body
stringlengths 26
98.2k
| body_hash
int64 -9,222,864,604,528,158,000
9,221,803,474B
| docstring
stringlengths 1
16.8k
| path
stringlengths 5
230
| name
stringlengths 1
96
| repository_name
stringlengths 7
89
| lang
stringclasses 1
value | body_without_docstring
stringlengths 20
98.2k
|
---|---|---|---|---|---|---|---|
def make_request(self, request, data, max_wait=600, step=5, wait=0):
'Sends a get, post or delete request every step seconds until the request was successful or wait exceeds max_wait.\n\n Args:\n request (str): Define which kind of request to execute.\n data (str): Submit information or sherpas job_id for a status request or job_id for deleting a trial.\n max_wait (int, optional): Time in seconds after which the requests repetition will be stopped. Defaults to 600.\n step (int, optional): Time in seconds after which a faulty request is repeated. Defaults to 5.\n wait (int, optional): Variable to which the step time is added and compared to max_wait. Defaults to 0.\n\n Returns:\n [class]: Response\n '
proxies = {'http': None, 'https': None}
if (request == 'GET'):
response = requests.get((self.status_url + data), headers=self.headers, proxies=proxies, verify=False)
elif (request == 'POST'):
response = requests.post(self.submit_url, headers=self.headers, data=data, proxies=proxies, verify=False)
elif (request == 'DELETE'):
response = requests.delete((self.status_url + data), headers=self.headers, proxies=proxies, verify=False)
else:
logging.error('Request argument is none of ["GET","POST","DELETE"].')
if ((response.status_code == 200) or (wait > max_wait)):
if (wait > max_wait):
logging.warning('Request has failed for {} seconds with status code: {}:{}'.format(max_wait, response.status_code, response.reason))
return response
else:
sleep(step)
logging.error('Request has failed for {} times with reason {}:{}'.format((1 + int(((max_wait / step) - ((max_wait / step) - (wait / step))))), response.status_code, response.reason))
return self.make_request(request=request, data=data, max_wait=max_wait, step=step, wait=(wait + step)) | 6,385,178,805,594,607,000 | Sends a get, post or delete request every step seconds until the request was successful or wait exceeds max_wait.
Args:
request (str): Define which kind of request to execute.
data (str): Submit information or sherpas job_id for a status request or job_id for deleting a trial.
max_wait (int, optional): Time in seconds after which the requests repetition will be stopped. Defaults to 600.
step (int, optional): Time in seconds after which a faulty request is repeated. Defaults to 5.
wait (int, optional): Variable to which the step time is added and compared to max_wait. Defaults to 0.
Returns:
[class]: Response | argo_scheduler.py | make_request | predictive-quality/ml-pipeline-blocks-hpo-sherpa | python | def make_request(self, request, data, max_wait=600, step=5, wait=0):
'Sends a get, post or delete request every step seconds until the request was successful or wait exceeds max_wait.\n\n Args:\n request (str): Define which kind of request to execute.\n data (str): Submit information or sherpas job_id for a status request or job_id for deleting a trial.\n max_wait (int, optional): Time in seconds after which the requests repetition will be stopped. Defaults to 600.\n step (int, optional): Time in seconds after which a faulty request is repeated. Defaults to 5.\n wait (int, optional): Variable to which the step time is added and compared to max_wait. Defaults to 0.\n\n Returns:\n [class]: Response\n '
proxies = {'http': None, 'https': None}
if (request == 'GET'):
response = requests.get((self.status_url + data), headers=self.headers, proxies=proxies, verify=False)
elif (request == 'POST'):
response = requests.post(self.submit_url, headers=self.headers, data=data, proxies=proxies, verify=False)
elif (request == 'DELETE'):
response = requests.delete((self.status_url + data), headers=self.headers, proxies=proxies, verify=False)
else:
logging.error('Request argument is none of ["GET","POST","DELETE"].')
if ((response.status_code == 200) or (wait > max_wait)):
if (wait > max_wait):
logging.warning('Request has failed for {} seconds with status code: {}:{}'.format(max_wait, response.status_code, response.reason))
return response
else:
sleep(step)
logging.error('Request has failed for {} times with reason {}:{}'.format((1 + int(((max_wait / step) - ((max_wait / step) - (wait / step))))), response.status_code, response.reason))
return self.make_request(request=request, data=data, max_wait=max_wait, step=step, wait=(wait + step)) |
def file_strategy(self, job_id, metrics):
'Delete all trial files which were generated through a hpo trial\n It deletes all files in the output_path related to the job_id\n\n Args:\n job_id (str): Sherpa Job_ID / Argo trial workflow name\n metrics (dict): metrics to compare\n '
if (job_id in self.trials):
trial = self.trials[job_id]
if ('output_path' in trial):
if (self.storage_strategy == 'delete'):
delete_s3_objects(trial['output_path'])
elif (self.storage_strategy == 'best'):
if (self.best_metric['metric'] == None):
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
elif ((self.lower_is_better == True) and (metrics[self.objective] < self.best_metric['metric'])):
delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path'])
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric']))
elif ((self.lower_is_better == False) and (metrics[self.objective] > self.best_metric['metric'])):
delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path'])
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric']))
else:
delete_s3_objects(trial['output_path']) | -7,574,703,012,453,597,000 | Delete all trial files which were generated through a hpo trial
It deletes all files in the output_path related to the job_id
Args:
job_id (str): Sherpa Job_ID / Argo trial workflow name
metrics (dict): metrics to compare | argo_scheduler.py | file_strategy | predictive-quality/ml-pipeline-blocks-hpo-sherpa | python | def file_strategy(self, job_id, metrics):
'Delete all trial files which were generated through a hpo trial\n It deletes all files in the output_path related to the job_id\n\n Args:\n job_id (str): Sherpa Job_ID / Argo trial workflow name\n metrics (dict): metrics to compare\n '
if (job_id in self.trials):
trial = self.trials[job_id]
if ('output_path' in trial):
if (self.storage_strategy == 'delete'):
delete_s3_objects(trial['output_path'])
elif (self.storage_strategy == 'best'):
if (self.best_metric['metric'] == None):
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
elif ((self.lower_is_better == True) and (metrics[self.objective] < self.best_metric['metric'])):
delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path'])
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric']))
elif ((self.lower_is_better == False) and (metrics[self.objective] > self.best_metric['metric'])):
delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path'])
self.best_metric['metric'] = metrics[self.objective]
self.best_metric['job_id'] = job_id
logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric']))
else:
delete_s3_objects(trial['output_path']) |
def submit_job(self, command, env={}, job_name=''):
"Submits a new hpo trial to argo in order to start a workflow template\n\n Args:\n command (list[str]): List that contains ['Argo WorkflowTemplate','Entrypoint of that Argo WorkflowTemplate]\n env (dict, optional): Dictionary that contains env variables, mainly the sherpa_trial_id. Defaults to {}.\n job_name (str, optional): Not needed for Argo scheduler. Defaults to ''.\n\n Returns:\n [str]: Sherpa Job_ID / Name of the workflow that was started by Argo\n "
os.environ['SHERPA_TRIAL_ID'] = env['SHERPA_TRIAL_ID']
trial = self.client.get_trial()
tp = trial.parameters
WorkflowTemplate = command[0]
entrypoint = command[1]
default_parameter = self.default_parameter
if ('save_to' in tp):
default_parameter['output_path'] = os.path.join(self.output_path, str(tp['save_to']), '')
else:
default_parameter['output_path'] = os.path.join(self.output_path, str(env['SHERPA_TRIAL_ID']), '')
if (('load_from' in tp) and (tp['load_from'] != '')):
default_parameter['model_input_path'] = os.path.join(self.output_path, str(tp['load_from']), '')
WorkflowTemplate = eval(self.trial_run_parameter)['WorkflowTemplateContinue']
entrypoint = eval(self.trial_run_parameter)['EntrypointContinue']
else:
default_parameter['model_input_path'] = ''
merged_parameter = eval(self.trial_run_parameter)
for (k, v) in default_parameter.items():
merged_parameter[k] = v
epochs = merged_parameter.get('epochs', 0)
parameters_list = []
for (key, val) in merged_parameter.items():
parameters_list.append('{}={}'.format(key, val))
data = json.dumps({'resourceKind': 'WorkflowTemplate', 'resourceName': WorkflowTemplate, 'submitOptions': {'entrypoint': entrypoint, 'labels': ((('sherpa_run=' + self.hostname) + ',run_name=') + self.run_name), 'parameters': parameters_list}})
response_submit = self.make_request(request='POST', data=data)
if (response_submit.status_code == 200):
job_id = json.loads(response_submit.content)['metadata']['name']
logging.info('Submitted trial {} with job_id {}'.format(env['SHERPA_TRIAL_ID'], job_id))
else:
job_id = ('failed_trial_id_' + str(env['SHERPA_TRIAL_ID']))
logging.warning('Failed to sumbit job with Trial_ID {} to argo.'.format(env['SHERPA_TRIAL_ID']))
self.trials[job_id] = {'trial': trial, 'epochs': epochs, 'output_path': default_parameter['output_path'], 'model_input_path': default_parameter['model_input_path'], 'status': 0, 'finished': False}
return job_id | 1,542,736,167,545,708,800 | Submits a new hpo trial to argo in order to start a workflow template
Args:
command (list[str]): List that contains ['Argo WorkflowTemplate','Entrypoint of that Argo WorkflowTemplate]
env (dict, optional): Dictionary that contains env variables, mainly the sherpa_trial_id. Defaults to {}.
job_name (str, optional): Not needed for Argo scheduler. Defaults to ''.
Returns:
[str]: Sherpa Job_ID / Name of the workflow that was started by Argo | argo_scheduler.py | submit_job | predictive-quality/ml-pipeline-blocks-hpo-sherpa | python | def submit_job(self, command, env={}, job_name=):
"Submits a new hpo trial to argo in order to start a workflow template\n\n Args:\n command (list[str]): List that contains ['Argo WorkflowTemplate','Entrypoint of that Argo WorkflowTemplate]\n env (dict, optional): Dictionary that contains env variables, mainly the sherpa_trial_id. Defaults to {}.\n job_name (str, optional): Not needed for Argo scheduler. Defaults to .\n\n Returns:\n [str]: Sherpa Job_ID / Name of the workflow that was started by Argo\n "
os.environ['SHERPA_TRIAL_ID'] = env['SHERPA_TRIAL_ID']
trial = self.client.get_trial()
tp = trial.parameters
WorkflowTemplate = command[0]
entrypoint = command[1]
default_parameter = self.default_parameter
if ('save_to' in tp):
default_parameter['output_path'] = os.path.join(self.output_path, str(tp['save_to']), )
else:
default_parameter['output_path'] = os.path.join(self.output_path, str(env['SHERPA_TRIAL_ID']), )
if (('load_from' in tp) and (tp['load_from'] != )):
default_parameter['model_input_path'] = os.path.join(self.output_path, str(tp['load_from']), )
WorkflowTemplate = eval(self.trial_run_parameter)['WorkflowTemplateContinue']
entrypoint = eval(self.trial_run_parameter)['EntrypointContinue']
else:
default_parameter['model_input_path'] =
merged_parameter = eval(self.trial_run_parameter)
for (k, v) in default_parameter.items():
merged_parameter[k] = v
epochs = merged_parameter.get('epochs', 0)
parameters_list = []
for (key, val) in merged_parameter.items():
parameters_list.append('{}={}'.format(key, val))
data = json.dumps({'resourceKind': 'WorkflowTemplate', 'resourceName': WorkflowTemplate, 'submitOptions': {'entrypoint': entrypoint, 'labels': ((('sherpa_run=' + self.hostname) + ',run_name=') + self.run_name), 'parameters': parameters_list}})
response_submit = self.make_request(request='POST', data=data)
if (response_submit.status_code == 200):
job_id = json.loads(response_submit.content)['metadata']['name']
logging.info('Submitted trial {} with job_id {}'.format(env['SHERPA_TRIAL_ID'], job_id))
else:
job_id = ('failed_trial_id_' + str(env['SHERPA_TRIAL_ID']))
logging.warning('Failed to sumbit job with Trial_ID {} to argo.'.format(env['SHERPA_TRIAL_ID']))
self.trials[job_id] = {'trial': trial, 'epochs': epochs, 'output_path': default_parameter['output_path'], 'model_input_path': default_parameter['model_input_path'], 'status': 0, 'finished': False}
return job_id |
def get_status(self, job_id):
'Obtains the current status of the job.\n Sends objective values/metrics to the DB when a trial succeeded.\n Compares objective values and decides wether to delete or keep files. \n\n Args:\n job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo\n\n Returns:\n sherpa.schedulers._JobStatus: the job-status.\n '
response_status = self.make_request(request='GET', data=job_id)
if (response_status.status_code == 200):
status = json.loads(response_status.content)['status']['phase']
if (status == 'Succeeded'):
if (self.trials[job_id]['finished'] == True):
logging.info('Set status to finished for trial : {}'.format(self.trials[job_id]['trial'].id))
else:
filename = self.metrics_filename
input_path = self.trials[job_id]['output_path']
metrics = read_json(input_path, filename)
logging.info('Send metrics for trial: {}'.format(self.trials[job_id]['trial'].id))
self.client.send_metrics(trial=self.trials[job_id]['trial'], iteration=self.trials[job_id]['epochs'], objective=metrics[self.objective], context=metrics)
status = 'Running'
self.trials[job_id]['finished'] = True
self.file_strategy(job_id, metrics)
elif (status == 'Failed'):
delete_s3_objects(self.trials[job_id]['output_path'])
elif (job_id in self.killed_jobs):
status = 'Stopped'
else:
status = 'Other'
s = self.decode_status.get(status, _JobStatus.other)
if (s != self.trials[job_id]['status']):
logging.info('Jobstatus: {} for Job {}'.format(status, job_id))
self.trials[job_id]['status'] = s
return s | 8,755,017,924,860,176,000 | Obtains the current status of the job.
Sends objective values/metrics to the DB when a trial succeeded.
Compares objective values and decides wether to delete or keep files.
Args:
job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo
Returns:
sherpa.schedulers._JobStatus: the job-status. | argo_scheduler.py | get_status | predictive-quality/ml-pipeline-blocks-hpo-sherpa | python | def get_status(self, job_id):
'Obtains the current status of the job.\n Sends objective values/metrics to the DB when a trial succeeded.\n Compares objective values and decides wether to delete or keep files. \n\n Args:\n job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo\n\n Returns:\n sherpa.schedulers._JobStatus: the job-status.\n '
response_status = self.make_request(request='GET', data=job_id)
if (response_status.status_code == 200):
status = json.loads(response_status.content)['status']['phase']
if (status == 'Succeeded'):
if (self.trials[job_id]['finished'] == True):
logging.info('Set status to finished for trial : {}'.format(self.trials[job_id]['trial'].id))
else:
filename = self.metrics_filename
input_path = self.trials[job_id]['output_path']
metrics = read_json(input_path, filename)
logging.info('Send metrics for trial: {}'.format(self.trials[job_id]['trial'].id))
self.client.send_metrics(trial=self.trials[job_id]['trial'], iteration=self.trials[job_id]['epochs'], objective=metrics[self.objective], context=metrics)
status = 'Running'
self.trials[job_id]['finished'] = True
self.file_strategy(job_id, metrics)
elif (status == 'Failed'):
delete_s3_objects(self.trials[job_id]['output_path'])
elif (job_id in self.killed_jobs):
status = 'Stopped'
else:
status = 'Other'
s = self.decode_status.get(status, _JobStatus.other)
if (s != self.trials[job_id]['status']):
logging.info('Jobstatus: {} for Job {}'.format(status, job_id))
self.trials[job_id]['status'] = s
return s |
def kill_job(self, job_id):
'Kill a job by deleting the argo workflow completly\n\n Args:\n job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo\n '
response_kill = self.make_request(request='DELETE', data=job_id)
if (response_kill.status_code == 200):
self.killed_jobs.append(str(job_id)) | -2,386,664,912,636,583,000 | Kill a job by deleting the argo workflow completly
Args:
job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo | argo_scheduler.py | kill_job | predictive-quality/ml-pipeline-blocks-hpo-sherpa | python | def kill_job(self, job_id):
'Kill a job by deleting the argo workflow completly\n\n Args:\n job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo\n '
response_kill = self.make_request(request='DELETE', data=job_id)
if (response_kill.status_code == 200):
self.killed_jobs.append(str(job_id)) |
def _module_available(module_path: str) -> bool:
"\n Check if a path is available in your environment\n\n >>> _module_available('os')\n True\n >>> _module_available('bla.bla')\n False\n "
try:
return (find_spec(module_path) is not None)
except AttributeError:
return False
except ModuleNotFoundError:
return False | 1,338,762,679,162,271,200 | Check if a path is available in your environment
>>> _module_available('os')
True
>>> _module_available('bla.bla')
False | pytorch_lightning/utilities/imports.py | _module_available | Queuecumber/pytorch-lightning | python | def _module_available(module_path: str) -> bool:
"\n Check if a path is available in your environment\n\n >>> _module_available('os')\n True\n >>> _module_available('bla.bla')\n False\n "
try:
return (find_spec(module_path) is not None)
except AttributeError:
return False
except ModuleNotFoundError:
return False |
def _compare_version(package: str, op, version) -> bool:
'\n Compare package version with some requirements\n\n >>> _compare_version("torch", operator.ge, "0.1")\n True\n '
try:
pkg = importlib.import_module(package)
except (ModuleNotFoundError, DistributionNotFound):
return False
try:
pkg_version = Version(pkg.__version__)
except TypeError:
return True
return op(pkg_version, Version(version)) | -222,479,884,128,013,500 | Compare package version with some requirements
>>> _compare_version("torch", operator.ge, "0.1")
True | pytorch_lightning/utilities/imports.py | _compare_version | Queuecumber/pytorch-lightning | python | def _compare_version(package: str, op, version) -> bool:
'\n Compare package version with some requirements\n\n >>> _compare_version("torch", operator.ge, "0.1")\n True\n '
try:
pkg = importlib.import_module(package)
except (ModuleNotFoundError, DistributionNotFound):
return False
try:
pkg_version = Version(pkg.__version__)
except TypeError:
return True
return op(pkg_version, Version(version)) |
def init():
'Return True if the plugin has loaded successfully.'
g.trace('pyplot_backend.py is not a plugin.')
return False | 2,428,046,564,228,245,500 | Return True if the plugin has loaded successfully. | leo/plugins/pyplot_backend.py | init | ATikhonov2/leo-editor | python | def init():
g.trace('pyplot_backend.py is not a plugin.')
return False |
def new_figure_manager(num, *args, **kwargs):
'\n Create a new figure manager instance\n '
FigureClass = kwargs.pop('FigureClass', Figure)
thisFig = FigureClass(*args, **kwargs)
return new_figure_manager_given_figure(num, thisFig) | -4,321,160,556,889,542,700 | Create a new figure manager instance | leo/plugins/pyplot_backend.py | new_figure_manager | ATikhonov2/leo-editor | python | def new_figure_manager(num, *args, **kwargs):
'\n \n '
FigureClass = kwargs.pop('FigureClass', Figure)
thisFig = FigureClass(*args, **kwargs)
return new_figure_manager_given_figure(num, thisFig) |
def new_figure_manager_given_figure(num, figure):
'\n Create a new figure manager instance for the given figure.\n '
canvas = FigureCanvasQTAgg(figure)
return LeoFigureManagerQT(canvas, num) | -3,158,270,832,078,468,000 | Create a new figure manager instance for the given figure. | leo/plugins/pyplot_backend.py | new_figure_manager_given_figure | ATikhonov2/leo-editor | python | def new_figure_manager_given_figure(num, figure):
'\n \n '
canvas = FigureCanvasQTAgg(figure)
return LeoFigureManagerQT(canvas, num) |
def __init__(self, canvas, num):
'Ctor for the LeoFigureManagerQt class.'
self.c = c = g.app.log.c
super().__init__(canvas, num)
self.canvas = canvas
self.vr_controller = vc = vr.controllers.get(c.hash())
self.splitter = c.free_layout.get_top_splitter()
self.frame = w = QtWidgets.QFrame()
w.setLayout(QtWidgets.QVBoxLayout())
w.layout().addWidget(self.canvas)
if vc:
vc.embed_widget(w)
class DummyWindow():
def __init__(self, c):
self.c = c
self._destroying = None
def windowTitle(self):
return self.c.p.h
self.window = DummyWindow(c)
FocusPolicy = (QtCore.Qt.FocusPolicy if isQt6 else QtCore.Qt)
self.canvas.setFocusPolicy(FocusPolicy.StrongFocus)
self.canvas.setFocus()
self.canvas._destroying = False
self.toolbar = self._get_toolbar(self.canvas, self.frame)
if (self.toolbar is not None):
layout = self.frame.layout()
layout.addWidget(self.toolbar)
self.statusbar_label = QtWidgets.QLabel()
layout.addWidget(self.statusbar_label)
if (isQt5 or isQt6):
pass
else:
self.toolbar.message.connect(self._show_message)
self.canvas.draw_idle()
def notify_axes_change(fig):
if (self.toolbar is not None):
self.toolbar.update()
self.canvas.figure.add_axobserver(notify_axes_change) | -1,373,600,437,377,754,600 | Ctor for the LeoFigureManagerQt class. | leo/plugins/pyplot_backend.py | __init__ | ATikhonov2/leo-editor | python | def __init__(self, canvas, num):
self.c = c = g.app.log.c
super().__init__(canvas, num)
self.canvas = canvas
self.vr_controller = vc = vr.controllers.get(c.hash())
self.splitter = c.free_layout.get_top_splitter()
self.frame = w = QtWidgets.QFrame()
w.setLayout(QtWidgets.QVBoxLayout())
w.layout().addWidget(self.canvas)
if vc:
vc.embed_widget(w)
class DummyWindow():
def __init__(self, c):
self.c = c
self._destroying = None
def windowTitle(self):
return self.c.p.h
self.window = DummyWindow(c)
FocusPolicy = (QtCore.Qt.FocusPolicy if isQt6 else QtCore.Qt)
self.canvas.setFocusPolicy(FocusPolicy.StrongFocus)
self.canvas.setFocus()
self.canvas._destroying = False
self.toolbar = self._get_toolbar(self.canvas, self.frame)
if (self.toolbar is not None):
layout = self.frame.layout()
layout.addWidget(self.toolbar)
self.statusbar_label = QtWidgets.QLabel()
layout.addWidget(self.statusbar_label)
if (isQt5 or isQt6):
pass
else:
self.toolbar.message.connect(self._show_message)
self.canvas.draw_idle()
def notify_axes_change(fig):
if (self.toolbar is not None):
self.toolbar.update()
self.canvas.figure.add_axobserver(notify_axes_change) |
def main():
'Main program code.'
window = MyGame()
window.setup()
arcade.run() | 294,195,495,317,205,760 | Main program code. | multiple_levels.py | main | casadina/py_arcade | python | def main():
window = MyGame()
window.setup()
arcade.run() |
def tick(self):
'Determine tick amount.'
t_1 = time.perf_counter()
dt = (t_1 - self.time)
self.time = t_1
self.frame_times.append(dt) | 8,592,838,661,354,698,000 | Determine tick amount. | multiple_levels.py | tick | casadina/py_arcade | python | def tick(self):
t_1 = time.perf_counter()
dt = (t_1 - self.time)
self.time = t_1
self.frame_times.append(dt) |
def get_fps(self) -> float:
'Return FPS as a float.'
total_time = sum(self.frame_times)
if (total_time == 0):
return 0
return (len(self.frame_times) / sum(self.frame_times)) | -3,622,362,377,545,486,300 | Return FPS as a float. | multiple_levels.py | get_fps | casadina/py_arcade | python | def get_fps(self) -> float:
total_time = sum(self.frame_times)
if (total_time == 0):
return 0
return (len(self.frame_times) / sum(self.frame_times)) |
def update(self):
' Move the player'
self.left = max(self.left, 0) | -6,030,875,653,913,213,000 | Move the player | multiple_levels.py | update | casadina/py_arcade | python | def update(self):
' '
self.left = max(self.left, 0) |
def __init__(self):
'Call the parent class and set up the window.'
super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
(self.scene, self.player_sprite) = (None, None)
self.physics_engine = None
self.left_pressed = False
self.right_pressed = False
self.camera = None
self.gui_camera = None
self.score = 0
self.lives_left = 0
self.timer = 0
self.fps = FPSCounter()
self.up = (key.UP, key.W)
self.down = (key.DOWN, key.S)
self.left = (key.LEFT, key.A)
self.right = (key.RIGHT, key.D)
self.tile_map = None
self.end_of_map = 0
self.level = 1
self.collect_coin_sound = arcade.load_sound(':resources:sounds/coin1.wav')
self.jump_sound = arcade.load_sound(':resources:sounds/jump1.wav')
self.game_over_sound = arcade.load_sound(':resources:sounds/gameover1.wav')
arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE) | -1,055,211,858,887,127,900 | Call the parent class and set up the window. | multiple_levels.py | __init__ | casadina/py_arcade | python | def __init__(self):
super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
(self.scene, self.player_sprite) = (None, None)
self.physics_engine = None
self.left_pressed = False
self.right_pressed = False
self.camera = None
self.gui_camera = None
self.score = 0
self.lives_left = 0
self.timer = 0
self.fps = FPSCounter()
self.up = (key.UP, key.W)
self.down = (key.DOWN, key.S)
self.left = (key.LEFT, key.A)
self.right = (key.RIGHT, key.D)
self.tile_map = None
self.end_of_map = 0
self.level = 1
self.collect_coin_sound = arcade.load_sound(':resources:sounds/coin1.wav')
self.jump_sound = arcade.load_sound(':resources:sounds/jump1.wav')
self.game_over_sound = arcade.load_sound(':resources:sounds/gameover1.wav')
arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE) |
def setup(self):
'Set-up the game here. Call this function to restart the game.'
self.camera = arcade.Camera(self.width, self.height)
self.gui_camera = arcade.Camera(self.width, self.height)
map_name = f':resources:tiled_maps/map2_level_{self.level}.json'
layer_options = {LAYER_NAME_PLATFORMS: {'use_spatial_hash': True}, LAYER_NAME_COINS: {'use_spatial_hash': True}, LAYER_NAME_DONT_TOUCH: {'use_spatial_hash': True}}
self.tile_map = arcade.load_tilemap(map_name, TILE_SCALING, layer_options)
self.scene = arcade.Scene.from_tilemap(self.tile_map)
self.scene.add_sprite_list_after('Player', LAYER_NAME_FOREGROUND)
image_source = ':resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png'
self.player_sprite = Player(image_source, CHARACTER_SCALING)
self.player_sprite.center_x = PLAYER_START_X
self.player_sprite.center_y = PLAYER_START_Y
self.scene.add_sprite('Player', self.player_sprite)
self.physics_engine = arcade.PhysicsEnginePlatformer(self.player_sprite, gravity_constant=GRAVITY, walls=self.scene['Platforms'])
self.score = 0
self.lives_left = 5
if self.tile_map.background_color:
arcade.set_background_color(self.tile_map.background_color)
self.end_of_map = (self.tile_map.width * GRID_PIXEL_SIZE) | 4,101,371,736,262,876,700 | Set-up the game here. Call this function to restart the game. | multiple_levels.py | setup | casadina/py_arcade | python | def setup(self):
self.camera = arcade.Camera(self.width, self.height)
self.gui_camera = arcade.Camera(self.width, self.height)
map_name = f':resources:tiled_maps/map2_level_{self.level}.json'
layer_options = {LAYER_NAME_PLATFORMS: {'use_spatial_hash': True}, LAYER_NAME_COINS: {'use_spatial_hash': True}, LAYER_NAME_DONT_TOUCH: {'use_spatial_hash': True}}
self.tile_map = arcade.load_tilemap(map_name, TILE_SCALING, layer_options)
self.scene = arcade.Scene.from_tilemap(self.tile_map)
self.scene.add_sprite_list_after('Player', LAYER_NAME_FOREGROUND)
image_source = ':resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png'
self.player_sprite = Player(image_source, CHARACTER_SCALING)
self.player_sprite.center_x = PLAYER_START_X
self.player_sprite.center_y = PLAYER_START_Y
self.scene.add_sprite('Player', self.player_sprite)
self.physics_engine = arcade.PhysicsEnginePlatformer(self.player_sprite, gravity_constant=GRAVITY, walls=self.scene['Platforms'])
self.score = 0
self.lives_left = 5
if self.tile_map.background_color:
arcade.set_background_color(self.tile_map.background_color)
self.end_of_map = (self.tile_map.width * GRID_PIXEL_SIZE) |
@property
def current_fps(self) -> float:
'Determine current fps.'
return self.fps.get_fps() | 1,849,623,787,745,285,400 | Determine current fps. | multiple_levels.py | current_fps | casadina/py_arcade | python | @property
def current_fps(self) -> float:
return self.fps.get_fps() |
@property
def coins_left(self) -> int:
'Determine coins remaining.'
return len(self.scene['Coins']) | -1,729,096,299,829,627,600 | Determine coins remaining. | multiple_levels.py | coins_left | casadina/py_arcade | python | @property
def coins_left(self) -> int:
return len(self.scene['Coins']) |
@staticmethod
def gui_label(text: str, var: any, x: int, y: int):
"\n Simplify arcade.draw_text.\n\n Keyword arguments:\n text -- This is the label.\n var -- This is the variable value.\n x -- This is the percent point of the screen's x x that it will start at.\n y -- This is the percent point of the screen's y it will start at.\n "
(x, y) = ((x / 100), (y / 100))
arcade.draw_text(text=f'{text}: {var}', start_x=(SCREEN_WIDTH * x), start_y=(SCREEN_HEIGHT * y), color=arcade.csscolor.WHITE, font_size=18) | 1,918,866,859,303,684,400 | Simplify arcade.draw_text.
Keyword arguments:
text -- This is the label.
var -- This is the variable value.
x -- This is the percent point of the screen's x x that it will start at.
y -- This is the percent point of the screen's y it will start at. | multiple_levels.py | gui_label | casadina/py_arcade | python | @staticmethod
def gui_label(text: str, var: any, x: int, y: int):
"\n Simplify arcade.draw_text.\n\n Keyword arguments:\n text -- This is the label.\n var -- This is the variable value.\n x -- This is the percent point of the screen's x x that it will start at.\n y -- This is the percent point of the screen's y it will start at.\n "
(x, y) = ((x / 100), (y / 100))
arcade.draw_text(text=f'{text}: {var}', start_x=(SCREEN_WIDTH * x), start_y=(SCREEN_HEIGHT * y), color=arcade.csscolor.WHITE, font_size=18) |
def display_gui_info(self):
'Display GUI information.'
arcade.draw_rectangle_filled(center_x=(SCREEN_WIDTH / 14), center_y=(SCREEN_HEIGHT - (SCREEN_HEIGHT / 10)), width=(SCREEN_WIDTH / 7), height=(SCREEN_HEIGHT / 4), color=arcade.color.IRRESISTIBLE)
self.gui_label('Score', self.score, 0, 95)
self.gui_label('Coins Left', self.coins_left, 0, 90)
self.gui_label('Time', round(self.timer), 0, 85)
self.gui_label('Lives', self.lives_left, 0, 80)
self.gui_label('FPS', round(self.current_fps), 90, 95) | -7,317,001,881,754,198,000 | Display GUI information. | multiple_levels.py | display_gui_info | casadina/py_arcade | python | def display_gui_info(self):
arcade.draw_rectangle_filled(center_x=(SCREEN_WIDTH / 14), center_y=(SCREEN_HEIGHT - (SCREEN_HEIGHT / 10)), width=(SCREEN_WIDTH / 7), height=(SCREEN_HEIGHT / 4), color=arcade.color.IRRESISTIBLE)
self.gui_label('Score', self.score, 0, 95)
self.gui_label('Coins Left', self.coins_left, 0, 90)
self.gui_label('Time', round(self.timer), 0, 85)
self.gui_label('Lives', self.lives_left, 0, 80)
self.gui_label('FPS', round(self.current_fps), 90, 95) |
def on_draw(self):
'Render the screen.'
arcade.start_render()
self.camera.use()
self.scene.draw()
self.gui_camera.use()
self.display_gui_info()
self.fps.tick() | 4,505,006,218,272,286,700 | Render the screen. | multiple_levels.py | on_draw | casadina/py_arcade | python | def on_draw(self):
arcade.start_render()
self.camera.use()
self.scene.draw()
self.gui_camera.use()
self.display_gui_info()
self.fps.tick() |
def on_key_press(self, button: int, modifiers: int):
'Called whenever a key is pressed.'
if ((button in self.up) and self.physics_engine.can_jump()):
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self.jump_sound)
elif (button in self.left):
self.left_pressed = True
elif (button in self.right):
self.right_pressed = True | 531,593,586,049,197,250 | Called whenever a key is pressed. | multiple_levels.py | on_key_press | casadina/py_arcade | python | def on_key_press(self, button: int, modifiers: int):
if ((button in self.up) and self.physics_engine.can_jump()):
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self.jump_sound)
elif (button in self.left):
self.left_pressed = True
elif (button in self.right):
self.right_pressed = True |
def on_key_release(self, button: int, modifiers: int):
'Called when the user releases a key.'
if (button in self.left):
self.left_pressed = False
elif (button in self.right):
self.right_pressed = False | -5,128,810,662,760,468,000 | Called when the user releases a key. | multiple_levels.py | on_key_release | casadina/py_arcade | python | def on_key_release(self, button: int, modifiers: int):
if (button in self.left):
self.left_pressed = False
elif (button in self.right):
self.right_pressed = False |
def update_player_velocity(self):
'Update velocity based on key state.'
if (self.left_pressed and (not self.right_pressed)):
self.player_sprite.change_x = (- PLAYER_MOVEMENT_SPEED)
elif (self.right_pressed and (not self.left_pressed)):
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
else:
self.player_sprite.change_x = 0 | -6,462,452,232,308,232,000 | Update velocity based on key state. | multiple_levels.py | update_player_velocity | casadina/py_arcade | python | def update_player_velocity(self):
if (self.left_pressed and (not self.right_pressed)):
self.player_sprite.change_x = (- PLAYER_MOVEMENT_SPEED)
elif (self.right_pressed and (not self.left_pressed)):
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
else:
self.player_sprite.change_x = 0 |
def center_camera_to_player(self):
'Ensure the camera is centered on the player.'
screen_center_x = (self.player_sprite.center_x - (self.camera.viewport_width / 2))
screen_center_y = (self.player_sprite.center_y - (self.camera.viewport_height / 2))
if (screen_center_x < 0):
screen_center_x = 0
if (screen_center_y < 0):
screen_center_y = 0
player_centered = (screen_center_x, screen_center_y)
self.camera.move_to(player_centered) | -1,353,567,521,603,266,800 | Ensure the camera is centered on the player. | multiple_levels.py | center_camera_to_player | casadina/py_arcade | python | def center_camera_to_player(self):
screen_center_x = (self.player_sprite.center_x - (self.camera.viewport_width / 2))
screen_center_y = (self.player_sprite.center_y - (self.camera.viewport_height / 2))
if (screen_center_x < 0):
screen_center_x = 0
if (screen_center_y < 0):
screen_center_y = 0
player_centered = (screen_center_x, screen_center_y)
self.camera.move_to(player_centered) |
def player_coin_collision(self):
'\n Detects player collision with coins, then removes the coin sprite.\n This will play a sound and add 1 to the score.\n '
coin_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.scene['Coins'])
for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 1 | -4,846,683,211,798,819,000 | Detects player collision with coins, then removes the coin sprite.
This will play a sound and add 1 to the score. | multiple_levels.py | player_coin_collision | casadina/py_arcade | python | def player_coin_collision(self):
'\n Detects player collision with coins, then removes the coin sprite.\n This will play a sound and add 1 to the score.\n '
coin_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.scene['Coins'])
for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 1 |
def reset_player(self):
"Reset's player to start position."
self.player_sprite.center_x = PLAYER_START_X
self.player_sprite.center_y = PLAYER_START_Y | -6,883,142,112,036,425,000 | Reset's player to start position. | multiple_levels.py | reset_player | casadina/py_arcade | python | def reset_player(self):
self.player_sprite.center_x = PLAYER_START_X
self.player_sprite.center_y = PLAYER_START_Y |
def stop_player(self):
'Stop player movement.'
self.player_sprite.change_x = 0
self.player_sprite.change_y = 0 | -764,573,933,544,241,300 | Stop player movement. | multiple_levels.py | stop_player | casadina/py_arcade | python | def stop_player(self):
self.player_sprite.change_x = 0
self.player_sprite.change_y = 0 |
def game_over(self):
'Sets game over and resets position.'
self.stop_player()
self.reset_player()
self.lives_left -= 1
arcade.play_sound(self.game_over_sound) | 6,663,112,794,571,538,000 | Sets game over and resets position. | multiple_levels.py | game_over | casadina/py_arcade | python | def game_over(self):
self.stop_player()
self.reset_player()
self.lives_left -= 1
arcade.play_sound(self.game_over_sound) |
def fell_off_map(self):
'Detect if the player fell off the map and then reset position if so.'
if (self.player_sprite.center_y < (- 100)):
self.game_over() | -8,257,541,033,313,706,000 | Detect if the player fell off the map and then reset position if so. | multiple_levels.py | fell_off_map | casadina/py_arcade | python | def fell_off_map(self):
if (self.player_sprite.center_y < (- 100)):
self.game_over() |
def touched_dont_touch(self):
"Detect collision on Don't Touch layer. Reset player if collision."
if arcade.check_for_collision_with_list(self.player_sprite, self.scene[LAYER_NAME_DONT_TOUCH]):
self.game_over() | -3,392,554,248,256,127,500 | Detect collision on Don't Touch layer. Reset player if collision. | multiple_levels.py | touched_dont_touch | casadina/py_arcade | python | def touched_dont_touch(self):
if arcade.check_for_collision_with_list(self.player_sprite, self.scene[LAYER_NAME_DONT_TOUCH]):
self.game_over() |
def at_end_of_level(self):
'Checks if player at end of level, and if so, load the next level.'
if (self.player_sprite.center_x >= self.end_of_map):
self.level += 1
self.setup() | -3,506,122,557,746,076,700 | Checks if player at end of level, and if so, load the next level. | multiple_levels.py | at_end_of_level | casadina/py_arcade | python | def at_end_of_level(self):
if (self.player_sprite.center_x >= self.end_of_map):
self.level += 1
self.setup() |
def on_update(self, delta_time: float):
'Movement and game logic.'
self.timer += delta_time
self.update_player_velocity()
self.player_sprite.update()
self.physics_engine.update()
self.player_coin_collision()
self.fell_off_map()
self.touched_dont_touch()
self.at_end_of_level()
self.center_camera_to_player() | 3,231,113,912,894,307,300 | Movement and game logic. | multiple_levels.py | on_update | casadina/py_arcade | python | def on_update(self, delta_time: float):
self.timer += delta_time
self.update_player_velocity()
self.player_sprite.update()
self.physics_engine.update()
self.player_coin_collision()
self.fell_off_map()
self.touched_dont_touch()
self.at_end_of_level()
self.center_camera_to_player() |
def default_stream_factory(total_content_length, filename, content_type, content_length=None):
'The stream factory that is used per default.'
if (total_content_length > (1024 * 500)):
return TemporaryFile('wb+')
return StringIO() | 3,775,995,986,324,513,000 | The stream factory that is used per default. | werkzeug/formparser.py | default_stream_factory | Chitrank-Dixit/werkzeug | python | def default_stream_factory(total_content_length, filename, content_type, content_length=None):
if (total_content_length > (1024 * 500)):
return TemporaryFile('wb+')
return StringIO() |
def parse_form_data(environ, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True):
'Parse the form data in the environ and return it as tuple in the form\n ``(stream, form, files)``. You should only call this method if the\n transport method is `POST`, `PUT`, or `PATCH`.\n\n If the mimetype of the data transmitted is `multipart/form-data` the\n files multidict will be filled with `FileStorage` objects. If the\n mimetype is unknown the input stream is wrapped and returned as first\n argument, else the stream is empty.\n\n This is a shortcut for the common usage of :class:`FormDataParser`.\n\n Have a look at :ref:`dealing-with-request-data` for more details.\n\n .. versionadded:: 0.5\n The `max_form_memory_size`, `max_content_length` and\n `cls` parameters were added.\n\n .. versionadded:: 0.5.1\n The optional `silent` flag was added.\n\n :param environ: the WSGI environment to be used for parsing.\n :param stream_factory: An optional callable that returns a new read and\n writeable file descriptor. This callable works\n the same as :meth:`~BaseResponse._get_file_stream`.\n :param charset: The character set for URL and url encoded form data.\n :param errors: The encoding error behavior.\n :param max_form_memory_size: the maximum number of bytes to be accepted for\n in-memory stored form data. If the data\n exceeds the value specified an\n :exc:`~exceptions.RequestEntityTooLarge`\n exception is raised.\n :param max_content_length: If this is provided and the transmitted data\n is longer than this value an\n :exc:`~exceptions.RequestEntityTooLarge`\n exception is raised.\n :param cls: an optional dict class to use. If this is not specified\n or `None` the default :class:`MultiDict` is used.\n :param silent: If set to False parsing errors will not be caught.\n :return: A tuple in the form ``(stream, form, files)``.\n '
return FormDataParser(stream_factory, charset, errors, max_form_memory_size, max_content_length, cls, silent).parse_from_environ(environ) | 1,399,098,653,220,583,700 | Parse the form data in the environ and return it as tuple in the form
``(stream, form, files)``. You should only call this method if the
transport method is `POST`, `PUT`, or `PATCH`.
If the mimetype of the data transmitted is `multipart/form-data` the
files multidict will be filled with `FileStorage` objects. If the
mimetype is unknown the input stream is wrapped and returned as first
argument, else the stream is empty.
This is a shortcut for the common usage of :class:`FormDataParser`.
Have a look at :ref:`dealing-with-request-data` for more details.
.. versionadded:: 0.5
The `max_form_memory_size`, `max_content_length` and
`cls` parameters were added.
.. versionadded:: 0.5.1
The optional `silent` flag was added.
:param environ: the WSGI environment to be used for parsing.
:param stream_factory: An optional callable that returns a new read and
writeable file descriptor. This callable works
the same as :meth:`~BaseResponse._get_file_stream`.
:param charset: The character set for URL and url encoded form data.
:param errors: The encoding error behavior.
:param max_form_memory_size: the maximum number of bytes to be accepted for
in-memory stored form data. If the data
exceeds the value specified an
:exc:`~exceptions.RequestEntityTooLarge`
exception is raised.
:param max_content_length: If this is provided and the transmitted data
is longer than this value an
:exc:`~exceptions.RequestEntityTooLarge`
exception is raised.
:param cls: an optional dict class to use. If this is not specified
or `None` the default :class:`MultiDict` is used.
:param silent: If set to False parsing errors will not be caught.
:return: A tuple in the form ``(stream, form, files)``. | werkzeug/formparser.py | parse_form_data | Chitrank-Dixit/werkzeug | python | def parse_form_data(environ, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True):
'Parse the form data in the environ and return it as tuple in the form\n ``(stream, form, files)``. You should only call this method if the\n transport method is `POST`, `PUT`, or `PATCH`.\n\n If the mimetype of the data transmitted is `multipart/form-data` the\n files multidict will be filled with `FileStorage` objects. If the\n mimetype is unknown the input stream is wrapped and returned as first\n argument, else the stream is empty.\n\n This is a shortcut for the common usage of :class:`FormDataParser`.\n\n Have a look at :ref:`dealing-with-request-data` for more details.\n\n .. versionadded:: 0.5\n The `max_form_memory_size`, `max_content_length` and\n `cls` parameters were added.\n\n .. versionadded:: 0.5.1\n The optional `silent` flag was added.\n\n :param environ: the WSGI environment to be used for parsing.\n :param stream_factory: An optional callable that returns a new read and\n writeable file descriptor. This callable works\n the same as :meth:`~BaseResponse._get_file_stream`.\n :param charset: The character set for URL and url encoded form data.\n :param errors: The encoding error behavior.\n :param max_form_memory_size: the maximum number of bytes to be accepted for\n in-memory stored form data. If the data\n exceeds the value specified an\n :exc:`~exceptions.RequestEntityTooLarge`\n exception is raised.\n :param max_content_length: If this is provided and the transmitted data\n is longer than this value an\n :exc:`~exceptions.RequestEntityTooLarge`\n exception is raised.\n :param cls: an optional dict class to use. If this is not specified\n or `None` the default :class:`MultiDict` is used.\n :param silent: If set to False parsing errors will not be caught.\n :return: A tuple in the form ``(stream, form, files)``.\n '
return FormDataParser(stream_factory, charset, errors, max_form_memory_size, max_content_length, cls, silent).parse_from_environ(environ) |
def exhaust_stream(f):
'Helper decorator for methods that exhausts the stream on return.'
def wrapper(self, stream, *args, **kwargs):
try:
return f(self, stream, *args, **kwargs)
finally:
stream.exhaust()
return update_wrapper(wrapper, f) | 2,898,723,767,904,656,000 | Helper decorator for methods that exhausts the stream on return. | werkzeug/formparser.py | exhaust_stream | Chitrank-Dixit/werkzeug | python | def exhaust_stream(f):
def wrapper(self, stream, *args, **kwargs):
try:
return f(self, stream, *args, **kwargs)
finally:
stream.exhaust()
return update_wrapper(wrapper, f) |
def is_valid_multipart_boundary(boundary):
'Checks if the string given is a valid multipart boundary.'
return (_multipart_boundary_re.match(boundary) is not None) | -8,237,246,297,276,212,000 | Checks if the string given is a valid multipart boundary. | werkzeug/formparser.py | is_valid_multipart_boundary | Chitrank-Dixit/werkzeug | python | def is_valid_multipart_boundary(boundary):
return (_multipart_boundary_re.match(boundary) is not None) |
def _line_parse(line):
'Removes line ending characters and returns a tuple (`stripped_line`,\n `is_terminated`).\n '
if (line[(- 2):] == '\r\n'):
return (line[:(- 2)], True)
elif (line[(- 1):] in '\r\n'):
return (line[:(- 1)], True)
return (line, False) | 2,266,841,580,460,052,500 | Removes line ending characters and returns a tuple (`stripped_line`,
`is_terminated`). | werkzeug/formparser.py | _line_parse | Chitrank-Dixit/werkzeug | python | def _line_parse(line):
'Removes line ending characters and returns a tuple (`stripped_line`,\n `is_terminated`).\n '
if (line[(- 2):] == '\r\n'):
return (line[:(- 2)], True)
elif (line[(- 1):] in '\r\n'):
return (line[:(- 1)], True)
return (line, False) |
def parse_multipart_headers(iterable):
'Parses multipart headers from an iterable that yields lines (including\n the trailing newline symbol). The iterable has to be newline terminated.\n\n The iterable will stop at the line where the headers ended so it can be\n further consumed.\n\n :param iterable: iterable of strings that are newline terminated\n '
result = []
for line in iterable:
(line, line_terminated) = _line_parse(line)
if (not line_terminated):
raise ValueError('unexpected end of line in multipart header')
if (not line):
break
elif ((line[0] in ' \t') and result):
(key, value) = result[(- 1)]
result[(- 1)] = (key, ((value + '\n ') + line[1:]))
else:
parts = line.split(':', 1)
if (len(parts) == 2):
result.append((parts[0].strip(), parts[1].strip()))
return Headers.linked(result) | -2,176,537,027,926,288,600 | Parses multipart headers from an iterable that yields lines (including
the trailing newline symbol). The iterable has to be newline terminated.
The iterable will stop at the line where the headers ended so it can be
further consumed.
:param iterable: iterable of strings that are newline terminated | werkzeug/formparser.py | parse_multipart_headers | Chitrank-Dixit/werkzeug | python | def parse_multipart_headers(iterable):
'Parses multipart headers from an iterable that yields lines (including\n the trailing newline symbol). The iterable has to be newline terminated.\n\n The iterable will stop at the line where the headers ended so it can be\n further consumed.\n\n :param iterable: iterable of strings that are newline terminated\n '
result = []
for line in iterable:
(line, line_terminated) = _line_parse(line)
if (not line_terminated):
raise ValueError('unexpected end of line in multipart header')
if (not line):
break
elif ((line[0] in ' \t') and result):
(key, value) = result[(- 1)]
result[(- 1)] = (key, ((value + '\n ') + line[1:]))
else:
parts = line.split(':', 1)
if (len(parts) == 2):
result.append((parts[0].strip(), parts[1].strip()))
return Headers.linked(result) |
def parse_from_environ(self, environ):
'Parses the information from the environment as form data.\n\n :param environ: the WSGI environment to be used for parsing.\n :return: A tuple in the form ``(stream, form, files)``.\n '
content_type = environ.get('CONTENT_TYPE', '')
(mimetype, options) = parse_options_header(content_type)
try:
content_length = int(environ['CONTENT_LENGTH'])
except (KeyError, ValueError):
content_length = 0
stream = environ['wsgi.input']
return self.parse(stream, mimetype, content_length, options) | -5,458,521,010,198,014,000 | Parses the information from the environment as form data.
:param environ: the WSGI environment to be used for parsing.
:return: A tuple in the form ``(stream, form, files)``. | werkzeug/formparser.py | parse_from_environ | Chitrank-Dixit/werkzeug | python | def parse_from_environ(self, environ):
'Parses the information from the environment as form data.\n\n :param environ: the WSGI environment to be used for parsing.\n :return: A tuple in the form ``(stream, form, files)``.\n '
content_type = environ.get('CONTENT_TYPE', )
(mimetype, options) = parse_options_header(content_type)
try:
content_length = int(environ['CONTENT_LENGTH'])
except (KeyError, ValueError):
content_length = 0
stream = environ['wsgi.input']
return self.parse(stream, mimetype, content_length, options) |
def parse(self, stream, mimetype, content_length, options=None):
'Parses the information from the given stream, mimetype,\n content length and mimetype parameters.\n\n :param stream: an input stream\n :param mimetype: the mimetype of the data\n :param content_length: the content length of the incoming data\n :param options: optional mimetype parameters (used for\n the multipart boundary for instance)\n :return: A tuple in the form ``(stream, form, files)``.\n '
if ((self.max_content_length is not None) and (content_length > self.max_content_length)):
raise RequestEntityTooLarge()
if (options is None):
options = {}
input_stream = LimitedStream(stream, content_length)
parse_func = self.get_parse_func(mimetype, options)
if (parse_func is not None):
try:
return parse_func(self, input_stream, mimetype, content_length, options)
except ValueError:
if (not self.silent):
raise
return (input_stream, self.cls(), self.cls()) | 5,671,949,490,822,148,000 | Parses the information from the given stream, mimetype,
content length and mimetype parameters.
:param stream: an input stream
:param mimetype: the mimetype of the data
:param content_length: the content length of the incoming data
:param options: optional mimetype parameters (used for
the multipart boundary for instance)
:return: A tuple in the form ``(stream, form, files)``. | werkzeug/formparser.py | parse | Chitrank-Dixit/werkzeug | python | def parse(self, stream, mimetype, content_length, options=None):
'Parses the information from the given stream, mimetype,\n content length and mimetype parameters.\n\n :param stream: an input stream\n :param mimetype: the mimetype of the data\n :param content_length: the content length of the incoming data\n :param options: optional mimetype parameters (used for\n the multipart boundary for instance)\n :return: A tuple in the form ``(stream, form, files)``.\n '
if ((self.max_content_length is not None) and (content_length > self.max_content_length)):
raise RequestEntityTooLarge()
if (options is None):
options = {}
input_stream = LimitedStream(stream, content_length)
parse_func = self.get_parse_func(mimetype, options)
if (parse_func is not None):
try:
return parse_func(self, input_stream, mimetype, content_length, options)
except ValueError:
if (not self.silent):
raise
return (input_stream, self.cls(), self.cls()) |
def _fix_ie_filename(self, filename):
'Internet Explorer 6 transmits the full file name if a file is\n uploaded. This function strips the full path if it thinks the\n filename is Windows-like absolute.\n '
if ((filename[1:3] == ':\\') or (filename[:2] == '\\\\')):
return filename.split('\\')[(- 1)]
return filename | 4,052,912,053,183,255,600 | Internet Explorer 6 transmits the full file name if a file is
uploaded. This function strips the full path if it thinks the
filename is Windows-like absolute. | werkzeug/formparser.py | _fix_ie_filename | Chitrank-Dixit/werkzeug | python | def _fix_ie_filename(self, filename):
'Internet Explorer 6 transmits the full file name if a file is\n uploaded. This function strips the full path if it thinks the\n filename is Windows-like absolute.\n '
if ((filename[1:3] == ':\\') or (filename[:2] == '\\\\')):
return filename.split('\\')[(- 1)]
return filename |
def _find_terminator(self, iterator):
'The terminator might have some additional newlines before it.\n There is at least one application that sends additional newlines\n before headers (the python setuptools package).\n '
for line in iterator:
if (not line):
break
line = line.strip()
if line:
return line
return '' | 2,901,900,155,092,777,000 | The terminator might have some additional newlines before it.
There is at least one application that sends additional newlines
before headers (the python setuptools package). | werkzeug/formparser.py | _find_terminator | Chitrank-Dixit/werkzeug | python | def _find_terminator(self, iterator):
'The terminator might have some additional newlines before it.\n There is at least one application that sends additional newlines\n before headers (the python setuptools package).\n '
for line in iterator:
if (not line):
break
line = line.strip()
if line:
return line
return |
def parse_lines(self, file, boundary, content_length):
"Generate parts of\n ``('begin_form', (headers, name))``\n ``('begin_file', (headers, name, filename))``\n ``('cont', bytestring)``\n ``('end', None)``\n\n Always obeys the grammar\n parts = ( begin_form cont* end |\n begin_file cont* end )*\n "
next_part = ('--' + boundary)
last_part = (next_part + '--')
iterator = chain(make_line_iter(file, limit=content_length, buffer_size=self.buffer_size), _empty_string_iter)
terminator = self._find_terminator(iterator)
if (terminator != next_part):
self.fail('Expected boundary at start of multipart data')
while (terminator != last_part):
headers = parse_multipart_headers(iterator)
disposition = headers.get('content-disposition')
if (disposition is None):
self.fail('Missing Content-Disposition header')
(disposition, extra) = parse_options_header(disposition)
transfer_encoding = self.get_part_encoding(headers)
name = extra.get('name')
filename = extra.get('filename')
if (filename is None):
(yield (_begin_form, (headers, name)))
else:
(yield (_begin_file, (headers, name, filename)))
buf = ''
for line in iterator:
if (not line):
self.fail('unexpected end of stream')
if (line[:2] == '--'):
terminator = line.rstrip()
if (terminator in (next_part, last_part)):
break
if (transfer_encoding is not None):
try:
line = line.decode(transfer_encoding)
except Exception:
self.fail('could not decode transfer encoded chunk')
if buf:
(yield (_cont, buf))
buf = ''
if (line[(- 2):] == '\r\n'):
buf = '\r\n'
cutoff = (- 2)
else:
buf = line[(- 1)]
cutoff = (- 1)
(yield (_cont, line[:cutoff]))
else:
raise ValueError('unexpected end of part')
if (buf not in ('', '\r', '\n', '\r\n')):
(yield (_cont, buf))
(yield (_end, None)) | -1,307,323,556,561,785,000 | Generate parts of
``('begin_form', (headers, name))``
``('begin_file', (headers, name, filename))``
``('cont', bytestring)``
``('end', None)``
Always obeys the grammar
parts = ( begin_form cont* end |
begin_file cont* end )* | werkzeug/formparser.py | parse_lines | Chitrank-Dixit/werkzeug | python | def parse_lines(self, file, boundary, content_length):
"Generate parts of\n ``('begin_form', (headers, name))``\n ``('begin_file', (headers, name, filename))``\n ``('cont', bytestring)``\n ``('end', None)``\n\n Always obeys the grammar\n parts = ( begin_form cont* end |\n begin_file cont* end )*\n "
next_part = ('--' + boundary)
last_part = (next_part + '--')
iterator = chain(make_line_iter(file, limit=content_length, buffer_size=self.buffer_size), _empty_string_iter)
terminator = self._find_terminator(iterator)
if (terminator != next_part):
self.fail('Expected boundary at start of multipart data')
while (terminator != last_part):
headers = parse_multipart_headers(iterator)
disposition = headers.get('content-disposition')
if (disposition is None):
self.fail('Missing Content-Disposition header')
(disposition, extra) = parse_options_header(disposition)
transfer_encoding = self.get_part_encoding(headers)
name = extra.get('name')
filename = extra.get('filename')
if (filename is None):
(yield (_begin_form, (headers, name)))
else:
(yield (_begin_file, (headers, name, filename)))
buf =
for line in iterator:
if (not line):
self.fail('unexpected end of stream')
if (line[:2] == '--'):
terminator = line.rstrip()
if (terminator in (next_part, last_part)):
break
if (transfer_encoding is not None):
try:
line = line.decode(transfer_encoding)
except Exception:
self.fail('could not decode transfer encoded chunk')
if buf:
(yield (_cont, buf))
buf =
if (line[(- 2):] == '\r\n'):
buf = '\r\n'
cutoff = (- 2)
else:
buf = line[(- 1)]
cutoff = (- 1)
(yield (_cont, line[:cutoff]))
else:
raise ValueError('unexpected end of part')
if (buf not in (, '\r', '\n', '\r\n')):
(yield (_cont, buf))
(yield (_end, None)) |
def parse_parts(self, file, boundary, content_length):
"Generate `('file', (name, val))` and `('form', (name\n ,val))` parts.\n "
in_memory = 0
for (ellt, ell) in self.parse_lines(file, boundary, content_length):
if (ellt == _begin_file):
(headers, name, filename) = ell
is_file = True
guard_memory = False
(filename, container) = self.start_file_streaming(filename, headers, content_length)
_write = container.write
elif (ellt == _begin_form):
(headers, name) = ell
is_file = False
container = []
_write = container.append
guard_memory = (self.max_form_memory_size is not None)
elif (ellt == _cont):
_write(ell)
if guard_memory:
in_memory += len(ell)
if (in_memory > self.max_form_memory_size):
self.in_memory_threshold_reached(in_memory)
elif (ellt == _end):
if is_file:
container.seek(0)
(yield ('file', (name, FileStorage(container, filename, name, headers=headers))))
else:
part_charset = self.get_part_charset(headers)
(yield ('form', (name, _decode_unicode(''.join(container), part_charset, self.errors)))) | -1,497,096,617,322,765,800 | Generate `('file', (name, val))` and `('form', (name
,val))` parts. | werkzeug/formparser.py | parse_parts | Chitrank-Dixit/werkzeug | python | def parse_parts(self, file, boundary, content_length):
"Generate `('file', (name, val))` and `('form', (name\n ,val))` parts.\n "
in_memory = 0
for (ellt, ell) in self.parse_lines(file, boundary, content_length):
if (ellt == _begin_file):
(headers, name, filename) = ell
is_file = True
guard_memory = False
(filename, container) = self.start_file_streaming(filename, headers, content_length)
_write = container.write
elif (ellt == _begin_form):
(headers, name) = ell
is_file = False
container = []
_write = container.append
guard_memory = (self.max_form_memory_size is not None)
elif (ellt == _cont):
_write(ell)
if guard_memory:
in_memory += len(ell)
if (in_memory > self.max_form_memory_size):
self.in_memory_threshold_reached(in_memory)
elif (ellt == _end):
if is_file:
container.seek(0)
(yield ('file', (name, FileStorage(container, filename, name, headers=headers))))
else:
part_charset = self.get_part_charset(headers)
(yield ('form', (name, _decode_unicode(.join(container), part_charset, self.errors)))) |
def createMatrices(file, word2Idx, maxSentenceLen=100):
'Creates matrices for the events and sentence for the given file'
labels = []
positionMatrix1 = []
positionMatrix2 = []
tokenMatrix = []
for line in open(file):
splits = line.strip().split('\t')
label = splits[0]
pos1 = splits[1]
pos2 = splits[2]
sentence = splits[3]
tokens = sentence.split(' ')
tokenIds = np.zeros(maxSentenceLen)
positionValues1 = np.zeros(maxSentenceLen)
positionValues2 = np.zeros(maxSentenceLen)
for idx in range(0, min(maxSentenceLen, len(tokens))):
tokenIds[idx] = getWordIdx(tokens[idx], word2Idx)
distance1 = (idx - int(pos1))
distance2 = (idx - int(pos2))
if (distance1 in distanceMapping):
positionValues1[idx] = distanceMapping[distance1]
elif (distance1 <= minDistance):
positionValues1[idx] = distanceMapping['LowerMin']
else:
positionValues1[idx] = distanceMapping['GreaterMax']
if (distance2 in distanceMapping):
positionValues2[idx] = distanceMapping[distance2]
elif (distance2 <= minDistance):
positionValues2[idx] = distanceMapping['LowerMin']
else:
positionValues2[idx] = distanceMapping['GreaterMax']
tokenMatrix.append(tokenIds)
positionMatrix1.append(positionValues1)
positionMatrix2.append(positionValues2)
labels.append(labelsMapping[label])
return (np.array(labels, dtype='int32'), np.array(tokenMatrix, dtype='int32'), np.array(positionMatrix1, dtype='int32'), np.array(positionMatrix2, dtype='int32')) | -3,162,865,911,030,710,300 | Creates matrices for the events and sentence for the given file | 2017-07_Seminar/Session 3 - Relation CNN/code/preprocess.py | createMatrices | BhuvaneshwaranK/deeplearning4nlp-tutorial | python | def createMatrices(file, word2Idx, maxSentenceLen=100):
labels = []
positionMatrix1 = []
positionMatrix2 = []
tokenMatrix = []
for line in open(file):
splits = line.strip().split('\t')
label = splits[0]
pos1 = splits[1]
pos2 = splits[2]
sentence = splits[3]
tokens = sentence.split(' ')
tokenIds = np.zeros(maxSentenceLen)
positionValues1 = np.zeros(maxSentenceLen)
positionValues2 = np.zeros(maxSentenceLen)
for idx in range(0, min(maxSentenceLen, len(tokens))):
tokenIds[idx] = getWordIdx(tokens[idx], word2Idx)
distance1 = (idx - int(pos1))
distance2 = (idx - int(pos2))
if (distance1 in distanceMapping):
positionValues1[idx] = distanceMapping[distance1]
elif (distance1 <= minDistance):
positionValues1[idx] = distanceMapping['LowerMin']
else:
positionValues1[idx] = distanceMapping['GreaterMax']
if (distance2 in distanceMapping):
positionValues2[idx] = distanceMapping[distance2]
elif (distance2 <= minDistance):
positionValues2[idx] = distanceMapping['LowerMin']
else:
positionValues2[idx] = distanceMapping['GreaterMax']
tokenMatrix.append(tokenIds)
positionMatrix1.append(positionValues1)
positionMatrix2.append(positionValues2)
labels.append(labelsMapping[label])
return (np.array(labels, dtype='int32'), np.array(tokenMatrix, dtype='int32'), np.array(positionMatrix1, dtype='int32'), np.array(positionMatrix2, dtype='int32')) |
def getWordIdx(token, word2Idx):
'Returns from the word2Idex table the word index for a given token'
if (token in word2Idx):
return word2Idx[token]
elif (token.lower() in word2Idx):
return word2Idx[token.lower()]
return word2Idx['UNKNOWN_TOKEN'] | -500,736,905,236,166,900 | Returns from the word2Idex table the word index for a given token | 2017-07_Seminar/Session 3 - Relation CNN/code/preprocess.py | getWordIdx | BhuvaneshwaranK/deeplearning4nlp-tutorial | python | def getWordIdx(token, word2Idx):
if (token in word2Idx):
return word2Idx[token]
elif (token.lower() in word2Idx):
return word2Idx[token.lower()]
return word2Idx['UNKNOWN_TOKEN'] |
def _handle_mark_groups_arg_for_clustering(mark_groups, clustering):
"Handles the mark_groups=... keyword argument in plotting methods of\n clusterings.\n\n This is an internal method, you shouldn't need to mess around with it.\n Its purpose is to handle the extended semantics of the mark_groups=...\n keyword argument in the C{__plot__} method of L{VertexClustering} and\n L{VertexCover} instances, namely the feature that numeric IDs are resolved\n to clusters automatically.\n "
if (mark_groups is True):
group_iter = ((group, color) for (color, group) in enumerate(clustering))
elif isinstance(mark_groups, dict):
group_iter = mark_groups.iteritems()
elif (hasattr(mark_groups, '__getitem__') and hasattr(mark_groups, '__len__')):
try:
first = mark_groups[0]
except:
first = None
if (first is not None):
if isinstance(first, (int, long)):
group_iter = ((group, color) for (color, group) in enumerate(mark_groups))
else:
group_iter = mark_groups
else:
group_iter = mark_groups
elif hasattr(mark_groups, '__iter__'):
group_iter = mark_groups
else:
group_iter = {}.iteritems()
def cluster_index_resolver():
for (group, color) in group_iter:
if isinstance(group, (int, long)):
group = clustering[group]
(yield (group, color))
return cluster_index_resolver() | -5,505,528,020,700,937,000 | Handles the mark_groups=... keyword argument in plotting methods of
clusterings.
This is an internal method, you shouldn't need to mess around with it.
Its purpose is to handle the extended semantics of the mark_groups=...
keyword argument in the C{__plot__} method of L{VertexClustering} and
L{VertexCover} instances, namely the feature that numeric IDs are resolved
to clusters automatically. | igraph/clustering.py | _handle_mark_groups_arg_for_clustering | tuandnvn/ecat_learning | python | def _handle_mark_groups_arg_for_clustering(mark_groups, clustering):
"Handles the mark_groups=... keyword argument in plotting methods of\n clusterings.\n\n This is an internal method, you shouldn't need to mess around with it.\n Its purpose is to handle the extended semantics of the mark_groups=...\n keyword argument in the C{__plot__} method of L{VertexClustering} and\n L{VertexCover} instances, namely the feature that numeric IDs are resolved\n to clusters automatically.\n "
if (mark_groups is True):
group_iter = ((group, color) for (color, group) in enumerate(clustering))
elif isinstance(mark_groups, dict):
group_iter = mark_groups.iteritems()
elif (hasattr(mark_groups, '__getitem__') and hasattr(mark_groups, '__len__')):
try:
first = mark_groups[0]
except:
first = None
if (first is not None):
if isinstance(first, (int, long)):
group_iter = ((group, color) for (color, group) in enumerate(mark_groups))
else:
group_iter = mark_groups
else:
group_iter = mark_groups
elif hasattr(mark_groups, '__iter__'):
group_iter = mark_groups
else:
group_iter = {}.iteritems()
def cluster_index_resolver():
for (group, color) in group_iter:
if isinstance(group, (int, long)):
group = clustering[group]
(yield (group, color))
return cluster_index_resolver() |
def _prepare_community_comparison(comm1, comm2, remove_none=False):
'Auxiliary method that takes two community structures either as\n membership lists or instances of L{Clustering}, and returns a\n tuple whose two elements are membership lists.\n\n This is used by L{compare_communities} and L{split_join_distance}.\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param remove_none: whether to remove C{None} entries from the membership\n lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1}\n or C{comm2} will result in an exception. If C{remove_none} is C{True},\n C{None} values are filtered away and only the remaining lists are\n compared.\n '
def _ensure_list(obj):
if isinstance(obj, Clustering):
return obj.membership
return list(obj)
(vec1, vec2) = (_ensure_list(comm1), _ensure_list(comm2))
if (len(vec1) != len(vec2)):
raise ValueError('the two membership vectors must be equal in length')
if (remove_none and ((None in vec1) or (None in vec2))):
idxs_to_remove = [i for i in xrange(len(vec1)) if ((vec1[i] is None) or (vec2[i] is None))]
idxs_to_remove.reverse()
n = len(vec1)
for i in idxs_to_remove:
n -= 1
(vec1[i], vec1[n]) = (vec1[n], vec1[i])
(vec2[i], vec2[n]) = (vec2[n], vec2[i])
del vec1[n:]
del vec2[n:]
return (vec1, vec2) | -1,930,164,210,523,227,600 | Auxiliary method that takes two community structures either as
membership lists or instances of L{Clustering}, and returns a
tuple whose two elements are membership lists.
This is used by L{compare_communities} and L{split_join_distance}.
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param remove_none: whether to remove C{None} entries from the membership
lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1}
or C{comm2} will result in an exception. If C{remove_none} is C{True},
C{None} values are filtered away and only the remaining lists are
compared. | igraph/clustering.py | _prepare_community_comparison | tuandnvn/ecat_learning | python | def _prepare_community_comparison(comm1, comm2, remove_none=False):
'Auxiliary method that takes two community structures either as\n membership lists or instances of L{Clustering}, and returns a\n tuple whose two elements are membership lists.\n\n This is used by L{compare_communities} and L{split_join_distance}.\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param remove_none: whether to remove C{None} entries from the membership\n lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1}\n or C{comm2} will result in an exception. If C{remove_none} is C{True},\n C{None} values are filtered away and only the remaining lists are\n compared.\n '
def _ensure_list(obj):
if isinstance(obj, Clustering):
return obj.membership
return list(obj)
(vec1, vec2) = (_ensure_list(comm1), _ensure_list(comm2))
if (len(vec1) != len(vec2)):
raise ValueError('the two membership vectors must be equal in length')
if (remove_none and ((None in vec1) or (None in vec2))):
idxs_to_remove = [i for i in xrange(len(vec1)) if ((vec1[i] is None) or (vec2[i] is None))]
idxs_to_remove.reverse()
n = len(vec1)
for i in idxs_to_remove:
n -= 1
(vec1[i], vec1[n]) = (vec1[n], vec1[i])
(vec2[i], vec2[n]) = (vec2[n], vec2[i])
del vec1[n:]
del vec2[n:]
return (vec1, vec2) |
def compare_communities(comm1, comm2, method='vi', remove_none=False):
'Compares two community structures using various distance measures.\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param method: the measure to use. C{"vi"} or C{"meila"} means the\n variation of information metric of Meila (2003), C{"nmi"} or C{"danon"}\n means the normalized mutual information as defined by Danon et al (2005),\n C{"split-join"} means the split-join distance of van Dongen (2000),\n C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"}\n means the adjusted Rand index of Hubert and Arabie (1985).\n @param remove_none: whether to remove C{None} entries from the membership\n lists. This is handy if your L{Clustering} object was constructed using\n L{VertexClustering.FromAttribute} using an attribute which was not defined\n for all the vertices. If C{remove_none} is C{False}, a C{None} entry in\n either C{comm1} or C{comm2} will result in an exception. If C{remove_none}\n is C{True}, C{None} values are filtered away and only the remaining lists\n are compared.\n\n @return: the calculated measure.\n @newfield ref: Reference\n @ref: Meila M: Comparing clusterings by the variation of information.\n In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel\n Machines: 16th Annual Conference on Computational Learning Theory\n and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA.\n Lecture Notes in Computer Science, vol. 2777, Springer, 2003.\n ISBN: 978-3-540-40720-1.\n @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community\n structure identification. J Stat Mech P09008, 2005.\n @ref: van Dongen D: Performance criteria for graph clustering and Markov\n cluster experiments. Technical Report INS-R0012, National Research\n Institute for Mathematics and Computer Science in the Netherlands,\n Amsterdam, May 2000.\n @ref: Rand WM: Objective criteria for the evaluation of clustering\n methods. J Am Stat Assoc 66(336):846-850, 1971.\n @ref: Hubert L and Arabie P: Comparing partitions. Journal of\n Classification 2:193-218, 1985.\n '
import igraph._igraph
(vec1, vec2) = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._compare_communities(vec1, vec2, method) | 6,305,604,480,575,149,000 | Compares two community structures using various distance measures.
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param method: the measure to use. C{"vi"} or C{"meila"} means the
variation of information metric of Meila (2003), C{"nmi"} or C{"danon"}
means the normalized mutual information as defined by Danon et al (2005),
C{"split-join"} means the split-join distance of van Dongen (2000),
C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"}
means the adjusted Rand index of Hubert and Arabie (1985).
@param remove_none: whether to remove C{None} entries from the membership
lists. This is handy if your L{Clustering} object was constructed using
L{VertexClustering.FromAttribute} using an attribute which was not defined
for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
is C{True}, C{None} values are filtered away and only the remaining lists
are compared.
@return: the calculated measure.
@newfield ref: Reference
@ref: Meila M: Comparing clusterings by the variation of information.
In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel
Machines: 16th Annual Conference on Computational Learning Theory
and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA.
Lecture Notes in Computer Science, vol. 2777, Springer, 2003.
ISBN: 978-3-540-40720-1.
@ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community
structure identification. J Stat Mech P09008, 2005.
@ref: van Dongen D: Performance criteria for graph clustering and Markov
cluster experiments. Technical Report INS-R0012, National Research
Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.
@ref: Rand WM: Objective criteria for the evaluation of clustering
methods. J Am Stat Assoc 66(336):846-850, 1971.
@ref: Hubert L and Arabie P: Comparing partitions. Journal of
Classification 2:193-218, 1985. | igraph/clustering.py | compare_communities | tuandnvn/ecat_learning | python | def compare_communities(comm1, comm2, method='vi', remove_none=False):
'Compares two community structures using various distance measures.\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param method: the measure to use. C{"vi"} or C{"meila"} means the\n variation of information metric of Meila (2003), C{"nmi"} or C{"danon"}\n means the normalized mutual information as defined by Danon et al (2005),\n C{"split-join"} means the split-join distance of van Dongen (2000),\n C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"}\n means the adjusted Rand index of Hubert and Arabie (1985).\n @param remove_none: whether to remove C{None} entries from the membership\n lists. This is handy if your L{Clustering} object was constructed using\n L{VertexClustering.FromAttribute} using an attribute which was not defined\n for all the vertices. If C{remove_none} is C{False}, a C{None} entry in\n either C{comm1} or C{comm2} will result in an exception. If C{remove_none}\n is C{True}, C{None} values are filtered away and only the remaining lists\n are compared.\n\n @return: the calculated measure.\n @newfield ref: Reference\n @ref: Meila M: Comparing clusterings by the variation of information.\n In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel\n Machines: 16th Annual Conference on Computational Learning Theory\n and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA.\n Lecture Notes in Computer Science, vol. 2777, Springer, 2003.\n ISBN: 978-3-540-40720-1.\n @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community\n structure identification. J Stat Mech P09008, 2005.\n @ref: van Dongen D: Performance criteria for graph clustering and Markov\n cluster experiments. Technical Report INS-R0012, National Research\n Institute for Mathematics and Computer Science in the Netherlands,\n Amsterdam, May 2000.\n @ref: Rand WM: Objective criteria for the evaluation of clustering\n methods. J Am Stat Assoc 66(336):846-850, 1971.\n @ref: Hubert L and Arabie P: Comparing partitions. Journal of\n Classification 2:193-218, 1985.\n '
import igraph._igraph
(vec1, vec2) = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._compare_communities(vec1, vec2, method) |
def split_join_distance(comm1, comm2, remove_none=False):
'Calculates the split-join distance between two community structures.\n\n The split-join distance is a distance measure defined on the space of\n partitions of a given set. It is the sum of the projection distance of\n one partition from the other and vice versa, where the projection\n number of A from B is if calculated as follows:\n\n 1. For each set in A, find the set in B with which it has the\n maximal overlap, and take note of the size of the overlap.\n\n 2. Take the sum of the maximal overlap sizes for each set in A.\n\n 3. Subtract the sum from M{n}, the number of elements in the\n partition.\n\n Note that the projection distance is asymmetric, that\'s why it has to be\n calculated in both directions and then added together. This function\n returns the projection distance of C{comm1} from C{comm2} and the\n projection distance of C{comm2} from C{comm1}, and returns them in a pair.\n The actual split-join distance is the sum of the two distances. The reason\n why it is presented this way is that one of the elements being zero then\n implies that one of the partitions is a subpartition of the other (and if\n it is close to zero, then one of the partitions is close to being a\n subpartition of the other).\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param remove_none: whether to remove C{None} entries from the membership\n lists. This is handy if your L{Clustering} object was constructed using\n L{VertexClustering.FromAttribute} using an attribute which was not defined\n for all the vertices. If C{remove_none} is C{False}, a C{None} entry in\n either C{comm1} or C{comm2} will result in an exception. If C{remove_none}\n is C{True}, C{None} values are filtered away and only the remaining lists\n are compared.\n\n @return: the projection distance of C{comm1} from C{comm2} and vice versa\n in a tuple. The split-join distance is the sum of the two.\n @newfield ref: Reference\n @ref: van Dongen D: Performance criteria for graph clustering and Markov\n cluster experiments. Technical Report INS-R0012, National Research\n Institute for Mathematics and Computer Science in the Netherlands,\n Amsterdam, May 2000.\n\n @see: L{compare_communities()} with C{method = "split-join"} if you are\n not interested in the individual projection distances but only the\n sum of them.\n '
import igraph._igraph
(vec1, vec2) = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._split_join_distance(vec1, vec2) | -4,521,227,686,832,673,300 | Calculates the split-join distance between two community structures.
The split-join distance is a distance measure defined on the space of
partitions of a given set. It is the sum of the projection distance of
one partition from the other and vice versa, where the projection
number of A from B is if calculated as follows:
1. For each set in A, find the set in B with which it has the
maximal overlap, and take note of the size of the overlap.
2. Take the sum of the maximal overlap sizes for each set in A.
3. Subtract the sum from M{n}, the number of elements in the
partition.
Note that the projection distance is asymmetric, that's why it has to be
calculated in both directions and then added together. This function
returns the projection distance of C{comm1} from C{comm2} and the
projection distance of C{comm2} from C{comm1}, and returns them in a pair.
The actual split-join distance is the sum of the two distances. The reason
why it is presented this way is that one of the elements being zero then
implies that one of the partitions is a subpartition of the other (and if
it is close to zero, then one of the partitions is close to being a
subpartition of the other).
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param remove_none: whether to remove C{None} entries from the membership
lists. This is handy if your L{Clustering} object was constructed using
L{VertexClustering.FromAttribute} using an attribute which was not defined
for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
is C{True}, C{None} values are filtered away and only the remaining lists
are compared.
@return: the projection distance of C{comm1} from C{comm2} and vice versa
in a tuple. The split-join distance is the sum of the two.
@newfield ref: Reference
@ref: van Dongen D: Performance criteria for graph clustering and Markov
cluster experiments. Technical Report INS-R0012, National Research
Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.
@see: L{compare_communities()} with C{method = "split-join"} if you are
not interested in the individual projection distances but only the
sum of them. | igraph/clustering.py | split_join_distance | tuandnvn/ecat_learning | python | def split_join_distance(comm1, comm2, remove_none=False):
'Calculates the split-join distance between two community structures.\n\n The split-join distance is a distance measure defined on the space of\n partitions of a given set. It is the sum of the projection distance of\n one partition from the other and vice versa, where the projection\n number of A from B is if calculated as follows:\n\n 1. For each set in A, find the set in B with which it has the\n maximal overlap, and take note of the size of the overlap.\n\n 2. Take the sum of the maximal overlap sizes for each set in A.\n\n 3. Subtract the sum from M{n}, the number of elements in the\n partition.\n\n Note that the projection distance is asymmetric, that\'s why it has to be\n calculated in both directions and then added together. This function\n returns the projection distance of C{comm1} from C{comm2} and the\n projection distance of C{comm2} from C{comm1}, and returns them in a pair.\n The actual split-join distance is the sum of the two distances. The reason\n why it is presented this way is that one of the elements being zero then\n implies that one of the partitions is a subpartition of the other (and if\n it is close to zero, then one of the partitions is close to being a\n subpartition of the other).\n\n @param comm1: the first community structure as a membership list or\n as a L{Clustering} object.\n @param comm2: the second community structure as a membership list or\n as a L{Clustering} object.\n @param remove_none: whether to remove C{None} entries from the membership\n lists. This is handy if your L{Clustering} object was constructed using\n L{VertexClustering.FromAttribute} using an attribute which was not defined\n for all the vertices. If C{remove_none} is C{False}, a C{None} entry in\n either C{comm1} or C{comm2} will result in an exception. If C{remove_none}\n is C{True}, C{None} values are filtered away and only the remaining lists\n are compared.\n\n @return: the projection distance of C{comm1} from C{comm2} and vice versa\n in a tuple. The split-join distance is the sum of the two.\n @newfield ref: Reference\n @ref: van Dongen D: Performance criteria for graph clustering and Markov\n cluster experiments. Technical Report INS-R0012, National Research\n Institute for Mathematics and Computer Science in the Netherlands,\n Amsterdam, May 2000.\n\n @see: L{compare_communities()} with C{method = "split-join"} if you are\n not interested in the individual projection distances but only the\n sum of them.\n '
import igraph._igraph
(vec1, vec2) = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._split_join_distance(vec1, vec2) |
def __init__(self, membership, params=None):
"Constructor.\n\n @param membership: the membership list -- that is, the cluster\n index in which each element of the set belongs to.\n @param params: additional parameters to be stored in this\n object's dictionary."
self._membership = list(membership)
if (len(self._membership) > 0):
self._len = (max((m for m in self._membership if (m is not None))) + 1)
else:
self._len = 0
if params:
self.__dict__.update(params) | -3,012,367,874,068,840,000 | Constructor.
@param membership: the membership list -- that is, the cluster
index in which each element of the set belongs to.
@param params: additional parameters to be stored in this
object's dictionary. | igraph/clustering.py | __init__ | tuandnvn/ecat_learning | python | def __init__(self, membership, params=None):
"Constructor.\n\n @param membership: the membership list -- that is, the cluster\n index in which each element of the set belongs to.\n @param params: additional parameters to be stored in this\n object's dictionary."
self._membership = list(membership)
if (len(self._membership) > 0):
self._len = (max((m for m in self._membership if (m is not None))) + 1)
else:
self._len = 0
if params:
self.__dict__.update(params) |
def __getitem__(self, idx):
'Returns the members of the specified cluster.\n\n @param idx: the index of the cluster\n @return: the members of the specified cluster as a list\n @raise IndexError: if the index is out of bounds'
if ((idx < 0) or (idx >= self._len)):
raise IndexError('cluster index out of range')
return [i for (i, e) in enumerate(self._membership) if (e == idx)] | 3,332,638,273,974,701,600 | Returns the members of the specified cluster.
@param idx: the index of the cluster
@return: the members of the specified cluster as a list
@raise IndexError: if the index is out of bounds | igraph/clustering.py | __getitem__ | tuandnvn/ecat_learning | python | def __getitem__(self, idx):
'Returns the members of the specified cluster.\n\n @param idx: the index of the cluster\n @return: the members of the specified cluster as a list\n @raise IndexError: if the index is out of bounds'
if ((idx < 0) or (idx >= self._len)):
raise IndexError('cluster index out of range')
return [i for (i, e) in enumerate(self._membership) if (e == idx)] |
def __iter__(self):
'Iterates over the clusters in this clustering.\n\n This method will return a generator that generates the clusters\n one by one.'
clusters = [[] for _ in xrange(self._len)]
for (idx, cluster) in enumerate(self._membership):
clusters[cluster].append(idx)
return iter(clusters) | 7,846,816,968,255,388,000 | Iterates over the clusters in this clustering.
This method will return a generator that generates the clusters
one by one. | igraph/clustering.py | __iter__ | tuandnvn/ecat_learning | python | def __iter__(self):
'Iterates over the clusters in this clustering.\n\n This method will return a generator that generates the clusters\n one by one.'
clusters = [[] for _ in xrange(self._len)]
for (idx, cluster) in enumerate(self._membership):
clusters[cluster].append(idx)
return iter(clusters) |
def __len__(self):
'Returns the number of clusters.\n\n @return: the number of clusters\n '
return self._len | -5,451,640,488,408,298 | Returns the number of clusters.
@return: the number of clusters | igraph/clustering.py | __len__ | tuandnvn/ecat_learning | python | def __len__(self):
'Returns the number of clusters.\n\n @return: the number of clusters\n '
return self._len |
def as_cover(self):
'Returns a L{Cover} that contains the same clusters as this clustering.'
return Cover(self._graph, self) | 8,436,789,138,042,786,000 | Returns a L{Cover} that contains the same clusters as this clustering. | igraph/clustering.py | as_cover | tuandnvn/ecat_learning | python | def as_cover(self):
return Cover(self._graph, self) |
def compare_to(self, other, *args, **kwds):
'Compares this clustering to another one using some similarity or\n distance metric.\n\n This is a convenience method that simply calls L{compare_communities}\n with the two clusterings as arguments. Any extra positional or keyword\n argument is also forwarded to L{compare_communities}.'
return compare_communities(self, other, *args, **kwds) | -242,300,988,132,617,400 | Compares this clustering to another one using some similarity or
distance metric.
This is a convenience method that simply calls L{compare_communities}
with the two clusterings as arguments. Any extra positional or keyword
argument is also forwarded to L{compare_communities}. | igraph/clustering.py | compare_to | tuandnvn/ecat_learning | python | def compare_to(self, other, *args, **kwds):
'Compares this clustering to another one using some similarity or\n distance metric.\n\n This is a convenience method that simply calls L{compare_communities}\n with the two clusterings as arguments. Any extra positional or keyword\n argument is also forwarded to L{compare_communities}.'
return compare_communities(self, other, *args, **kwds) |
@property
def membership(self):
'Returns the membership vector.'
return self._membership[:] | 6,664,867,578,842,224,000 | Returns the membership vector. | igraph/clustering.py | membership | tuandnvn/ecat_learning | python | @property
def membership(self):
return self._membership[:] |
@property
def n(self):
'Returns the number of elements covered by this clustering.'
return len(self._membership) | 6,145,121,453,949,917,000 | Returns the number of elements covered by this clustering. | igraph/clustering.py | n | tuandnvn/ecat_learning | python | @property
def n(self):
return len(self._membership) |
def size(self, idx):
'Returns the size of a given cluster.\n\n @param idx: the cluster in which we are interested.\n '
return len(self[idx]) | -2,611,264,052,909,075,500 | Returns the size of a given cluster.
@param idx: the cluster in which we are interested. | igraph/clustering.py | size | tuandnvn/ecat_learning | python | def size(self, idx):
'Returns the size of a given cluster.\n\n @param idx: the cluster in which we are interested.\n '
return len(self[idx]) |
def sizes(self, *args):
'Returns the size of given clusters.\n\n The indices are given as positional arguments. If there are no\n positional arguments, the function will return the sizes of all clusters.\n '
counts = ([0] * len(self))
for x in self._membership:
counts[x] += 1
if args:
return [counts[idx] for idx in args]
return counts | 2,385,789,323,031,367,700 | Returns the size of given clusters.
The indices are given as positional arguments. If there are no
positional arguments, the function will return the sizes of all clusters. | igraph/clustering.py | sizes | tuandnvn/ecat_learning | python | def sizes(self, *args):
'Returns the size of given clusters.\n\n The indices are given as positional arguments. If there are no\n positional arguments, the function will return the sizes of all clusters.\n '
counts = ([0] * len(self))
for x in self._membership:
counts[x] += 1
if args:
return [counts[idx] for idx in args]
return counts |
def size_histogram(self, bin_width=1):
'Returns the histogram of cluster sizes.\n\n @param bin_width: the bin width of the histogram\n @return: a L{Histogram} object\n '
return Histogram(bin_width, self.sizes()) | -2,461,763,455,575,568,000 | Returns the histogram of cluster sizes.
@param bin_width: the bin width of the histogram
@return: a L{Histogram} object | igraph/clustering.py | size_histogram | tuandnvn/ecat_learning | python | def size_histogram(self, bin_width=1):
'Returns the histogram of cluster sizes.\n\n @param bin_width: the bin width of the histogram\n @return: a L{Histogram} object\n '
return Histogram(bin_width, self.sizes()) |
def summary(self, verbosity=0, width=None):
'Returns the summary of the clustering.\n\n The summary includes the number of items and clusters, and also the\n list of members for each of the clusters if the verbosity is nonzero.\n\n @param verbosity: determines whether the cluster members should be\n printed. Zero verbosity prints the number of items and clusters only.\n @return: the summary of the clustering as a string.\n '
out = StringIO()
((print >> out), ('Clustering with %d elements and %d clusters' % (len(self._membership), len(self))))
if (verbosity < 1):
return out.getvalue().strip()
ndigits = len(str(len(self)))
wrapper = _get_wrapper_for_width(width, subsequent_indent=(' ' * (ndigits + 3)))
for (idx, cluster) in enumerate(self._formatted_cluster_iterator()):
wrapper.initial_indent = ('[%*d] ' % (ndigits, idx))
((print >> out), '\n'.join(wrapper.wrap(cluster)))
return out.getvalue().strip() | -4,108,578,556,226,028,500 | Returns the summary of the clustering.
The summary includes the number of items and clusters, and also the
list of members for each of the clusters if the verbosity is nonzero.
@param verbosity: determines whether the cluster members should be
printed. Zero verbosity prints the number of items and clusters only.
@return: the summary of the clustering as a string. | igraph/clustering.py | summary | tuandnvn/ecat_learning | python | def summary(self, verbosity=0, width=None):
'Returns the summary of the clustering.\n\n The summary includes the number of items and clusters, and also the\n list of members for each of the clusters if the verbosity is nonzero.\n\n @param verbosity: determines whether the cluster members should be\n printed. Zero verbosity prints the number of items and clusters only.\n @return: the summary of the clustering as a string.\n '
out = StringIO()
((print >> out), ('Clustering with %d elements and %d clusters' % (len(self._membership), len(self))))
if (verbosity < 1):
return out.getvalue().strip()
ndigits = len(str(len(self)))
wrapper = _get_wrapper_for_width(width, subsequent_indent=(' ' * (ndigits + 3)))
for (idx, cluster) in enumerate(self._formatted_cluster_iterator()):
wrapper.initial_indent = ('[%*d] ' % (ndigits, idx))
((print >> out), '\n'.join(wrapper.wrap(cluster)))
return out.getvalue().strip() |
def _formatted_cluster_iterator(self):
'Iterates over the clusters and formats them into a string to be\n presented in the summary.'
for cluster in self:
(yield ', '.join((str(member) for member in cluster))) | 810,895,616,325,758,500 | Iterates over the clusters and formats them into a string to be
presented in the summary. | igraph/clustering.py | _formatted_cluster_iterator | tuandnvn/ecat_learning | python | def _formatted_cluster_iterator(self):
'Iterates over the clusters and formats them into a string to be\n presented in the summary.'
for cluster in self:
(yield ', '.join((str(member) for member in cluster))) |
def __init__(self, graph, membership=None, modularity=None, params=None, modularity_params=None):
'Creates a clustering object for a given graph.\n\n @param graph: the graph that will be associated to the clustering\n @param membership: the membership list. The length of the list must\n be equal to the number of vertices in the graph. If C{None}, every\n vertex is assumed to belong to the same cluster.\n @param modularity: the modularity score of the clustering. If C{None},\n it will be calculated when needed.\n @param params: additional parameters to be stored in this object.\n @param modularity_params: arguments that should be passed to\n L{Graph.modularity} when the modularity is (re)calculated. If the\n original graph was weighted, you should pass a dictionary\n containing a C{weight} key with the appropriate value here.\n '
if (membership is None):
Clustering.__init__(self, ([0] * graph.vcount()), params)
else:
if (len(membership) != graph.vcount()):
raise ValueError('membership list has invalid length')
Clustering.__init__(self, membership, params)
self._graph = graph
self._modularity = modularity
self._modularity_dirty = (modularity is None)
if (modularity_params is None):
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params) | 1,624,140,130,461,915,000 | Creates a clustering object for a given graph.
@param graph: the graph that will be associated to the clustering
@param membership: the membership list. The length of the list must
be equal to the number of vertices in the graph. If C{None}, every
vertex is assumed to belong to the same cluster.
@param modularity: the modularity score of the clustering. If C{None},
it will be calculated when needed.
@param params: additional parameters to be stored in this object.
@param modularity_params: arguments that should be passed to
L{Graph.modularity} when the modularity is (re)calculated. If the
original graph was weighted, you should pass a dictionary
containing a C{weight} key with the appropriate value here. | igraph/clustering.py | __init__ | tuandnvn/ecat_learning | python | def __init__(self, graph, membership=None, modularity=None, params=None, modularity_params=None):
'Creates a clustering object for a given graph.\n\n @param graph: the graph that will be associated to the clustering\n @param membership: the membership list. The length of the list must\n be equal to the number of vertices in the graph. If C{None}, every\n vertex is assumed to belong to the same cluster.\n @param modularity: the modularity score of the clustering. If C{None},\n it will be calculated when needed.\n @param params: additional parameters to be stored in this object.\n @param modularity_params: arguments that should be passed to\n L{Graph.modularity} when the modularity is (re)calculated. If the\n original graph was weighted, you should pass a dictionary\n containing a C{weight} key with the appropriate value here.\n '
if (membership is None):
Clustering.__init__(self, ([0] * graph.vcount()), params)
else:
if (len(membership) != graph.vcount()):
raise ValueError('membership list has invalid length')
Clustering.__init__(self, membership, params)
self._graph = graph
self._modularity = modularity
self._modularity_dirty = (modularity is None)
if (modularity_params is None):
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params) |
@classmethod
def FromAttribute(cls, graph, attribute, intervals=None, params=None):
'Creates a vertex clustering based on the value of a vertex attribute.\n\n Vertices having the same attribute will correspond to the same cluster.\n\n @param graph: the graph on which we are working\n @param attribute: name of the attribute on which the clustering\n is based.\n @param intervals: for numeric attributes, you can either pass a single\n number or a list of numbers here. A single number means that the\n vertices will be put in bins of that width and vertices ending up\n in the same bin will be in the same cluster. A list of numbers\n specify the bin positions explicitly; e.g., C{[10, 20, 30]} means\n that there will be four categories: vertices with the attribute\n value less than 10, between 10 and 20, between 20 and 30 and over 30.\n Intervals are closed from the left and open from the right.\n @param params: additional parameters to be stored in this object.\n\n @return: a new VertexClustering object\n '
from bisect import bisect
def safeintdiv(x, y):
'Safe integer division that handles None gracefully'
if (x is None):
return None
return int((x / y))
def safebisect(intervals, x):
'Safe list bisection that handles None gracefully'
if (x is None):
return None
return bisect(intervals, x)
try:
_ = iter(intervals)
iterable = True
except TypeError:
iterable = False
if (intervals is None):
vec = graph.vs[attribute]
elif iterable:
intervals = list(intervals)
vec = [safebisect(intervals, x) for x in graph.vs[attribute]]
else:
intervals = float(intervals)
vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]]
idgen = UniqueIdGenerator()
idgen[None] = None
vec = [idgen[i] for i in vec]
return cls(graph, vec, None, params) | -3,112,355,477,865,406,000 | Creates a vertex clustering based on the value of a vertex attribute.
Vertices having the same attribute will correspond to the same cluster.
@param graph: the graph on which we are working
@param attribute: name of the attribute on which the clustering
is based.
@param intervals: for numeric attributes, you can either pass a single
number or a list of numbers here. A single number means that the
vertices will be put in bins of that width and vertices ending up
in the same bin will be in the same cluster. A list of numbers
specify the bin positions explicitly; e.g., C{[10, 20, 30]} means
that there will be four categories: vertices with the attribute
value less than 10, between 10 and 20, between 20 and 30 and over 30.
Intervals are closed from the left and open from the right.
@param params: additional parameters to be stored in this object.
@return: a new VertexClustering object | igraph/clustering.py | FromAttribute | tuandnvn/ecat_learning | python | @classmethod
def FromAttribute(cls, graph, attribute, intervals=None, params=None):
'Creates a vertex clustering based on the value of a vertex attribute.\n\n Vertices having the same attribute will correspond to the same cluster.\n\n @param graph: the graph on which we are working\n @param attribute: name of the attribute on which the clustering\n is based.\n @param intervals: for numeric attributes, you can either pass a single\n number or a list of numbers here. A single number means that the\n vertices will be put in bins of that width and vertices ending up\n in the same bin will be in the same cluster. A list of numbers\n specify the bin positions explicitly; e.g., C{[10, 20, 30]} means\n that there will be four categories: vertices with the attribute\n value less than 10, between 10 and 20, between 20 and 30 and over 30.\n Intervals are closed from the left and open from the right.\n @param params: additional parameters to be stored in this object.\n\n @return: a new VertexClustering object\n '
from bisect import bisect
def safeintdiv(x, y):
'Safe integer division that handles None gracefully'
if (x is None):
return None
return int((x / y))
def safebisect(intervals, x):
'Safe list bisection that handles None gracefully'
if (x is None):
return None
return bisect(intervals, x)
try:
_ = iter(intervals)
iterable = True
except TypeError:
iterable = False
if (intervals is None):
vec = graph.vs[attribute]
elif iterable:
intervals = list(intervals)
vec = [safebisect(intervals, x) for x in graph.vs[attribute]]
else:
intervals = float(intervals)
vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]]
idgen = UniqueIdGenerator()
idgen[None] = None
vec = [idgen[i] for i in vec]
return cls(graph, vec, None, params) |
def as_cover(self):
'Returns a L{VertexCover} that contains the same clusters as this\n clustering.'
return VertexCover(self._graph, self) | 6,069,732,515,534,388,000 | Returns a L{VertexCover} that contains the same clusters as this
clustering. | igraph/clustering.py | as_cover | tuandnvn/ecat_learning | python | def as_cover(self):
'Returns a L{VertexCover} that contains the same clusters as this\n clustering.'
return VertexCover(self._graph, self) |
def cluster_graph(self, combine_vertices=None, combine_edges=None):
'Returns a graph where each cluster is contracted into a single\n vertex.\n\n In the resulting graph, vertex M{i} represents cluster M{i} in this\n clustering. Vertex M{i} and M{j} will be connected if there was\n at least one connected vertex pair M{(a, b)} in the original graph such\n that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster\n M{j}.\n\n @param combine_vertices: specifies how to derive the attributes of\n the vertices in the new graph from the attributes of the old ones.\n See L{Graph.contract_vertices()} for more details.\n @param combine_edges: specifies how to derive the attributes of the\n edges in the new graph from the attributes of the old ones. See\n L{Graph.simplify()} for more details. If you specify C{False}\n here, edges will not be combined, and the number of edges between\n the vertices representing the original clusters will be equal to\n the number of edges between the members of those clusters in the\n original graph.\n\n @return: the new graph.\n '
result = self.graph.copy()
result.contract_vertices(self.membership, combine_vertices)
if (combine_edges != False):
result.simplify(combine_edges=combine_edges)
return result | -5,948,843,330,100,500,000 | Returns a graph where each cluster is contracted into a single
vertex.
In the resulting graph, vertex M{i} represents cluster M{i} in this
clustering. Vertex M{i} and M{j} will be connected if there was
at least one connected vertex pair M{(a, b)} in the original graph such
that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster
M{j}.
@param combine_vertices: specifies how to derive the attributes of
the vertices in the new graph from the attributes of the old ones.
See L{Graph.contract_vertices()} for more details.
@param combine_edges: specifies how to derive the attributes of the
edges in the new graph from the attributes of the old ones. See
L{Graph.simplify()} for more details. If you specify C{False}
here, edges will not be combined, and the number of edges between
the vertices representing the original clusters will be equal to
the number of edges between the members of those clusters in the
original graph.
@return: the new graph. | igraph/clustering.py | cluster_graph | tuandnvn/ecat_learning | python | def cluster_graph(self, combine_vertices=None, combine_edges=None):
'Returns a graph where each cluster is contracted into a single\n vertex.\n\n In the resulting graph, vertex M{i} represents cluster M{i} in this\n clustering. Vertex M{i} and M{j} will be connected if there was\n at least one connected vertex pair M{(a, b)} in the original graph such\n that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster\n M{j}.\n\n @param combine_vertices: specifies how to derive the attributes of\n the vertices in the new graph from the attributes of the old ones.\n See L{Graph.contract_vertices()} for more details.\n @param combine_edges: specifies how to derive the attributes of the\n edges in the new graph from the attributes of the old ones. See\n L{Graph.simplify()} for more details. If you specify C{False}\n here, edges will not be combined, and the number of edges between\n the vertices representing the original clusters will be equal to\n the number of edges between the members of those clusters in the\n original graph.\n\n @return: the new graph.\n '
result = self.graph.copy()
result.contract_vertices(self.membership, combine_vertices)
if (combine_edges != False):
result.simplify(combine_edges=combine_edges)
return result |
def crossing(self):
'Returns a boolean vector where element M{i} is C{True} iff edge\n M{i} lies between clusters, C{False} otherwise.'
membership = self.membership
return [(membership[v1] != membership[v2]) for (v1, v2) in self.graph.get_edgelist()] | 1,045,636,364,997,920,800 | Returns a boolean vector where element M{i} is C{True} iff edge
M{i} lies between clusters, C{False} otherwise. | igraph/clustering.py | crossing | tuandnvn/ecat_learning | python | def crossing(self):
'Returns a boolean vector where element M{i} is C{True} iff edge\n M{i} lies between clusters, C{False} otherwise.'
membership = self.membership
return [(membership[v1] != membership[v2]) for (v1, v2) in self.graph.get_edgelist()] |
@property
def modularity(self):
'Returns the modularity score'
if self._modularity_dirty:
return self._recalculate_modularity_safe()
return self._modularity | -3,664,254,341,804,715,000 | Returns the modularity score | igraph/clustering.py | modularity | tuandnvn/ecat_learning | python | @property
def modularity(self):
if self._modularity_dirty:
return self._recalculate_modularity_safe()
return self._modularity |
@property
def graph(self):
'Returns the graph belonging to this object'
return self._graph | -6,013,293,917,706,169,000 | Returns the graph belonging to this object | igraph/clustering.py | graph | tuandnvn/ecat_learning | python | @property
def graph(self):
return self._graph |
def recalculate_modularity(self):
'Recalculates the stored modularity value.\n\n This method must be called before querying the modularity score of the\n clustering through the class member C{modularity} or C{q} if the\n graph has been modified (edges have been added or removed) since the\n creation of the L{VertexClustering} object.\n\n @return: the new modularity score\n '
self._modularity = self._graph.modularity(self._membership, **self._modularity_params)
self._modularity_dirty = False
return self._modularity | 1,722,162,046,988,135,400 | Recalculates the stored modularity value.
This method must be called before querying the modularity score of the
clustering through the class member C{modularity} or C{q} if the
graph has been modified (edges have been added or removed) since the
creation of the L{VertexClustering} object.
@return: the new modularity score | igraph/clustering.py | recalculate_modularity | tuandnvn/ecat_learning | python | def recalculate_modularity(self):
'Recalculates the stored modularity value.\n\n This method must be called before querying the modularity score of the\n clustering through the class member C{modularity} or C{q} if the\n graph has been modified (edges have been added or removed) since the\n creation of the L{VertexClustering} object.\n\n @return: the new modularity score\n '
self._modularity = self._graph.modularity(self._membership, **self._modularity_params)
self._modularity_dirty = False
return self._modularity |
def _recalculate_modularity_safe(self):
'Recalculates the stored modularity value and swallows all exceptions\n raised by the modularity function (if any).\n\n @return: the new modularity score or C{None} if the modularity function\n could not be calculated.\n '
try:
return self.recalculate_modularity()
except:
return None
finally:
self._modularity_dirty = False | -3,958,502,414,622,825,500 | Recalculates the stored modularity value and swallows all exceptions
raised by the modularity function (if any).
@return: the new modularity score or C{None} if the modularity function
could not be calculated. | igraph/clustering.py | _recalculate_modularity_safe | tuandnvn/ecat_learning | python | def _recalculate_modularity_safe(self):
'Recalculates the stored modularity value and swallows all exceptions\n raised by the modularity function (if any).\n\n @return: the new modularity score or C{None} if the modularity function\n could not be calculated.\n '
try:
return self.recalculate_modularity()
except:
return None
finally:
self._modularity_dirty = False |
def subgraph(self, idx):
"Get the subgraph belonging to a given cluster.\n\n @param idx: the cluster index\n @return: a copy of the subgraph\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
return self._graph.subgraph(self[idx]) | 4,888,167,428,059,338,000 | Get the subgraph belonging to a given cluster.
@param idx: the cluster index
@return: a copy of the subgraph
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed. | igraph/clustering.py | subgraph | tuandnvn/ecat_learning | python | def subgraph(self, idx):
"Get the subgraph belonging to a given cluster.\n\n @param idx: the cluster index\n @return: a copy of the subgraph\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
return self._graph.subgraph(self[idx]) |
def subgraphs(self):
"Gets all the subgraphs belonging to each of the clusters.\n\n @return: a list containing copies of the subgraphs\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
return [self._graph.subgraph(cl) for cl in self] | 397,228,615,663,400,600 | Gets all the subgraphs belonging to each of the clusters.
@return: a list containing copies of the subgraphs
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed. | igraph/clustering.py | subgraphs | tuandnvn/ecat_learning | python | def subgraphs(self):
"Gets all the subgraphs belonging to each of the clusters.\n\n @return: a list containing copies of the subgraphs\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
return [self._graph.subgraph(cl) for cl in self] |
def giant(self):
"Returns the giant community of the clustered graph.\n\n The giant component a community for which no larger community exists.\n @note: there can be multiple giant communities, this method will return\n the copy of an arbitrary one if there are multiple giant communities.\n\n @return: a copy of the giant community.\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
ss = self.sizes()
max_size = max(ss)
return self.subgraph(ss.index(max_size)) | 5,153,737,018,873,520,000 | Returns the giant community of the clustered graph.
The giant component a community for which no larger community exists.
@note: there can be multiple giant communities, this method will return
the copy of an arbitrary one if there are multiple giant communities.
@return: a copy of the giant community.
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed. | igraph/clustering.py | giant | tuandnvn/ecat_learning | python | def giant(self):
"Returns the giant community of the clustered graph.\n\n The giant component a community for which no larger community exists.\n @note: there can be multiple giant communities, this method will return\n the copy of an arbitrary one if there are multiple giant communities.\n\n @return: a copy of the giant community.\n @precondition: the vertex set of the graph hasn't been modified since\n the moment the clustering was constructed.\n "
ss = self.sizes()
max_size = max(ss)
return self.subgraph(ss.index(max_size)) |
def __plot__(self, context, bbox, palette, *args, **kwds):
'Plots the clustering to the given Cairo context in the given\n bounding box.\n\n This is done by calling L{Graph.__plot__()} with the same arguments, but\n coloring the graph vertices according to the current clustering (unless\n overridden by the C{vertex_color} argument explicitly).\n\n This method understands all the positional and keyword arguments that\n are understood by L{Graph.__plot__()}, only the differences will be\n highlighted here:\n\n - C{mark_groups}: whether to highlight some of the vertex groups by\n colored polygons. Besides the values accepted by L{Graph.__plot__}\n (i.e., a dict mapping colors to vertex indices, a list containing\n lists of vertex indices, or C{False}), the following are also\n accepted:\n\n - C{True}: all the groups will be highlighted, the colors matching\n the corresponding color indices from the current palette\n (see the C{palette} keyword argument of L{Graph.__plot__}.\n\n - A dict mapping cluster indices or tuples of vertex indices to\n color names. The given clusters or vertex groups will be\n highlighted by the given colors.\n\n - A list of cluster indices. This is equivalent to passing a\n dict mapping numeric color indices from the current palette\n to cluster indices; therefore, the cluster referred to by element\n I{i} of the list will be highlighted by color I{i} from the\n palette.\n\n The value of the C{plotting.mark_groups} configuration key is also\n taken into account here; if that configuration key is C{True} and\n C{mark_groups} is not given explicitly, it will automatically be set\n to C{True}.\n\n In place of lists of vertex indices, you may also use L{VertexSeq}\n instances.\n\n In place of color names, you may also use color indices into the\n current palette. C{None} as a color name will mean that the\n corresponding group is ignored.\n\n - C{palette}: the palette used to resolve numeric color indices to RGBA\n values. By default, this is an instance of L{ClusterColoringPalette}.\n\n @see: L{Graph.__plot__()} for more supported keyword arguments.\n '
if (('edge_color' not in kwds) and ('color' not in self.graph.edge_attributes())):
colors = ['grey20', 'grey80']
kwds['edge_color'] = [colors[is_crossing] for is_crossing in self.crossing()]
if (palette is None):
palette = ClusterColoringPalette(len(self))
if ('mark_groups' not in kwds):
if Configuration.instance()['plotting.mark_groups']:
kwds['mark_groups'] = ((group, color) for (color, group) in enumerate(self))
else:
kwds['mark_groups'] = _handle_mark_groups_arg_for_clustering(kwds['mark_groups'], self)
if ('vertex_color' not in kwds):
kwds['vertex_color'] = self.membership
return self._graph.__plot__(context, bbox, palette, *args, **kwds) | 626,841,932,283,767,200 | Plots the clustering to the given Cairo context in the given
bounding box.
This is done by calling L{Graph.__plot__()} with the same arguments, but
coloring the graph vertices according to the current clustering (unless
overridden by the C{vertex_color} argument explicitly).
This method understands all the positional and keyword arguments that
are understood by L{Graph.__plot__()}, only the differences will be
highlighted here:
- C{mark_groups}: whether to highlight some of the vertex groups by
colored polygons. Besides the values accepted by L{Graph.__plot__}
(i.e., a dict mapping colors to vertex indices, a list containing
lists of vertex indices, or C{False}), the following are also
accepted:
- C{True}: all the groups will be highlighted, the colors matching
the corresponding color indices from the current palette
(see the C{palette} keyword argument of L{Graph.__plot__}.
- A dict mapping cluster indices or tuples of vertex indices to
color names. The given clusters or vertex groups will be
highlighted by the given colors.
- A list of cluster indices. This is equivalent to passing a
dict mapping numeric color indices from the current palette
to cluster indices; therefore, the cluster referred to by element
I{i} of the list will be highlighted by color I{i} from the
palette.
The value of the C{plotting.mark_groups} configuration key is also
taken into account here; if that configuration key is C{True} and
C{mark_groups} is not given explicitly, it will automatically be set
to C{True}.
In place of lists of vertex indices, you may also use L{VertexSeq}
instances.
In place of color names, you may also use color indices into the
current palette. C{None} as a color name will mean that the
corresponding group is ignored.
- C{palette}: the palette used to resolve numeric color indices to RGBA
values. By default, this is an instance of L{ClusterColoringPalette}.
@see: L{Graph.__plot__()} for more supported keyword arguments. | igraph/clustering.py | __plot__ | tuandnvn/ecat_learning | python | def __plot__(self, context, bbox, palette, *args, **kwds):
'Plots the clustering to the given Cairo context in the given\n bounding box.\n\n This is done by calling L{Graph.__plot__()} with the same arguments, but\n coloring the graph vertices according to the current clustering (unless\n overridden by the C{vertex_color} argument explicitly).\n\n This method understands all the positional and keyword arguments that\n are understood by L{Graph.__plot__()}, only the differences will be\n highlighted here:\n\n - C{mark_groups}: whether to highlight some of the vertex groups by\n colored polygons. Besides the values accepted by L{Graph.__plot__}\n (i.e., a dict mapping colors to vertex indices, a list containing\n lists of vertex indices, or C{False}), the following are also\n accepted:\n\n - C{True}: all the groups will be highlighted, the colors matching\n the corresponding color indices from the current palette\n (see the C{palette} keyword argument of L{Graph.__plot__}.\n\n - A dict mapping cluster indices or tuples of vertex indices to\n color names. The given clusters or vertex groups will be\n highlighted by the given colors.\n\n - A list of cluster indices. This is equivalent to passing a\n dict mapping numeric color indices from the current palette\n to cluster indices; therefore, the cluster referred to by element\n I{i} of the list will be highlighted by color I{i} from the\n palette.\n\n The value of the C{plotting.mark_groups} configuration key is also\n taken into account here; if that configuration key is C{True} and\n C{mark_groups} is not given explicitly, it will automatically be set\n to C{True}.\n\n In place of lists of vertex indices, you may also use L{VertexSeq}\n instances.\n\n In place of color names, you may also use color indices into the\n current palette. C{None} as a color name will mean that the\n corresponding group is ignored.\n\n - C{palette}: the palette used to resolve numeric color indices to RGBA\n values. By default, this is an instance of L{ClusterColoringPalette}.\n\n @see: L{Graph.__plot__()} for more supported keyword arguments.\n '
if (('edge_color' not in kwds) and ('color' not in self.graph.edge_attributes())):
colors = ['grey20', 'grey80']
kwds['edge_color'] = [colors[is_crossing] for is_crossing in self.crossing()]
if (palette is None):
palette = ClusterColoringPalette(len(self))
if ('mark_groups' not in kwds):
if Configuration.instance()['plotting.mark_groups']:
kwds['mark_groups'] = ((group, color) for (color, group) in enumerate(self))
else:
kwds['mark_groups'] = _handle_mark_groups_arg_for_clustering(kwds['mark_groups'], self)
if ('vertex_color' not in kwds):
kwds['vertex_color'] = self.membership
return self._graph.__plot__(context, bbox, palette, *args, **kwds) |
def _formatted_cluster_iterator(self):
'Iterates over the clusters and formats them into a string to be\n presented in the summary.'
if self._graph.is_named():
names = self._graph.vs['name']
for cluster in self:
(yield ', '.join((str(names[member]) for member in cluster)))
else:
for cluster in self:
(yield ', '.join((str(member) for member in cluster))) | 6,838,424,363,819,696,000 | Iterates over the clusters and formats them into a string to be
presented in the summary. | igraph/clustering.py | _formatted_cluster_iterator | tuandnvn/ecat_learning | python | def _formatted_cluster_iterator(self):
'Iterates over the clusters and formats them into a string to be\n presented in the summary.'
if self._graph.is_named():
names = self._graph.vs['name']
for cluster in self:
(yield ', '.join((str(names[member]) for member in cluster)))
else:
for cluster in self:
(yield ', '.join((str(member) for member in cluster))) |
def __init__(self, merges):
'Creates a hierarchical clustering.\n\n @param merges: the merge history either in matrix or tuple format'
self._merges = [tuple(pair) for pair in merges]
self._nmerges = len(self._merges)
if self._nmerges:
self._nitems = ((max(self._merges[(- 1)]) - self._nmerges) + 2)
else:
self._nitems = 0
self._names = None | 3,493,641,226,356,949,500 | Creates a hierarchical clustering.
@param merges: the merge history either in matrix or tuple format | igraph/clustering.py | __init__ | tuandnvn/ecat_learning | python | def __init__(self, merges):
'Creates a hierarchical clustering.\n\n @param merges: the merge history either in matrix or tuple format'
self._merges = [tuple(pair) for pair in merges]
self._nmerges = len(self._merges)
if self._nmerges:
self._nitems = ((max(self._merges[(- 1)]) - self._nmerges) + 2)
else:
self._nitems = 0
self._names = None |
@staticmethod
def _convert_matrix_to_tuple_repr(merges, n=None):
'Converts the matrix representation of a clustering to a tuple\n representation.\n\n @param merges: the matrix representation of the clustering\n @return: the tuple representation of the clustering\n '
if (n is None):
n = (len(merges) + 1)
tuple_repr = range(n)
idxs = range(n)
for (rowidx, row) in enumerate(merges):
(i, j) = row
try:
(idxi, idxj) = (idxs[i], idxs[j])
tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj])
tuple_repr[idxj] = None
except IndexError:
raise ValueError(('malformed matrix, subgroup referenced ' + ('before being created in step %d' % rowidx)))
idxs.append(j)
return [x for x in tuple_repr if (x is not None)] | 2,679,342,802,674,906,600 | Converts the matrix representation of a clustering to a tuple
representation.
@param merges: the matrix representation of the clustering
@return: the tuple representation of the clustering | igraph/clustering.py | _convert_matrix_to_tuple_repr | tuandnvn/ecat_learning | python | @staticmethod
def _convert_matrix_to_tuple_repr(merges, n=None):
'Converts the matrix representation of a clustering to a tuple\n representation.\n\n @param merges: the matrix representation of the clustering\n @return: the tuple representation of the clustering\n '
if (n is None):
n = (len(merges) + 1)
tuple_repr = range(n)
idxs = range(n)
for (rowidx, row) in enumerate(merges):
(i, j) = row
try:
(idxi, idxj) = (idxs[i], idxs[j])
tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj])
tuple_repr[idxj] = None
except IndexError:
raise ValueError(('malformed matrix, subgroup referenced ' + ('before being created in step %d' % rowidx)))
idxs.append(j)
return [x for x in tuple_repr if (x is not None)] |
def _traverse_inorder(self):
'Conducts an inorder traversal of the merge tree.\n\n The inorder traversal returns the nodes on the last level in the order\n they should be drawn so that no edges cross each other.\n\n @return: the result of the inorder traversal in a list.'
result = []
seen_nodes = set()
for node_index in reversed(xrange((self._nitems + self._nmerges))):
if (node_index in seen_nodes):
continue
stack = [node_index]
while stack:
last = stack.pop()
seen_nodes.add(last)
if (last < self._nitems):
result.append(last)
else:
stack.extend(self._merges[(last - self._nitems)])
return result | -8,123,607,309,487,676,000 | Conducts an inorder traversal of the merge tree.
The inorder traversal returns the nodes on the last level in the order
they should be drawn so that no edges cross each other.
@return: the result of the inorder traversal in a list. | igraph/clustering.py | _traverse_inorder | tuandnvn/ecat_learning | python | def _traverse_inorder(self):
'Conducts an inorder traversal of the merge tree.\n\n The inorder traversal returns the nodes on the last level in the order\n they should be drawn so that no edges cross each other.\n\n @return: the result of the inorder traversal in a list.'
result = []
seen_nodes = set()
for node_index in reversed(xrange((self._nitems + self._nmerges))):
if (node_index in seen_nodes):
continue
stack = [node_index]
while stack:
last = stack.pop()
seen_nodes.add(last)
if (last < self._nitems):
result.append(last)
else:
stack.extend(self._merges[(last - self._nitems)])
return result |
def format(self, format='newick'):
'Formats the dendrogram in a foreign format.\n\n Currently only the Newick format is supported.\n\n Example:\n\n >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)])\n >>> d.format()\n \'((2,3)4,(0,1)5)6;\'\n >>> d.names = list("ABCDEFG")\n >>> d.format()\n \'((C,D)E,(A,B)F)G;\'\n '
if (format == 'newick'):
n = (self._nitems + self._nmerges)
if (self._names is None):
nodes = range(n)
else:
nodes = list(self._names)
if (len(nodes) < n):
nodes.extend(('' for _ in xrange((n - len(nodes)))))
for (k, (i, j)) in enumerate(self._merges, self._nitems):
nodes[k] = ('(%s,%s)%s' % (nodes[i], nodes[j], nodes[k]))
nodes[i] = nodes[j] = None
return (nodes[(- 1)] + ';')
raise ValueError(('unsupported format: %r' % format)) | 285,569,044,303,103,330 | Formats the dendrogram in a foreign format.
Currently only the Newick format is supported.
Example:
>>> d = Dendrogram([(2, 3), (0, 1), (4, 5)])
>>> d.format()
'((2,3)4,(0,1)5)6;'
>>> d.names = list("ABCDEFG")
>>> d.format()
'((C,D)E,(A,B)F)G;' | igraph/clustering.py | format | tuandnvn/ecat_learning | python | def format(self, format='newick'):
'Formats the dendrogram in a foreign format.\n\n Currently only the Newick format is supported.\n\n Example:\n\n >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)])\n >>> d.format()\n \'((2,3)4,(0,1)5)6;\'\n >>> d.names = list("ABCDEFG")\n >>> d.format()\n \'((C,D)E,(A,B)F)G;\'\n '
if (format == 'newick'):
n = (self._nitems + self._nmerges)
if (self._names is None):
nodes = range(n)
else:
nodes = list(self._names)
if (len(nodes) < n):
nodes.extend(( for _ in xrange((n - len(nodes)))))
for (k, (i, j)) in enumerate(self._merges, self._nitems):
nodes[k] = ('(%s,%s)%s' % (nodes[i], nodes[j], nodes[k]))
nodes[i] = nodes[j] = None
return (nodes[(- 1)] + ';')
raise ValueError(('unsupported format: %r' % format)) |
def summary(self, verbosity=0, max_leaf_count=40):
'Returns the summary of the dendrogram.\n\n The summary includes the number of leafs and branches, and also an\n ASCII art representation of the dendrogram unless it is too large.\n\n @param verbosity: determines whether the ASCII representation of the\n dendrogram should be printed. Zero verbosity prints only the number\n of leafs and branches.\n @param max_leaf_count: the maximal number of leafs to print in the\n ASCII representation. If the dendrogram has more leafs than this\n limit, the ASCII representation will not be printed even if the\n verbosity is larger than or equal to 1.\n @return: the summary of the dendrogram as a string.\n '
out = StringIO()
((print >> out), ('Dendrogram, %d elements, %d merges' % (self._nitems, self._nmerges)))
if ((self._nitems == 0) or (verbosity < 1) or (self._nitems > max_leaf_count)):
return out.getvalue().strip()
(print >> out)
positions = ([None] * self._nitems)
inorder = self._traverse_inorder()
distance = 2
level_distance = 2
nextp = 0
for (idx, element) in enumerate(inorder):
positions[element] = nextp
inorder[idx] = str(element)
nextp += max(distance, (len(inorder[idx]) + 1))
width = (max(positions) + 1)
((print >> out), (' ' * (distance - 1)).join(inorder))
midx = 0
max_community_idx = self._nitems
while (midx < self._nmerges):
char_array = ([' '] * width)
for position in positions:
if (position >= 0):
char_array[position] = '|'
char_str = ''.join(char_array)
for _ in xrange((level_distance - 1)):
((print >> out), char_str)
cidx_incr = 0
while (midx < self._nmerges):
(id1, id2) = self._merges[midx]
if ((id1 >= max_community_idx) or (id2 >= max_community_idx)):
break
midx += 1
(pos1, pos2) = (positions[id1], positions[id2])
(positions[id1], positions[id2]) = ((- 1), (- 1))
if (pos1 > pos2):
(pos1, pos2) = (pos2, pos1)
positions.append(((pos1 + pos2) // 2))
dashes = ('-' * ((pos2 - pos1) - 1))
char_array[pos1:(pos2 + 1)] = ("`%s'" % dashes)
cidx_incr += 1
max_community_idx += cidx_incr
((print >> out), ''.join(char_array))
return out.getvalue().strip() | 2,575,065,336,735,225,000 | Returns the summary of the dendrogram.
The summary includes the number of leafs and branches, and also an
ASCII art representation of the dendrogram unless it is too large.
@param verbosity: determines whether the ASCII representation of the
dendrogram should be printed. Zero verbosity prints only the number
of leafs and branches.
@param max_leaf_count: the maximal number of leafs to print in the
ASCII representation. If the dendrogram has more leafs than this
limit, the ASCII representation will not be printed even if the
verbosity is larger than or equal to 1.
@return: the summary of the dendrogram as a string. | igraph/clustering.py | summary | tuandnvn/ecat_learning | python | def summary(self, verbosity=0, max_leaf_count=40):
'Returns the summary of the dendrogram.\n\n The summary includes the number of leafs and branches, and also an\n ASCII art representation of the dendrogram unless it is too large.\n\n @param verbosity: determines whether the ASCII representation of the\n dendrogram should be printed. Zero verbosity prints only the number\n of leafs and branches.\n @param max_leaf_count: the maximal number of leafs to print in the\n ASCII representation. If the dendrogram has more leafs than this\n limit, the ASCII representation will not be printed even if the\n verbosity is larger than or equal to 1.\n @return: the summary of the dendrogram as a string.\n '
out = StringIO()
((print >> out), ('Dendrogram, %d elements, %d merges' % (self._nitems, self._nmerges)))
if ((self._nitems == 0) or (verbosity < 1) or (self._nitems > max_leaf_count)):
return out.getvalue().strip()
(print >> out)
positions = ([None] * self._nitems)
inorder = self._traverse_inorder()
distance = 2
level_distance = 2
nextp = 0
for (idx, element) in enumerate(inorder):
positions[element] = nextp
inorder[idx] = str(element)
nextp += max(distance, (len(inorder[idx]) + 1))
width = (max(positions) + 1)
((print >> out), (' ' * (distance - 1)).join(inorder))
midx = 0
max_community_idx = self._nitems
while (midx < self._nmerges):
char_array = ([' '] * width)
for position in positions:
if (position >= 0):
char_array[position] = '|'
char_str = .join(char_array)
for _ in xrange((level_distance - 1)):
((print >> out), char_str)
cidx_incr = 0
while (midx < self._nmerges):
(id1, id2) = self._merges[midx]
if ((id1 >= max_community_idx) or (id2 >= max_community_idx)):
break
midx += 1
(pos1, pos2) = (positions[id1], positions[id2])
(positions[id1], positions[id2]) = ((- 1), (- 1))
if (pos1 > pos2):
(pos1, pos2) = (pos2, pos1)
positions.append(((pos1 + pos2) // 2))
dashes = ('-' * ((pos2 - pos1) - 1))
char_array[pos1:(pos2 + 1)] = ("`%s'" % dashes)
cidx_incr += 1
max_community_idx += cidx_incr
((print >> out), .join(char_array))
return out.getvalue().strip() |
def _item_box_size(self, context, horiz, idx):
'Calculates the amount of space needed for drawing an\n individual vertex at the bottom of the dendrogram.'
if ((self._names is None) or (self._names[idx] is None)):
(x_bearing, _, _, height, x_advance, _) = context.text_extents('')
else:
(x_bearing, _, _, height, x_advance, _) = context.text_extents(str(self._names[idx]))
if horiz:
return ((x_advance - x_bearing), height)
return (height, (x_advance - x_bearing)) | -6,424,601,739,130,504,000 | Calculates the amount of space needed for drawing an
individual vertex at the bottom of the dendrogram. | igraph/clustering.py | _item_box_size | tuandnvn/ecat_learning | python | def _item_box_size(self, context, horiz, idx):
'Calculates the amount of space needed for drawing an\n individual vertex at the bottom of the dendrogram.'
if ((self._names is None) or (self._names[idx] is None)):
(x_bearing, _, _, height, x_advance, _) = context.text_extents()
else:
(x_bearing, _, _, height, x_advance, _) = context.text_extents(str(self._names[idx]))
if horiz:
return ((x_advance - x_bearing), height)
return (height, (x_advance - x_bearing)) |
def _plot_item(self, context, horiz, idx, x, y):
'Plots a dendrogram item to the given Cairo context\n\n @param context: the Cairo context we are plotting on\n @param horiz: whether the dendrogram is horizontally oriented\n @param idx: the index of the item\n @param x: the X position of the item\n @param y: the Y position of the item\n '
if ((self._names is None) or (self._names[idx] is None)):
return
height = self._item_box_size(context, True, idx)[1]
if horiz:
context.move_to(x, (y + height))
context.show_text(str(self._names[idx]))
else:
context.save()
context.translate(x, y)
context.rotate(((- pi) / 2.0))
context.move_to(0, height)
context.show_text(str(self._names[idx]))
context.restore() | -9,049,214,614,630,723,000 | Plots a dendrogram item to the given Cairo context
@param context: the Cairo context we are plotting on
@param horiz: whether the dendrogram is horizontally oriented
@param idx: the index of the item
@param x: the X position of the item
@param y: the Y position of the item | igraph/clustering.py | _plot_item | tuandnvn/ecat_learning | python | def _plot_item(self, context, horiz, idx, x, y):
'Plots a dendrogram item to the given Cairo context\n\n @param context: the Cairo context we are plotting on\n @param horiz: whether the dendrogram is horizontally oriented\n @param idx: the index of the item\n @param x: the X position of the item\n @param y: the Y position of the item\n '
if ((self._names is None) or (self._names[idx] is None)):
return
height = self._item_box_size(context, True, idx)[1]
if horiz:
context.move_to(x, (y + height))
context.show_text(str(self._names[idx]))
else:
context.save()
context.translate(x, y)
context.rotate(((- pi) / 2.0))
context.move_to(0, height)
context.show_text(str(self._names[idx]))
context.restore() |
def __plot__(self, context, bbox, palette, *args, **kwds):
'Draws the dendrogram on the given Cairo context\n\n Supported keyword arguments are:\n\n - C{orientation}: the orientation of the dendrogram. Must be one of\n the following values: C{left-right}, C{bottom-top}, C{right-left}\n or C{top-bottom}. Individual elements are always placed at the\n former edge and merges are performed towards the latter edge.\n Possible aliases: C{horizontal} = C{left-right},\n C{vertical} = C{bottom-top}, C{lr} = C{left-right},\n C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}.\n The default is C{left-right}.\n\n '
from igraph.layout import Layout
if (self._names is None):
self._names = [str(x) for x in xrange(self._nitems)]
orientation = str_to_orientation(kwds.get('orientation', 'lr'), reversed_vertical=True)
horiz = (orientation in ('lr', 'rl'))
font_height = context.font_extents()[2]
item_boxes = [self._item_box_size(context, horiz, idx) for idx in xrange(self._nitems)]
ygap = (2 if (orientation == 'bt') else 0)
xgap = (2 if (orientation == 'lr') else 0)
item_boxes = [((x + xgap), (y + ygap)) for (x, y) in item_boxes]
layout = Layout(([(0, 0)] * self._nitems), dim=2)
inorder = self._traverse_inorder()
if (not horiz):
(x, y) = (0, 0)
for (idx, element) in enumerate(inorder):
layout[element] = (x, 0)
x += max(font_height, item_boxes[element][0])
for (id1, id2) in self._merges:
y += 1
layout.append((((layout[id1][0] + layout[id2][0]) / 2.0), y))
if (orientation == 'bt'):
layout.mirror(1)
else:
(x, y) = (0, 0)
for (idx, element) in enumerate(inorder):
layout[element] = (0, y)
y += max(font_height, item_boxes[element][1])
for (id1, id2) in self._merges:
x += 1
layout.append((x, ((layout[id1][1] + layout[id2][1]) / 2.0)))
if (orientation == 'rl'):
layout.mirror(0)
maxw = max((e[0] for e in item_boxes))
maxh = max((e[1] for e in item_boxes))
(width, height) = (float(bbox.width), float(bbox.height))
(delta_x, delta_y) = (0, 0)
if horiz:
width -= maxw
if (orientation == 'lr'):
delta_x = maxw
else:
height -= maxh
if (orientation == 'tb'):
delta_y = maxh
if horiz:
delta_y += (font_height / 2.0)
else:
delta_x += (font_height / 2.0)
layout.fit_into((delta_x, delta_y, (width - delta_x), (height - delta_y)), keep_aspect_ratio=False)
context.save()
context.translate(bbox.left, bbox.top)
context.set_source_rgb(0.0, 0.0, 0.0)
context.set_line_width(1)
if horiz:
sgn = (0 if (orientation == 'rl') else (- 1))
for idx in xrange(self._nitems):
x = (layout[idx][0] + (sgn * item_boxes[idx][0]))
y = (layout[idx][1] - (item_boxes[idx][1] / 2.0))
self._plot_item(context, horiz, idx, x, y)
else:
sgn = (1 if (orientation == 'bt') else 0)
for idx in xrange(self._nitems):
x = (layout[idx][0] - (item_boxes[idx][0] / 2.0))
y = (layout[idx][1] + (sgn * item_boxes[idx][1]))
self._plot_item(context, horiz, idx, x, y)
if (not horiz):
for (idx, (id1, id2)) in enumerate(self._merges):
(x0, y0) = layout[id1]
(x1, y1) = layout[id2]
(x2, y2) = layout[(idx + self._nitems)]
context.move_to(x0, y0)
context.line_to(x0, y2)
context.line_to(x1, y2)
context.line_to(x1, y1)
context.stroke()
else:
for (idx, (id1, id2)) in enumerate(self._merges):
(x0, y0) = layout[id1]
(x1, y1) = layout[id2]
(x2, y2) = layout[(idx + self._nitems)]
context.move_to(x0, y0)
context.line_to(x2, y0)
context.line_to(x2, y1)
context.line_to(x1, y1)
context.stroke()
context.restore() | -2,328,309,552,966,241,300 | Draws the dendrogram on the given Cairo context
Supported keyword arguments are:
- C{orientation}: the orientation of the dendrogram. Must be one of
the following values: C{left-right}, C{bottom-top}, C{right-left}
or C{top-bottom}. Individual elements are always placed at the
former edge and merges are performed towards the latter edge.
Possible aliases: C{horizontal} = C{left-right},
C{vertical} = C{bottom-top}, C{lr} = C{left-right},
C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}.
The default is C{left-right}. | igraph/clustering.py | __plot__ | tuandnvn/ecat_learning | python | def __plot__(self, context, bbox, palette, *args, **kwds):
'Draws the dendrogram on the given Cairo context\n\n Supported keyword arguments are:\n\n - C{orientation}: the orientation of the dendrogram. Must be one of\n the following values: C{left-right}, C{bottom-top}, C{right-left}\n or C{top-bottom}. Individual elements are always placed at the\n former edge and merges are performed towards the latter edge.\n Possible aliases: C{horizontal} = C{left-right},\n C{vertical} = C{bottom-top}, C{lr} = C{left-right},\n C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}.\n The default is C{left-right}.\n\n '
from igraph.layout import Layout
if (self._names is None):
self._names = [str(x) for x in xrange(self._nitems)]
orientation = str_to_orientation(kwds.get('orientation', 'lr'), reversed_vertical=True)
horiz = (orientation in ('lr', 'rl'))
font_height = context.font_extents()[2]
item_boxes = [self._item_box_size(context, horiz, idx) for idx in xrange(self._nitems)]
ygap = (2 if (orientation == 'bt') else 0)
xgap = (2 if (orientation == 'lr') else 0)
item_boxes = [((x + xgap), (y + ygap)) for (x, y) in item_boxes]
layout = Layout(([(0, 0)] * self._nitems), dim=2)
inorder = self._traverse_inorder()
if (not horiz):
(x, y) = (0, 0)
for (idx, element) in enumerate(inorder):
layout[element] = (x, 0)
x += max(font_height, item_boxes[element][0])
for (id1, id2) in self._merges:
y += 1
layout.append((((layout[id1][0] + layout[id2][0]) / 2.0), y))
if (orientation == 'bt'):
layout.mirror(1)
else:
(x, y) = (0, 0)
for (idx, element) in enumerate(inorder):
layout[element] = (0, y)
y += max(font_height, item_boxes[element][1])
for (id1, id2) in self._merges:
x += 1
layout.append((x, ((layout[id1][1] + layout[id2][1]) / 2.0)))
if (orientation == 'rl'):
layout.mirror(0)
maxw = max((e[0] for e in item_boxes))
maxh = max((e[1] for e in item_boxes))
(width, height) = (float(bbox.width), float(bbox.height))
(delta_x, delta_y) = (0, 0)
if horiz:
width -= maxw
if (orientation == 'lr'):
delta_x = maxw
else:
height -= maxh
if (orientation == 'tb'):
delta_y = maxh
if horiz:
delta_y += (font_height / 2.0)
else:
delta_x += (font_height / 2.0)
layout.fit_into((delta_x, delta_y, (width - delta_x), (height - delta_y)), keep_aspect_ratio=False)
context.save()
context.translate(bbox.left, bbox.top)
context.set_source_rgb(0.0, 0.0, 0.0)
context.set_line_width(1)
if horiz:
sgn = (0 if (orientation == 'rl') else (- 1))
for idx in xrange(self._nitems):
x = (layout[idx][0] + (sgn * item_boxes[idx][0]))
y = (layout[idx][1] - (item_boxes[idx][1] / 2.0))
self._plot_item(context, horiz, idx, x, y)
else:
sgn = (1 if (orientation == 'bt') else 0)
for idx in xrange(self._nitems):
x = (layout[idx][0] - (item_boxes[idx][0] / 2.0))
y = (layout[idx][1] + (sgn * item_boxes[idx][1]))
self._plot_item(context, horiz, idx, x, y)
if (not horiz):
for (idx, (id1, id2)) in enumerate(self._merges):
(x0, y0) = layout[id1]
(x1, y1) = layout[id2]
(x2, y2) = layout[(idx + self._nitems)]
context.move_to(x0, y0)
context.line_to(x0, y2)
context.line_to(x1, y2)
context.line_to(x1, y1)
context.stroke()
else:
for (idx, (id1, id2)) in enumerate(self._merges):
(x0, y0) = layout[id1]
(x1, y1) = layout[id2]
(x2, y2) = layout[(idx + self._nitems)]
context.move_to(x0, y0)
context.line_to(x2, y0)
context.line_to(x2, y1)
context.line_to(x1, y1)
context.stroke()
context.restore() |
@property
def merges(self):
'Returns the performed merges in matrix format'
return deepcopy(self._merges) | -5,628,481,384,864,011,000 | Returns the performed merges in matrix format | igraph/clustering.py | merges | tuandnvn/ecat_learning | python | @property
def merges(self):
return deepcopy(self._merges) |
@property
def names(self):
'Returns the names of the nodes in the dendrogram'
return self._names | -9,158,098,303,931,814,000 | Returns the names of the nodes in the dendrogram | igraph/clustering.py | names | tuandnvn/ecat_learning | python | @property
def names(self):
return self._names |
@names.setter
def names(self, items):
'Sets the names of the nodes in the dendrogram'
if (items is None):
self._names = None
return
items = list(items)
if (len(items) < self._nitems):
raise ValueError(('must specify at least %d names' % self._nitems))
n = (self._nitems + self._nmerges)
self._names = items[:n]
if (len(self._names) < n):
self._names.extend(('' for _ in xrange((n - len(self._names))))) | 7,007,590,815,281,501,000 | Sets the names of the nodes in the dendrogram | igraph/clustering.py | names | tuandnvn/ecat_learning | python | @names.setter
def names(self, items):
if (items is None):
self._names = None
return
items = list(items)
if (len(items) < self._nitems):
raise ValueError(('must specify at least %d names' % self._nitems))
n = (self._nitems + self._nmerges)
self._names = items[:n]
if (len(self._names) < n):
self._names.extend(( for _ in xrange((n - len(self._names))))) |
def __init__(self, graph, merges, optimal_count=None, params=None, modularity_params=None):
'Creates a dendrogram object for a given graph.\n\n @param graph: the graph that will be associated to the clustering\n @param merges: the merges performed given in matrix form.\n @param optimal_count: the optimal number of clusters where the\n dendrogram should be cut. This is a hint usually provided by the\n clustering algorithm that produces the dendrogram. C{None} means\n that such a hint is not available; the optimal count will then be\n selected based on the modularity in such a case.\n @param params: additional parameters to be stored in this object.\n @param modularity_params: arguments that should be passed to\n L{Graph.modularity} when the modularity is (re)calculated. If the\n original graph was weighted, you should pass a dictionary\n containing a C{weight} key with the appropriate value here.\n '
Dendrogram.__init__(self, merges)
self._graph = graph
self._optimal_count = optimal_count
if (modularity_params is None):
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params) | -3,161,577,109,791,939,600 | Creates a dendrogram object for a given graph.
@param graph: the graph that will be associated to the clustering
@param merges: the merges performed given in matrix form.
@param optimal_count: the optimal number of clusters where the
dendrogram should be cut. This is a hint usually provided by the
clustering algorithm that produces the dendrogram. C{None} means
that such a hint is not available; the optimal count will then be
selected based on the modularity in such a case.
@param params: additional parameters to be stored in this object.
@param modularity_params: arguments that should be passed to
L{Graph.modularity} when the modularity is (re)calculated. If the
original graph was weighted, you should pass a dictionary
containing a C{weight} key with the appropriate value here. | igraph/clustering.py | __init__ | tuandnvn/ecat_learning | python | def __init__(self, graph, merges, optimal_count=None, params=None, modularity_params=None):
'Creates a dendrogram object for a given graph.\n\n @param graph: the graph that will be associated to the clustering\n @param merges: the merges performed given in matrix form.\n @param optimal_count: the optimal number of clusters where the\n dendrogram should be cut. This is a hint usually provided by the\n clustering algorithm that produces the dendrogram. C{None} means\n that such a hint is not available; the optimal count will then be\n selected based on the modularity in such a case.\n @param params: additional parameters to be stored in this object.\n @param modularity_params: arguments that should be passed to\n L{Graph.modularity} when the modularity is (re)calculated. If the\n original graph was weighted, you should pass a dictionary\n containing a C{weight} key with the appropriate value here.\n '
Dendrogram.__init__(self, merges)
self._graph = graph
self._optimal_count = optimal_count
if (modularity_params is None):
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params) |
def as_clustering(self, n=None):
'Cuts the dendrogram at the given level and returns a corresponding\n L{VertexClustering} object.\n\n @param n: the desired number of clusters. Merges are replayed from the\n beginning until the membership vector has exactly M{n} distinct elements\n or until there are no more recorded merges, whichever happens first.\n If C{None}, the optimal count hint given by the clustering algorithm\n will be used If the optimal count was not given either, it will be\n calculated by selecting the level where the modularity is maximal.\n @return: a new L{VertexClustering} object.\n '
if (n is None):
n = self.optimal_count
num_elts = self._graph.vcount()
idgen = UniqueIdGenerator()
membership = community_to_membership(self._merges, num_elts, (num_elts - n))
membership = [idgen[m] for m in membership]
return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) | -4,594,129,517,684,349,400 | Cuts the dendrogram at the given level and returns a corresponding
L{VertexClustering} object.
@param n: the desired number of clusters. Merges are replayed from the
beginning until the membership vector has exactly M{n} distinct elements
or until there are no more recorded merges, whichever happens first.
If C{None}, the optimal count hint given by the clustering algorithm
will be used If the optimal count was not given either, it will be
calculated by selecting the level where the modularity is maximal.
@return: a new L{VertexClustering} object. | igraph/clustering.py | as_clustering | tuandnvn/ecat_learning | python | def as_clustering(self, n=None):
'Cuts the dendrogram at the given level and returns a corresponding\n L{VertexClustering} object.\n\n @param n: the desired number of clusters. Merges are replayed from the\n beginning until the membership vector has exactly M{n} distinct elements\n or until there are no more recorded merges, whichever happens first.\n If C{None}, the optimal count hint given by the clustering algorithm\n will be used If the optimal count was not given either, it will be\n calculated by selecting the level where the modularity is maximal.\n @return: a new L{VertexClustering} object.\n '
if (n is None):
n = self.optimal_count
num_elts = self._graph.vcount()
idgen = UniqueIdGenerator()
membership = community_to_membership(self._merges, num_elts, (num_elts - n))
membership = [idgen[m] for m in membership]
return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) |
@property
def optimal_count(self):
'Returns the optimal number of clusters for this dendrogram.\n\n If an optimal count hint was given at construction time, this\n property simply returns the hint. If such a count was not given,\n this method calculates the optimal number of clusters by maximizing\n the modularity along all the possible cuts in the dendrogram.\n '
if (self._optimal_count is not None):
return self._optimal_count
n = self._graph.vcount()
(max_q, optimal_count) = (0, 1)
for step in xrange(min((n - 1), len(self._merges))):
membs = community_to_membership(self._merges, n, step)
q = self._graph.modularity(membs, **self._modularity_params)
if (q > max_q):
optimal_count = (n - step)
max_q = q
self._optimal_count = optimal_count
return optimal_count | 8,939,029,117,350,291,000 | Returns the optimal number of clusters for this dendrogram.
If an optimal count hint was given at construction time, this
property simply returns the hint. If such a count was not given,
this method calculates the optimal number of clusters by maximizing
the modularity along all the possible cuts in the dendrogram. | igraph/clustering.py | optimal_count | tuandnvn/ecat_learning | python | @property
def optimal_count(self):
'Returns the optimal number of clusters for this dendrogram.\n\n If an optimal count hint was given at construction time, this\n property simply returns the hint. If such a count was not given,\n this method calculates the optimal number of clusters by maximizing\n the modularity along all the possible cuts in the dendrogram.\n '
if (self._optimal_count is not None):
return self._optimal_count
n = self._graph.vcount()
(max_q, optimal_count) = (0, 1)
for step in xrange(min((n - 1), len(self._merges))):
membs = community_to_membership(self._merges, n, step)
q = self._graph.modularity(membs, **self._modularity_params)
if (q > max_q):
optimal_count = (n - step)
max_q = q
self._optimal_count = optimal_count
return optimal_count |
def __plot__(self, context, bbox, palette, *args, **kwds):
'Draws the vertex dendrogram on the given Cairo context\n\n See L{Dendrogram.__plot__} for the list of supported keyword\n arguments.'
from igraph.drawing.metamagic import AttributeCollectorBase
class VisualVertexBuilder(AttributeCollectorBase):
_kwds_prefix = 'vertex_'
label = None
builder = VisualVertexBuilder(self._graph.vs, kwds)
self._names = [vertex.label for vertex in builder]
self._names = [(name if (name is not None) else str(idx)) for (idx, name) in enumerate(self._names)]
result = Dendrogram.__plot__(self, context, bbox, palette, *args, **kwds)
del self._names
return result | 4,141,242,726,377,235,500 | Draws the vertex dendrogram on the given Cairo context
See L{Dendrogram.__plot__} for the list of supported keyword
arguments. | igraph/clustering.py | __plot__ | tuandnvn/ecat_learning | python | def __plot__(self, context, bbox, palette, *args, **kwds):
'Draws the vertex dendrogram on the given Cairo context\n\n See L{Dendrogram.__plot__} for the list of supported keyword\n arguments.'
from igraph.drawing.metamagic import AttributeCollectorBase
class VisualVertexBuilder(AttributeCollectorBase):
_kwds_prefix = 'vertex_'
label = None
builder = VisualVertexBuilder(self._graph.vs, kwds)
self._names = [vertex.label for vertex in builder]
self._names = [(name if (name is not None) else str(idx)) for (idx, name) in enumerate(self._names)]
result = Dendrogram.__plot__(self, context, bbox, palette, *args, **kwds)
del self._names
return result |
def __init__(self, clusters, n=0):
'Constructs a cover with the given clusters.\n\n @param clusters: the clusters in this cover, as a list or iterable.\n Each cluster is specified by a list or tuple that contains the\n IDs of the items in this cluster. IDs start from zero.\n\n @param n: the total number of elements in the set that is covered\n by this cover. If it is less than the number of unique elements\n found in all the clusters, we will simply use the number of unique\n elements, so it is safe to leave this at zero. You only have to\n specify this parameter if there are some elements that are covered\n by none of the clusters.\n '
self._clusters = [list(cluster) for cluster in clusters]
try:
self._n = max(((max(cluster) + 1) for cluster in self._clusters if cluster))
except ValueError:
self._n = 0
self._n = max(n, self._n) | -5,700,276,278,546,979,000 | Constructs a cover with the given clusters.
@param clusters: the clusters in this cover, as a list or iterable.
Each cluster is specified by a list or tuple that contains the
IDs of the items in this cluster. IDs start from zero.
@param n: the total number of elements in the set that is covered
by this cover. If it is less than the number of unique elements
found in all the clusters, we will simply use the number of unique
elements, so it is safe to leave this at zero. You only have to
specify this parameter if there are some elements that are covered
by none of the clusters. | igraph/clustering.py | __init__ | tuandnvn/ecat_learning | python | def __init__(self, clusters, n=0):
'Constructs a cover with the given clusters.\n\n @param clusters: the clusters in this cover, as a list or iterable.\n Each cluster is specified by a list or tuple that contains the\n IDs of the items in this cluster. IDs start from zero.\n\n @param n: the total number of elements in the set that is covered\n by this cover. If it is less than the number of unique elements\n found in all the clusters, we will simply use the number of unique\n elements, so it is safe to leave this at zero. You only have to\n specify this parameter if there are some elements that are covered\n by none of the clusters.\n '
self._clusters = [list(cluster) for cluster in clusters]
try:
self._n = max(((max(cluster) + 1) for cluster in self._clusters if cluster))
except ValueError:
self._n = 0
self._n = max(n, self._n) |
def __getitem__(self, index):
'Returns the cluster with the given index.'
return self._clusters[index] | -9,141,471,715,622,353,000 | Returns the cluster with the given index. | igraph/clustering.py | __getitem__ | tuandnvn/ecat_learning | python | def __getitem__(self, index):
return self._clusters[index] |
def __iter__(self):
'Iterates over the clusters in this cover.'
return iter(self._clusters) | -8,856,924,646,904,825,000 | Iterates over the clusters in this cover. | igraph/clustering.py | __iter__ | tuandnvn/ecat_learning | python | def __iter__(self):
return iter(self._clusters) |
def __len__(self):
'Returns the number of clusters in this cover.'
return len(self._clusters) | 46,158,193,321,388,264 | Returns the number of clusters in this cover. | igraph/clustering.py | __len__ | tuandnvn/ecat_learning | python | def __len__(self):
return len(self._clusters) |
def __str__(self):
'Returns a string representation of the cover.'
return self.summary(verbosity=1, width=78) | 5,406,004,662,587,039,000 | Returns a string representation of the cover. | igraph/clustering.py | __str__ | tuandnvn/ecat_learning | python | def __str__(self):
return self.summary(verbosity=1, width=78) |
@property
def membership(self):
'Returns the membership vector of this cover.\n\n The membership vector of a cover covering I{n} elements is a list of\n length I{n}, where element I{i} contains the cluster indices of the\n I{i}th item.\n '
result = [[] for _ in xrange(self._n)]
for (idx, cluster) in enumerate(self):
for item in cluster:
result[item].append(idx)
return result | -7,302,082,719,879,950,000 | Returns the membership vector of this cover.
The membership vector of a cover covering I{n} elements is a list of
length I{n}, where element I{i} contains the cluster indices of the
I{i}th item. | igraph/clustering.py | membership | tuandnvn/ecat_learning | python | @property
def membership(self):
'Returns the membership vector of this cover.\n\n The membership vector of a cover covering I{n} elements is a list of\n length I{n}, where element I{i} contains the cluster indices of the\n I{i}th item.\n '
result = [[] for _ in xrange(self._n)]
for (idx, cluster) in enumerate(self):
for item in cluster:
result[item].append(idx)
return result |
Subsets and Splits