title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Theseus: A Library for Differentiable Nonlinear Optimization
| null |
We present Theseus, an efficient application-agnostic open source library for differentiable nonlinear least squares (DNLS) optimization built on PyTorch, providing a common framework for end-to-end structured learning in robotics and vision. Existing DNLS implementations are application specific and do not always incorporate many ingredients important for efficiency. Theseus is application-agnostic, as we illustrate with several example applications that are built using the same underlying differentiable components, such as second-order optimizers, standard costs functions, and Lie groups. For efficiency, Theseus incorporates support for sparse solvers, automatic vectorization, batching, GPU acceleration, and gradient computation with implicit differentiation and direct loss minimization. We do extensive performance evaluation in a set of applications, demonstrating significant efficiency gains and better scalability when these features are incorporated. Project page: https://sites.google.com/view/theseus-ai/
|
Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam
| null | null | 2,022 |
neurips
|
Solving Quantitative Reasoning Problems with Language Models
| null |
Language models have achieved remarkable performance on a wide range of tasks that require natural language understanding. Nevertheless, state-of-the-art models have generally struggled with tasks that require quantitative reasoning, such as solving mathematics, science, and engineering questions at the college level. To help close this gap, we introduce Minerva, a large language model pretrained on general natural language data and further trained on technical content. The model achieves strong performance in a variety of evaluations, including state-of-the-art performance on the MATH dataset. We also evaluate our model on over two hundred undergraduate-level problems in physics, biology, chemistry, economics, and other sciences that require quantitative reasoning, and find that the model can correctly answer nearly a quarter of them.
|
Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, Vedant Misra
| null | null | 2,022 |
neurips
|
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
| null |
A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm's privacy loss remain open---even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant. This result reveals that all previous analyses for this setting have the wrong qualitative behavior. Specifically, while previous privacy analyses increase ad infinitum in the number of iterations, we show that after a small burn-in period, running SGD longer leaks no further privacy. Our analysis departs from previous approaches based on fast mixing, instead using techniques based on optimal transport (namely, Privacy Amplification by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification by Sampling). Our techniques readily extend to other settings.
|
Jason Altschuler, Kunal Talwar
| null | null | 2,022 |
neurips
|
Asymmetric Temperature Scaling Makes Larger Networks Teach Well Again
| null |
Knowledge Distillation (KD) aims at transferring the knowledge of a well-performed neural network (the {\it teacher}) to a weaker one (the {\it student}). A peculiar phenomenon is that a more accurate model doesn't necessarily teach better, and temperature adjustment can neither alleviate the mismatched capacity. To explain this, we decompose the efficacy of KD into three parts: {\it correct guidance}, {\it smooth regularization}, and {\it class discriminability}. The last term describes the distinctness of {\it wrong class probabilities} that the teacher provides in KD. Complex teachers tend to be over-confident and traditional temperature scaling limits the efficacy of {\it class discriminability}, resulting in less discriminative wrong class probabilities. Therefore, we propose {\it Asymmetric Temperature Scaling (ATS)}, which separately applies a higher/lower temperature to the correct/wrong class. ATS enlarges the variance of wrong class probabilities in the teacher's label and makes the students grasp the absolute affinities of wrong classes to the target class as discriminative as possible. Both theoretical analysis and extensive experimental results demonstrate the effectiveness of ATS. The demo developed in Mindspore is available at \url{https://gitee.com/lxcnju/ats-mindspore} and will be available at \url{https://gitee.com/mindspore/models/tree/master/research/cv/ats}.
|
Xin-Chun Li, Wen-shu Fan, Shaoming Song, Yinchuan Li, bingshuai Li, Shao Yunfeng, De-Chuan Zhan
| null | null | 2,022 |
neurips
|
Thompson Sampling Efficiently Learns to Control Diffusion Processes
| null |
Diffusion processes that evolve according to linear stochastic differential equations are an important family of continuous-time dynamic decision-making models. Optimal policies are well-studied for them, under full certainty about the drift matrices. However, little is known about data-driven control of diffusion processes with uncertain drift matrices as conventional discrete-time analysis techniques are not applicable. In addition, while the task can be viewed as a reinforcement learning problem involving exploration and exploitation trade-off, ensuring system stability is a fundamental component of designing optimal policies. We establish that the popular Thompson sampling algorithm learns optimal actions fast, incurring only a square-root of time regret, and also stabilizes the system in a short time period. To the best of our knowledge, this is the first such result for Thompson sampling in a diffusion process control problem. We validate our theoretical results through empirical simulations with real matrices. Moreover, we observe that Thompson sampling significantly improves (worst-case) regret, compared to the state-of-the-art algorithms, suggesting Thompson sampling explores in a more guarded fashion. Our theoretical analysis involves characterization of a certain \emph{optimality manifold} that ties the local geometry of the drift parameters to the optimal control of the diffusion process. We expect this technique to be of broader interest.
|
Mohamad Kazem Shirani Faradonbeh, Mohamad Sadegh Shirani Faradonbeh, Mohsen Bayati
| null | null | 2,022 |
neurips
|
Flare7K: A Phenomenological Nighttime Flare Removal Dataset
| null |
Artificial lights commonly leave strong lens flare artifacts on images captured at night. Nighttime flare not only affects the visual quality but also degrades the performance of vision algorithms. Existing flare removal methods mainly focus on removing daytime flares and fail in nighttime. Nighttime flare removal is challenging because of the unique luminance and spectrum of artificial lights and the diverse patterns and image degradation of the flares captured at night. The scarcity of nighttime flare removal datasets limits the research on this crucial task. In this paper, we introduce, Flare7K, the first nighttime flare removal dataset, which is generated based on the observation and statistics of real-world nighttime lens flares. It offers 5,000 scattering and 2,000 reflective flare images, consisting of 25 types of scattering flares and 10 types of reflective flares. The 7,000 flare patterns can be randomly added to flare-free images, forming the flare-corrupted and flare-free image pairs. With the paired data, we can train deep models to restore flare-corrupted images taken in the real world effectively. Apart from abundant flare patterns, we also provide rich annotations, including the labeling of light source, glare with shimmer, reflective flare, and streak, which are commonly absent from existing datasets. Hence, our dataset can facilitate new work in nighttime flare removal and more fine-grained analysis of flare patterns. Extensive experiments show that our dataset adds diversity to existing flare datasets and pushes the frontier of nighttime flare removal.
|
Yuekun Dai, Chongyi Li, Shangchen Zhou, Ruicheng Feng, Chen Change Loy
| null | null | 2,022 |
neurips
|
Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning
| null |
Goal-conditioned reinforcement learning (RL) is a promising direction for training agents that are capable of solving multiple tasks and reach a diverse set of objectives. How to \textit{specify} and \textit{ground} these goals in such a way that we can both reliably reach goals during training as well as generalize to new goals during evaluation remains an open area of research. Defining goals in the space of noisy, high-dimensional sensory inputs is one possibility, yet this poses a challenge for training goal-conditioned agents, or even for generalization to novel goals. We propose to address this by learning compositional representations of goals and processing the resulting representation via a discretization bottleneck, for coarser specification of goals, through an approach we call DGRL. We show that discretizing outputs from goal encoders through a bottleneck can work well in goal-conditioned RL setups, by experimentally evaluating this method on tasks ranging from maze environments to complex robotic navigation and manipulation tasks. Additionally, we show a theoretical result which bounds the expected return for goals not observed during training, while still allowing for specifying goals with expressive combinatorial structure.
|
Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex M. Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche, Yoshua Bengio, Remi Tachet des Combes
| null | null | 2,022 |
neurips
|
K-Radar: 4D Radar Object Detection for Autonomous Driving in Various Weather Conditions
| null |
Unlike RGB cameras that use visible light bands (384∼769 THz) and Lidars that use infrared bands (361∼331 THz), Radars use relatively longer wavelength radio bands (77∼81 GHz), resulting in robust measurements in adverse weathers. Unfortunately, existing Radar datasets only contain a relatively small number of samples compared to the existing camera and Lidar datasets. This may hinder the development of sophisticated data-driven deep learning techniques for Radar-based perception. Moreover, most of the existing Radar datasets only provide 3D Radar tensor (3DRT) data that contain power measurements along the Doppler, range, and azimuth dimensions. As there is no elevation information, it is challenging to estimate the 3D bounding box of an object from 3DRT. In this work, we introduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions, together with carefully annotated 3D bounding box labels of objects on the roads. K-Radar includes challenging driving conditions such as adverse weathers (fog, rain, and snow) on various road structures (urban, suburban roads, alleyways, and highways). In addition to the 4DRT, we provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS. We also provide 4DRT-based object detection baseline neural networks (baseline NNs) and show that the height information is crucial for 3D object detection. And by comparing the baseline NN with a similarly-structured Lidar-based neural network, we demonstrate that 4D Radar is a more robust sensor for adverse weather conditions. All codes are available at https://github.com/kaist-avelab/k-radar.
|
Dong-Hee Paek, SEUNG-HYUN KONG, Kevin Tirta Wijaya
| null | null | 2,022 |
neurips
|
Local Metric Learning for Off-Policy Evaluation in Contextual Bandits with Continuous Actions
| null |
We consider local kernel metric learning for off-policy evaluation (OPE) of deterministic policies in contextual bandits with continuous action spaces. Our work is motivated by practical scenarios where the target policy needs to be deterministic due to domain requirements, such as prescription of treatment dosage and duration in medicine. Although importance sampling (IS) provides a basic principle for OPE, it is ill-posed for the deterministic target policy with continuous actions. Our main idea is to relax the target policy and pose the problem as kernel-based estimation, where we learn the kernel metric in order to minimize the overall mean squared error (MSE). We present an analytic solution for the optimal metric, based on the analysis of bias and variance. Whereas prior work has been limited to scalar action spaces or kernel bandwidth selection, our work takes a step further being capable of vector action spaces and metric optimization. We show that our estimator is consistent, and significantly reduces the MSE compared to baseline OPE methods through experiments on various domains.
|
Haanvid Lee, Jongmin Lee, Yunseon Choi, Wonseok Jeon, Byung-Jun Lee, Yung-Kyun Noh, Kee-Eung Kim
| null | null | 2,022 |
neurips
|
Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy
| null |
Inspired by their powerful representation ability on graph-structured data, Graph Convolution Networks (GCNs) have been widely applied to recommender systems, and have shown superior performance. Despite their empirical success, there is a lack of theoretical explorations such as generalization properties. In this paper, we take a first step towards establishing a generalization guarantee for GCN-based recommendation models under inductive and transductive learning. We mainly investigate the roles of graph normalization and non-linear activation, providing some theoretical understanding, and construct extensive experiments to further verify these findings empirically. Furthermore, based on the proven generalization bound and the challenge of existing models in discrete data learning, we propose Item Mixture (IMix) to enhance recommendation. It models discrete spaces in a continuous manner by mixing the embeddings of positive-negative item pairs, and its effectiveness can be strictly guaranteed from empirical and theoretical aspects.
|
Leyan Deng, Defu Lian, Chenwang Wu, Enhong Chen
| null | null | 2,022 |
neurips
|
Quasi-Newton Methods for Saddle Point Problems
| null |
This paper studies quasi-Newton methods for strongly-convex-strongly-concave saddle point problems. We propose random Broyden family updates, which have explicit local superlinear convergence rate of ${\mathcal O}\big(\big(1-1/(d\varkappa^2)\big)^{k(k-1)/2}\big)$, where $d$ is the dimension of the problem, $\varkappa$ is the condition number and $k$ is the number of iterations. The design and analysis of proposed algorithm are based on estimating the square of indefinite Hessian matrix, which is different from classical quasi-Newton methods in convex optimization. We also present two specific Broyden family algorithms with BFGS-type and SR1-type updates, which enjoy the faster local convergence rate of $\mathcal O\big(\big(1-1/d\big)^{k(k-1)/2}\big)$. Our numerical experiments show proposed algorithms outperform classical first-order methods.
|
Chengchang Liu, Luo Luo
| null | null | 2,022 |
neurips
|
Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world
| null |
We introduce \textit{Nocturne}, a new 2D driving simulator for investigating multi-agent coordination under partial observability. The focus of Nocturne is to enable research into inference and theory of mind in real-world multi-agent settings without the computational overhead of computer vision and feature extraction from images. Agents in this simulator only observe an obstructed view of the scene, mimicking human visual sensing constraints. Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per-second. Using open-source trajectory and map data, we construct a simulator to load and replay arbitrary trajectories and scenes from real-world driving data. Using this environment, we benchmark reinforcement-learning and imitation-learning agents and demonstrate that the agents are quite far from human-level coordination ability and deviate significantly from the expert trajectories.
|
Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, Jakob Foerster
| null | null | 2,022 |
neurips
|
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
| null |
We study a class of dynamical systems modelled as stationary Markov chains that admit an invariant distribution via the corresponding transfer or Koopman operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.
|
Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, Massimiliano Pontil
| null | null | 2,022 |
neurips
|
Uncalibrated Models Can Improve Human-AI Collaboration
| null |
In many practical applications of AI, an AI model is used as a decision aid for human users. The AI provides advice that a human (sometimes) incorporates into their decision-making process. The AI advice is often presented with some measure of "confidence" that the human can use to calibrate how much they depend on or trust the advice. In this paper, we present an initial exploration that suggests showing AI models as more confident than they actually are, even when the original AI is well-calibrated, can improve human-AI performance (measured as the accuracy and confidence of the human's final prediction after seeing the AI advice). We first train a model to predict human incorporation of AI advice using data from thousands of human-AI interactions. This enables us to explicitly estimate how to transform the AI's prediction confidence, making the AI uncalibrated, in order to improve the final human prediction. We empirically validate our results across four different tasks---dealing with images, text and tabular data---involving hundreds of human participants. We further support our findings with simulation analysis. Our findings suggest the importance of jointly optimizing the human-AI system as opposed to the standard paradigm of optimizing the AI model alone.
|
Kailas Vodrahalli, Tobias Gerstenberg, James Y. Zou
| null | null | 2,022 |
neurips
|
Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency
| null |
Pre-training on time series poses a unique challenge due to the potential mismatch between pre-training and target domains, such as shifts in temporal dynamics, fast-evolving trends, and long-range and short-cyclic effects, which can lead to poor downstream performance. While domain adaptation methods can mitigate these shifts, most methods need examples directly from the target domain, making them suboptimal for pre-training. To address this challenge, methods need to accommodate target domains with different temporal dynamics and be capable of doing so without seeing any target examples during pre-training. Relative to other modalities, in time series, we expect that time-based and frequency-based representations of the same example are located close together in the time-frequency space. To this end, we posit that time-frequency consistency (TF-C) --- embedding a time-based neighborhood of an example close to its frequency-based neighborhood --- is desirable for pre-training. Motivated by TF-C, we define a decomposable pre-training model, where the self-supervised signal is provided by the distance between time and frequency components, each individually trained by contrastive estimation. We evaluate the new method on eight datasets, including electrodiagnostic testing, human activity recognition, mechanical fault detection, and physical status monitoring. Experiments against eight state-of-the-art methods show that TF-C outperforms baselines by 15.4% (F1 score) on average in one-to-one settings (e.g., fine-tuning an EEG-pretrained model on EMG data) and by 8.4% (precision) in challenging one-to-many settings (e.g., fine-tuning an EEG-pretrained model for either hand-gesture recognition or mechanical fault prediction), reflecting the breadth of scenarios that arise in real-world applications. The source code and datasets are available at https://github.com/mims-harvard/TFC-pretraining.
|
Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, Marinka Zitnik
| null | null | 2,022 |
neurips
|
On Enforcing Better Conditioned Meta-Learning for Rapid Few-Shot Adaptation
| null |
Inspired by the concept of preconditioning, we propose a novel method to increase adaptation speed for gradient-based meta-learning methods without incurring extra parameters. We demonstrate that recasting the optimisation problem to a non-linear least-squares formulation provides a principled way to actively enforce a well-conditioned parameter space for meta-learning models based on the concepts of the condition number and local curvature. Our comprehensive evaluations show that the proposed method significantly outperforms its unconstrained counterpart especially during initial adaptation steps, while achieving comparable or better overall results on several few-shot classification tasks – creating the possibility of dynamically choosing the number of adaptation steps at inference time.
|
Markus Hiller, Mehrtash Harandi, Tom Drummond
| null | null | 2,022 |
neurips
|
VectorAdam for Rotation Equivariant Geometry Optimization
| null |
The Adam optimization algorithm has proven remarkably effective for optimization problems across machine learning and even traditional tasks in geometry processing. At the same time, the development of equivariant methods, which preserve their output under the action of rotation or some other transformation, has proven to be important for geometry problems across these domains. In this work, we observe that Adam — when treated as a function that maps initial conditions to optimized results — is not rotation equivariant for vector-valued parameters due to per-coordinate moment updates. This leads to significant artifacts and biases in practice. We propose to resolve this deficiency with VectorAdam, a simple modification which makes Adam rotation-equivariant by accounting for the vector structure of optimization variables. We demonstrate this approach on problems in machine learning and traditional geometric optimization, showing that equivariant VectorAdam resolves the artifacts and biases of traditional Adam when applied to vector-valued data, with equivalent or even improved rates of convergence.
|
Selena Zihan Ling, Nicholas Sharp, Alec Jacobson
| null | null | 2,022 |
neurips
|
Self-supervised surround-view depth estimation with volumetric feature fusion
| null |
We present a self-supervised depth estimation approach using a unified volumetric feature fusion for surround-view images. Given a set of surround-view images, our method constructs a volumetric feature map by extracting image feature maps from surround-view images and fuse the feature maps into a shared, unified 3D voxel space. The volumetric feature map then can be used for estimating a depth map at each surround view by projecting it into an image coordinate. A volumetric feature contains 3D information at its local voxel coordinate; thus our method can also synthesize a depth map at arbitrary rotated viewpoints by projecting the volumetric feature map into the target viewpoints. Furthermore, assuming static camera extrinsics in the multi-camera system, we propose to estimate a canonical camera motion from the volumetric feature map. Our method leverages 3D spatio- temporal context to learn metric-scale depth and the canonical camera motion in a self-supervised manner. Our method outperforms the prior arts on DDAD and nuScenes datasets, especially estimating more accurate metric-scale depth and consistent depth between neighboring views.
|
Jung-Hee Kim, Junhwa Hur, Tien Phuoc Nguyen, Seong-Gyun Jeong
| null | null | 2,022 |
neurips
|
CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains
| null |
Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE encompasses the single-target datasets MoLane and TuLane and the multi-target dataset MuLane. These datasets are built from three different domains, which cover diverse scenes and contain a total of 163K unique images, 118K of which are annotated. In addition we evaluate and report systematic baselines, including our own method, which builds upon Prototypical Cross-domain Self-supervised Learning. We find that false positive and false negative rates of the evaluated domain adaptation methods are high compared to those of fully supervised baselines. This affirms the need for benchmarks such as CARLANE to further strengthen research in Unsupervised Domain Adaptation for lane detection. CARLANE, all evaluated models and the corresponding implementations are publicly available at https://carlanebenchmark.github.io.
|
Bonifaz Stuhr, Johann Haselberger, Julian Gebele
| null | null | 2,022 |
neurips
|
Equivariant Networks for Crystal Structures
| null |
Supervised learning with deep models has tremendous potential for applications in materials science. Recently, graph neural networks have been used in this context, drawing direct inspiration from models for molecules. However, materials are typically much more structured than molecules, which is a feature that these models do not leverage. In this work, we introduce a class of models that are equivariant with respect to crystalline symmetry groups. We do this by defining a generalization of the message passing operations that can be used with more general permutation groups, or that can alternatively be seen as defining an expressive convolution operation on the crystal graph. Empirically, these models achieve competitive results with state-of-the-art on the Materials Project dataset.
|
Oumar Kaba, Siamak Ravanbakhsh
| null | null | 2,022 |
neurips
|
Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence
| null |
Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincare recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often. Our analysis generalizes previous results in the case of classical games.
|
Rahul Jain, Georgios Piliouras, Ryann Sim
| null | null | 2,022 |
neurips
|
Oracle-Efficient Online Learning for Smoothed Adversaries
| null |
We study the design of computationally efficient online learning algorithms under smoothed analysis. In this setting, at every step, an adversary generates a sample from an adaptively chosen distribution whose density is upper bounded by $1/\sigma$ times the uniform density. Given access to an offline optimization (ERM) oracle, we give the first computationally efficient online algorithms whose sublinear regret depends only on the pseudo/VC dimension $d$ of the class and the smoothness parameter $\sigma$. In particular, we achieve \emph{oracle-efficient} regret bounds of $ O ( \sqrt{T d\sigma^{-1}} ) $ for learning real-valued functions and $ O ( \sqrt{T d\sigma^{-\frac{1}{2}} } )$ for learning binary-valued functions. Our results establish that online learning is computationally as easy as offline learning, under the smoothed analysis framework. This contrasts the computational separation between online learning with worst-case adversaries and offline learning established by [HK16].Our algorithms also achieve improved bounds for some settings with binary-valued functions and worst-case adversaries. These include an oracle-efficient algorithm with $O ( \sqrt{T(d |\mathcal{X}|)^{1/2} })$ regret that refines the earlier $O ( \sqrt{T|\mathcal{X}|})$ bound of [DS16] for finite domains, and an oracle-efficient algorithm with $O(T^{3/4} d^{1/2})$ regret for the transductive setting.
|
Nika Haghtalab, Yanjun Han, Abhishek Shetty, Kunhe Yang
| null | null | 2,022 |
neurips
|
A Policy-Guided Imitation Approach for Offline Reinforcement Learning
| null |
Offline reinforcement learning (RL) methods can generally be categorized into two types: RL-based and Imitation-based. RL-based methods could in principle enjoy out-of-distribution generalization but suffer from erroneous off-policy evaluation. Imitation-based methods avoid off-policy evaluation but are too conservative to surpass the dataset. In this study, we propose an alternative approach, inheriting the training stability of imitation-style methods while still allowing logical out-of-distribution generalization. We decompose the conventional reward-maximizing policy in offline RL into a guide-policy and an execute-policy. During training, the guide-poicy and execute-policy are learned using only data from the dataset, in a supervised and decoupled manner. During evaluation, the guide-policy guides the execute-policy by telling where it should go so that the reward can be maximized, serving as the \textit{Prophet}. By doing so, our algorithm allows \textit{state-compositionality} from the dataset, rather than \textit{action-compositionality} conducted in prior imitation-style methods. We dumb this new approach Policy-guided Offline RL (\texttt{POR}). \texttt{POR} demonstrates the state-of-the-art performance on D4RL, a standard benchmark for offline RL. We also highlight the benefits of \texttt{POR} in terms of improving with supplementary suboptimal data and easily adapting to new tasks by only changing the guide-poicy.
|
Haoran Xu, Li Jiang, Li Jianxiong, Xianyuan Zhan
| null | null | 2,022 |
neurips
|
Generalization Analysis on Learning with a Concurrent Verifier
| null |
Machine learning technologies have been used in a wide range of practical systems.In practical situations, it is natural to expect the input-output pairs of a machine learning model to satisfy some requirements.However, it is difficult to obtain a model that satisfies requirements by just learning from examples.A simple solution is to add a module that checks whether the input-output pairs meet the requirements and then modifies the model's outputs. Such a module, which we call a {\em concurrent verifier} (CV), can give a certification, although how the generalizability of the machine learning model changes using a CV is unclear. This paper gives a generalization analysis of learning with a CV. We analyze how the learnability of a machine learning model changes with a CV and show a condition where we can obtain a guaranteed hypothesis using a verifier only in the inference time.We also show that typical error bounds based on Rademacher complexity will be no larger than that of the original model when using a CV in multi-class classification and structured prediction settings.
|
Masaaki Nishino, Kengo Nakamura, Norihito Yasuda
| null | null | 2,022 |
neurips
|
Spartan: Differentiable Sparsity via Regularized Transportation
| null |
We present Spartan, a method for training sparse neural network models with a predetermined level of sparsity. Spartan is based on a combination of two techniques: (1) soft top-k masking of low-magnitude parameters via a regularized optimal transportation problem and (2) dual averaging-based parameter updates with hard sparsification in the forward pass. This scheme realizes an exploration-exploitation tradeoff: early in training, the learner is able to explore various sparsity patterns, and as the soft top-k approximation is gradually sharpened over the course of training, the balance shifts towards parameter optimization with respect to a fixed sparsity mask. Spartan is sufficiently flexible to accommodate a variety of sparsity allocation policies, including both unstructured and block-structured sparsity, global and per-layer sparsity budgets, as well as general cost-sensitive sparsity allocation mediated by linear models of per-parameter costs. On ImageNet-1K classification, we demonstrate that training with Spartan yields 95% sparse ResNet-50 models and 90% block sparse ViT-B/16 models while incurring absolute top-1 accuracy losses of less than 1% compared to fully dense training.
|
Kai Sheng Tai, Taipeng Tian, Ser Nam Lim
| null | null | 2,022 |
neurips
|
Sample-Efficient Learning of Correlated Equilibria in Extensive-Form Games
| null |
Imperfect-Information Extensive-Form Games (IIEFGs) is a prevalent model for real-world games involving imperfect information and sequential plays. The Extensive-Form Correlated Equilibrium (EFCE) has been proposed as a natural solution concept for multi-player general-sum IIEFGs. However, existing algorithms for finding an EFCE require full feedback from the game, and it remains open how to efficiently learn the EFCE in the more challenging bandit feedback setting where the game can only be learned by observations from repeated playing. This paper presents the first sample-efficient algorithm for learning the EFCE from bandit feedback. We begin by proposing $K$-EFCE---a generalized definition that allows players to observe and deviate from the recommended actions for $K$ times. The $K$-EFCE includes the EFCE as a special case at $K=1$, and is an increasingly stricter notion of equilibrium as $K$ increases. We then design an uncoupled no-regret algorithm that finds an $\varepsilon$-approximate $K$-EFCE within $\widetilde{\mathcal{O}}(\max_{i}X_iA_i^{K}/\varepsilon^2)$ iterations in the full feedback setting, where $X_i$ and $A_i$ are the number of information sets and actions for the $i$-th player. Our algorithm works by minimizing a wide-range regret at each information set that takes into account all possible recommendation histories. Finally, we design a sample-based variant of our algorithm that learns an $\varepsilon$-approximate $K$-EFCE within $\widetilde{\mathcal{O}}(\max_{i}X_iA_i^{K+1}/\varepsilon^2)$ episodes of play in the bandit feedback setting. When specialized to $K=1$, this gives the first sample-efficient algorithm for learning EFCE from bandit feedback.
|
Ziang Song, Song Mei, Yu Bai
| null | null | 2,022 |
neurips
|
A General Framework for Auditing Differentially Private Machine Learning
| null |
We present a framework to statistically audit the privacy guarantee conferred by a differentially private machine learner in practice. While previous works have taken steps toward evaluating privacy loss through poisoning attacks or membership inference, they have been tailored to specific models or have demonstrated low statistical power. Our work develops a general methodology to empirically evaluate the privacy of differentially private machine learning implementations, combining improved privacy search and verification methods with a toolkit of influence-based poisoning attacks. We demonstrate significantly improved auditing power over previous approaches on a variety of models including logistic regression, Naive Bayes, and random forest. Our method can be used to detect privacy violations due to implementation errors or misuse. When violations are not present, it can aid in understanding the amount of information that can be leaked from a given dataset, algorithm, and privacy specification.
|
Fred Lu, Joseph Munoz, Maya Fuchs, Tyler LeBlond, Elliott Zaresky-Williams, Edward Raff, Francis Ferraro, Brian Testa
| null | null | 2,022 |
neurips
|
Structural Knowledge Distillation for Object Detection
| null |
Knowledge Distillation (KD) is a well-known training paradigm in deep neural networks where knowledge acquired by a large teacher model is transferred to a small student.KD has proven to be an effective technique to significantly improve the student's performance for various tasks including object detection. As such, KD techniques mostly rely on guidance at the intermediate feature level, which is typically implemented by minimizing an $\ell_{p}$-norm distance between teacher and student activations during training. In this paper, we propose a replacement for the pixel-wise independent $\ell_{p}$-norm based on the structural similarity (SSIM).By taking into account additional contrast and structural cues, more information within intermediate feature maps can be preserved. Extensive experiments on MSCOCO demonstrate the effectiveness of our method across different training schemes and architectures. Our method adds only little computational overhead, is straightforward to implement and at the same time it significantly outperforms the standard $\ell_p$-norms.Moreover, more complex state-of-the-art KD methods using attention-based sampling mechanisms are outperformed, including a +3.5 AP gain using a Faster R-CNN R-50 compared to a vanilla model.
|
Philip de Rijk, Lukas Schneider, Marius Cordts, Dariu Gavrila
| null | null | 2,022 |
neurips
|
Focal Modulation Networks
| null |
We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation module for modeling token interactions in vision. Focal modulation comprises three components: $(i)$ hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, $(ii)$ gated aggregation to selectively gather contexts for each query token based on its content, and $(iii)$ element-wise modulation or affine transformation to fuse the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational cost on the tasks of image classification, object detection, and semantic segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224$^2$ and 384$^2$, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1$\times$ outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3$\times$ schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. These results render focal modulation a favorable alternative to SA for effective and efficient visual modeling. Code is available at: https://github.com/microsoft/FocalNet.
|
Jianwei Yang, Chunyuan Li, Xiyang Dai, Jianfeng Gao
| null | null | 2,022 |
neurips
|
Resource-Adaptive Federated Learning with All-In-One Neural Composition
| null |
Conventional Federated Learning (FL) systems inherently assume a uniform processing capacity among clients for deployed models. However, diverse client hardware often leads to varying computation resources in practice. Such system heterogeneity results in an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid such a dilemma and achieve resource-adaptive federated learning, we introduce a simple yet effective mechanism, termed All-In-One Neural Composition, to systematically support training complexity-adjustable models with flexible resource adaption. It is able to efficiently construct models at various complexities using one unified neural basis shared among clients, instead of pruning the global model into local ones. The proposed mechanism endows the system with unhindered access to the full range of knowledge scattered across clients and generalizes existing pruning-based solutions by allowing soft and learnable extraction of low footprint models. Extensive experiment results on popular FL benchmarks demonstrate the effectiveness of our approach. The resulting FL system empowered by our All-In-One Neural Composition, called FLANC, manifests consistent performance gains across diverse system/data heterogeneous setups while keeping high efficiency in computation and communication.
|
Yiqun Mei, Pengfei Guo, Mo Zhou, Vishal Patel
| null | null | 2,022 |
neurips
|
HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces
| null |
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations. Previous methods focus on learning point weights to fit neighborhoods into a geometric surface approximated by a polynomial function with a predefined order, based on which normals are estimated. However, fitting surfaces explicitly from raw point clouds suffers from overfitting or underfitting issues caused by inappropriate polynomial orders and outliers, which significantly limits the performance of existing methods. To address these issues, we introduce hyper surface fitting to implicitly learn hyper surfaces, which are represented by multi-layer perceptron (MLP) layers that take point features as input and output surface patterns in a high dimensional feature space. We introduce a novel space transformation module, which consists of a sequence of local aggregation layers and global shift layers, to learn an optimal feature space, and a relative position encoding module to effectively convert point clouds into the learned feature space. Our model learns hyper surfaces from the noise-less features and directly predicts normal vectors. We jointly optimize the MLP weights and module parameters in a data-driven manner to make the model adaptively find the most suitable surface pattern for various points. Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset, the real-world indoor and outdoor scene datasets. The code, data and pretrained models are publicly available.
|
Qing Li, Yu-Shen Liu, Jin-San Cheng, Cheng Wang, Yi Fang, Zhizhong Han
| null | null | 2,022 |
neurips
|
NeMF: Neural Motion Fields for Kinematic Animation
| null |
We present an implicit neural representation to learn the spatio-temporal space of kinematic motions. Unlike previous work that represents motion as discrete sequential samples, we propose to express the vast motion space as a continuous function over time, hence the name Neural Motion Fields (NeMF). Specifically, we use a neural network to learn this function for miscellaneous sets of motions, which is designed to be a generative model conditioned on a temporal coordinate $t$ and a random vector $z$ for controlling the style. The model is then trained as a Variational Autoencoder (VAE) with motion encoders to sample the latent space. We train our model with a diverse human motion dataset and quadruped dataset to prove its versatility, and finally deploy it as a generic motion prior to solve task-agnostic problems and show its superiority in different motion generation and editing applications, such as motion interpolation, in-betweening, and re-navigating. More details can be found on our project page: https://cs.yale.edu/homes/che/projects/nemf/.
|
Chengan He, Jun Saito, James Zachary, Holly Rushmeier, Yi Zhou
| null | null | 2,022 |
neurips
|
Global Normalization for Streaming Speech Recognition in a Modular Framework
| null |
We introduce the Globally Normalized Autoregressive Transducer (GNAT) for addressing the label bias problem in streaming speech recognition. Our solution admits a tractable exact computation of the denominator for the sequence-level normalization. Through theoretical and empirical results, we demonstrate that by switching to a globally normalized model, the word error rate gap between streaming and non-streaming speech-recognition models can be greatly reduced (by more than 50% on the Librispeech dataset). This model is developed in a modular framework which encompasses all the common neural speech recognition models. The modularity of this framework enables controlled comparison of modelling choices and creation of new models. A JAX implementation of our models has been open sourced.
|
Ehsan Variani, Ke Wu, Michael D Riley, David Rybach, Matt Shannon, Cyril Allauzen
| null | null | 2,022 |
neurips
|
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
| null |
To enable large-scale machine learning in bandwidth-hungry environments such as wireless networks, significant progress has been made recently in designing communication-efficient federated learning algorithms with the aid of communication compression. On the other end, privacy preserving, especially at the client level, is another important desideratum that has not been addressed simultaneously in the presence of advanced communication compression techniques yet. In this paper, we propose a unified framework that enhances the communication efficiency of private federated learning with communication compression. Exploiting both general compression operators and local differential privacy, we first examine a simple algorithm that applies compression directly to differentially-private stochastic gradient descent, and identify its limitations. We then propose a unified framework SoteriaFL for private federated learning, which accommodates a general family of local gradient estimators including popular stochastic variance-reduced gradient methods and the state-of-the-art shifted compression scheme. We provide a comprehensive characterization of its performance trade-offs in terms of privacy, utility, and communication complexity, where SoteriaFL is shown to achieve better communication complexity without sacrificing privacy nor utility than other private federated learning algorithms without communication compression.
|
Zhize Li, Haoyu Zhao, Boyue Li, Yuejie Chi
| null | null | 2,022 |
neurips
|
Redundancy-Free Message Passing for Graph Neural Networks
| null |
Graph Neural Networks (GNNs) resemble the Weisfeiler-Lehman (1-WL) test, which iteratively update the representation of each node by aggregating information from WL-tree. However, despite the computational superiority of the iterative aggregation scheme, it introduces redundant message flows to encode nodes. We found that the redundancy in message passing prevented conventional GNNs from propagating the information of long-length paths and learning graph similarities. In order to address this issue, we proposed Redundancy-Free Graph Neural Network (RFGNN), in which the information of each path (of limited length) in the original graph is propagated along a single message flow. Our rigorous theoretical analysis demonstrates the following advantages of RFGNN: (1) RFGNN is strictly more powerful than 1-WL; (2) RFGNN efficiently propagate structural information in original graphs, avoiding the over-squashing issue; and (3) RFGNN could capture subgraphs at multiple levels of granularity, and are more likely to encode graphs with closer graph edit distances into more similar representations. The experimental evaluation of graph-level prediction benchmarks confirmed our theoretical assertions, and the performance of the RFGNN can achieve the best results in most datasets.
|
Rongqin Chen, Shenghui Zhang, Leong Hou U, Ye Li
| null | null | 2,022 |
neurips
|
Diffusion-LM Improves Controllable Text Generation
| null |
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
|
Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S. Liang, Tatsunori B. Hashimoto
| null | null | 2,022 |
neurips
|
Your Transformer May Not be as Powerful as You Expect
| null |
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative---RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications. The code will be made publicly available at https://github.com/lsj2408/URPE.
|
Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, Di He
| null | null | 2,022 |
neurips
|
On the Generalizability and Predictability of Recommender Systems
| null |
While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 24 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric. However, there is also a strong correlation between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric: https://github.com/naszilla/reczilla.
|
Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, John Dickerson, Colin White
| null | null | 2,022 |
neurips
|
Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure
| null |
This paper presents a new efficient black-box attribution method built on Hilbert-Schmidt Independence Criterion (HSIC). Based on Reproducing Kernel Hilbert Spaces (RKHS), HSIC measures the dependence between regions of an input image and the output of a model using the kernel embedding of their distributions. It thus provides explanations enriched by RKHS representation capabilities. HSIC can be estimated very efficiently, significantly reducing the computational cost compared to other black-box attribution methods.Our experiments show that HSIC is up to 8 times faster than the previous best black-box attribution methods while being as faithful.Indeed, we improve or match the state-of-the-art of both black-box and white-box attribution methods for several fidelity metrics on Imagenet with various recent model architectures.Importantly, we show that these advances can be transposed to efficiently and faithfully explain object detection models such as YOLOv4. Finally, we extend the traditional attribution methods by proposing a new kernel enabling an ANOVA-like orthogonal decomposition of importance scores based on HSIC, allowing us to evaluate not only the importance of each image patch but also the importance of their pairwise interactions. Our implementation is available at \url{https://github.com/paulnovello/HSIC-Attribution-Method}.
|
Paul Novello, Thomas FEL, David Vigouroux
| null | null | 2,022 |
neurips
|
Asynchronous Actor-Critic for Multi-Agent Reinforcement Learning
| null |
Synchronizing decisions across multiple agents in realistic settings is problematic since it requires agents to wait for other agents to terminate and communicate about termination reliably. Ideally, agents should learn and execute asynchronously instead. Such asynchronous methods also allow temporally extended actions that can take different amounts of time based on the situation and action executed. Unfortunately, current policy gradient methods are not applicable in asynchronous settings, as they assume that agents synchronously reason about action selection at every time step. To allow asynchronous learning and decision-making, we formulate a set of asynchronous multi-agent actor-critic methods that allow agents to directly optimize asynchronous policies in three standard training paradigms: decentralized learning, centralized learning, and centralized training for decentralized execution. Empirical results (in simulation and hardware) in a variety of realistic domains demonstrate the superiority of our approaches in large multi-agent problems and validate the effectiveness of our algorithms for learning high-quality and asynchronous solutions.
|
Yuchen Xiao, Weihao Tan, Christopher Amato
| null | null | 2,022 |
neurips
|
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
| null |
It is well-known that modern neural networks are vulnerable to adversarial examples. To mitigate this problem, a series of robust learning algorithms have been proposed. However, although the robust training error can be near zero via some methods, all existing algorithms lead to a high robust generalization error. In this paper, we provide a theoretical understanding of this puzzling phenomenon from the perspective of expressive power for deep neural networks. Specifically, for binary classification problems with well-separated data, we show that, for ReLU networks, while mild over-parameterization is sufficient for high robust training accuracy, there exists a constant robust generalization gap unless the size of the neural network is exponential in the data dimension $d$. This result holds even if the data is linear separable (which means achieving standard generalization is easy), and more generally for any parameterized function classes as long as their VC dimension is at most polynomial in the number of parameters. Moreover, we establish an improved upper bound of $\exp({\mathcal{O}}(k))$ for the network size to achieve low robust generalization error when the data lies on a manifold with intrinsic dimension $k$ ($k \ll d$). Nonetheless, we also have a lower bound that grows exponentially with respect to $k$ --- the curse of dimensionality is inevitable. By demonstrating an exponential separation between the network size for achieving low robust training and generalization error, our results reveal that the hardness of robust generalization may stem from the expressive power of practical models.
|
Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, Liwei Wang
| null | null | 2,022 |
neurips
|
Polynomial Neural Fields for Subband Decomposition and Manipulation
| null |
Neural fields have emerged as a new paradigm for representing signals, thanks to their ability to do it compactly while being easy to optimize. In most applications, however, neural fields are treated like a black box, which precludes many signal manipulation tasks. In this paper, we propose a new class of neural fields called basis-encoded polynomial neural fields (PNFs). The key advantage of a PNF is that it can represent a signal as a composition of a number of manipulable and interpretable components without losing the merits of neural fields representation. We develop a general theoretical framework to analyze and design PNFs. We use this framework to design Fourier PNFs, which match state-of-the-art performance in signal representation tasks that use neural fields. In addition, we empirically demonstrate that Fourier PNFs enable signal manipulation applications such as texture transfer and scale-space interpolation. Code is available at https://github.com/stevenygd/PNF.
|
Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas Funkhouser, Bharath Hariharan, Serge Belongie
| null | null | 2,022 |
neurips
|
Energy-Based Contrastive Learning of Visual Representations
| null |
Contrastive learning is a method of learning visual representations by training Deep Neural Networks (DNNs) to increase the similarity between representations of positive pairs (transformations of the same image) and reduce the similarity between representations of negative pairs (transformations of different images). Here we explore Energy-Based Contrastive Learning (EBCLR) that leverages the power of generative learning by combining contrastive learning with Energy-Based Models (EBMs). EBCLR can be theoretically interpreted as learning the joint distribution of positive pairs, and it shows promising results on small and medium-scale datasets such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. Specifically, we find EBCLR demonstrates from $\times 4$ up to $\times 20$ acceleration compared to SimCLR and MoCo v2 in terms of training epochs. Furthermore, in contrast to SimCLR, we observe EBCLR achieves nearly the same performance with $254$ negative pairs (batch size $128$) and $30$ negative pairs (batch size $16$) per positive pair, demonstrating the robustness of EBCLR to small numbers of negative pairs. Hence, EBCLR provides a novel avenue for improving contrastive learning methods that usually require large datasets with a significant number of negative pairs per iteration to achieve reasonable performance on downstream tasks. Code: https://github.com/1202kbs/EBCLR
|
Beomsu Kim, Jong Chul Ye
| null | null | 2,022 |
neurips
|
Divert More Attention to Vision-Language Tracking
| null |
Relying on Transformer for complex visual feature learning, object tracking has witnessed the new standard for state-of-the-arts (SOTAs). However, this advancement accompanies by larger training data and longer training period, making tracking increasingly expensive. In this paper, we demonstrate that the Transformer-reliance is not necessary and the pure ConvNets are still competitive and even better yet more economical and friendly in achieving SOTA tracking. Our solution is to unleash the power of multimodal vision-language (VL) tracking, simply using ConvNets. The essence lies in learning novel unified-adaptive VL representations with our modality mixer (ModaMixer) and asymmetrical ConvNet search. We show that our unified-adaptive VL representation, learned purely with the ConvNets, is a simple yet strong alternative to Transformer visual features, by unbelievably improving a CNN-based Siamese tracker by 14.5% in SUC on challenging LaSOT (50.7%$\rightarrow$65.2%), even outperforming several Transformer-based SOTA trackers. Besides empirical results, we theoretically analyze our approach to evidence its effectiveness. By revealing the potential of VL representation, we expect the community to divert more attention to VL tracking and hope to open more possibilities for future tracking beyond Transformer. Code and models are released at https://github.com/JudasDie/SOTS.
|
Mingzhe Guo, Zhipeng Zhang, Heng Fan, Liping Jing
| null | null | 2,022 |
neurips
|
Optimal Rates for Regularized Conditional Mean Embedding Learning
| null |
We address the consistency of a kernel ridge regression estimate of the conditional mean embedding (CME), which is an embedding of the conditional distribution of $Y$ given $X$ into a target reproducing kernel Hilbert space $\mathcal{H}_Y$. The CME allows us to take conditional expectations of target RKHS functions, and has been employed in nonparametric causal and Bayesian inference.We address the misspecified setting, where the target CME isin the space of Hilbert-Schmidt operators acting from an input interpolation space between $\mathcal{H}_X$ and $L_2$, to $\mathcal{H}_Y$. This space of operators is shown to be isomorphic to a newly defined vector-valued interpolation space. Using this isomorphism, we derive a novel and adaptive statistical learning rate for the empirical CME estimator under the misspecified setting. Our analysis reveals that our rates match the optimal $O(\log n / n)$ rates without assuming $\mathcal{H}_Y$ to be finite dimensional. We further establish a lower bound on the learning rate, which shows that the obtained upper bound is optimal.
|
Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton
| null | null | 2,022 |
neurips
|
Association Graph Learning for Multi-Task Classification with Category Shifts
| null |
In this paper, we focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously. In particular, we tackle a new setting, which is more realistic than currently addressed in the literature, where categories shift from training to test data. Hence, individual tasks do not contain complete training data for the categories in the test set. To generalize to such test data, it is crucial for individual tasks to leverage knowledge from related tasks. To this end, we propose learning an association graph to transfer knowledge among tasks for missing classes. We construct the association graph with nodes representing tasks, classes and instances, and encode the relationships among the nodes in the edges to guide their mutual knowledge transfer. By message passing on the association graph, our model enhances the categorical information of each instance, making it more discriminative. To avoid spurious correlations between task and class nodes in the graph, we introduce an assignment entropy maximization that encourages each class node to balance its edge weights. This enables all tasks to fully utilize the categorical information from related tasks. An extensive evaluation on three general benchmarks and a medical dataset for skin lesion classification reveals that our method consistently performs better than representative baselines.
|
Jiayi Shen, Zehao Xiao, Xiantong Zhen, Cees Snoek, Marcel Worring
| null | null | 2,022 |
neurips
|
Challenging Common Assumptions in Convex Reinforcement Learning
| null |
The classic Reinforcement Learning (RL) formulation concerns the maximization of a scalar reward function. More recently, convex RL has been introduced to extend the RL formulation to all the objectives that are convex functions of the state distribution induced by a policy. Notably, convex RL covers several relevant applications that do not fall into the scalar formulation, including imitation learning, risk-averse RL, and pure exploration. In classic RL, it is common to optimize an infinite trials objective, which accounts for the state distribution instead of the empirical state visitation frequencies, even though the actual number of trajectories is always finite in practice. This is theoretically sound since the infinite trials and finite trials objectives are equivalent and thus lead to the same optimal policy. In this paper, we show that this hidden assumption does not hold in convex RL. In particular, we prove that erroneously optimizing the infinite trials objective in place of the actual finite trials one, as it is usually done, can lead to a significant approximation error. Since the finite trials setting is the default in both simulated and real-world RL, we believe shedding light on this issue will lead to better approaches and methodologies for convex RL, impacting relevant research areas such as imitation learning, risk-averse RL, and pure exploration among others.
|
Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, Marcello Restelli
| null | null | 2,022 |
neurips
|
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
| null |
We consider the problem of model compression for deep neural networks (DNNs) in the challenging one-shot/post-training setting, in which we are given an accurate trained model, and must compress it without any retraining, based only on a small amount of calibration input data. This problem has become popular in view of the emerging software and hardware support for executing models compressed via pruning and/or quantization with speedup, and well-performing solutions have been proposed independently for both compression approaches.In this paper, we introduce a new compression framework which covers both weight pruning and quantization in a unified setting, is time- and space-efficient, and considerably improves upon the practical performance of existing post-training methods. At the technical level, our approach is based on an exact and efficient realization of the classical Optimal Brain Surgeon (OBS) framework of [LeCun, Denker, and Solla, 1990] extended to also cover weight quantization at the scale of modern DNNs. From the practical perspective, our experimental results show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods, and that it can enable the accurate compound application of both pruning and quantization in a post-training setting.
|
Elias Frantar, Dan Alistarh
| null | null | 2,022 |
neurips
|
Delving into Sequential Patches for Deepfake Detection
| null |
Recent advances in face forgery techniques produce nearly visually untraceable deepfake videos, which could be leveraged with malicious intentions. As a result, researchers have been devoted to deepfake detection. Previous studies have identified the importance of local low-level cues and temporal information in pursuit to generalize well across deepfake methods, however, they still suffer from robustness problem against post-processings. In this work, we propose the Local- & Temporal-aware Transformer-based Deepfake Detection (LTTD) framework, which adopts a local-to-global learning protocol with a particular focus on the valuable temporal information within local sequences. Specifically, we propose a Local Sequence Transformer (LST), which models the temporal consistency on sequences of restricted spatial regions, where low-level information is hierarchically enhanced with shallow layers of learned 3D filters. Based on the local temporal embeddings, we then achieve the final classification in a global contrastive way. Extensive experiments on popular datasets validate that our approach effectively spots local forgery cues and achieves state-of-the-art performance.
|
Jiazhi Guan, Hang Zhou, Zhibin Hong, Errui Ding, Jingdong Wang, Chengbin Quan, Youjian Zhao
| null | null | 2,022 |
neurips
|
Rethinking Image Restoration for Object Detection
| null |
Although image restoration has achieved significant progress, its potential to assist object detectors in adverse imaging conditions lacks enough attention. It is reported that the existing image restoration methods cannot improve the object detector performance and sometimes even reduce the detection performance. To address the issue, we propose a targeted adversarial attack in the restoration procedure to boost object detection performance after restoration. Specifically, we present an ADAM-like adversarial attack to generate pseudo ground truth for restoration training. Resultant restored images are close to original sharp images, and at the same time, lead to better results of object detection. We conduct extensive experiments in image dehazing and low light enhancement and show the superiority of our method over conventional training and other domain adaptation and multi-task methods. The proposed pipeline can be applied to all restoration methods and detectors in both one- and two-stage.
|
Shangquan Sun, Wenqi Ren, Tao Wang, Xiaochun Cao
| null | null | 2,022 |
neurips
|
A Unified Model for Multi-class Anomaly Detection
| null |
Despite the rapid advance of unsupervised anomaly detection, existing methods require to train separate models for different objects. In this work, we present UniAD that accomplishes anomaly detection for multiple classes with a unified framework. Under such a challenging setting, popular reconstruction networks may fall into an "identical shortcut", where both normal and anomalous samples can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we make three improvements. First, we revisit the formulations of fully-connected layer, convolutional layer, as well as attention layer, and confirm the important role of query embedding (i.e., within attention layer) in preventing the network from learning the shortcut. We therefore come up with a layer-wise query decoder to help model the multi-class distribution. Second, we employ a neighbor masked attention module to further avoid the information leak from the input feature to the reconstructed output feature. Third, we propose a feature jittering strategy that urges the model to recover the correct message even with noisy inputs. We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass the state-of-the-art alternatives by a sufficiently large margin. For example, when learning a unified model for 15 categories in MVTec-AD, we surpass the second competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and anomaly localization (from 89.5% to 96.8%). Code is available at https://github.com/zhiyuanyou/UniAD.
|
Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, Xinyi Le
| null | null | 2,022 |
neurips
|
Constrained GPI for Zero-Shot Transfer in Reinforcement Learning
| null |
For zero-shot transfer in reinforcement learning where the reward function varies between different tasks, the successor features framework has been one of the popular approaches. However, in this framework, the transfer to new target tasks with generalized policy improvement (GPI) relies on only the source successor features [5] or additional successor features obtained from the function approximators’ generalization to novel inputs [11]. The goal of this work is to improve the transfer by more tightly bounding the value approximation errors of successor features on the new target tasks. Given a set of source tasks with their successor features, we present lower and upper bounds on the optimal values for novel task vectors that are expressible as linear combinations of source task vectors. Based on the bounds, we propose constrained GPI as a simple test-time approach that can improve transfer by constraining action-value approximation errors on new target tasks. Through experiments in the Scavenger and Reacher environment with state observations as well as the DeepMind Lab environment with visual observations, we show that the proposed constrained GPI significantly outperforms the prior GPI’s transfer performance. Our code and additional information are available at https://jaekyeom.github.io/projects/cgpi/.
|
Jaekyeom Kim, Seohong Park, Gunhee Kim
| null | null | 2,022 |
neurips
|
On the detrimental effect of invariances in the likelihood for variational inference
| null |
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
|
Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang (Bernie) Wang, Jan Gasthaus
| null | null | 2,022 |
neurips
|
ComGAN: Unsupervised Disentanglement and Segmentation via Image Composition
| null |
We propose ComGAN, a simple unsupervised generative model, which simultaneously generates realistic images and high semantic masks under an adversarial loss and a binary regularization. In this paper, we first investigate two kinds of trivial solutions in the compositional generation process, and demonstrate their source is vanishing gradients on the mask. Then, we solve trivial solutions from the perspective of architecture. Furthermore, we redesign two fully unsupervised modules based on ComGAN (DS-ComGAN), where the disentanglement module associates the foreground, background and mask with three independent variables, and the segmentation module learns object segmentation. Experimental results show that (i) ComGAN's network architecture effectively avoids trivial solutions without any supervised information and regularization; (ii) DS-ComGAN achieves remarkable results and outperforms existing semi-supervised and weakly supervised methods by a large margin in both the image disentanglement and unsupervised segmentation tasks. It implies that the redesign of ComGAN is a possible direction for future unsupervised work.
|
Rui Ding, Kehua Guo, Xiangyuan Zhu, Zheng Wu, Liwei Wang
| null | null | 2,022 |
neurips
|
Precise Learning Curves and Higher-Order Scalings for Dot-product Kernel Regression
| null |
As modern machine learning models continue to advance the computational frontier, it has become increasingly important to develop precise estimates for expected performance improvements under different model and data scaling regimes. Currently, theoretical understanding of the learning curves that characterize how the prediction error depends on the number of samples is restricted to either large-sample asymptotics ($m\to\infty$) or, for certain simple data distributions, to the high-dimensional asymptotics in which the number of samples scales linearly with the dimension ($m\propto d$). There is a wide gulf between these two regimes, including all higher-order scaling relations $m\propto d^r$, which are the subject of the present paper. We focus on the problem of kernel ridge regression for dot-product kernels and present precise formulas for the mean of the test error, bias, and variance, for data drawn uniformly from the sphere with isotropic random labels in the $r$th-order asymptotic scaling regime $m\to\infty$ with $m/d^r$ held constant. We observe a peak in the learning curve whenever $m \approx d^r/r!$ for any integer $r$, leading to multiple sample-wise descent and nontrivial behavior at multiple scales. We include a colab notebook that reproduces the essential results of the paper.
|
Lechao Xiao, Hong Hu, Theodor Misiakiewicz, Yue Lu, Jeffrey Pennington
| null | null | 2,022 |
neurips
|
Self-Supervised Learning Through Efference Copies
| null |
Self-supervised learning (SSL) methods aim to exploit the abundance of unlabelled data for machine learning (ML), however the underlying principles are often method-specific. An SSL framework derived from biological first principles of embodied learning could unify the various SSL methods, help elucidate learning in the brain, and possibly improve ML. SSL commonly transforms each training datapoint into a pair of views, uses the knowledge of this pairing as a positive (i.e. non-contrastive) self-supervisory sign, and potentially opposes it to unrelated, (i.e. contrastive) negative examples. Here, we show that this type of self-supervision is an incomplete implementation of a concept from neuroscience, the Efference Copy (EC). Specifically, the brain also transforms the environment through efference, i.e. motor commands, however it sends to itself an EC of the full commands, i.e. more than a mere SSL sign. In addition, its action representations are likely egocentric. From such a principled foundation we formally recover and extend SSL methods such as SimCLR, BYOL, and ReLIC under a common theoretical framework, i.e. Self-supervision Through Efference Copies (S-TEC). Empirically, S-TEC restructures meaningfully the within- and between-class representations. This manifests as improvement in recent strong SSL baselines in image classification, segmentation, object detection, and in audio. These results hypothesize a testable positive influence from the brain's motor outputs onto its sensory representations.
|
Franz Scherr, Qinghai Guo, Timoleon Moraitis
| null | null | 2,022 |
neurips
|
UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification
| null |
Machine Learning (ML) research has focused on maximizing the accuracy of predictive tasks. ML models, however, are increasingly more complex, resource intensive, and costlier to deploy in resource-constrained environments. These issues are exacerbated for prediction tasks with sequential classification on progressively transitioned stages with “happens-before” relation between them.We argue that it is possible to “unfold” a monolithic single multi-class classifier, typically trained for all stages using all data, into a series of single-stage classifiers. Each single- stage classifier can be cascaded gradually from cheaper to more expensive binary classifiers that are trained using only the necessary data modalities or features required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic 2D prediction pipeline for multi-stage classification that enables (1) navigation of the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML achieves orders of magnitude better cost in clinical settings, while detecting multi- stage disease development in real time. It achieves within 0.1% accuracy from the highest-performing multi-class baseline, while saving close to 20X on spatio- temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also show that UnfoldML generalizes to image classification, where it can predict different level of labels (from coarse to fine) given different level of abstractions of a image, saving close to 5X cost with as little as 0.4% accuracy reduction.
|
Yanbo Xu, Alind Khare, Glenn Matlin, Monish Ramadoss, Rishikesan Kamaleswaran, Chao Zhang, Alexey Tumanov
| null | null | 2,022 |
neurips
|
Generative Status Estimation and Information Decoupling for Image Rain Removal
| null |
Image rain removal requires the accurate separation between the pixels of the rain streaks and object textures. But the confusing appearances of rains and objects lead to the misunderstanding of pixels, thus remaining the rain streaks or missing the object details in the result. In this paper, we propose SEIDNet equipped with the generative Status Estimation and Information Decoupling for rain removal. In the status estimation, we embed the pixel-wise statuses into the status space, where each status indicates a pixel of the rain or object. The status space allows sampling multiple statuses for a pixel, thus capturing the confusing rain or object. In the information decoupling, we respect the pixel-wise statuses, decoupling the appearance information of rain and object from the pixel. Based on the decoupled information, we construct the kernel space, where multiple kernels are sampled for the pixel to remove the rain and recover the object appearance. We evaluate SEIDNet on the public datasets, achieving state-of-the-art performances of image rain removal. The experimental results also demonstrate the generalization of SEIDNet, which can be easily extended to achieve state-of-the-art performances on other image restoration tasks (e.g., snow, haze, and shadow removal).
|
Di Lin, Xin WANG, Jia Shen, Renjie Zhang, Ruonan Liu, Miaohui Wang, Wuyuan Xie, Qing Guo, Ping Li
| null | null | 2,022 |
neurips
|
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
| null |
We present VAEL, a neuro-symbolic generative model integrating variational autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L) programming. Besides standard latent subsymbolic variables, our model exploits a probabilistic logic program to define a further structured representation, which is used for logical reasoning. The entire process is end-to-end differentiable. Once trained, VAEL can solve new unseen generation tasks by (i) leveraging the previously acquired knowledge encoded in the neural component and (ii) exploiting new logical programs on the structured latent space. Our experiments provide support on the benefits of this neuro-symbolic integration both in terms of task generalization and data efficiency. To the best of our knowledge, this work is the first to propose a general-purpose end-to-end framework integrating probabilistic logic programming into a deep generative model.
|
Eleonora Misino, Giuseppe Marra, Emanuele Sansone
| null | null | 2,022 |
neurips
|
The alignment property of SGD noise and how it helps select flat minima: A stability analysis
| null |
The phenomenon that stochastic gradient descent (SGD) favors flat minima has played a critical role in understanding the implicit regularization of SGD. In this paper, we provide an explanation of this striking phenomenon by relating the particular noise structure of SGD to its \emph{linear stability} (Wu et al., 2018). Specifically, we consider training over-parameterized models with square loss. We prove that if a global minimum $\theta^*$ is linearly stable for SGD, then it must satisfy $\|H(\theta^*)\|_F\leq O(\sqrt{B}/\eta)$, where $\|H(\theta^*)\|_F, B,\eta$ denote the Frobenius norm of Hessian at $\theta^*$, batch size, and learning rate, respectively. Otherwise, SGD will escape from that minimum \emph{exponentially} fast. Hence, for minima accessible to SGD, the sharpness---as measured by the Frobenius norm of the Hessian---is bounded \emph{independently} of the model size and sample size. The key to obtaining these results is exploiting the particular structure of SGD noise: The noise concentrates in sharp directions of local landscape and the magnitude is proportional to loss value. This alignment property of SGD noise provably holds for linear networks and random feature models (RFMs), and is empirically verified for nonlinear networks. Moreover, the validity and practical relevance of our theoretical findings are also justified by extensive experiments on CIFAR-10 dataset.
|
Lei Wu, Mingze Wang, Weijie Su
| null | null | 2,022 |
neurips
|
Sparse Winning Tickets are Data-Efficient Image Recognizers
| null |
Improving the performance of deep networks in data-limited regimes has warranted much attention. In this work, we empirically show that “winning tickets” (small sub-networks) obtained via magnitude pruning based on the lottery ticket hypothesis, apart from being sparse are also effective recognizers in data-limited regimes. Based on extensive experiments, we find that in low data regimes (datasets of 50-100 examples per class), sparse winning tickets substantially outperform the original dense networks. This approach, when combined with augmentations or fine-tuning from a self-supervised backbone network, shows further improvements in performance by as much as 16% (absolute) on low-sample datasets and long-tailed classification. Further, sparse winning tickets are more robust to synthetic noise and distribution shifts compared to their dense counterparts. Our analysis of winning tickets on small datasets indicates that, though sparse, the networks retain density in the initial layers and their representations are more generalizable. Code is available at https://github.com/VITA-Group/DataEfficientLTH.
|
Mukund Varma T, Xuxi Chen, Zhenyu Zhang, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang
| null | null | 2,022 |
neurips
|
Learning with little mixing
| null |
We study square loss in a realizable time-series framework with martingale difference noise. Our main result is a fast rate excess risk bound which shows that whenever a trajectory hypercontractivity condition holds, the risk of the least-squares estimator on dependent data matches the iid rate order-wise after a burn-in time. In comparison, many existing results in learning from dependent data have rates where the effective sample size is deflated by a factor of the mixing-time of the underlying process, even after the burn-in time. Furthermore, our results allow the covariate process to exhibit long range correlations which are substantially weaker than geometric ergodicity. We call this phenomenon learning with little mixing, and present several examples for when it occurs: bounded function classes for which the $L^2$ and $L^{2+\epsilon}$ norms are equivalent, finite state irreducible and aperiodic Markov chains, various parametric models, and a broad family of infinite dimensional $\ell^2(\mathbb{N})$ ellipsoids. By instantiating our main result to system identification of nonlinear dynamics with generalized linear model transitions, we obtain a nearly minimax optimal excess risk bound after only a polynomial burn-in time.
|
Ingvar Ziemann, Stephen Tu
| null | null | 2,022 |
neurips
|
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
| null |
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning. Despite their extraordinary predictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs, rendering these models vulnerable to graph structural attacks and with limited capacity in generalizing to graphs of varied homophily levels. Although many methods have been proposed to improve the robustness of GNN models, most of these techniques are restricted to the spatial domain and employ complicated defense mechanisms, such as learning new graph structures or calculating edge attentions. In this paper, we study the problem of designing simple and robust GNN models in the spectral domain. We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter. Based on our theoretical analysis in both spatial and spectral domains, we demonstrate that EvenNet outperforms full-order models in generalizing across homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors improves the robustness of GNNs. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet outperforms existing defense models against structural attacks without introducing additional computational costs and maintains competitiveness in traditional node classification tasks on homophilic and heterophilic graphs.
|
Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, Zhewei Wei
| null | null | 2,022 |
neurips
|
Differentiable Analog Quantum Computing for Optimization and Control
| null |
We formulate the first differentiable analog quantum computing framework with specific parameterization design at the analog signal (pulse) level to better exploit near-term quantum devices via variational methods. We further propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling, which leads to a quantum stochastic gradient descent algorithm for scalable gradient-based training in our framework. Applying our framework to quantum optimization and control, we observe a significant advantage of differentiable analog quantum computing against SOTAs based on parameterized digital quantum circuits by {\em orders of magnitude}.
|
Jiaqi Leng, Yuxiang Peng, Yi-Ling Qiao, Ming Lin, Xiaodi Wu
| null | null | 2,022 |
neurips
|
Promising or Elusive? Unsupervised Object Segmentation from Real-world Single Images
| null |
In this paper, we study the problem of unsupervised object segmentation from single images. We do not introduce a new algorithm, but systematically investigate the effectiveness of existing unsupervised models on challenging real-world images. We firstly introduce four complexity factors to quantitatively measure the distributions of object- and scene-level biases in appearance and geometry for datasets with human annotations. With the aid of these factors, we empirically find that, not surprisingly, existing unsupervised models catastrophically fail to segment generic objects in real-world images, although they can easily achieve excellent performance on numerous simple synthetic datasets, due to the vast gap in objectness biases between synthetic and real images. By conducting extensive experiments on multiple groups of ablated real-world datasets, we ultimately find that the key factors underlying the colossal failure of existing unsupervised models on real-world images are the challenging distributions of object- and scene-level biases in appearance and geometry. Because of this, the inductive biases introduced in existing unsupervised models can hardly capture the diverse object distributions. Our research results suggest that future work should exploit more explicit objectness biases in the network design.
|
Yafei YANG, Bo Yang
| null | null | 2,022 |
neurips
|
Efficiently Factorizing Boolean Matrices using Proximal Gradient Descent
| null |
Addressing the interpretability problem of NMF on Boolean data, Boolean Matrix Factorization (BMF) uses Boolean algebra to decompose the input into low-rank Boolean factor matrices. These matrices are highly interpretable and very useful in practice, but they come at the high computational cost of solving an NP-hard combinatorial optimization problem. To reduce the computational burden, we propose to relax BMF continuously using a novel elastic-binary regularizer, from which we derive a proximal gradient algorithm. Through an extensive set of experiments, we demonstrate that our method works well in practice: On synthetic data, we show that it converges quickly, recovers the ground truth precisely, and estimates the simulated rank exactly. On real-world data, we improve upon the state of the art in recall, loss, and runtime, and a case study from the medical domain confirms that our results are easily interpretable and semantically meaningful.
|
Sebastian Dalleiger, Jilles Vreeken
| null | null | 2,022 |
neurips
|
Learning to Find Proofs and Theorems by Learning to Refine Search Strategies: The Case of Loop Invariant Synthesis
| null |
We propose a new approach to automated theorem proving where an AlphaZero-style agent is self-training to refine a generic high-level expert strategy expressed as a nondeterministic program. An analogous teacher agent is self-training to generate tasks of suitable relevance and difficulty for the learner. This allows leveraging minimal amounts of domain knowledge to tackle problems for which training data is unavailable or hard to synthesize. As a specific illustration, we consider loop invariant synthesis for imperative programs and use neural networks to refine both the teacher and solver strategies.
|
Jonathan Laurent, André Platzer
| null | null | 2,022 |
neurips
|
Online Learning and Pricing for Network Revenue Management with Reusable Resources
| null |
We consider a price-based network revenue management problem with multiple products and multiple reusable resources. Each randomly arriving customer requests a product (service) that needs to occupy a sequence of reusable resources (servers). We adopt an incomplete information setting where the firm does not know the price-demand function for each product and the goal is to dynamically set prices of all products to maximize the total expected revenue of serving customers. We propose novel batched bandit learning algorithms for finding near-optimal pricing policies, and show that they admit a near-optimal cumulative regret bound of $\tilde{O}(J\sqrt{XT})$, where $J$, $X$, and $T$ are the numbers of products, candidate prices, and service periods, respectively. As part of our regret analysis, we develop the first finite-time mixing time analysis of an open network queueing system (i.e., the celebrated Jackson Network), which could be of independent interest. Our numerical studies show that the proposed approaches perform consistently well.
|
Huiwen Jia, Cong Shi, Siqian Shen
| null | null | 2,022 |
neurips
|
Learning from Future: A Novel Self-Training Framework for Semantic Segmentation
| null |
Self-training has shown great potential in semi-supervised learning. Its core idea is to use the model learned on labeled data to generate pseudo-labels for unlabeled samples, and in turn teach itself. To obtain valid supervision, active attempts typically employ a momentum teacher for pseudo-label prediction yet observe the confirmation bias issue, where the incorrect predictions may provide wrong supervision signals and get accumulated in the training process. The primary cause of such a drawback is that the prevailing self-training framework acts as guiding the current state with previous knowledge because the teacher is updated with the past student only. To alleviate this problem, we propose a novel self-training strategy, which allows the model to learn from the future. Concretely, at each training step, we first virtually optimize the student (i.e., caching the gradients without applying them to the model weights), then update the teacher with the virtual future student, and finally ask the teacher to produce pseudo-labels for the current student as the guidance. In this way, we manage to improve the quality of pseudo-labels and thus boost the performance. We also develop two variants of our future-self-training (FST) framework through peeping at the future both deeply (FST-D) and widely (FST-W). Taking the tasks of unsupervised domain adaptive semantic segmentation and semi-supervised semantic segmentation as the instances, we experimentally demonstrate the effectiveness and superiority of our approach under a wide range of settings. Code is available at https://github.com/usr922/FST.
|
Ye Du, Yujun Shen, Haochen Wang, Jingjing Fei, Wei Li, Liwei Wu, Rui Zhao, Zehua Fu, Qingjie LIU
| null | null | 2,022 |
neurips
|
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
| null |
In this paper, we investigate an online prediction strategy named as Discounted-Normal-Predictor [Kapralov and Panigrahy, 2010] for smoothed online convex optimization (SOCO), in which the learner needs to minimize not only the hitting cost but also the switching cost. In the setting of learning with expert advice, Daniely and Mansour [2019] demonstrate that Discounted-Normal-Predictor can be utilized to yield nearly optimal regret bounds over any interval, even in the presence of switching costs. Inspired by their results, we develop a simple algorithm for SOCO: Combining online gradient descent (OGD) with different step sizes sequentially by Discounted-Normal-Predictor. Despite its simplicity, we prove that it is able to minimize the adaptive regret with switching cost, i.e., attaining nearly optimal regret with switching cost on every interval. By exploiting the theoretical guarantee of OGD for dynamic regret, we further show that the proposed algorithm can minimize the dynamic regret with switching cost in every interval.
|
Lijun Zhang, Wei Jiang, Jinfeng Yi, Tianbao Yang
| null | null | 2,022 |
neurips
|
A Simple and Provably Efficient Algorithm for Asynchronous Federated Contextual Linear Bandits
| null |
We study federated contextual linear bandits, where $M$ agents cooperate with each other to solve a global contextual linear bandit problem with the help of a central server. We consider the asynchronous setting, where all agents work independently and the communication between one agent and the server will not trigger other agents' communication. We propose a simple algorithm named FedLinUCB based on the principle of optimism. We prove that the regret of FedLinUCB is bounded by $\widetilde{\mathcal{O}}(d\sqrt{\sum_{m=1}^M T_m})$ and the communication complexity is $\widetilde{O}(dM^2)$, where $d$ is the dimension of the contextual vector and $T_m$ is the total number of interactions with the environment by agent $m$. To the best of our knowledge, this is the first provably efficient algorithm that allows fully asynchronous communication for federated linear bandits, while achieving the same regret guarantee as in the single-agent setting.
|
Jiafan He, Tianhao Wang, Yifei Min, Quanquan Gu
| null | null | 2,022 |
neurips
|
Discovering and Overcoming Limitations of Noise-engineered Data-free Knowledge Distillation
| null |
Distillation in neural networks using only the samples randomly drawn from a Gaussian distribution is possibly the most straightforward solution one can think of for the complex problem of knowledge transfer from one network (teacher) to the other (student). If successfully done, it can eliminate the requirement of teacher's training data for knowledge distillation and avoid often arising privacy concerns in sensitive applications such as healthcare. There have been some recent attempts at Gaussian noise-based data-free knowledge distillation, however, none of them offer a consistent or reliable solution. We identify the shift in the distribution of hidden layer activation as the key limiting factor, which occurs when Gaussian noise is fed to the teacher network instead of the accustomed training data. We propose a simple solution to mitigate this shift and show that for vision tasks, such as classification, it is possible to achieve a performance close to the teacher by just using the samples randomly drawn from a Gaussian distribution. We validate our approach on CIFAR10, CIFAR100, SVHN, and Food101 datasets. We further show that in situations of sparsely available original data for distillation, the proposed Gaussian noise-based knowledge distillation method can outperform the distillation using the available data with a large margin. Our work lays the foundation for further research in the direction of noise-engineered knowledge distillation using random samples.
|
Piyush Raikwar, Deepak Mishra
| null | null | 2,022 |
neurips
|
Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps
| null |
Multi-agent collaborative perception could significantly upgrade the perception performance by enabling agents to share complementary information with each other through communication. It inevitably results in a fundamental trade-off between perception performance and communication bandwidth. To tackle this bottleneck issue, we propose a spatial confidence map, which reflects the spatial heterogeneity of perceptual information. It empowers agents to only share spatially sparse, yet perceptually critical information, contributing to where to communicate. Based on this novel spatial confidence map, we propose Where2comm, a communication-efficient collaborative perception framework. Where2comm has two distinct advantages: i) it considers pragmatic compression and uses less communication to achieve higher perception performance by focusing on perceptually critical areas; and ii) it can handle varying communication bandwidth by dynamically adjusting spatial areas involved in communication. To evaluate Where2comm, we consider 3D object detection in both real-world and simulation scenarios with two modalities (camera/LiDAR) and two agent types (cars/drones) on four datasets: OPV2V, V2X-Sim, DAIR-V2X, and our original CoPerception-UAVs. Where2comm consistently outperforms previous methods; for example, it achieves more than $100,000 \times$ lower communication volume and still outperforms DiscoNet and V2X-ViT on OPV2V. Our code is available at~\url{https://github.com/MediaBrain-SJTU/where2comm}.
|
Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, Siheng Chen
| null | null | 2,022 |
neurips
|
Few-Shot Fast-Adaptive Anomaly Detection
| null |
The ability to detect anomaly has long been recognized as an inherent human ability, yet to date, practical AI solutions to mimic such capability have been lacking. This lack of progress can be attributed to several factors. To begin with, the distribution of ``abnormalities'' is intractable. Anything outside of a given normal population is by definition an anomaly. This explains why a large volume of work in this area has been dedicated to modeling the normal distribution of a given task followed by detecting deviations from it. This direction is however unsatisfying as it would require modeling the normal distribution of every task that comes along, which includes tedious data collection. In this paper, we report our work aiming to handle these issues. To deal with the intractability of abnormal distribution, we leverage Energy Based Model (EBM). EBMs learn to associates low energies to correct values and higher energies to incorrect values. At its core, the EBM employs Langevin Dynamics (LD) in generating these incorrect samples based on an iterative optimization procedure, alleviating the intractable problem of modeling the world of anomalies. Then, in order to avoid training an anomaly detector for every task, we utilize an adaptive sparse coding layer. Our intention is to design a plug and play feature that can be used to quickly update what is normal during inference time. Lastly, to avoid tedious data collection, this mentioned update of the sparse coding layer needs to be achievable with just a few shots. Here, we employ a meta learning scheme that simulates such a few shot setting during training. We support our findings with strong empirical evidence.
|
Ze Wang, Yipin Zhou, Rui Wang, Tsung-Yu Lin, Ashish Shah, Ser Nam Lim
| null | null | 2,022 |
neurips
|
Your Out-of-Distribution Detection Method is Not Robust!
| null |
Out-of-distribution (OOD) detection has recently gained substantial attention due to the importance of identifying out-of-domain samples in reliability and safety. Although OOD detection methods have advanced by a great deal, they are still susceptible to adversarial examples, which is a violation of their purpose. To mitigate this issue, several defenses have recently been proposed. Nevertheless, these efforts remained ineffective, as their evaluations are based on either small perturbation sizes, or weak attacks. In this work, we re-examine these defenses against an end-to-end PGD attack on in/out data with larger perturbation sizes, e.g. up to commonly used $\epsilon=8/255$ for the CIFAR-10 dataset. Surprisingly, almost all of these defenses perform worse than a random detection under the adversarial setting. Next, we aim to provide a robust OOD detection method. In an ideal defense, the training should expose the model to almost all possible adversarial perturbations, which can be achieved through adversarial training. That is, such training perturbations should based on both in- and out-of-distribution samples. Therefore, unlike OOD detection in the standard setting, access to OOD, as well as in-distribution, samples sounds necessary in the adversarial training setup. These tips lead us to adopt generative OOD detection methods, such as OpenGAN, as a baseline. We subsequently propose the Adversarially Trained Discriminator (ATD), which utilizes a pre-trained robust model to extract robust features, and a generator model to create OOD samples. We noted that, for the sake of training stability, in the adversarial training of the discriminator, one should attack real in-distribution as well as real outliers, but not generated outliers. Using ATD with CIFAR-10 and CIFAR-100 as the in-distribution data, we could significantly outperform all previous methods in the robust AUROC while maintaining high standard AUROC and classification accuracy. The code repository is available at https://github.com/rohban-lab/ATD.
|
Mohammad Azizmalayeri, Arshia Soltani Moakhar, Arman Zarei, Reihaneh Zohrabi, Mohammad Manzuri, Mohammad Hossein Rohban
| null | null | 2,022 |
neurips
|
Exploitability Minimization in Games and Beyond
| null |
Pseudo-games are a natural and well-known generalization of normal-form games, in which the actions taken by each player affect not only the other players' payoffs, as in games, but also the other players' strategy sets. The solution concept par excellence for pseudo-games is the generalized Nash equilibrium (GNE), i.e., a strategy profile at which each player's strategy is feasible and no player can improve their payoffs by unilaterally deviating to another strategy in the strategy set determined by the other players' strategies. The computation of GNE in pseudo-games has long been a problem of interest, due to applications in a wide variety of fields, from environmental protection to logistics to telecommunications. Although computing GNE is PPAD-hard in general, it is still of interest to try to compute them in restricted classes of pseudo-games. One approach is to search for a strategy profile that minimizes exploitability, i.e., the sum of the regrets across all players. As exploitability is nondifferentiable in general, developing efficient first-order methods that minimize it might not seem possible at first glance. We observe, however, that the exploitability-minimization problem can be recast as a min-max optimization problem, and thereby obtain polynomial-time first-order methods to compute a refinement of GNE, namely the variational equilibria (VE), in convex-concave cumulative regret pseudo-games with jointly convex constraints. More generally, we also show that our methods find the stationary points of the exploitability in polynomial time in Lipschitz-smooth pseudo-games with jointly convex constraints. Finally, we demonstrate in experiments that our methods not only outperform known algorithms, but that even in pseudo-games where they are not guaranteed to converge to a GNE, they may do so nonetheless, with proper initialization.
|
Denizalp Goktas, Amy Greenwald
| null | null | 2,022 |
neurips
|
One for All: Simultaneous Metric and Preference Learning over Multiple Users
| null |
This paper investigates simultaneous preference and metric learning from a crowd of respondents. A set of items represented by $d$-dimensional feature vectors and paired comparisons of the form ``item $i$ is preferable to item $j$'' made by each user is given. Our model jointly learns a distance metric that characterizes the crowd's general measure of item similarities along with a latent ideal point for each user reflecting their individual preferences. This model has the flexibility to capture individual preferences, while enjoying a metric learning sample cost that is amortized over the crowd. We first study this problem in a noiseless, continuous response setting (i.e., responses equal to differences of item distances) to understand the fundamental limits of learning. Next, we establish prediction error guarantees for noisy, binary measurements such as may be collected from human respondents, and show how the sample complexity improves when the underlying metric is low-rank. Finally, we establish recovery guarantees under assumptions on the response distribution. We demonstrate the performance of our model on both simulated data and on a dataset of color preference judgements across a large number of users.
|
Gregory Canal, Blake Mason, Ramya Korlakai Vinayak, Robert Nowak
| null | null | 2,022 |
neurips
|
On Infinite Separations Between Simple and Optimal Mechanisms
| null |
We consider a revenue-maximizing seller with $k$ heterogeneous items for sale to a single additive buyer, whose values are drawn from a known, possibly correlated prior $\mathcal{D}$. It is known that there exist priors $\mathcal{D}$ such that simple mechanisms --- those with bounded menu complexity --- extract an arbitrarily small fraction of the optimal revenue~(Briest et al. 2015, Hart and Nisan 2019). This paper considers the opposite direction: given a correlated distribution $\mathcal{D}$ witnessing an infinite separation between simple and optimal mechanisms, what can be said about $\mathcal{D}$?\citet{hart2019selling} provides a framework for constructing such $\mathcal{D}$: it takes as input a sequence of $k$-dimensional vectors satisfying some geometric property, and produces a $\mathcal{D}$ witnessing an infinite gap. Our first main result establishes that this framework is without loss: every $\mathcal{D}$ witnessing an infinite separation could have resulted from this framework. An earlier version of their work provided a more streamlined framework (Hart and Nisan 2013). Our second main result establishes that this restrictive framework is not tight. That is, we provide an instance $\mathcal{D}$ witnessing an infinite gap, but which provably could not have resulted from the restrictive framework. As a corollary, we discover a new kind of mechanism which can witness these infinite separations on instances where the previous ``aligned'' mechanisms do not.
|
Alexandros Psomas, Ariel Schvartzman Cohenca, S. Weinberg
| null | null | 2,022 |
neurips
|
How Powerful are K-hop Message Passing Graph Neural Networks
| null |
The most popular design paradigm for Graph Neural Networks (GNNs) is 1-hop message passing---aggregating information from 1-hop neighbors repeatedly. However, the expressive power of 1-hop message passing is bounded by the Weisfeiler-Lehman (1-WL) test. Recently, researchers extended 1-hop message passing to $K$-hop message passing by aggregating information from $K$-hop neighbors of nodes simultaneously. However, there is no work on analyzing the expressive power of $K$-hop message passing. In this work, we theoretically characterize the expressive power of $K$-hop message passing. Specifically, we first formally differentiate two different kernels of $K$-hop message passing which are often misused in previous works. We then characterize the expressive power of $K$-hop message passing by showing that it is more powerful than 1-WL and can distinguish almost all regular graphs. Despite the higher expressive power, we show that $K$-hop message passing still cannot distinguish some simple regular graphs and its expressive power is bounded by 3-WL. To further enhance its expressive power, we introduce a KP-GNN framework, which improves $K$-hop message passing by leveraging the peripheral subgraph information in each hop. We show that KP-GNN can distinguish many distance regular graphs which could not be distinguished by previous distance encoding or 3-WL methods. Experimental results verify the expressive power and effectiveness of KP-GNN. KP-GNN achieves competitive results across all benchmark datasets.
|
Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang
| null | null | 2,022 |
neurips
|
Dynamic Tensor Product Regression
| null |
In this work, we initiate the study of \emph{Dynamic Tensor Product Regression}. One has matrices $A_1\in \mathbb{R}^{n_1\times d_1},\ldots,A_q\in \mathbb{R}^{n_q\times d_q}$ and a label vector $b\in \mathbb{R}^{n_1\ldots n_q}$, and the goal is to solve the regression problem with the design matrix $A$ being the tensor product of the matrices $A_1, A_2, \dots, A_q$ i.e. $\min_{x\in \mathbb{R}^{d_1\ldots d_q}}~\|(A_1\otimes \ldots\otimes A_q)x-b\|_2$. At each time step, one matrix $A_i$ receives a sparse change, and the goal is to maintain a sketch of the tensor product $A_1\otimes\ldots \otimes A_q$ so that the regression solution can be updated quickly. Recomputing the solution from scratch for each round is extremely expensive so it is important to develop algorithms which can quickly update the solution with the new design matrix. Our main result is a dynamic tree data structure where any update to a single matrix can be propagated quickly throughout the tree. We show that our data structure can be used to solve dynamic versions of not only Tensor Product Regression, but also Tensor Product Spline regression (which is a generalization of ridge regression) and for maintaining Low Rank Approximations for the tensor product.
|
Aravind Reddy, Zhao Song, Lichen Zhang
| null | null | 2,022 |
neurips
|
NaturalProver: Grounded Mathematical Proof Generation with Language Models
| null |
Theorem proving in natural mathematical language – the mixture of symbolic and natural language used by humans – plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.
|
Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi
| null | null | 2,022 |
neurips
|
Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
| null |
Message passing neural networks (MPNN) have seen a steep rise in popularity since their introduction as generalizations of convolutional neural networks to graph-structured data, and are now considered state-of-the-art tools for solving a large variety of graph-focused problems. We study the generalization error of MPNNs in graph classification and regression. We assume that graphs of different classes are sampled from different random graph models. We show that, when training a MPNN on a dataset sampled from such a distribution, the generalization gap increases in the complexity of the MPNN, and decreases, not only with respect to the number of training samples, but also with the average number of nodes in the graphs. This shows how a MPNN with high complexity can generalize from a small dataset of graphs, as long as the graphs are large. The generalization bound is derived from a uniform convergence result, that shows that any MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.
|
Sohir Maskey, Ron Levie, Yunseok Lee, Gitta Kutyniok
| null | null | 2,022 |
neurips
|
Redeeming intrinsic rewards via constrained optimization
| null |
State-of-the-art reinforcement learning (RL) algorithms typically use random sampling (e.g., $\epsilon$-greedy) for exploration, but this method fails on hard exploration tasks like Montezuma's Revenge. To address the challenge of exploration, prior works incentivize exploration by rewarding the agent when it visits novel states. Such intrinsic rewards (also called exploration bonus or curiosity) often lead to excellent performance on hard exploration tasks. However, on easy exploration tasks, the agent gets distracted by intrinsic rewards and performs unnecessary exploration even when sufficient task (also called extrinsic) reward is available. Consequently, such an overly curious agent performs worse than an agent trained with only task reward. Such inconsistency in performance across tasks prevents the widespread use of intrinsic rewards with RL algorithms. We propose a principled constrained optimization procedure called Extrinsic-Intrinsic Policy Optimization (EIPO) that automatically tunes the importance of the intrinsic reward: it suppresses the intrinsic reward when exploration is unnecessary and increases it when exploration is required. The results is superior exploration that does not require manual tuning in balancing the intrinsic reward against the task reward. Consistent performance gains across sixty-one ATARI games validate our claim. The code is available at https://github.com/Improbable-AI/eipo.
|
Eric Chen, Zhang-Wei Hong, Joni Pajarinen, Pulkit Agrawal
| null | null | 2,022 |
neurips
|
Unsupervised Learning From Incomplete Measurements for Inverse Problems
| null |
In many real-world inverse problems, only incomplete measurement data are available for training which can pose a problem for learning a reconstruction function. Indeed, unsupervised learning using a fixed incomplete measurement process is impossible in general, as there is no information in the nullspace of the measurement operator. This limitation can be overcome by using measurements from multiple operators. While this idea has been successfully applied in various applications, a precise characterization of the conditions for learning is still lacking. In this paper, we fill this gap by presenting necessary and sufficient conditions for learning the underlying signal model needed for reconstruction which indicate the interplay between the number of distinct measurement operators, the number of measurements per operator, the dimension of the model and the dimension of the signals. Furthermore, we propose a novel and conceptually simple unsupervised learning loss which only requires access to incomplete measurement data and achieves a performance on par with supervised learning when the sufficient condition is verified. We validate our theoretical bounds and demonstrate the advantages of the proposed unsupervised loss compared to previous methods via a series of experiments on various imaging inverse problems, such as accelerated magnetic resonance imaging, compressed sensing and image inpainting.
|
Julián Tachella, Dongdong Chen, Mike Davies
| null | null | 2,022 |
neurips
|
AttCAT: Explaining Transformers via Attentive Class Activation Tokens
| null |
Transformers have improved the state-of-the-art in various natural language processing and computer vision tasks. However, the success of the Transformer model has not yet been duly explained. Current explanation techniques, which dissect either the self-attention mechanism or gradient-based attribution, do not necessarily provide a faithful explanation of the inner workings of Transformers due to the following reasons: first, attention weights alone without considering the magnitudes of feature values are not adequate to reveal the self-attention mechanism; second, whereas most Transformer explanation techniques utilize self-attention module, the skip-connection module, contributing a significant portion of information flows in Transformers, has not yet been sufficiently exploited in explanation; third, the gradient-based attribution of individual feature does not incorporate interaction among features in explaining the model's output. In order to tackle the above problems, we propose a novel Transformer explanation technique via attentive class activation tokens, aka, AttCAT, leveraging encoded features, their gradients, and their attention weights to generate a faithful and confident explanation for Transformer's output. Extensive experiments are conducted to demonstrate the superior performance of AttCAT, which generalizes well to different Transformer architectures, evaluation metrics, datasets, and tasks, to the baseline methods. Our code is available at: https://github.com/qiangyao1988/AttCAT.
|
Yao Qiang, Deng Pan, Chengyin Li, Xin Li, Rhongho Jang, Dongxiao Zhu
| null | null | 2,022 |
neurips
|
Misspecified Phase Retrieval with Generative Priors
| null |
In this paper, we study phase retrieval under model misspecification and generative priors. In particular, we aim to estimate an $n$-dimensional signal $\mathbf{x}$ from $m$ i.i.d.~realizations of the single index model $y = f(\mathbf{a}^T\mathbf{x})$, where $f$ is an unknown and possibly random nonlinear link function and $\mathbf{a} \in \mathbb{R}^n$ is a standard Gaussian vector. We make the assumption $\mathrm{Cov}[y,(\mathbf{a}^T\mathbf{x})^2] \ne 0$, which corresponds to the misspecified phase retrieval problem. In addition, the underlying signal $\mathbf{x}$ is assumed to lie in the range of an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs. We propose a two-step approach, for which the first step plays the role of spectral initialization and the second step refines the estimated vector produced by the first step iteratively. We show that both steps enjoy a statistical rate of order $\sqrt{(k\log L)\cdot (\log m)/m}$ under suitable conditions. Experiments on image datasets are performed to demonstrate that our approach performs on par with or even significantly outperforms several competing methods.
|
Zhaoqiang Liu, Xinshao Wang, Jiulong Liu
| null | null | 2,022 |
neurips
|
SegViT: Semantic Segmentation with Plain Vision Transformers
| null |
We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation and propose the SegViT. Previous ViT-based segmentation networks usually learn a pixel-level representation from the output of the ViT. Differently, we make use of the fundamental component—attention mechanism, to generate masks for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM) module, in which the similarity maps between a set of learnable class tokens and the spatial feature maps are transferred to the segmentation masks. Experiments show that our proposed SegViT using the ATM module outperforms its counterparts using the plain ViT backbone on the ADE20K dataset and achieves new state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets. Furthermore, to reduce the computational cost of the ViT backbone, we propose query-based down-sampling (QD) and query-based up-sampling (QU) to build a Shrunk structure. With our Shrunk structure, the model can save up to 40% computations while maintaining competitive performance.
|
Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, Yifan liu
| null | null | 2,022 |
neurips
|
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
| null |
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
|
Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, Howard Bondell
| null | null | 2,022 |
neurips
|
Data-Efficient Augmentation for Training Neural Networks
| null |
Data augmentation is essential to achieve state-of-the-art performance in many deep learning applications. However, the most effective augmentation techniques become computationally prohibitive for even medium-sized datasets. To address this, we propose a rigorous technique to select subsets of data points that when augmented, closely capture the training dynamics of full data augmentation. We first show that data augmentation, modeled as additive perturbations, improves learning and generalization by relatively enlarging and perturbing the smaller singular values of the network Jacobian, while preserving its prominent directions. This prevents overfitting and enhances learning the harder to learn information. Then, we propose a framework to iteratively extract small subsets of training data that when augmented, closely capture the alignment of the fully augmented Jacobian with labels/residuals. We prove that stochastic gradient descent applied to the augmented subsets found by our approach has similar training dynamics to that of fully augmented data. Our experiments demonstrate that our method achieves 6.3x speedup on CIFAR10 and 2.2x speedup on SVHN, and outperforms the baselines by up to 10\% across various subset sizes. Similarly, on TinyImageNet and ImageNet, our method beats the baselines by up to 8%, while achieving up to 3.3x speedup across various subset sizes. Finally, training on and augmenting 50% subsets using our method on a version of CIFAR10 corrupted with label noise even outperforms using the full dataset.
|
Tian Yu Liu, Baharan Mirzasoleiman
| null | null | 2,022 |
neurips
|
BiMLP: Compact Binary Architectures for Vision Multi-Layer Perceptrons
| null |
This paper studies the problem of designing compact binary architectures for vision multi-layer perceptrons (MLPs). We provide extensive analysis on the difficulty of binarizing vision MLPs and find that previous binarization methods perform poorly due to limited capacity of binary MLPs. In contrast with the traditional CNNs that utilizing convolutional operations with large kernel size, fully-connected (FC) layers in MLPs can be treated as convolutional layers with kernel size $1\times1$. Thus, the representation ability of the FC layers will be limited when being binarized, and places restrictions on the capability of spatial mixing and channel mixing on the intermediate features. To this end, we propose to improve the performance of binary MLP (BiMLP) model by enriching the representation ability of binary FC layers. We design a novel binary block that contains multiple branches to merge a series of outputs from the same stage, and also a universal shortcut connection that encourages the information flow from the previous stage. The downsampling layers are also carefully designed to reduce the computational complexity while maintaining the classification performance. Experimental results on benchmark dataset ImageNet-1k demonstrate the effectiveness of the proposed BiMLP models, which achieve state-of-the-art accuracy compared to prior binary CNNs.The MindSpore code is available at \url{https://gitee.com/mindspore/models/tree/master/research/cv/BiMLP}.
|
Yixing Xu, Xinghao Chen, Yunhe Wang
| null | null | 2,022 |
neurips
|
Chaotic Dynamics are Intrinsic to Neural Network Training with SGD
| null |
With the advent of deep learning over the last decade, a considerable amount of effort has gone into better understanding and enhancing Stochastic Gradient Descent so as to improve the performance and stability of artificial neural network training. Active research fields in this area include exploiting second order information of the loss landscape and improving the understanding of chaotic dynamics in optimization. This paper exploits the theoretical connection between the curvature of the loss landscape and chaotic dynamics in neural network training to propose a modified SGD ensuring non-chaotic training dynamics to study the importance thereof in NN training. Building on this, we present empirical evidence suggesting that the negative eigenspectrum - and thus directions of local chaos - cannot be removed from SGD without hurting training performance. Extending our empirical analysis to long-term chaos dynamics, we challenge the widespread understanding of convergence against a confined region in parameter space. Our results show that although chaotic network behavior is mostly confined to the initial training phase, models perturbed upon initialization do diverge at a slow pace even after reaching top training performance, and that their divergence can be modelled through a composition of a random walk and a linear divergence. The tools and insights developed as part of our work contribute to improving the understanding of neural network training dynamics and provide a basis for future improvements of optimization methods.
|
Luis Herrmann, Maximilian Granz, Tim Landgraf
| null | null | 2,022 |
neurips
|
A Theoretical Study on Solving Continual Learning
| null |
Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL settings, class incremental learning (CIL) and task incremental learning (TIL). A major challenge of CL is catastrophic forgetting (CF). While a number of techniques are already available to effectively overcome CF for TIL, CIL remains to be highly challenging. So far, little theoretical study has been done to provide a principled guidance on how to solve the CIL problem. This paper performs such a study. It first shows that probabilistically, the CIL problem can be decomposed into two sub-problems: Within-task Prediction (WP) and Task-id Prediction (TP). It further proves that TP is correlated with out-of-distribution (OOD) detection, which connects CIL and OOD detection. The key conclusion of this study is that regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL algorithm, good WP and good TP or OOD detection are necessary and sufficient for good CIL performances. Additionally, TIL is simply WP. Based on the theoretical result, new CIL methods are also designed, which outperform strong baselines in both CIL and TIL settings by a large margin.
|
Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, Bing Liu
| null | null | 2,022 |
neurips
|
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
| null |
We investigate a practical domain adaptation task, called source-free domain adaptation (SFUDA), where the source pretrained model is adapted to the target domain without access to the source data. Existing techniques mainly leverage self-supervised pseudo-labeling to achieve class-wise global alignment [1] or rely on local structure extraction that encourages the feature consistency among neighborhoods [2]. While impressive progress has been made, both lines of methods have their own drawbacks – the “global” approach is sensitive to noisy labels while the “local” counterpart suffers from the source bias. In this paper, we present Divide and Contrast (DaC), a new paradigm for SFUDA that strives to connect the good ends of both worlds while bypassing their limitations. Based on the prediction confidence of the source model, DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals under an adaptive contrastive learning framework. Specifically, the source-like samples are utilized for learning global class clustering thanks to their relatively clean labels. The more noisy target-specific data are harnessed at the instance level for learning the intrinsic local structures. We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch. Extensive experiments on VisDA, Office-Home, and the more challenging DomainNet have verified the superior performance of DaC over current state-of-the-art approaches. The code is available at https://github.com/ZyeZhang/DaC.git.
|
Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, Guanbin Li
| null | null | 2,022 |
neurips
|
Understanding Deep Neural Function Approximation in Reinforcement Learning via $\epsilon$-Greedy Exploration
| null |
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the $\epsilon$-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that falls in this regime. In this work, we provide an initial attempt on theoretical understanding deep RL from the perspective of function class and neural networks architectures (e.g., width and depth) beyond the ``linear'' regime. To be specific, we focus on the value based algorithm with the $\epsilon$-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces, respectively, which aims at approximating an $\alpha$-smooth Q-function in a $d$-dimensional feature space. We prove that, with $T$ episodes, scaling the width $m = \widetilde{\mathcal{O}}(T^{\frac{d}{2\alpha + d}})$ and the depth $L=\mathcal{O}(\log T)$ of the neural network for deep RL is sufficient for learning with sublinear regret in Besov spaces. Moreover, for a two layer neural network endowed by the Barron space, scaling the width $\Omega(\sqrt{T})$ is sufficient. To achieve this, the key issue in our analysis is how to estimate the temporal difference error under deep neural function approximation as the $\epsilon$-greedy exploration is not enough to ensure "optimism". Our analysis reformulates the temporal difference error in an $L^2(\mathrm{d}\mu)$-integrable space over a certain averaged measure $\mu$, and transforms it to a generalization problem under the non-iid setting. This might have its own interest in RL theory for better understanding $\epsilon$-greedy exploration in deep RL.
|
Fanghui Liu, Luca Viano, Volkan Cevher
| null | null | 2,022 |
neurips
|
Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex Distributed Learning
| null |
In recent centralized nonconvex distributed learning and federated learning, local methods are one of the promising approaches to reduce communication time. However, existing work has mainly focused on studying first-order optimality guarantees. On the other side, second-order optimality guaranteed algorithms, i.e., algorithms escaping saddle points, have been extensively studied in the non-distributed optimization literature. In this paper, we study a new local algorithm called Bias-Variance Reduced Local Perturbed SGD (BVR-L-PSGD), that combines the existing bias-variance reduced gradient estimator with parameter perturbation to find second-order optimal points in centralized nonconvex distributed optimization. BVR-L-PSGD enjoys second-order optimality with nearly the same communication complexity as the best known one of BVR-L-SGD to find first-order optimality. Particularly, the communication complexity is better than non-local methods when the local datasets heterogeneity is smaller than the smoothness of the local loss. In an extreme case, the communication complexity approaches to $\widetilde \Theta(1)$ when the local datasets heterogeneity goes to zero. Numerical results validate our theoretical findings.
|
Tomoya Murata, Taiji Suzuki
| null | null | 2,022 |
neurips
|
CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders
| null |
CLIPDraw is an algorithm that synthesizes novel drawings from natural language input. It does not require any additional training; rather, a pre-trained CLIP language-image encoder is used as a metric for maximizing similarity between the given description and a generated drawing. Crucially, CLIPDraw operates over vector strokes rather than pixel images, which biases drawings towards simpler human-recognizable shapes. Results compare CLIPDraw with other synthesis-through-optimization methods, as well as highlight various interesting behaviors of CLIPDraw.
|
Kevin Frans, Lisa Soros, Olaf Witkowski
| null | null | 2,022 |
neurips
|
A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks
| null |
Textual backdoor attacks are a kind of practical threat to NLP systems. By injecting a backdoor in the training phase, the adversary could control model predictions via predefined triggers. As various attack and defense models have been proposed, it is of great significance to perform rigorous evaluations. However, we highlight two issues in previous backdoor learning evaluations: (1) The differences between real-world scenarios (e.g. releasing poisoned datasets or models) are neglected, and we argue that each scenario has its own constraints and concerns, thus requires specific evaluation protocols; (2) The evaluation metrics only consider whether the attacks could flip the models' predictions on poisoned samples and retain performances on benign samples, but ignore that poisoned samples should also be stealthy and semantic-preserving. To address these issues, we categorize existing works into three practical scenarios in which attackers release datasets, pre-trained models, and fine-tuned models respectively, then discuss their unique evaluation methodologies. On metrics, to completely evaluate poisoned samples, we use grammar error increase and perplexity difference for stealthiness, along with text similarity for validity. After formalizing the frameworks, we develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning. With this toolkit, we perform extensive experiments to benchmark attack and defense models under the suggested paradigm. To facilitate the underexplored defenses against poisoned datasets, we further propose CUBE, a simple yet strong clustering-based defense baseline. We hope that our frameworks and benchmarks could serve as the cornerstones for future model development and evaluations.
|
Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, Maosong Sun
| null | null | 2,022 |
neurips
|
The computational and learning benefits of Daleian neural networks
| null |
Dale’s principle implies that biological neural networks are composed of neurons that are either excitatory or inhibitory. While the number of possible architectures of such Daleian networks is exponentially smaller than the number of non-Daleian ones, the computational and functional implications of using Daleian networks by the brain are mostly unknown. Here, we use models of recurrent spiking neural networks and rate-based ones to show, surprisingly, that despite the structural limitations on Daleian networks, they can approximate the computation performed by non-Daleian networks to a very high degree of accuracy. Moreover, we find that Daleian networks are more functionally robust to synaptic noise. We then show that unlike non-Daleian networks, Daleian ones can learn efficiently by tuning of single neuron features, nearly as well as learning by tuning individual synaptic weights. Importantly, this suggests a simpler and more biologically plausible learning mechanisms. We therefore suggest that in addition to architectural simplicity, Dale's principle confers computational and learning benefits for biological networks, and offer new directions for constructing and training biologically-inspired artificial neural networks.
|
Adam Haber, Elad Schneidman
| null | null | 2,022 |
neurips
|
Effective Dimension in Bandit Problems under Censorship
| null |
In this paper, we study both multi-armed and contextual bandit problems in censored environments. Our goal is to estimate the performance loss due to censorship in the context of classical algorithms designed for uncensored environments. Our main contributions include the introduction of a broad class of censorship models and their analysis in terms of the effective dimension of the problem -- a natural measure of its underlying statistical complexity and main driver of the regret bound. In particular, the effective dimension allows us to maintain the structure of the original problem at first order, while embedding it in a bigger space, and thus naturally leads to results analogous to uncensored settings. Our analysis involves a continuous generalization of the Elliptical Potential Inequality, which we believe is of independent interest. We also discover an interesting property of decision-making under censorship: a transient phase during which initial misspecification of censorship is self-corrected at an extra cost; followed by a stationary phase that reflects the inherent slowdown of learning governed by the effective dimension. Our results are useful for applications of sequential decision-making models where the feedback received depends on strategic uncertainty (e.g., agents’ willingness to follow a recommendation) and/or random uncertainty (e.g., loss or delay in arrival of information).
|
Gauthier Guinet, Saurabh Amin, Patrick Jaillet
| null | null | 2,022 |
neurips
|
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
| null |
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an {\em additive} $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
|
Ilias Diakonikolas, Daniel Kane, Jasper Lee, Ankit Pensia
| null | null | 2,022 |
neurips
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.