title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections
null
Optimal transport maps between two probability distributions $\mu$ and $\nu$ on $\R^d$ have found extensive applications in both machine learning and statistics. In practice, these maps need to be estimated from data sampled according to $\mu$ and $\nu$. Plug-in estimators are perhaps most popular in estimating transport maps in the field of computational optimal transport. In this paper, we provide a comprehensive analysis of the rates of convergences for general plug-in estimators defined via barycentric projections. Our main contribution is a new stability estimate for barycentric projections which proceeds under minimal smoothness assumptions and can be used to analyze general plug-in estimators. We illustrate the usefulness of this stability estimate by first providing rates of convergence for the natural discrete-discrete and semi-discrete estimators of optimal transport maps. We then use the same stability estimate to show that, under additional smoothness assumptions of Besov type or Sobolev type, wavelet based or kernel smoothed plug-in estimators respectively speed up the rates of convergence and significantly mitigate the curse of dimensionality suffered by the natural discrete-discrete/semi-discrete estimators. As a by-product of our analysis, we also obtain faster rates of convergence for plug-in estimators of $W_2(\mu,\nu)$, the Wasserstein distance between $\mu$ and $\nu$, under the aforementioned smoothness assumptions, thereby complementing recent results in Chizat et al. (2020). Finally, we illustrate the applicability of our results in obtaining rates of convergence for Wasserstein barycenters between two probability distributions and obtaining asymptotic detection thresholds for some recent optimal-transport based tests of independence.
NABARUN DEB, Promit Ghosal, Bodhisattva Sen
null
null
2,021
neurips
Activation Sharing with Asymmetric Paths Solves Weight Transport Problem without Bidirectional Connection
null
One of the reasons why it is difficult for the brain to perform backpropagation (BP) is the weight transport problem, which argues forward and feedback neurons cannot share the same synaptic weights during learning in biological neural networks. Recently proposed algorithms address the weight transport problem while providing good performance similar to BP in large-scale networks. However, they require bidirectional connections between the forward and feedback neurons to train their weights, which is observed to be rare in the biological brain. In this work, we propose an Activation Sharing algorithm that removes the need for bidirectional connections between the two types of neurons. In this algorithm, hidden layer outputs (activations) are shared across multiple layers during weight updates. By applying this learning rule to both forward and feedback networks, we solve the weight transport problem without the constraint of bidirectional connections, also achieving good performance even on deep convolutional neural networks for various datasets. In addition, our algorithm could significantly reduce memory access overhead when implemented in hardware.
Sunghyeon Woo, Jeongwoo Park, Jiwoo Hong, Dongsuk Jeon
null
null
2,021
neurips
Robust Generalization despite Distribution Shift via Minimum Discriminating Information
null
Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use distributionally robust optimization to account for uncertainty due to the limited samples. By leveraging large deviation results, we obtain explicit generalization bounds with respect to the unknown shifted distribution. Lastly, we demonstrate the versatility of our framework by demonstrating it on two rather distinct applications: (1) training classifiers on systematically biased data and (2) off-policy evaluation in Markov Decision Processes.
Tobias Sutter, Andreas Krause, Daniel Kuhn
null
null
2,021
neurips
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
null
This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system $\bar{A}\theta = \bar{b}$ for which $\bar{A}$ and $\bar{b}$ can only be accessed through random estimates $\{({\bf A}_n, {\bf b}_n): n \in \mathbb{N}^*\}$. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence $\{({\bf A}_n, {\bf b}_n): n \in \mathbb{N}^*\}$ than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices $\{{\bf A}_n: n \in \mathbb{N}^*\}$, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems.
Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, Hoi-To Wai
null
null
2,021
neurips
NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild
null
Recent history has seen a tremendous growth of work exploring implicit representations of geometry and radiance, popularized through Neural Radiance Fields (NeRF). Such works are fundamentally based on a (implicit) {\em volumetric} representation of occupancy, allowing them to model diverse scene structure including translucent objects and atmospheric obscurants. But because the vast majority of real-world scenes are composed of well-defined surfaces, we introduce a {\em surface} analog of such implicit models called Neural Reflectance Surfaces (NeRS). NeRS learns a neural shape representation of a closed surface that is diffeomorphic to a sphere, guaranteeing water-tight reconstructions. Even more importantly, surface parameterizations allow NeRS to learn (neural) bidirectional surface reflectance functions (BRDFs) that factorize view-dependent appearance into environmental illumination, diffuse color (albedo), and specular “shininess.” Finally, rather than illustrating our results on synthetic scenes or controlled in-the-lab capture, we assemble a novel dataset of multi-view images from online marketplaces for selling goods. Such “in-the-wild” multi-view image sets pose a number of challenges, including a small number of views with unknown/rough camera estimates. We demonstrate that surface-based neural reconstructions enable learning from such data, outperforming volumetric neural rendering-based reconstructions. We hope that NeRS serves as a first step toward building scalable, high-quality libraries of real-world shape, materials, and illumination.
Jason Zhang, Gengshan Yang, Shubham Tulsiani, Deva Ramanan
null
null
2,021
neurips
Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning
null
Contrastive self-supervised learning (CSL) has attracted increasing attention for model pre-training via unlabeled data. The resulted CSL models provide instance-discriminative visual features that are uniformly scattered in the feature space. During deployment, the common practice is to directly fine-tune CSL models with cross-entropy, which however may not be the best strategy in practice. Although cross-entropy tends to separate inter-class features, the resulting models still have limited capability for reducing intra-class feature scattering that exists in CSL models. In this paper, we investigate whether applying contrastive learning to fine-tuning would bring further benefits, and analytically find that optimizing the contrastive loss benefits both discriminative representation learning and model optimization during fine-tuning. Inspired by these findings, we propose Contrast-regularized tuning (Core-tuning), a new approach for fine-tuning CSL models. Instead of simply adding the contrastive loss to the objective of fine-tuning, Core-tuning further applies a novel hard pair mining strategy for more effective contrastive fine-tuning, as well as smoothing the decision boundary to better exploit the learned discriminative feature space. Extensive experiments on image classification and semantic segmentation verify the effectiveness of Core-tuning.
Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, Jiashi Feng
null
null
2,021
neurips
Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification
null
Bound propagation based incomplete neural network verifiers such as CROWN are very efficient and can significantly accelerate branch-and-bound (BaB) based complete verification of neural networks. However, bound propagation cannot fully handle the neuron split constraints introduced by BaB commonly handled by expensive linear programming (LP) solvers, leading to loose bounds and hurting verification efficiency. In this work, we develop $\beta$-CROWN, a new bound propagation based method that can fully encode neuron splits via optimizable parameters $\beta$ constructed from either primal or dual space. When jointly optimized in intermediate layers, $\beta$-CROWN generally produces better bounds than typical LP verifiers with neuron split constraints, while being as efficient and parallelizable as CROWN on GPUs. Applied to complete robustness verification benchmarks, $\beta$-CROWN with BaB is up to three orders of magnitude faster than LP-based BaB methods, and is notably faster than all existing approaches while producing lower timeout rates. By terminating BaB early, our method can also be used for efficient incomplete verification. We consistently achieve higher verified accuracy in many settings compared to powerful incomplete verifiers, including those based on convex barrier breaking techniques. Compared to the typically tightest but very costly semidefinite programming (SDP) based incomplete verifiers, we obtain higher verified accuracy with three orders of magnitudes less verification time. Our algorithm empowered the $\alpha,\!\beta$-CROWN (alpha-beta-CROWN) verifier, the winning tool in VNN-COMP 2021. Our code is available at http://PaperCode.cc/BetaCROWN.
Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter
null
null
2,021
neurips
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
null
Randomized smoothing is currently a state-of-the-art method to construct a certifiably robust classifier from neural networks against $\ell_2$-adversarial perturbations. Under the paradigm, the robustness of a classifier is aligned with the prediction confidence, i.e., the higher confidence from a smoothed classifier implies the better robustness. This motivates us to rethink the fundamental trade-off between accuracy and robustness in terms of calibrating confidences of a smoothed classifier. In this paper, we propose a simple training scheme, coined SmoothMix, to control the robustness of smoothed classifiers via self-mixup: it trains on convex combinations of samples along the direction of adversarial perturbation for each input. The proposed procedure effectively identifies over-confident, near off-class samples as a cause of limited robustness in case of smoothed classifiers, and offers an intuitive way to adaptively set a new decision boundary between these samples for better robustness. Our experimental results demonstrate that the proposed method can significantly improve the certified $\ell_2$-robustness of smoothed classifiers compared to existing state-of-the-art robust training methods.
Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Do-Guk Kim, Jinwoo Shin
null
null
2,021
neurips
Optimal Algorithms for Stochastic Contextual Preference Bandits
null
We consider the problem of preference bandits in the contextual setting. At each round, the learner is presented with a context set of $K$ items, chosen randomly from a potentially infinite set of arms $\mathcal D \subseteq \mathbf R^d$. However, unlike classical contextual bandits, our framework only allows the learner to receive feedback in terms of item preferences: At each round, the learner is allowed to play a subset of size $q$ (any $q \in \{2,\ldots,K\}$) upon which only a (noisy) winner of the subset is revealed. Yet, same as the classical setup, the goal is still to compete against the best context arm at each round. The problem is relevant in various online decision-making scenarios, including recommender systems, information retrieval, tournament ranking--typically any application where it's easier to elicit the items' relative strength instead of their absolute scores. To the best of our knowledge, this work is the first to consider preference-based stochastic contextual bandits for potentially infinite decision spaces. We start with presenting two algorithms for the special case of pairwise preferences $(q=2)$: The first algorithm is simple and easy to implement with an $\tilde O(d\sqrt{T})$ regret guarantee, while the second algorithm is shown to achieve the optimal $\tilde O(\sqrt{dT})$ regret, as follows from our $\Omega(\sqrt {dT})$ matching lower bound analysis. We then proceed to analyze the problem for any general $q$-subsetwise preferences ($q \ge 2$), where surprisingly, our lower bound proves the fundamental performance limit to be $\Omega(\sqrt{d T})$ yet again, independent of the subsetsize $q$. Following this, we propose a matching upper bound algorithm justifying the tightness of our results. This implies having access to subsetwise preferences does not help in faster information aggregation for our feedback model. All the results are corroborated empirically against existing baselines.
Aadirupa Saha
null
null
2,021
neurips
MICo: Improved representations via sampling-based state similarity for Markov decision processes
null
We present a new behavioural distance over the state space of a Markov decision process, and demonstrate the use of this distance as an effective means of shaping the learnt representations of deep reinforcement learning agents. While existing notions of state similarity are typically difficult to learn at scale due to high computational cost and lack of sample-based algorithms, our newly-proposed distance addresses both of these issues. In addition to providing detailed theoretical analyses, we provide empirical evidence that learning this distance alongside the value function yields structured and informative representations, including strong results on the Arcade Learning Environment benchmark.
Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, Mark Rowland
null
null
2,021
neurips
Scalable and Stable Surrogates for Flexible Classifiers with Fairness Constraints
null
We investigate how fairness relaxations scale to flexible classifiers like deep neural networks for images and text. We analyze an easy-to-use and robust way of imposing fairness constraints when training, and through this framework prove that some prior fairness surrogates exhibit degeneracies for non-convex models. We resolve these problems via three new surrogates: an adaptive data re-weighting, and two smooth upper-bounds that are provably more robust than some previous methods. Our surrogates perform comparably to the state-of-the-art on low-dimensional fairness benchmarks, while achieving superior accuracy and stability for more complex computer vision and natural language processing tasks.
Henry C Bendekgey, Erik Sudderth
null
null
2,021
neurips
Focal Attention for Long-Range Interactions in Vision Transformers
null
Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability to capture local and global visual dependencies through self-attention is the key to its success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks(e.g., object detection). Many recent works have attempted to reduce the cost and improve model performance by applying either coarse-grained global attention or fine-grained local attention. However, both approaches cripple the modeling power of the original self-attention mechanism of multi-layer Transformers, leading to sub-optimal solutions. In this paper, we present focal attention, a new attention mechanism that incorporates both fine-grained local and coarse-grained global interactions. In this new mechanism, each token attends its closest surrounding tokens at the fine granularity and the tokens far away at a coarse granularity and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal attention, we propose a new variant of Vision Transformer models, called Focal Transformers, which achieve superior performance over the state-of-the-art (SoTA) Vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a large size of 89.8M achieve 83.6% and 84.0%Top-1 accuracy, respectively, on ImageNet classification at 224×224. When employed as the backbones, Focal Transformers achieve consistent and substantial improvements over the current SoTA Swin Transformers [44] across 6 different object detection methods. Our largest Focal Transformer yields58.7/59.0boxmAPs and50.9/51.3mask mAPs on COCO mini-val/test-dev, and55.4mIoU onADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.
Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, Jianfeng Gao
null
null
2,021
neurips
Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects
null
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image. While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion. This leads to significantly better image decomposition and sharper deblurring results. We model the observed appearance of a motion-blurred object as a combination of the background and a 3D object with constant translation and rotation. Our method minimizes a loss on reconstructing the input image via differentiable rendering with suitable regularizers. This enables estimating the textured 3D mesh of the blurred object with high fidelity. Our method substantially outperforms competing approaches on several benchmarks for fast moving objects deblurring. Qualitative results show that the reconstructed 3D mesh generates high-quality temporal super-resolution and novel views of the deblurred object.
Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Marc Pollefeys
null
null
2,021
neurips
Delayed Gradient Averaging: Tolerate the Communication Latency for Federated Learning
null
Federated Learning is an emerging direction in distributed machine learning that en-ables jointly training a model without sharing the data. Since the data is distributed across many edge devices through wireless / long-distance connections, federated learning suffers from inevitable high communication latency. However, the latency issues are undermined in the current literature [15] and existing approaches suchas FedAvg [27] become less efficient when the latency increases. To over comethe problem, we propose \textbf{D}elayed \textbf{G}radient \textbf{A}veraging (DGA), which delays the averaging step to improve efficiency and allows local computation in parallel tocommunication. We theoretically prove that DGA attains a similar convergence rate as FedAvg, and empirically show that our algorithm can tolerate high network latency without compromising accuracy. Specifically, we benchmark the training speed on various vision (CIFAR, ImageNet) and language tasks (Shakespeare),with both IID and non-IID partitions, and show DGA can bring 2.55$\times$ to 4.07$\times$ speedup. Moreover, we built a 16-node Raspberry Pi cluster and show that DGA can consistently speed up real-world federated learning applications.
Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, Song Han
null
null
2,021
neurips
Dynamic Trace Estimation
null
We study a dynamic version of the implicit trace estimation problem. Given access to an oracle for computing matrix-vector multiplications with a dynamically changing matrix A, our goal is to maintain an accurate approximation to A's trace using as few multiplications as possible. We present a practical algorithm for solving this problem and prove that, in a natural setting, its complexity is quadratically better than the standard solution of repeatedly applying Hutchinson's stochastic trace estimator. We also provide an improved algorithm assuming additional common assumptions on A's dynamic updates. We support our theory with empirical results, showing significant computational improvements on three applications in machine learning and network science: tracking moments of the Hessian spectral density during neural network optimization, counting triangles and estimating natural connectivity in a dynamically changing graph.
Prathamesh Dharangutte, Christopher Musco
null
null
2,021
neurips
Counterfactual Explanations in Sequential Decision Making Under Uncertainty
null
Methods to find counterfactual explanations have predominantly focused on one-step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, dependent actions are taken sequentially over time. We start by formally characterizing a sequence of actions and states using finite horizon Markov decision processes and the Gumbel-Max structural causal model. Building upon this characterization, we formally state the problem of finding counterfactual explanations for sequential decision making processes. In our problem formulation, the counterfactual explanation specifies an alternative sequence of actions differing in at most k actions from the observed sequence that could have led the observed process realization to a better outcome. Then, we introduce a polynomial time algorithm based on dynamic programming to build a counterfactual policy that is guaranteed to always provide the optimal counterfactual explanation on every possible realization of the counterfactual environment dynamics. We validate our algorithm using both synthetic and real data from cognitive behavioral therapy and show that the counterfactual explanations our algorithm finds can provide valuable insights to enhance sequential decision making under uncertainty.
Stratis Tsirtsis, Abir De, Manuel Rodriguez
null
null
2,021
neurips
Provable Representation Learning for Imitation with Contrastive Fourier Features
null
In imitation learning, it is common to learn a behavior policy to match an unknown target policy via max-likelihood training on a collected set of target demonstrations. In this work, we consider using offline experience datasets -- potentially far from the target distribution -- to learn low-dimensional state representations that provably accelerate the sample-efficiency of downstream imitation learning. A central challenge in this setting is that the unknown target policy itself may not exhibit low-dimensional behavior, and so there is a potential for the representation learning objective to alias states in which the target policy acts differently. Circumventing this challenge, we derive a representation learning objective that provides an upper bound on the performance difference between the target policy and a low-dimensional policy trained with max-likelihood, and this bound is tight regardless of whether the target policy itself exhibits low-dimensional structure. Moving to the practicality of our method, we show that our objective can be implemented as contrastive learning, in which the transition dynamics are approximated by either an implicit energy-based model or, in some special cases, an implicit linear model with representations given by random Fourier features. Experiments on both tabular environments and high-dimensional Atari games provide quantitative evidence for the practical benefits of our proposed objective.
Ofir Nachum, Mengjiao Yang
null
null
2,021
neurips
Action-guided 3D Human Motion Prediction
null
The ability of forecasting future human motion is important for human-machine interaction systems to understand human behaviors and make interaction. In this work, we focus on developing models to predict future human motion from past observed video frames. Motivated by the observation that human motion is closely related to the action being performed, we propose to explore action context to guide motion prediction. Specifically, we construct an action-specific memory bank to store representative motion dynamics for each action category, and design a query-read process to retrieve some motion dynamics from the memory bank. The retrieved dynamics are consistent with the action depicted in the observed video frames and serve as a strong prior knowledge to guide motion prediction. We further formulate an action constraint loss to ensure the global semantic consistency of the predicted motion. Extensive experiments demonstrate the effectiveness of the proposed approach, and we achieve state-of-the-art performance on 3D human motion prediction.
Jiangxin Sun, Zihang Lin, Xintong Han, Jian-Fang Hu, Jia Xu, Wei-Shi Zheng
null
null
2,021
neurips
Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training
null
Deep learning (DL) systems have been gaining popularity in critical tasks such as credit evaluation and crime prediction. Such systems demand fairness. Recent work shows that DL software implementations introduce variance: identical DL training runs (i.e., identical network, data, configuration, software, and hardware) with a fixed seed produce different models. Such variance could make DL models and networks violate fairness compliance laws, resulting in negative social impact. In this paper, we conduct the first empirical study to quantify the impact of software implementation on the fairness and its variance of DL systems. Our study of 22 mitigation techniques and five baselines reveals up to 12.6% fairness variance across identical training runs with identical seeds. In addition, most debiasing algorithms have a negative impact on the model such as reducing model accuracy, increasing fairness variance, or increasing accuracy variance. Our literature survey shows that while fairness is gaining popularity in artificial intelligence (AI) related conferences, only 34.4% of the papers use multiple identical training runs to evaluate their approach, raising concerns about their results’ validity. We call for better fairness evaluation and testing protocols to improve fairness and fairness variance of DL systems as well as DL research validity and reproducibility at large.
Shangshu Qian, Viet Hung Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, Sameena Shah
null
null
2,021
neurips
Structural Credit Assignment in Neural Networks using Reinforcement Learning
null
Structural credit assignment in neural networks is a long-standing problem, with a variety of alternatives to backpropagation proposed to allow for local training of nodes. One of the early strategies was to treat each node as an agent and use a reinforcement learning method called REINFORCE to update each node locally with only a global reward signal. In this work, we revisit this approach and investigate if we can leverage other reinforcement learning approaches to improve learning. We first formalize training a neural network as a finite-horizon reinforcement learning problem and discuss how this facilitates using ideas from reinforcement learning like off-policy learning. We show that the standard on-policy REINFORCE approach, even with a variety of variance reduction approaches, learns suboptimal solutions. We introduce an off-policy approach, to facilitate reasoning about the greedy action for other agents and help overcome stochasticity in other agents. We conclude by showing that these networks of agents can be more robust to correlated samples when learning online.
Dhawal Gupta, Gabor Mihucz, Matthew Schlegel, James Kostas, Philip S. Thomas, Martha White
null
null
2,021
neurips
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
null
Adversarial attacks based on randomized search schemes have obtained state-of-the-art results in black-box robustness evaluation recently. However, as we demonstrate in this work, their efficiency in different query budget regimes depends on manual design and heuristic tuning of the underlying proposal distributions. We study how this issue can be addressed by adapting the proposal distribution online based on the information obtained during the attack. We consider Square Attack, which is a state-of-the-art score-based black-box attack, and demonstrate how its performance can be improved by a learned controller that adjusts the parameters of the proposal distribution online during the attack. We train the controller using gradient-based end-to-end training on a CIFAR10 model with white box access. We demonstrate that plugging the learned controller into the attack consistently improves its black-box robustness estimate in different query regimes by up to 20% for a wide range of different models with black-box access. We further show that the learned adaptation principle transfers well to the other data distributions such as CIFAR100 or ImageNet and to the targeted attack setting.
Maksym Yatsura, Jan Metzen, Matthias Hein
null
null
2,021
neurips
FedDR – Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization
null
We develop two new algorithms, called, FedDR and asyncFedDR, for solving a fundamental nonconvex composite optimization problem in federated learning. Our algorithms rely on a novel combination between a nonconvex Douglas-Rachford splitting method, randomized block-coordinate strategies, and asynchronous im- plementation. They can also handle convex regularizers. Unlike recent methods in the literature, e.g., FedSplit and FedPD, our algorithms update only a subset of users at each communication round, and possibly in an asynchronous manner, making them more practical. These new algorithms can handle statistical and sys- tem heterogeneity, which are the two main challenges in federated learning, while achieving the best known communication complexity. In fact, our new algorithms match the communication complexity lower bound up to a constant factor under standard assumptions. Our numerical experiments illustrate the advantages of our methods over existing algorithms on synthetic and real datasets.
Quoc Tran Dinh, Nhan H Pham, Dzung Phan, Lam Nguyen
null
null
2,021
neurips
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum
null
This paper proposes a new algorithm -- the \underline{S}ingle-timescale Do\underline{u}ble-momentum \underline{St}ochastic \underline{A}pprox\underline{i}matio\underline{n} (SUSTAIN) -- for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on \emph{two-timescale} or \emph{double loop} techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that {SUSTAIN}~requires $O(\epsilon^{-3/2})$ iterations (each using $O(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions matches the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.
Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang
null
null
2,021
neurips
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
null
Prior works have found it beneficial to combine provably noise-robust loss functions e.g., mean absolute error (MAE) with standard categorical loss function e.g. cross entropy (CE) to improve their learnability. Here, we propose to use Jensen-Shannon divergence as a noise-robust loss function and show that it interestingly interpolate between CE and MAE with a controllable mixing parameter. Furthermore, we make a crucial observation that CE exhibit lower consistency around noisy data points. Based on this observation, we adopt a generalized version of the Jensen-Shannon divergence for multiple distributions to encourage consistency around data points. Using this loss function, we show state-of-the-art results on both synthetic (CIFAR), and real-world (e.g., WebVision) noise with varying noise rates.
Erik Englesson, Hossein Azizpour
null
null
2,021
neurips
Validating the Lottery Ticket Hypothesis with Inertial Manifold Theory
null
Despite achieving remarkable efficiency, traditional network pruning techniques often follow manually-crafted heuristics to generate pruned sparse networks. Such heuristic pruning strategies are hard to guarantee that the pruned networks achieve test accuracy comparable to the original dense ones. Recent works have empirically identified and verified the Lottery Ticket Hypothesis (LTH): a randomly-initialized dense neural network contains an extremely sparse subnetwork, which can be trained to achieve similar accuracy to the former. Due to the lack of theoretical evidence, they often need to run multiple rounds of expensive training and pruning over the original large networks to discover the sparse subnetworks with low accuracy loss. By leveraging dynamical systems theory and inertial manifold theory, this work theoretically verifies the validity of the LTH. We explore the possibility of theoretically lossless pruning as well as one-time pruning, compared with existing neural network pruning and LTH techniques. We reformulate the neural network optimization problem as a gradient dynamical system and reduce this high-dimensional system onto inertial manifolds to obtain a low-dimensional system regarding pruned subnetworks. We demonstrate the precondition and existence of pruned subnetworks and prune the original networks in terms of the gap in their spectrum that make the subnetworks have the smallest dimensions.
Zeru Zhang, Jiayin Jin, Zijie Zhang, Yang Zhou, Xin Zhao, Jiaxiang Ren, Ji Liu, Lingfei Wu, Ruoming Jin, Dejing Dou
null
null
2,021
neurips
MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility Prediction
null
Human mobility prediction is a core functionality in many location-based services and applications. However, due to the sparsity of mobility data, it is not an easy task to predict future POIs (place-of-interests) that are going to be visited. In this paper, we propose MobTCast, a Transformer-based context-aware network for mobility prediction. Specifically, we explore the influence of four types of context in mobility prediction: temporal, semantic, social, and geographical contexts. We first design a base mobility feature extractor using the Transformer architecture, which takes both the history POI sequence and the semantic information as input. It handles both the temporal and semantic contexts. Based on the base extractor and the social connections of a user, we employ a self-attention module to model the influence of the social context. Furthermore, unlike existing methods, we introduce a location prediction branch in MobTCast as an auxiliary task to model the geographical context and predict the next location. Intuitively, the geographical distance between the location of the predicted POI and the predicted location from the auxiliary branch should be as close as possible. To reflect this relation, we design a consistency loss to further improve the POI prediction performance. In our experimental results, MobTCast outperforms other state-of-the-art next POI prediction methods. Our approach illustrates the value of including different types of context in next POI prediction.
Hao Xue, Flora Salim, Yongli Ren, Nuria Oliver
null
null
2,021
neurips
Error Compensated Distributed SGD Can Be Accelerated
null
Gradient compression is a recent and increasingly popular technique for reducing the communication cost in distributed training of large-scale machine learning models. In this work we focus on developing efficient distributed methods that can work for any compressor satisfying a certain contraction property, which includes both unbiased (after appropriate scaling) and biased compressors such as RandK and TopK. Applied naively, gradient compression introduces errors that either slow down convergence or lead to divergence. A popular technique designed to tackle this issue is error compensation/error feedback. Due to the difficulties associated with analyzing biased compressors, it is not known whether gradient compression with error compensation can be combined with acceleration. In this work, we show for the first time that error compensated gradient compression methods can be accelerated. In particular, we propose and study the error compensated loopless Katyusha method, and establish an accelerated linear convergence rate under standard assumptions. We show through numerical experiments that the proposed method converges with substantially fewer communication rounds than previous error compensated algorithms.
Xun Qian, Peter Richtarik, Tong Zhang
null
null
2,021
neurips
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
null
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances in self-supervised deep learning. Learning minimizes a simple layer-specific loss function and does not need to back-propagate error signals within or between layers. Instead, weight updates follow a local, Hebbian, learning rule that only depends on pre- and post-synaptic neuronal activity, predictive dendritic input and widely broadcasted modulation factors which are identical for large groups of neurons. The learning rule applies contrastive predictive learning to a causal, biological setting using saccades (i.e. rapid shifts in gaze direction). We find that networks trained with this self-supervised and local rule build deep hierarchical representations of images, speech and video.
Bernd Illing, Jean Ventura, Guillaume Bellec, Wulfram Gerstner
null
null
2,021
neurips
Early Convolutions Help Transformers See Better
null
Vision transformer (ViT) models exhibit substandard optimizability. In particular, they are sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and training schedule length. In comparison, modern convolutional neural networks are easier to optimize. Why is this the case? In this work, we conjecture that the issue lies with the patchify stem of ViT models, which is implemented by a stride-p p×p convolution (p = 16 by default) applied to the input image. This large-kernel plus large-stride convolution runs counter to typical design choices of convolutional layers in neural networks. To test whether this atypical design choice causes an issue, we analyze the optimization behavior of ViT models with their original patchify stem versus a simple counterpart where we replace the ViT stem by a small number of stacked stride-two 3×3 convolutions. While the vast majority of computation in the two ViT designs is identical, we find that this small change in early visual processing results in markedly different training behavior in terms of the sensitivity to optimization settings as well as the final model accuracy. Using a convolutional stem in ViT dramatically increases optimization stability and also improves peak performance (by ∼1-2% top-1 accuracy on ImageNet-1k), while maintaining flops and runtime. The improvement can be observed across the wide spectrum of model complexities (from 1G to 36G flops) and dataset scales (from ImageNet-1k to ImageNet-21k). These findings lead us to recommend using a standard, lightweight convolutional stem for ViT models in this regime as a more robust architectural choice compared to the original ViT model design.
Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollar, Ross Girshick
null
null
2,021
neurips
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
null
Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical, or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations. However, when measuring individual outcomes is costly, as is the case of a tumor biopsy, a sample-efficient strategy for acquiring each result is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, existing methods bias training data acquisition towards regions of non-overlapping support between the treated and control populations. These are not sample-efficient because the treatment effect is not identifiable in such regions. We introduce causal, Bayesian acquisition functions grounded in information theory that bias data acquisition towards regions with overlapping support to maximize sample efficiency for learning personalized treatment effects. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions, which aim to simulate common dataset biases and pathologies.
Andrew Jesson, Panagiotis Tigas, Joost van Amersfoort, Andreas Kirsch, Uri Shalit, Yarin Gal
null
null
2,021
neurips
Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning
null
As annotations of data can be scarce in large-scale practical problems, leveraging unlabelled examples is one of the most important aspects of machine learning. This is the aim of semi-supervised learning. To benefit from the access to unlabelled data, it is natural to diffuse smoothly knowledge of labelled data to unlabelled one. This induces to the use of Laplacian regularization. Yet, current implementations of Laplacian regularization suffer from several drawbacks, notably the well-known curse of dimensionality. In this paper, we design a new class of algorithms overcoming this issue, unveiling a large body of spectral filtering methods. Additionally, we provide a statistical analysis showing that our estimators exhibit desirable behaviors. They are implemented through (reproducing) kernel methods, for which we provide realistic computational guidelines in order to make our method usable with large amounts of data.
Vivien Cabannes, Loucas Pillaud-Vivien, Francis Bach, Alessandro Rudi
null
null
2,021
neurips
A Regression Approach to Learning-Augmented Online Algorithms
null
The emerging field of learning-augmented online algorithms uses ML techniques to predict future input parameters and thereby improve the performance of online algorithms. Since these parameters are, in general, real-valued functions, a natural approach is to use regression techniques to make these predictions. We introduce this approach in this paper, and explore it in the context of a general online search framework that captures classic problems like (generalized) ski rental, bin packing, minimum makespan scheduling, etc. We show nearly tight bounds on the sample complexity of this regression problem, and extend our results to the agnostic setting. From a technical standpoint, we show that the key is to incorporate online optimization benchmarks in the design of the loss function for the regression problem, thereby diverging from the use of off-the-shelf regression tools with standard bounds on statistical error.
Keerti Anand, Rong Ge, Amit Kumar, Debmalya Panigrahi
null
null
2,021
neurips
Scalable Rule-Based Representation Learning for Interpretable Classification
null
Rule-based models, e.g., decision trees, are widely used in scenarios demanding high model interpretability for their transparent inner structures and good model expressivity. However, rule-based models are hard to optimize, especially on large data sets, due to their discrete parameters and structures. Ensemble methods and fuzzy/soft rules are commonly used to improve performance, but they sacrifice the model interpretability. To obtain both good scalability and interpretability, we propose a new classifier, named Rule-based Representation Learner (RRL), that automatically learns interpretable non-fuzzy rules for data representation and classification. To train the non-differentiable RRL effectively, we project it to a continuous space and propose a novel training method, called Gradient Grafting, that can directly optimize the discrete model using gradient descent. An improved design of logical activation functions is also devised to increase the scalability of RRL and enable it to discretize the continuous features end-to-end. Exhaustive experiments on nine small and four large data sets show that RRL outperforms the competitive interpretable approaches and can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios. Our code is available at: https://github.com/12wang3/rrl.
Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang
null
null
2,021
neurips
What You See is What You Classify: Black Box Attributions
null
An important step towards explaining deep image classifiers lies in the identification of image regions that contribute to individual class scores in the model's output. However, doing this accurately is a difficult task due to the black-box nature of such networks. Most existing approaches find such attributions either using activations and gradients or by repeatedly perturbing the input. We instead address this challenge by training a second deep network, the Explainer, to predict attributions for a pre-trained black-box classifier, the Explanandum. These attributions are provided in the form of masks that only show the classifier-relevant parts of an image, masking out the rest. Our approach produces sharper and more boundary-precise masks when compared to the saliency maps generated by other methods. Moreover, unlike most existing approaches, ours is capable of directly generating very distinct class-specific masks in a single forward pass. This makes the proposed method very efficient during inference. We show that our attributions are superior to established methods both visually and quantitatively with respect to the PASCAL VOC-2007 and Microsoft COCO-2014 datasets.
Steven Stalder, Nathanael Perraudin, Radhakrishna Achanta, Fernando Perez-Cruz, Michele Volpi
null
null
2,022
neurips
Geometric Order Learning for Rank Estimation
null
A novel approach to rank estimation, called geometric order learning (GOL), is proposed in this paper. First, we construct an embedding space, in which the direction and distance between objects represent order and metric relations between their ranks, by enforcing two geometric constraints: the order constraint compels objects to be sorted according to their ranks, while the metric constraint makes the distance between objects reflect their rank difference. Then, we perform the simple $k$ nearest neighbor ($k$-NN) search in the embedding space to estimate the rank of a test object. Moreover, to assess the quality of embedding spaces for rank estimation, we propose a metric called discriminative ratio for ranking (DRR). Extensive experiments on facial age estimation, historical color image (HCI) classification, and aesthetic score regression demonstrate that GOL constructs effective embedding spaces and thus yields excellent rank estimation performances. The source codes are available at https://github.com/seon92/GOL
Seon-Ho Lee, Nyeong Ho Shin, Chang-Su Kim
null
null
2,022
neurips
Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection
null
Deep networks have shown remarkable results in the task of object detection. However, their performance suffers critical drops when they are subsequently trained on novel classes without any sample from the base classes originally used to train the model. This phenomenon is known as catastrophic forgetting. Recently, several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection. Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes. This requirement is impractical in many real-world settings since the base classes do not necessarily co-occur with the novel classes. In view of this limitation, we consider a more practical setting of complete absence of co-occurrence of the base and novel classes for the object detection task. We propose the use of unlabeled in-the-wild data to bridge the non co-occurrence caused by the missing base classes during the training of additional novel classes. To this end, we introduce a blind sampling strategy based on the responses of the base-class model and pre-trained novel-class model to select a smaller relevant dataset from the large in-the-wild dataset for incremental learning. We then design a dual-teacher distillation framework to transfer the knowledge distilled from the base- and novel-class teacher models to the student model using the sampled in-the-wild data. Experimental results on the PASCAL VOC and MS COCO datasets show that our proposed method significantly outperforms other state-of-the-art class-incremental object detection methods when there is no co-occurrence between the base and novel classes during training.
NA DONG, Yongqiang Zhang, Mingli Ding, Gim Hee Lee
null
null
2,021
neurips
Adaptive Interest for Emphatic Reinforcement Learning
null
Emphatic algorithms have shown great promise in stabilizing and improving reinforcement learning by selectively emphasizing the update rule. Although the emphasis fundamentally depends on an interest function which defines the intrinsic importance of each state, most approaches simply adopt a uniform interest over all states (except where a hand-designed interest is possible based on domain knowledge). In this paper, we investigate adaptive methods that allow the interest function to dynamically vary over states and iterations. In particular, we leverage meta-gradients to automatically discover online an interest function that would accelerate the agent’s learning process. Empirical evaluations on a wide range of environments show that adapting the interest is key to provide significant gains. Qualitative analysis indicates that the learned interest function emphasizes states of particular importance, such as bottlenecks, which can be especially useful in a transfer learning setting.
Martin Klissarov, Rasool Fakoor, Jonas W. Mueller, Kavosh Asadi, Taesup Kim, Alexander J. Smola
null
null
2,022
neurips
Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning
null
Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.
Dongze Lian, Daquan Zhou, Jiashi Feng, Xinchao Wang
null
null
2,022
neurips
On Kernelized Multi-Armed Bandits with Constraints
null
We study a stochastic bandit problem with a general unknown reward function and a general unknown constraint function. Both functions can be non-linear (even non-convex) and are assumed to lie in a reproducing kernel Hilbert space (RKHS) with a bounded norm. This kernelized bandit setup strictly generalizes standard multi-armed bandits and linear bandits. In contrast to safety-type hard constraints studied in prior works, we consider soft constraints that may be violated in any round as long as the cumulative violations are small, which is motivated by various practical applications. Our ultimate goal is to study how to utilize the nature of soft constraints to attain a finer complexity-regret-constraint trade-off in the kernelized bandit setting. To this end, leveraging primal-dual optimization, we propose a general framework for both algorithm design and performance analysis. This framework builds upon a novel sufficient condition, which not only is satisfied under general exploration strategies, including \emph{upper confidence bound} (UCB), \emph{Thompson sampling} (TS), and new ones based on \emph{random exploration}, but also enables a unified analysis for showing both sublinear regret and sublinear or even zero constraint violation. We demonstrate the superior performance of our proposed algorithms via numerical experiments based on both synthetic and real-world datasets. Along the way, we also make the first detailed comparison between two popular methods for analyzing constrained bandits and Markov decision processes (MDPs) by discussing the key difference and some subtleties in the analysis, which could be of independent interest to the communities.
Xingyu Zhou, Bo Ji
null
null
2,022
neurips
Offline Multi-Agent Reinforcement Learning with Knowledge Distillation
null
We introduce an offline multi-agent reinforcement learning ( offline MARL) framework that utilizes previously collected data without additional online data collection. Our method reformulates offline MARL as a sequence modeling problem and thus builds on top of the simplicity and scalability of the Transformer architecture. In the fashion of centralized training and decentralized execution, we propose to first train a teacher policy as if the MARL dataset is generated by a single agent. After the teacher policy has identified and recombined the "good" behavior in the dataset, we create separate student policies and distill not only the teacher policy's features but also its structural relations among different agents' features to student policies. Despite its simplicity, the proposed method outperforms state-of-the-art model-free offline MARL baselines while being more robust to demonstration's quality on several environments.
Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, Phillip Isola
null
null
2,022
neurips
Active Learning with Neural Networks: Insights from Nonparametric Statistics
null
Deep neural networks have great representation power, but typically require large numbers of training examples. This motivates deep active learning methods that can significantly reduce the amount of labeled training data. Empirical successes of deep active learning have been recently reported in the literature, however, rigorous label complexity guarantees of deep active learning have remained elusive. This constitutes a significant gap between theory and practice. This paper tackles this gap by providing the first near-optimal label complexity guarantees for deep active learning. The key insight is to study deep active learning from the nonparametric classification perspective. Under standard low noise conditions, we show that active learning with neural networks can provably achieve the minimax label complexity, up to disagreement coefficient and other logarithmic terms. When equipped with an abstention option, we further develop an efficient deep active learning algorithm that achieves $\mathsf{polylog}(\frac{1}{\varepsilon})$ label complexity, without any low noise assumptions. We also provide extensions of our results beyond the commonly studied Sobolev/H\"older spaces and develop label complexity guarantees for learning in Radon $\mathsf{BV}^2$ spaces, which have recently been proposed as natural function spaces associated with neural networks.
Yinglun Zhu, Robert Nowak
null
null
2,022
neurips
Fast Bayesian Coresets via Subsampling and Quasi-Newton Refinement
null
Bayesian coresets approximate a posterior distribution by building a small weighted subset of the data points. Any inference procedure that is too computationally expensive to be run on the full posterior can instead be run inexpensively on the coreset, with results that approximate those on the full data. However, current approaches are limited by either a significant run-time or the need for the user to specify a low-cost approximation to the full posterior. We propose a Bayesian coreset construction algorithm that first selects a uniformly random subset of data, and then optimizes the weights using a novel quasi-Newton method. Our algorithm is a simple to implement, black-box method, that does not require the user to specify a low-cost posterior approximation. It is the first to come with a general high-probability bound on the KL divergence of the output coreset posterior. Experiments demonstrate that our method provides significant improvements in coreset quality against alternatives with comparable construction times, with far less storage cost and user input required.
Cian Naik, Judith Rousseau, Trevor Campbell
null
null
2,022
neurips
Structured Recognition for Generative Models with Explaining Away
null
A key goal of unsupervised learning is to go beyond density estimation and sample generation to reveal the structure inherent within observed data. Such structure can be expressed in the pattern of interactions between explanatory latent variables captured through a probabilistic graphical model. Although the learning of structured graphical models has a long history, much recent work in unsupervised modelling has instead emphasised flexible deep-network-based generation, either transforming independent latent generators to model complex data or assuming that distinct observed variables are derived from different latent nodes. Here, we extend amortised variational inference to incorporate structured factors over multiple variables, able to capture the observation-induced posterior dependence between latents that results from “explaining away” and thus allow complex observations to depend on multiple nodes of a structured graph. We show that appropriately parametrised factors can be combined efficiently with variational message passing in rich graphical structures. We instantiate the framework in nonlinear Gaussian Process Factor Analysis, evaluating the structured recognition framework using synthetic data from known generative processes. We fit the GPFA model to high-dimensional neural spike data from the hippocampus of freely moving rodents, where the model successfully identifies latent signals that correlate with behavioural covariates.
Changmin Yu, Hugo Soulat, Neil Burgess, Maneesh Sahani
null
null
2,022
neurips
NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search
null
Graph neural architecture search (GraphNAS) has recently aroused considerable attention in both academia and industry. However, two key challenges seriously hinder the further research of GraphNAS. First, since there is no consensus for the experimental setting, the empirical results in different research papers are often not comparable and even not reproducible, leading to unfair comparisons. Secondly, GraphNAS often needs extensive computations, which makes it highly inefficient and inaccessible to researchers without access to large-scale computation. To solve these challenges, we propose NAS-Bench-Graph, a tailored benchmark that supports unified, reproducible, and efficient evaluations for GraphNAS. Specifically, we construct a unified, expressive yet compact search space, covering 26,206 unique graph neural network (GNN) architectures and propose a principled evaluation protocol. To avoid unnecessary repetitive training, we have trained and evaluated all of these architectures on nine representative graph datasets, recording detailed metrics including train, validation, and test performance in each epoch, the latency, the number of parameters, etc. Based on our proposed benchmark, the performance of GNN architectures can be directly obtained by a look-up table without any further computation, which enables fair, fully reproducible, and efficient comparisons. To demonstrate its usage, we make in-depth analyses of our proposed NAS-Bench-Graph, revealing several interesting findings for GraphNAS. We also showcase how the benchmark can be easily compatible with GraphNAS open libraries such as AutoGL and NNI. To the best of our knowledge, our work is the first benchmark for graph neural architecture search.
Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, Wenwu Zhu
null
null
2,022
neurips
On Sample Optimality in Personalized Collaborative and Federated Learning
null
In personalized federated learning, each member of a potentially large set of agents aims to train a model minimizing its loss function averaged over its local data distribution. We study this problem under the lens of stochastic optimization, focusing on a scenario with a large number of agents, that each possess very few data samples from their local data distribution. Specifically, we prove novel matching lower and upper bounds on the number of samples required from all agents to approximately minimize the generalization error of a fixed agent. We provide strategies matching these lower bounds, based on a gradient filtering approach: given prior knowledge on some notion of distance between local data distributions, agents filter and aggregate stochastic gradients received from other agents, in order to achieve an optimal bias-variance trade-off. Finally, we quantify the impact of using rough estimations of the distances between local distributions of agents, based on a very small number of local samples.
Mathieu Even, Laurent Massoulié, Kevin Scaman
null
null
2,022
neurips
IM-Loss: Information Maximization Loss for Spiking Neural Networks
null
Spiking Neural Network (SNN), recognized as a type of biologically plausible architecture, has recently drawn much research attention. It transmits information by $0/1$ spikes. This bio-mimetic mechanism of SNN demonstrates extreme energy efficiency since it avoids any multiplications on neuromorphic hardware. However, the forward-passing $0/1$ spike quantization will cause information loss and accuracy degradation. To deal with this problem, the Information maximization loss (IM-Loss) that aims at maximizing the information flow in the SNN is proposed in the paper. The IM-Loss not only enhances the information expressiveness of an SNN directly but also plays a part of the role of normalization without introducing any additional operations (\textit{e.g.}, bias and scaling) in the inference phase. Additionally, we introduce a novel differentiable spike activity estimation, Evolutionary Surrogate Gradients (ESG) in SNNs. By appointing automatic evolvable surrogate gradients for spike activity function, ESG can ensure sufficient model updates at the beginning and accurate gradients at the end of the training, resulting in both easy convergence and high task performance. Experimental results on both popular non-spiking static and neuromorphic datasets show that the SNN models trained by our method outperform the current state-of-the-art algorithms.
Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, Zhe Ma
null
null
2,022
neurips
Decentralized Gossip-Based Stochastic Bilevel Optimization over Communication Networks
null
Bilevel optimization have gained growing interests, with numerous applications found in meta learning, minimax games, reinforcement learning, and nested composition optimization. This paper studies the problem of decentralized distributed bilevel optimization over a network where agents can only communicate with neighbors, and gives examples from multi-task, multi-agent learning and federated learning.In this paper, we propose a gossip-based distributed bilevel learning algorithm that allows networked agents to solve both the inner and outer optimization problems in a single timescale and share information through network propagation. We show that our algorithm enjoys the $\mathcal{O}(\frac{1}{K \epsilon^2})$ per-agent sample complexity for general nonconvex bilevel optimization and $\mathcal{O}(\frac{1}{K \epsilon})$ for Polyak-Łojasiewicz objective, achieving a speedup that scales linearly with the network size $K$. The sample complexities are optimal in both $\epsilon$ and $K$.We test our algorithm on the examples of hyperparameter tuning and decentralized reinforcement learning. Simulated experiments confirmed that our algorithm achieves the state-of-the-art training efficiency and test accuracy.
Shuoguang Yang, Xuezhou Zhang, Mengdi Wang
null
null
2,022
neurips
Using natural language and program abstractions to instill human inductive biases in machines
null
Strong inductive biases give humans the ability to quickly learn to perform a variety of tasks. Although meta-learning is a method to endow neural networks with useful inductive biases, agents trained by meta-learning may sometimes acquire very different strategies from humans. We show that co-training these agents on predicting representations from natural language task descriptions and programs induced to generate such tasks guides them toward more human-like inductive biases. Human-generated language descriptions and program induction models that add new learned primitives both contain abstract concepts that can compress description length. Co-training on these representations result in more human-like behavior in downstream meta-reinforcement learning agents than less abstract controls (synthetic language descriptions, program induction without learned primitives), suggesting that the abstraction supported by these representations is key.
Sreejan Kumar, Carlos G. Correa, Ishita Dasgupta, Raja Marjieh, Michael Y Hu, Robert Hawkins, Jonathan D Cohen, nathaniel daw, Karthik Narasimhan, Tom Griffiths
null
null
2,022
neurips
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
null
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models are publicly available at https://github.com/antoyang/FrozenBiLM.
Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid
null
null
2,022
neurips
Second Thoughts are Best: Learning to Re-Align With Human Values from Text Edits
null
We present Second Thoughts, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thoughts not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.
Ruibo Liu, Chenyan Jia, Ge Zhang, Ziyu Zhuang, Tony Liu, Soroush Vosoughi
null
null
2,022
neurips
Theory and Approximate Solvers for Branched Optimal Transport with Multiple Sources
null
Branched optimal transport (BOT) is a generalization of optimal transport in which transportation costs along an edge are subadditive. This subadditivity models an increase in transport efficiency when shipping mass along the same route, favoring branched transportation networks. We here study the NP-hard optimization of BOT networks connecting a finite number of sources and sinks in $\mathbb{R}^2$. First, we show how to efficiently find the best geometry of a BOT network for many sources and sinks, given a topology. Second, we argue that a topology with more than three edges meeting at a branching point is never optimal. Third, we show that the results obtained for the Euclidean plane generalize directly to optimal transportation networks on two-dimensional Riemannian manifolds. Finally, we present a simple but effective approximate BOT solver combining geometric optimization with a combinatorial optimization of the network topology.
Peter Lippmann, Enrique Fita Sanmartín, Fred A. Hamprecht
null
null
2,022
neurips
A Consolidated Cross-Validation Algorithm for Support Vector Machines via Data Reduction
null
We propose a consolidated cross-validation (CV) algorithm for training and tuning the support vector machines (SVM) on reproducing kernel Hilbert spaces. Our consolidated CV algorithm utilizes a recently proposed exact leave-one-out formula for the SVM and accelerates the SVM computation via a data reduction strategy. In addition, to compute the SVM with the bias term (intercept), which is not handled by the existing data reduction methods, we propose a novel two-stage consolidated CV algorithm. With numerical studies, we demonstrate that our algorithm is about an order of magnitude faster than the two mainstream SVM solvers, kernlab and LIBSVM, with almost the same accuracy.
Boxiang Wang, Archer Yang
null
null
2,022
neurips
CHIMLE: Conditional Hierarchical IMLE for Multimodal Conditional Image Synthesis
null
A persistent challenge in conditional image synthesis has been to generate diverse output images from the same input image despite only one output image being observed per input image. GAN-based methods are prone to mode collapse, which leads to low diversity. To get around this, we leverage Implicit Maximum Likelihood Estimation (IMLE) which can overcome mode collapse fundamentally. IMLE uses the same generator as GANs but trains it with a different, non-adversarial objective which ensures each observed image has a generated sample nearby. Unfortunately, to generate high-fidelity images, prior IMLE-based methods require a large number of samples, which is expensive. In this paper, we propose a new method to get around this limitation, which we dub Conditional Hierarchical IMLE (CHIMLE), which can generate high-fidelity images without requiring many samples. We show CHIMLE significantly outperforms the prior best IMLE, GAN and diffusion-based methods in terms of image fidelity and mode coverage across four tasks, namely night-to-day, 16x single image super-resolution, image colourization and image decompression. Quantitatively, our method improves Fréchet Inception Distance (FID) by 36.9% on average compared to the prior best IMLE-based method, and by 27.5% on average compared to the best non-IMLE-based general-purpose methods. More results and code are available on the project website at https://niopeng.github.io/CHIMLE/.
Shichong Peng, Seyed Alireza Moazenipourasil, Ke Li
null
null
2,022
neurips
SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery
null
Unsupervised pre-training methods for large vision models have shown to enhance performance on downstream supervised tasks. Developing similar techniques for satellite imagery presents significant opportunities as unlabelled data is plentiful and the inherent temporal and multi-spectral structure provides avenues to further improve existing pre-training strategies. In this paper, we present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE). To leverage temporal information, we include a temporal embedding along with independently masking image patches across time. In addition, we demonstrate that encoding multi-spectral data as groups of bands with distinct spectral positional encodings is beneficial. Our approach yields strong improvements over previous state-of-the-art techniques, both in terms of supervised learning performance on benchmark datasets (up to $\uparrow$ 7%), and transfer learning performance on downstream remote sensing tasks, including land cover classification (up to $\uparrow$ 14%) and semantic segmentation. Code and data are available on the project website: https://sustainlab-group.github.io/SatMAE/
Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke, David Lobell, Stefano Ermon
null
null
2,022
neurips
Offline Goal-Conditioned Reinforcement Learning via $f$-Advantage Regression
null
Offline goal-conditioned reinforcement learning (GCRL) promises general-purpose skill learning in the form of reaching diverse goals from purely offline datasets. We propose $\textbf{Go}$al-conditioned $f$-$\textbf{A}$dvantage $\textbf{R}$egression (GoFAR), a novel regression-based offline GCRL algorithm derived from a state-occupancy matching perspective; the key intuition is that the goal-reaching task can be formulated as a state-occupancy matching problem between a dynamics-abiding imitator agent and an expert agent that directly teleports to the goal. In contrast to prior approaches, GoFAR does not require any hindsight relabeling and enjoys uninterleaved optimization for its value and policy networks. These distinct features confer GoFAR with much better offline performance and stability as well as statistical performance guarantee that is unattainable for prior methods. Furthermore, we demonstrate that GoFAR's training objectives can be re-purposed to learn an agent-independent goal-conditioned planner from purely offline source-domain data, which enables zero-shot transfer to new target domains. Through extensive experiments, we validate GoFAR's effectiveness in various problem settings and tasks, significantly outperforming prior state-of-art. Notably, on a real robotic dexterous manipulation task, while no other method makes meaningful progress, GoFAR acquires complex manipulation behavior that successfully accomplishes diverse goals.
Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, Osbert Bastani
null
null
2,022
neurips
On-Demand Sampling: Learning Optimally from Multiple Distributions
null
Societal and real-world considerations such as robustness, fairness, social welfare and multi-agent tradeoffs have given rise to multi-distribution learning paradigms, such as collaborative [Blum et al. 2017], group distributionally robust [Sagawa et al. 2019], and fair federated learning [Mohri et al. 2019]. In each of these settings, a learner seeks to minimize its worstcase loss over a set of $n$ predefined distributions, while using as few samples as possible. In this paper, we establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity. Importantly, our sample complexity bounds exceed that of the sample complexity of learning a single distribution only by an additive factor of $\frac{n\log(n)}{\epsilon^2}$. These improve upon the best known sample complexity of agnostic federated learning by Mohri et al. 2019 by a multiplicative factor of $n$, the sample complexity of collaborative learning by Nguyen and Zakynthinou 2018 by a multiplicative factor $\frac{\log(n)}{\epsilon^3}$, and give the first sample complexity bounds for the group DRO objective of Sagawa et al. 2019. To achieve optimal sample complexity, our algorithms learn to sample and learn from distributions on demand. Our algorithm design and analysis extends stochastic optimization techniques to solve zero-sum games in a new stochastic setting.
Nika Haghtalab, Michael Jordan, Eric Zhao
null
null
2,022
neurips
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
null
The existing analysis of asynchronous stochastic gradient descent (SGD) degrades dramatically when any delay is large, giving the impression that performance depends primarily on the delay. On the contrary, we prove much better guarantees for the same asynchronous SGD algorithm regardless of the delays in the gradients, depending instead just on the number of parallel devices used to implement the algorithm. Our guarantees are strictly better than the existing analyses, and we also argue that asynchronous SGD outperforms synchronous minibatch SGD in the settings we consider. For our analysis, we introduce a novel recursion based on ``virtual iterates'' and delay-adaptive stepsizes, which allow us to derive state-of-the-art guarantees for both convex and non-convex objectives.
Konstantin Mishchenko, Francis Bach, Mathieu Even, Blake E. Woodworth
null
null
2,022
neurips
Diffusion Visual Counterfactual Explanations
null
Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image classifier. They are “small” but “realistic” semantic changes of the image changing the classifier decision. Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts, or are limited to image classification problems with few classes. In this paper, we overcome this by generating Diffusion Visual Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers via a diffusion process. Two modifications to the diffusion process are key for our DVCEs: first, an adaptive parameterization, whose hyperparameters generalize across images and models, together with distance regularization and late start of the diffusion process, allow us to generate images with minimal semantic changes to the original ones but different classification. Second, our cone regularization via an adversarially robust model ensures that the diffusion process does not converge to trivial non-semantic changes, but instead produces realistic images of the target class which achieve high confidence by the classifier.
Maximilian Augustin, Valentyn Boreiko, Francesco Croce, Matthias Hein
null
null
2,022
neurips
Adversarial Style Augmentation for Domain Generalized Urban-Scene Segmentation
null
In this paper, we consider the problem of domain generalization in semantic segmentation, which aims to learn a robust model using only labeled synthetic (source) data. The model is expected to perform well on unseen real (target) domains. Our study finds that the image style variation can largely influence the model's performance and the style features can be well represented by the channel-wise mean and standard deviation of images. Inspired by this, we propose a novel adversarial style augmentation (AdvStyle) approach, which can dynamically generate hard stylized images during training and thus can effectively prevent the model from overfitting on the source domain. Specifically, AdvStyle regards the style feature as a learnable parameter and updates it by adversarial training. The learned adversarial style feature is used to construct an adversarial image for robust model training. AdvStyle is easy to implement and can be readily applied to different models. Experiments on two synthetic-to-real semantic segmentation benchmarks demonstrate that AdvStyle can significantly improve the model performance on unseen real domains and show that we can achieve the state of the art. Moreover, AdvStyle can be employed to domain generalized image classification and produces a clear improvement on the considered datasets.
Zhun Zhong, Yuyang Zhao, Gim Hee Lee, Nicu Sebe
null
null
2,022
neurips
Fully Sparse 3D Object Detection
null
As the perception range of LiDAR increases, LiDAR-based 3D object detection becomes a dominant task in the long-range perception task of autonomous driving. The mainstream 3D object detectors usually build dense feature maps in the network backbone and prediction head. However, the computational and spatial costs on the dense feature map are quadratic to the perception range, which makes them hardly scale up to the long-range setting. To enable efficient long-range LiDAR-based object detection, we build a fully sparse 3D object detector (FSD). The computational and spatial cost of FSD is roughly linear to the number of points and independent of the perception range. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR first groups the points into instances and then applies instance-wise feature extraction and prediction. In this way, SIR resolves the issue of center feature missing, which hinders the design of the fully sparse architecture for all center-based or anchor-based detectors. Moreover, SIR avoids the time-consuming neighbor queries in previous point-based methods by grouping points into instances. We conduct extensive experiments on the large-scale Waymo Open Dataset to reveal the working mechanism of FSD, and state-of-the-art performance is reported. To demonstrate the superiority of FSD in long-range detection, we also conduct experiments on Argoverse 2 Dataset, which has a much larger perception range ($200m$) than Waymo Open Dataset ($75m$). On such a large perception range, FSD achieves state-of-the-art performance and is 2.4$\times$ faster than the dense counterpart. Codes will be released.
Lue Fan, Feng Wang, Naiyan Wang, ZHAO-XIANG ZHANG
null
null
2,022
neurips
Rethinking and Improving Robustness of Convolutional Neural Networks: a Shapley Value-based Approach in Frequency Domain
null
The existence of adversarial examples poses concerns for the robustness of convolutional neural networks (CNN), for which a popular hypothesis is about the frequency bias phenomenon: CNNs rely more on high-frequency components (HFC) for classification than humans, which causes the brittleness of CNNs. However, most previous works manually select and roughly divide the image frequency spectrum and conduct qualitative analysis. In this work, we introduce Shapley value, a metric of cooperative game theory, into the frequency domain and propose to quantify the positive (negative) impact of every frequency component of data on CNNs. Based on the Shapley value, we quantify the impact in a fine-grained way and show intriguing instance disparity. Statistically, we investigate adversarial training(AT) and the adversarial attack in the frequency domain. The observations motivate us to perform an in-depth analysis and lead to multiple novel hypotheses about i) the cause of adversarial robustness of the AT model; ii) the fairness problem of AT between different classes in the same dataset; iii) the attack bias on different frequency components. Finally, we propose a Shapley-value guided data augmentation technique for improving the robustness. Experimental results on image classification benchmarks show its effectiveness.
Yiting Chen, Qibing Ren, Junchi Yan
null
null
2,022
neurips
Coresets for Relational Data and The Applications
null
A coreset is a small set that can approximately preserve the structure of the original input data set. Therefore we can run our algorithm on a coreset so as to reduce the total computational complexity. Conventional coreset techniques assume that the input data set is available to process explicitly. However, this assumption may not hold in real-world scenarios. In this paper, we consider the problem of coresets construction over relational data. Namely, the data is decoupled into several relational tables, and it could be very expensive to directly materialize the data matrix by joining the tables. We propose a novel approach called ``aggregation tree with pseudo-cube'' that can build a coreset from bottom to up. Moreover, our approach can neatly circumvent several troublesome issues of relational learning problems [Khamis et al., PODS 2019]. Under some mild assumptions, we show that our coreset approach can be applied for the machine learning tasks, such as clustering, logistic regression and SVM.
Jiaxiang Chen, Qingyuan Yang, Ruomin Huang, Hu Ding
null
null
2,022
neurips
Recurrent Video Restoration Transformer with Guided Deformable Attention
null
Video restoration aims at restoring multiple high-quality frames from multiple low-quality frames. Existing video restoration methods generally fall into two extreme cases, i.e., they either restore all frames in parallel or restore the video frame by frame in a recurrent way, which would result in different merits and drawbacks. Typically, the former has the advantage of temporal information fusion. However, it suffers from large model size and intensive memory consumption; the latter has a relatively small model size as it shares parameters across frames; however, it lacks long-range dependency modeling ability and parallelizability. In this paper, we attempt to integrate the advantages of the two cases by proposing a recurrent video restoration transformer, namely RVRT. RVRT processes local neighboring frames in parallel within a globally recurrent framework which can achieve a good trade-off between model size, effectiveness, and efficiency. Specifically, RVRT divides the video into multiple clips and uses the previously inferred clip feature to estimate the subsequent clip feature. Within each clip, different frame features are jointly updated with implicit feature aggregation. Across different clips, the guided deformable attention is designed for clip-to-clip alignment, which predicts multiple relevant locations from the whole inferred clip and aggregates their features by the attention mechanism. Extensive experiments on video super-resolution, deblurring, and denoising show that the proposed RVRT achieves state-of-the-art performance on benchmark datasets with balanced model size, testing memory and runtime.
Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, Jiezhang Cao, Kai Zhang, Radu Timofte, Luc V Gool
null
null
2,022
neurips
Active Ranking without Strong Stochastic Transitivity
null
Ranking from noisy comparisons is of great practical interest in machine learning. In this paper, we consider the problem of recovering the exact full ranking for a list of items under ranking models that do *not* assume the Strong Stochastic Transitivity property. We propose a $$\delta$$-correct algorithm, Probe-Rank, that actively learns the ranking of the items from noisy pairwise comparisons. We prove a sample complexity upper bound for Probe-Rank, which only depends on the preference probabilities between items that are adjacent in the true ranking. This improves upon existing sample complexity results that depend on the preference probabilities for all pairs of items. Probe-Rank thus outperforms existing methods over a large collection of instances that do not satisfy Strong Stochastic Transitivity. Thorough numerical experiments in various settings are conducted, demonstrating that Probe-Rank is significantly more sample-efficient than the state-of-the-art active ranking method.
Hao Lou, Tao Jin, Yue Wu, Pan Xu, Quanquan Gu, Farzad Farnoud
null
null
2,022
neurips
Robust Binary Models by Pruning Randomly-initialized Networks
null
Robustness to adversarial attacks was shown to require a larger model capacity, and thus a larger memory footprint. In this paper, we introduce an approach to obtain robust yet compact models by pruning randomly-initialized binary networks. Unlike adversarial training, which learns the model parameters, we initialize the model parameters as either +1 or −1, keep them fixed, and find a subnetwork structure that is robust to attacks. Our method confirms the Strong Lottery Ticket Hypothesis in the presence of adversarial attacks, and extends this to binary networks. Furthermore, it yields more compact networks with competitive performance than existing works by 1) adaptively pruning different network layers; 2) exploiting an effective binary initialization scheme; 3) incorporating a last batch normalization layer to improve training stability. Our experiments demonstrate that our approach not only always outperforms the state-of-the-art robust binary networks, but also can achieve accuracy better than full-precision ones on some datasets. Finally, we show the structured patterns of our pruned binary networks.
Chen Liu, Ziqi Zhao, Sabine Süsstrunk, Mathieu Salzmann
null
null
2,022
neurips
Why do tree-based models still outperform deep learning on typical tabular data?
null
While deep learning has enabled tremendous progress on text and image datasets, its superiority on tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning methods as well as tree-based models such as XGBoost and Random Forests, across a large number of datasets and hyperparameter combinations. We define a standard set of 45 datasets from varied domains with clear characteristics of tabular data and a benchmarking methodology accounting for both fitting models and finding good hyperparameters. Results show that tree-based models remain state-of-the-art on medium-sized data ($\sim$10K samples) even without accounting for their superior speed. To understand this gap, we conduct an empirical investigation into the differing inductive biases of tree-based models and neural networks. This leads to a series of challenges which should guide researchers aiming to build tabular-specific neural network: 1) be robust to uninformative features, 2) preserve the orientation of the data, and 3) be able to easily learn irregular functions. To stimulate research on tabular architectures, we contribute a standard benchmark and raw data for baselines: every point of a 20\,000 compute hours hyperparameter search for each learner.
Leo Grinsztajn, Edouard Oyallon, Gael Varoquaux
null
null
2,022
neurips
Model-Based Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief
null
Model-based offline reinforcement learning (RL) aims to find highly rewarding policy, by leveraging a previously collected static dataset and a dynamics model. While the dynamics model learned through reuse of the static dataset, its generalization ability hopefully promotes policy learning if properly utilized. To that end, several works propose to quantify the uncertainty of predicted dynamics, and explicitly apply it to penalize reward. However, as the dynamics and the reward are intrinsically different factors in context of MDP, characterizing the impact of dynamics uncertainty through reward penalty may incur unexpected tradeoff between model utilization and risk avoidance. In this work, we instead maintain a belief distribution over dynamics, and evaluate/optimize policy through biased sampling from the belief. The sampling procedure, biased towards pessimism, is derived based on an alternating Markov game formulation of offline RL. We formally show that the biased sampling naturally induces an updated dynamics belief with policy-dependent reweighting factor, termed Pessimism-Modulated Dynamics Belief. To improve policy, we devise an iterative regularized policy optimization algorithm for the game, with guarantee of monotonous improvement under certain condition. To make practical, we further devise an offline RL algorithm to approximately find the solution. Empirical results show that the proposed approach achieves state-of-the-art performance on a wide range of benchmark tasks.
Kaiyang Guo, Shao Yunfeng, Yanhui Geng
null
null
2,022
neurips
Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning
null
While Reinforcement Learning (RL) aims to train an agent from a reward function in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover the reward function from observing an expert's behavior. It is well known that, in general, various reward functions can lead to the same optimal policy, and hence, IRL is ill-defined. However, \cite{cao2021identifiability} showed that, if we observe two or more experts with different discount factors or acting in different environments, the reward function can under certain conditions be identified up to a constant. This work starts by showing an equivalent identifiability statement from multiple experts in tabular MDPs based on a rank condition, which is easily verifiable and is shown to be also necessary. We then extend our result to various different scenarios, i.e., we characterize reward identifiability in the case where the reward function can be represented as a linear combination of given features, making it more interpretable, or when we have access to approximate transition matrices. Even when the reward is not identifiable, we provide conditions characterizing when data on multiple experts in a given environment allows to generalize and train an optimal agent in a new environment. Our theoretical results on reward identifiability and generalizability are validated in various numerical experiments.
Paul Rolland, Luca Viano, Norman Schürhoff, Boris Nikolov, Volkan Cevher
null
null
2,022
neurips
Markovian Interference in Experiments
null
We consider experiments in dynamical systems where interventions on some experimental units impact other units through a limiting constraint (such as a limited supply of products). Despite outsize practical importance, the best estimators for this `Markovian' interference problem are largely heuristic in nature, and their bias is not well understood. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, apparently incur a large penalty in variance relative to state-of-the-art heuristics. We introduce an on-policy estimator: the Differences-In-Q's (DQ) estimator. We show that the DQ estimator can in general have exponentially smaller variance than off-policy evaluation. At the same time, its bias is second order in the impact of the intervention. This yields a striking bias-variance tradeoff so that the DQ estimator effectively dominates state-of-the-art alternatives. From a theoretical perspective, we introduce three separate novel techniques that are of independent interest in the theory of Reinforcement Learning (RL). Our empirical evaluation includes a set of experiments on a city-scale ride-hailing simulator.
Vivek Farias, Andrew Li, Tianyi Peng, Andrew Zheng
null
null
2,022
neurips
Generating Training Data with Language Models: Towards Zero-Shot Language Understanding
null
Pretrained language models (PLMs) have demonstrated remarkable performance in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are well known for their superior text generation capabilities; bidirectional PLMs (e.g., BERT) have been the prominent choice for natural language understanding (NLU) tasks. While both types of models have achieved promising few-shot learning performance, their potential for zero-shot learning has been underexplored. In this paper, we present a simple approach that uses both types of PLMs for fully zero-shot learning of NLU tasks without requiring any task-specific data: A unidirectional PLM generates class-conditioned texts guided by prompts, which are used as the training data for fine-tuning a bidirectional PLM. With quality training data selected based on the generation probability and regularization techniques (label smoothing and temporal ensembling) applied to the fine-tuning stage for better generalization and stability, our approach demonstrates strong performance across seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and achieving even comparable results to strong few-shot approaches using 32 training samples per class.
Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han
null
null
2,022
neurips
Wavelet Score-Based Generative Modeling
null
Score-based generative models (SGMs) synthesize new data samples from Gaussian white noise by running a time-reversed Stochastic Differential Equation (SDE) whose drift coefficient depends on some probabilistic score. The discretization of such SDEs typically requires a large number of time steps and hence a high computational cost. This is because of ill-conditioning properties of the score that we analyze mathematically. Previous approaches have relied on multiscale generation to considerably accelerate SGMs. We explain how this acceleration results from an implicit factorization of the data distribution into a product of conditional probabilities of wavelet coefficients across scales. The resulting Wavelet Score-based Generative Model (WSGM) synthesizes wavelet coefficients with the same number of time steps at all scales, and its time complexity therefore grows linearly with the image size. This is proved mathematically for Gaussian distributions, and shown numerically for physical processes at phase transition and natural image datasets.
Florentin Guth, Simon Coste, Valentin De Bortoli, Stephane Mallat
null
null
2,022
neurips
Parallel Tempering With a Variational Reference
null
Sampling from complex target distributions is a challenging task fundamental to Bayesian inference. Parallel tempering (PT) addresses this problem by constructing a Markov chain on the expanded state space of a sequence of distributions interpolating between the posterior distribution and a fixed reference distribution, which is typically chosen to be the prior. However, in the typical case where the prior and posterior are nearly mutually singular, PT methods are computationally prohibitive. In this work we address this challenge by constructing a generalized annealing path connecting the posterior to an adaptively tuned variational reference. The reference distribution is tuned to minimize the forward (inclusive) KL divergence to the posterior distribution using a simple, gradient-free moment-matching procedure. We show that our adaptive procedure converges to the forward KL minimizer, and that the forward KL divergence serves as a good proxy to a previously developed measure of PT performance. We also show that in the large-data limit in typical Bayesian models, the proposed method improves in performance, while traditional PT deteriorates arbitrarily. Finally, we introduce PT with two references---one fixed, one variational---with a novel split annealing path that ensures stable variational reference adaptation. The paper concludes with experiments that demonstrate the large empirical gains achieved by our method in a wide range of realistic Bayesian inference scenarios.
Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, Trevor Campbell
null
null
2,022
neurips
Generalizing Consistent Multi-Class Classification with Rejection to be Compatible with Arbitrary Losses
null
\emph{Classification with rejection} (CwR) refrains from making a prediction to avoid critical misclassification when encountering test samples that are difficult to classify. Though previous methods for CwR have been provided with theoretical guarantees, they are only compatible with certain loss functions, making them not flexible enough when the loss needs to be changed with the dataset in practice. In this paper, we derive a novel formulation for CwR that can be equipped with arbitrary loss functions while maintaining the theoretical guarantees. First, we show that $K$-class CwR is equivalent to a $(K\!+\!1)$-class classification problem on the original data distribution with an augmented class, and propose an empirical risk minimization formulation to solve this problem with an estimation error bound. Then, we find necessary and sufficient conditions for the learning \emph{consistency} of the surrogates constructed on our proposed formulation equipped with any classification-calibrated multi-class losses, where consistency means the surrogate risk minimization implies the target risk minimization for CwR. Finally, experiments on benchmark datasets validate the effectiveness of our proposed method.
Yuzhou Cao, Tianchi Cai, Lei Feng, Lihong Gu, Jinjie GU, Bo An, Gang Niu, Masashi Sugiyama
null
null
2,022
neurips
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
null
We study Reinforcement Learning for partially observable systems using function approximation. We propose a new PO-bilinear framework, that is general enough to include models such as undercomplete tabular Partially Observable Markov Decision Processes (POMDPs), Linear Quadratic Gaussian (LQG), Predictive State Representations (PSRs), as well as a newly introduced model Hilbert Space Embeddings of POMDPs. Under this framework, we propose an actor-critic style algorithm that is capable to performing agnostic policy learning. Given a policy class that consists of memory based policies (i.e., policy that looks at a fixed-length window of recent observations), and a value function class that consists of functions taking both memory and future observations as inputs, our algorithm learns to compete against the best memory-based policy among the policy class. For certain examples such as undercomplete POMDPs and LQGs, by leveraging their special properties, our algorithm is even capable of competing against the globally optimal policy without paying an exponential dependence on the horizon.
Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun
null
null
2,022
neurips
Learning to Configure Computer Networks with Neural Algorithmic Reasoning
null
We present a new method for scaling automatic configuration of computer networks. The key idea is to relax the computationally hard search problem of finding a configuration that satisfies a given specification into an approximate objective amenable to learning-based techniques. Based on this idea, we train a neural algorithmic model which learns to generate configurations likely to (fully or partially) satisfy a given specification under existing routing protocols. By relaxing the rigid satisfaction guarantees, our approach (i) enables greater flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not depend on hardcoded rules; and (ii) finds configurations for much larger computer networks than previously possible. Our learned synthesizer is up to 490x faster than state-of-the-art SMT-based methods, while producing configurations which on average satisfy more than 93% of the provided requirements.
Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, Petar Veličković
null
null
2,022
neurips
Decoupled Self-supervised Learning for Graphs
null
This paper studies the problem of conducting self-supervised learning for node representation learning on graphs. Most existing self-supervised learning methods assume the graph is homophilous, where linked nodes often belong to the same class or have similar features. However, such assumptions of homophily do not always hold in real-world graphs. We address this problem by developing a decoupled self-supervised learning (DSSL) framework for graph neural networks. DSSL imitates a generative process of nodes and links from latent variable modeling of the semantic structure, which decouples different underlying semantics between different neighborhoods into the self-supervised learning process. Our DSSL framework is agnostic to the encoders and does not need prefabricated augmentations, thus is flexible to different graphs. To effectively optimize the framework, we derive the evidence lower bound of the self-supervised objective and develop a scalable training algorithm with variational inference. We provide a theoretical analysis to justify that DSSL enjoys the better downstream performance. Extensive experiments on various types of graph benchmarks demonstrate that our proposed framework can achieve better performance compared with competitive baselines.
Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, Suhang Wang
null
null
2,022
neurips
Efficient Knowledge Distillation from Model Checkpoints
null
Knowledge distillation is an effective approach to learn compact models (students) with the supervision of large and strong models (teachers). As empirically there exists a strong correlation between the performance of teacher and student models, it is commonly believed that a high performing teacher is preferred. Consequently, practitioners tend to use a well trained network or an ensemble of them as the teacher. In this paper, we observe that an intermediate model, i.e., a checkpoint in the middle of the training procedure, often serves as a better teacher compared to the fully converged model, although the former has much lower accuracy. More surprisingly, a weak snapshot ensemble of several intermediate models from a same training trajectory can outperform a strong ensemble of independently trained and fully converged models, when they are used as teachers. We show that this phenomenon can be partially explained by the information bottleneck principle: the feature representations of intermediate models can have higher mutual information regarding the input, and thus contain more ``dark knowledge'' for effective distillation. We further propose an optimal intermediate teacher selection algorithm based on maximizing the total task-related mutual information. Experiments verify its effectiveness and applicability. Our code is available at https://github.com/LeapLabTHU/CheckpointKD.
Chaofei Wang, Qisen Yang, Rui Huang, Shiji Song, Gao Huang
null
null
2,022
neurips
Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness
null
Stochastic and adversarial data are two widely studied settings in online learning. But many optimizationtasks are neither i.i.d. nor fully adversarial, which makes it of fundamental interest to get a better theoretical understanding of the world between these extremes. In this work we establish novel regret bounds for online convex optimization in a setting that interpolates between stochastic i.i.d. and fully adversarial losses. By exploiting smoothness of the expected losses, these bounds replace a dependence on the maximum gradient length by the variance of the gradients, which was previously known only for linear losses. In addition, they weaken the i.i.d. assumption by allowing, for example, adversarially poisoned rounds, which were previously considered in the expert and bandit setting. Our results extend this to the online convex optimization framework. In the fully i.i.d. case, our bounds match the rates one would expect from results in stochastic acceleration, and in the fully adversarial case they gracefully deteriorate to match the minimax regret. We further provide lower bounds showing that our regret upper bounds aretight for all intermediate regimes in terms of the stochastic variance and theadversarial variation of the loss gradients.
Sarah Sachs, Hedi Hadiji, Tim van Erven, Cristóbal Guzmán
null
null
2,022
neurips
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
null
Many real-world data can be modeled as 3D graphs, but learning representations that incorporates 3D information completely and efficiently is challenging. Existing methods either use partial 3D information, or suffer from excessive computational cost. To incorporate 3D information completely and efficiently, we propose a novel message passing scheme that operates within 1-hop neighborhood. Our method guarantees full completeness of 3D information on 3D graphs by achieving global and local completeness. Notably, we propose the important rotation angles to fulfill global completeness. Additionally, we show that our method is orders of magnitude faster than prior methods. We provide rigorous proof of completeness and analysis of time complexity for our methods. As molecules are in essence quantum systems, we build the \underline{com}plete and \underline{e}fficient graph neural network (ComENet) by combing quantum inspired basis functions and the proposed message passing scheme. Experimental results demonstrate the capability and efficiency of ComENet, especially on real-world datasets that are large in both numbers and sizes of graphs. Our code is publicly available as part of the DIG library (\url{https://github.com/divelab/DIG}).
Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, Shuiwang Ji
null
null
2,022
neurips
Shadow Knowledge Distillation: Bridging Offline and Online Knowledge Transfer
null
Knowledge distillation can be generally divided into offline and online categories according to whether teacher model is pre-trained and persistent during the distillation process. Offline distillation can employ existing models yet always demonstrates inferior performance than online ones. In this paper, we first empirically show that the essential factor for their performance gap lies in the reversed distillation from student to teacher, rather than the training fashion. Offline distillation can achieve competitive performance gain by fine-tuning pre-trained teacher to adapt student with such reversed distillation. However, this fine-tuning process still costs lots of training budgets. To alleviate this dilemma, we propose SHAKE, a simple yet effective SHAdow KnowlEdge transfer framework to bridge offline and online distillation, which trades the accuracy with efficiency. Specifically, we build an extra shadow head on the backbone to mimic the predictions of pre-trained teacher as its shadow. Then, this shadow head is leveraged as a proxy teacher to perform bidirectional distillation with student on the fly. In this way, SHAKE not only updates this student-aware proxy teacher with the knowledge of pre-trained model, but also greatly optimizes costs of augmented reversed distillation. Extensive experiments on classification and object detection tasks demonstrate that our technique achieves state-of-the-art results with different CNNs and Vision Transformer models. Additionally, our method shows strong compatibility with multi-teacher and augmentation strategies by gaining additional performance improvement. Code is made publicly available at https://lilujunai.github.io/SHAKE/.
Lujun Li, ZHE JIN
null
null
2,022
neurips
Mask Matching Transformer for Few-Shot Segmentation
null
In this paper, we aim to tackle the challenging few-shot segmentation task from a new perspective. Typical methods follow the paradigm to firstly learn prototypical features from support images and then match query features in pixel-level to obtain segmentation results. However, to obtain satisfactory segments, such a paradigm needs to couple the learning of the matching operations with heavy segmentation modules, limiting the flexibility of design and increasing the learning complexity. To alleviate this issue, we propose Mask Matching Transformer (MM-Former), a new paradigm for the few-shot segmentation task. Specifically, MM-Former first uses a class-agnostic segmenter to decompose the query image into multiple segment proposals. Then, a simple matching mechanism is applied to merge the related segment proposals into the final mask guided by the support images. The advantages of our MM-Former are two-fold. First, the MM-Former follows the paradigm of 'decompose first and then blend', allowing our method to benefit from the advanced potential objects segmenter to produce high-quality mask proposals for query images. Second, the mission of prototypical features is relaxed to learn coefficients to fuse correct ones within a proposal pool, making the MM-Former be well generalized to complex scenarios or cases. We conduct extensive experiments on the popular COCO-$20^i$ and Pascal-$5^i$ benchmarks. Competitive results well demonstrate the effectiveness and the generalization ability of our MM-Former. Code is available at https://github.com/Picsart-AI-Research/Mask-Matching-Transformer.
siyu jiao, Gengwei Zhang, Shant Navasardyan, Ling Chen, Yao Zhao, Yunchao Wei, Humphrey Shi
null
null
2,022
neurips
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
null
Prior work on differential privacy analysis of randomized SGD algorithms relies on composition theorems, where the implicit (unrealistic) assumption is that the internal state of the iterative algorithm is revealed to the adversary. As a result, the R\'enyi DP bounds derived by such composition-based analyses linearly grow with the number of training epochs. When the internal state of the algorithm is hidden, we prove a converging privacy bound for noisy stochastic gradient descent (on strongly convex smooth loss functions). We show how to take advantage of privacy amplification by sub-sampling and randomized post-processing, and prove the dynamics of privacy bound for shuffle and partition'' andsample without replacement'' stochastic mini-batch gradient descent schemes. We prove that, in these settings, our privacy bound converges exponentially fast and is substantially smaller than the composition bounds, notably after a few number of training epochs. Thus, unless the DP algorithm converges fast, our privacy analysis shows that hidden state analysis can significantly amplify differential privacy.
Jiayuan Ye, Reza Shokri
null
null
2,022
neurips
On the Frequency-bias of Coordinate-MLPs
null
We show that typical implicit regularization assumptions for deep neural networks (for regression) do not hold for coordinate-MLPs, a family of MLPs that are now ubiquitous in computer vision for representing high-frequency signals. Lack of such implicit bias disrupts smooth interpolations between training samples, and hampers generalizing across signal regions with different spectra. We investigate this behavior through a Fourier lens and uncover that as the bandwidth of a coordinate-MLP is enhanced, lower frequencies tend to get suppressed unless a suitable prior is provided explicitly. Based on these insights, we propose a simple regularization technique that can mitigate the above problem, which can be incorporated into existing networks without any architectural modifications.
Sameera Ramasinghe, Lachlan E. MacDonald, Simon Lucey
null
null
2,022
neurips
Multi-Class $H$-Consistency Bounds
null
We present an extensive study of $H$-consistency bounds for multi-class classification. These are upper bounds on the target loss estimation error of a predictor in a hypothesis set $H$, expressed in terms of the surrogate loss estimation error of that predictor. They are stronger and more significant guarantees than Bayes-consistency, $H$-calibration or $H$-consistency, and more informative than excess error bounds derived for $H$ being the family of all measurable functions. We give a series of new $H$-consistency bounds for surrogate multi-class losses, including max losses, sum losses, and constrained losses, both in the non-adversarial and adversarial cases, and for different differentiable or convex auxiliary functions used. We also prove that no non-trivial $H$-consistency bound can be given in some cases. To our knowledge, these are the first $H$-consistency bounds proven for the multi-class setting. Our proof techniques are also novel and likely to be useful in the analysis of other such guarantees.
Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong
null
null
2,022
neurips
DC-BENCH: Dataset Condensation Benchmark
null
Dataset Condensation is a newly emerging technique aiming at learning a tiny dataset that captures the rich information encoded in the original dataset. As the size of datasets contemporary machine learning models rely on becomes increasingly large, condensation methods become a prominent direction for accelerating network training and reducing data storage. Despite numerous methods have been proposed in this rapidly growing field, evaluating and comparing different condensation methods is non-trivial and still remains an open issue. The quality of condensed dataset are often shadowed by many critical contributing factors to the end performance, such as data augmentation and model architectures. The lack of a systematic way to evaluate and compare condensation methods not only hinders our understanding of existing techniques, but also discourages practical usage of the synthesized datasets. This work provides the first large-scale standardized benchmark on Dataset Condensation. It consists of a suite of evaluations to comprehensively reflect the generability and effectiveness of condensation methods through the lens of their generated dataset. Leveraging this benchmark, we conduct a large-scale study of current condensation methods, and report many insightful findings that open up new possibilities for future development. The benchmark library, including evaluators, baseline methods, and generated datasets, is open-sourced to facilitate future research and application.
Justin CUI, Ruochen Wang, Si Si, Cho-Jui Hsieh
null
null
2,022
neurips
On Divergence Measures for Bayesian Pseudocoresets
null
A Bayesian pseudocoreset is a small synthetic dataset for which the posterior over parameters approximates that of the original dataset. While promising, the scalability of Bayesian pseudocoresets is not yet validated in large-scale problems such as image classification with deep neural networks. On the other hand, dataset distillation methods similarly construct a small dataset such that the optimization with the synthetic dataset converges to a solution similar to optimization with full data. Although dataset distillation has been empirically verified in large-scale settings, the framework is restricted to point estimates, and their adaptation to Bayesian inference has not been explored. This paper casts two representative dataset distillation algorithms as approximations to methods for constructing pseudocoresets by minimizing specific divergence measures: reverse KL divergence and Wasserstein distance. Furthermore, we provide a unifying view of such divergence measures in Bayesian pseudocoreset construction. Finally, we propose a novel Bayesian pseudocoreset algorithm based on minimizing forward KL divergence. Our empirical results demonstrate that the pseudocoresets constructed from these methods reflect the true posterior even in large-scale Bayesian inference problems.
Balhae Kim, Jungwon Choi, Seanie Lee, Yoonho Lee, Jung-Woo Ha, Juho Lee
null
null
2,022
neurips
VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation
null
Benefiting from language flexibility and compositionality, humans naturally intend to use language to command an embodied agent for complex tasks such as navigation and object manipulation. In this work, we aim to fill the blank of the last mile of embodied agents---object manipulation by following human guidance, e.g., “move the red mug next to the box while keeping it upright.” To this end, we introduce an Automatic Manipulation Solver (AMSolver) system and build a Vision-and-Language Manipulation benchmark (VLMbench) based on it, containing various language instructions on categorized robotic manipulation tasks. Specifically, modular rule-based task templates are created to automatically generate robot demonstrations with language instructions, consisting of diverse object shapes and appearances, action types, and motion constraints. We also develop a keypoint-based model 6D-CLIPort to deal with multi-view observations and language input and output a sequence of 6 degrees of freedom (DoF) actions. We hope the new simulator and benchmark will facilitate future research on language-guided robotic manipulation.
Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, Xin Wang
null
null
2,022
neurips
Early Stage Convergence and Global Convergence of Training Mildly Parameterized Neural Networks
null
The convergence of GD and SGD when training mildly parameterized neural networks starting from random initialization is studied. For a broad range of models and loss functions, including the widely used square loss and cross entropy loss, we prove an ''early stage convergence'' result. We show that the loss is decreased by a significant amount in the early stage of the training, and this decreasing is fast. Furthurmore, for exponential type loss functions, and under some assumptions on the training data, we show global convergence of GD. Instead of relying on extreme over-parameterization, our study is based on a microscopic analysis of the activation patterns for the neurons, which helps us derive gradient lower bounds. The results on activation patterns, which we call ``neuron partition'', help build intuitions for understanding the behavior of neural networks' training dynamics, and may be of independent interest.
Mingze Wang, Chao Ma
null
null
2,022
neurips
Off-Policy Evaluation for Episodic Partially Observable Markov Decision Processes under Non-Parametric Models
null
We study the problem of off-policy evaluation (OPE) for episodic Partially Observable Markov Decision Processes (POMDPs) with continuous states. Motivated by the recently proposed proximal causal inference framework, we develop a non-parametric identification result for estimating the policy value via a sequence of so-called V-bridge functions with the help of time-dependent proxy variables. We then develop a fitted-Q-evaluation-type algorithm to estimate V-bridge functions recursively, where a non-parametric instrumental variable (NPIV) problem is solved at each step. By analyzing this challenging sequential NPIV estimation, we establish the finite-sample error bounds for estimating the V-bridge functions and accordingly that for evaluating the policy value, in terms of the sample size, length of horizon and so-called (local) measure of ill-posedness at each step. To the best of our knowledge, this is the first finite-sample error bound for OPE in POMDPs under non-parametric models.
Rui Miao, Zhengling Qi, Xiaoke Zhang
null
null
2,022
neurips
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
null
Importance Sampling (IS) is a method for approximating expectations with respect to a target distribution using independent samples from a proposal distribution and the associated to importance weights. In many cases, the target distribution is known up to a normalization constant and self-normalized IS (SNIS) is then used. While the use of self-normalization can have a positive effect on the dispersion of the estimator, it introduces bias. In this work, we propose a new method BR-SNIS whose complexity is essentially the same as SNIS and which significantly reduces bias. This method is a wrapper, in the sense that it uses the same proposal samples and importance weights but makes a clever use of iterated sampling-importance-resampling (i-SIR) to form a bias-reduced version of the estimator. We derive the proposed algorithm with rigorous theoretical results, including novel bias, variance, and high-probability bounds. We illustrate our findings with numerical examples.
Gabriel Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, Jimmy Olsson
null
null
2,022
neurips
Unsupervised Learning of Equivariant Structure from Sequences
null
In this study, we present \textit{meta-sequential prediction} (MSP), an unsupervised framework to learn the symmetry from the time sequence of length at least three. Our method leverages the stationary property~(e.g. constant velocity, constant acceleration) of the time sequence to learn the underlying equivariant structure of the dataset by simply training the encoder-decoder model to be able to predict the future observations. We will demonstrate that, with our framework, the hidden disentangled structure of the dataset naturally emerges as a by-product by applying \textit{simultaneous block-diagonalization} to the transition operators in the latent space, the procedure which is commonly used in representation theory to decompose the feature-space based on the type of response to group actions.We will showcase our method from both empirical and theoretical perspectives.Our result suggests that finding a simple structured relation and learning a model with extrapolation capability are two sides of the same coin. The code is available at https://github.com/takerum/metasequentialprediction.
Takeru Miyato, Masanori Koyama, Kenji Fukumizu
null
null
2,022
neurips
Learning Probabilistic Models from Generator Latent Spaces with Hat EBM
null
This work proposes a method for using any generator network as the foundation of an Energy-Based Model (EBM). Our formulation posits that observed images are the sum of unobserved latent variables passed through the generator network and a residual random variable that spans the gap between the generator output and the image manifold. One can then define an EBM that includes the generator as part of its forward pass, which we call the Hat EBM. The model can be trained without inferring the latent variables of the observed data or calculating the generator Jacobian determinant. This enables explicit probabilistic modeling of the output distribution of any type of generator network. Experiments show strong performance of the proposed method on (1) unconditional ImageNet synthesis at 128$\times$128 resolution, (2) refining the output of existing generators, and (3) learning EBMs that incorporate non-probabilistic generators. Code and pretrained models to reproduce our results are available at https://github.com/point0bar1/hat-ebm.
Mitch Hill, Erik Nijkamp, Jonathan Mitchell, Bo Pang, Song-Chun Zhu
null
null
2,022
neurips
Queue Up Your Regrets: Achieving the Dynamic Capacity Region of Multiplayer Bandits
null
Abstract Consider $N$ cooperative agents such that for $T$ turns, each agent n takes an action $a_{n}$ and receives a stochastic reward $r_{n}\left(a_{1},\ldots,a_{N}\right)$. Agents cannot observe the actions of other agents and do not know even their own reward function. The agents can communicate with their neighbors on a connected graph $G$ with diameter $d\left(G\right)$. We want each agent $n$ to achieve an expected average reward of at least $\lambda_{n}$ over time, for a given quality of service (QoS) vector $\boldsymbol{\lambda}$. A QoS vector $\boldsymbol{\lambda}$ is not necessarily achievable. By giving up on immediate reward, knowing that the other agents will compensate later, agents can improve their achievable capacity region. Our main observation is that the gap between $\lambda_{n}t$ and the accumulated reward of agent $n$, which we call the QoS regret, behaves like a queue. Inspired by this observation, we propose a distributed algorithm that aims to learn a max-weight matching of agents to actions. In each epoch, the algorithm employs a consensus phase where the agents agree on a certain weighted sum of rewards by communicating only $O\left(d\left(G\right)\right)$ numbers every turn. Then, the algorithm uses distributed successive elimination on a random subset of action profiles to approximately maximize this weighted sum of rewards. We prove a bound on the accumulated sum of expected QoS regrets of all agents, that holds if $\boldsymbol{\lambda}$ is a safety margin $\varepsilon_{T}$ away from the boundary of the capacity region, where $\varepsilon_{T}\rightarrow0$ as $T\rightarrow\infty$. This bound implies that, for large $T$, our algorithm can achieve any $\boldsymbol{\lambda}$ in the interior of the dynamic capacity region, while all agents are guaranteed an empirical average expected QoS regret of $\tilde{O}\left(1\right)$ over $t=1,\ldots,T$ which never exceeds $\tilde{O}\left(\sqrt{t}\right)$ for any $t$. We then extend our result to time-varying i.i.d. communication graphs.
Ilai Bistritz, Nicholas Bambos
null
null
2,022
neurips
Density-driven Regularization for Out-of-distribution Detection
null
Detecting out-of-distribution (OOD) samples is essential for reliably deploying deep learning classifiers in open-world applications. However, existing detectors relying on discriminative probability suffer from the overconfident posterior estimate for OOD data. Other reported approaches either impose strong unproven parametric assumptions to estimate OOD sample density or develop empirical detectors lacking clear theoretical motivations. To address these issues, we propose a theoretical probabilistic framework for OOD detection in deep classification networks, in which two regularization constraints are constructed to reliably calibrate and estimate sample density to identify OOD. Specifically, the density consistency regularization enforces the agreement between analytical and empirical densities of observable low-dimensional categorical labels. The contrastive distribution regularization separates the densities between in distribution (ID) and distribution-deviated samples. A simple and robust implementation algorithm is also provided, which can be used for any pre-trained neural network classifiers. To the best of our knowledge, we have conducted the most extensive evaluations and comparisons on computer vision benchmarks. The results show that our method significantly outperforms state-of-the-art detectors, and even achieves comparable or better performance than methods utilizing additional large-scale outlier exposure datasets.
Wenjian Huang, Hao Wang, Jiahao Xia, Chengyan Wang, Jianguo Zhang
null
null
2,022
neurips
Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret
null
We propose a new learning framework that captures the tiered structure of many real-world user-interaction applications, where the users can be divided into two groups based on their different tolerance on exploration risks and should be treated separately. In this setting, we simultaneously maintain two policies $\pi^{\text{O}}$ and $\pi^{\text{E}}$: $\pi^{\text{O}}$ (``O'' for ``online'') interacts with more risk-tolerant users from the first tier and minimizes regret by balancing exploration and exploitation as usual, while $\pi^{\text{E}}$ (``E'' for ``exploit'') exclusively focuses on exploitation for risk-averse users from the second tier utilizing the data collected so far. An important question is whether such a separation yields advantages over the standard online setting (i.e., $\pi^{\text{E}}=\pi^{\text{O}}$) for the risk-averse users. We individually consider the gap-independent vs.~gap-dependent settings. For the former, we prove that the separation is indeed not beneficial from a minimax perspective. For the latter, we show that if choosing Pessimistic Value Iteration as the exploitation algorithm to produce $\pi^{\text{E}}$, we can achieve a constant regret for risk-averse users independent of the number of episodes $K$, which is in sharp contrast to the $\Omega(\log K)$ regret for any online RL algorithms in the same setting, while the regret of $\pi^{\text{O}}$ (almost) maintains its online regret optimality and does not need to compromise for the success of $\pi^{\text{E}}$.
Jiawei Huang, Li Zhao, Tao Qin, Wei Chen, Nan Jiang, Tie-Yan Liu
null
null
2,022
neurips
Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model
null
We study the problem of learning generalized linear models under adversarial corruptions.We analyze a classical heuristic called the \textit{iterative trimmed maximum likelihood estimator} which is known to be effective against \textit{label corruptions} in practice. Under label corruptions, we prove that this simple estimator achieves minimax near-optimal risk on a wide range of generalized linear models, including Gaussian regression, Poisson regression and Binomial regression. Finally, we extend the estimator to the much more challenging setting of \textit{label and covariate corruptions} and demonstrate its robustness and optimality in that setting as well.
Pranjal Awasthi, Abhimanyu Das, Weihao Kong, Rajat Sen
null
null
2,022
neurips
Environment Diversification with Multi-head Neural Network for Invariant Learning
null
Neural networks are often trained with empirical risk minimization; however, it has been shown that a shift between training and testing distributions can cause unpredictable performance degradation. On this issue, a research direction, invariant learning, has been proposed to extract causal features insensitive to the distributional changes. This work proposes EDNIL, an invariant learning framework containing a multi-head neural network to absorb data biases. We show that this framework does not require prior knowledge about environments or strong assumptions about the pre-trained model. We also reveal that the proposed algorithm has theoretical connections to recent studies discussing properties of variant and invariant features. Finally, we demonstrate that models trained with EDNIL are empirically more robust against distributional shifts.
Bo-Wei Huang, Keng-Te Liao, Chang-Sheng Kao, Shou-De Lin
null
null
2,022
neurips
Learning Best Combination for Efficient N:M Sparsity
null
By forcing N out of M consecutive weights to be non-zero, the recent N:M fine-grained network sparsity has received increasing attention with its two attractive advantages over traditional irregular network sparsity methods: 1) Promising performance at a high sparsity. 2) Significant speedups when performed on NVIDIA A100 GPUs. Current implementation on N:M sparsity requires a tedious pre-training phase or computationally heavy from-scratch training. To circumvent these problems, this paper presents an efficient solution for achieving N:M fine-grained sparsity from scratch. Specifically, we first make a re-formulation to convert the N:M fine-grained sparsity into a combinatorial problem, in which, the object falls into choosing the best weight combination among $C_M^N$ candidates. Then, we equip each combination with a learnable importance score, which can be jointly optimized along with its associated weights. Through rigorous proof, we demonstrate that the magnitude of the optimized score well reflects the importance of its corresponding weights combination to the training loss. Therefore, by gradually removing combinations with smaller scores till the best one is left, N:M fine-grained sparsity can be efficiently optimized during the normal training phase without any extra expenditure. Comprehensive experimental results have demonstrated that our proposed method for learning best combination, dubbed as LBC, consistently increases the efficacy of the off-the-shelf N:M methods across varying networks and datasets. Our project is released at https://github.com/zyxxmu/LBC.
Yuxin Zhang, Mingbao Lin, ZhiHang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, Rongrong Ji
null
null
2,022
neurips
Why Do Artificially Generated Data Help Adversarial Robustness
null
In the adversarial training framework of \cite{carmon2019unlabeled,gowal2021improving}, people use generated/real unlabeled data with pseudolabels to improve adversarial robustness. We provide statistical insights to explain why the artificially generated data improve adversarial training. In particular, we study how the attack strength and the quality of the unlabeled data affect adversarial robustness in this framework. Our results show that with a high-quality unlabeled data generator, adversarial training can benefit greatly from this framework under large attack strength, while a poor generator can still help to some extent. To make adaptions concerning the quality of generated data, we propose an algorithm that performs online adjustment to the weight between the labeled real data and the generated data, aiming to optimize the adversarial risk. Numerical studies are conducted to verify our theories and show the effectiveness of the proposed algorithm.
Yue Xing, Qifan Song, Guang Cheng
null
null
2,022
neurips
Sparsity in Continuous-Depth Neural Networks
null
Neural Ordinary Differential Equations (NODEs) have proven successful in learning dynamical systems in terms of accurately recovering the observed trajectories. While different types of sparsity have been proposed to improve robustness, the generalization properties of NODEs for dynamical systems beyond the observed data are underexplored. We systematically study the influence of weight and feature sparsity on forecasting as well as on identifying the underlying dynamical laws. Besides assessing existing methods, we propose a regularization technique to sparsify ``input-output connections'' and extract relevant features during training. Moreover, we curate real-world datasets including human motion capture and human hematopoiesis single-cell RNA-seq data to realistically analyze different levels of out-of-distribution (OOD) generalization in forecasting and dynamics identification respectively. Our extensive empirical evaluation on these challenging benchmarks suggests that weight sparsity improves generalization in the presence of noise or irregular sampling. However, it does not prevent learning spurious feature dependencies in the inferred dynamics, rendering them impractical for predictions under interventions, or for inferring the true underlying dynamics. Instead, feature sparsity can indeed help with recovering sparse ground-truth dynamics compared to unregularized NODEs.
Hananeh Aliee, Till Richter, Mikhail Solonin, Ignacio Ibarra, Fabian Theis, Niki Kilbertus
null
null
2,022
neurips