title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
| null |
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when.In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients × Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks.By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
|
Tessa Han, Suraj Srinivas, Himabindu Lakkaraju
| null | null | 2,022 |
neurips
|
Accelerating Certified Robustness Training via Knowledge Transfer
| null |
Training deep neural network classifiers that are certifiably robust against adversarial attacks is critical to ensuring the security and reliability of AI-controlled systems. Although numerous state-of-the-art certified training methods have been developed, they are computationally expensive and scale poorly with respect to both dataset and network complexity. Widespread usage of certified training is further hindered by the fact that periodic retraining is necessary to incorporate new data and network improvements. In this paper, we propose Certified Robustness Transfer (CRT), a general-purpose framework for reducing the computational overhead of any certifiably robust training method through knowledge transfer. Given a robust teacher, our framework uses a novel training loss to transfer the teacher’s robustness to the student. We provide theoretical and empirical validation of CRT. Our experiments on CIFAR-10 show that CRT speeds up certified robustness training by 8× on average across three different architecture generations while achieving comparable robustness to state-of-the-art methods. We also show that CRT can scale to large-scale datasets like ImageNet.
|
Pratik Vaishnavi, Kevin Eykholt, Amir Rahmati
| null | null | 2,022 |
neurips
|
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
| null |
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models, without centralizing data. The cross-silo FL setting corresponds to the case of few ($2$--$50$) reliable clients, each holding medium to large datasets, and is typically found in applications such as healthcare, finance, or industry. While previous works have proposed representative datasets for cross-device FL, few realistic healthcare cross-silo FL datasets exist, thereby slowing algorithmic research in this critical application. In this work, we propose a novel cross-silo dataset suite focused on healthcare, FLamby (Federated Learning AMple Benchmark of Your cross-silo strategies), to bridge the gap between theory and practice of cross-silo FL.FLamby encompasses 7 healthcare datasets with natural splits, covering multiple tasks, modalities, and data volumes, each accompanied with baseline training code. As an illustration, we additionally benchmark standard FL algorithms on all datasets.Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research. FLamby is available at~\url{www.github.com/owkin/flamby}.
|
Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux
| null | null | 2,022 |
neurips
|
Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning
| null |
Achieving human-level dexterity is an important open problem in robotics. However, tasks of dexterous hand manipulation even at the baby level are challenging to solve through reinforcement learning (RL). The difficulty lies in the high degrees of freedom and the required cooperation among heterogeneous agents (e.g., joints of fingers). In this study, we propose the Bimanual Dexterous Hands Benchmark (Bi-DexHands), a simulator that involves two dexterous hands with tens of bimanual manipulation tasks and thousands of target objects. Tasks in Bi-DexHands are first designed to match human-level motor skills according to literature in cognitive science, and then are built in Issac Gym; this enables highly efficient RL trainings, reaching 30,000+ FPS by only one single NVIDIA RTX 3090. We provide a comprehensive benchmark for popular RL algorithms under different settings; this includes multi-agent RL, offline RL, multi-task RL, and meta RL. Our results show that PPO type on-policy algorithms can learn to solve simple manipulation tasks that are equivalent up to 48-month human baby (e.g., catching a flying object, opening a bottle), while multi-agent RL can further help to learn manipulations that require skilled bimanual cooperation (e.g., lifting a pot, stacking blocks). Despite the success on each individual task, when it comes to mastering multiple manipulation skills, existing RL algorithms fail to work in most of the multi-task and the few-shot learning tasks, which calls for more future development from the RL community. Our project is open-sourced at https://github.com/PKU-MARL/DexterousHands.
|
Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen McAleer, Hao Dong, Song-Chun Zhu, Yaodong Yang
| null | null | 2,022 |
neurips
|
MOMA-LRG: Language-Refined Graphs for Multi-Object Multi-Actor Activity Parsing
| null |
Video-language models (VLMs), large models pre-trained on numerous but noisy video-text pairs from the internet, have revolutionized activity recognition through their remarkable generalization and open-vocabulary capabilities. While complex human activities are often hierarchical and compositional, most existing tasks for evaluating VLMs focus only on high-level video understanding, making it difficult to accurately assess and interpret the ability of VLMs to understand complex and fine-grained human activities. Inspired by the recently proposed MOMA framework, we define activity graphs as a single universal representation of human activities that encompasses video understanding at the activity, sub-activity, and atomic action level. We redefine activity parsing as the overarching task of activity graph generation, requiring understanding human activities across all three levels. To facilitate the evaluation of models on activity parsing, we introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs), a large dataset of complex human activities with activity graph annotations that can be readily transformed into natural language sentences. Lastly, we present a model-agnostic and lightweight approach to adapting and evaluating VLMs by incorporating structured knowledge from activity graphs into VLMs, addressing the individual limitations of language and graphical models. We demonstrate strong performance on few-shot activity parsing, and our framework is intended to foster future research in the joint modeling of videos, graphs, and language.
|
Zelun Luo, Zane Durante, Linden Li, Wanze Xie, Ruochen Liu, Emily Jin, Zhuoyi Huang, Lun Yu Li, Jiajun Wu, Juan Carlos Niebles, Ehsan Adeli, Fei-Fei Li
| null | null | 2,022 |
neurips
|
Transition to Linearity of General Neural Networks with Directed Acyclic Graph Architecture
| null |
In this paper we show that feedforward neural networks corresponding to arbitrary directed acyclic graphs undergo transition to linearity as their ``width'' approaches infinity. The width of these general networks is characterized by the minimum in-degree of their neurons, except for the input and first layers. Our results identify the mathematical structure underlying transition to linearity and generalize a number of recent works aimed at characterizing transition to linearity or constancy of the Neural Tangent Kernel for standard architectures.
|
Libin Zhu, Chaoyue Liu, Misha Belkin
| null | null | 2,022 |
neurips
|
Sample Constrained Treatment Effect Estimation
| null |
Treatment effect estimation is a fundamental problem in causal inference. We focus on designing efficient randomized controlled trials, to accurately estimate the effect of some treatment on a population of $n$ individuals. In particular, we study \textit{sample-constrained treatment effect estimation}, where we must select a subset of $s \ll n$ individuals from the population to experiment on. This subset must be further partitioned into treatment and control groups. Algorithms for partitioning the entire population into treatment and control groups, or for choosing a single representative subset, have been well-studied. The key challenge in our setting is jointly choosing a representative subset and a partition for that set. We focus on both individual and average treatment effect estimation, under a linear effects model. We give provably efficient experimental designs and corresponding estimators, by identifying connections to discrepancy minimization and leverage-score-based sampling used in randomized numerical linear algebra. Our theoretical results obtain a smooth transition to known guarantees when $s$ equals the population size. We also empirically demonstrate the performance of our algorithms.
|
Raghavendra Addanki, David Arbour, Tung Mai, Cameron Musco, Anup Rao
| null | null | 2,022 |
neurips
|
Regret Bounds for Multilabel Classification in Sparse Label Regimes
| null |
Multi-label classification (MLC) has wide practical importance, but the theoretical understanding of its statistical properties is still limited. As an attempt to fill this gap, we thoroughly study upper and lower regret bounds for two canonical MLC performance measures, Hamming loss and Precision@$\kappa$. We consider two different statistical and algorithmic settings, a non-parametric setting tackled by plug-in classifiers \`a la $k$-nearest neighbors, and a parametric one tackled by empirical risk minimization operating on surrogate loss functions. For both, we analyze the interplay between a natural MLC variant of the low noise assumption, widely studied in binary classification, and the label sparsity, the latter being a natural property of large-scale MLC problems. We show that those conditions are crucial in improving the bounds, but the way they are tangled is not obvious, and also different across the two settings.
|
Róbert Busa-Fekete, Heejin Choi, Krzysztof Dembczynski, Claudio Gentile, Henry Reeve, Balazs Szorenyi
| null | null | 2,022 |
neurips
|
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking
| null |
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs). Due to the nature of evolving graph structures into the training process, vanilla GNNs usually fail to scale up, limited by the GPU memory space. Up to now, though numerous scalable GNN architectures have been proposed, we still lack a comprehensive survey and fair benchmark of this reservoir to find the rationale for designing scalable GNNs. To this end, we first systematically formulate the representative methods of large-scale graph training into several branches and further establish a fair and consistent benchmark for them by a greedy hyperparameter searching. In addition, regarding efficiency, we theoretically evaluate the time and space complexity of various branches and empirically compare them w.r.t GPU memory usage, throughput, and convergence. Furthermore, We analyze the pros and cons for various branches of scalable GNNs and then present a new ensembling training manner, named EnGCN, to address the existing issues. Remarkably, our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets. Our code is available at https://github.com/VITA-Group/LargeScaleGCN_Benchmarking.
|
Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang
| null | null | 2,022 |
neurips
|
Foundation Posteriors for Approximate Probabilistic Inference
| null |
Probabilistic programs provide an expressive representation language for generative models. Given a probabilistic program, we are interested in the task of posterior inference: estimating a latent variable given a set of observed variables. Existing techniques for inference in probabilistic programs often require choosing many hyper-parameters, are computationally expensive, and/or only work for restricted classes of programs. Here we formulate inference as masked language modeling: given a program, we generate a supervised dataset of variables and assignments, and randomly mask a subset of the assignments. We then train a neural network to unmask the random values, defining an approximate posterior distribution. By optimizing a single neural network across a range of programs we amortize the cost of training, yielding a "foundation" posterior able to do zero-shot inference for new programs. The foundation posterior can also be fine-tuned for a particular program and dataset by optimizing a variational inference objective. We show the efficacy of the approach, zero-shot and fine-tuned, on a benchmark of STAN programs.
|
Mike Wu, Noah Goodman
| null | null | 2,022 |
neurips
|
CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
| null |
Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, CATER can effectively identify IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs.
|
Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, Ruoxi Jia
| null | null | 2,022 |
neurips
|
MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction
| null |
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/.
|
Jorge Quesada, Lakshmi Sathidevi, Ran Liu, Nauman Ahad, Joy Jackson, Mehdi Azabou, Jingyun Xiao, Christopher Liding, Matthew Jin, Carolina Urzay, William Gray-Roncal, Erik Johnson, Eva Dyer
| null | null | 2,022 |
neurips
|
Blackbox Attacks via Surrogate Ensemble Search
| null |
Blackbox adversarial attacks can be categorized into transfer- and query-based attacks. Transfer methods do not require any feedback from the victim model, but provide lower success rates compared to query-based methods. Query attacks often require a large number of queries for success. To achieve the best of both approaches, recent efforts have tried to combine them, but still require hundreds of queries to achieve high success rates (especially for targeted attacks). In this paper, we propose a novel method for Blackbox Attacks via Surrogate Ensemble Search (BASES) that can generate highly successful blackbox attacks using an extremely small number of queries. We first define a perturbation machine that generates a perturbed image by minimizing a weighted loss function over a fixed set of surrogate models. To generate an attack for a given victim model, we search over the weights in the loss function using queries generated by the perturbation machine. Since the dimension of the search space is small (same as the number of surrogate models), the search requires a small number of queries. We demonstrate that our proposed method achieves better success rate with at least $30\times$ fewer queries compared to state-of-the-art methods on different image classifiers trained with ImageNet (including VGG-19, DenseNet-121, and ResNext-50). In particular, our method requires as few as 3 queries per image (on average) to achieve more than a $90\%$ success rate for targeted attacks and 1--2 queries per image for over a $99\%$ success rate for untargeted attacks. Our method is also effective on Google Cloud Vision API and achieved a $91\%$ untargeted attack success rate with 2.9 queries per image. We also show that the perturbations generated by our proposed method are highly transferable and can be adopted for hard-label blackbox attacks. Furthermore, we argue that BASES can be used to create attacks for a variety of tasks and show its effectiveness for attacks on object detection models. Our code is available at https://github.com/CSIPlab/BASES.
|
Zikui Cai, Chengyu Song, Srikanth Krishnamurthy, Amit Roy-Chowdhury, Salman Asif
| null | null | 2,022 |
neurips
|
ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization
| null |
The factorization of state-action value functions for Multi-Agent Reinforcement Learning (MARL) is important. Existing studies are limited by their representation capability, sample efficiency, and approximation error. To address these challenges, we propose, ResQ, a MARL value function factorization method, which can find the optimal joint policy for any state-action value function through residual functions. ResQ masks some state-action value pairs from a joint state-action value function, which is transformed as the sum of a main function and a residual function. ResQ can be used with mean-value and stochastic-value RL. We theoretically show that ResQ can satisfy both the individual global max (IGM) and the distributional IGM principle without representation limitations. Through experiments on matrix games, the predator-prey, and StarCraft benchmarks, we show that ResQ can obtain better results than multiple expected/stochastic value factorization methods.
|
Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, Cheng Wang
| null | null | 2,022 |
neurips
|
Non-identifiability and the Blessings of Misspecification in Models of Molecular Fitness
| null |
Understanding the consequences of mutation for molecular fitness and function is a fundamental problem in biology. Recently, generative probabilistic models have emerged as a powerful tool for estimating fitness from evolutionary sequence data, with accuracy sufficient to predict both laboratory measurements of function and disease risk in humans, and to design novel functional proteins. Existing techniques rest on an assumed relationship between density estimation and fitness estimation, a relationship that we interrogate in this article. We prove that fitness is not identifiable from observational sequence data alone, placing fundamental limits on our ability to disentangle fitness landscapes from phylogenetic history. We show on real datasets that perfect density estimation in the limit of infinite data would, with high confidence, result in poor fitness estimation; current models perform accurate fitness estimation because of, not despite, misspecification. Our results challenge the conventional wisdom that bigger models trained on bigger datasets will inevitably lead to better fitness estimation, and suggest novel estimation strategies going forward.
|
Eli Weinstein, Alan Amin, Jonathan Frazer, Debora Marks
| null | null | 2,022 |
neurips
|
Towards a Standardised Performance Evaluation Protocol for Cooperative MARL
| null |
Multi-agent reinforcement learning (MARL) has emerged as a useful approach to solving decentralised decision-making problems at scale. Research in the field has been growing steadily with many breakthrough algorithms proposed in recent years. In this work, we take a closer look at this rapid development with a focus on evaluation methodologies employed across a large body of research in cooperative MARL. By conducting a detailed meta-analysis of prior work, spanning 75 papers accepted for publication from 2016 to 2022, we bring to light worrying trends that put into question the true rate of progress. We further consider these trends in a wider context and take inspiration from single-agent RL literature on similar issues with recommendations that remain applicable to MARL. Combining these recommendations, with novel insights from our analysis, we propose a standardised performance evaluation protocol for cooperative MARL. We argue that such a standard protocol, if widely adopted, would greatly improve the validity and credibility of future research, make replication and reproducibility easier, as well as improve the ability of the field to accurately gauge the rate of progress over time by being able to make sound comparisons across different works. Finally, we release our meta-analysis data publicly on our project website for future research on evaluation accompanied by our open-source evaluation tools repository.
|
Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, Arnu Pretorius
| null | null | 2,022 |
neurips
|
On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane
| null |
Cryo-Electron Microscopy (Cryo-EM) is an important imaging method which allows high-resolution reconstruction of the 3D structures of biomolecules. It produces highly noisy 2D images by projecting a molecule's 3D density from random viewing directions. Because the projection directions are unknown, estimating the images' poses is necessary to perform the reconstruction. We focus on this task and study it under the group synchronization framework: if the relative poses of pairs of images can be approximated from the data, an estimation of the images' poses is given by the assignment which is most consistent with the relative ones.In particular, by studying the symmetries of cryo-EM, we show that relative poses in the group O(2) provide sufficient constraints to identify the images' poses, up to the molecule's chirality. With this in mind, we improve the existing multi-frequency vector diffusion maps (MFVDM) method: by using O(2) relative poses, our method not only predicts the similarity between the images' viewing directions but also recovers their poses. Hence, we can leverage all input images in a 3D reconstruction algorithm by initializing the poses with our estimation rather than just clustering and averaging the input images. We validate the recovery capabilities and robustness of our method on randomly generated synchronization graphs and a synthetic cryo-EM dataset.
|
Gabriele Cesa, Arash Behboodi, Taco S. Cohen, Max Welling
| null | null | 2,022 |
neurips
|
Sketching based Representations for Robust Image Classification with Provable Guarantees
| null |
How do we provably represent images succinctly so that their essential latent attributes are correctly captured by the representation to as high level of detail as possible? While today's deep networks (such as CNNs) produce image embeddings they do not have any provable properties and seem to work in mysterious non-interpretable ways. In this work we theoretically study synthetic images that are composed of a union or intersection of several mathematically specified shapes using thresholded polynomial functions (for e.g. ellipses, rectangles). We show how to produce a succinct sketch of such an image so that the sketch “smoothly” maps to the latent-coefficients producing the different shapes in the image. We prove several important properties such as: easy reconstruction of the image from the sketch, similarity preservation (similar shapes produce similar sketches), being able to index sketches so that other similar images and parts of other images can be retrieved, being able to store the sketches into a dictionary of concepts and shapes so parts of the same or different images that refer to the same shape can point to the same entry in this dictionary of common shape attributes.
|
Nishanth Dikkala, Sankeerth Rao Karingula, Raghu Meka, Jelani Nelson, Rina Panigrahy, Xin Wang
| null | null | 2,022 |
neurips
|
Size and depth of monotone neural networks: interpolation and approximation
| null |
Monotone functions and data sets arise in a variety of applications. We study the interpolation problem for monotone data sets: The input is a monotone data set with $n$ points, and the goal is to find a size and depth efficient monotone neural network with \emph{non negative parameters} and threshold units that interpolates the data set. We show that there are monotone data sets that cannot be interpolated by a monotone network of depth $2$. On the other hand, we prove that for every monotone data set with $n$ points in $\mathbb{R}^d$, there exists an interpolating monotone network of depth $4$ and size $O(nd)$. Our interpolation result implies that every monotone function over $[0,1]^d$ can be approximated arbitrarily well by a depth-4 monotone network, improving the previous best-known construction of depth $d+1$. Finally, building on results from Boolean circuit complexity, we show that the inductive bias of having positive parameters can lead to a super-polynomial blow-up in the number of neurons when approximating monotone functions.
|
Dan Mikulincer, Daniel Reichman
| null | null | 2,022 |
neurips
|
Latent Hierarchical Causal Structure Discovery with Rank Constraints
| null |
Most causal discovery procedures assume that there are no latent confounders in the system, which is often violated in real-world problems. In this paper, we consider a challenging scenario for causal structure identification, where some variables are latent and they may form a hierarchical graph structure to generate the measured variables; the children of latent variables may still be latent and only leaf nodes are measured, and moreover, there can be multiple paths between every pair of variables (i.e., it is beyond tree structure). We propose an estimation procedure that can efficiently locate latent variables, determine their cardinalities, and identify the latent hierarchical structure, by leveraging rank deficiency constraints over the measured variables. We show that the proposed algorithm can find the correct Markov equivalence class of the whole graph asymptotically under proper restrictions on the graph structure and with linear causal relations.
|
Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, Kun Zhang
| null | null | 2,022 |
neurips
|
Action-modulated midbrain dopamine activity arises from distributed control policies
| null |
Animal behavior is driven by multiple brain regions working in parallel with distinct control policies. We present a biologically plausible model of off-policy reinforcement learning in the basal ganglia, which enables learning in such an architecture. The model accounts for action-related modulation of dopamine activity that is not captured by previous models that implement on-policy algorithms. In particular, the model predicts that dopamine activity signals a combination of reward prediction error (as in classic models) and "action surprise," a measure of how unexpected an action is relative to the basal ganglia's current policy. In the presence of the action surprise term, the model implements an approximate form of $Q$-learning. On benchmark navigation and reaching tasks, we show empirically that this model is capable of learning from data driven completely or in part by other policies (e.g. from other brain regions). By contrast, models without the action surprise term suffer in the presence of additional policies, and are incapable of learning at all from behavior that is completely externally driven. The model provides a computational account for numerous experimental findings about dopamine activity that cannot be explained by classic models of reinforcement learning in the basal ganglia. These include differing levels of action surprise signals in dorsal and ventral striatum, decreasing amounts movement-modulated dopamine activity with practice, and representations of action initiation and kinematics in dopamine activity. It also provides further predictions that can be tested with recordings of striatal dopamine activity.
|
Jack Lindsey, Ashok Litwin-Kumar
| null | null | 2,022 |
neurips
|
Conditional Diffusion Process for Inverse Halftoning
| null |
Inverse halftoning is a technique used to recover realistic images from ancient prints (\textit{e.g.}, photographs, newspapers, books). The rise of deep learning has led to the gradual incorporation of neural network designs into inverse halftoning methods. Most of existing inverse halftoning approaches adopt the U-net architecture, which uses an encoder to encode halftone prints, followed by a decoder for image reconstruction. However, the mainstream supervised learning paradigm with element-wise regression commonly adopted in U-net based methods has poor generalization ability in practical applications. Specifically, when there is a large gap between the dithering patterns of the training and test halftones, the reconstructed continuous-tone images have obvious artifacts. This is an important issue in practical applications, since the algorithms for generating halftones are ever-evolving. Even for the same algorithm, different parameter choices will result in different halftone dithering patterns. In this paper, we propose the first generative halftoning method in the literature, which regards the black pixels in halftones as physically moving particles, and makes the randomly distributed particles move under some certain guidance through reverse diffusion process, so as to obtain desired halftone patterns. In particular, we propose a Conditional Diffusion model for image Halftoning (CDH), which consists of a halftone dithering process and an inverse halftoning process. By changing the initial state of the diffusion model, our method can generate visually plausible halftones with different dithering patterns under the condition of image gray level and Laplacian prior. To avoid introducing redundant patterns and undesired artifacts, we propose a meta-halftone guided network to incorporate blue noise guidance in the diffusion process. In this way, halftone images subject to more diverse distributions are fed into the inverse halftoning model, which helps the model to learn a more robust mapping from halftone distributions to continuous-tone distributions, thereby improving the generalization ability to unseen samples. Quantitative and qualitative experimental results demonstrate that the proposed method achieves state-of-the-art results.
|
Hao Jiang, Yadong Mu
| null | null | 2,022 |
neurips
|
Doubly-Asynchronous Value Iteration: Making Value Iteration Asynchronous in Actions
| null |
Value iteration (VI) is a foundational dynamic programming method, important for learning and planning in optimal control and reinforcement learning. VI proceeds in batches, where the update to the value of each state must be completed before the next batch of updates can begin. Completing a single batch is prohibitively expensive if the state space is large, rendering VI impractical for many applications. Asynchronous VI helps to address the large state space problem by updating one state at a time, in-place and in an arbitrary order. However, Asynchronous VI still requires a maximization over the entire action space, making it impractical for domains with large action space. To address this issue, we propose doubly-asynchronous value iteration (DAVI), a new algorithm that generalizes the idea of asynchrony from states to states and actions. More concretely, DAVI maximizes over a sampled subset of actions that can be of any user-defined size. This simple approach of using sampling to reduce computation maintains similarly appealing theoretical properties to VI without the need to wait for a full sweep through the entire action space in each update. In this paper, we show DAVI converges to the optimal value function with probability one, converges at a near-geometric rate with probability $1-\delta$, and returns a near-optimal policy in computation time that nearly matches a previously established bound for VI. We also empirically demonstrate DAVI's effectiveness in several experiments.
|
Tian Tian, Kenny Young, Richard S. Sutton
| null | null | 2,022 |
neurips
|
NOMAD: Nonlinear Manifold Decoders for Operator Learning
| null |
Supervised learning in function spaces is an emerging area of machine learning research with applications to the prediction of complex physical systems such as fluid flows, solid mechanics, and climate modeling. By directly learning maps (operators) between infinite dimensional function spaces, these models are able to learn discretization invariant representations of target functions. A common approach is to represent such target functions as linear combinations of basis elements learned from data. However, there are simple scenarios where, even though the target functions form a low dimensional submanifold, a very large number of basis elements is needed for an accurate linear representation. Here we present NOMAD, a novel operator learning framework with a nonlinear decoder map capable of learning finite dimensional representations of nonlinear submanifolds in function spaces. We show this method is able to accurately learn low dimensional representations of solution manifolds to partial differential equations while outperforming linear models of larger size. Additionally, we compare to state-of-the-art operator learning methods on a complex fluid dynamics benchmark and achieve competitive performance with a significantly smaller model size and training cost.
|
Jacob Seidman, Georgios Kissas, Paris Perdikaris, George J. Pappas
| null | null | 2,022 |
neurips
|
Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers
| null |
Solution concepts such as Nash Equilibria, Correlated Equilibria, and Coarse Correlated Equilibria are useful components for many multiagent machine learning algorithms. Unfortunately, solving a normal-form game could take prohibitive or non-deterministic time to converge, and could fail. We introduce the Neural Equilibrium Solver which utilizes a special equivariant neural network architecture to approximately solve the space of all games of fixed shape, buying speed and determinism. We define a flexible equilibrium selection framework, that is capable of uniquely selecting an equilibrium that minimizes relative entropy, or maximizes welfare. The network is trained without needing to generate any supervised training data. We show remarkable zero-shot generalization to larger games. We argue that such a network is a powerful component for many possible multiagent algorithms.
|
Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, Karl Tuyls
| null | null | 2,022 |
neurips
|
Beyond Real-world Benchmark Datasets: An Empirical Study of Node Classification with GNNs
| null |
Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research.
|
Seiji Maekawa, Koki Noda, Yuya Sasaki, makoto onizuka
| null | null | 2,022 |
neurips
|
Semi-Supervised Video Salient Object Detection Based on Uncertainty-Guided Pseudo Labels
| null |
Semi-Supervised Video Salient Object Detection (SS-VSOD) is challenging because of the lack of temporal information in video sequences caused by sparse annotations. Most works address this problem by generating pseudo labels for unlabeled data. However, error-prone pseudo labels negatively affect the VOSD model. Therefore, a deeper insight into pseudo labels should be developed. In this work, we aim to explore 1) how to utilize the incorrect predictions in pseudo labels to guide the network to generate more robust pseudo labels and 2) how to further screen out the noise that still exists in the improved pseudo labels. To this end, we propose an Uncertainty-Guided Pseudo Label Generator (UGPLG), which makes full use of inter-frame information to ensure the temporal consistency of the pseudo labels and improves the robustness of the pseudo labels by strengthening the learning of difficult scenarios. Furthermore, we also introduce the adversarial learning to address the noise problems in pseudo labels, guaranteeing the positive guidance of pseudo labels during model training. Experimental results demonstrate that our methods outperform existing semi-supervised method and partial fully-supervised methods across five public benchmarks of DAVIS, FBMS, MCL, ViSal and SegTrack-V2.
|
Yongri Piao, Chenyang Lu, Miao Zhang, Huchuan Lu
| null | null | 2,022 |
neurips
|
A PAC-Bayesian Generalization Bound for Equivariant Networks
| null |
Equivariant networks capture the inductive bias about the symmetry of the learning task by building those symmetries into the model. In this paper, we study how equivariance relates to generalization error utilizing PAC Bayesian analysis for equivariant networks, where the transformation laws of feature spaces are deter- mined by group representations. By using perturbation analysis of equivariant networks in Fourier domain for each layer, we derive norm-based PAC-Bayesian generalization bounds. The bound characterizes the impact of group size, and multiplicity and degree of irreducible representations on the generalization error and thereby provide a guideline for selecting them. In general, the bound indicates that using larger group size in the model improves the generalization error substantiated by extensive numerical experiments.
|
Arash Behboodi, Gabriele Cesa, Taco S. Cohen
| null | null | 2,022 |
neurips
|
Debiased Causal Tree: Heterogeneous Treatment Effects Estimation with Unmeasured Confounding
| null |
Unmeasured confounding poses a significant threat to the validity of causal inference. Despite that various ad hoc methods are developed to remove confounding effects, they are subject to certain fairly strong assumptions. In this work, we consider the estimation of conditional causal effects in the presence of unmeasured confounding using observational data and historical controls. Under an interpretable transportability condition, we prove the partial identifiability of conditional average treatment effect on the treated group (CATT). For tree-based models, a new notion, \emph{confounding entropy}, is proposed to measure the discrepancy introduced by unobserved confounders between the conditional outcome distribution of the treated and control groups. The confounding entropy generalizes conventional confounding bias, and can be estimated effectively using historical controls. We develop a new method, debiased causal tree, whose splitting rule is to minimize the empirical risk regularized by the confounding entropy. Notably, our method integrates current observational data (for empirical risk) and their historical controls (for confounding entropy) harmoniously. We highlight that, debiased causal tree can not only estimate CATT well in the presence of unmeasured confounding, but also is a robust estimator of conditional average treatment effect (CATE) against the imbalance of the treated and control populations when all confounders are observed. An extension of combining multiple debiased causal trees to further reduce biases by gradient boosting is considered. The computational feasibility and statistical power of our method are evidenced by simulations and a study of a credit card balance dataset.
|
Caizhi Tang, Huiyuan Wang, Xinyu Li, Qing Cui, Ya-Lin Zhang, Feng Zhu, Longfei Li, Jun Zhou, Linbo Jiang
| null | null | 2,022 |
neurips
|
S-Prompts Learning with Pre-trained Transformers: An Occam’s Razor for Domain Incremental Learning
| null |
State-of-the-art deep neural networks are still struggling to address the catastrophic forgetting problem in continual learning. In this paper, we propose one simple paradigm (named as S-Prompting) and two concrete approaches to highly reduce the forgetting degree in one of the most typical continual learning scenarios, i.e., domain increment learning (DIL). The key idea of the paradigm is to learn prompts independently across domains with pre-trained transformers, avoiding the use of exemplars that commonly appear in conventional methods. This results in a win-win game where the prompting can achieve the best for each domain. The independent prompting across domains only requests one single cross-entropy loss for training and one simple K-NN operation as a domain identifier for inference. The learning paradigm derives an image prompt learning approach and a novel language-image prompt learning approach. Owning an excellent scalability (0.03% parameter increase per domain), the best of our approaches achieves a remarkable relative improvement (an average of about 30%) over the best of the state-of-the-art exemplar-free methods for three standard DIL tasks, and even surpasses the best of them relatively by about 6% in average when they use exemplars. Source code is available at https://github.com/iamwangyabin/S-Prompts.
|
Yabin Wang, Zhiwu Huang, Xiaopeng Hong
| null | null | 2,022 |
neurips
|
Asymptotic Properties for Bayesian Neural Network in Besov Space
| null |
Neural networks have shown great predictive power when applied to unstructured data such as images and natural languages. The Bayesian neural network captures the uncertainty of prediction by computing the posterior distribution of the model parameters. In this paper, we show that the Bayesian neural network with spikeand-slab prior has posterior consistency with a near minimax optimal convergence rate when the true regression function belongs to the Besov space. The spikeand-slab prior is adaptive to the smoothness of the regression function and the posterior convergence rate does not change even when the smoothness of the regression function is unknown. We also consider the shrinkage prior, which is computationally more feasible than the spike-and-slab prior, and show that it has the same posterior convergence rate as the spike-and-slab prior.
|
Kyeongwon Lee, Jaeyong Lee
| null | null | 2,022 |
neurips
|
Log-Polar Space Convolution Layers
| null |
Convolutional neural networks use regular quadrilateral convolution kernels to extract features. Since the number of parameters increases quadratically with the size of the convolution kernel, many popular models use small convolution kernels, resulting in small local receptive fields in lower layers. This paper proposes a novel log-polar space convolution (LPSC) layer, where the convolution kernel is elliptical and adaptively divides its local receptive field into different regions according to the relative directions and logarithmic distances. The local receptive field grows exponentially with the number of distance levels. Therefore, the proposed LPSC not only naturally encodes local spatial structures, but also greatly increases the single-layer receptive field while maintaining the number of parameters. We show that LPSC can be implemented with conventional convolution via log-polar space pooling and can be applied in any network architecture to replace conventional convolutions. Experiments on different tasks and datasets demonstrate the effectiveness of the proposed LPSC.
|
Bing Su, Ji-Rong Wen
| null | null | 2,022 |
neurips
|
Self-Organized Group for Cooperative Multi-agent Reinforcement Learning
| null |
Centralized training with decentralized execution (CTDE) has achieved great success in cooperative multi-agent reinforcement learning (MARL) in practical applications. However, CTDE-based methods typically suffer from poor zero-shot generalization ability with dynamic team composition and varying partial observability. To tackle these issues, we propose a spontaneously grouping mechanism, termed Self-Organized Group (SOG), which is featured with conductor election (CE) and message summary (MS). In CE, a certain number of conductors are elected every $T$ time-steps to temporally construct groups, each with conductor-follower consensus where the followers are constrained to only communicate with their conductor. In MS, each conductor summarize and distribute the received messages to all affiliate group members to hold a unified scheduling. SOG provides zero-shot generalization ability to the dynamic number of agents and the varying partial observability. Sufficient experiments on mainstream multi-agent benchmarks exhibit superiority of SOG.
|
Jianzhun Shao, Zhiqiang Lou, Hongchang Zhang, Yuhang Jiang, Shuncheng He, Xiangyang Ji
| null | null | 2,022 |
neurips
|
OmniVL: One Foundation Model for Image-Language and Video-Language Tasks
| null |
This paper presents OmniVL, a new foundation model to support both image-language and video-language tasks using one universal architecture. It adopts a unified transformer-based visual encoder for both image and video inputs, and thus can perform joint image-language and video-language pretraining. We demonstrate, for the first time, such a paradigm benefits both image and video tasks, as opposed to the conventional one-directional transfer (e.g., use image-language to help video-language). To this end, we propose a \emph{decoupled} joint pretraining of image-language and video-language to effectively decompose the vision-language modeling into spatial and temporal dimensions and obtain performance boost on both image and video tasks. Moreover, we introduce a novel unified vision-language contrastive (UniVLC) loss to leverage image-text, video-text, image-label (e.g., image classification), video-label (e.g., video action recognition) data together, so that both supervised and noisily supervised pretraining data are utilized as much as possible. Without incurring extra task-specific adaptors, OmniVL can simultaneously support visual only tasks (e.g., image classification, video action recognition), cross-modal alignment tasks (e.g., image/video-text retrieval), and multi-modal understanding and generation tasks (e.g., image/video question answering, captioning). We evaluate OmniVL on a wide range of downstream tasks and achieve state-of-the-art or competitive results with similar model size and data scale.
|
Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Luowei Zhou, Yucheng Zhao, Yujia Xie, Ce Liu, Yu-Gang Jiang, Lu Yuan
| null | null | 2,022 |
neurips
|
Neural Network Architecture Beyond Width and Depth
| null |
This paper proposes a new neural network architecture by introducing an additional dimension called height beyond width and depth. Neural network architectures with height, width, and depth as hyper-parameters are called three-dimensional architectures. It is shown that neural networks with three-dimensional architectures are significantly more expressive than the ones with two-dimensional architectures (those with only width and depth as hyper-parameters), e.g., standard fully connected networks. The new network architecture is constructed recursively via a nested structure, and hence we call a network with the new architecture nested network (NestNet). A NestNet of height $s$ is built with each hidden neuron activated by a NestNet of height $\le s-1$. When $s=1$, a NestNet degenerates to a standard network with a two-dimensional architecture. It is proved by construction that height-$s$ ReLU NestNets with $\mathcal{O}(n)$ parameters can approximate $1$-Lipschitz continuous functions on $[0,1]^d$ with an error $\mathcal{O}(n^{-(s+1)/d})$, while the optimal approximation error of standard ReLU networks with $\mathcal{O}(n)$ parameters is $\mathcal{O}(n^{-2/d})$. Furthermore, such a result is extended to generic continuous functions on $[0,1]^d$ with the approximation error characterized by the modulus of continuity. Finally, we use numerical experimentation to show the advantages of the super-approximation power of ReLU NestNets.
|
Shijun Zhang, Zuowei Shen, Haizhao Yang
| null | null | 2,022 |
neurips
|
CoNSoLe: Convex Neural Symbolic Learning
| null |
Learning the underlying equation from data is a fundamental problem in many disciplines. Recent advances rely on Neural Networks (NNs) but do not provide theoretical guarantees in obtaining the exact equations owing to the non-convexity of NNs. In this paper, we propose Convex Neural Symbolic Learning (CoNSoLe) to seek convexity under mild conditions. The main idea is to decompose the recovering process into two steps and convexify each step. In the first step of searching for right symbols, we convexify the deep Q-learning. The key is to maintain double convexity for both the negative Q-function and the negative reward function in each iteration, leading to provable convexity of the negative optimal Q function to learn the true symbol connections. Conditioned on the exact searching result, we construct a Locally Convex equation Learning (LoCaL) neural network to convexify the estimation of symbol coefficients. With such a design, we quantify a large region with strict convexity in the loss surface of LoCaL for commonly used physical functions. Finally, we demonstrate the superior performance of the CoNSoLe framework over the state-of-the-art on a diverse set of datasets.
|
Haoran Li, Yang Weng, Hanghang Tong
| null | null | 2,022 |
neurips
|
Fairness in Federated Learning via Core-Stability
| null |
Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data, especially in the non-IID setting, makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively ``unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given $N$ agents, there is no subset of agents $S$ that can benefit significantly by forming a coalition among themselves based on their utilities $U_N$ and $U_S$ (i.e., $ (|S|/ N) U_S \geq U_N$). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality (each agent gets at least $1/n$ fraction of the best utility that she can get from any predictor) and Pareto-optimality (there exists no model that can increase the utility of an agent without decreasing the utility of another), two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while maintaining similar accuracy.
|
Bhaskar Ray Chaudhury, Linyi Li, Mintong Kang, Bo Li, Ruta Mehta
| null | null | 2,022 |
neurips
|
Subspace Recovery from Heterogeneous Data with Non-isotropic Noise
| null |
Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from $n$ users with user $i$ contributing data samples from a $d$-dimensional distribution with mean $\mu_i$. Our goal is to recover the linear subspace shared by $\mu_1,\ldots,\mu_n$ using the data points from all users, where every data point from user $i$ is formed by adding an independent mean-zero noise vector to $\mu_i$. If we only have one data point from every user, subspace recovery is information-theoretically impossible when the covariance matrices of the noise vectors can be non-spherical, necessitating additional restrictive assumptions in previous work. We avoid these assumptions by leveraging at least two data points from each user, which allows us to design an efficiently-computable estimator under non-spherical and user-dependent noise. We prove an upper bound for the estimation error of our estimator in general scenarios where the number of data points and amount of noise can vary across users, and prove an information-theoretic error lower bound that not only matches the upper bound up to a constant factor, but also holds even for spherical Gaussian noise. This implies that our estimator does not introduce additional estimation error (up to a constant factor) due to irregularity in the noise. We show additional results for a linear regression problem in a similar setup.
|
John C. Duchi, Vitaly Feldman, Lunjia Hu, Kunal Talwar
| null | null | 2,022 |
neurips
|
Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation
| null |
We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method. Code is available in https://github.com/Albert0147/AaD_SFDA.
|
Shiqi Yang, yaxing wang, kai wang, Shangling Jui, Joost van de Weijer
| null | null | 2,022 |
neurips
|
Exploration-Guided Reward Shaping for Reinforcement Learning under Sparse Rewards
| null |
We study the problem of reward shaping to accelerate the training process of a reinforcement learning agent. Existing works have considered a number of different reward shaping formulations; however, they either require external domain knowledge or fail in environments with extremely sparse rewards. In this paper, we propose a novel framework, Exploration-Guided Reward Shaping (ExploRS), that operates in a fully self-supervised manner and can accelerate an agent's learning even in sparse-reward environments. The key idea of ExploRS is to learn an intrinsic reward function in combination with exploration-based bonuses to maximize the agent's utility w.r.t. extrinsic rewards. We theoretically showcase the usefulness of our reward shaping framework in a special family of MDPs. Experimental results on several environments with sparse/noisy reward signals demonstrate the effectiveness of ExploRS.
|
Rati Devidze, Parameswaran Kamalaruban, Adish Singla
| null | null | 2,022 |
neurips
|
SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction
| null |
One unique property of time series is that the temporal relations are largely preserved after downsampling into two sub-sequences. By taking advantage of this property, we propose a novel neural network architecture that conducts sample convolution and interaction for temporal modeling and forecasting, named SCINet. Specifically, SCINet is a recursive downsample-convolve-interact architecture. In each layer, we use multiple convolutional filters to extract distinct yet valuable temporal features from the downsampled sub-sequences or features. By combining these rich features aggregated from multiple resolutions, SCINet effectively models time series with complex temporal dynamics. Experimental results show that SCINet achieves significant forecasting accuracy improvements over both existing convolutional models and Transformer-based solutions across various real-world time series forecasting datasets. Our codes and data are available at https://github.com/cure-lab/SCINet.
|
Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, Qiang Xu
| null | null | 2,022 |
neurips
|
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
| null |
Diffusion probabilistic models (DPMs) are emerging powerful generative models. Despite their high-quality generation performance, DPMs still suffer from their slow sampling as they generally need hundreds or thousands of sequential function evaluations (steps) of large neural networks to draw a sample. Sampling from DPMs can be viewed alternatively as solving the corresponding diffusion ordinary differential equations (ODEs). In this work, we propose an exact formulation of the solution of diffusion ODEs. The formulation analytically computes the linear part of the solution, rather than leaving all terms to black-box ODE solvers as adopted in previous works. By applying change-of-variable, the solution can be equivalently simplified to an exponentially weighted integral of the neural network. Based on our formulation, we propose DPM-Solver, a fast dedicated high-order solver for diffusion ODEs with the convergence order guarantee. DPM-Solver is suitable for both discrete-time and continuous-time DPMs without any further training. Experimental results show that DPM-Solver can generate high-quality samples in only 10 to 20 function evaluations on various datasets. We achieve 4.70 FID in 10 function evaluations and 2.87 FID in 20 function evaluations on the CIFAR10 dataset, and a 4~16x speedup compared with previous state-of-the-art training-free samplers on various datasets.
|
Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, Jun Zhu
| null | null | 2,022 |
neurips
|
Hierarchical Channel-spatial Encoding for Communication-efficient Collaborative Learning
| null |
It witnesses that the collaborative learning (CL) systems often face the performance bottleneck of limited bandwidth, where multiple low-end devices continuously generate data and transmit intermediate features to the cloud for incremental training. To this end, improving the communication efficiency by reducing traffic size is one of the most crucial issues for realistic deployment. Existing systems mostly compress features at pixel level and ignore the characteristics of feature structure, which could be further exploited for more efficient compression. In this paper, we take new insights into implementing scalable CL systems through a hierarchical compression on features, termed Stripe-wise Group Quantization (SGQ). Different from previous unstructured quantization methods, SGQ captures both channel and spatial similarity in pixels, and simultaneously encodes features in these two levels to gain a much higher compression ratio. In particular, we refactor feature structure based on inter-channel similarity and bound the gradient deviation caused by quantization, in forward and backward passes, respectively. Such a double-stage pipeline makes SGQ hold a sublinear convergence order as the vanilla SGD-based optimization. Extensive experiments show that SGQ achieves a higher traffic reduction ratio by up to 15.97 times and provides 9.22 times image processing speedup over the uniform quantized training, while preserving adequate model accuracy as FP32 does, even using 4-bit quantization. This verifies that SGQ can be applied to a wide spectrum of edge intelligence applications.
|
Qihua ZHOU, Song Guo, YI LIU, Jie ZHANG, Jiewei Zhang, Tao GUO, Zhenda XU, Xun Liu, Zhihao Qu
| null | null | 2,022 |
neurips
|
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
| null |
Motivated by recent applications requiring differential privacy in the setting of adaptive streams, we investigate the question of optimal instantiations of the matrix mechanism in this setting. We prove fundamental theoretical results on the applicability of matrix factorizations to the adaptive streaming setting, and provide a new parameter-free fixed-point algorithm for computing optimal factorizations. We instantiate this framework with respect to concrete matrices which arise naturally in the machine learning setting, and train user-level differentially private models with the resulting optimal mechanisms, yielding significant improvements on a notable problem in federated learning with user-level differential privacy.
|
Sergey Denisov, H. Brendan McMahan, John Rush, Adam Smith, Abhradeep Guha Thakurta
| null | null | 2,022 |
neurips
|
Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting
| null |
In lifelong learning systems based on artificial neural networks, one of the biggest obstacles is the inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this paper, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the popular back-propagation of errors. Grounded in the neurocognitive theory of predictive coding, our model adapts its synapses in a biologically-plausible fashion while another neural system learns to direct and control this cortex-like structure, mimicking some of the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting compared to standard neural models, outperforming a swath of previously proposed methods, including rehearsal/data buffer-based methods, on both standard (SplitMNIST, Split Fashion MNIST, etc.) and custom benchmarks even though it is trained in a stream-like fashion. Our work offers evidence that emulating mechanisms in real neuronal systems, e.g., local learning, lateral competition, can yield new directions and possibilities for tackling the grand challenge of lifelong machine learning.
|
Alex Ororbia, Ankur Mali, C Lee Giles, Daniel Kifer
| null | null | 2,022 |
neurips
|
Active Exploration for Inverse Reinforcement Learning
| null |
Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstrations. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at least require access to a generative model. However, these assumptions are too strong for many real-world applications, where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which actively explores an unknown environment and expert policy to quickly learn the expert’s reward function and identify a good policy. AceIRL uses previous observations to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the most informative regions of the environment. AceIRL is the first approach to active IRL with sample-complexity bounds that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations and find that it significantly outperforms more naive exploration strategies.
|
David Lindner, Andreas Krause, Giorgia Ramponi
| null | null | 2,022 |
neurips
|
Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences
| null |
Multi-view anchor graph clustering selects representative anchors to avoid full pair-wise similarities and therefore reduce the complexity of graph methods. Although widely applied in large-scale applications, existing approaches do not pay sufficient attention to establishing correct correspondences between the anchor sets across views. To be specific, anchor graphs obtained from different views are not aligned column-wisely. Such an Anchor-Unaligned Problem (AUP) would cause inaccurate graph fusion and degrade the clustering performance. Under multi-view scenarios, generating correct correspondences could be extremely difficult since anchors are not consistent in feature dimensions. To solve this challenging issue, we propose the first study of the generalized and flexible anchor graph fusion framework termed Fast Multi-View Anchor-Correspondence Clustering (FMVACC). Specifically, we show how to find anchor correspondence with both feature and structure information, after which anchor graph fusion is performed column-wisely. Moreover, we theoretically show the connection between FMVACC and existing multi-view late fusion and partial view-aligned clustering, which further demonstrates our generality. Extensive experiments on seven benchmark datasets demonstrate the effectiveness and efficiency of our proposed method. Moreover, the proposed alignment module also shows significant performance improvement applying to existing multi-view anchor graph competitors indicating the importance of anchor alignment. Our code is available at \url{https://github.com/wangsiwei2010/NeurIPS22-FMVACC}.
|
Siwei Wang, Xinwang Liu, Suyuan Liu, Jiaqi Jin, Wenxuan Tu, Xinzhong Zhu, En Zhu
| null | null | 2,022 |
neurips
|
Trajectory balance: Improved credit assignment in GFlowNets
| null |
Generative flow networks (GFlowNets) are a method for learning a stochastic policy for generating compositional objects, such as graphs or strings, from a given unnormalized density by sequences of actions, where many possible action sequences may lead to the same object. We find previously proposed learning objectives for GFlowNets, flow matching and detailed balance, which are analogous to temporal difference learning, to be prone to inefficient credit propagation across long action sequences. We thus propose a new learning objective for GFlowNets, trajectory balance, as a more efficient alternative to previously used objectives. We prove that any global minimizer of the trajectory balance objective can define a policy that samples exactly from the target distribution. In experiments on four distinct domains, we empirically demonstrate the benefits of the trajectory balance objective for GFlowNet convergence, diversity of generated samples, and robustness to long action sequences and large action spaces.
|
Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio
| null | null | 2,022 |
neurips
|
Geodesic Graph Neural Network for Efficient Graph Representation Learning
| null |
Graph Neural Networks (GNNs) have recently been applied to graph learning tasks and achieved state-of-the-art (SOTA) results. However, many competitive methods run GNNs multiple times with subgraph extraction and customized labeling to capture information that is hard for normal GNNs to learn. Such operations are time-consuming and do not scale to large graphs. In this paper, we propose an efficient GNN framework called Geodesic GNN (GDGNN) that requires only one GNN run and injects conditional relationships between nodes into the model without labeling. This strategy effectively reduces the runtime of subgraph methods. Specifically, we view the shortest paths between two nodes as the spatial graph context of the neighborhood around them. The GNN embeddings of nodes on the shortest paths are used to generate geodesic representations. Conditioned on the geodesic representations, GDGNN can generate node, link, and graph representations that carry much richer structural information than plain GNNs. We theoretically prove that GDGNN is more powerful than plain GNNs. We present experimental results to show that GDGNN achieves highly competitive performance with SOTA GNN models on various graph learning tasks while taking significantly less time.
|
Lecheng Kong, Yixin Chen, Muhan Zhang
| null | null | 2,022 |
neurips
|
OpenFWI: Large-scale Multi-structural Benchmark Datasets for Full Waveform Inversion
| null |
Full waveform inversion (FWI) is widely used in geophysics to reconstruct high-resolution velocity maps from seismic data. The recent success of data-driven FWI methods results in a rapidly increasing demand for open datasets to serve the geophysics community. We present OpenFWI, a collection of large-scale multi-structural benchmark datasets, to facilitate diversified, rigorous, and reproducible research on FWI. In particular, OpenFWI consists of $12$ datasets ($2.1$TB in total) synthesized from multiple sources. It encompasses diverse domains in geophysics (interface, fault, CO$_2$ reservoir, etc.), covers different geological subsurface structures (flat, curve, etc.), and contain various amounts of data samples (2K - 67K). It also includes a dataset for 3D FWI. Moreover, we use OpenFWI to perform benchmarking over four deep learning methods, covering both supervised and unsupervised learning regimes. Along with the benchmarks, we implement additional experiments, including physics-driven methods, complexity analysis, generalization study, uncertainty quantification, and so on, to sharpen our understanding of datasets and methods. The studies either provide valuable insights into the datasets and the performance, or uncover their current limitations. We hope OpenFWI supports prospective research on FWI and inspires future open-source efforts on AI for science. All datasets and related information can be accessed through our website at https://openfwi-lanl.github.io/
|
Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng, Yinpeng Chen, Youzuo Lin
| null | null | 2,022 |
neurips
|
On Privacy and Personalization in Cross-Silo Federated Learning
| null |
While the application of differential privacy (DP) has been well-studied in cross-device federated learning (FL), there is a lack of work considering DP and its implications for cross-silo FL, a setting characterized by a limited number of clients each containing many data subjects. In cross-silo FL, usual notions of client-level DP are less suitable as real-world privacy regulations typically concern the in-silo data subjects rather than the silos themselves. In this work, we instead consider an alternative notion of silo-specific sample-level DP, where silos set their own privacy targets for their local examples. Under this setting, we reconsider the roles of personalization in federated learning. In particular, we show that mean-regularized multi-task learning (MR-MTL), a simple personalization framework, is a strong baseline for cross-silo FL: under stronger privacy requirements, silos are incentivized to federate more with each other to mitigate DP noise, resulting in consistent improvements relative to standard baseline methods. We provide an empirical study of competing methods as well as a theoretical characterization of MR-MTL for mean estimation, highlighting the interplay between privacy and cross-silo data heterogeneity. Our work serves to establish baselines for private cross-silo FL as well as identify key directions of future work in this area.
|
Ken Liu, Shengyuan Hu, Steven Z. Wu, Virginia Smith
| null | null | 2,022 |
neurips
|
Imitating Past Successes can be Very Suboptimal
| null |
Prior work has proposed a simple strategy for reinforcement learning (RL): label experience with the outcomes achieved in that experience, and then imitate the relabeled experience. These outcome-conditioned imitation learning methods are appealing because of their simplicity, strong performance, and close ties with supervised learning. However, it remains unclear how these methods relate to the standard RL objective, reward maximization. In this paper, we prove that existing outcome-conditioned imitation learning methods do not necessarily improve the policy. However, we show that a simple modification results in a method that does guarantee policy improvement. Our aim is not to develop an entirely new method, but rather to explain how a variant of outcome-conditioned imitation learning can be used to maximize rewards
|
Benjamin Eysenbach, Soumith Udatha, Russ R. Salakhutdinov, Sergey Levine
| null | null | 2,022 |
neurips
|
High-Order Pooling for Graph Neural Networks with Tensor Decomposition
| null |
Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN architectures usually adopt simple pooling operations~(\eg{} sum, average, max) when aggregating messages from a local neighborhood for updating node representation or pooling node representations from the entire graph to compute the graph representation. Though simple and effective, these linear operations do not model high-order non-linear interactions among nodes. We propose the Tensorized Graph Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions. tGNN leverages the symmetric CP decomposition to efficiently parameterize permutation-invariant multilinear maps for modeling node interactions. Theoretical and empirical analysis on both node and graph classification tasks show the superiority of tGNN over competitive baselines. In particular, tGNN achieves the most solid results on two OGB node classification datasets and one OGB graph classification dataset.
|
Chenqing Hua, Guillaume Rabusseau, Jian Tang
| null | null | 2,022 |
neurips
|
Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design
| null |
While much progress has been made in understanding the minimax sample complexity of reinforcement learning (RL)---the complexity of learning on the worst-case'' instance---such measures of complexity often do not capture the true difficulty of learning. In practice, on aneasy'' instance, we might hope to achieve a complexity far better than that achievable on the worst-case instance. In this work we seek to understand this instance-dependent'' complexity of learning in the setting of RL with linear function approximation. We propose an algorithm, PEDEL, which achieves a fine-grained instance-dependent measure of complexity, the first of its kind in the RL with function approximation setting, thereby capturing the difficulty of learning on each particular problem instance. Through an explicit example, we show that PEDEL yields provable gains over low-regret, minimax-optimal algorithms and that such algorithms are unable to hit the instance-optimal rate. Our approach relies on a novel online experiment design-based procedure which focuses the exploration budget on thedirections'' most relevant to learning a near-optimal policy, and may be of independent interest.
|
Andrew Wagenmaker, Kevin G. Jamieson
| null | null | 2,022 |
neurips
|
🏘️ ProcTHOR: Large-Scale Embodied AI Using Procedural Generation
| null |
Massive datasets and high-capacity models have driven many recent advancements in computer vision and natural language understanding. This work presents a platform to enable similar success stories in Embodied AI. We propose ProcTHOR, a framework for procedural generation of Embodied AI environments. ProcTHOR enables us to sample arbitrarily large datasets of diverse, interactive, customizable, and performant virtual environments to train and evaluate embodied agents across navigation, interaction, and manipulation tasks. We demonstrate the power and potential of ProcTHOR via a sample of 10,000 generated houses and a simple neural model. Models trained using only RGB images on ProcTHOR, with no explicit mapping and no human task supervision produce state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation, including the presently running Habitat 2022, AI2-THOR Rearrangement 2022, and RoboTHOR challenges. We also demonstrate strong 0-shot results on these benchmarks, via pre-training on ProcTHOR with no fine-tuning on the downstream benchmark, often beating previous state-of-the-art systems that access the downstream training data.
|
Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve, Aniruddha Kembhavi, Roozbeh Mottaghi
| null | null | 2,022 |
neurips
|
Natural image synthesis for the retina with variational information bottleneck representation
| null |
In the early visual system, high dimensional natural stimuli are encoded into the trains of neuronal spikes that transmit the information to the brain to produce perception. However, is all the visual scene information required to explain the neuronal responses? In this work, we search for answers to this question by developing a joint model of the natural visual input and neuronal responses using the Information Bottleneck (IB) framework that can represent features of the input data into a few latent variables that play a role in the prediction of the outputs. The correlations between data samples acquired from published experiments on ex-vivo retinas are accounted for in the model by a Gaussian Process (GP) prior. The proposed IB-GP model performs competitively to the state-of-the-art feedforward convolutional networks in predicting spike responses to natural stimuli. Finally, the IB-GP model is used in a closed-loop iterative process to obtain reduced-complexity inputs that elicit responses as elicited by the original stimuli. We found three properties of the retina's IB-GP model. First, the reconstructed stimuli from the latent variables show robustness in spike prediction across models. Second, surprisingly the dynamics of the high-dimensional stimuli and RGCs' responses are very well represented in the embeddings of the IB-GP model. Third, the minimum stimuli consist of different patterns: Gabor-type locally high-frequency filters, on- and off-center Gaussians, or a mixture of both. Overall, this work demonstrates that the IB-GP model provides a principled approach for joint learning of the stimuli and retina codes, capturing dynamics of the stimuli-RGCs in the latent space which could help better understand the computation of the early visual system.
|
Babak Rahmani, Demetri Psaltis, Christophe Moser
| null | null | 2,022 |
neurips
|
A Communication-efficient Algorithm with Linear Convergence for Federated Minimax Learning
| null |
In this paper, we study a large-scale multi-agent minimax optimization problem, which models many interesting applications in statistical learning and game theory, including Generative Adversarial Networks (GANs). The overall objective is a sum of agents' private local objective functions. We focus on the federated setting, where agents can perform local computation and communicate with a central server. Most existing federated minimax algorithms either require communication per iteration or lack performance guarantees with the exception of Local Stochastic Gradient Descent Ascent (SGDA), a multiple-local-update descent ascent algorithm which guarantees convergence under a diminishing stepsize. By analyzing Local SGDA under the ideal condition of no gradient noise, we show that generally it cannot guarantee exact convergence with constant stepsizes and thus suffers from slow rates of convergence. To tackle this issue, we propose FedGDA-GT, an improved Federated (Fed) Gradient Descent Ascent (GDA) method based on Gradient Tracking (GT). When local objectives are Lipschitz smooth and strongly-convex-strongly-concave, we prove that FedGDA-GT converges linearly with a constant stepsize to global $\epsilon$-approximation solution with $\mathcal{O}(\log (1/\epsilon))$ rounds of communication, which matches the time complexity of centralized GDA method. Then, we analyze the general distributed minimax problem from a statistical aspect, where the overall objective approximates a true population minimax risk by empirical samples. We provide generalization bounds for learning with this objective through Rademacher complexity analysis. Finally, we numerically show that FedGDA-GT outperforms Local SGDA.
|
Zhenyu Sun, Ermin Wei
| null | null | 2,022 |
neurips
|
Distributed Optimization for Overparameterized Problems: Achieving Optimal Dimension Independent Communication Complexity
| null |
Decentralized optimization are playing an important role in applications such as training large machine learning models, among others. Despite its superior practical performance, there has been some lack of fundamental understanding about its theoretical properties. In this work, we address the following open research question: To train an overparameterized model over a set of distributed nodes, what is the {\it minimum} communication overhead (in terms of the bits got exchanged) that the system needs to sustain, while still achieving (near) zero training loss? We show that for a class of overparameterized models where the number of parameters $D$ is much larger than the total data samples $N$, the best possible communication complexity is ${\Omega}(N)$, which is independent of the problem dimension $D$. Further, for a few specific overparameterized models (i.e., the linear regression, and certain multi-layer neural network with one wide layer), we develop a set of algorithms which uses certain linear compression followed by adaptive quantization, and show that they achieve dimension independent, and sometimes near optimal, communication complexity. To our knowledge, this is the first time that dimension independent communication complexity has been shown for distributed optimization.
|
Bingqing Song, Ioannis Tsaknakis, Chung-Yiu Yau, Hoi-To Wai, Mingyi Hong
| null | null | 2,022 |
neurips
|
Efficient Sampling on Riemannian Manifolds via Langevin MCMC
| null |
We study the task of efficiently sampling from a Gibbs distribution $d \pi^* = e^{-h} d {\text{vol}}_g$ over a Riemannian manifold $M$ via (geometric) Langevin MCMC; this algorithm involves computing exponential maps in random Gaussian directions and is efficiently implementable in practice. The key to our analysis of Langevin MCMC is a bound on the discretization error of the geometric Euler-Murayama scheme, assuming $\nabla h$ is Lipschitz and $M$ has bounded sectional curvature. Our error bound matches the error of Euclidean Euler-Murayama in terms of its stepsize dependence. Combined with a contraction guarantee for the geometric Langevin Diffusion under Kendall-Cranston coupling, we prove that the Langevin MCMC iterates lie within $\epsilon$-Wasserstein distance of $\pi^*$ after $\tilde{O}(\epsilon^{-2})$ steps, which matches the iteration complexity for Euclidean Langevin MCMC. Our results apply in general settings where $h$ can be nonconvex and $M$ can have negative Ricci curvature. Under additional assumptions that the Riemannian curvature tensor has bounded derivatives, and that $\pi^*$ satisfies a $CD(\cdot,\infty)$ condition, we analyze the stochastic gradient version of Langevin MCMC, and bound its iteration complexity by $\tilde{O}(\epsilon^{-2})$ as well.
|
Xiang Cheng, Jingzhao Zhang, Suvrit Sra
| null | null | 2,022 |
neurips
|
360-MLC: Multi-view Layout Consistency for Self-training and Hyper-parameter Tuning
| null |
We present 360-MLC, a self-training method based on multi-view layout consistency for finetuning monocular room-layout models using unlabeled 360-images only. This can be valuable in practical scenarios where a pre-trained model needs to be adapted to a new data domain without using any ground truth annotations. Our simple yet effective assumption is that multiple layout estimations in the same scene must define a consistent geometry regardless of their camera positions. Based on this idea, we leverage a pre-trained model to project estimated layout boundaries from several camera views into the 3D world coordinate. Then, we re-project them back to the spherical coordinate and build a probability function, from which we sample the pseudo-labels for self-training. To handle unconfident pseudo-labels, we evaluate the variance in the re-projected boundaries as an uncertainty value to weight each pseudo-label in our loss function during training. In addition, since ground truth annotations are not available during training nor in testing, we leverage the entropy information in multiple layout estimations as a quantitative metric to measure the geometry consistency of the scene, allowing us to evaluate any layout estimator for hyper-parameter tuning, including model selection without ground truth annotations. Experimental results show that our solution achieves favorable performance against state-of-the-art methods when self-training from three publicly available source datasets to a unique, newly labeled dataset consisting of multi-view images of the same scenes.
|
Bolivar Solarte, Chin-Hsuan Wu, Yueh-Cheng Liu, Yi-Hsuan Tsai, Min Sun
| null | null | 2,022 |
neurips
|
Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline
| null |
Current end-to-end autonomous driving methods either run a controller based on a planned trajectory or perform control prediction directly, which have spanned two separately studied lines of research. Seeing their potential mutual benefits to each other, this paper takes the initiative to explore the combination of these two well-developed worlds. Specifically, our integrated approach has two branches for trajectory planning and direct control, respectively. The trajectory branch predicts the future trajectory, while the control branch involves a novel multi-step prediction scheme such that the relationship between current actions and future states can be reasoned. The two branches are connected so that the control branch receives corresponding guidance from the trajectory branch at each time step. The outputs from two branches are then fused to achieve complementary advantages. Our results are evaluated in the closed-loop urban driving setting with challenging scenarios using the CARLA simulator. Even with a monocular camera input, the proposed approach ranks first on the official CARLA Leaderboard, outperforming other complex candidates with multiple sensors or fusion mechanisms by a large margin. The sourcecode is publicly available at https://github.com/OpenPerceptionX/TCP
|
Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, Yu Qiao
| null | null | 2,022 |
neurips
|
Defending Against Adversarial Attacks via Neural Dynamic System
| null |
Although deep neural networks (DNN) have achieved great success, their applications in safety-critical areas are hindered due to their vulnerability to adversarial attacks. Some recent works have accordingly proposed to enhance the robustness of DNN from a dynamic system perspective. Following this line of inquiry, and inspired by the asymptotic stability of the general nonautonomous dynamical system, we propose to make each clean instance be the asymptotically stable equilibrium points of a slowly time-varying system in order to defend against adversarial attacks. We present a theoretical guarantee that if a clean instance is an asymptotically stable equilibrium point and the adversarial instance is in the neighborhood of this point, the asymptotic stability will reduce the adversarial noise to bring the adversarial instance close to the clean instance. Motivated by our theoretical results, we go on to propose a nonautonomous neural ordinary differential equation (ASODE) and place constraints on its corresponding linear time-variant system to make all clean instances act as its asymptotically stable equilibrium points. Our analysis suggests that the constraints can be converted to regularizers in implementation. The experimental results show that ASODE improves robustness against adversarial attacks and outperforms state-of-the-art methods.
|
Xiyuan Li, Zou Xin, Weiwei Liu
| null | null | 2,022 |
neurips
|
Meta-Learning with Self-Improving Momentum Target
| null |
The idea of using a separately trained target model (or teacher) to improve the performance of the student model has been increasingly popular in various machine learning domains, and meta-learning is no exception; a recent discovery shows that utilizing task-wise target models can significantly boost the generalization performance. However, obtaining a target model for each task can be highly expensive, especially when the number of tasks for meta-learning is large. To tackle this issue, we propose a simple yet effective method, coined Self-improving Momentum Target (SiMT). SiMT generates the target model by adapting from the temporal ensemble of the meta-learner, i.e., the momentum network. This momentum network and its task-specific adaptations enjoy a favorable generalization performance, enabling self-improving of the meta-learner through knowledge distillation. Moreover, we found that perturbing parameters of the meta-learner, e.g., dropout, further stabilize this self-improving process by preventing fast convergence of the distillation loss during meta-training. Our experimental results demonstrate that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods under various applications, including few-shot regression, few-shot classification, and meta-reinforcement learning. Code is available at https://github.com/jihoontack/SiMT.
|
Jihoon Tack, Jongjin Park, Hankook Lee, Jaeho Lee, Jinwoo Shin
| null | null | 2,022 |
neurips
|
Semantic uncertainty intervals for disentangled latent spaces
| null |
Meaningful uncertainty quantification in computer vision requires reasoning about semantic information---say, the hair color of the person in a photo or the location of a car on the street. To this end, recent breakthroughs in generative modeling allow us to represent semantic information in disentangled latent spaces, but providing uncertainties on the semantic latent variables has remained challenging. In this work, we provide principled uncertainty intervals that are guaranteed to contain the true semantic factors for any underlying generative model. The method does the following: (1) it uses quantile regression to output a heuristic uncertainty interval for each element in the latent space (2) calibrates these uncertainties such that they contain the true value of the latent for a new, unseen input. The endpoints of these calibrated intervals can then be propagated through the generator to produce interpretable uncertainty visualizations for each semantic factor. This technique reliably communicates semantically meaningful, principled, and instance-adaptive uncertainty in inverse problems like image super-resolution and image completion. Project page: https://swamiviv.github.io/semanticuncertaintyintervals/
|
Swami Sankaranarayanan, Anastasios Angelopoulos, Stephen Bates, Yaniv Romano, Phillip Isola
| null | null | 2,022 |
neurips
|
Geodesic Self-Attention for 3D Point Clouds
| null |
Due to the outstanding competence in capturing long-range relationships, self-attention mechanism has achieved remarkable progress in point cloud tasks. Nevertheless, point cloud object often has complex non-Euclidean spatial structures, with the behavior changing dynamically and unpredictably. Most current self-attention modules highly rely on the dot product multiplication in Euclidean space, which cannot capture internal non-Euclidean structures of point cloud objects, especially the long-range relationships along the curve of the implicit manifold surface represented by point cloud objects. To address this problem, in this paper, we introduce a novel metric on the Riemannian manifold to capture the long-range geometrical dependencies of point cloud objects to replace traditional self-attention modules, namely, the Geodesic Self-Attention (GSA) module. Our approach achieves state-of-the-art performance compared to point cloud Transformers on object classification, few-shot classification and part segmentation benchmarks.
|
Zhengyu Li, XUAN TANG, Zihao Xu, Xihao Wang, Hui Yu, Mingsong Chen, xian wei
| null | null | 2,022 |
neurips
|
AVLEN: Audio-Visual-Language Embodied Navigation in 3D Environments
| null |
Recent years have seen embodied visual navigation advance in two distinct directions: (i) in equipping the AI agent to follow natural language instructions, and (ii) in making the navigable world multimodal, e.g., audio-visual navigation. However, the real world is not only multimodal, but also often complex, and thus in spite of these advances, agents still need to understand the uncertainty in their actions and seek instructions to navigate. To this end, we present AVLEN -- an interactive agent for Audio-Visual-Language Embodied Navigation. Similar to audio-visual navigation tasks, the goal of our embodied agent is to localize an audio event via navigating the 3D visual world; however, the agent may also seek help from a human (oracle), where the assistance is provided in free-form natural language. To realize these abilities, AVLEN uses a multimodal hierarchical reinforcement learning backbone that learns: (a) high-level policies to choose either audio-cues for navigation or to query the oracle, and (b) lower-level policies to select navigation actions based on its audio-visual and language inputs. The policies are trained via rewarding for the success on the navigation task while minimizing the number of queries to the oracle. To empirically evaluate AVLEN, we present experiments on the SoundSpaces framework for semantic audio-visual navigation tasks. Our results show that equipping the agent to ask for help leads to a clear improvement in performances, especially in challenging cases, e.g., when the sound is unheard during training or in the presence of distractor sounds.
|
Sudipta Paul, Amit Roy-Chowdhury, Anoop Cherian
| null | null | 2,022 |
neurips
|
GraphQNTK: Quantum Neural Tangent Kernel for Graph Data
| null |
Graph Neural Networks (GNNs) and Graph Kernels (GKs) are two fundamental tools used to analyze graph-structured data. Efforts have been recently made in developing a composite graph learning architecture combining the expressive power of GNNs and the transparent trainability of GKs. However, learning efficiency on these models should be carefully considered as the huge computation overhead. Besides, their convolutional methods are often straightforward and introduce severe loss of graph structure information. In this paper, we design a novel quantum graph learning model to characterize the structural information while using quantum parallelism to improve computing efficiency. Specifically, a quantum algorithm is proposed to approximately estimate the neural tangent kernel of the underlying graph neural network where a multi-head quantum attention mechanism is introduced to properly incorporate semantic similarity information of nodes into the model. We empirically show that our method achieves competitive performance on several graph classification benchmarks, and theoretical analysis is provided to demonstrate the superiority of our quantum algorithm. Source code is available at \url{https://github.com/abel1231/graphQNTK}.
|
Yehui Tang, Junchi Yan
| null | null | 2,022 |
neurips
|
Disentangling Transfer in Continual Reinforcement Learning
| null |
The ability of continual learning systems to transfer knowledge from previously seen tasks in order to maximize performance on new tasks is a significant challenge for the field, limiting the applicability of continual learning solutions to realistic scenarios. Consequently, this study aims to broaden our understanding of transfer and its driving forces in the specific case of continual reinforcement learning. We adopt SAC as the underlying RL algorithm and Continual World as a suite of continuous control tasks. We systematically study how different components of SAC (the actor and the critic, exploration, and data) affect transfer efficacy, and we provide recommendations regarding various modeling options. The best set of choices, dubbed ClonEx-SAC, is evaluated on the recent Continual World benchmark. ClonEx-SAC achieves 87% final success rate compared to 80% of PackNet, the best method in the benchmark. Moreover, the transfer grows from 0.18 to 0.54 according to the metric provided by Continual World.
|
Maciej Wolczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, Piotr Miłoś
| null | null | 2,022 |
neurips
|
Surprise Minimizing Multi-Agent Learning with Energy-based Models
| null |
Multi-Agent Reinforcement Learning (MARL) has demonstrated significant suc2 cess by virtue of collaboration across agents. Recent work, on the other hand, introduces surprise which quantifies the degree of change in an agent’s environ4 ment. Surprise-based learning has received significant attention in the case of single-agent entropic settings but remains an open problem for fast-paced dynamics in multi-agent scenarios. A potential alternative to address surprise may be realized through the lens of free-energy minimization. We explore surprise minimization in multi-agent learning by utilizing the free energy across all agents in a multi-agent system. A temporal Energy-Based Model (EBM) represents an estimate of surprise which is minimized over the joint agent distribution. Our formulation of the EBM is theoretically akin to the minimum conjugate entropy objective and highlights suitable convergence towards minimum surprising states. We further validate our theoretical claims in an empirical study of multi-agent tasks demanding collabora14 tion in the presence of fast-paced dynamics. Our implementation and agent videos are available at the Project Webpage.
|
Karush Suri, Xiao Qi Shi, Konstantinos N Plataniotis, Yuri Lawryshyn
| null | null | 2,022 |
neurips
|
Beyond the Return: Off-policy Function Estimation under User-specified Error-measuring Distributions
| null |
Off-policy evaluation often refers to two related tasks: estimating the expected return of a policy and estimating its value function (or other functions of interest, such as density ratios). While recent works on marginalized importance sampling (MIS) show that the former can enjoy provable guarantees under realizable function approximation, the latter is only known to be feasible under much stronger assumptions such as prohibitively expressive discriminators. In this work, we provide guarantees for off-policy function estimation under only realizability, by imposing proper regularization on the MIS objectives. Compared to commonly used regularization in MIS, our regularizer is much more flexible and can account for an arbitrary user-specified distribution, under which the learned function will be close to the groundtruth. We provide exact characterization of the optimal dual solution that needs to be realized by the discriminator class, which determines the data-coverage assumption in the case of value-function learning. As another surprising observation, the regularizer can be altered to relax the data-coverage requirement, and completely eliminate it in the ideal case with strong side information.
|
Audrey Huang, Nan Jiang
| null | null | 2,022 |
neurips
|
A Fast Scale-Invariant Algorithm for Non-negative Least Squares with Non-negative Data
| null |
Nonnegative (linear) least square problems are a fundamental class of problems that is well-studied in statistical learning and for which solvers have been implemented in many of the standard programming languages used within the machine learning community. The existing off-the-shelf solvers view the non-negativity constraint in these problems as an obstacle and, compared to unconstrained least squares, perform additional effort to address it. However, in many of the typical applications, the data itself is nonnegative as well, and we show that the nonnegativity in this case makes the problem easier. In particular, while the worst-case dimension-independent oracle complexity of unconstrained least squares problems necessarily scales with one of the data matrix constants (typically the spectral norm) and these problems are solved to additive error, we show that nonnegative least squares problems with nonnegative data are solvable to multiplicative error and with complexity that is independent of any matrix constants. The algorithm we introduce is accelerated and based on a primal-dual perspective. We further show how to provably obtain linear convergence using adaptive restart coupled with our method and demonstrate its effectiveness on large-scale data via numerical experiments.
|
Jelena Diakonikolas, Chenghui Li, Swati Padmanabhan, Chaobing Song
| null | null | 2,022 |
neurips
|
Falsification before Extrapolation in Causal Effect Estimation
| null |
Randomized Controlled Trials (RCTs) represent a gold standard when developing policy guidelines. However, RCTs are often narrow, and lack data on broader populations of interest. Causal effects in these populations are often estimated using observational datasets, which may suffer from unobserved confounding and selection bias. Given a set of observational estimates (e.g., from multiple studies), we propose a meta-algorithm that attempts to reject observational estimates that are biased. We do so using validation effects, causal effects that can be inferred from both RCT and observational data. After rejecting estimators that do not pass this test, we generate conservative confidence intervals on the extrapolated causal effects for subgroups not observed in the RCT. Under the assumption that at least one observational estimator is asymptotically normal and consistent for both the validation and extrapolated effects, we provide guarantees on the coverage probability of the intervals output by our algorithm. To facilitate hypothesis testing in settings where causal effect transportation across datasets is necessary, we give conditions under which a doubly-robust estimator of group average treatment effects is asymptotically normal, even when flexible machine learning methods are used for estimation of nuisance parameters. We illustrate the properties of our approach on semi-synthetic experiments based on the IHDP dataset, and show that it compares favorably to standard meta-analysis techniques.
|
Zeshan M Hussain, Michael Oberst, Ming-Chieh Shih, David Sontag
| null | null | 2,022 |
neurips
|
Self-supervised Amodal Video Object Segmentation
| null |
Amodal perception requires inferring the full shape of an object that is partially occluded. This task is particularly challenging on two levels: (1) it requires more information than what is contained in the instant retina or imaging sensor, (2) it is difficult to obtain enough well-annotated amodal labels for supervision. To this end, this paper develops a new framework of Self-supervised amodal Video object segmentation (SaVos). Our method efficiently leverages the visual information of video temporal sequences to infer the amodal mask of objects. The key intuition is that the occluded part of an object can be explained away if that part is visible in other frames, possibly deformed as long as the deformation can be reasonably learned. Accordingly, we derive a novel self-supervised learning paradigm that efficiently utilizes the visible object parts as the supervision to guide the training on videos. In addition to learning type prior to complete masks for known types, SaVos also learns the spatiotemporal prior, which is also useful for the amodal task and could generalize to unseen types. The proposed framework achieves the state-of-the-art performance on the synthetic amodal segmentation benchmark FISHBOWL and the real world benchmark KINS-Video-Car. Further, it lends itself well to being transferred to novel distributions using test-time adaptation, outperforming existing models even after the transfer to a new distribution.
|
Jian Yao, Yuxin Hong, Chiyu Wang, Tianjun Xiao, Tong He, Francesco Locatello, David P Wipf, Yanwei Fu, Zheng Zhang
| null | null | 2,022 |
neurips
|
Biologically Inspired Dynamic Thresholds for Spiking Neural Networks
| null |
The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks.
|
Jianchuan Ding, Bo Dong, Felix Heide, Yufei Ding, Yunduo Zhou, Baocai Yin, Xin Yang
| null | null | 2,022 |
neurips
|
Test Time Adaptation via Conjugate Pseudo-labels
| null |
Test-time adaptation (TTA) refers to adapting neural networks to distribution shifts, specifically with just access to unlabeled test samples from the new domain at test-time. Prior TTA methods optimize over unsupervised objectives such as the entropy of model predictions in TENT (Wang et al., 2021), but it is unclear what exactly makes a good TTA loss. In this paper, we start by presenting a surprising phenomenon: if we attempt to $\textit{meta-learn}$ the ``best'' possible TTA loss over a wide class of functions, then we recover a function that is $\textit{remarkably}$ similar to (a temperature-scaled version of) the softmax-entropy employed by TENT. This only holds, however, if the classifier we are adapting is trained via cross-entropy loss; if the classifier is trained via squared loss, a different ``best'' TTA loss emerges.To explain this phenomenon, we analyze test-time adaptation through the lens of the training losses's $\textit{convex conjugate}$. We show that under natural conditions, this (unsupervised) conjugate function can be viewed as a good local approximation to the original supervised loss and indeed, it recovers the ``best'' losses found by meta-learning. This leads to a generic recipe than be used to find a good TTA loss for $\textit{any}$ given supervised training loss function of a general class. Empirically, our approach dominates other TTA alternatives over a wide range of domain adaptation benchmarks. Our approach is particularly of interest when applied to classifiers trained with $\textit{novel}$ loss functions, e.g., the recently-proposed PolyLoss (Leng et al., 2022) function, where it differs substantially from (and outperforms) an entropy-based loss. Further, we show that our conjugate based approach can also be interpreted as a kind of self-training using a very specific soft label, which we refer to as the $\textit{conjugate pseudo-label}$. Overall, therefore, our method provides a broad framework for better understanding and improving test-time adaptation. Code is available at https://github.com/locuslab/tta_conjugate.
|
Sachin Goyal, Mingjie Sun, Aditi Raghunathan, J. Zico Kolter
| null | null | 2,022 |
neurips
|
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
| null |
Electroencephalography (EEG) provides access to neuronal dynamics non-invasively with millisecond resolution, rendering it a viable method in neuroscience and healthcare. However, its utility is limited as current EEG technology does not generalize well across domains (i.e., sessions and subjects) without expensive supervised re-calibration. Contemporary methods cast this transfer learning (TL) problem as a multi-source/-target unsupervised domain adaptation (UDA) problem and address it with deep learning or shallow, Riemannian geometry aware alignment methods. Both directions have, so far, failed to consistently close the performance gap to state-of-the-art domain-specific methods based on tangent space mapping (TSM) on the symmetric, positive definite (SPD) manifold.Here, we propose a machine learning framework that enables, for the first time, learning domain-invariant TSM models in an end-to-end fashion. To achieve this, we propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN). A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios. In extensive experiments with 6 diverse EEG brain-computer interface (BCI) datasets, we obtain state-of-the-art performance in inter-session and -subject TL with a simple, intrinsically interpretable network architecture, which we denote TSMNet. Code: https://github.com/rkobler/TSMNet
|
Reinmar Kobler, Jun-ichiro Hirayama, Qibin Zhao, Motoaki Kawanabe
| null | null | 2,022 |
neurips
|
Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift
| null |
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph structural and temporal dynamics. However, the existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs, mainly because the patterns exploited by DyGNNs may be variant with respect to labels under distribution shifts. In this paper, we propose to handle spatio-temporal distribution shifts in dynamic graphs by discovering and utilizing {\it invariant patterns}, i.e., structures and features whose predictive abilities are stable across distribution shifts, which faces two key challenges: 1) How to discover the complex variant and invariant spatio-temporal patterns in dynamic graphs, which involve both time-varying graph structures and node features. 2) How to handle spatio-temporal distribution shifts with the discovered variant and invariant patterns. To tackle these challenges, we propose the Disentangled Intervention-based Dynamic graph Attention networks (DIDA). Our proposed method can effectively handle spatio-temporal distribution shifts in dynamic graphs by discovering and fully utilizing invariant spatio-temporal patterns. Specifically, we first propose a disentangled spatio-temporal attention network to capture the variant and invariant patterns. Then, we design a spatio-temporal intervention mechanism to create multiple interventional distributions by sampling and reassembling variant patterns across neighborhoods and time stamps to eliminate the spurious impacts of variant patterns. Lastly, we propose an invariance regularization term to minimize the variance of predictions in intervened distributions so that our model can make predictions based on invariant patterns with stable predictive abilities and therefore handle distribution shifts. Experiments on three real-world datasets and one synthetic dataset demonstrate the superiority of our method over state-of-the-art baselines under distribution shifts. Our work is the first study of spatio-temporal distribution shifts in dynamic graphs, to the best of our knowledge.
|
Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, Wenwu Zhu
| null | null | 2,022 |
neurips
|
On the Robustness of Graph Neural Diffusion to Topology Perturbations
| null |
Neural diffusion on graphs is a novel class of graph neural networks that has attracted increasing attention recently. The capability of graph neural partial differential equations (PDEs) in addressing common hurdles of graph neural networks (GNNs), such as the problems of over-smoothing and bottlenecks, has been investigated but not their robustness to adversarial attacks. In this work, we explore the robustness properties of graph neural PDEs. We empirically demonstrate that graph neural PDEs are intrinsically more robust against topology perturbation as compared to other GNNs. We provide insights into this phenomenon by exploiting the stability of the heat semigroup under graph topology perturbations. We discuss various graph diffusion operators and relate them to existing graph neural PDEs. Furthermore, we propose a general graph neural PDE framework based on which a new class of robust GNNs can be defined. We verify that the new model achieves comparable state-of-the-art performance on several benchmark datasets.
|
Yang Song, Qiyu Kang, Sijie Wang, Kai Zhao, Wee Peng Tay
| null | null | 2,022 |
neurips
|
Online Allocation and Learning in the Presence of Strategic Agents
| null |
We study the problem of allocating $T$ sequentially arriving items among $n$ homogenous agents under the constraint that each agent must receive a prespecified fraction of all items, with the objective of maximizing the agents' total valuation of items allocated to them. The agents' valuations for the item in each round are assumed to be i.i.d. but their distribution is apriori unknown to the central planner.vTherefore, the central planner needs to implicitly learn these distributions from the observed values in order to pick a good allocation policy. However, an added challenge here is that the agents are strategic with incentives to misreport their valuations in order to receive better allocations. This sets our work apart both from the online auction mechanism design settings which typically assume known valuation distributions and/or involve payments, and from the online learning settings that do not consider strategic agents. To that end, our main contribution is an online learning based allocation mechanism that is approximately Bayesian incentive compatible, and when all agents are truthful, guarantees a sublinear regret for individual agents' utility compared to that under the optimal offline allocation policy.
|
Steven Yin, Shipra Agrawal, Assaf Zeevi
| null | null | 2,022 |
neurips
|
Learning Contrastive Embedding in Low-Dimensional Space
| null |
Contrastive learning (CL) pretrains feature embeddings to scatter instances in the feature space so that the training data can be well discriminated. Most existing CL techniques usually encourage learning such feature embeddings in the highdimensional space to maximize the instance discrimination. However, this practice may lead to undesired results where the scattering instances are sparsely distributed in the high-dimensional feature space, making it difficult to capture the underlying similarity between pairwise instances. To this end, we propose a novel framework called contrastive learning with low-dimensional reconstruction (CLLR), which adopts a regularized projection layer to reduce the dimensionality of the feature embedding. In CLLR, we build the sparse / low-rank regularizer to adaptively reconstruct a low-dimensional projection space while preserving the basic objective for instance discrimination, and thus successfully learning contrastive embeddings that alleviate the above issue. Theoretically, we prove a tighter error bound for CLLR; empirically, the superiority of CLLR is demonstrated across multiple domains. Both theoretical and experimental results emphasize the significance of learning low-dimensional contrastive embeddings.
|
Shuo Chen, Chen Gong, Jun Li, Jian Yang, Gang Niu, Masashi Sugiyama
| null | null | 2,022 |
neurips
|
Randomized Sketches for Clustering: Fast and Optimal Kernel $k$-Means
| null |
Kernel $k$-means is arguably one of the most common approaches to clustering. In this paper, we investigate the efficiency of kernel $k$-means combined with randomized sketches in terms of both statistical analysis and computational requirements. More precisely, we propose a unified randomized sketches framework to kernel $k$-means and investigate its excess risk bounds, obtaining the state-of-the-art risk bound with only a fraction of computations. Indeed, we prove that it suffices to choose the sketch dimension $\Omega(\sqrt{n})$ to obtain the same accuracy of exact kernel $k$-means with greatly reducing the computational costs, for sub-Gaussian sketches, the randomized orthogonal system (ROS) sketches, and Nystr\"{o}m kernel $k$-means, where $n$ is the number of samples. To the best of our knowledge, this is the first result of this kind for unsupervised learning. Finally, the numerical experiments on simulated data and real-world datasets validate our theoretical analysis.
|
Rong Yin, Yong Liu, Weiping Wang, Dan Meng
| null | null | 2,022 |
neurips
|
Equivariant Networks for Zero-Shot Coordination
| null |
Successful coordination in Dec-POMDPs requires agents to adopt robust strategies and interpretable styles of play for their partner. A common failure mode is symmetry breaking, when agents arbitrarily converge on one out of many equivalent but mutually incompatible policies. Commonly these examples include partial observability, e.g. waving your right hand vs. left hand to convey a covert message. In this paper, we present a novel equivariant network architecture for use in Dec-POMDPs that prevents the agent from learning policies which break symmetries, doing so more effectively than prior methods. Our method also acts as a "coordination-improvement operator" for generic, pre-trained policies, and thus may be applied at test-time in conjunction with any self-play algorithm. We provide theoretical guarantees of our work and test on the AI benchmark task of Hanabi, where we demonstrate our methods outperforming other symmetry-aware baselines in zero-shot coordination, as well as able to improve the coordination ability of a variety of pre-trained policies. In particular, we show our method can be used to improve on the state of the art for zero-shot coordination on the Hanabi benchmark.
|
Darius Muglich, Christian Schroeder de Witt, Elise van der Pol, Shimon Whiteson, Jakob Foerster
| null | null | 2,022 |
neurips
|
Few-shot Relational Reasoning via Connection Subgraph Pretraining
| null |
Few-shot knowledge graph (KG) completion task aims to perform inductive reasoning over the KG: given only a few support triplets of a new relation $\bowtie$ (e.g., (chop,$\bowtie$,kitchen), (read,$\bowtie$,library), the goal is to predict the query triplets of the same unseen relation $\bowtie$, e.g., (sleep,$\bowtie$,?). Current approaches cast the problem in a meta-learning framework, where the model needs to be first jointly trained over many training few-shot tasks, each being defined by its own relation, so that learning/prediction on the target few-shot task can be effective. However, in real-world KGs, curating many training tasks is a challenging ad hoc process. Here we propose Connection Subgraph Reasoner (CSR), which can make predictions for the target few-shot task directly without the need for pre-training on the human curated set of training tasks. The key to CSR is that we explicitly model a shared connection subgraph between support and query triplets, as inspired by the principle of eliminative induction. To adapt to specific KG, we design a corresponding self-supervised pretraining scheme with the objective of reconstructing automatically sampled connection subgraphs. Our pretrained model can then be directly applied to target few-shot tasks on without the need for training few-shot tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and ConceptNet, demonstrate the effectiveness of our framework: we show that even a learning-free implementation of CSR can already perform competitively to existing methods on target few-shot tasks; with pretraining, CSR can achieve significant gains of up to 52% on the more challenging inductive few-shot tasks where the entities are also unseen during (pre)training.
|
Qian Huang, Hongyu Ren, Jure Leskovec
| null | null | 2,022 |
neurips
|
Quantile Constrained Reinforcement Learning: A Reinforcement Learning Framework Constraining Outage Probability
| null |
Constrained reinforcement learning (RL) is an area of RL whose objective is to find an optimal policy that maximizes expected cumulative return while satisfying a given constraint. Most of the previous constrained RL works consider expected cumulative sum cost as the constraint. However, optimization with this constraint cannot guarantee a target probability of outage event that the cumulative sum cost exceeds a given threshold. This paper proposes a framework, named Quantile Constrained RL (QCRL), to constrain the quantile of the distribution of the cumulative sum cost that is a necessary and sufficient condition to satisfy the outage constraint. This is the first work that tackles the issue of applying the policy gradient theorem to the quantile and provides theoretical results for approximating the gradient of the quantile. Based on the derived theoretical results and the technique of the Lagrange multiplier, we construct a constrained RL algorithm named Quantile Constrained Policy Optimization (QCPO). We use distributional RL with the Large Deviation Principle (LDP) to estimate quantiles and tail probability of the cumulative sum cost for the implementation of QCPO. The implemented algorithm satisfies the outage probability constraint after the training period.
|
Whiyoung Jung, Myungsik Cho, Jongeui Park, Youngchul Sung
| null | null | 2,022 |
neurips
|
Near-Optimal Randomized Exploration for Tabular Markov Decision Processes
| null |
We study algorithms using randomized value functions for exploration in reinforcement learning. This type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case $\widetilde{O}\left(H\sqrt{SAT}\right)$ regret bound for episodic time-inhomogeneous Markov Decision Process where $S$ is the size of state space, $A$ is the size of action space, $H$ is the planning horizon and $T$ is the number of interactions. This bound polynomially improves all existing bounds for algorithms based on randomized value functions, and for the first time, matches the $\Omega\left(H\sqrt{SAT}\right)$ lower bound up to logarithmic factors. Our result highlights that randomized exploration can be near-optimal, which was previously achieved only by optimistic algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the probability of being optimistic and the probability of being pessimistic are lower bounded by a constant, and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret.
|
Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, Simon S. Du
| null | null | 2,022 |
neurips
|
Adversarial Robustness is at Odds with Lazy Training
| null |
Recent works show that adversarial examples exist for random neural networks [Daniely and Schacham, 2020] and that these examples can be found using a single step of gradient ascent [Bubeck et al., 2021]. In this work, we extend this line of work to ``lazy training'' of neural networks -- a dominant model in deep learning theory in which neural networks are provably efficiently learnable. We show that over-parametrized neural networks that are guaranteed to generalize well and enjoy strong computational guarantees remain vulnerable to attacks generated using a single step of gradient ascent.
|
Yunjuan Wang, Enayat Ullah, Poorya Mianjy, Raman Arora
| null | null | 2,022 |
neurips
|
RényiCL: Contrastive Representation Learning with Skew Rényi Divergence
| null |
Contrastive representation learning seeks to acquire useful representations by estimating the shared information between multiple views of data. Here, the choice of data augmentation is sensitive to the quality of learned representations: as harder the data augmentations are applied, the views share more task-relevant information, but also task-irrelevant one that can hinder the generalization capability of representation. Motivated by this, we present a new robust contrastive learning scheme, coined RényiCL, which can effectively manage harder augmentations by utilizing Rényi divergence. Our method is built upon the variational lower bound of a Rényi divergence, but a naive usage of a variational method exhibits unstable training due to the large variance. To tackle this challenge, we propose a novel contrastive objective that conducts variational estimation of a skew Renyi divergence and provides a theoretical guarantee on how variational estimation of skew divergence leads to stable training. We show that Rényi contrastive learning objectives perform innate hard negative sampling and easy positive sampling simultaneously so that it can selectively learn useful features and ignore nuisance features. Through experiments on ImageNet, we show that Rényi contrastive learning with stronger augmentations outperforms other self-supervised methods without extra regularization or computational overhead. Also, we validate our method on various domains such as graph and tabular datasets, showing empirical gain over original contrastive methods.
|
Kyungmin Lee, Jinwoo Shin
| null | null | 2,022 |
neurips
|
Procedural Image Programs for Representation Learning
| null |
Learning image representations using synthetic data allows training neural networks without some of the concerns associated with real images, such as privacy and bias. Existing work focuses on a handful of curated generative processes which require expert knowledge to design, making it hard to scale up. To overcome this, we propose training with a large dataset of twenty-one thousand programs, each one generating a diverse set of synthetic images. These programs are short code snippets, which are easy to modify and fast to execute using OpenGL. The proposed dataset can be used for both supervised and unsupervised representation learning, and reduces the gap between pre-training with real and procedurally generated images by 38%.
|
Manel Baradad, Richard Chen, Jonas Wulff, Tongzhou Wang, Rogerio Feris, Antonio Torralba, Phillip Isola
| null | null | 2,022 |
neurips
|
Paraphrasing Is All You Need for Novel Object Captioning
| null |
Novel object captioning (NOC) aims to describe images containing objects without observing their ground truth captions during training. Due to the absence of caption annotation, captioning models cannot be directly optimized via sequence-to-sequence training or CIDEr optimization. As a result, we present Paraphrasing-to-Captioning (P2C), a two-stage learning framework for NOC, which would heuristically optimize the output captions via paraphrasing. With P2C, the captioning model first learns paraphrasing from a language model pre-trained on text-only corpus, allowing expansion of the word bank for improving linguistic fluency. To further enforce the output caption sufficiently describing the visual content of the input image, we perform self-paraphrasing for the captioning model with fidelity and adequacy objectives introduced. Since no ground truth captions are available for novel object images during training, our P2C leverages cross-modality (image-text) association modules to ensure the above caption characteristics can be properly preserved. In the experiments, we not only show that our P2C achieves state-of-the-art performances on nocaps and COCO Caption datasets, we also verify the effectiveness and flexibility of our learning framework by replacing language and cross-modality association models for NOC. Implementation details and code are available in the supplementary materials.
|
Cheng-Fu Yang, Yao-Hung Hubert Tsai, Wan-Cyuan Fan, Russ R. Salakhutdinov, Louis-Philippe Morency, Frank Wang
| null | null | 2,022 |
neurips
|
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
| null |
Uncertainty estimation is essential to make neural networks trustworthy in real-world applications. Extensive research efforts have been made to quantify and reduce predictive uncertainty. However, most existing works are designed for unimodal data, whereas multi-view uncertainty estimation has not been sufficiently investigated. Therefore, we propose a new multi-view classification framework for better uncertainty estimation and out-of-domain sample detection, where we associate each view with an uncertainty-aware classifier and combine the predictions of all the views in a principled way. The experimental results with real-world datasets demonstrate that our proposed approach is an accurate, reliable, and well-calibrated classifier, which predominantly outperforms the multi-view baselines tested in terms of expected calibration error, robustness to noise, and accuracy for the in-domain sample classification and the out-of-domain sample detection tasks
|
Myong Chol Jung, He Zhao, Joanna Dipnall, Belinda Gabbe, Lan Du
| null | null | 2,022 |
neurips
|
Conformal Frequency Estimation with Sketched Data
| null |
A flexible conformal inference method is developed to construct confidence intervals for the frequencies of queried objects in very large data sets, based on a much smaller sketch of those data. The approach is data-adaptive and requires no knowledge of the data distribution or of the details of the sketching algorithm; instead, it constructs provably valid frequentist confidence intervals under the sole assumption of data exchangeability. Although our solution is broadly applicable, this paper focuses on applications involving the count-min sketch algorithm and a non-linear variation thereof. The performance is compared to that of frequentist and Bayesian alternatives through simulations and experiments with data sets of SARS-CoV-2 DNA sequences and classic English literature.
|
Matteo Sesia, Stefano Favaro
| null | null | 2,022 |
neurips
|
Exact learning dynamics of deep linear networks with prior knowledge
| null |
Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution \citep{fukumizu1998effect}. We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.
|
Lukas Braun, Clémentine Dominé, James Fitzgerald, Andrew Saxe
| null | null | 2,022 |
neurips
|
Revisiting Active Sets for Gaussian Process Decoders
| null |
Decoders built on Gaussian processes (GPs) are enticing due to the marginalisation over the non-linear function space. Such models (also known as GP-LVMs) are often expensive and notoriously difficult to train in practice, but can be scaled using variational inference and inducing points. In this paper, we revisit active set approximations. We develop a new stochastic estimate of the log-marginal likelihood based on recently discovered links to cross-validation, and we propose a computationally efficient approximation thereof. We demonstrate that the resulting stochastic active sets (SAS) approximation significantly improves the robustness of GP decoder training, while reducing computational cost. The SAS-GP obtains more structure in the latent space, scales to many datapoints, and learns better representations than variational autoencoders, which is rarely the case for GP decoders.
|
Pablo Moreno-Muñoz, Cilie Feldager, Søren Hauberg
| null | null | 2,022 |
neurips
|
Emergence of Hierarchical Layers in a Single Sheet of Self-Organizing Spiking Neurons
| null |
Traditionally convolutional neural network architectures have been designed by stacking layers on top of each other to form deeper hierarchical networks. The cortex in the brain however does not just stack layers as done in standard convolution neural networks, instead different regions are organized next to each other in a large single sheet of neurons. Biological neurons self organize to form topographic maps, where neurons encoding similar stimuli group together to form logical clusters. Here we propose new self-organization principles that allow for the formation of hierarchical cortical regions (i.e. layers) in a completely unsupervised manner without requiring any predefined architecture. Synaptic connections are dynamically grown and pruned, which allows us to actively constrain the number of incoming and outgoing connections. This way we can minimize the wiring cost by taking into account both the synaptic strength and the connection length. The proposed method uses purely local learning rules in the form of spike-timing-dependent plasticity (STDP) with lateral excitation and inhibition. We show experimentally that these self-organization rules are sufficient for topographic maps and hierarchical layers to emerge. Our proposed Self-Organizing Neural Sheet (SONS) model can thus form traditional neural network layers in a completely unsupervised manner from just a single large pool of unstructured spiking neurons.
|
Paul Bertens, Seong-Whan Lee
| null | null | 2,022 |
neurips
|
Online Neural Sequence Detection with Hierarchical Dirichlet Point Process
| null |
Neural sequence detection plays a vital role in neuroscience research. Recent impressive works utilize convolutive nonnegative matrix factorization and Neyman-Scott process to solve this problem. However, they still face two limitations. Firstly, they accommodate the entire dataset into memory and perform iterative updates of multiple passes, which can be inefficient when the dataset is large or grows frequently. Secondly, they rely on the prior knowledge of the number of sequence types, which can be impractical with data when the future situation is unknown. To tackle these limitations, we propose a hierarchical Dirichlet point process model for efficient neural sequence detection. Instead of computing the entire data, our model can sequentially detect sequences in an online unsupervised manner with Particle filters. Besides, the Dirichlet prior enables our model to automatically introduce new sequence types on the fly as needed, thus avoiding specifying the number of types in advance. We manifest these advantages on synthetic data and neural recordings from songbird higher vocal center and rodent hippocampus.
|
Weihan Li, Yu Qi, Gang Pan
| null | null | 2,022 |
neurips
|
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
| null |
From optimal transport to robust dimensionality reduction, many machine learning applicationscan be cast into the min-max optimization problems over Riemannian manifolds. Though manymin-max algorithms have been analyzed in the Euclidean setting, it has been elusive how theseresults translate to the Riemannian case. Zhang et al. (2022) have recently identified that geodesic convexconcave Riemannian problems admit always Sion’s saddle point solutions. Immediately, an importantquestion that arises is if a performance gap between the Riemannian and the optimal Euclidean spaceconvex concave algorithms is necessary. Our work is the first to answer the question in the negative:We prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate at alinear convergence rate at the geodesically strongly convex concave case, matching the euclidean one.Our results also extend to the stochastic or non-smooth case where RCEG & Riemanian gradientascent descent (RGDA) achieve respectively near-optimal convergence rates up to factors dependingon curvature of the manifold. Finally, we empirically demonstrate the effectiveness of RCEG insolving robust PCA.
|
Michael Jordan, Tianyi Lin, Emmanouil-Vasileios Vlatakis-Gkaragkounis
| null | null | 2,022 |
neurips
|
AMP: Automatically Finding Model Parallel Strategies with Heterogeneity Awareness
| null |
Scaling up model sizes can lead to fundamentally new capabilities in many machine learning (ML) tasks. However, training big models requires strong distributed system expertise to carefully design model-parallel execution strategies that suit the model architectures and cluster setups. In this paper, we develop AMP, a framework that automatically derives such strategies. AMP identifies a valid space of model parallelism strategies and efficiently searches the space for high-performed strategies, by leveraging a cost model designed to capture the heterogeneity of the model and cluster specifications. Unlike existing methods, AMP is specifically tailored to support complex models composed of uneven layers and cluster setups with more heterogeneous accelerators and bandwidth. We evaluate AMP on popular modelsand cluster setups from public clouds and show that AMP returns parallel strategies that match the expert-tuned strategies on typical cluster setups. On heterogeneous clusters or models with heterogeneous architectures, AMP finds strategies with 1.54$\times$ and 1.77$\times$ higher throughput than state-of-the-art model-parallel systems, respectively.
|
Dacheng Li, Hongyi Wang, Eric Xing, Hao Zhang
| null | null | 2,022 |
neurips
|
CyCLIP: Cyclic Contrastive Language-Image Pretraining
| null |
Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness. Such models typically require joint reasoning in the image and text representation spaces for downstream inference tasks. Contrary to prior beliefs, we demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions. To mitigate this issue, we formalize consistency and propose CyCLIP, a framework for contrastive representation learning that explicitly optimizes for the learned representations to be geometrically consistent in the image and text space. In particular, we show that consistent representations can be learned by explicitly symmetrizing (a) the similarity between the two mismatched image-text pairs (cross-modal consistency); and (b) the similarity between the image-image pair and the text-text pair (in-modal consistency). Empirically, we show that the improved consistency in CyCLIP translates to significant gains over CLIP, with gains ranging from 10%-24% for zero-shot classification on standard benchmarks (CIFAR-10, CIFAR-100, ImageNet1K) and 10%-27% for robustness to various natural distribution shifts.
|
Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan Rossi, Vishwa Vinay, Aditya Grover
| null | null | 2,022 |
neurips
|
Motion Transformer with Global Intention Localization and Local Movement Refinement
| null |
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to make safe decisions. Existing works explore to directly predict future trajectories based on latent features or utilize dense goal candidates to identify agent's destinations, where the former strategy converges slowly since all motion modes are derived from the same feature while the latter strategy has efficiency issue since its performance highly relies on the density of goal candidates. In this paper, we propose the Motion TRansformer (MTR) framework that models motion prediction as the joint optimization of global intention localization and local movement refinement. Instead of using goal candidates, MTR incorporates spatial intention priors by adopting a small set of learnable motion query pairs. Each motion query pair takes charge of trajectory prediction and refinement for a specific motion mode, which stabilizes the training process and facilitates better multimodal predictions. Experiments show that MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges, ranking 1st on the leaderbaords of Waymo Open Motion Dataset. Code will be available at https://github.com/sshaoshuai/MTR.
|
Shaoshuai Shi, Li Jiang, Dengxin Dai, Bernt Schiele
| null | null | 2,022 |
neurips
|
When does dough become a bagel? Analyzing the remaining mistakes on ImageNet
| null |
Image classification accuracy on the ImageNet dataset has been a barometer for progress in computer vision over the last decade. Several recent papers have questioned the degree to which the benchmark remains useful to the community, yet innovations continue to contribute gains to performance, with today's largest models achieving 90%+ top-1 accuracy. To help contextualize progress on ImageNet and provide a more meaningful evaluation for today's state-of-the-art models, we manually review and categorize every remaining mistake that a few top models make in order to provide insight into the long-tail of errors on one of the most benchmarked datasets in computer vision. We focus on the multi-label subset evaluation of ImageNet, where today's best models achieve upwards of 97% top-1 accuracy. Our analysis reveals that nearly half of the supposed mistakes are not mistakes at all, and we uncover new valid multi-labels, demonstrating that, without careful review, we are significantly underestimating the performance of these models. On the other hand, we also find that today's best models still make a significant number of mistakes (40%) that are obviously wrong to human reviewers. To calibrate future progress on ImageNet, we provide an updated multi-label evaluation set, and we curate ImageNet-Major: a 68-example "major error" slice of the obvious mistakes made by today's top models -- a slice where models should achieve near perfection, but today are far from doing so.
|
Vijay Vasudevan, Benjamin Caine, Raphael Gontijo Lopes, Sara Fridovich-Keil, Rebecca Roelofs
| null | null | 2,022 |
neurips
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.