithm can find a near-optimal robust policy with a high probability. Our method is able to deal with general perturbations under some mild assumptions and can also be extended to more complex problems like robust partial observable Markov decision process, thanks to the game-theoretical formulation.
Jialian Li, Tongzheng Ren, Dong Yan, Hang Su, Jun Zhu
null
null
2,022
aaai
Learning Parameterized Task Structure for Generalization to Unseen Entities
null
Real world tasks are hierarchical and compositional. Tasks can be composed of multiple subtasks (or sub-goals) that are dependent on each other. These subtasks are defined in terms of entities (e.g., "apple", "pear") that can be recombined to form new subtasks (e.g., "pickup apple", and "pickup pear"). To solve these tasks efficiently, an agent must infer subtask dependencies (e.g. an agent must execute "pickup apple" before "place apple in pot"), and generalize the inferred dependencies to new subtasks (e.g. "place apple in pot" is similar to "place apple in pan"). Moreover, an agent may also need to solve unseen tasks, which can involve unseen entities. To this end, we formulate parameterized subtask graph inference (PSGI), a method for modeling subtask dependencies using first-order logic with factored entities. To facilitate this, we learn parameter attributes in a zero-shot manner, which are used as quantifiers (e.g. is_pickable(X)) for the factored subtask graph. We show this approach accurately learns the latent structure on hierarchical and compositional tasks more efficiently than prior work, and show PSGI can generalize by modelling structure on subtasks unseen during adaptation.
Anthony Liu, Sungryull Sohn, Mahdi Qazwini, Honglak Lee
null
null
2,022
aaai
Deep Amortized Relational Model with Group-Wise Hierarchical Generative Process
null
In this paper, we propose Deep amortized Relational Model (DaRM) with group-wise hierarchical generative process for community discovery and link prediction on relational data (e.g., graph, network). It provides an efficient neural relational model architecture by grouping nodes in a group-wise view rather than node-wise or edge-wise view. DaRM simultaneously learns what makes a group, how to divide nodes into groups, and how to adaptively control the number of groups. The dedicated group generative process is able to sufficiently exploit pair-wise or higher-order interactions between data points in both inter-group and intra-group, which is useful to sufficiently mine the hidden structure among data. A series of experiments have been conducted on both synthetic and real-world datasets. The experimental results demonstrated that DaRM can obtain high performance on both community detection and link prediction tasks.
Huafeng Liu, Tong Zhou, Jiaqi Wang
null
null
2,022
aaai
Deep Reinforcement Learning Policies Learn Shared Adversarial Features across MDPs
null
The use of deep neural networks as function approximators has led to striking progress for reinforcement learning algorithms and applications. Yet the knowledge we have on decision boundary geometry and the loss landscape of neural policies is still quite limited. In this paper, we propose a framework to investigate the decision boundary and loss landscape similarities across states and across MDPs. We conduct experiments in various games from Arcade Learning Environment, and discover that high sensitivity directions for neural policies are correlated across MDPs. We argue that these high sensitivity directions support the hypothesis that non-robust features are shared across training environments of reinforcement learning agents. We believe our results reveal fundamental properties of the environments used in deep reinforcement learning training, and represent a tangible step towards building robust and reliable deep reinforcement learning agents.
Ezgi Korkmaz
null
null
2,022
aaai
Learning Robust Policy against Disturbance in Transition Dynamics via State-Conservative Policy Optimization
null
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm---namely, state-conservative policy optimization (SCPO)---to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Yufei Kuang, Miao Lu, Jie Wang, Qi Zhou, Bin Li, Houqiang Li
null
null
2,022
aaai
Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning
null
It is of significance for an agent to autonomously explore the environment and learn a widely applicable and general-purpose goal-conditioned policy that can achieve diverse goals including images and text descriptions. Considering such perceptually-specific goals, one natural approach is to reward the agent with a prior non-parametric distance over the embedding spaces of states and goals. However, this may be infeasible in some situations, either because it is unclear how to choose suitable measurement, or because embedding (heterogeneous) goals and states is non-trivial. The key insight of this work is that we introduce a latent-conditioned policy to provide goals and intrinsic rewards for learning the goal-conditioned policy. As opposed to directly scoring current states with regards to goals, we obtain rewards by scoring current states with associated latent variables. We theoretically characterize the connection between our unsupervised objective and the multi-goal setting, and empirically demonstrate the effectiveness of our proposed method which substantially outperforms prior techniques in a variety of tasks.
Jinxin Liu, Donglin Wang, Qiangxing Tian, Zhengyu Chen
null
null
2,022
aaai
Learning Not to Learn: Nature versus Nurture In Silico
null
Animals are equipped with a rich innate repertoire of sensory, behavioral and motor skills, which allows them to interact with the world immediately after birth. At the same time, many behaviors are highly adaptive and can be tailored to specific environments by means of learning. In this work, we use mathematical analysis and the framework of memory-based meta-learning (or ’learning to learn’) to answer when it is beneficial to learn such an adaptive strategy and when to hard-code a heuristic behavior. We find that the interplay of ecological uncertainty, task complexity and the agents’ lifetime has crucial effects on the meta-learned amortized Bayesian inference performed by an agent. There exist two regimes: One in which meta-learning yields a learning algorithm that implements task-dependent information-integration and a second regime in which meta-learning imprints a heuristic or ’hard-coded’ behavior. Further analysis reveals that non-adaptive behaviors are not only optimal for aspects of the environment that are stable across individuals, but also in situations where an adaptation to the environment would in fact be highly beneficial, but could not be done quickly enough to be exploited within the remaining lifetime. Hard-coded behaviors should hence not only be those that always work, but also those that are too complex to be learned within a reasonable time frame.
Robert Tjarko Lange, Henning Sprekeler
null
null
2,022
aaai
Gradient Based Activations for Accurate Bias-Free Learning
null
Bias mitigation in machine learning models is imperative, yet challenging. While several approaches have been proposed, one view towards mitigating bias is through adversarial learning. A discriminator is used to identify the bias attributes such as gender, age or race in question. This discriminator is used adversarially to ensure that it cannot distinguish the bias attributes. The main drawback in such a model is that it directly introduces a trade-off with accuracy as the features that the discriminator deems to be sensitive for discrimination of bias could be correlated with classification. In this work we solve the problem. We show that a biased discriminator can actually be used to improve this bias-accuracy tradeoff. Specifically, this is achieved by using a feature masking approach using the discriminator's gradients. We ensure that the features favoured for the bias discrimination are de-emphasized and the unbiased features are enhanced during classification. We show that this simple approach works well to reduce bias as well as improve accuracy significantly. We evaluate the proposed model on standard benchmarks. We improve the accuracy of the adversarial methods while maintaining or even improving the unbiasness and also outperform several other recent methods.
Vinod K. Kurmi, Rishabh Sharma, Yash Vardhan Sharma, Vinay P Namboodiri
null
null
2,022
aaai
TrustAL: Trustworthy Active Learning Using Knowledge Distillation
null
Active learning can be defined as iterations of data labeling, model training, and data acquisition, until sufficient labels are acquired. A traditional view of data acquisition is that, through iterations, knowledge from human labels and models is implicitly distilled to monotonically increase the accuracy and label consistency. Under this assumption, the most recently trained model is a good surrogate for the current labeled data, from which data acquisition is requested based on uncertainty/diversity. Our contribution is debunking this myth and proposing a new objective for distillation. First, we found example forgetting, which indicates the loss of knowledge learned across iterations. Second, for this reason, the last model is no longer the best teacher-- For mitigating such forgotten knowledge, we select one of its predecessor models as a teacher, by our proposed notion of "consistency". We show that this novel distillation is distinctive in the following three aspects; First, consistency ensures to avoid forgetting labels. Second, consistency improves both uncertainty/diversity of labeled data. Lastly, consistency redeems defective labels produced by human annotators.
Beong-woo Kwak, Youngwook Kim, Yu Jin Kim, Seung-won Hwang, Jinyoung Yeo
null
null
2,022
aaai
Transformer with Memory Replay
null
Transformers achieve state-of-the-art performance for natural language processing tasks by pre-training on large-scale text corpora. They are extremely compute-intensive and have very high sample complexity. Memory replay is a mechanism that remembers and reuses past examples by saving to and replaying from a memory buffer. It has been successfully used in reinforcement learning and GANs due to better sample efficiency. In this paper, we propose Transformer with Memory Replay, which integrates memory replay with transformer, making transformer more sample efficient. Experiments on GLUE and SQuAD benchmark datasets showed that Transformer with Memory Replay can achieve at least 1% point increase compared to the baseline transformer model when pre-trained with the same number of examples. Further, by adopting a careful design that reduces the wall-clock time overhead of memory replay, we also empirically achieve a better runtime efficiency.
Rui Liu, Barzan Mozafari
null
null
2,022
aaai
RareGAN: Generating Samples for Rare Classes
null
We study the problem of learning generative adversarial networks (GANs) for a rare class of an unlabeled dataset subject to a labeling budget. This problem is motivated from practical applications in domains including security (e.g., synthesizing packets for DNS amplification attacks), systems and networking (e.g., synthesizing workloads that trigger high resource usage), and machine learning (e.g., generating images from a rare class). Existing approaches are unsuitable, either requiring fully-labeled datasets or sacrificing the fidelity of the rare class for that of the common classes. We propose RareGAN, a novel synthesis of three key ideas: (1) extending conditional GANs to use labelled and unlabelled data for better generalization; (2) an active learning approach that requests the most useful labels; and (3) a weighted loss function to favor learning the rare class. We show that RareGAN achieves a better fidelity-diversity tradeoff on the rare class than prior work across different applications, budgets, rare class fractions, GAN losses, and architectures.
Zinan Lin, Hao Liang, Giulia Fanti, Vyas Sekar
null
null
2,022
aaai
Optimization for Classical Machine Learning Problems on the GPU
null
Constrained optimization problems arise frequently in classical machine learning. There exist frameworks addressing constrained optimization, for instance, CVXPY and GENO. However, in contrast to deep learning frameworks, GPU support is limited. Here, we extend the GENO framework to also solve constrained optimization problems on the GPU. The framework allows the user to specify constrained optimization problems in an easy-to-read modeling language. A solver is then automatically generated from this specification. When run on the GPU, the solver outperforms state-of-the-art approaches like CVXPY combined with a GPU-accelerated solver such as cuOSQP or SCS by a few orders of magnitude.
Sören Laue, Mark Blacher, Joachim Giesen
null
null
2,022
aaai
Tight Neural Network Verification via Semidefinite Relaxations and Linear Reformulations
null
We present a novel semidefinite programming (SDP) relaxation that enables tight and efficient verification of neural networks. The tightness is achieved by combining SDP relaxations with valid linear cuts, constructed by using the reformulation-linearisation technique (RLT). The computational efficiency results from a layerwise SDP formulation and an iterative algorithm for incrementally adding RLT-generated linear cuts to the verification formulation. The layer RLT-SDP relaxation here presented is shown to produce the tightest SDP relaxation for ReLU neural networks available in the literature. We report experimental results based on MNIST neural networks showing that the method outperforms the state-of-the-art methods while maintaining acceptable computational overheads. For networks of approximately 10k nodes (1k, respectively), the proposed method achieved an improvement in the ratio of certified robustness cases from 0% to 82% (from 35% to 70%, respectively).
Jianglin Lan, Yang Zheng, Alessio Lomuscio
null
null
2,022
aaai
Stability Verification in Stochastic Control Systems via Neural Network Supermartingales
null
We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic either consider only specialized forms of stochasticity or make restrictive assumptions on the system, rendering them inapplicable to learning algorithms with neural network policies. In this work, we present an approach for general nonlinear stochastic control problems with two novel aspects: (a) instead of classical stochastic extensions of Lyapunov functions, we use ranking supermartingales (RSMs) to certify a.s. asymptotic stability, and (b) we present a method for learning neural network RSMs. We prove that our approach guarantees a.s. asymptotic stability of the system and provides the first method to obtain bounds on the stabilization time, which stochastic Lyapunov functions do not. Finally, we validate our approach experimentally on a set of nonlinear stochastic reinforcement learning environments with neural network policies.
Mathias Lechner, Đorđe Žikelić, Krishnendu Chatterjee, Thomas A. Henzinger
null
null
2,022
aaai
Learning Losses for Strategic Classification
null
Strategic classification, i.e. classification under possible strategic manipulations of features, has received a lot of attention from both the machine learning and the game theory community. Most works focus on analysing properties of the optimal decision rule under such manipulations. In our work we take a learning theoretic perspective, focusing on the sample complexity needed to learn a good decision rule which is robust to strategic manipulation. We perform this analysis by introducing a novel loss function, the strategic manipulation loss, which takes into account both the accuracy of the final decision rule and its vulnerability to manipulation. We analyse the sample complexity for a known graph of possible manipulations in terms of the complexity of the function class and the manipulation graph. Additionally, we initialize the study of learning under unknown manipulation capabilities of the involved agents. Using techniques from transfer learning theory, we define a similarity measure for manipulation graphs and show that learning outcomes are robust with respect to small changes in the manipulation graph. Lastly, we analyse the (sample complexity of) learning of the manipulation capability of agents with respect to this similarity measure, providing novel guarantees for strategic classification with respect to an unknown manipulation graph.
Tosca Lechner, Ruth Urner
null
null
2,022
aaai
Multi-Head Modularization to Leverage Generalization Capability in Multi-Modal Networks
null
It has been crucial to leverage the rich information of multiple modalities in many tasks. Existing works have tried to design multi-modal networks with descent multi-modal fusion modules. Instead, we focus on improving generalization capability of multi-modal networks, especially the fusion module. Viewing the multi-modal data as different projections of information, we first observe that bad projection can cause poor generalization behaviors of multi-modal networks. Then, motivated by well-generalized network's low sensitivity to perturbation, we propose a novel multi-modal training method, multi-head modularization (MHM). We modularize a multi-modal network as a series of uni-modal embedding, multi-modal embedding, and task-specific head modules. Also, for training, we exploit multiple head modules learned with different datasets, swapping each other. From this, we can make the multi-modal embedding module robust to all the heads with different generalization behaviors. In testing phase, we select one of the head modules not to increase the computational cost. Owing to the perturbation of head modules, though including one selected head, the deployed network is more well-generalized compared to the simply end-to-end learned. We verify the effectiveness of MHM on various multi-modal tasks. We use the state-of-the-art methods as baselines, and show notable performance gain for all the baselines.
Jun-Tae Lee, Hyunsin Park, Sungrack Yun, Simyung Chang
null
null
2,022
aaai
Fast and Efficient MMD-Based Fair PCA via Optimization over Stiefel Manifold
null
This paper defines fair principal component analysis (PCA) as minimizing the maximum mean discrepancy (MMD) between the dimensionality-reduced conditional distributions of different protected classes. The incorporation of MMD naturally leads to an exact and tractable mathematical formulation of fairness with good statistical properties. We formulate the problem of fair PCA subject to MMD constraints as a non-convex optimization over the Stiefel manifold and solve it using the Riemannian Exact Penalty Method with Smoothing (REPMS). Importantly, we provide a local optimality guarantee and explicitly show the theoretical effect of each hyperparameter in practical settings, extending previous results. Experimental comparisons based on synthetic and UCI datasets show that our approach outperforms prior work in explained variance, fairness, and runtime.
Junghyun Lee, Gwangsu Kim, Mahbod Olfat, Mark Hasegawa-Johnson, Chang D. Yoo
null
null
2,022
aaai
Instance-Sensitive Algorithms for Pure Exploration in Multinomial Logit Bandit
null
Motivated by real-world applications such as fast fashion retailing and online advertising, the Multinomial Logit Bandit (MNL-bandit) is a popular model in online learning and operations research, and has attracted much attention in the past decade. In this paper, we give efficient algorithms for pure exploration in MNL-bandit. Our algorithms achieve instance-sensitive pull complexities. We also complement the upper bounds by an almost matching lower bound.
Nikolai Karpov, Qin Zhang
null
null
2,022
aaai
Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates
null
To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating a single Counterfactual Latent Uncertainty Explanation (CLUE) for a given data point where the model is uncertain. We broaden the exploration to examine δ-CLUE, the set of potential CLUEs within a δ ball of the original input in latent space. We study the diversity of such sets and find that many CLUEs are redundant; as such, we propose DIVerse CLUE (∇-CLUE), a set of CLUEs which each propose a distinct explanation as to how one can decrease the uncertainty associated with an input. We then further propose GLobal AMortised CLUE (GLAM-CLUE), a distinct, novel method which learns amortised mappings that apply to specific groups of uncertain inputs, taking them and efficiently transforming them in a single function call into inputs for which a model will be certain. Our experiments show that δ-CLUE, ∇-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.
Dan Ley, Umang Bhatt, Adrian Weller
null
null
2,022
aaai
Multiple-Source Domain Adaptation via Coordinated Domain Encoders and Paired Classifiers
null
We present a novel multiple-source unsupervised model for text classification under domain shift. Our model exploits the update rates in document representations to dynamically integrate domain encoders. It also employs a probabilistic heuristic to infer the error rate in the target domain in order to pair source classifiers. Our heuristic exploits data transformation cost and the classifier accuracy in the target feature space. We have used real world scenarios of Domain Adaptation to evaluate the efficacy of our algorithm. We also used pretrained multi-layer transformers as the document encoder in the experiments to demonstrate whether the improvement achieved by domain adaptation models can be delivered by out-of-the-box language model pretraining. The experiments testify that our model is the top performing approach in this setting.
Payam Karisani
null
null
2,022
aaai
Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling
null
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Ruppert averaging procedure of stochastic gradient descent (SGD) algorithms. We leverage insights from time series regression in econometrics and construct asymptotically pivotal statistics via random scaling. Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem. Our proposed inference method has a couple of key advantages over the existing methods. First, the test statistic is computed in an online fashion with only SGD iterates and the critical values can be obtained without any resampling methods, thereby allowing for efficient implementation suitable for massive online data. Second, there is no need to estimate the asymptotic variance and our inference method is shown to be robust to changes in the tuning parameters for SGD algorithms in simulation experiments with synthetic data.
Sokbae Lee, Yuan Liao, Myung Hwan Seo, Youngki Shin
null
null
2,022
aaai
Efficient One-Pass Multi-View Subspace Clustering with Consensus Anchors
null
Multi-view subspace clustering (MVSC) optimally integrates multiple graph structure information to improve clustering performance. Recently, many anchor-based variants are proposed to reduce the computational complexity of MVSC. Though achieving considerable acceleration, we observe that most of them adopt fixed anchor points separating from the subsequential anchor graph construction, which may adversely affect the clustering performance. In addition, post-processing is required to generate discrete clustering labels with additional time consumption. To address these issues, we propose a scalable and parameter-free MVSC method to directly output the clustering labels with optimal anchor graph, termed as Efficient One-pass Multi-view Subspace Clustering with Consensus Anchors (EOMSC-CA). Specially, we combine anchor learning and graph construction into a uniform framework to boost clustering performance. Meanwhile, by imposing a graph connectivity constraint, our algorithm directly outputs the clustering labels without any post-processing procedures as previous methods do. Our proposed EOMSC-CA is proven to be linear complexity respecting to the data size. The superiority of our EOMSC-CA over the effectiveness and efficiency is demonstrated by extensive experiments. Our code is publicly available at https://github.com/Tracesource/EOMSC-CA.
Suyuan Liu, Siwei Wang, Pei Zhang, Kai Xu, Xinwang Liu, Changwang Zhang, Feng Gao
null
null
2,022
aaai
Differentially Private Normalizing Flows for Synthetic Tabular Data Generation
null
Normalizing flows have shown to be a promising approach to deep generative modeling due to their ability to exactly evaluate density --- other alternatives either implicitly model the density or use approximate surrogate density. In this work, we present a differentially private normalizing flow model for heterogeneous tabular data. Normalizing flows are in general not amenable to differentially private training because they require complex neural networks with larger depth (compared to other generative models) and use specialized architectures for which per-example gradient computation is difficult (or unknown). To reduce the parameter complexity, the proposed model introduces a conditional spline flow which simulates transformations at different stages depending on additional input and is shared among sub-flows. For privacy, we introduce two fine-grained gradient clipping strategies that provide a better signal-to-noise ratio and derive fast gradient clipping methods for layers with custom parameterization. Our empirical evaluations show that the proposed model preserves statistical properties of original dataset better than other baselines.
Jaewoo Lee, Minjung Kim, Yonghyun Jeong, Youngmin Ro
null
null
2,022
aaai
iDECODe: In-Distribution Equivariance for Conformal Out-of-Distribution Detection
null
Machine learning methods such as deep neural networks (DNNs), despite their success across different domains, are known to often generate incorrect predictions with high confidence on inputs outside their training distribution. The deployment of DNNs in safety-critical domains requires detection of out-of-distribution (OOD) data so that DNNs can abstain from making predictions on those. A number of methods have been recently developed for OOD detection, but there is still room for improvement. We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection. It relies on a novel base non-conformity measure and a new aggregation method, used in the inductive conformal anomaly detection framework, thereby guaranteeing a bounded false detection rate. We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results. We also show that iDECODe can detect adversarial examples. Code, pre-trained models, and data are available at https://github.com/ramneetk/iDECODe.
Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban, Oleg Sokolsky, Insup Lee
null
null
2,022
aaai
The Effect of Manifold Entanglement and Intrinsic Dimensionality on Learning
null
We empirically investigate the effect of class manifold entanglement and the intrinsic and extrinsic dimensionality of the data distribution on the sample complexity of supervised classification with deep ReLU networks. We separate the effect of entanglement and intrinsic dimensionality and show statistically for artificial and real-world image datasets that the intrinsic dimensionality and the entanglement have an interdependent effect on the sample complexity. Low levels of entanglement lead to low increases of the sample complexity when the intrinsic dimensionality is increased, while for high levels of entanglement the impact of the intrinsic dimensionality increases as well. Further, we show that in general the sample complexity is primarily due to the entanglement and only secondarily due to the intrinsic dimensionality of the data distribution.
Daniel Kienitz, Ekaterina Komendantskaya, Michael Lones
null
null
2,022
aaai
Self-Supervised Enhancement of Latent Discovery in GANs
null
Several methods for discovering interpretable directions in the latent space of pre-trained GANs have been proposed. Latent semantics discovered by unsupervised methods are less disentangled than supervised methods since they do not use pre-trained attribute classifiers. We propose Scale Ranking Estimator (SRE), which is trained using self-supervision. SRE enhances the disentanglement in directions obtained by existing unsupervised disentanglement techniques. These directions are updated to preserve the ordering of variation within each direction in latent space. Qualitative and quantitative evaluation of the discovered directions demonstrates that our proposed method significantly improves disentanglement in various datasets. We also show that the learned SRE can be used to perform Attribute-based image retrieval task without any training.
Adarsh Kappiyath, Silpa Vadakkeeveetil Sreelatha, S. Sumitra
null
null
2,022
aaai
Stackelberg Actor-Critic: Game-Theoretic Reinforcement Learning Algorithms
null
The hierarchical interaction between the actor and critic in actor-critic based reinforcement learning algorithms naturally lends itself to a game-theoretic interpretation. We adopt this viewpoint and model the actor and critic interaction as a two-player general-sum game with a leader-follower structure known as a Stackelberg game. Given this abstraction, we propose a meta-framework for Stackelberg actor-critic algorithms where the leader player follows the total derivative of its objective instead of the usual individual gradient. From a theoretical standpoint, we develop a policy gradient theorem for the refined update and provide a local convergence guarantee for the Stackelberg actor-critic algorithms to a local Stackelberg equilibrium. From an empirical standpoint, we demonstrate via simple examples that the learning dynamics we study mitigate cycling and accelerate convergence compared to the usual gradient dynamics given cost structures induced by actor-critic formulations. Finally, extensive experiments on OpenAI gym environments show that Stackelberg actor-critic algorithms always perform at least as well and often significantly outperform the standard actor-critic algorithm counterparts.
Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, Lillian J. Ratliff
null
null
2,022
aaai
Well-Classified Examples Are Underestimated in Classification with Deep Neural Networks
null
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at https://github.com/lancopku/well-classified-examples-are-underestimated.
Guangxiang Zhao, Wenkai Yang, Xuancheng Ren, Lei Li, Yunfang Wu, Xu Sun
null
null
2,022
aaai
Optimal Tensor Transport
null
Optimal Transport (OT) has become a popular tool in machine learning to align finite datasets typically lying in the same vector space. To expand the range of possible applications, Co-Optimal Transport (Co-OT) jointly estimates two distinct transport plans, one for the rows (points) and one for the columns (features), to match two data matrices that might use different features. On the other hand, Gromov Wasserstein (GW) looks for a single transport plan from two pairwise intra-domain distance matrices. Both Co-OT and GW can be seen as specific extensions of OT to more complex data. In this paper, we propose a unified framework, called Optimal Tensor Transport (OTT), which takes the form of a generic formulation that encompasses OT, GW and Co-OT and can handle tensors of any order by learning possibly multiple transport plans. We derive theoretical results for the resulting new distance and present an efficient way for computing it. We further illustrate the interest of such a formulation in Domain Adaptation and Comparison-based Clustering.
Tanguy Kerdoncuff, Rémi Emonet, Michael Perrot, Marc Sebban
null
null
2,022
aaai
HNO: High-Order Numerical Architecture for ODE-Inspired Deep Unfolding Networks
null
Recently, deep unfolding networks (DUNs) based on optimization algorithms have received increasing attention, and their high efficiency has been confirmed by many experimental and theoretical results. Since this type of networks combines model-based traditional optimization algorithms, they have high interpretability. In addition, ordinary differential equations (ODEs) are often used to explain deep neural networks, and provide some inspiration for designing innovative network models. In this paper, we transform DUNs into first-order ODE forms, and propose a high-order numerical architecture for ODE-inspired deep unfolding networks. To the best of our knowledge, this is the first work to establish the relationship between DUNs and ODEs. Moreover, we take two representative DUNs as examples, apply our architecture to them and design novel DUNs. In theory, we prove the existence, uniqueness of the solution and convergence of the proposed network, and also prove that our network obtains a fast linear convergence rate. Extensive experiments verify the effectiveness and advantages of our architecture.
Lin Kong, Wei Sun, Fanhua Shang, Yuanyuan Liu, Hongying Liu
null
null
2,022
aaai
Same State, Different Task: Continual Reinforcement Learning without Interference
null
Continual Learning (CL) considers the problem of training an agent sequentially on a set of tasks while seeking to retain performance on all previous tasks. A key challenge in CL is catastrophic forgetting, which arises when performance on a previously mastered task is reduced when learning a new task. While a variety of methods exist to combat forgetting, in some cases tasks are fundamentally incompatible with each other and thus cannot be learnt by a single policy. This can occur, in reinforcement learning (RL) when an agent may be rewarded for achieving different goals from the same observation. In this paper we formalize this "interference" as distinct from the problem of forgetting. We show that existing CL methods based on single neural network predictors with shared replay buffers fail in the presence of interference. Instead, we propose a simple method, OWL, to address this challenge. OWL learns a factorized policy, using shared feature extraction layers, but separate heads, each specializing on a new task. The separate heads in OWL are used to prevent interference. At test time, we formulate policy selection as a multi-armed bandit problem, and show it is possible to select the best policy for an unknown task using feedback from the environment. The use of bandit algorithms allows the OWL agent to constructively re-use different continually learnt policies at different times during an episode. We show in multiple RL environments that existing replay based CL methods fail, while OWL is able to achieve close to optimal performance when training sequentially.
Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, Stephen J. Roberts
null
null
2,022
aaai
Structural Landmarking and Interaction Modelling: A “SLIM” Network for Graph Classification
null
Graph neural networks are a promising architecture for learning and inference with graph-structured data. Yet, how to generate informative, fixed dimensional features for graphs with varying size and topology can still be challenging. Typically, this is achieved through graph-pooling, which summarizes a graph by compressing all its nodes into a single vector. Is such a “collapsing-style” graph-pooling the only choice for graph classification? From complex system’s point of view, properties of a complex system arise largely from the interaction among its components. Therefore, we speculate that preserving the interacting relation between parts, instead of pooling them together, could benefit system level prediction. To verify this, we propose SLIM, a graph neural network model for Structural Landmarking and Interaction Modelling. The main idea is to compute a set of end-to-end optimizable sub-structure landmarks, so that any input graph can be projected onto these (spatially) local structural representatives for a faithful, global characterization. By doing so, explicit interaction between component parts of a graph can be leveraged directly in generating discriminative graph representation. Encouraging results are observed on benchmark datasets for graph classification, demonstrating the value of interaction modelling in the design of graph neural networks.
Yaokang Zhu, Kai Zhang, Jun Wang, Haibin Ling, Jie Zhang, Hongyuan Zha
null
null
2,022
aaai
A Computable Definition of the Spectral Bias
null
Neural networks have a bias towards low frequency functions. This spectral bias has been the subject of several previous studies, both empirical and theoretical. Here we present a computable definition of the spectral bias based on a decomposition of the reconstruction error into a low and a high frequency component. The distinction between low and high frequencies is made in a way that allows for easy interpretation of the spectral bias. Furthermore, we present two methods for estimating the spectral bias. Method 1 relies on the use of the discrete Fourier transform to explicitly estimate the Fourier spectrum of the prediction residual, and Method 2 uses convolution to extract the low frequency components, where the convolution integral is estimated by Monte Carlo methods. The spectral bias depends on the distribution of the data, which is approximated with kernel density estimation when unknown. We devise a set of numerical experiments that confirm that low frequencies are learned first, a behavior quantified by our definition.
Jonas Kiessling, Filip Thor
null
null
2,022
aaai
Towards a Rigorous Evaluation of Time-Series Anomaly Detection
null
In recent years, proposed studies on time-series anomaly detection (TAD) report high F1 scores on benchmark TAD datasets, giving the impression of clear improvements in TAD. However, most studies apply a peculiar evaluation protocol called point adjustment (PA) before scoring. In this paper, we theoretically and experimentally reveal that the PA protocol has a great possibility of overestimating the detection performance; even a random anomaly score can easily turn into a state-of-the-art TAD method. Therefore, the comparison of TAD methods after applying the PA protocol can lead to misguided rankings. Furthermore, we question the potential of existing TAD methods by showing that an untrained model obtains comparable detection performance to the existing methods even when PA is forbidden. Based on our findings, we propose a new baseline and an evaluation protocol. We expect that our study will help a rigorous evaluation of TAD and lead to further improvement in future researches.
Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, Sungroh Yoon
null
null
2,022
aaai
Fast Monte-Carlo Approximation of the Attention Mechanism
null
We introduce Monte-Carlo Attention (MCA), a randomized approximation method for reducing the computational cost of self-attention mechanisms in Transformer architectures. MCA exploits the fact that the importance of each token in an input sequence vary with respect to their attention scores; thus, some degree of error can be tolerable when encoding tokens with low attention. Using approximate matrix multiplication, MCA applies different error bounds to encode input tokens such that those with low attention scores are computed with relaxed precision, whereas errors of salient elements are minimized. MCA can operate in parallel with other attention optimization schemes and does not require model modification. We study the theoretical error bounds and demonstrate that MCA reduces attention complexity (in FLOPS) for various Transformer models by up to 11 in GLUE benchmarks without compromising model accuracy. Source code and appendix: https://github.com/eis-lab/monte-carlo-attention
Hyunjun Kim, JeongGil Ko
null
null
2,022
aaai
Directed Graph Auto-Encoders
null
We introduce a new class of auto-encoders for directed graphs, motivated by a direct extension of the Weisfeiler-Leman algorithm to pairs of node labels. The proposed model learns pairs of interpretable latent representations for the nodes of directed graphs, and uses parameterized graph convolutional network (GCN) layers for its encoder and an asymmetric inner product decoder. Parameters in the encoder control the weighting of representations exchanged between neighboring nodes. We demonstrate the ability of the proposed model to learn meaningful latent embeddings and achieve superior performance on the directed link prediction task on several popular network datasets.
Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Ide, Aurélie Lozano, Naoki Abe
null
null
2,022
aaai
Online Missing Value Imputation and Change Point Detection with the Gaussian Copula
null
Missing value imputation is crucial for real-world data science workflows. Imputation is harder in the online setting, as it requires the imputation method itself to be able to evolve over time. For practical applications, imputation algorithms should produce imputations that match the true data distribution, handle data of mixed types, including ordinal, boolean, and continuous variables, and scale to large datasets. In this work we develop a new online imputation algorithm for mixed data using the Gaussian copula. The online Gaussian copula model produces meets all the desiderata: its imputations match the data distribution even for mixed data, improve over its offline counterpart on the accuracy when the streaming data has a changing distribution, and on the speed (up to an order of magnitude) especially on large scale datasets. By fitting the copula model to online data, we also provide a new method to detect change points in the multivariate dependence structure for mixed data with missing values. Experimental results on synthetic and real world data validate the performance of the proposed methods.
Yuxuan Zhao, Eric Landgrebe, Eliot Shekhtman, Madeleine Udell
null
null
2,022
aaai
Categorical Neighbour Correlation Coefficient (CnCor) for Detecting Relationships between Categorical Variables
null
Categorical data is common and, however, special in that its possible values exist only on a nominal scale so that many statistical operations such as mean, variance, and covariance become not applicable. Following the basic idea of the neighbour correlation coefficient (nCor), in this study, we propose a new measure named the categorical nCor (CnCor) to examine the association between categorical variables through using indicator functions to reform the distance metric and product-moment correlation coefficient. The proposed measure is easy to compute, and enables a direct test of statistical dependence without the need of converting the qualitative variables to quantitative ones. Compare to previous approaches, it is much more robust and effective in dealing with multi-categorical target variables especially when highly nonlinear relationships occurs in the multivariate case. We also applied the CnCor to implementing feature selection by the scheme of backward elimination. Finally, extensive experiments performed on both synthetic and real-world datasets are conducted to demonstrate the outstanding performance of the proposed methods, and draw comparisons with state-of-the-art association measures and feature selection algorithms.
Lifeng Zhang, Shimo Yang, Hongxun Jiang
null
null
2,022
aaai
LaSSL: Label-Guided Self-Training for Semi-supervised Learning
null
The key to semi-supervised learning (SSL) is to explore adequate information to leverage the unlabeled data. Current dominant approaches aim to generate pseudo-labels on weakly augmented instances and train models on their corresponding strongly augmented variants with high-confidence results. However, such methods are limited in excluding samples with low-confidence pseudo-labels and under-utilization of the label information. In this paper, we emphasize the cruciality of the label information and propose a Label-guided Self-training approach to Semi-supervised Learning (LaSSL), which improves pseudo-label generations from two mutually boosted strategies. First, with the ground-truth labels and iteratively-polished pseudo-labels, we explore instance relations among all samples and then minimize a class-aware contrastive loss to learn discriminative feature representations that make same-class samples gathered and different-class samples scattered. Second, on top of improved feature representations, we propagate the label information to the unlabeled samples across the potential data manifold at the feature-embedding level, which can further improve the labelling of samples with reference to their neighbours. These two strategies are seamlessly integrated and mutually promoted across the whole training process. We evaluate LaSSL on several classification benchmarks under partially labeled settings and demonstrate its superiority over the state-of-the-art approaches.
Zhen Zhao, Luping Zhou, Lei Wang, Yinghuan Shi, Yang Gao
null
null
2,022
aaai
Multi-Agent Reinforcement Learning with General Utilities via Decentralized Shadow Reward Actor-Critic
null
We posit a new mechanism for cooperation in multi-agent reinforcement learning (MARL) based upon any nonlinear function of the team's long-term state-action occupancy measure, i.e., a general utility. This subsumes the cumulative return but also allows one to incorporate risk-sensitivity, exploration, and priors. We derive the Decentralized Shadow Reward Actor-Critic (DSAC) in which agents alternate between policy evaluation (critic), weighted averaging with neighbors (information mixing), and local gradient updates for their policy parameters (actor). DSAC augments the classic critic step by requiring agents to (i) estimate their local occupancy measure in order to (ii) estimate the derivative of the local utility with respect to their occupancy measure, i.e., the ``shadow reward". DSAC converges to ϵ-stationarity in O(1/ϵ^2.5) or faster O(1/ϵ^2) steps with high probability, depending on the amount of communications. We further establish the non-existence of spurious stationary points for this problem, that is, DSAC finds the globally optimal policy. Experiments demonstrate the merits of goals beyond the cumulative return in cooperative MARL.
Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel
null
null
2,022
aaai
Co-promotion Predictions of Financing Market and Sales Market: A Cooperative-Competitive Attention Approach
null
Market popularity prediction has always been a hot research topic, such as sales prediction and crowdfunding prediction. Most of these studies put the perspective on isolated markets, relying on the knowledge of certain market to maximize the prediction performance. However, these market-specific approaches are restricted by the knowledge limitation of isolated markets and incapable of the complicated and potential relations among different markets, especially some with strong dependence such as the financing market and sales market. Fortunately, we discover potentially symbiotic relations between the financing market and the sales market, which provides us with an opportunity to co-promote the popularity predictions of both markets. Thus, for bridgly learning the knowledge interactions between financing market and sales market, we propose a cross-market approach, namely CATN: Cooperative-competitive Attention Transfer Network, which could effectively transfer knowledge of financing capability from the crowdfunding market and sales prospect from the E-commerce market. Specifically, for capturing the complicated relations especially the cooperation or complement of items and enhancing the knowledge transfer between the two heterogeneous markets, we design a novel Cooperative Attention; meanwhile, for finely computing the relations of items especially the competition in specific same market, we further design Competitive Attentions for the two markets respectively. Besides, we also distinguish aligned features and unique features to adapt the cross-market predictions. With the real-world datasets collected from Indiegogo and Amazon, we construct extensive experiments on three types of datasets from the two markets and the results demonstrate the effectiveness and generalization of our CATN model.
Lei Zhang, Wang Xiang, Chuang Zhao, Hongke Zhao, Rui Li, Runze Wu
null
null
2,022
aaai
State Deviation Correction for Offline Reinforcement Learning
null
Offline reinforcement learning aims to maximize the expected cumulative rewards with a fixed collection of data. The basic principle of current offline reinforcement learning methods is to restrict the policy to the offline dataset action space. However, they ignore the case where the dataset's trajectories fail to cover the state space completely. Especially, when the dataset's size is limited, it is likely that the agent would encounter unseen states during test time. Prior policy-constrained methods are incapable of correcting the state deviation, and may lead the agent to its unexpected regions further. In this paper, we propose the state deviation correction (SDC) method to constrain the policy's induced state distribution by penalizing the out-of-distribution states which might appear during the test period. We first perturb the states sampled from the logged dataset, then simulate noisy next states on the basis of a dynamics model and the policy. We then train the policy to minimize the distances between the noisy next states and the offline dataset. In this manner, we allow the trained policy to guide the agent to its familiar regions. Experimental results demonstrate that our proposed method is competitive with the state-of-the-art methods in a GridWorld setup, offline Mujoco control suite, and a modified offline Mujoco dataset with a finite number of valuable samples.
Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, Guanwen Zhang, Xiangyang Ji
null
null
2,022
aaai
Locality Matters: A Scalable Value Decomposition Approach for Cooperative Multi-Agent Reinforcement Learning
null
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents. As environments grow in size, effective credit assignment becomes increasingly harder and often results in infeasible learning times. Still, in many real-world settings, there exist simplified underlying dynamics that can be leveraged for more scalable solutions. In this work, we exploit such locality structures effectively whilst maintaining global cooperation. We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Centralized Training Decentralized Execution paradigm. Additionally, we provide a direct reward decomposition method for finding these local rewards when only a global signal is provided. We test our method empirically, showing it scales well compared to other methods, significantly improving performance and convergence speed.
Roy Zohar, Shie Mannor, Guy Tennenholtz
null
null
2,022
aaai
Efficient Decentralized Stochastic Gradient Descent Method for Nonconvex Finite-Sum Optimization Problems
null
Decentralized stochastic gradient descent methods have attracted increasing interest in recent years. Numerous methods have been proposed for the nonconvex finite-sum optimization problem. However, existing methods have a large sample complexity, slowing down the empirical convergence speed. To address this issue, in this paper, we proposed a novel decentralized stochastic gradient descent method for the nonconvex finite-sum optimization problem, which enjoys a better sample and communication complexity than existing methods. To the best of our knowledge, our work is the first one achieving such favorable sample and communication complexities. Finally, we have conducted extensive experiments and the experimental results have confirmed the superior performance of our proposed method.
Wenkang Zhan, Gang Wu, Hongchang Gao
null
null
2,022
aaai
Self-Adaptive Imitation Learning: Learning Tasks with Delayed Rewards from Sub-optimal Demonstrations
null
Reinforcement learning (RL) has demonstrated its superiority in solving sequential decision-making problems. However, heavy dependence on immediate reward feedback impedes the wide application of RL. On the other hand, imitation learning (IL) tackles RL without relying on environmental supervision by leveraging external demonstrations. In practice, however, collecting sufficient expert demonstrations can be prohibitively expensive, yet the quality of demonstrations typically limits the performance of the learning policy. To address a practical scenario, in this work, we propose Self-Adaptive Imitation Learning (SAIL), which, provided with a few demonstrations from a sub-optimal teacher, can perform well in RL tasks with extremely delayed rewards, where the only reward feedback is trajectory-wise ranking. SAIL bridges the advantages of IL and RL by interactively exploiting the demonstrations to catch up with the teacher and exploring the environment to yield demonstrations that surpass the teacher. Extensive empirical results show that not only does SAIL significantly improve the sample efficiency, but it also leads to higher asymptotic performance across different continuous control tasks, compared with the state-of-the-art.
Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu Zhou
null
null
2,022
aaai
MetaNODE: Prototype Optimization as a Neural ODE for Few-Shot Learning
null
Few-Shot Learning (FSL) is a challenging task, i.e., how to recognize novel classes with few examples? Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then predicting novel classes via a cosine nearest neighbor classifier with mean-based prototypes. Nevertheless, due to the data scarcity, the mean-based prototypes are usually biased. In this paper, we attempt to diminish the prototype bias by regarding it as a prototype optimization problem. To this end, we propose a novel meta-learning based prototype optimization framework to rectify prototypes, i.e., introducing a meta-optimizer to optimize prototypes. Although the existing meta-optimizers can also be adapted to our framework, they all overlook a crucial gradient bias issue, i.e., the mean-based gradient estimation is also biased on sparse data. To address the issue, we regard the gradient and its flow as meta-knowledge and then propose a novel Neural Ordinary Differential Equation (ODE)-based meta-optimizer to polish prototypes, called MetaNODE. In this meta-optimizer, we first view the mean-based prototypes as initial prototypes, and then model the process of prototype optimization as continuous-time dynamics specified by a Neural ODE. A gradient flow inference network is carefully designed to learn to estimate the continuous gradient flow for prototype dynamics. Finally, the optimal prototypes can be obtained by solving the Neural ODE. Extensive experiments on miniImagenet, tieredImagenet, and CUB-200-2011 show the effectiveness of our method.
Baoquan Zhang, Xutao Li, Shanshan Feng, Yunming Ye, Rui Ye
null
null
2,022
aaai
Error-Based Knockoffs Inference for Controlled Feature Selection
null
Recently, the scheme of model-X knockoffs was proposed as a promising solution to address controlled feature selection under high-dimensional finite-sample settings. However, the procedure of model-X knockoffs depends heavily on the coefficient-based feature importance and only concerns the control of false discovery rate (FDR). To further improve its adaptivity and flexibility, in this paper, we propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together. The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees on controlling false discovery proportion (FDP), FDR, or k-familywise error rate (k-FWER). Empirical evaluations demonstrate the competitive performance of our approach on both simulated and real data.
Xuebin Zhao, Hong Chen, Yingjie Wang, Weifu Li, Tieliang Gong, Yulong Wang, Feng Zheng
null
null
2,022
aaai
Invariant Action Effect Model for Reinforcement Learning
null
Good representations can help RL agents perform concise modeling of their surroundings, and thus support effective decision-making in complex environments. Previous methods learn good representations by imposing extra constraints on dynamics. However, in the causal perspective, the causation between the action and its effect is not fully considered in those methods, which leads to the ignorance of the underlying relations among the action effects on the transitions. Based on the intuition that the same action always causes similar effects among different states, we induce such causation by taking the invariance of action effects among states as the relation. By explicitly utilizing such invariance, in this paper, we show that a better representation can be learned and potentially improves the sample efficiency and the generalization ability of the learned policy. We propose Invariant Action Effect Model (IAEM) to capture the invariance in action effects, where the effect of an action is represented as the residual of representations from neighboring states. IAEM is composed of two parts: (1) a new contrastive-based loss to capture the underlying invariance of action effects; (2) an individual action effect and provides a self-adapted weighting strategy to tackle the corner cases where the invariance does not hold. The extensive experiments on two benchmarks, i.e. Grid-World and Atari, show that the representations learned by IAEM preserve the invariance of action effects. Moreover, with the invariant action effect, IAEM can accelerate the learning process by 1.6x, rapidly generalize to new environments by fine-tuning on a few components, and outperform other dynamics-based representation methods by 1.4x in limited steps.
Zheng-Mao Zhu, Shengyi Jiang, Yu-Ren Liu, Yang Yu, Kun Zhang
null
null
2,022
aaai
Convergence and Optimality of Policy Gradient Methods in Weakly Smooth Settings
null
Policy gradient methods have been frequently applied to problems in control and reinforcement learning with great success, yet existing convergence analysis still relies on non-intuitive, impractical and often opaque conditions. In particular, existing rates are achieved in limited settings, under strict regularity conditions. In this work, we establish explicit convergence rates of policy gradient methods, extending the convergence regime to weakly smooth policy classes with L2 integrable gradient. We provide intuitive examples to illustrate the insight behind these new conditions. Notably, our analysis also shows that convergence rates are achievable for both the standard policy gradient and the natural policy gradient algorithms under these assumptions. Lastly we provide performance guarantees for the converged policies.
Matthew S. Zhang, Murat A Erdogdu, Animesh Garg
null
null
2,022
aaai
Interpretable Domain Adaptation for Hidden Subdomain Alignment in the Context of Pre-trained Source Models
null
Domain adaptation aims to leverage source domain knowledge to predict target domain labels. Most domain adaptation methods tackle a single-source, single-target scenario, whereas source and target domain data can often be subdivided into data from different distributions in real-life applications (e.g., when the distribution of the collected data changes with time). However, such subdomains are rarely given and should be discovered automatically. To this end, some recent domain adaptation works seek separations of hidden subdomains, w.r.t. a known or fixed number of subdomains. In contrast, this paper introduces a new subdomain combination method that leverages a variable number of subdomains. Precisely, we propose to use an inter-subdomain divergence maximization criterion to exploit hidden subdomains. Besides, our proposition stands in a target-to-source domain adaptation scenario, where one exploits a pre-trained source model as a black box; thus, the proposed method is model-agnostic. By providing interpretability at two complementary levels (transformation and subdomain levels), our method can also be easily interpreted by practitioners with or without machine learning backgrounds. Experimental results over two fraud detection datasets demonstrate the efficiency of our method.
Luxin Zhang, Pascal Germain, Yacine Kessaci, Christophe Biernacki
null
null
2,022
aaai
Fusion Multiple Kernel K-means
null
Multiple kernel clustering aims to seek an appropriate combination of base kernels to mine inherent non-linear information for optimal clustering. Late fusion algorithms generate base partitions independently and integrate them in the following clustering procedure, improving the overall efficiency. However, the separate base partition generation leads to inadequate negotiation with the clustering procedure and a great loss of beneficial information in corresponding kernel matrices, which negatively affects the clustering performance. To address this issue, we propose a novel algorithm, termed as Fusion Multiple Kernel k-means (FMKKM), which unifies base partition learning and late fusion clustering into one single objective function, and adopts early fusion technique to capture more sufficient information in kernel matrices. Specifically, the early fusion helps base partitions keep more beneficial kernel details, and the base partitions learning further guides the generation of consensus partition in the late fusion stage, while the late fusion provides positive feedback on two former procedures. The close collaboration of three procedures results in a promising performance improvement. Subsequently, an alternate optimization method with promising convergence is developed to solve the resultant optimization problem. Comprehensive experimental results demonstrate that our proposed algorithm achieves state-of-the-art performance on multiple public datasets, validating its effectiveness. The code of this work is publicly available at https://github.com/ethan-yizhang/Fusion-Multiple-Kernel-K-means.
Yi Zhang, Xinwang Liu, Jiyuan Liu, Sisi Dai, Changwang Zhang, Kai Xu, En Zhu
null
null
2,022
aaai
A Multi-Agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning
null
Federated learning (FL) is a training technique that enables client devices to jointly learn a shared model by aggregating locally computed models without exposing their raw data. While most of the existing work focuses on improving the FL model accuracy, in this paper, we focus on the improving the training efficiency, which is often a hurdle for adopting FL in real world applications. Specifically, we design an efficient FL framework which jointly optimizes model accuracy, processing latency and communication efficiency, all of which are primary design considerations for real implementation of FL. Inspired by the recent success of Multi Agent Reinforcement Learning (MARL) in solving complex control problems, we present FedMarl, a federated learning framework that relies on trained MARL agents to perform efficient run-time client selection. Experiments show that FedMarl can significantly improve model accuracy with much lower processing latency and communication cost.
Sai Qian Zhang, Jieyu Lin, Qi Zhang
null
null
2,022
aaai
Rethinking Influence Functions of Neural Networks in the Over-Parameterized Regime
null
Understanding the black-box prediction for neural networks is challenging. To achieve this, early studies have designed influence function (IF) to measure the effect of removing a single training point on neural networks. However, the classic implicit Hessian-vector product (IHVP) method for calculating IF is fragile, and theoretical analysis of IF in the context of neural networks is still lacking. To this end, we utilize the neural tangent kernel (NTK) theory to calculate IF for the neural network trained with regularized mean-square loss, and prove that the approximation error can be arbitrarily small when the width is sufficiently large for two-layer ReLU networks. We analyze the error bound for the classic IHVP method in the over-parameterized regime to understand when and why it fails or not. In detail, our theoretical analysis reveals that (1) the accuracy of IHVP depends on the regularization term, and is pretty low under weak regularization; (2) the accuracy of IHVP has a significant correlation with the probability density of corresponding training points. We further borrow the theory from NTK to understand the IFs better, including quantifying the complexity for influential samples and depicting the variation of IFs during the training dynamics. Numerical experiments on real-world data confirm our theoretical results and demonstrate our findings.
Rui Zhang, Shihua Zhang
null
null
2,022
aaai
Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum
null
Various neural network models have been proposed to tackle combinatorial optimization problems such as the travelling salesman problem (TSP). Existing learning-based TSP methods adopt a simple setting that the training and testing data are independent and identically distributed. However, the existing literature fails to solve TSP instances when training and testing data have different distributions. Concretely, we find that different training and testing distribution will result in more difficult TSP instances, i.e., the solution obtained by the model has a large gap from the optimal solution. To tackle this problem, in this work, we study learning-based TSP methods when training and testing data have different distributions using adaptive-hardness, i.e., how difficult a TSP instance can be for a solver. This problem is challenging because it is non-trivial to (1) define hardness measurement quantitatively; (2) efficiently and continuously generate sufficiently hard TSP instances upon model training; (3) fully utilize instances with different levels of hardness to learn a more powerful TSP solver. To solve these challenges, we first propose a principled hardness measurement to quantify the hardness of TSP instances. Then, we propose a hardness-adaptive generator to generate instances with different hardness. We further propose a curriculum learner fully utilizing these instances to train the TSP solver. Experiments show that our hardness-adaptive generator can generate instances ten times harder than the existing methods, and our proposed method achieves significant improvement over state-of-the-art models in terms of the optimality gap. The codes are publicly available.
Zeyang Zhang, Ziwei Zhang, Xin Wang, Wenwu Zhu
null
null
2,022
aaai
Tailor Versatile Multi-Modal Learning for Multi-Label Emotion Recognition
null
Multi-modal Multi-label Emotion Recognition (MMER) aims to identify various human emotions from heterogeneous visual, audio and text modalities. Previous methods mainly focus on projecting multiple modalities into a common latent space and learning an identical representation for all labels, which neglects the diversity of each modality and fails to capture richer semantic information for each label from different perspectives. Besides, associated relationships of modalities and labels have not been fully exploited. In this paper, we propose versaTile multi-modAl learning for multI-labeL emOtion Recognition (TAILOR), aiming to refine multi-modal representations and enhance discriminative capacity of each label. Specifically, we design an adversarial multi-modal refinement module to sufficiently explore the commonality among different modalities and strengthen the diversity of each modality. To further exploit label-modal dependence, we devise a BERT-like cross-modal encoder to gradually fuse private and common modality representations in a granularity descent way, as well as a label-guided decoder to adaptively generate a tailored representation for each label with the guidance of label semantics. In addition, we conduct experiments on the benchmark MMER dataset CMU-MOSEI in both aligned and unaligned settings, which demonstrate the superiority of TAILOR over the state-of-the-arts.
Yi Zhang, Mingyuan Chen, Jundong Shen, Chongjun Wang
null
null
2,022
aaai
Robust Action Gap Increasing with Clipped Advantage Learning
null
Advantage Learning (AL) seeks to increase the action gap between the optimal action and its competitors, so as to improve the robustness to estimation errors. However, the method becomes problematic when the optimal action induced by the approximated value function does not agree with the true optimal action. In this paper, we present a novel method, named clipped Advantage Learning (clipped AL), to address this issue. The method is inspired by our observation that increasing the action gap blindly for all given samples while not taking their necessities into account could accumulate more errors in the performance loss bound, leading to a slow value convergence, and to avoid that, we should adjust the advantage value adaptively. We show that our simple clipped AL operator not only enjoys fast convergence guarantee but also retains proper action gaps, hence achieving a good balance between the large action gap and the fast convergence. The feasibility and effectiveness of the proposed method are verified empirically on several RL benchmarks with promising performance.
Zhe Zhang, Yaozhong Gan, Xiaoyang Tan
null
null
2,022
aaai
FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates
null
Federated learning (FL) is a privacy-preserving distributed machine learning paradigm that enables multiple clients to collaboratively train statistical models without disclosing raw training data. However, the inaccessible local training data and uninspectable local training process make FL susceptible to various Byzantine attacks (e.g., data poisoning and model poisoning attacks), aiming to manipulate the FL model training process and degrade the model performance. Most of the existing Byzantine-robust FL schemes cannot effectively defend against stealthy poisoning attacks that craft poisoned models statistically similar to benign models. Things worsen when many clients are compromised or data among clients are highly non-independent and identically distributed (non-IID). In this work, to address these issues, we propose FedInv, a novel Byzantine-robust FL framework by inversing local model updates. Specifically, in each round of local model aggregation in FedInv, the parameter server first inverses the local model updates submitted by each client to generate a corresponding dummy dataset. Then, the server identifies those dummy datasets with exceptional Wasserstein distances from others and excludes the related local model updates from model aggregation. We conduct an exhaustive experimental evaluation of FedInv. The results demonstrate that FedInv significantly outperforms the existing robust FL schemes in defending against stealthy poisoning attacks under highly non-IID data partitions.
Bo Zhao, Peng Sun, Tao Wang, Keyu Jiang
null
null
2,022
aaai
CLPA: Clean-Label Poisoning Availability Attacks Using Generative Adversarial Nets
null
Poisoning attacks are emerging threats to deep neural networks where the adversaries attempt to compromise the models by injecting malicious data points in the clean training data. Poisoning attacks target either the availability or integrity of a model. The availability attack aims to degrade the overall accuracy while the integrity attack causes misclassification only for specific instances without affecting the accuracy of clean data. Although clean-label integrity attacks are proven to be effective in recent studies, the feasibility of clean-label availability attacks remains unclear. This paper, for the first time, proposes a clean-label approach, CLPA, for the poisoning availability attack. We reveal that due to the intrinsic imperfection of classifiers, naturally misclassified inputs can be considered as a special type of poisoned data, which we refer to as "natural poisoned data''. We then propose a two-phase generative adversarial net (GAN) based poisoned data generation framework along with a triplet loss function for synthesizing clean-label poisoned samples that locate in a similar distribution as natural poisoned data. The generated poisoned data are plausible to human perception and can also bypass the singular vector decomposition (SVD) based defense. We demonstrate the effectiveness of our approach on CIFAR-10 and ImageNet dataset over a variety type of models. Codes are available at: https://github.com/bxz9200/CLPA.
Bingyin Zhao, Yingjie Lao
null
null
2,022
aaai
Distributed Randomized Sketching Kernel Learning
null
We investigate the statistical and computational requirements for distributed kernel ridge regression with randomized sketching (DKRR-RS) and successfully achieve the optimal learning rates with only a fraction of computations. More precisely, the proposed DKRR-RS combines sparse randomized sketching, divide-and-conquer and KRR to scale up kernel methods and successfully derives the same learning rate as the exact KRR with greatly reducing computational costs in expectation, at the basic setting, which outperforms previous state of the art solutions. Then, for the sake of the gap between theory and experiments, we derive the optimal learning rate in probability for DKRR-RS to reflect its generalization performance. Finally, to further improve the learning performance, we construct an efficient communication strategy for DKRR-RS and demonstrate the power of communications via theoretical assessment. An extensive experiment validates the effectiveness of DKRR-RS and the communication strategy on real datasets.
Rong Yin, Yong Liu, Dan Meng
null
null
2,022
aaai
Online Influence Maximization with Node-Level Feedback Using Standard Offline Oracles
null
We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, whereas the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes. Second, we use standard offline oracles instead of offline pair-oracles. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of the OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the famous independent cascade (IC) diffusion model. The past research only achieves edge-level feedback, while we present the first optimal regret algorithm for the node-level feedback. For the first challenge above, we apply a novel adaptation of the maximum likelihood estimation (MLE) approach to learn the graph parameters and its confidence region (a confidence ellipsoid). For the second challenge, we adjust the update procedure to dissect the confidence ellipsoid into confidence intervals on each parameter, so that the standard offline influence maximization oracle is enough.
Zhijie Zhang, Wei Chen, Xiaoming Sun, Jialin Zhang
null
null
2,022
aaai
Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
null
Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classification, graph classification and link prediction. For the classification task, GNNs' performance often highly depends on the number of labeled nodes and thus could be significantly hampered due to the expensive annotation cost. The sparse literature on active learning for GNNs has primarily focused on selecting only one sample each iteration, which becomes inefficient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formulate batch active learning as a cooperative multi-agent reinforcement learning problem and present a novel reinforced batch-mode active learning framework BiGeNe. To avoid the combinatorial explosion of the joint action space, we introduce a value decomposition method that factorizes the total Q-value into the average of individual Q-values. Moreover, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN component takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method.
Yuheng Zhang, Hanghang Tong, Yinglong Xia, Yan Zhu, Yuejie Chi, Lei Ying
null
null
2,022
aaai
AutoGCL: Automated Graph Contrastive Learning via Learnable View Generators
null
Contrastive learning has been widely applied to graph representation learning, where the view generators play a vital role in generating effective contrastive samples. Most of the existing contrastive learning methods employ pre-defined view generation methods, e.g., node drop or edge perturbation, which usually cannot adapt to input data or preserve the original semantic structures well. To address this issue, we propose a novel framework named Automated Graph Contrastive Learning (AutoGCL) in this paper. Specifically, AutoGCL employs a set of learnable graph view generators orchestrated by an auto augmentation strategy, where every graph view generator learns a probability distribution of graphs conditioned by the input. While the graph view generators in AutoGCL preserve the most representative structures of the original graph in generation of every contrastive sample, the auto augmentation learns policies to introduce adequate augmentation variances in the whole contrastive learning procedure. Furthermore, AutoGCL adopts a joint training strategy to train the learnable view generators, the graph encoder, and the classifier in an end-to-end manner, resulting in topological heterogeneity yet semantic similarity in the generation of contrastive samples. Extensive experiments on semi-supervised learning, unsupervised learning, and transfer learning demonstrate the superiority of our AutoGCL framework over the state-of-the-arts in graph contrastive learning. In addition, the visualization results further confirm that the learnable view generators can deliver more compact and semantically meaningful contrastive samples compared against the existing view generation methods. Our code is available at https://github.com/Somedaywilldo/AutoGCL.
Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, Xiang Zhang
null
null
2,022
aaai
Stage Conscious Attention Network (SCAN): A Demonstration-Conditioned Policy for Few-Shot Imitation
null
In few-shot imitation learning (FSIL), using behavioral cloning (BC) to solve unseen tasks with few expert demonstrations becomes a popular research direction. The following capabilities are essential in robotics applications: (1) Behaving in compound tasks that contain multiple stages. (2) Retrieving knowledge from few length-variant and misalignment demonstrations. (3) Learning from an expert different from the agent. No previous work can achieve these abilities at the same time. In this work, we conduct FSIL problem under the union of above settings and introduce a novel stage conscious attention network (SCAN) to retrieve knowledge from few demonstrations simultaneously. SCAN uses an attention module to identify each stage in length-variant demonstrations. Moreover, it is designed under demonstration-conditioned policy that learns the relationship between experts and agents. Experiment results show that SCAN can perform in complicated compound tasks without fine-tuning and provide the explainable visualization. Project page is at https://sites.google.com/view/scan-aaai2022.
Jia-Fong Yeh, Chi-Ming Chung, Hung-Ting Su, Yi-Ting Chen, Winston H. Hsu
null
null
2,022
aaai
Hindsight Network Credit Assignment: Efficient Credit Assignment in Networks of Discrete Stochastic Units
null
Training neural networks with discrete stochastic variables presents a unique challenge. Backpropagation is not directly applicable, nor are the reparameterization tricks used in networks with continuous stochastic variables. To address this challenge, we present Hindsight Network Credit Assignment (HNCA), a novel gradient estimation algorithm for networks of discrete stochastic units. HNCA works by assigning credit to each unit based on the degree to which its output influences its immediate children in the network. We prove that HNCA produces unbiased gradient estimates with reduced variance compared to the REINFORCE estimator, while the computational cost is similar to that of backpropagation. We first apply HNCA in a contextual bandit setting to optimize a reward function that is unknown to the agent. In this setting, we empirically demonstrate that HNCA significantly outperforms REINFORCE, indicating that the variance reduction implied by our theoretical analysis is significant and impactful. We then show how HNCA can be extended to optimize a more general function of the outputs of a network of stochastic units, where the function is known to the agent. We apply this extended version of HNCA to train a discrete variational auto-encoder and empirically show it compares favourably to other strong methods. We believe that the ideas underlying HNCA can help stimulate new ways of thinking about efficient credit assignment in stochastic compute graphs.
Kenny Young
null
null
2,022
aaai
Early-Bird GCNs: Graph-Network Co-optimization towards More Efficient GCN Training and Inference via Drawing Early-Bird Lottery Tickets
null
Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsification of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at https://github.com/RICE-EIC/Early-Bird-GCN.
Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, Yingyan Lin
null
null
2,022
aaai
BATUDE: Budget-Aware Neural Network Compression Based on Tucker Decomposition
null
Model compression is very important for the efficient deployment of deep neural network (DNN) models on resource-constrained devices. Among various model compression approaches, high-order tensor decomposition is particularly attractive and useful because the decomposed model is very small and fully structured. For this category of approaches, tensor ranks are the most important hyper-parameters that directly determine the architecture and task performance of the compressed DNN models. However, as an NP-hard problem, selecting optimal tensor ranks under the desired budget is very challenging and the state-of-the-art studies suffer from unsatisfied compression performance and timing-consuming search procedures. To systematically address this fundamental problem, in this paper we propose BATUDE, a Budget-Aware TUcker DEcomposition-based compression approach that can efficiently calculate optimal tensor ranks via one-shot training. By integrating the rank selecting procedure to the DNN training process with a specified compression budget, the tensor ranks of the DNN models are learned from the data and thereby bringing very significant improvement on both compression ratio and classification accuracy for the compressed models. The experimental results on ImageNet dataset show that our method enjoys 0.33% top-5 higher accuracy with 2.52X less computational cost as compared to the uncompressed ResNet-18 model. For ResNet-50, the proposed approach enables 0.37% and 0.55% top-5 accuracy increase with 2.97X and 2.04X computational cost reduction, respectively, over the uncompressed model.
Miao Yin, Huy Phan, Xiao Zang, Siyu Liao, Bo Yuan
null
null
2,022
aaai
LOGICDEF: An Interpretable Defense Framework against Adversarial Examples via Inductive Scene Graph Reasoning
null
Deep vision models have provided new capability across a spectrum of applications in transportation, manufacturing, agriculture, commerce, and security. However, recent studies have demonstrated that these models are vulnerable to adversarial attack, exposing a risk-of-use in critical applications where untrusted parties have access to the data environment or even directly to the sensor inputs. Existing adversarial defense methods are either limited to specific types of attacks or are too complex to be applied to practical vision models. More importantly, these methods rely on techniques that are not interpretable to humans. In this work, we argue that an effective defense should produce an explanation as to why the system is attacked, and by using a representation that is easily readable by a human user, e.g. a logic formalism. To this end, we propose logic adversarial defense (LogicDef), a defense framework that utilizes the scene graph of the image to provide a contextual structure for detecting and explaining object classification. Our framework first mines inductive logic rules from the extracted scene graph, and then uses these rules to construct a defense model that alerts the user when the vision model violates the consistency rules. The defense model is interpretable and its robustness is further enhanced by incorporating existing relational commonsense knowledge from projects such as ConceptNet. In order to handle the hierarchical nature of such relational reasoning, we use a curriculum learning approach based on object taxonomy, yielding additional improvements to training and performance.
Yuan Yang, James C Kerce, Faramarz Fekri
null
null
2,022
aaai
Natural Black-Box Adversarial Examples against Deep Reinforcement Learning
null
Black-box attacks in deep reinforcement learning usually retrain substitute policies to mimic behaviors of target policies as well as craft adversarial examples, and attack the target policies with these transferable adversarial examples. However, the transferability of adversarial examples is not always guaranteed. Moreover, current methods of crafting adversarial examples only utilize simple pixel space metrics which neglect semantics in the whole images, and thus generate unnatural adversarial examples. To address these problems, we propose an advRL-GAN framework to directly generate semantically natural adversarial examples in the black-box setting, bypassing the transferability requirement of adversarial examples. It formalizes the black-box attack as a reinforcement learning (RL) agent, which explores natural and aggressive adversarial examples with generative adversarial networks and the feedback of target agents. To the best of our knowledge, it is the first RL-based adversarial attack on a deep RL agent. Experimental results on multiple environments demonstrate the effectiveness of advRL-GAN in terms of reward reductions and magnitudes of perturbations, and validate the sparse and targeted property of adversarial perturbations through visualization.
Mengran Yu, Shiliang Sun
null
null
2,022
aaai
Low-Pass Graph Convolutional Network for Recommendation
null
Spectral graph convolution is extremely time-consuming for large graphs, thus existing Graph Convolutional Networks (GCNs) reconstruct the kernel by a polynomial, which is (almost) fixed. To extract features from the graph data by learning kernels, Low-pass Collaborative Filter Network (LCFN) was proposed as a new paradigm with trainable kernels. However, there are two demerits of LCFN: (1) The hypergraphs in LCFN are constructed by mining 2-hop connections of the user-item bipartite graph, thus 1-hop connections are not used, resulting in serious information loss. (2) LCFN follows the general network structure of GCNs, which is suboptimal. To address these issues, we utilize the bipartite graph to define the graph space directly and explore the best network structure based on experiments. Comprehensive experiments on two real-world datasets demonstrate the effectiveness of the proposed model. Codes are available on https://github.com/Wenhui-Yu/LCFN.
Wenhui Yu, Zixin Zhang, Zheng Qin
null
null
2,022
aaai
Unsupervised Learning of Compositional Scene Representations from Multiple Unspecified Viewpoints
null
Visual scenes are extremely rich in diversity, not only because there are infinite combinations of objects and background, but also because the observations of the same scene may vary greatly with the change of viewpoints. When observing a visual scene that contains multiple objects from multiple viewpoints, humans are able to perceive the scene in a compositional way from each viewpoint, while achieving the so-called ``object constancy'' across different viewpoints, even though the exact viewpoints are untold. This ability is essential for humans to identify the same object while moving and to learn from vision efficiently. It is intriguing to design models that have the similar ability. In this paper, we consider a novel problem of learning compositional scene representations from multiple unspecified viewpoints without using any supervision, and propose a deep generative model which separates latent representations into a viewpoint-independent part and a viewpoint-dependent part to solve this problem. To infer latent representations, the information contained in different viewpoints is iteratively integrated by neural networks. Experiments on several specifically designed synthetic datasets have shown that the proposed method is able to effectively learn from multiple unspecified viewpoints.
Jinyang Yuan, Bin Li, Xiangyang Xue
null
null
2,022
aaai
Fractional Adaptive Linear Units
null
This work introduces Fractional Adaptive Linear Units (FALUs), a flexible generalization of adaptive activation functions. Leveraging principles from fractional calculus, FALUs define a diverse family of activation functions (AFs) that encompass many traditional and state-of-the-art activation functions. This family includes the Sigmoid, Gaussian, ReLU, GELU, and Swish functions, as well as a large variety of smooth interpolations between these functions. Our technique requires only a small number of additional trainable parameters, and needs no further specialized optimization or initialization procedures. For this reason, FALUs present a seamless and rich automated solution to the problem of activation function optimization. Through experiments on a variety of conventional tasks and network architectures, we demonstrate the effectiveness of FALUs when compared to traditional and state-of-the-art AFs. To facilitate practical use of this work, we plan to make our code publicly available
Julio Zamora, Anthony D. Rhodes, Lama Nachman
null
null
2,022
aaai
MIA-Former: Efficient and Robust Vision Transformers via Multi-Grained Input-Adaptation
null
Vision transformers have recently demonstrated great success in various computer vision tasks, motivating a tremendously increased interest in their deployment into many real-world IoT applications. However, powerful ViTs are often too computationally expensive to be fitted onto real-world resource-constrained platforms, due to (1) their quadratically increased complexity with the number of input tokens and (2) their overparameterized self-attention heads and model depth. In parallel, different images are of varied complexity and their different regions can contain various levels of visual information, e.g., a sky background is not as informative as a foreground object in object classification tasks, indicating that treating those regions equally in terms of model complexity is unnecessary while such opportunities for trimming down ViTs' complexity have not been fully exploited. To this end, we propose a Multi-grained Input-Adaptive Vision Transformer framework dubbed MIA-Former that can input-adaptively adjust the structure of ViTs at three coarse-to-fine-grained granularities (i.e., model depth and the number of model heads/tokens). In particular, our MIA-Former adopts a low-cost network trained with a hybrid supervised and reinforcement learning method to skip the unnecessary layers, heads, and tokens in an input adaptive manner, reducing the overall computational cost. Furthermore, an interesting side effect of our MIA-Former is that its resulting ViTs are naturally equipped with improved robustness against adversarial attacks over their static counterparts, because MIA-Former's multi-grained dynamic control improves the model diversity similar to the effect of ensemble and thus increases the difficulty of adversarial attacks against all its sub-models. Extensive experiments and ablation studies validate that the proposed MIA-Former framework can (1) effectively allocate adaptive computation budgets to the difficulty of input images, achieving state-of-the-art (SOTA) accuracy-efficiency trade-offs, e.g., up to 16.5% computation savings with the same or even a higher accuracy compared with the SOTA dynamic transformer models, and (2) boost ViTs' robustness accuracy under various adversarial attacks over their vanilla counterparts by 2.4% and 3.0%, respectively. Our code is available at https://github.com/RICE-EIC/MIA-Former.
Zhongzhi Yu, Yonggan Fu, Sicheng Li, Chaojian Li, Yingyan Lin
null
null
2,022
aaai
Structure Learning-Based Task Decomposition for Reinforcement Learning in Non-stationary Environments
null
Reinforcement learning (RL) agents empowered by deep neural networks have been considered a feasible solution to automate control functions in a cyber-physical system. In this work, we consider an RL-based agent and address the issue of learning via continual interaction with a time-varying dynamic system modeled as a non-stationary Markov decision process (MDP). We view such a non-stationary MDP as a time series of conventional MDPs that can be parameterized by hidden variables. To infer the hidden parameters, we present a task decomposition method that exploits CycleGAN-based structure learning. This method enables the separation of time-variant tasks from a non-stationary MDP, establishing the task decomposition embedding specific to time-varying information. To mitigate the adverse effect due to inherent noises of task embedding, we also leverage continual learning on sequential tasks by adapting the orthogonal gradient descent scheme with a sliding window. Through various experiments, we demonstrate that our approach renders the RL agent adaptable to time-varying dynamic environment conditions, outperforming other methods including state-of-the-art non-stationary MDP algorithms.
Honguk Woo, Gwangpyo Yoo, Minjong Yoo
null
null
2,022
aaai
PUMA: Performance Unchanged Model Augmentation for Training Data Removal
null
Preserving the performance of a trained model while removing unique characteristics of marked training data points is challenging. Recent research usually suggests retraining a model from scratch with remaining training data or refining the model by reverting the model optimization on the marked data points. Unfortunately, aside from their computational inefficiency, those approaches inevitably hurt the resulting model's generalization ability since they remove not only unique characteristics but also discard shared (and possibly contributive) information. To address the performance degradation problem, this paper presents a novel approach called Performance Unchanged Model Augmentation (PUMA). The proposed PUMA framework explicitly models the influence of each training data point on the model's generalization ability with respect to various performance criteria. It then complements the negative impact of removing marked data by reweighting the remaining data optimally. To demonstrate the effectiveness of the PUMA framework, we compared it with multiple state-of-the-art data removal techniques in the experiments, where we show the PUMA can effectively and efficiently remove the unique characteristics of marked training data without retraining the model that can 1) fool a membership attack, and 2) resist performance degradation. In addition, as PUMA estimates the data importance during its operation, we show it could serve to debug mislabelled data points more efficiently than existing approaches.
Ga Wu, Masoud Hashemi, Christopher Srinivasa
null
null
2,022
aaai
AdaLoss: A Computationally-Efficient and Provably Convergent Adaptive Gradient Method
null
We propose a computationally-friendly adaptive learning rate schedule, ``AdaLoss", which directly uses the information of the loss function to adjust the stepsize in gradient descent methods. We prove that this schedule enjoys linear convergence in linear regression. Moreover, we extend the to the non-convex regime, in the context of two-layer over-parameterized neural networks. If the width is sufficiently large (polynomially), then AdaLoss converges robustly to the global minimum in polynomial time. We numerically verify the theoretical results and extend the scope of the numerical experiments by considering applications in LSTM models for text clarification and policy gradients for control problems.
Xiaoxia Wu, Yuege Xie, Simon Shaolei Du, Rachel Ward
null
null
2,022
aaai
SimSR: Simple Distance-Based State Representations for Deep Reinforcement Learning
null
This work explores how to learn robust and generalizable state representation from image-based observations with deep reinforcement learning methods. Addressing the computational complexity, stringent assumptions and representation collapse challenges in existing work of bisimulation metric, we devise Simple State Representation (SimSR) operator. SimSR enables us to design a stochastic approximation method that can practically learn the mapping functions (encoders) from observations to latent representation space. In addition to the theoretical analysis and comparison with the existing work, we experimented and compared our work with recent state-of-the-art solutions in visual MuJoCo tasks. The results shows that our model generally achieves better performance and has better robustness and good generalization.
Hongyu Zang, Xin Li, Mingzhong Wang
null
null
2,022
aaai
Generalizing Reinforcement Learning through Fusing Self-Supervised Learning into Intrinsic Motivation
null
Despite the great potential of reinforcement learning (RL) in solving complex decision-making problems, generalization remains one of its key challenges, leading to difficulty in deploying learned RL policies to new environments. In this paper, we propose to improve the generalization of RL algorithms through fusing Self-supervised learning into Intrinsic Motivation (SIM). Specifically, SIM boosts representation learning through driving the cross-correlation matrix between the embeddings of augmented and non-augmented samples close to the identity matrix. This aims to increase the similarity between the embedding vectors of a sample and its augmented version while minimizing the redundancy between the components of these vectors. Meanwhile, the redundancy reduction based self-supervised loss is converted to an intrinsic reward to further improve generalization in RL via an auxiliary objective. As a general paradigm, SIM can be implemented on top of any RL algorithm. Extensive evaluations have been performed on a diversity of tasks. Experimental results demonstrate that SIM consistently outperforms the state-of-the-art methods and exhibits superior generalization capability and sample efficiency.
Keyu Wu, Min Wu, Zhenghua Chen, Yuecong Xu, Xiaoli Li
null
null
2,022
aaai
Coordinating Momenta for Cross-Silo Federated Learning
null
Communication efficiency is crucial for federated learning (FL). Conducting local training steps in clients to reduce the communication frequency between clients and the server is a common method to address this issue. However, it leads to the client drift problem due to non-i.i.d. data distributions in different clients which severely deteriorates the performance. In this work, we propose a new method to improve the training performance in cross-silo FL via maintaining double momentum buffers. One momentum buffer tracks the server model updating direction, and the other tracks the local model updating direction. Moreover, we introduce a novel momentum fusion technique to coordinate the server and local momentum buffers. We also provide the first theoretical convergence analysis involving both the server and local standard momentum SGD. Extensive deep FL experimental results show a better training performance than FedAvg and existing standard momentum SGD variants.
An Xu, Heng Huang
null
null
2,022
aaai
An Efficient Combinatorial Optimization Model Using Learning-to-Rank Distillation
null
Recently, deep reinforcement learning (RL) has proven its feasibility in solving combinatorial optimization problems (COPs). The learning-to-rank techniques have been studied in the field of information retrieval. While several COPs can be formulated as the prioritization of input items, as is common in the information retrieval, it has not been fully explored how the learning-to-rank techniques can be incorporated into deep RL for COPs. In this paper, we present the learning-to-rank distillation-based COP framework, where a high-performance ranking policy obtained by RL for a COP can be distilled into a non-iterative, simple model, thereby achieving a low-latency COP solver. Specifically, we employ the approximated ranking distillation to render a score-based ranking model learnable via gradient descent. Furthermore, we use the efficient sequence sampling to improve the inference performance with a limited delay. With the framework, we demonstrate that a distilled model not only achieves comparable performance to its respective, high-performance RL, but also provides several times faster inferences. We evaluate the framework with several COPs such as priority-based task scheduling and multidimensional knapsack, demonstrating the benefits of the framework in terms of inference latency and performance.
Honguk Woo, Hyunsung Lee, Sangwoo Cho
null
null
2,022
aaai
Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms
null
Due to the poor generalization performance of traditional empirical risk minimization (ERM) in the case of distributional shift, Out-of-Distribution (OoD) generalization algorithms receive increasing attention. However, OoD generalization algorithms overlook the great variance in the quality of training data, which significantly compromises the accuracy of these methods. In this paper, we theoretically reveal the relationship between training data quality and algorithm performance, and analyze the optimal regularization scheme for Lipschitz regularized invariant risk minimization. A novel algorithm is proposed based on the theoretical results to alleviate the influence of low quality data at both the sample level and the domain level. The experiments on both the regression and classification benchmarks validate the effectiveness of our method with statistical significance.
Runpeng Yu, Hong Zhu, Kaican Li, Lanqing Hong, Rui Zhang, Nanyang Ye, Shao-Lun Huang, Xiuqiang He
null
null
2,022
aaai
Reinforcement Learning Augmented Asymptotically Optimal Index Policy for Finite-Horizon Restless Bandits
null
We study a finite-horizon restless multi-armed bandit problem with multiple actions, dubbed as R(MA)^2B. The state of each arm evolves according to a controlled Markov decision process (MDP), and the reward of pulling an arm depends on both the current state and action of the corresponding MDP. Since finding the optimal policy is typically intractable, we propose a computationally appealing index policy entitled Occupancy-Measured-Reward Index Policy for the finite-horizon R(MA)^2B. Our index policy is well-defined without the requirement of indexability condition and is provably asymptotically optimal as the number of arms tends to infinity. We then adopt a learning perspective where the system parameters are unknown, and propose R(MA)^2B-UCB, a generative model based reinforcement learning augmented algorithm that can fully exploit the structure of Occupancy-Measured-Reward Index Policy. Compared to existing algorithms, R(MA)^2B-UCB performs close to offline optimum, and achieves a sub-linear regret and a low computational complexity all at once. Experimental results show that R(MA)^2B-UCB outperforms existing algorithms in both regret and running time.
Guojun Xiong, Jian Li, Rahul Singh
null
null
2,022
aaai
SMINet: State-Aware Multi-Aspect Interests Representation Network for Cold-Start Users Recommendation
null
Online travel platforms (OTPs), e.g., bookings.com and Ctrip.com, deliver travel experiences to online users by providing travel-related products. Although much progress has been made, the state-of-the-arts for cold-start problems are largely sub-optimal for user representation, since they do not take into account the unique characteristics exhibited from user travel behaviors. In this work, we propose a State-aware Multi-aspect Interests representation Network (SMINet) for cold-start users recommendation at OTPs, which consists of a multi-aspect interests extractor, a co-attention layer, and a state-aware gating layer. The key component of the model is the multi-aspect interests extractor, which is able to extract representations for the user's multi-aspect interests. Furthermore, to learn the interactions between the user behaviors in the current session and the above multi-aspect interests, we carefully design a co-attention layer which allows the cross attentions between the two modules. Additionally, we propose a travel state-aware gating layer to attentively select the multi-aspect interests. The final user representation is obtained by fusing the three components. Comprehensive experiments conducted both offline and online demonstrate the superior performance of the proposed model at user representation, especially for cold-start users, compared with state-of-the-art methods.
Wanjie Tao, Yu Li, Liangyue Li, Zulong Chen, Hong Wen, Peilin Chen, Tingting Liang, Quan Lu
null
null
2,022
aaai