title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera
| null |
We propose Neural-DynamicReconstruction (NDR), a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera. In NDR, we adopt the neural implicit function for surface representation and rendering such that the captured color and depth can be fully utilized to jointly optimize the surface and deformations. To represent and constrain the non-rigid deformations, we propose a novel neural invertible deforming network such that the cycle consistency between arbitrary two frames is automatically satisfied. Considering that the surface topology of dynamic scene might change over time, we employ a topology-aware strategy to construct the topology-variant correspondence for the fused frames. NDR also further refines the camera poses in a global optimization manner. Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.
|
Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang, Juyong Zhang
| null | null | 2,022 |
neurips
|
Dataset Distillation via Factorization
| null |
In this paper, we study dataset distillation (DD), from a novel perspective and introduce a \emph{dataset factorization} approach, termed \emph{HaBa}, which is a plug-and-play strategy portable to any existing DD baseline. Unlike conventional DD approaches that aim to produce distilled and representative samples, \emph{HaBa} explores decomposing a dataset into two components: data \emph{Ha}llucination networks and \emph{Ba}ses, where the latter is fed into the former to reconstruct image samples. The flexible combinations between bases and hallucination networks, therefore, equip the distilled data with exponential informativeness gain, which largely increase the representation capability of distilled datasets. To furthermore increase the data efficiency of compression results, we further introduce a pair of adversarial contrastive \xw{constraints} on the resultant hallucination networks and bases, which increase the diversity of generated images and inject more discriminant information into the factorization. Extensive comparisons and experiments demonstrate that our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65\%. Moreover, distilled datasets by our approach also achieve \textasciitilde10\% higher accuracy than baseline methods in cross-architecture generalization. Our code is available \href{https://github.com/Huage001/DatasetFactorization}{here}.
|
Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, Xinchao Wang
| null | null | 2,022 |
neurips
|
Causal Discovery in Linear Latent Variable Models Subject to Measurement Error
| null |
We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model with unobserved parentless causes, the structure can be identified. Based on our theoretical results, we propose causal structure learning methods for both models, and evaluate their performance on synthetic data.
|
Yuqin Yang, AmirEmad Ghassami, Mohamed Nafea, Negar Kiyavash, Kun Zhang, Ilya Shpitser
| null | null | 2,022 |
neurips
|
Global Optimal K-Medoids Clustering of One Million Samples
| null |
We study the deterministic global optimization of the K-Medoids clustering problem. This work proposes a branch and bound (BB) scheme, in which a tailored Lagrangian relaxation method proposed in the 1970s is used to provide a lower bound at each BB node. The lower bounding method already guarantees the maximum gap at the root node. A closed-form solution to the lower bound can be derived analytically without explicitly solving any optimization problems, and its computation can be easily parallelized. Moreover, with this lower bounding method, finite convergence to the global optimal solution can be guaranteed by branching only on the regions of medoids. We also present several tailored bound tightening techniques to reduce the search space and computational cost. Extensive computational studies on 28 machine learning datasets demonstrate that our algorithm can provide a provable global optimal solution with an optimality gap of 0.1\% within 4 hours on datasets with up to one million samples. Besides, our algorithm can obtain better or equal objective values than the heuristic method. A theoretical proof of global convergence for our algorithm is also presented.
|
Jiayang Ren, Kaixun Hua, Yankai Cao
| null | null | 2,022 |
neurips
|
DOPE: Doubly Optimistic and Pessimistic Exploration for Safe Reinforcement Learning
| null |
Safe reinforcement learning is extremely challenging--not only must the agent explore an unknown environment, it must do so while ensuring no safety constraint violations. We formulate this safe reinforcement learning (RL) problem using the framework of a finite-horizon Constrained Markov Decision Process (CMDP) with an unknown transition probability function, where we model the safety requirements as constraints on the expected cumulative costs that must be satisfied during all episodes of learning. We propose a model-based safe RL algorithm that we call Doubly Optimistic and Pessimistic Exploration (DOPE), and show that it achieves an objective regret $\tilde{O}(|\mathcal{S}|\sqrt{|\mathcal{A}| K})$ without violating the safety constraints during learning, where $|\mathcal{S}|$ is the number of states, $|\mathcal{A}|$ is the number of actions, and $K$ is the number of learning episodes. Our key idea is to combine a reward bonus for exploration (optimism) with a conservative constraint (pessimism), in addition to the standard optimistic model-based exploration. DOPE is not only able to improve the objective regret bound, but also shows a significant empirical performance improvement as compared to earlier optimism-pessimism approaches.
|
Archana Bura, Aria HasanzadeZonuzy, Dileep Kalathil, Srinivas Shakkottai, Jean-Francois Chamberland
| null | null | 2,022 |
neurips
|
Improved Regret Analysis for Variance-Adaptive Linear Bandits and Horizon-Free Linear Mixture MDPs
| null |
In online learning problems, exploiting low variance plays an important role in obtaining tight performance guarantees yet is challenging because variances are often not known a priori. Recently, considerable progress has been made by Zhang et al. (2021) where they obtain a variance-adaptive regret bound for linear bandits without knowledge of the variances and a horizon-free regret bound for linear mixture Markov decision processes (MDPs). In this paper, we present novel analyses that improve their regret bounds significantly. For linear bandits, we achieve $\tilde O(\min\{d\sqrt{K}, d^{1.5}\sqrt{\sum_{k=1}^K \sigma_k^2}\} + d^2)$ where $d$ is the dimension of the features, $K$ is the time horizon, and $\sigma_k^2$ is the noise variance at time step $k$, and $\tilde O$ ignores polylogarithmic dependence, which is a factor of $d^3$ improvement. For linear mixture MDPs with the assumption of maximum cumulative reward in an episode being in $[0,1]$, we achieve a horizon-free regret bound of $\tilde O(d \sqrt{K} + d^2)$ where $d$ is the number of base models and $K$ is the number of episodes. This is a factor of $d^{3.5}$ improvement in the leading term and $d^7$ in the lower order term. Our analysis critically relies on a novel peeling-based regret analysis that leverages the elliptical potential `count' lemma.
|
Yeoneung Kim, Insoon Yang, Kwang-Sung Jun
| null | null | 2,022 |
neurips
|
Efficient Multi-agent Communication via Self-supervised Information Aggregation
| null |
Utilizing messages from teammates can improve coordination in cooperative Multi-agent Reinforcement Learning (MARL). To obtain meaningful information for decision-making, previous works typically combine raw messages generated by teammates with local information as inputs for policy. However, neglecting the aggregation of multiple messages poses great inefficiency for policy learning. Motivated by recent advances in representation learning, we argue that efficient message aggregation is essential for good coordination in MARL. In this paper, we propose Multi-Agent communication via Self-supervised Information Aggregation (MASIA), with which agents can aggregate the received messages into compact representations with high relevance to augment the local policy. Specifically, we design a permutation invariant message encoder to generate common information aggregated representation from raw messages and optimize it via reconstructing and shooting future information in a self-supervised manner. Each agent would utilize the most relevant parts of the aggregated representation for decision-making by a novel message extraction mechanism. Empirical results demonstrate that our method significantly outperforms strong baselines on multiple cooperative MARL tasks for various task settings.
|
Cong Guan, Feng Chen, Lei Yuan, Chenghe Wang, Hao Yin, Zongzhang Zhang, Yang Yu
| null | null | 2,022 |
neurips
|
Communication-Efficient Topologies for Decentralized Learning with $O(1)$ Consensus Rate
| null |
Decentralized optimization is an emerging paradigm in distributed learning in which agents achieve network-wide solutions by peer-to-peer communication without the central server. Since communication tends to be slower than computation, when each agent communicates with only a few neighboring agents per iteration, they can complete iterations faster than with more agents or a central server. However, the total number of iterations to reach a network-wide solution is affected by the speed at which the information of the agents is ``mixed'' by communication. We found that popular communication topologies either have large degrees (such as stars and complete graphs) or are ineffective at mixing information (such as rings and grids). To address this problem, we propose a new family of topologies, EquiTopo, which has an (almost) constant degree and network-size-independent consensus rate which is used to measure the mixing efficiency.In the proposed family, EquiStatic has a degree of $\Theta(\ln(n))$, where $n$ is the network size, and a series of time-varying one-peer topologies, EquiDyn, has a constant degree of 1. We generate EquiDyn through a certain random sampling procedure. Both of them achieve $n$-independent consensus rate. We apply them to decentralized SGD and decentralized gradient tracking and obtain faster communication and better convergence, both theoretically and empirically. Our code is implemented through BlueFog and available at https://github.com/kexinjinnn/EquiTopo.
|
Zhuoqing Song, Weijian Li, Kexin Jin, Lei Shi, Ming Yan, Wotao Yin, Kun Yuan
| null | null | 2,022 |
neurips
|
Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations
| null |
Physics-informed neural networks (PINNs) are neural networks trained by using physical laws in the form of partial differential equations (PDEs) as soft constraints. We present a new technique for the accelerated training of PINNs that combines modern scientific computing techniques with machine learning: discretely-trained PINNs (DT-PINNs). The repeated computation of the partial derivative terms in the PINN loss functions via automatic differentiation during training is known to be computationally expensive, especially for higher-order derivatives. DT-PINNs are trained by replacing these exact spatial derivatives with high-order accurate numerical discretizations computed using meshless radial basis function-finite differences (RBF-FD) and applied via sparse-matrix vector multiplication. While in principle any high-order discretization may be used, the use of RBF-FD allows for DT-PINNs to be trained even on point cloud samples placed on irregular domain geometries. Additionally, though traditional PINNs (vanilla-PINNs) are typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show that for DT-PINNs, using fp64 on the GPU leads to significantly faster training times than fp32 vanilla-PINNs with comparable accuracy. We demonstrate the efficiency and accuracy of DT-PINNs via a series of experiments. First, we explore the effect of network depth on both numerical and automatic differentiation of a neural network with random weights and show that RBF-FD approximations of third-order accuracy and above are more efficient while being sufficiently accurate. We then compare the DT-PINNs to vanilla-PINNs on both linear and nonlinear Poisson equations and show that DT-PINNs achieve similar losses with 2-4x faster training times on a consumer GPU. Finally, we also demonstrate that similar results can be obtained for the PINN solution to the heat equation (a space-time problem) by discretizing the spatial derivatives using RBF-FD and using automatic differentiation for the temporal derivative. Our results show that fp64 DT-PINNs offer a superior cost-accuracy profile to fp32 vanilla-PINNs, opening the door to a new paradigm of leveraging scientific computing techniques to support machine learning.
|
Ramansh Sharma, Varun Shankar
| null | null | 2,022 |
neurips
|
UniCLIP: Unified Framework for Contrastive Language-Image Pre-training
| null |
Pre-training vision-language models with contrastive objectives has shown promising results that are both scalable to large uncurated datasets and transferable to many downstream applications. Some following works have targeted to improve data efficiency by adding self-supervision terms, but inter-domain (image-text) contrastive loss and intra-domain (image-image) contrastive loss are defined on individual spaces in those works, so many feasible combinations of supervision are overlooked. To overcome this issue, we propose UniCLIP, a Unified framework for Contrastive Language-Image Pre-training. UniCLIP integrates the contrastive loss of both inter-domain pairs and intra-domain pairs into a single universal space. The discrepancies that occur when integrating contrastive loss between different domains are resolved by the three key components of UniCLIP: (1) augmentation-aware feature embedding, (2) MP-NCE loss, and (3) domain dependent similarity measure. UniCLIP outperforms previous vision-language pre-training methods on various single- and multi-modality downstream tasks. In our experiments, we show that each component that comprises UniCLIP contributes well to the final performance.
|
Janghyeon Lee, Jongsuk Kim, Hyounguk Shon, Bumsoo Kim, Seung Hwan Kim, Honglak Lee, Junmo Kim
| null | null | 2,022 |
neurips
|
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation
| null |
We present SegNeXt, a simple convolutional network architecture for semantic segmentation. Recent transformer-based models have dominated the field of se- mantic segmentation due to the efficiency of self-attention in encoding spatial information. In this paper, we show that convolutional attention is a more efficient and effective way to encode contextual information than the self-attention mech- anism in transformers. By re-examining the characteristics owned by successful segmentation models, we discover several key components leading to the perfor- mance improvement of segmentation models. This motivates us to design a novel convolutional attention network that uses cheap convolutional operations. Without bells and whistles, our SegNeXt significantly improves the performance of previous state-of-the-art methods on popular benchmarks, including ADE20K, Cityscapes, COCO-Stuff, Pascal VOC, Pascal Context, and iSAID. Notably, SegNeXt out- performs EfficientNet-L2 w/ NAS-FPN and achieves 90.6% mIoU on the Pascal VOC 2012 test leaderboard using only 1/10 parameters of it. On average, SegNeXt achieves about 2.0% mIoU improvements compared to the state-of-the-art methods on the ADE20K datasets with the same or fewer computations.
|
Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, Shi-min Hu
| null | null | 2,022 |
neurips
|
Moderate-fitting as a Natural Backdoor Defender for Pre-trained Language Models
| null |
Despite the great success of pre-trained language models (PLMs) in a large set of natural language processing (NLP) tasks, there has been a growing concern about their security in real-world applications. Backdoor attack, which poisons a small number of training samples by inserting backdoor triggers, is a typical threat to security. Trained on the poisoned dataset, a victim model would perform normally on benign samples but predict the attacker-chosen label on samples containing pre-defined triggers. The vulnerability of PLMs under backdoor attacks has been proved with increasing evidence in the literature. In this paper, we present several simple yet effective training strategies that could effectively defend against such attacks. To the best of our knowledge, this is the first work to explore the possibility of backdoor-free adaptation for PLMs. Our motivation is based on the observation that, when trained on the poisoned dataset, the PLM's adaptation follows a strict order of two stages: (1) a moderate-fitting stage, where the model mainly learns the major features corresponding to the original task instead of subsidiary features of backdoor triggers, and (2) an overfitting stage, where both features are learned adequately. Therefore, if we could properly restrict the PLM's adaptation to the moderate-fitting stage, the model would neglect the backdoor triggers but still achieve satisfying performance on the original task. To this end, we design three methods to defend against backdoor attacks by reducing the model capacity, training epochs, and learning rate, respectively. Experimental results demonstrate the effectiveness of our methods in defending against several representative NLP backdoor attacks. We also perform visualization-based analysis to attain a deeper understanding of how the model learns different features, and explore the effect of the poisoning ratio. Finally, we explore whether our methods could defend against backdoor attacks for the pre-trained CV model. The codes are publicly available at https://github.com/thunlp/Moderate-fitting.
|
Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen, Weilin Zhao, Chong Fu, Yangdong Deng, Zhiyuan Liu, Jingang Wang, Wei Wu, Maosong Sun, Ming Gu
| null | null | 2,022 |
neurips
|
Batch Multi-Fidelity Active Learning with Budget Constraints
| null |
Learning functions with high-dimensional outputs is critical in many applications, such as physical simulation and engineering design. However, collecting training examples for these applications is often costly, e.g., by running numerical solvers. The recent work (Li et al., 2022) proposes the first multi-fidelity active learning approach for high-dimensional outputs, which can acquire examples at different fidelities to reduce the cost while improving the learning performance. However, this method only queries at one pair of fidelity and input at a time, and hence has a risk of bringing in strongly correlated examples to reduce the learning efficiency. In this paper, we propose Batch Multi-Fidelity Active Learning with Budget Constraints (BMFAL-BC), which can promote the diversity of training examples to improve the benefit-cost ratio, while respecting a given budget constraint for batch queries. Hence, our method can be more practically useful. Specifically, we propose a novel batch acquisition function that measures the mutual information between a batch of multi-fidelity queries and the target function, so as to penalize highly correlated queries and encourages diversity. The optimization of the batch acquisition function is challenging in that it involves a combinatorial search over many fidelities while subject to the budget constraint. To address this challenge, we develop a weighted greedy algorithm that can sequentially identify each (fidelity, input) pair, while achieving a near $(1 - 1/e)$-approximation of the optimum. We show the advantage of our method in several computational physics and engineering applications.
|
Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, Shandian Zhe
| null | null | 2,022 |
neurips
|
Adaptive Sampling for Discovery
| null |
In this paper, we study a sequential decision-making problem, called Adaptive Sampling for Discovery (ASD). Starting with a large unlabeled dataset, algorithms for ASD adaptively label the points with the goal to maximize the sum of responses.This problem has wide applications to real-world discovery problems, for example drug discovery with the help of machine learning models. ASD algorithms face the well-known exploration-exploitation dilemma. The algorithm needs to choose points that yield information to improve model estimates but it also needs to exploit the model. We rigorously formulate the problem and propose a general information-directed sampling (IDS) algorithm. We provide theoretical guarantees for the performance of IDS in linear, graph and low-rank models. The benefits of IDS are shown in both simulation experiments and real-data experiments for discovering chemical reaction conditions.
|
Ziping Xu, Eunjae Shim, Ambuj Tewari, Paul Zimmerman
| null | null | 2,022 |
neurips
|
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning
| null |
Hyperdimensional computing (HDC) is an emerging learning paradigm that computes with high dimensional binary vectors. There is an active line of research on HDC in the community of emerging hardware because of its energy efficiency and ultra-low latency---but HDC suffers from low model accuracy, with little theoretical understanding of what limits its performance. We propose a new theoretical analysis of the limits of HDC via a consideration of what similarity matrices can be expressed'' by binary vectors, and we show how the limits of HDC can be approached using random Fourier features (RFF). We extend our analysis to the more general class of vector symbolic architectures (VSA), which compute with high-dimensional vectors (hypervectors) that are not necessarily binary. We propose a new class of VSAs, finite group VSAs, which surpass the limits of HDC. Using representation theory, we characterize which similarity matrices can beexpressed'' by finite group VSA hypervectors, and we show how these VSAs can be constructed. Experimental results show that our RFF method and group VSA can both outperform the state-of-the-art HDC model by up to 7.6\% while maintaining hardware efficiency. This work aims to inspire a future interest on HDC in the ML community and connect to the hardware community.
|
Tao Yu, Yichi Zhang, Zhiru Zhang, Christopher M. De Sa
| null | null | 2,022 |
neurips
|
A Large Scale Search Dataset for Unbiased Learning to Rank
| null |
The unbiased learning to rank (ULTR) problem has been greatly advanced by recent deep learning techniques and well-designed debias algorithms. However, promising results on the existing benchmark datasets may not be extended to the practical scenario due to some limitations of existing datasets. First, their semantic feature extractions are outdated while state-of-the-art large-scale pre-trained language models like BERT cannot be utilized due to the lack of original text. Second, display features are incomplete; thus in-depth study on ULTR is impossible such as the displayed abstract for analyzing the click necessary bias. Third, synthetic user feedback has been adopted by most existing datasets and real-world user feedback is greatly missing. To overcome these disadvantages, we introduce the Baidu-ULTR dataset. It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries(397,572 query document pairs). Baidu-ULTR is the first billion-level dataset for ULTR. Particularly, it offers: (1)the original semantic features and pre-trained language models of different sizes; (2)sufficient display information such as position, displayed height, and displayed abstract, enabling the comprehensive study of multiple displayed biases; and (3)rich user feedback on search result pages (SERPs) like dwelling time, allowing for user engagement optimization and promoting the exploration of multi-task learning in ULTR. Furthermore, we present the design principle of Baidu-ULTR and the performance of representative ULTR algorithms on Baidu-ULTR. The Baidu-ULTR dataset and corresponding baseline implementations are available at https://github.com/ChuXiaokai/baiduultrdataset. The dataset homepage is available at https://searchscience.baidu.com/dataset.html.
|
Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, Shuaiqiang Wang, Dawei Yin
| null | null | 2,022 |
neurips
|
Benign, Tempered, or Catastrophic: Toward a Refined Taxonomy of Overfitting
| null |
The practical success of overparameterized neural networks has motivated the recent scientific study of \emph{interpolating methods}-- learning methods which are able fit their training data perfectly. Empirically, certain interpolating methods can fit noisy training data without catastrophically bad test performance, which defies standard intuitions from statistical learning theory. Aiming to explain this, a large body of recent work has studied \emph{benign overfitting}, a behavior seen in certain asymptotic settings under which interpolating methods approach Bayes-optimality, even in the presence of noise. In this work, we argue that, while benign overfitting has been instructive to study, real interpolating methods like deep networks do not fit benignly. That is, noise in the train set leads to suboptimal generalization, suggesting that these methods fall in an intermediate regime between benign and catastrophic overfitting, in which asymptotic risk is neither is neither Bayes-optimal nor unbounded, with the confounding effect of the noise being ``tempered" but non-negligible. We call this behavior \textit{tempered overfitting}. We first provide broad empirical evidence for our three-part taxonomy, demonstrating that deep neural networks and kernel machines fit to noisy data can be reasonably well classified as benign, tempered, or catastrophic. We then specialize to kernel (ridge) regression (KR), obtaining conditions on the ridge parameter and kernel eigenspectrum under which KR exhibits each of the three behaviors, demonstrating the consequences for KR with common kernels and trained neural networks of infinite width using experiments on natural and synthetic datasets.
|
Neil Mallinar, James Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, Preetum Nakkiran
| null | null | 2,022 |
neurips
|
An Empirical Study on Disentanglement of Negative-free Contrastive Learning
| null |
Negative-free contrastive learning methods have attracted a lot of attention with simplicity and impressive performances for large-scale pretraining. However, its disentanglement property remains unexplored. In this paper, we examine negative-free contrastive learning methods to study the disentanglement property empirically. We find that existing disentanglement metrics fail to make meaningful measurements for high-dimensional representation models, so we propose a new disentanglement metric based on Mutual Information between latent representations and data factors. With this proposed metric, we benchmark the disentanglement property of negative-free contrastive learning on both popular synthetic datasets and a real-world dataset CelebA. Our study shows that the investigated methods can learn a well-disentangled subset of representation. As far as we know, we are the first to extend the study of disentangled representation learning to high-dimensional representation space and introduce negative-free contrastive learning methods into this area. The source code of this paper is available at https://github.com/noahcao/disentanglementlibmed.
|
Jinkun Cao, Ruiqian Nai, Qing Yang, Jialei Huang, Yang Gao
| null | null | 2,022 |
neurips
|
Pre-trained Adversarial Perturbations
| null |
Self-supervised pre-training has drawn increasing attention in recent years due to its superior performance on numerous downstream tasks after fine-tuning. However, it is well-known that deep learning models lack the robustness to adversarial examples, which can also invoke security issues to pre-trained models, despite being less explored. In this paper, we delve into the robustness of pre-trained models by introducing Pre-trained Adversarial Perturbations (PAPs), which are universal perturbations crafted for the pre-trained models to maintain the effectiveness when attacking fine-tuned ones without any knowledge of the downstream tasks. To this end, we propose a Low-Level Layer Lifting Attack (L4A) method to generate effective PAPs by lifting the neuron activations of low-level layers of the pre-trained models. Equipped with an enhanced noise augmentation strategy, L4A is effective at generating more transferable PAPs against the fine-tuned models. Extensive experiments on typical pre-trained vision models and ten downstream tasks demonstrate that our method improves the attack success rate by a large margin compared to the state-of-the-art methods.
|
Yuanhao Ban, Yinpeng Dong
| null | null | 2,022 |
neurips
|
Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms
| null |
The stochastic contextual bandit problem, which models the trade-off between exploration and exploitation, has many real applications, including recommender systems, online advertising and clinical trials. As many other machine learning algorithms, contextual bandit algorithms often have one or more hyper-parameters. As an example, in most optimal stochastic contextual bandit algorithms, there is an unknown exploration parameter which controls the trade-off between exploration and exploitation. A proper choice of the hyper-parameters is essential for contextual bandit algorithms to perform well. However, it is infeasible to use offline tuning methods to select hyper-parameters in contextual bandit environment since there is no pre-collected dataset and the decisions have to be made in real time. To tackle this problem, we first propose a two-layer bandit structure for auto tuning the exploration parameter and further generalize it to the Syndicated Bandits framework which can learn multiple hyper-parameters dynamically in contextual bandit environment. We derive the regret bounds of our proposed Syndicated Bandits framework and show it can avoid its regret dependent exponentially in the number of hyper-parameters to be tuned. Moreover, it achieves optimal regret bounds under certain scenarios. Syndicated Bandits framework is general enough to handle the tuning tasks in many popular contextual bandit algorithms, such as LinUCB, LinTS, UCB-GLM, etc. Experiments on both synthetic and real datasets validate the effectiveness of our proposed framework.
|
QIN DING, Yue Kang, Yi-Wei Liu, Thomas Chun Man Lee, Cho-Jui Hsieh, James Sharpnack
| null | null | 2,022 |
neurips
|
Boosting Barely Robust Learners: A New Perspective on Adversarial Robustness
| null |
We present an oracle-efficient algorithm for boosting the adversarial robustness of barely robust learners. Barely robust learning algorithms learn predictors that are adversarially robust only on a small fraction $\beta \ll 1$ of the data distribution. Our proposed notion of barely robust learning requires robustness with respect to a ``larger'' perturbation set; which we show is necessary for strongly robust learning, and that weaker relaxations are not sufficient for strongly robust learning. Our results reveal a qualitative and quantitative equivalence between two seemingly unrelated problems: strongly robust learning and barely robust learning.
|
Avrim Blum, Omar Montasser, Greg Shakhnarovich, Hongyang Zhang
| null | null | 2,022 |
neurips
|
Algorithms and Hardness for Learning Linear Thresholds from Label Proportions
| null |
We study the learnability of linear threshold functions (LTFs) in the learning from label proportions (LLP) framework. In this, the feature-vector classifier is learnt from bags of feature-vectors and their corresponding observed label proportions which are satisfied by (i.e., consistent with) some unknown LTF. This problem has been investigated in recent work (Saket21) which gave an algorithm to produce an LTF that satisfies at least $(2/5)$-fraction of a satisfiable collection of bags, each of size $\leq 2$, by solving and rounding a natural SDP relaxation. However, this SDP relaxation is specific to at most $2$-sized bags and does not apply to bags of larger size. In this work we provide a fairly non-trivial SDP relaxation of a non-quadratic formulation for bags of size $3$. We analyze its rounding procedure using novel matrix decomposition techniques to obtain an algorithm which outputs an LTF satisfying at least $(1/12)$-fraction of the bags of size $\leq 3$. We also apply our techniques to bags of size $q \geq 4$ to provide a $\Omega\left(1/q\right)$-approximation guarantee for a weaker notion of satisfiability. We include comparative experiments on simulated data demonstrating the applicability of our algorithmic techniques. From the complexity side we provide a hardness reduction to produce instances with bags of any constant size $q$. Our reduction proves the NP-hardness of satisfying more than $({1}/{q}) + o(1)$ fraction of a satisfiable collection of such bags using as hypothesis any function of constantly many LTFs, showing thereby that the problem is harder to approximate as the bag size $q$ increases. Using a strengthened analysis, for $q=2$ we obtain a $({4}/{9}) +o(1)$ hardness factor for this problem, improving upon the $({1}/{2}) + o(1)$ factor shown by Saket21.
|
Rishi Saket
| null | null | 2,022 |
neurips
|
MABSplit: Faster Forest Training Using Multi-Armed Bandits
| null |
Random forests are some of the most widely used machine learning models today, especially in domains that necessitate interpretability. We present an algorithm that accelerates the training of random forests and other popular tree-based learning methods. At the core of our algorithm is a novel node-splitting subroutine, dubbed MABSplit, used to efficiently find split points when constructing decision trees. Our algorithm borrows techniques from the multi-armed bandit literature to judiciously determine how to allocate samples and computational power across candidate split points. We provide theoretical guarantees that MABSplit improves the sample complexity of each node split from linear to logarithmic in the number of data points. In some settings, MABSplit leads to 100x faster training (an 99% reduction in training time) without any decrease in generalization performance. We demonstrate similar speedups when MABSplit is used across a variety of forest-based variants, such as Extremely Random Forests and Random Patches. We also show our algorithm can be used in both classification and regression tasks. Finally, we show that MABSplit outperforms existing methods in generalization performance and feature importance calculations under a fixed computational budget. All of our experimental results are reproducible via a one-line script at https://github.com/ThrunGroup/FastForest.
|
Mo Tiwari, Ryan Kang, Jaeyong Lee, Chris Piech, Ilan Shomorony, Sebastian Thrun, Martin J. Zhang
| null | null | 2,022 |
neurips
|
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints
| null |
The performance of trained neural networks is robust to harsh levels of pruning. Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning sparse models. In this work, we focus on the task of controlling the level of sparsity when performing sparse learning. Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor, thus lacking direct control of the resulting model sparsity. In response, we adopt a constrained formulation: using the gate mechanism proposed by Louizos et al. (2018), we formulate a constrained optimization problem where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion. Experiments on CIFAR-{10, 100}, TinyImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate that we can reliably achieve pre-determined sparsity targets without compromising on predictive performance.
|
Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien
| null | null | 2,022 |
neurips
|
Counterfactual Fairness with Partially Known Causal Graph
| null |
Fair machine learning aims to avoid treating individuals or sub-populations unfavourably based on \textit{sensitive attributes}, such as gender and race. Those methods in fair machine learning that are built on causal inference ascertain discrimination and bias through causal effects. Though causality-based fair learning is attracting increasing attention, current methods assume the true causal graph is fully known. This paper proposes a general method to achieve the notion of counterfactual fairness when the true causal graph is unknown. To select features that lead to counterfactual fairness, we derive the conditions and algorithms to identify ancestral relations between variables on a \textit{Partially Directed Acyclic Graph (PDAG)}, specifically, a class of causal DAGs that can be learned from observational data combined with domain knowledge. Interestingly, we find that counterfactual fairness can be achieved as if the true causal graph were fully known, when specific background knowledge is provided: the sensitive attributes do not have ancestors in the causal graph. Results on both simulated and real-world datasets demonstrate the effectiveness of our method.
|
Aoqi Zuo, Susan Wei, Tongliang Liu, Bo Han, Kun Zhang, Mingming Gong
| null | null | 2,022 |
neurips
|
Museformer: Transformer with Fine- and Coarse-Grained Attention for Music Generation
| null |
Symbolic music generation aims to generate music scores automatically. A recent trend is to use Transformer or its variants in music generation, which is, however, suboptimal, because the full attention cannot efficiently model the typically long music sequences (e.g., over 10,000 tokens), and the existing models have shortcomings in generating musical repetition structures. In this paper, we propose Museformer, a Transformer with a novel fine- and coarse-grained attention for music generation. Specifically, with the fine-grained attention, a token of a specific bar directly attends to all the tokens of the bars that are most relevant to music structures (e.g., the previous 1st, 2nd, 4th and 8th bars, selected via similarity statistics); with the coarse-grained attention, a token only attends to the summarization of the other bars rather than each token of them so as to reduce the computational cost. The advantages are two-fold. First, it can capture both music structure-related correlations via the fine-grained attention, and other contextual information via the coarse-grained attention. Second, it is efficient and can model over 3X longer music sequences compared to its full-attention counterpart. Both objective and subjective experimental results demonstrate its ability to generate long music sequences with high quality and better structures.
|
Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, Tie-Yan Liu
| null | null | 2,022 |
neurips
|
Emergent Communication: Generalization and Overfitting in Lewis Games
| null |
Lewis signaling games are a class of simple communication games for simulating the emergence of language. In these games, two agents must agree on a communication protocol in order to solve a cooperative task. Previous work has shown that agents trained to play this game with reinforcement learning tend to develop languages that display undesirable properties from a linguistic point of view (lack of generalization, lack of compositionality, etc). In this paper, we aim to provide better understanding of this phenomenon by analytically studying the learning problem in Lewis games. As a core contribution, we demonstrate that the standard objective in Lewis games can be decomposed in two components: a co-adaptation loss and an information loss. This decomposition enables us to surface two potential sources of overfitting, which we show may undermine the emergence of a structured communication protocol. In particular, when we control for overfitting on the co-adaptation loss, we recover desired properties in the emergent languages: they are more compositional and generalize better.
|
Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux, Florian Strub
| null | null | 2,022 |
neurips
|
Decision-Focused Learning without Decision-Making: Learning Locally Optimized Decision Losses
| null |
Decision-Focused Learning (DFL) is a paradigm for tailoring a predictive model to a downstream optimization task that uses its predictions in order to perform better \textit{on that specific task}. The main technical challenge associated with DFL is that it requires being able to differentiate through the optimization problem, which is difficult due to discontinuous solutions and other challenges. Past work has largely gotten around this this issue by \textit{handcrafting} task-specific surrogates to the original optimization problem that provide informative gradients when differentiated through. However, the need to handcraft surrogates for each new task limits the usability of DFL. In addition, there are often no guarantees about the convexity of the resulting surrogates and, as a result, training a predictive model using them can lead to inferior local optima. In this paper, we do away with surrogates altogether and instead \textit{learn} loss functions that capture task-specific information. To the best of our knowledge, ours is the first approach that entirely replaces the optimization component of decision-focused learning with a loss that is automatically learned. Our approach (a) only requires access to a black-box oracle that can solve the optimization problem and is thus \textit{generalizable}, and (b) can be \textit{convex by construction} and so can be easily optimized over. We evaluate our approach on three resource allocation problems from the literature and find that our approach outperforms learning without taking into account task-structure in all three domains, and even hand-crafted surrogates from the literature.
|
Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, Milind Tambe
| null | null | 2,022 |
neurips
|
Revisiting Heterophily For Graph Neural Networks
| null |
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption). While GNNs have been commonly believed to outperform NNs in real-world tasks, recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory. Heterophily has been considered the main cause of this empirical observation and numerous works have been put forward to address it. In this paper, we first revisit the widely used homophily metrics and point out that their consideration of only graph-label consistency is a shortcoming. Then, we study heterophily from the perspective of post-aggregation node similarity and define new homophily metrics, which are potentially advantageous compared to existing ones. Based on this investigation, we prove that some harmful cases of heterophily can be effectively addressed by local diversification operation. Then, we propose the Adaptive Channel Mixing (ACM), a framework to adaptively exploit aggregation, diversification and identity channels to extract richer localized information in each baseline GNN layer. ACM is more powerful than the commonly used uni-channel framework for node classification tasks on heterophilic graphs. When evaluated on 10 benchmark node classification tasks, ACM-augmented baselines consistently achieve significant performance gain, exceeding state-of-the-art GNNs on most tasks without incurring significant computational burden. (Code: https://github.com/SitaoLuan/ACM-GNN)
|
Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, Doina Precup
| null | null | 2,022 |
neurips
|
Semi-supervised Active Linear Regression
| null |
Labeled data often comes at a high cost as it may require recruiting human labelers or running costly experiments. At the same time, in many practical scenarios, one already has access to a partially labeled, potentially biased dataset that can help with the learning task at hand. Motivated by such settings, we formally initiate a study of ``semi-supervised active learning'' through the frame of linear regression. Here, the learner has access to a dataset $X \in \mathbb{R}^{(n_{\text{un}}+n_{\text{lab}}) \times d}$ composed of $n_{\text{un}}$ unlabeled examples that a learner can actively query, and $n_{\text{lab}}$ examples labeled a priori. Denoting the true labels by $Y \in \mathbb{R}^{n_{\text{un}} + n_{\text{lab}}}$, the learner's objective is to find $\widehat{\beta} \in \mathbb{R}^d$ such that,$$\| X \widehat{\beta} - Y \|_2^2 \le (1 + \epsilon) \min_{\beta \in \mathbb{R}^d} \| X \beta - Y \|_2^2$$while querying the labels of as few unlabeled points as possible. In this paper, we introduce an instance dependent parameter called the reduced rank, denoted $\text{R}_X$, and propose an efficient algorithm with query complexity $O(\text{R}_X/\epsilon)$. This result directly implies improved upper bounds for two important special cases: $(i)$ active ridge regression, and $(ii)$ active kernel ridge regression, where the reduced-rank equates to the ``statistical dimension'', $\textsf{sd}_\lambda$ and ``effective dimension'', $d_\lambda$ of the problem respectively, where $\lambda \ge 0$ denotes the regularization parameter. Finally, we introduce a distributional version of the problem as a special case of the agnostic formulation we consider earlier; here, for every $X$, we prove a matching instance-wise lower bound of $\Omega (\text{R}_X / \epsilon)$ on the query complexity of any algorithm.
|
Nived Rajaraman, Fnu Devvrit, Pranjal Awasthi
| null | null | 2,022 |
neurips
|
Okapi: Generalising Better by Making Statistical Matches Match
| null |
We propose Okapi, a simple, efficient, and general method for robust semi-supervised learning based on online statistical matching. Our method uses a nearest-neighbours-based matching procedure to generate cross-domain views for a consistency loss, while eliminating statistical outliers. In order to perform the online matching in a runtime- and memory-efficient way, we draw upon the self-supervised literature and combine a memory bank with a slow-moving momentum encoder. The consistency loss is applied within the feature space, rather than on the predictive distribution, making the method agnostic to both the modality and the task in question. We experiment on the WILDS 2.0 datasets Sagawa et al., which significantly expands the range of modalities, applications, and shifts available for studying and benchmarking real-world unsupervised adaptation. Contrary to Sagawa et al., we show that it is in fact possible to leverage additional unlabelled data to improve upon empirical risk minimisation (ERM) results with the right method. Our method outperforms the baseline methods in terms of out-of-distribution (OOD) generalisation on the iWildCam (a multi-class classification task) and PovertyMap (a regression task) image datasets as well as the CivilComments (a binary classification task) text dataset. Furthermore, from a qualitative perspective, we show the matches obtained from the learned encoder are strongly semantically related. Code for our paper is publicly available at https://github.com/wearepal/okapi/.
|
Myles Bartlett, Sara Romiti, Viktoriia Sharmanska, Novi Quadrianto
| null | null | 2,022 |
neurips
|
Riemannian Neural SDE: Learning Stochastic Representations on Manifolds
| null |
In recent years, the neural stochastic differential equation (NSDE) has gained attention for modeling stochastic representations with great success in various types of applications. However, it typically loses expressivity when the data representation is manifold-valued. To address this issue, we suggest a principled method for expressing the stochastic representation with the Riemannian neural SDE (RNSDE), which extends the conventional Euclidean NSDE. Empirical results for various tasks demonstrate that the proposed method significantly outperforms baseline methods.
|
Sung Woo Park, Hyomin Kim, Kyungjae Lee, Junseok Kwon
| null | null | 2,022 |
neurips
|
TweetNERD - End to End Entity Linking Benchmark for Tweets
| null |
Named Entity Recognition and Disambiguation (NERD) systems are foundational for information retrieval, question answering, event detection, and other natural language processing (NLP) applications. We introduce TweetNERD, a dataset of 340K+ Tweets across 2010-2021, for benchmarking NERD systems on Tweets. This is the largest and most temporally diverse open sourced dataset benchmark for NERD on Tweets and can be used to facilitate research in this area. We describe evaluation setup with TweetNERD for three NERD tasks: Named Entity Recognition (NER), Entity Linking with True Spans (EL), and End to End Entity Linking (End2End); and provide performance of existing publicly available methods on specific TweetNERD splits. TweetNERD is available at: https://doi.org/10.5281/zenodo.6617192 under Creative Commons Attribution 4.0 International (CC BY 4.0) license. Check out more details at https://github.com/twitter-research/TweetNERD.
|
Shubhanshu Mishra, Aman Saini, Raheleh Makki, Sneha Mehta, Aria Haghighi, Ali Mollahosseini
| null | null | 2,022 |
neurips
|
Cross-Image Context for Single Image Inpainting
| null |
Visual context is of crucial importance for image inpainting. The contextual information captures the appearance and semantic correlation between the image regions, helping to propagate the information of the complete regions for reasoning the content of the corrupted regions. Many inpainting methods compute the visual context based on the regions within the single image. In this paper, we propose the Cross-Image Context Memory (CICM) for learning and using the cross-image context to recover the corrupted regions. CICM consists of multiple sets of the cross-image representations learned from the image regions with different visual patterns. The regional representations are learned across different images, thus providing richer context that benefit the inpainting task. The experimental results demonstrate the effectiveness and generalization of CICM, which achieves state-of-the-art performances on various datasets for single image inpainting.
|
Tingliang Feng, Wei Feng, Weiqi Li, Di Lin
| null | null | 2,022 |
neurips
|
Towards Efficient Post-training Quantization of Pre-trained Language Models
| null |
Network quantization has gained increasing attention with the rapid growth of large pre-trained language models~(PLMs). However, most existing quantization methods for PLMs follow quantization-aware training~(QAT) that requires end-to-end training with full access to the entire dataset. Therefore, they suffer from slow training, large memory overhead, and data accessibility issues. In this paper, we study post-training quantization~(PTQ) of PLMs, and propose module-wise quantization error minimization~(MREM), an efficient solution to mitigate these issues. By partitioning the PLM into multiple modules, we minimize the reconstruction error incurred by quantization for each module. In addition, we design a new model parallel training strategy such that each module can be trained locally on separate computing devices without waiting for preceding modules, which brings nearly the theoretical training speed-up (e.g., $4\times$ on $4$ GPUs). Experiments on GLUE and SQuAD benchmarks show that our proposed PTQ solution not only performs close to QAT, but also enjoys significant reductions in training time, memory overhead, and data consumption.
|
Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, Michael R Lyu
| null | null | 2,022 |
neurips
|
OccGen: Selection of Real-world Multilingual Parallel Data Balanced in Gender within Occupations
| null |
This paper describes the OCCGEN toolkit, which allows extracting multilingual parallel data balanced in gender within occupations. OCCGEN can extract datasets that reflect gender diversity (beyond binary) more fairly in society to be further used to explicitly mitigate occupational gender stereotypes. We propose two use cases that extract evaluation datasets for machine translation in four high-resourcelanguages from different linguistic families and in a low-resource African language. Our analysis of these use cases shows that translation outputs in high-resource languages tend to worsen in feminine subsets (compared to masculine). This can be explained because less attention is paid to the source sentence. Then, more attention is given to the target prefix overgeneralizing to the most frequent masculine forms.
|
Marta Costa-jussà, Christine Basta, Oriol Domingo, André Rubungo
| null | null | 2,022 |
neurips
|
Neural Stochastic PDEs: Resolution-Invariant Learning of Continuous Spatiotemporal Dynamics
| null |
Stochastic partial differential equations (SPDEs) are the mathematical tool of choice for modelling spatiotemporal PDE-dynamics under the influence of randomness. Based on the notion of mild solution of an SPDE, we introduce a novel neural architecture to learn solution operators of PDEs with (possibly stochastic) forcing from partially observed data. The proposed Neural SPDE model provides an extension to two popular classes of physics-inspired architectures. On the one hand, it extends Neural CDEs and variants -- continuous-time analogues of RNNs -- in that it is capable of processing incoming sequential information arriving at arbitrary spatial resolutions. On the other hand, it extends Neural Operators -- generalizations of neural networks to model mappings between spaces of functions -- in that it can parameterize solution operators of SPDEs depending simultaneously on the initial condition and a realization of the driving noise. By performing operations in the spectral domain, we show how a Neural SPDE can be evaluated in two ways, either by calling an ODE solver (emulating a spectral Galerkin scheme), or by solving a fixed point problem. Experiments on various semilinear SPDEs, including the stochastic Navier-Stokes equations, demonstrate how the Neural SPDE model is capable of learning complex spatiotemporal dynamics in a resolution-invariant way, with better accuracy and lighter training data requirements compared to alternative models, and up to 3 orders of magnitude faster than traditional solvers.
|
Cristopher Salvi, Maud Lemercier, Andris Gerasimovics
| null | null | 2,022 |
neurips
|
When does return-conditioned supervised learning work for offline reinforcement learning?
| null |
Several recent works have proposed a class of algorithms for the offline reinforcement learning (RL) problem that we will refer to as return-conditioned supervised learning (RCSL). RCSL algorithms learn the distribution of actions conditioned on both the state and the return of the trajectory. Then they define a policy by conditioning on achieving high return. In this paper, we provide a rigorous study of the capabilities and limitations of RCSL something which is crucially missing in previous work. We find that RCSL returns the optimal policy under a set of assumptions that are stronger than those needed for the more traditional dynamic programming-based algorithms. We provide specific examples of MDPs and datasets that illustrate the necessity of these assumptions and the limits of RCSL. Finally, we present empirical evidence that these limitations will also cause issues in practice by providing illustrative experiments in simple point-mass environments and on datasets from the D4RL benchmark.
|
David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, Joan Bruna
| null | null | 2,022 |
neurips
|
Differentially Private Covariance Revisited
| null |
In this paper, we present two new algorithms for covariance estimation under concentrated differential privacy (zCDP). The first algorithm achieves a Frobenius error of $\tilde{O}(d^{1/4}\sqrt{\mathrm{tr}}/\sqrt{n} + \sqrt{d}/n)$, where $\mathrm{tr}$ is the trace of the covariance matrix. By taking $\mathrm{tr}=1$, this also implies a worst-case error bound of $\tilde{O}(d^{1/4}/\sqrt{n})$, which improves the standard Gaussian mechanism's $\tilde{O}(d/n)$ for the regime $d>\widetilde{\Omega}(n^{2/3})$. Our second algorithm offers a tail-sensitive bound that could be much better on skewed data. The corresponding algorithms are also simple and efficient. Experimental results show that they offer significant improvements over prior work.
|
Wei Dong, Yuting Liang, Ke Yi
| null | null | 2,022 |
neurips
|
Predictive Coding beyond Gaussian Distributions
| null |
A large amount of recent research has the far-reaching goal of finding training methods for deep neural networks that can serve as alternatives to backpropagation~(BP). A prominent example is predictive coding (PC), which is a neuroscience-inspired method that performs inference on hierarchical Gaussian generative models. These methods, however, fail to keep up with modern neural networks, as they are unable to replicate the dynamics of complex layers and activation functions. In this work, we solve this problem by generalizing PC to arbitrary probability distributions, enabling the training of architectures, such as transformers, that are hard to approximate with only Gaussian assumptions. We perform three experimental analyses. First, we study the gap between our method and the standard formulation of PC on multiple toy examples. Second, we test the reconstruction quality on variational autoencoders, where our method reaches the same reconstruction quality as BP. Third, we show that our method allows us to train transformer networks and achieve performance comparable with BP on conditional language models. More broadly, this method allows neuroscience-inspired learning to be applied to multiple domains, since the internal distributions can be flexibly adapted to the data, tasks, and architectures used.
|
Luca Pinchetti, Tommaso Salvatori, Yordan Yordanov, Beren Millidge, Yuhang Song, Thomas Lukasiewicz
| null | null | 2,022 |
neurips
|
Multi-Sample Training for Neural Image Compression
| null |
This paper considers the problem of lossy neural image compression (NIC). Current state-of-the-art (SOTA) methods adopt uniform posterior to approximate quantization noise, and single-sample pathwise estimator to approximate the gradient of evidence lower bound (ELBO). In this paper, we propose to train NIC with multiple-sample importance weighted autoencoder (IWAE) target, which is tighter than ELBO and converges to log likelihood as sample size increases. First, we identify that the uniform posterior of NIC has special properties, which affect the variance and bias of pathwise and score function estimators of the IWAE target. Moreover, we provide insights on a commonly adopted trick in NIC from gradient variance perspective. Based on those analysis, we further propose multiple-sample NIC (MS-NIC), an enhanced IWAE target for NIC. Experimental results demonstrate that it improves SOTA NIC methods. Our MS-NIC is plug-and-play, and can be easily extended to neural video compression.
|
Tongda Xu, Yan Wang, Dailan He, Chenjian Gao, Han Gao, Kunzan Liu, Hongwei Qin
| null | null | 2,022 |
neurips
|
Learning Robust Dynamics through Variational Sparse Gating
| null |
Learning world models from their sensory inputs enables agents to plan for actions by imagining their future outcomes. World models have previously been shown to improve sample-efficiency in simulated environments with few objects, but have not yet been applied successfully to environments with many objects. In environments with many objects, often only a small number of them are moving or interacting at the same time. In this paper, we investigate integrating this inductive bias of sparse interactions into the latent dynamics of world models trained from pixels. First, we introduce Variational Sparse Gating (VSG), a latent dynamics model that updates its feature dimensions sparsely through stochastic binary gates. Moreover, we propose a simplified architecture Simple Variational Sparse Gating (SVSG) that removes the deterministic pathway of previous models, resulting in a fully stochastic transition function that leverages the VSG mechanism. We evaluate the two model architectures in the BringBackShapes (BBS) environment that features a large number of moving objects and partial observability, demonstrating clear improvements over prior models.
|
Arnav Kumar Jain, Shivakanth Sujit, Shruti Joshi, Vincent Michalski, Danijar Hafner, Samira Ebrahimi Kahou
| null | null | 2,022 |
neurips
|
Efficient and Effective Augmentation Strategy for Adversarial Training
| null |
Adversarial training of Deep Neural Networks is known to be significantly more data-hungry when compared to standard training. Furthermore, complex data augmentations such as AutoAugment, which have led to substantial gains in standard training of image classifiers, have not been successful with Adversarial Training. We first explain this contrasting behavior by viewing augmentation during training as a problem of domain generalization, and further propose Diverse Augmentation-based Joint Adversarial Training (DAJAT) to use data augmentations effectively in adversarial training. We aim to handle the conflicting goals of enhancing the diversity of the training dataset and training with data that is close to the test distribution by using a combination of simple and complex augmentations with separate batch normalization layers during training. We further utilize the popular Jensen-Shannon divergence loss to encourage the \emph{joint} learning of the \emph{diverse augmentations}, thereby allowing simple augmentations to guide the learning of complex ones. Lastly, to improve the computational efficiency of the proposed method, we propose and utilize a two-step defense, Ascending Constraint Adversarial Training (ACAT), that uses an increasing epsilon schedule and weight-space smoothing to prevent gradient masking. The proposed method DAJAT achieves substantially better robustness-accuracy trade-off when compared to existing methods on the RobustBench Leaderboard on ResNet-18 and WideResNet-34-10. The code for implementing DAJAT is available here: https://github.com/val-iisc/DAJAT
|
Sravanti Addepalli, Samyak Jain, Venkatesh Babu R
| null | null | 2,022 |
neurips
|
Learning to Navigate Wikipedia by Taking Random Walks
| null |
A fundamental ability of an intelligent web-based agent is seeking out and acquiring new information. Internet search engines reliably find the correct vicinity but the top results may be a few links away from the desired target. A complementary approach is navigation via hyperlinks, employing a policy that comprehends local content and selects a link that moves it closer to the target. In this paper, we show that behavioral cloning of randomly sampled trajectories is sufficient to learn an effective link selection policy. We demonstrate the approach on a graph version of Wikipedia with 38M nodes and 387M edges. The model is able to efficiently navigate between nodes 5 and 20 steps apart 96% and 92% of the time, respectively. We then use the resulting embeddings and policy in downstream fact verification and question answering tasks where, in combination with basic TF-IDF search and ranking methods, they are competitive results to the state-of-the-art methods.
|
Manzil Zaheer, Kenneth Marino, Will Grathwohl, John Schultz, Wendy Shang, Sheila Babayan, Arun Ahuja, Ishita Dasgupta, Christine Kaeser-Chen, Rob Fergus
| null | null | 2,022 |
neurips
|
Learning in Observable POMDPs, without Computationally Intractable Oracles
| null |
Much of reinforcement learning theory is built on top of oracles that are computationally hard to implement. Specifically for learning near-optimal policies in Partially Observable Markov Decision Processes (POMDPs), existing algorithms either need to make strong assumptions about the model dynamics (e.g. deterministic transitions) or assume access to an oracle for solving a hard optimistic planning or estimation problem as a subroutine. In this work we develop the first oracle-free learning algorithm for POMDPs under reasonable assumptions. Specifically, we give a quasipolynomial-time end-to-end algorithm for learning in ``observable'' POMDPs, where observability is the assumption that well-separated distributions over states induce well-separated distributions over observations. Our techniques circumvent the more traditional approach of using the principle of optimism under uncertainty to promote exploration, and instead give a novel application of barycentric spanners to constructing policy covers.
|
Noah Golowich, Ankur Moitra, Dhruv Rohatgi
| null | null | 2,022 |
neurips
|
Where to Pay Attention in Sparse Training for Feature Selection?
| null |
A new line of research for feature selection based on neural networks has recently emerged. Despite its superiority to classical methods, it requires many training iterations to converge and detect the informative features. For datasets with a large number of samples or a very high dimensional feature space, the computational time becomes prohibitively long. In this paper, we present a new efficient unsupervised method for feature selection based on sparse autoencoders. In particular, we propose a new sparse training algorithm that optimizes a model's sparse topology during training to quickly pay attention to informative features. The attention-based adaptation of the sparse topology enables fast detection of informative features after a few training iterations. We performed extensive experiments on 10 datasets of different types, including image, speech, text, artificial, and biological. They cover a wide range of characteristics, such as low and high-dimensional feature spaces, as well as few and large training samples. Our proposed approach outperforms the state-of-the-art methods in terms of the selection of informative features while reducing training iterations and computational costs substantially. Moreover, the experiments show the robustness of our method in extremely noisy environments.
|
Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, Decebal Constantin Mocanu
| null | null | 2,022 |
neurips
|
Provable Subspace Identification Under Post-Nonlinear Mixtures
| null |
Unsupervised mixture learning (UML) aims at identifying linearly or nonlinearly mixed latent components in a blind manner. UML is known to be challenging: Even learning linear mixtures requires highly nontrivial analytical tools, e.g., independent component analysis or nonnegative matrix factorization. In this work, the post-nonlinear (PNL) mixture model---where {\it unknown} element-wise nonlinear functions are imposed onto a linear mixture---is revisited. The PNL model is widely employed in different fields ranging from brain signal classification, speech separation, remote sensing, to causal discovery. To identify and remove the unknown nonlinear functions, existing works often assume different properties on the latent components (e.g., statistical independence or probability-simplex structures). This work shows that under a carefully designed UML criterion, the existence of a nontrivial {\it null space} associated with the underlying mixing system suffices to guarantee identification/removal of the unknown nonlinearity. Compared to prior works, our finding largely relaxes the conditions of attaining PNL identifiability, and thus may benefit applications where no strong structural information on the latent components is known. A finite-sample analysis is offered to characterize the performance of the proposed approach under realistic settings. To implement the proposed learning criterion, a block coordinate descent algorithm is proposed. A series of numerical experiments corroborate our theoretical claims.
|
Qi Lyu, Xiao Fu
| null | null | 2,022 |
neurips
|
PDEBench: An Extensive Benchmark for Scientific Machine Learning
| null |
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and repre- sentative of a wide range of problems. We introduce PDEBENCH, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBENCH comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems con- tribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more real- istic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of ini- tial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBENCH allows researchers to extend the benchmark freely for their own pur- poses using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
|
Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger, Mathias Niepert
| null | null | 2,022 |
neurips
|
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
| null |
Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments. Despite a proliferation of proposed algorithms for this task, assessing their performance both theoretically and empirically is still very challenging. Distributional matching algorithms such as (Conditional) Domain Adversarial Networks [Ganin et al., 2016, Long et al., 2018] are popular and enjoy empirical success, but they lack formal guarantees. Other approaches such as Invariant Risk Minimization (IRM) require a prohibitively large number of training environments---linear in the dimension of the spurious feature space $d_s$---even on simple data models like the one proposed by [Rosenfeld et al., 2021]. Under a variant of this model, we show that ERM and IRM can fail to find the optimal invariant predictor with $o(d_s)$ environments. We then present an iterative feature matching algorithm that is guaranteed with high probability to find the optimal invariant predictor after seeing only $O(\log d_s)$ environments. Our results provide the first theoretical justification for distribution-matching algorithms widely used in practice under a concrete nontrivial data model.
|
Yining Chen, Elan Rosenfeld, Mark Sellke, Tengyu Ma, Andrej Risteski
| null | null | 2,022 |
neurips
|
General Cutting Planes for Bound-Propagation-Based Neural Network Verification
| null |
Bound propagation methods, when combined with branch and bound, are among the most effective methods to formally verify properties of deep neural networks such as correctness, robustness, and safety. However, existing works cannot handle the general form of cutting plane constraints widely accepted in traditional solvers, which are crucial for strengthening verifiers with tightened convex relaxations. In this paper, we generalize the bound propagation procedure to allow the addition of arbitrary cutting plane constraints, including those involving relaxed integer variables that do not appear in existing bound propagation formulations. Our generalized bound propagation method, GCP-CROWN, opens up the opportunity to apply general cutting plane methods for neural network verification while benefiting from the efficiency and GPU acceleration of bound propagation methods. As a case study, we investigate the use of cutting planes generated by off-the-shelf mixed integer programming (MIP) solver. We find that MIP solvers can generate high-quality cutting planes for strengthening bound-propagation-based verifiers using our new formulation. Since the branching-focused bound propagation procedure and the cutting-plane-focused MIP solver can run in parallel utilizing different types of hardware (GPUs and CPUs), their combination can quickly explore a large number of branches with strong cutting planes, leading to strong verification performance. Experiments demonstrate that our method is the first verifier that can completely solve the oval20 benchmark and verify twice as many instances on the oval21 benchmark compared to the best tool in VNN-COMP 2021, and also noticeably outperforms state-of-the-art verifiers on a wide range of benchmarks. GCP-CROWN is part of the $\alpha,\beta$-CROWN verifier, the VNN-COMP 2022 winner. Code is available at http://PaperCode.cc/GCP-CROWN.
|
Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter
| null | null | 2,022 |
neurips
|
Use-Case-Grounded Simulations for Explanation Evaluation
| null |
A growing body of research runs human subject evaluations to study whether providing users with explanations of machine learning models can help them with practical real-world use cases. However, running user studies is challenging and costly, and consequently each study typically only evaluates a limited number of different settings, e.g., studies often only evaluate a few arbitrarily selected model explanation methods. To address these challenges and aid user study design, we introduce Simulated Evaluations (SimEvals). SimEvals involve training algorithmic agents that take as input the information content (such as model explanations) that would be presented to the user, to predict answers to the use case of interest. The algorithmic agent's test set accuracy provides a measure of the predictiveness of the information content for the downstream use case. We run a comprehensive evaluation on three real-world use cases (forward simulation, model debugging, and counterfactual reasoning) to demonstrate that SimEvals can effectively identify which explanation methods will help humans for each use case. These results provide evidence that \simevals{} can be used to efficiently screen an important set of user study design decisions, e.g., selecting which explanations should be presented to the user, before running a potentially costly user study.
|
Valerie Chen, Nari Johnson, Nicholay Topin, Gregory Plumb, Ameet Talwalkar
| null | null | 2,022 |
neurips
|
Mildly Conservative Q-Learning for Offline Reinforcement Learning
| null |
Offline reinforcement learning (RL) defines the task of learning from a static logged dataset without continually interacting with the environment. The distribution shift between the learned policy and the behavior policy makes it necessary for the value function to stay conservative such that out-of-distribution (OOD) actions will not be severely overestimated. However, existing approaches, penalizing the unseen actions or regularizing with the behavior policy, are too pessimistic, which suppresses the generalization of the value function and hinders the performance improvement. This paper explores mild but enough conservatism for offline learning while not harming generalization. We propose Mildly Conservative Q-learning (MCQ), where OOD actions are actively trained by assigning them proper pseudo Q values. We theoretically show that MCQ induces a policy that behaves at least as well as the behavior policy and no erroneous overestimation will occur for OOD actions. Experimental results on the D4RL benchmarks demonstrate that MCQ achieves remarkable performance compared with prior work. Furthermore, MCQ shows superior generalization ability when transferring from offline to online, and significantly outperforms baselines. Our code is publicly available at https://github.com/dmksjfl/MCQ.
|
Jiafei Lyu, Xiaoteng Ma, Xiu Li, Zongqing Lu
| null | null | 2,022 |
neurips
|
S$^3$-NeRF: Neural Reflectance Field from Shading and Shadow under a Single Viewpoint
| null |
In this paper, we address the "dual problem" of multi-view scene reconstruction in which we utilize single-view images captured under different point lights to learn a neural scene representation. Different from existing single-view methods which can only recover a 2.5D scene representation (i.e., a normal / depth map for the visible surface), our method learns a neural reflectance field to represent the 3D geometry and BRDFs of a scene. Instead of relying on multi-view photo-consistency, our method exploits two information-rich monocular cues, namely shading and shadow, to infer scene geometry. Experiments on multiple challenging datasets show that our method is capable of recovering 3D geometry, including both visible and invisible parts, of a scene from single-view images. Thanks to the neural reflectance field representation, our method is robust to depth discontinuities. It supports applications like novel-view synthesis and relighting. Our code and model can be found at https://ywq.github.io/s3nerf.
|
Wenqi Yang, Guanying Chen, Chaofeng Chen, Zhenfang Chen, Kwan-Yee K. Wong
| null | null | 2,022 |
neurips
|
An $\alpha$-regret analysis of Adversarial Bilateral Trade
| null |
We study sequential bilateral trade where sellers and buyers valuations are completely arbitrary ({\sl i.e.}, determined by an adversary). Sellers and buyers are strategic agents with private valuations for the good and the goal is to design a mechanism that maximizes efficiency (or gain from trade) while being incentive compatible, individually rational and budget balanced. In this paper we consider gain from trade which is harder to approximate than social welfare.We consider a variety of feedback scenarios and distinguish the cases where the mechanism posts one price and when it can post different prices for buyer and seller. We show several surprising results about the separation between the different scenarios. In particular we show that (a) it is impossible to achieve sublinear $\alpha$-regret for any $\alpha<2$, (b) but with full feedback sublinear $2$-regret is achievable (c) with a single price and partial feedback one cannot get sublinear $\alpha$ regret for any constant $\alpha$ (d) nevertheless, posting two prices even with one-bit feedback achieves sublinear $2$-regret, and (e) there is a provable separation in the $2$-regret bounds between full and partial feedback.
|
Yossi Azar, Amos Fiat, Federico Fusco
| null | null | 2,022 |
neurips
|
AdaFocal: Calibration-aware Adaptive Focal Loss
| null |
Much recent work has been devoted to the problem of ensuring that a neural network's confidence scores match the true probability of being correct, i.e. the calibration problem. Of note, it was found that training with focal loss leads to better calibration than cross-entropy while achieving similar level of accuracy \cite{mukhoti2020}. This success stems from focal loss regularizing the entropy of the model's prediction (controlled by the parameter $\gamma$), thereby reining in the model's overconfidence. Further improvement is expected if $\gamma$ is selected independently for each training sample (Sample-Dependent Focal Loss (FLSD-53) \cite{mukhoti2020}). However, FLSD-53 is based on heuristics and does not generalize well. In this paper, we propose a calibration-aware adaptive focal loss called AdaFocal that utilizes the calibration properties of focal (and inverse-focal) loss and adaptively modifies $\gamma_t$ for different groups of samples based on $\gamma_{t-1}$ from the previous step and the knowledge of model's under/over-confidence on the validation set. We evaluate AdaFocal on various image recognition and one NLP task, covering a wide variety of network architectures, to confirm the improvement in calibration while achieving similar levels of accuracy. Additionally, we show that models trained with AdaFocal achieve a significant boost in out-of-distribution detection.
|
Arindam Ghosh, Thomas Schaaf, Matthew Gormley
| null | null | 2,022 |
neurips
|
Maximizing Revenue under Market Shrinkage and Market Uncertainty
| null |
A shrinking market is a ubiquitous challenge faced by various industries. In this paper we formulate the first formal model of shrinking markets in multi-item settings, and study how mechanism design and machine learning can help preserve revenue in an uncertain, shrinking market. Via a sample-based learning mechanism, we prove the first guarantees on how much revenue can be preserved by truthful multi-item, multi-bidder auctions (for limited supply) when only a random unknown fraction of the population participates in the market. We first present a general reduction that converts any sufficiently rich auction class into a randomized auction robust to market shrinkage. Our main technique is a novel combinatorial construction called a winner diagram that concisely represents all possible executions of an auction on an uncertain set of bidders. Via a probabilistic analysis of winner diagrams, we derive a general possibility result: a sufficiently rich class of auctions always contains an auction that is robust to market shrinkage and market uncertainty. Our result has applications to important practically-constrained settings such as auctions with a limited number of winners. We then show how to efficiently learn an auction that is robust to market shrinkage by leveraging practically-efficient routines for solving the winner determination problem.
|
Maria-Florina F. Balcan, Siddharth Prasad, Tuomas Sandholm
| null | null | 2,022 |
neurips
|
Reinforcement Learning with Automated Auxiliary Loss Search
| null |
A good state representation is crucial to solving complicated reinforcement learning (RL) challenges. Many recent works focus on designing auxiliary losses for learning informative representations. Unfortunately, these handcrafted objectives rely heavily on expert knowledge and may be sub-optimal. In this paper, we propose a principled and universal method for learning better representations with auxiliary loss functions, named Automated Auxiliary Loss Search (A2LS), which automatically searches for top-performing auxiliary loss functions for RL. Specifically, based on the collected trajectory data, we define a general auxiliary loss space of size $7.5 \times 10^{20}$ and explore the space with an efficient evolutionary search strategy. Empirical results show that the discovered auxiliary loss (namely, A2-winner) significantly improves the performance on both high-dimensional (image) and low-dimensional (vector) unseen tasks with much higher efficiency, showing promising generalization ability to different settings and even different benchmark domains. We conduct a statistical analysis to reveal the relations between patterns of auxiliary losses and RL performance.
|
Tairan He, Yuge Zhang, Kan Ren, Minghuan Liu, Che Wang, Weinan Zhang, Yuqing Yang, Dongsheng Li
| null | null | 2,022 |
neurips
|
Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats
| null |
Graph classifiers are vulnerable to topological attacks. Although certificates of robustness have been recently developed, their threat model only counts local and global edge perturbations, which effectively ignores important graph structures such as isomorphism. To address this issue, we propose measuring the perturbation with the orthogonal Gromov-Wasserstein discrepancy, and building its Fenchel biconjugate to facilitate convex optimization. Our key insight is drawn from the matching loss whose root connects two variables via a monotone operator, and it yields a tight outer convex approximation for resistance distance on graph nodes. When applied to graph classification by graph convolutional networks, both our certificate and attack algorithm are demonstrated effective.
|
Hongwei Jin, Zishun Yu, Xinhua Zhang
| null | null | 2,022 |
neurips
|
StrokeRehab: A Benchmark Dataset for Sub-second Action Identification
| null |
Automatic action identification from video and kinematic data is an important machine learning problem with applications ranging from robotics to smart health. Most existing works focus on identifying coarse actions such as running, climbing, or cutting vegetables, which have relatively long durations and a complex series of motions. This is an important limitation for applications that require identification of more elemental motions at high temporal resolution. For example, in the rehabilitation of arm impairment after stroke, quantifying the training dose (number of repetitions) requires differentiating motions with sub-second durations. Our goal is to bridge this gap. To this end, we introduce a large-scale, multimodal dataset, StrokeRehab, as a new action-recognition benchmark that includes elemental short-duration actions labeled at a high temporal resolution. StrokeRehab consists of a high-quality inertial measurement unit sensor and video data of 51 stroke-impaired patients and 20 healthy subjects performing activities of daily living like feeding, brushing teeth, etc. Because it contains data from both healthy and impaired individuals, StrokeRehab can be used to study the influence of distribution shift in action-recognition tasks. When evaluated on StrokeRehab, current state-of-the-art models for action segmentation produce noisy predictions, which reduces their accuracy in identifying the corresponding sequence of actions. To address this, we propose a novel approach for high-resolution action identification, inspired by speech-recognition techniques, which is based on a sequence-to-sequence model that directly predicts the sequence of actions. This approach outperforms current state-of-the-art methods on StrokeRehab, as well as on the standard benchmark datasets 50Salads, Breakfast, and Jigsaws.
|
Aakash Kaku, Kangning Liu, Avinash Parnandi, Haresh Rengaraj Rajamohan, Kannan Venkataramanan, Anita Venkatesan, Audre Wirtanen, Natasha Pandit, Heidi Schambra, Carlos Fernandez-Granda
| null | null | 2,022 |
neurips
|
The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data Regimes
| null |
Convolutional neural networks were the standard for solving many computer vision tasks until recently, when Transformers of MLP-based architectures have started to show competitive performance. These architectures typically have a vast number of weights and need to be trained on massive datasets; hence, they are not suitable for their use in low-data regimes. In this work, we propose a simple yet effective framework to improve generalization from small amounts of data. We augment modern CNNs with fully-connected (FC) layers and show the massive impact this architectural change has in low-data regimes. We further present an online joint knowledge-distillation method to utilize the extra FC layers at train time but avoid them during test time. This allows us to improve the generalization of a CNN-based model without any increase in the number of weights at test time. We perform classification experiments for a large range of network backbones and several standard datasets on supervised learning and active learning. Our experiments significantly outperform the networks without fully-connected layers, reaching a relative improvement of up to $16\%$ validation accuracy in the supervised setting without adding any extra parameters during inference.
|
Peter Kocsis, Peter Súkeník, Guillem Braso, Matthias Niessner, Laura Leal-Taixé, Ismail Elezi
| null | null | 2,022 |
neurips
|
Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization
| null |
Deep reinforcement learning (DRL)-based combinatorial optimization (CO) methods (i.e., DRL-NCO) have shown significant merit over the conventional CO solvers as DRL-NCO is capable of learning CO solvers less relying on problem-specific expert domain knowledge (heuristic method) and supervised labeled data (supervised learning method). This paper presents a novel training scheme, Sym-NCO, which is a regularizer-based training scheme that leverages universal symmetricities in various CO problems and solutions. Leveraging symmetricities such as rotational and reflectional invariance can greatly improve the generalization capability of DRL-NCO because it allows the learned solver to exploit the commonly shared symmetricities in the same CO problem class. Our experimental results verify that our Sym-NCO greatly improves the performance of DRL-NCO methods in four CO tasks, including the traveling salesman problem (TSP), capacitated vehicle routing problem (CVRP), prize collecting TSP (PCTSP), and orienteering problem (OP), without utilizing problem-specific expert domain knowledge. Remarkably, Sym-NCO outperformed not only the existing DRL-NCO methods but also a competitive conventional solver, the iterative local search (ILS), in PCTSP at 240$\times$ faster speed. Our source code is available at https://github.com/alstn12088/Sym-NCO.
|
Minsu Kim, Junyoung Park, Jinkyoo Park
| null | null | 2,022 |
neurips
|
On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games
| null |
Softmax policy gradient is a popular algorithm for policy optimization in single-agent reinforcement learning, particularly since projection is not needed for each gradient update. However, in multi-agent systems, the lack of central coordination introduces significant additional difficulties in the convergence analysis. Even for a stochastic game with identical interest, there can be multiple Nash Equilibria (NEs), which disables proof techniques that rely on the existence of a unique global optimum. Moreover, the softmax parameterization introduces non-NE policies with zero gradient, making it difficult for gradient-based algorithms in seeking NEs. In this paper, we study the finite time convergence of decentralized softmax gradient play in a special form of game, Markov Potential Games (MPGs), which includes the identical interest game as a special case. We investigate both gradient play and natural gradient play, with and without $\log$-barrier regularization. The established convergence rates for the unregularized cases contain a trajectory dependent constant that can be \emph{arbitrarily large}, whereas the $\log$-barrier regularization overcomes this drawback, with the cost of slightly worse dependence on other factors such as the action set size. An empirical study on an identical interest matrix game confirms the theoretical findings.
|
Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li
| null | null | 2,022 |
neurips
|
FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning
| null |
Finance is a particularly challenging playground for deep reinforcement learning. However, establishing high-quality market environments and benchmarks for financial reinforcement learning is challenging due to three major factors, namely, low signal-to-noise ratio of financial data, survivorship bias of historical data, and backtesting overfitting. In this paper, we present an openly accessible FinRL-Meta library that has been actively maintained by the AI4Finance community. First, following a DataOps paradigm, we will provide hundreds of market environments through an automatic data curation pipeline that processes dynamic datasets from real-world markets into gym-style market environments. Second, we reproduce popular papers as stepping stones for users to design new trading strategies. We also deploy the library on cloud platforms so that users can visualize their own results and assess the relative performance via community-wise competitions. Third, FinRL-Meta provides tens of Jupyter/Python demos organized into a curriculum and a documentation website to serve the rapidly growing community. FinRL-Meta is available at: \url{https://github.com/AI4Finance-Foundation/FinRL-Meta}
|
Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Wang, Zhaoran Wang, Jian Guo
| null | null | 2,022 |
neurips
|
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative
| null |
This paper targets at improving the generalizability of hypergraph neural networks in the low-label regime, through applying the contrastive learning approach from images/graphs (we refer to it as HyperGCL). We focus on the following question: How to construct contrastive views for hypergraphs via augmentations? We provide the solutions in two folds. First, guided by domain knowledge, we fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three vertex augmentation strategies from graph-structured data. Second, in search of more effective views in a data-driven manner, we for the first time propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters. Our technical innovations are reflected in designing both fabricated and generative augmentations of hypergraphs. The experimental findings include: (i) Among fabricated augmentations in HyperGCL, augmenting hyperedges provides the most numerical gains, implying that higher-order information in structures is usually more downstream-relevant; (ii) Generative augmentations do better in preserving higher-order information to further benefit generalizability; (iii) HyperGCL also boosts robustness and fairness in hypergraph representation learning. Codes are released at https://github.com/weitianxin/HyperGCL.
|
Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, Zhangyang Wang
| null | null | 2,022 |
neurips
|
M$^4$I: Multi-modal Models Membership Inference
| null |
With the development of machine learning techniques, the attention of research has been moved from single-modal learning to multi-modal learning, as real-world data exist in the form of different modalities. However, multi-modal models often carry more information than single-modal models and they are usually applied in sensitive scenarios, such as medical report generation or disease identification. Compared with the existing membership inference against machine learning classifiers, we focus on the problem that the input and output of the multi-modal models are in different modalities, such as image captioning. This work studies the privacy leakage of multi-modal models through the lens of membership inference attack, a process of determining whether a data record involves in the model training process or not. To achieve this, we propose Multi-modal Models Membership Inference (M$^4$I) with two attack methods to infer the membership status, named metric-based (MB) M$^4$I and feature-based (FB) M$^4$I, respectively. More specifically, MB M$^4$I adopts similarity metrics while attacking to infer target data membership. FB M$^4$I uses a pre-trained shadow multi-modal feature extractor to achieve the purpose of data inference attack by comparing the similarities from extracted input and output features. Extensive experimental results show that both attack methods can achieve strong performances. Respectively, 72.5% and 94.83% of attack success rates on average can be obtained under unrestricted scenarios. Moreover, we evaluate multiple defense mechanisms against our attacks. The source code of M$^4$I attacks is publicly available at https://github.com/MultimodalMI/Multimodal-membership-inference.git.
|
Pingyi Hu, Zihan Wang, Ruoxi Sun, Hu Wang, Minhui Xue
| null | null | 2,022 |
neurips
|
Best of Both Worlds Model Selection
| null |
We study the problem of model selection in bandit scenarios in the presence of nested policy classes, with the goal of obtaining simultaneous adversarial and stochastic (``best of both worlds") high-probability regret guarantees. Our approach requires that each base learner comes with a candidate regret bound that may or may not hold, while our meta algorithm plays each base learner according to a schedule that keeps the base learner's candidate regret bounds balanced until they are detected to violate their guarantees. We develop careful mis-specification tests specifically designed to blend the above model selection criterion with the ability to leverage the (potentially benign) nature of the environment. We recover the model selection guarantees of the CORRAL algorithm for adversarial environments, but with the additional benefit of achieving high probability regret bounds. More importantly, our model selection results also hold simultaneously in stochastic environments under gap assumptions. These are the first theoretical results that achieve best-of-both world (stochastic and adversarial) guarantees while performing model selection in contextual bandit scenarios.
|
Aldo Pacchiano, Christoph Dann, Claudio Gentile
| null | null | 2,022 |
neurips
|
TempEL: Linking Dynamically Evolving and Newly Emerging Entities
| null |
In our continuously evolving world, entities change over time and new, previously non-existing or unknown, entities appear. We study how this evolutionary scenario impacts the performance on a well established entity linking (EL) task. For that study, we introduce TempEL, an entity linking dataset that consists of time-stratified English Wikipedia snapshots from 2013 to 2022, from which we collect both anchor mentions of entities, and these target entities’ descriptions. By capturing such temporal aspects, our newly introduced TempEL resource contrasts with currently existing entity linking datasets, which are composed of fixed mentions linked to a single static version of a target Knowledge Base (e.g., Wikipedia 2010 for CoNLL-AIDA). Indeed, for each of our collected temporal snapshots, TempEL contains links to entities that are continual, i.e., occur in all of the years, as well as completely new entities that appear for the first time at some point. Thus, we enable to quantify the performance of current state-of-the-art EL models for: (i) entities that are subject to changes over time in their Knowledge Base descriptions as well as their mentions’ contexts, and (ii) newly created entities that were previously non-existing (e.g., at the time the EL model was trained). Our experimental results show that in terms of temporal performance degradation, (i) continual entities suffer a decrease of up to 3.1% EL accuracy, while (ii) for new entities this accuracy drop is up to 17.9%. This highlights the challenge of the introduced TempEL dataset and opens new research prospects in the area of time-evolving entity disambiguation.
|
Klim Zaporojets, Lucie-Aimée Kaffee, Johannes Deleu, Thomas Demeester, Chris Develder, Isabelle Augenstein
| null | null | 2,022 |
neurips
|
Functional Ensemble Distillation
| null |
Bayesian models have many desirable properties, most notable is their ability to generalize from limited data and to properly estimate the uncertainty in their predictions. However, these benefits come at a steep computational cost as Bayesian inference, in most cases, is computationally intractable. One popular approach to alleviate this problem is using a Monte-Carlo estimation with an ensemble of models sampled from the posterior. However, this approach still comes at a significant computational cost, as one needs to store and run multiple models at test time. In this work, we investigate how to best distill an ensemble's predictions using an efficient model. First, we argue that current approaches are limited as they are constrained to classification and the Dirichlet distribution. Second, in many limited data settings, all ensemble members achieve nearly zero training loss, namely, they produce near-identical predictions on the training set which results in sub-optimal distilled models. To address both problems, we propose a novel and general distillation approach, named Functional Ensemble Distillation (FED), and we investigate how to best distill an ensemble in this setting. We find that learning the distilled model via a simple augmentation scheme in the form of mixup augmentation significantly boosts the performance. We evaluated our method on several tasks and showed that it achieves superior results in both accuracy and uncertainty estimation compared to current approaches.
|
Coby Penso, Idan Achituve, Ethan Fetaya
| null | null | 2,022 |
neurips
|
HF-NeuS: Improved Surface Reconstruction Using High-Frequency Details
| null |
Neural rendering can be used to reconstruct implicit representations of shapes without 3D supervision. However, current neural surface reconstruction methods have difficulty learning high-frequency geometry details, so the reconstructed shapes are often over-smoothed. We develop HF-NeuS, a novel method to improve the quality of surface reconstruction in neural rendering. We follow recent work to model surfaces as signed distance functions (SDFs). First, we offer a derivation to analyze the relationship between the SDF, the volume density, the transparency function, and the weighting function used in the volume rendering equation and propose to model transparency as a transformed SDF. Second, we observe that attempting to jointly encode high-frequency and low-frequency components in a single SDF leads to unstable optimization. We propose to decompose the SDF into base and displacement functions with a coarse-to-fine strategy to increase the high-frequency details gradually. Finally, we design an adaptive optimization strategy that makes the training process focus on improving those regions near the surface where the SDFs have artifacts. Our qualitative and quantitative results show that our method can reconstruct fine-grained surface details and obtain better surface reconstruction quality than the current state of the art. Code available at https://github.com/yiqun-wang/HFS.
|
Yiqun Wang, Ivan Skorokhodov, Peter Wonka
| null | null | 2,022 |
neurips
|
LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent Reinforcement Learning
| null |
Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, in many complex multi-agent tasks, different agents are expected to possess specific abilities to handle different subtasks. In those scenarios, sharing parameters indiscriminately may lead to similar behavior across all agents, which will limit the exploration efficiency and degrade the final performance. To balance the training complexity and the diversity of agent behavior, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder to construct a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. In this way, agents dealing with the same subtask share their learning of specific abilities and different subtasks correspond to different specific abilities. We further introduce two regularizers to increase the representation difference between subtasks and stabilize the training by discouraging agents from frequently changing subtasks, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark and Google Research Football.
|
Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, Houqiang Li
| null | null | 2,022 |
neurips
|
Lethal Dose Conjecture on Data Poisoning
| null |
Data poisoning considers an adversary that distorts the training set of machine learning algorithms for malicious purposes. In this work, we bring to light one conjecture regarding the fundamentals of data poisoning, which we call the Lethal Dose Conjecture. The conjecture states: If $n$ clean training samples are needed for accurate predictions, then in a size-$N$ training set, only $\Theta(N/n)$ poisoned samples can be tolerated while ensuring accuracy. Theoretically, we verify this conjecture in multiple cases. We also offer a more general perspective of this conjecture through distribution discrimination. Deep Partition Aggregation (DPA) and its extension, Finite Aggregation (FA) are recent approaches for provable defenses against data poisoning, where they predict through the majority vote of many base models trained from different subsets of training set using a given learner. The conjecture implies that both DPA and FA are (asymptotically) optimal---if we have the most data-efficient learner, they can turn it into one of the most robust defenses against data poisoning. This outlines a practical approach to developing stronger defenses against poisoning via finding data-efficient learners. Empirically, as a proof of concept, we show that by simply using different data augmentations for base learners, we can respectively double and triple the certified robustness of DPA on CIFAR-10 and GTSRB without sacrificing accuracy.
|
Wenxiao Wang, Alexander Levine, Soheil Feizi
| null | null | 2,022 |
neurips
|
Neural-Symbolic Entangled Framework for Complex Query Answering
| null |
Answering complex queries over knowledge graphs (KG) is an important yet challenging task because of the KG incompleteness issue and cascading errors during reasoning. Recent query embedding (QE) approaches embed the entities and relations in a KG and the first-order logic (FOL) queries into a low dimensional space, making the query can be answered by dense similarity searching. However, previous works mainly concentrate on the target answers, ignoring intermediate entities' usefulness, which is essential for relieving the cascading error problem in logical query answering. In addition, these methods are usually designed with their own geometric or distributional embeddings to handle logical operators like union, intersection, and negation, with the sacrifice of the accuracy of the basic operator -- projection, and they could not absorb other embedding methods to their models. In this work, we propose a Neural and Symbolic Entangled framework (ENeSy) for complex query answering, which enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness. The projection operator in ENeSy could be any embedding method with the capability of link prediction, and the other FOL operators are handled without parameters. With both neural and symbolic reasoning results contained, ENeSy answers queries in ensembles. We evaluate ENeSy on complex query answering benchmarks, and ENeSy achieves the state-of-the-art, especially in the setting of training model only with the link prediction task.
|
Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, Huajun Chen
| null | null | 2,022 |
neurips
|
Online Decision Mediation
| null |
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior: At each time, the algorithm observes an action chosen by a fallible agent, and decides whether to accept that agent's decision, intervene with an alternative, or request the expert's opinion. For instance, in clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances, thus real-world decision support is often limited to monitoring and forecasting. Instead, such an intermediary would strike a prudent balance between the former (purely prescriptive) and latter (purely descriptive) approaches, while providing an efficient interface between human mistakes and expert feedback. In this work, we first formalize the sequential problem of online decision mediation---that is, of simultaneously learning and evaluating mediator policies from scratch with abstentive feedback: In each round, deferring to the oracle obviates the risk of error, but incurs an upfront penalty, and reveals the otherwise hidden expert action as a new training data point. Second, we motivate and propose a solution that seeks to trade off (immediate) loss terms against (future) improvements in generalization error; in doing so, we identify why conventional bandit algorithms may fail. Finally, through experiments and sensitivities on a variety of datasets, we illustrate consistent gains over applicable benchmarks on performance measures with respect to the mediator policy, the learned model, and the decision-making system as a whole.
|
Daniel Jarrett, Alihan Hüyük, Mihaela van der Schaar
| null | null | 2,022 |
neurips
|
Unsupervised Multi-Object Segmentation by Predicting Probable Motion Patterns
| null |
We propose a new approach to learn to segment multiple image objects without manual supervision. The method can extract objects form still images, but uses videos for supervision. While prior works have considered motion for segmentation, a key insight is that, while motion can be used to identify objects, not all objects are necessarily in motion: the absence of motion does not imply the absence of objects. Hence, our model learns to predict image regions that are likely to contain motion patterns characteristic of objects moving rigidly. It does not predict specific motion, which cannot be done unambiguously from a still image, but a distribution of possible motions, which includes the possibility that an object does not move at all. We demonstrate the advantage of this approach over its deterministic counterpart and show state-of-the-art unsupervised object segmentation performance on simulated and real-world benchmarks, surpassing methods that use motion even at test time. As our approach is applicable to variety of network architectures that segment the scenes, we also apply it to existing image reconstruction-based models showing drastic improvement. Project page and code: https://www.robots.ox.ac.uk/~vgg/research/ppmp.
|
Laurynas Karazija, Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi
| null | null | 2,022 |
neurips
|
On the Epistemic Limits of Personalized Prediction
| null |
Machine learning models are often personalized by using group attributes that encode personal characteristics (e.g., sex, age group, HIV status). In such settings, individuals expect to receive more accurate predictions in return for disclosing group attributes to the personalized model. We study when we can tell that a personalized model upholds this principle for every group who provides personal data. We introduce a metric called the benefit of personalization (BoP) to measure the smallest gain in accuracy that any group expects to receive from a personalized model. We describe how the BoP can be used to carry out basic routines to audit a personalized model, including: (i) hypothesis tests to check that a personalized model improves performance for every group; (ii) estimation procedures to bound the minimum gain in personalization. We characterize the reliability of these routines in a finite-sample regime and present minimax bounds on both the probability of error for BoP hypothesis tests and the mean-squared error of BoP estimates. Our results show that we can only claim that personalization improves performance for each group who provides data when we explicitly limit the number of group attributes used by a personalized model. In particular, we show that it is impossible to reliably verify that a personalized classifier with $k \geq 19$ binary group attributes will benefit every group who provides personal data using a dataset of $n = 8\times10^9$ samples -- one for each person in the world.
|
Lucas Monteiro Paes, Carol Long, Berk Ustun, Flavio Calmon
| null | null | 2,022 |
neurips
|
CascadeXML: Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-label Classification
| null |
Extreme Multi-label Text Classification (XMC) involves learning a classifier that can assign an input with a subset of most relevant labels from millions of label choices. Recent approaches, such as XR-Transformer and LightXML, leverage a transformer instance to achieve state-of-the-art performance. However, in this process, these approaches need to make various trade-offs between performance and computational requirements. A major shortcoming, as compared to the Bi-LSTM based AttentionXML, is that they fail to keep separate feature representations for each resolution in a label tree. We thus propose CascadeXML, an end-to-end multi-resolution learning pipeline, which can harness the multi-layered architecture of a transformer model for attending to different label resolutions with separate feature representations. CascadeXML significantly outperforms all existing approaches with non-trivial gains obtained on benchmark datasets consisting of up to three million labels. Code for CascadeXML will be made publicly available at https://github.com/xmc-aalto/cascadexml.
|
Siddhant Kharbanda, Atmadeep Banerjee, Erik Schultheis, Rohit Babbar
| null | null | 2,022 |
neurips
|
Masked Generative Adversarial Networks are Data-Efficient Generation Learners
| null |
This paper shows that masked generative adversarial network (MaskedGAN) is robust image generation learners with limited training data. The idea of MaskedGAN is simple: it randomly masks out certain image information for effective GAN training with limited data. We develop two masking strategies that work along orthogonal dimensions of training images, including a shifted spatial masking that masks the images in spatial dimensions with random shifts, and a balanced spectral masking that masks certain image spectral bands with self-adaptive probabilities. The two masking strategies complement each other which together encourage more challenging holistic learning from limited training data, ultimately suppressing trivial solutions and failures in GAN training. Albeit simple, extensive experiments show that MaskedGAN achieves superior performance consistently across different network architectures (e.g., CNNs including BigGAN and StyleGAN-v2 and Transformers including TransGAN and GANformer) and datasets (e.g., CIFAR-10, CIFAR-100, ImageNet, 100-shot, AFHQ, FFHQ and Cityscapes).
|
Jiaxing Huang, Kaiwen Cui, Dayan Guan, Aoran Xiao, Fangneng Zhan, Shijian Lu, Shengcai Liao, Eric Xing
| null | null | 2,022 |
neurips
|
CoNT: Contrastive Neural Text Generation
| null |
Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms its baseline on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation.
|
Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong, Xipeng Qiu, Xuanjing Huang
| null | null | 2,022 |
neurips
|
DeepInteraction: 3D Object Detection via Modality Interaction
| null |
Existing top-performance 3D object detectors typically rely on the multi-modal fusion strategy. This design is however fundamentally restricted due to overlooking the modality-specific useful information and finally hampering the model performance. To address this limitation, in this work we introduce a novel modality interaction strategy where individual per-modality representations are learned and maintained throughout for enabling their unique characteristics to be exploited during object detection. To realize this proposed strategy, we design a DeepInteraction architecture characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder. Experiments on the large-scale nuScenes dataset show that our proposed method surpasses all prior arts often by a large margin. Crucially, our method is ranked at the first position at the highly competitive nuScenes object detection leaderboard.
|
Zeyu Yang, Jiaqi Chen, Zhenwei Miao, Wei Li, Xiatian Zhu, Li Zhang
| null | null | 2,022 |
neurips
|
Causality Preserving Chaotic Transformation and Classification using Neurochaos Learning
| null |
Discovering cause and effect variables from observational data is an important but challenging problem in science and engineering. In this work, a recently proposed brain inspired learning algorithm namely-\emph{Neurochaos Learning} (NL) is used for the classification of cause and effect time series generated using coupled autoregressive processes, coupled 1D chaotic skew tent maps, coupled 1D chaotic logistic maps and a real-world prey-predator system. In the case of coupled skew tent maps, the proposed method consistently outperforms a five layer Deep Neural Network (DNN) and Long Short Term Memory (LSTM) architecture for unidirectional coupling coefficient values ranging from $0.1$ to $0.7$. Further, we investigate the preservation of causality in the feature extracted space of NL using Granger Causality for coupled autoregressive processes and Compression-Complexity Causality for coupled chaotic systems and real-world prey-predator dataset. Unlike DNN, LSTM and 1D Convolutional Neural Network, it is found that NL preserves the inherent causal structures present in the input timeseries data. These findings are promising for the theory and applications of causal machine learning and open up the possibility to explore the potential of NL for more sophisticated causal learning tasks.
|
Harikrishnan N B, Aditi Kathpalia, Nithin Nagaraj
| null | null | 2,022 |
neurips
|
Towards Understanding the Condensation of Neural Networks at Initial Training
| null |
Empirical works show that for ReLU neural networks (NNs) with small initialization, input weights of hidden neurons (the input weight of a hidden neuron consists of the weight from its input layer to the hidden neuron and its bias term) condense onto isolated orientations. The condensation dynamics implies that the training implicitly regularizes a NN towards one with much smaller effective size. In this work, we illustrate the formation of the condensation in multi-layer fully connected NNs and show that the maximal number of condensed orientations in the initial training stage is twice the multiplicity of the activation function, where ``multiplicity'' indicates the multiple roots of activation function at origin. Our theoretical analysis confirms experiments for two cases, one is for the activation function of multiplicity one with arbitrary dimension input, which contains many common activation functions, and the other is for the layer with one-dimensional input and arbitrary multiplicity. This work makes a step towards understanding how small initialization leads NNs to condensation at the initial training stage.
|
Hanxu Zhou, Zhou Qixuan, Tao Luo, Yaoyu Zhang, Zhi-Qin Xu
| null | null | 2,022 |
neurips
|
Deep Differentiable Logic Gate Networks
| null |
Recently, research has increasingly focused on developing efficient neural network architectures. In this work, we explore logic gate networks for machine learning tasks by learning combinations of logic gates. These networks comprise logic gates such as "AND" and "XOR", which allow for very fast execution. The difficulty in learning logic gate networks is that they are conventionally non-differentiable and therefore do not allow training with gradient descent. Thus, to allow for effective training, we propose differentiable logic gate networks, an architecture that combines real-valued logics and a continuously parameterized relaxation of the network. The resulting discretized logic gate networks achieve fast inference speeds, e.g., beyond a million images of MNIST per second on a single CPU core.
|
Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen
| null | null | 2,022 |
neurips
|
GOOD: A Graph Out-of-Distribution Benchmark
| null |
Out-of-distribution (OOD) learning deals with scenarios in which training and test data follow different distributions. Although general OOD problems have been intensively studied in machine learning, graph OOD is only an emerging area of research. Currently, there lacks a systematic benchmark tailored to graph OOD method evaluation. In this work, we aim at developing an OOD benchmark, known as GOOD, for graphs specifically. We explicitly make distinctions between covariate and concept shifts and design data splits that accurately reflect different shifts. We consider both graph and node prediction tasks as there are key differences in designing shifts. Overall, GOOD contains 11 datasets with 17 domain selections. When combined with covariate, concept, and no shifts, we obtain 51 different splits. We provide performance results on 10 commonly used baseline methods with 10 random runs. This results in 510 dataset-model combinations in total. Our results show significant performance gaps between in-distribution and OOD settings. Our results also shed light on different performance trends between covariate and concept shifts by different methods. Our GOOD benchmark is a growing project and expects to expand in both quantity and variety of resources as the area develops. The GOOD benchmark can be accessed via https://github.com/divelab/GOOD/.
|
Shurui Gui, Xiner Li, Limei Wang, Shuiwang Ji
| null | null | 2,022 |
neurips
|
Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
| null |
Few-shot in-context learning (ICL) enables pre-trained language models to perform a previously-unseen task without any gradient-based training by feeding a small number of training examples as part of the input. ICL incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made. Parameter-efficient fine-tuning (PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task. In this paper, we rigorously compare few-shot ICL and PEFT and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs. Along the way, we introduce a new PEFT method called (IA)^3 that scales activations by learned vectors, attaining stronger performance while only introducing a relatively tiny amount of new parameters. We also propose a simple recipe based on the T0 model called T-Few that can be applied to new tasks without task-specific tuning or modifications. We validate the effectiveness of T-Few on completely unseen tasks by applying it to the RAFT benchmark, attaining super-human performance for the first time and outperforming the state-of-the-art by 6% absolute. All of the code used in our experiments will be publicly available.
|
Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin A. Raffel
| null | null | 2,022 |
neurips
|
MoGDE: Boosting Mobile Monocular 3D Object Detection with Ground Depth Estimation
| null |
Monocular 3D object detection (Mono3D) in mobile settings (e.g., on a vehicle, a drone, or a robot) is an important yet challenging task. Due to the near-far disparity phenomenon of monocular vision and the ever-changing camera pose, it is hard to acquire high detection accuracy, especially for far objects. Inspired by the insight that the depth of an object can be well determined according to the depth of the ground where it stands, in this paper, we propose a novel Mono3D framework, called MoGDE, which constantly estimates the corresponding ground depth of an image and then utilizes the estimated ground depth information to guide Mono3D. To this end, we utilize a pose detection network to estimate the pose of the camera and then construct a feature map portraying pixel-level ground depth according to the 3D-to-2D perspective geometry. Moreover, to improve Mono3D with the estimated ground depth, we design an RGB-D feature fusion network based on the transformer structure, where the long-range self-attention mechanism is utilized to effectively identify ground-contacting points and pin the corresponding ground depth to the image feature map. We conduct extensive experiments on the real-world KITTI dataset. The results demonstrate that MoGDE can effectively improve the Mono3D accuracy and robustness for both near and far objects. MoGDE yields the best performance compared with the state-of-the-art methods by a large margin and is ranked number one on the KITTI 3D benchmark.
|
Yunsong Zhou, Quan Liu, Hongzi Zhu, Yunzhe Li, Shan Chang, Minyi Guo
| null | null | 2,022 |
neurips
|
PopArt: Efficient Sparse Regression and Experimental Design for Optimal Sparse Linear Bandits
| null |
In sparse linear bandits, a learning agent sequentially selects an action from a fixed action set and receives reward feedback, and the reward function depends linearly on a few coordinates of the covariates of the actions. This has applications in many real-world sequential decision making problems. In this paper, we devise a simple, novel sparse linear estimation method called $\textrm{PopArt}$ that enjoys a tighter $\ell_1$ recovery guarantee compared to Lasso (Tibshirani, 1996). Our bound naturally motivates an experimental design criterion that is convex and thus computationally efficient to solve. Based on our novel estimator and design criterion, we derive sparse linear bandit algorithms that enjoy improved regret upper bounds upon the state of the art (Hao et al., 2020), especially in terms of the geometry of the given action set. Finally, we prove a matching lower bound for sparse linear bandits in the data-poor regime, which closes the gap between upper and lower bounds in prior work.
|
Kyoungseok Jang, Chicheng Zhang, Kwang-Sung Jun
| null | null | 2,022 |
neurips
|
Augmenting Online Algorithms with $\varepsilon$-Accurate Predictions
| null |
The growing body of work in learning-augmented online algorithms studies how online algorithms can be improved when given access to ML predictions about the future. Motivated by ML models that give a confidence parameter for their predictions, we study online algorithms with predictions that are $\epsilon$-accurate: namely, each prediction is correct with probability (at least) $\epsilon$, but can be arbitrarily inaccurate with the remaining probability. We show that even with predictions that are accurate with a small probability and arbitrarily inaccurate otherwise, we can dramatically outperform worst-case bounds for a range of classical online problems including caching, online set cover, and online facility location. Our main results are an $O(\log(1/\varepsilon))$-competitive algorithm for caching, and a simple $O(1/\varepsilon)$-competitive algorithm for a large family of covering problems, including set cover and facility location, with $\epsilon$-accurate predictions.
|
Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, Kevin Sun
| null | null | 2,022 |
neurips
|
Scalable Infomin Learning
| null |
The task of infomin learning aims to learn a representation with high utility while being uninformative about a specified target, with the latter achieved by minimising the mutual information between the representation and the target. It has broad applications, ranging from training fair prediction models against protected attributes, to unsupervised learning with disentangled representations. Recent works on infomin learning mainly use adversarial training, which involves training a neural network to estimate mutual information or its proxy and thus is slow and difficult to optimise. Drawing on recent advances in slicing techniques, we propose a new infomin learning approach, which uses a novel proxy metric to mutual information. We further derive an accurate and analytically computable approximation to this proxy metric, thereby removing the need of constructing neural network-based mutual information estimators. Compared to baselines, experiments on algorithmic fairness, disentangled representation learning and domain adaptation verify that our method can more effectively remove unwanted information with limited time budget.
|
Yanzhi Chen, weihao sun, Yingzhen Li, Adrian Weller
| null | null | 2,022 |
neurips
|
Incrementality Bidding via Reinforcement Learning under Mixed and Delayed Rewards
| null |
Incrementality, which measures the causal effect of showing an ad to a potential customer (e.g. a user in an internet platform) versus not, is a central object for advertisers in online advertising platforms. This paper investigates the problem of how an advertiser can learn to optimize the bidding sequence in an online manner \emph{without} knowing the incrementality parameters in advance. We formulate the offline version of this problem as a specially structured episodic Markov Decision Process (MDP) and then, for its online learning counterpart, propose a novel reinforcement learning (RL) algorithm with regret at most $\widetilde{O}(H^2\sqrt{T})$, which depends on the number of rounds $H$ and number of episodes $T$, but does not depend on the number of actions (i.e., possible bids). A fundamental difference between our learning problem from standard RL problems is that the realized reward feedback from conversion incrementality is \emph{mixed} and \emph{delayed}. To handle this difficulty we propose and analyze a novel pairwise moment-matching algorithm to learn the conversion incrementality, which we believe is of independent interest.
|
Ashwinkumar Badanidiyuru Varadaraja, Zhe Feng, Tianxi Li, Haifeng Xu
| null | null | 2,022 |
neurips
|
Not too little, not too much: a theoretical analysis of graph (over)smoothing
| null |
We analyze graph smoothing with mean aggregation, where each node successively receives the average of the features of its neighbors. Indeed, it has quickly been observed that Graph Neural Networks (GNNs), which generally follow some variant of Message-Passing (MP) with repeated aggregation, may be subject to the oversmoothing phenomenon: by performing too many rounds of MP, the node features tend to converge to a non-informative limit. In the case of mean aggregation, for connected graphs, the node features become constant across the whole graph. At the other end of the spectrum, it is intuitively obvious that some MP rounds are necessary, but existing analyses do not exhibit both phenomena at once: beneficial ``finite'' smoothing and oversmoothing in the limit. In this paper, we consider simplified linear GNNs, and rigorously analyze two examples for which a finite number of mean aggregation steps provably improves the learning performance, before oversmoothing kicks in. We consider a latent space random graph model, where node features are partial observations of the latent variables and the graph contains pairwise relationships between them. We show that graph smoothing restores some of the lost information, up to a certain point, by two phenomena: graph smoothing shrinks non-principal directions in the data faster than principal ones, which is useful for regression, and shrinks nodes within communities faster than they collapse together, which improves classification.
|
Nicolas Keriven
| null | null | 2,022 |
neurips
|
Kernel similarity matching with Hebbian networks
| null |
Recent works have derived neural networks with online correlation-based learning rules to perform \textit{kernel similarity matching}. These works applied existing linear similarity matching algorithms to nonlinear features generated with random Fourier methods. In this paper attempt to perform kernel similarity matching by directly learning the nonlinear features. Our algorithm proceeds by deriving and then minimizing an upper bound for the sum of squared errors between output and input kernel similarities. The construction of our upper bound leads to online correlation-based learning rules which can be implemented with a 1 layer recurrent neural network. In addition to generating high-dimensional linearly separable representations, we show that our upper bound naturally yields representations which are sparse and selective for specific input patterns. We compare the approximation quality of our method to neural random Fourier method and variants of the popular but non-biological ``Nystr{\"o}m'' method for approximating the kernel matrix. Our method appears to be comparable or better than randomly sampled Nystr{\"o}m methods when the outputs are relatively low dimensional (although still potentially higher dimensional than the inputs) but less faithful when the outputs are very high dimensional.
|
Kyle Luther, Sebastian Seung
| null | null | 2,022 |
neurips
|
GAPX: Generalized Autoregressive Paraphrase-Identification X
| null |
Paraphrase Identification is a fundamental task in Natural Language Processing. While much progress has been made in the field, the performance of many state-of- the-art models often suffer from distribution shift during inference time. We verify that a major source of this performance drop comes from biases introduced by negative examples. To overcome these biases, we propose in this paper to train two separate models, one that only utilizes the positive pairs and the other the negative pairs. This enables us the option of deciding how much to utilize the negative model, for which we introduce a perplexity based out-of-distribution metric that we show can effectively and automatically determine how much weight it should be given during inference. We support our findings with strong empirical results.
|
Yifei Zhou, Renyu Li, Hayden Housen, Ser Nam Lim
| null | null | 2,022 |
neurips
|
Monte Carlo Augmented Actor-Critic for Sparse Reward Deep Reinforcement Learning from Suboptimal Demonstrations
| null |
Providing densely shaped reward functions for RL algorithms is often exceedingly challenging, motivating the development of RL algorithms that can learn from easier-to-specify sparse reward functions. This sparsity poses new exploration challenges. One common way to address this problem is using demonstrations to provide initial signal about regions of the state space with high rewards. However, prior RL from demonstrations algorithms introduce significant complexity and many hyperparameters, making them hard to implement and tune. We introduce Monte Carlo Actor-Critic (MCAC), a parameter free modification to standard actor-critic algorithms which initializes the replay buffer with demonstrations and computes a modified $Q$-value by taking the maximum of the standard temporal distance (TD) target and a Monte Carlo estimate of the reward-to-go. This encourages exploration in the neighborhood of high-performing trajectories by encouraging high $Q$-values in corresponding regions of the state space. Experiments across $5$ continuous control domains suggest that MCAC can be used to significantly increase learning efficiency across $6$ commonly used RL and RL-from-demonstrations algorithms. See https://sites.google.com/view/mcac-rl for code and supplementary material.
|
Albert Wilcox, Ashwin Balakrishna, Jules Dedieu, Wyame Benslimane, Daniel Brown, Ken Goldberg
| null | null | 2,022 |
neurips
|
Why neural networks find simple solutions: The many regularizers of geometric complexity
| null |
In many contexts, simpler models are preferable to more complex models and the control of this model complexity is the goal for many methods in machine learning such as regularization, hyperparameter tuning and architecture design. In deep learning, it has been difficult to understand the underlying mechanisms of complexity control, since many traditional measures are not naturally suitable for deep neural networks. Here we develop the notion of geometric complexity, which is a measure of the variability of the model function, computed using a discrete Dirichlet energy. Using a combination of theoretical arguments and empirical results, we show that many common training heuristics such as parameter norm regularization, spectral norm regularization, flatness regularization, implicit gradient regularization, noise regularization and the choice of parameter initialization all act to control geometric complexity, providing a unifying framework in which to characterize the behavior of deep learning models.
|
Benoit Dherin, Michael Munn, Mihaela Rosca, David Barrett
| null | null | 2,022 |
neurips
|
DevFly: Bio-Inspired Development of Binary Connections for Locality Preserving Sparse Codes
| null |
Neural circuits undergo developmental processes which can be influenced by experience. Here we explore a bio-inspired development process to form the connections in a network used for locality sensitive hashing. The network is a simplified model of the insect mushroom body, which has sparse connections from the input layer to a second layer of higher dimension, forming a sparse code. In previous versions of this model, connectivity between the layers is random. We investigate whether the performance of the hash, evaluated in nearest neighbour query tasks, can be improved by process of developing the connections, in which the strongest input dimensions in successive samples are wired to each successive coding dimension. Experiments show that the accuracy of searching for nearest neighbours is improved, although performance is dependent on the parameter values and datasets used. Our approach is also much faster than alternative methods that have been proposed for training the connections in this model. Importantly, the development process does not impact connections built at an earlier stage, which should provide stable coding results for simultaneous learning in a downstream network.
|
Tianqi Wei, Rana Alkhoury Maroun, Qinghai Guo, Barbara Webb
| null | null | 2,022 |
neurips
|
VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely?
| null |
Vertical Federated Learning (VFL), that trains federated models over vertically partitioned data, has emerged as an important learning paradigm. However, existing VFL methods are facing two challenges: (1) scalability when # participants grows to even modest scale and (2) diminishing return w.r.t. # participants: not all participants are equally important and many will not introduce quality improvement in a large consortium. Inspired by these two challenges, in this paper, we ask: How can we select l out of m participants, where l ≪ m, that are most important?We call this problem Vertically Federated Participant Selection, and model it with a principled mutual information-based view. Our first technical contribution is VF-MINE—a Vertically Federated Mutual INformation Estimator—that uses one of the most celebrated algorithms in database theory—Fagin’s algorithm as a building block. Our second contribution is to further optimize VF-MINE to enable VF-PS, a group testing-based participant selection framework. We empirically show that vertically federated participation selection can be orders of magnitude faster than training a full-fledged VFL model, while being able to identify the most important subset of participants that often lead to a VFL model of similar quality.
|
Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bolin Ding, Bo Du, Anwar Hithnawi, Bo Li, Ce Zhang
| null | null | 2,022 |
neurips
|
A Causal Analysis of Harm
| null |
As autonomous systems rapidly become ubiquitous, there is a growing need for a legal and regulatory framework toaddress when and how such a system harms someone. There have been several attempts within the philosophy literature to define harm, but none of them has proven capable of dealing with with the many examples that have been presented, leading some to suggest that the notion of harm should be abandoned and ``replaced by more well-behaved notions''. As harm is generally something that is caused, most of these definitions have involved causality at some level. Yet surprisingly, none of them makes use of causal models and the definitions of actual causality that they can express. In this paper we formally define a qualitative notion of harm that uses causal models and is based on a well-known definition of actual causality (Halpern, 2016). The key novelty of our definition is that it is based on contrastive causation and uses a default utility to which the utility of actual outcomes is compared. We show that our definition is able to handle the examples from the literature, and illustrate its importance for reasoning about situations involving autonomous systems.
|
Sander Beckers, Hana Chockler, Joseph Halpern
| null | null | 2,022 |
neurips
|
HumanLiker: A Human-like Object Detector to Model the Manual Labeling Process
| null |
Popular object detection models generate bounding boxes in a different way than we humans. As an example, modern detectors yield object box either upon the regression of its center and width/height (center-guided detector), or by grouping paired estimated corners (corner-guided detector). However, that is not the pattern we manually label an object due to high degrees of freedom in searching centers or low efficiency of grouping corners. Empirically, humans run two steps to locate an object bounding box manually: 1) click the mouse at the top-left corner of object, and then drag the mouse to the bottom-right corner; 2) refine the corner positions to make the bounding box more precisely, if necessary. Inspired by this manual labeling process, we propose a novel human-like detector, termed as HumanLiker, which is devised as a two-stage end-to-end detector to simulate the two aforementioned. Like we humans in manual labeling, HumanLiker can effectively avert both the thorny center searching and heuristic corner grouping. Different from the mainstream detector branches, i.e., the center/corner-guided methods, the HumanLiker provides a new paradigm which integrates the advantages of both branches to balance the detection efficiency and bounding box quality. On MS-COCO test-dev set, HumanLiker can achieve 50.2%/51.6% and 53.8%/55.6% in term of AP with ResNeXt-101 and SwinTransformer backbones in single/multi-scale testing, outperforming current popular center/corner-guided baselines (e.g., DETR/CornerNet) by a large margin, with much less training epochs and higher inference FPS. Code will be available soon.
|
Haoran Wei, Ping Guo, Yangguang Zhu, Chenglong Liu, Peng Wang
| null | null | 2,022 |
neurips
|
Learning to Accelerate Partial Differential Equations via Latent Global Evolution
| null |
Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speedup by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into turbulent phase and an inverse optimization of boundary conditions in 2D Navier-Stokes flow. Compared to state-of-the-art deep learning-based surrogate models and other strong baselines, we demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
|
Tailin Wu, Takashi Maruyama, Jure Leskovec
| null | null | 2,022 |
neurips
|
What You See is What You Get: Principled Deep Learning via Distributional Generalization
| null |
Having similar behavior at training time and test time—what we call a “What You See Is What You Get” (WYSIWYG) property—is desirable in machine learning. Models trained with standard stochastic gradient descent (SGD), however, do not necessarily have this property, as their complex behaviors such as robustness or subgroup performance can differ drastically between training and test time. In contrast, we show that Differentially-Private (DP) training provably ensures the high-level WYSIWYG property, which we quantify using a notion of distributional generalization. Applying this connection, we introduce new conceptual tools for designing deep-learning methods by reducing generalization concerns to optimization ones: to mitigate unwanted behavior at test time, it is provably sufficient to mitigate this behavior on the training data. By applying this novel design principle, which bypasses “pathologies” of SGD, we construct simple algorithms that are competitive with SOTA in several distributional-robustness applications, significantly improve the privacy vs. disparate impact trade-off of DP-SGD, and mitigate robust overfitting in adversarial training. Finally, we also improve on theoretical bounds relating DP, stability, and distributional generalization.
|
Bogdan Kulynych, Yao-Yuan Yang, Yaodong Yu, Jarosław Błasiok, Preetum Nakkiran
| null | null | 2,022 |
neurips
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.