body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@property def file(self): 'Gets the file of this URL. # noqa: E501\n\n\n :return: The file of this URL. # noqa: E501\n :rtype: str\n ' return self._file
-3,721,828,442,324,312,600
Gets the file of this URL. # noqa: E501 :return: The file of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
file
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def file(self): 'Gets the file of this URL. # noqa: E501\n\n\n :return: The file of this URL. # noqa: E501\n :rtype: str\n ' return self._file
@file.setter def file(self, file): 'Sets the file of this URL.\n\n\n :param file: The file of this URL. # noqa: E501\n :type: str\n ' self._file = file
3,296,577,616,889,792,500
Sets the file of this URL. :param file: The file of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
file
CSTC-WTCB-BBRI/python_tb_rest_client
python
@file.setter def file(self, file): 'Sets the file of this URL.\n\n\n :param file: The file of this URL. # noqa: E501\n :type: str\n ' self._file = file
@property def host(self): 'Gets the host of this URL. # noqa: E501\n\n\n :return: The host of this URL. # noqa: E501\n :rtype: str\n ' return self._host
-2,618,415,369,124,634,000
Gets the host of this URL. # noqa: E501 :return: The host of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
host
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def host(self): 'Gets the host of this URL. # noqa: E501\n\n\n :return: The host of this URL. # noqa: E501\n :rtype: str\n ' return self._host
@host.setter def host(self, host): 'Sets the host of this URL.\n\n\n :param host: The host of this URL. # noqa: E501\n :type: str\n ' self._host = host
-7,627,030,577,744,579,000
Sets the host of this URL. :param host: The host of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
host
CSTC-WTCB-BBRI/python_tb_rest_client
python
@host.setter def host(self, host): 'Sets the host of this URL.\n\n\n :param host: The host of this URL. # noqa: E501\n :type: str\n ' self._host = host
@property def path(self): 'Gets the path of this URL. # noqa: E501\n\n\n :return: The path of this URL. # noqa: E501\n :rtype: str\n ' return self._path
3,544,141,312,571,741,700
Gets the path of this URL. # noqa: E501 :return: The path of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
path
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def path(self): 'Gets the path of this URL. # noqa: E501\n\n\n :return: The path of this URL. # noqa: E501\n :rtype: str\n ' return self._path
@path.setter def path(self, path): 'Sets the path of this URL.\n\n\n :param path: The path of this URL. # noqa: E501\n :type: str\n ' self._path = path
1,228,084,036,121,024,300
Sets the path of this URL. :param path: The path of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
path
CSTC-WTCB-BBRI/python_tb_rest_client
python
@path.setter def path(self, path): 'Sets the path of this URL.\n\n\n :param path: The path of this URL. # noqa: E501\n :type: str\n ' self._path = path
@property def port(self): 'Gets the port of this URL. # noqa: E501\n\n\n :return: The port of this URL. # noqa: E501\n :rtype: int\n ' return self._port
-6,853,370,054,219,172,000
Gets the port of this URL. # noqa: E501 :return: The port of this URL. # noqa: E501 :rtype: int
tb_rest_client/models/models_pe/url.py
port
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def port(self): 'Gets the port of this URL. # noqa: E501\n\n\n :return: The port of this URL. # noqa: E501\n :rtype: int\n ' return self._port
@port.setter def port(self, port): 'Sets the port of this URL.\n\n\n :param port: The port of this URL. # noqa: E501\n :type: int\n ' self._port = port
4,037,869,362,115,543,600
Sets the port of this URL. :param port: The port of this URL. # noqa: E501 :type: int
tb_rest_client/models/models_pe/url.py
port
CSTC-WTCB-BBRI/python_tb_rest_client
python
@port.setter def port(self, port): 'Sets the port of this URL.\n\n\n :param port: The port of this URL. # noqa: E501\n :type: int\n ' self._port = port
@property def protocol(self): 'Gets the protocol of this URL. # noqa: E501\n\n\n :return: The protocol of this URL. # noqa: E501\n :rtype: str\n ' return self._protocol
-6,072,068,150,181,221,000
Gets the protocol of this URL. # noqa: E501 :return: The protocol of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
protocol
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def protocol(self): 'Gets the protocol of this URL. # noqa: E501\n\n\n :return: The protocol of this URL. # noqa: E501\n :rtype: str\n ' return self._protocol
@protocol.setter def protocol(self, protocol): 'Sets the protocol of this URL.\n\n\n :param protocol: The protocol of this URL. # noqa: E501\n :type: str\n ' self._protocol = protocol
6,866,032,306,924,647,000
Sets the protocol of this URL. :param protocol: The protocol of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
protocol
CSTC-WTCB-BBRI/python_tb_rest_client
python
@protocol.setter def protocol(self, protocol): 'Sets the protocol of this URL.\n\n\n :param protocol: The protocol of this URL. # noqa: E501\n :type: str\n ' self._protocol = protocol
@property def query(self): 'Gets the query of this URL. # noqa: E501\n\n\n :return: The query of this URL. # noqa: E501\n :rtype: str\n ' return self._query
2,452,301,778,565,377,500
Gets the query of this URL. # noqa: E501 :return: The query of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
query
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def query(self): 'Gets the query of this URL. # noqa: E501\n\n\n :return: The query of this URL. # noqa: E501\n :rtype: str\n ' return self._query
@query.setter def query(self, query): 'Sets the query of this URL.\n\n\n :param query: The query of this URL. # noqa: E501\n :type: str\n ' self._query = query
-7,903,680,722,677,127,000
Sets the query of this URL. :param query: The query of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
query
CSTC-WTCB-BBRI/python_tb_rest_client
python
@query.setter def query(self, query): 'Sets the query of this URL.\n\n\n :param query: The query of this URL. # noqa: E501\n :type: str\n ' self._query = query
@property def ref(self): 'Gets the ref of this URL. # noqa: E501\n\n\n :return: The ref of this URL. # noqa: E501\n :rtype: str\n ' return self._ref
-5,318,472,932,718,013,000
Gets the ref of this URL. # noqa: E501 :return: The ref of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
ref
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def ref(self): 'Gets the ref of this URL. # noqa: E501\n\n\n :return: The ref of this URL. # noqa: E501\n :rtype: str\n ' return self._ref
@ref.setter def ref(self, ref): 'Sets the ref of this URL.\n\n\n :param ref: The ref of this URL. # noqa: E501\n :type: str\n ' self._ref = ref
-5,554,801,580,472,594,000
Sets the ref of this URL. :param ref: The ref of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
ref
CSTC-WTCB-BBRI/python_tb_rest_client
python
@ref.setter def ref(self, ref): 'Sets the ref of this URL.\n\n\n :param ref: The ref of this URL. # noqa: E501\n :type: str\n ' self._ref = ref
@property def user_info(self): 'Gets the user_info of this URL. # noqa: E501\n\n\n :return: The user_info of this URL. # noqa: E501\n :rtype: str\n ' return self._user_info
3,626,666,944,548,141,000
Gets the user_info of this URL. # noqa: E501 :return: The user_info of this URL. # noqa: E501 :rtype: str
tb_rest_client/models/models_pe/url.py
user_info
CSTC-WTCB-BBRI/python_tb_rest_client
python
@property def user_info(self): 'Gets the user_info of this URL. # noqa: E501\n\n\n :return: The user_info of this URL. # noqa: E501\n :rtype: str\n ' return self._user_info
@user_info.setter def user_info(self, user_info): 'Sets the user_info of this URL.\n\n\n :param user_info: The user_info of this URL. # noqa: E501\n :type: str\n ' self._user_info = user_info
-897,848,595,035,173,900
Sets the user_info of this URL. :param user_info: The user_info of this URL. # noqa: E501 :type: str
tb_rest_client/models/models_pe/url.py
user_info
CSTC-WTCB-BBRI/python_tb_rest_client
python
@user_info.setter def user_info(self, user_info): 'Sets the user_info of this URL.\n\n\n :param user_info: The user_info of this URL. # noqa: E501\n :type: str\n ' self._user_info = user_info
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(URL, dict): for (key, value) in self.items(): result[key] = value return result
3,466,395,792,294,842,000
Returns the model properties as a dict
tb_rest_client/models/models_pe/url.py
to_dict
CSTC-WTCB-BBRI/python_tb_rest_client
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(URL, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
tb_rest_client/models/models_pe/url.py
to_str
CSTC-WTCB-BBRI/python_tb_rest_client
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
tb_rest_client/models/models_pe/url.py
__repr__
CSTC-WTCB-BBRI/python_tb_rest_client
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, URL)): return False return (self.__dict__ == other.__dict__)
1,915,447,212,573,964,000
Returns true if both objects are equal
tb_rest_client/models/models_pe/url.py
__eq__
CSTC-WTCB-BBRI/python_tb_rest_client
python
def __eq__(self, other): if (not isinstance(other, URL)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
tb_rest_client/models/models_pe/url.py
__ne__
CSTC-WTCB-BBRI/python_tb_rest_client
python
def __ne__(self, other): return (not (self == other))
def parse_arguments(): '\n Parse input arguments. Passing the API key is defined as mandatory.\n ' parser = argparse.ArgumentParser(description='Incrementally exports JSON orders data into CSV format and optionally into a SQLite DB.') parser.add_argument('-k', '--key', type=str, required=True, help='API key to be used to perform the REST request to the backend.') parser.add_argument('-l', '--locale', type=str, required=False, help='Specify the locale: it_IT for italian. Otherwise machine default one.') parser.add_argument('-d', '--db', action='store_true', required=False, help='Instruct the tool to load a SQLite database up.') parser.add_argument('-p', '--path', type=str, required=True, help='Define datastore base path to csv/ and db/ folders (csv/ and db/ folders should be already created).') parser.add_argument('-n', '--number', type=int, required=True, help='Define how many records each REST call should pull down.') parser.add_argument('-c', '--customer', type=int, required=False, help='Define whether the customer table should be updated contextually: it requires the number of cycles per page (max 50 records') args = parser.parse_args() return args
8,244,479,134,053,085,000
Parse input arguments. Passing the API key is defined as mandatory.
scripts/orders-exporter.py
parse_arguments
hailpam/data-crunching
python
def parse_arguments(): '\n \n ' parser = argparse.ArgumentParser(description='Incrementally exports JSON orders data into CSV format and optionally into a SQLite DB.') parser.add_argument('-k', '--key', type=str, required=True, help='API key to be used to perform the REST request to the backend.') parser.add_argument('-l', '--locale', type=str, required=False, help='Specify the locale: it_IT for italian. Otherwise machine default one.') parser.add_argument('-d', '--db', action='store_true', required=False, help='Instruct the tool to load a SQLite database up.') parser.add_argument('-p', '--path', type=str, required=True, help='Define datastore base path to csv/ and db/ folders (csv/ and db/ folders should be already created).') parser.add_argument('-n', '--number', type=int, required=True, help='Define how many records each REST call should pull down.') parser.add_argument('-c', '--customer', type=int, required=False, help='Define whether the customer table should be updated contextually: it requires the number of cycles per page (max 50 records') args = parser.parse_args() return args
def __init__(self, hass: HomeAssistant, api: str, name: str, polling_interval: int): 'Initialize the global Omnilogic data updater.' self.api = api super().__init__(hass=hass, logger=_LOGGER, name=name, update_interval=timedelta(seconds=polling_interval))
4,122,379,445,778,655,700
Initialize the global Omnilogic data updater.
homeassistant/components/omnilogic/common.py
__init__
123dev/core
python
def __init__(self, hass: HomeAssistant, api: str, name: str, polling_interval: int): self.api = api super().__init__(hass=hass, logger=_LOGGER, name=name, update_interval=timedelta(seconds=polling_interval))
async def _async_update_data(self): 'Fetch data from OmniLogic.' try: data = (await self.api.get_telemetry_data()) except OmniLogicException as error: raise UpdateFailed(f'Error updating from OmniLogic: {error}') from error parsed_data = {} def get_item_data(item, item_kind, current_id, data): 'Get data per kind of Omnilogic API item.' if isinstance(item, list): for single_item in item: data = get_item_data(single_item, item_kind, current_id, data) if ('systemId' in item): system_id = item['systemId'] current_id = (current_id + (item_kind, system_id)) data[current_id] = item for kind in ALL_ITEM_KINDS: if (kind in item): data = get_item_data(item[kind], kind, current_id, data) return data parsed_data = get_item_data(data, 'Backyard', (), parsed_data) return parsed_data
-314,356,583,417,209,340
Fetch data from OmniLogic.
homeassistant/components/omnilogic/common.py
_async_update_data
123dev/core
python
async def _async_update_data(self): try: data = (await self.api.get_telemetry_data()) except OmniLogicException as error: raise UpdateFailed(f'Error updating from OmniLogic: {error}') from error parsed_data = {} def get_item_data(item, item_kind, current_id, data): 'Get data per kind of Omnilogic API item.' if isinstance(item, list): for single_item in item: data = get_item_data(single_item, item_kind, current_id, data) if ('systemId' in item): system_id = item['systemId'] current_id = (current_id + (item_kind, system_id)) data[current_id] = item for kind in ALL_ITEM_KINDS: if (kind in item): data = get_item_data(item[kind], kind, current_id, data) return data parsed_data = get_item_data(data, 'Backyard', (), parsed_data) return parsed_data
def __init__(self, coordinator: OmniLogicUpdateCoordinator, kind: str, name: str, item_id: tuple, icon: str): 'Initialize the OmniLogic Entity.' super().__init__(coordinator) bow_id = None entity_data = coordinator.data[item_id] backyard_id = item_id[:2] if (len(item_id) == 6): bow_id = item_id[:4] msp_system_id = coordinator.data[backyard_id]['systemId'] entity_friendly_name = f"{coordinator.data[backyard_id]['BackyardName']} " unique_id = f'{msp_system_id}' if (bow_id is not None): unique_id = f"{unique_id}_{coordinator.data[bow_id]['systemId']}" entity_friendly_name = f"{entity_friendly_name}{coordinator.data[bow_id]['Name']} " unique_id = f"{unique_id}_{coordinator.data[item_id]['systemId']}_{kind}" if (entity_data.get('Name') is not None): entity_friendly_name = f"{entity_friendly_name} {entity_data['Name']}" entity_friendly_name = f'{entity_friendly_name} {name}' unique_id = unique_id.replace(' ', '_') self._kind = kind self._name = entity_friendly_name self._unique_id = unique_id self._item_id = item_id self._icon = icon self._attrs = {} self._msp_system_id = msp_system_id self._backyard_name = coordinator.data[backyard_id]['BackyardName']
-4,474,011,280,738,262,000
Initialize the OmniLogic Entity.
homeassistant/components/omnilogic/common.py
__init__
123dev/core
python
def __init__(self, coordinator: OmniLogicUpdateCoordinator, kind: str, name: str, item_id: tuple, icon: str): super().__init__(coordinator) bow_id = None entity_data = coordinator.data[item_id] backyard_id = item_id[:2] if (len(item_id) == 6): bow_id = item_id[:4] msp_system_id = coordinator.data[backyard_id]['systemId'] entity_friendly_name = f"{coordinator.data[backyard_id]['BackyardName']} " unique_id = f'{msp_system_id}' if (bow_id is not None): unique_id = f"{unique_id}_{coordinator.data[bow_id]['systemId']}" entity_friendly_name = f"{entity_friendly_name}{coordinator.data[bow_id]['Name']} " unique_id = f"{unique_id}_{coordinator.data[item_id]['systemId']}_{kind}" if (entity_data.get('Name') is not None): entity_friendly_name = f"{entity_friendly_name} {entity_data['Name']}" entity_friendly_name = f'{entity_friendly_name} {name}' unique_id = unique_id.replace(' ', '_') self._kind = kind self._name = entity_friendly_name self._unique_id = unique_id self._item_id = item_id self._icon = icon self._attrs = {} self._msp_system_id = msp_system_id self._backyard_name = coordinator.data[backyard_id]['BackyardName']
@property def unique_id(self) -> str: 'Return a unique, Home Assistant friendly identifier for this entity.' return self._unique_id
-2,715,274,186,570,752,500
Return a unique, Home Assistant friendly identifier for this entity.
homeassistant/components/omnilogic/common.py
unique_id
123dev/core
python
@property def unique_id(self) -> str: return self._unique_id
@property def name(self) -> str: 'Return the name of the entity.' return self._name
1,957,982,589,564,320,800
Return the name of the entity.
homeassistant/components/omnilogic/common.py
name
123dev/core
python
@property def name(self) -> str: return self._name
@property def icon(self): 'Return the icon for the entity.' return self._icon
-4,097,096,868,526,755,300
Return the icon for the entity.
homeassistant/components/omnilogic/common.py
icon
123dev/core
python
@property def icon(self): return self._icon
@property def device_state_attributes(self): 'Return the attributes.' return self._attrs
-7,442,340,643,963,322,000
Return the attributes.
homeassistant/components/omnilogic/common.py
device_state_attributes
123dev/core
python
@property def device_state_attributes(self): return self._attrs
@property def device_info(self): 'Define the device as back yard/MSP System.' return {ATTR_IDENTIFIERS: {(DOMAIN, self._msp_system_id)}, ATTR_NAME: self._backyard_name, ATTR_MANUFACTURER: 'Hayward', ATTR_MODEL: 'OmniLogic'}
-7,748,572,316,647,299,000
Define the device as back yard/MSP System.
homeassistant/components/omnilogic/common.py
device_info
123dev/core
python
@property def device_info(self): return {ATTR_IDENTIFIERS: {(DOMAIN, self._msp_system_id)}, ATTR_NAME: self._backyard_name, ATTR_MANUFACTURER: 'Hayward', ATTR_MODEL: 'OmniLogic'}
def get_item_data(item, item_kind, current_id, data): 'Get data per kind of Omnilogic API item.' if isinstance(item, list): for single_item in item: data = get_item_data(single_item, item_kind, current_id, data) if ('systemId' in item): system_id = item['systemId'] current_id = (current_id + (item_kind, system_id)) data[current_id] = item for kind in ALL_ITEM_KINDS: if (kind in item): data = get_item_data(item[kind], kind, current_id, data) return data
6,475,641,875,551,483,000
Get data per kind of Omnilogic API item.
homeassistant/components/omnilogic/common.py
get_item_data
123dev/core
python
def get_item_data(item, item_kind, current_id, data): if isinstance(item, list): for single_item in item: data = get_item_data(single_item, item_kind, current_id, data) if ('systemId' in item): system_id = item['systemId'] current_id = (current_id + (item_kind, system_id)) data[current_id] = item for kind in ALL_ITEM_KINDS: if (kind in item): data = get_item_data(item[kind], kind, current_id, data) return data
def GenBasicBlocks(self): ' Generate basic blocks using the algorithm ' if (len(self.instructions) == 0): return bbCount = 0 self.basicBlocks = [BB.BasicBlock()] self.basicBlocks[(- 1)].AddInstruction(self.instructions[0]) for instr in self.instructions[1:]: if instr.IsTarget(): bbCount += 1 self.basicBlocks += [BB.BasicBlock(bbCount)] self.basicBlocks[(- 1)].AddInstruction(instr) if instr.instrType.is_JMP(): bbCount += 1 self.basicBlocks += [BB.BasicBlock(bbCount)] self.basicBlocks = [bb for bb in self.basicBlocks if (not bb.IsEmpty())] for (i, bb) in enumerate(self.basicBlocks): bb.bbNum = i
-5,940,536,416,838,989,000
Generate basic blocks using the algorithm
project/src/codegen/code_generation.py
GenBasicBlocks
vaishious/comperler
python
def GenBasicBlocks(self): ' ' if (len(self.instructions) == 0): return bbCount = 0 self.basicBlocks = [BB.BasicBlock()] self.basicBlocks[(- 1)].AddInstruction(self.instructions[0]) for instr in self.instructions[1:]: if instr.IsTarget(): bbCount += 1 self.basicBlocks += [BB.BasicBlock(bbCount)] self.basicBlocks[(- 1)].AddInstruction(instr) if instr.instrType.is_JMP(): bbCount += 1 self.basicBlocks += [BB.BasicBlock(bbCount)] self.basicBlocks = [bb for bb in self.basicBlocks if (not bb.IsEmpty())] for (i, bb) in enumerate(self.basicBlocks): bb.bbNum = i
@staticmethod def _format(path, name): ' Format\n\n Add path to name.\n\n Parameters\n ----------\n path : str\n Base path\n name : str\n Path extension\n\n Returns\n -------\n str\n Formated path\n\n ' return '{}/{}'.format(path, name)
2,094,405,422,228,392,000
Format Add path to name. Parameters ---------- path : str Base path name : str Path extension Returns ------- str Formated path
blendhunter/network.py
_format
CosmoStat/BlendHunter
python
@staticmethod def _format(path, name): ' Format\n\n Add path to name.\n\n Parameters\n ----------\n path : str\n Base path\n name : str\n Path extension\n\n Returns\n -------\n str\n Formated path\n\n ' return '{}/{}'.format(path, name)
def getkwarg(self, key, default=None): ' Get keyword agrument\n\n Get value from keyword agruments if it exists otherwise return default.\n\n Parameters\n ----------\n key : str\n Dictionary key\n default : optional\n Default value\n\n ' return (self._kwargs[key] if (key in self._kwargs) else default)
3,092,355,057,493,833,700
Get keyword agrument Get value from keyword agruments if it exists otherwise return default. Parameters ---------- key : str Dictionary key default : optional Default value
blendhunter/network.py
getkwarg
CosmoStat/BlendHunter
python
def getkwarg(self, key, default=None): ' Get keyword agrument\n\n Get value from keyword agruments if it exists otherwise return default.\n\n Parameters\n ----------\n key : str\n Dictionary key\n default : optional\n Default value\n\n ' return (self._kwargs[key] if (key in self._kwargs) else default)
@staticmethod def _get_image_shape(file): ' Get Image Shape\n\n Get the input image shape from an example image.\n\n Parameters\n ----------\n file : str\n File name\n\n Returns\n -------\n tuple\n Image shape\n\n ' return imread(file).shape
-849,533,267,932,076,300
Get Image Shape Get the input image shape from an example image. Parameters ---------- file : str File name Returns ------- tuple Image shape
blendhunter/network.py
_get_image_shape
CosmoStat/BlendHunter
python
@staticmethod def _get_image_shape(file): ' Get Image Shape\n\n Get the input image shape from an example image.\n\n Parameters\n ----------\n file : str\n File name\n\n Returns\n -------\n tuple\n Image shape\n\n ' return imread(file).shape
def _get_target_shape(self, image_path=None): ' Get Target Shape\n\n Get the network target shape from the image shape.\n\n Parameters\n ----------\n image_path : str, optional\n Path to image file\n\n ' if (isinstance(self._image_shape, type(None)) and image_path): file = self._format(image_path, os.listdir(image_path)[0]) self._image_shape = self._get_image_shape(file) self._target_size = self._image_shape[:2]
-7,891,915,591,857,916,000
Get Target Shape Get the network target shape from the image shape. Parameters ---------- image_path : str, optional Path to image file
blendhunter/network.py
_get_target_shape
CosmoStat/BlendHunter
python
def _get_target_shape(self, image_path=None): ' Get Target Shape\n\n Get the network target shape from the image shape.\n\n Parameters\n ----------\n image_path : str, optional\n Path to image file\n\n ' if (isinstance(self._image_shape, type(None)) and image_path): file = self._format(image_path, os.listdir(image_path)[0]) self._image_shape = self._get_image_shape(file) self._target_size = self._image_shape[:2]
def _load_generator(self, input_dir, batch_size=None, class_mode=None, augmentation=False): ' Load Generator\n\n Load files from an input directory into a Keras generator.\n\n Parameters\n ----------\n input_dir : str\n Input directory\n batch_size : int, optional\n Batch size\n class_mode : str, optional\n Generator class mode\n shuffle : bool, optional\n Option to shuffle input files\n\n Returns\n -------\n keras_preprocessing.image.DirectoryIterator\n Keras generator\n\n ' if augmentation: datagen = ImageDataGenerator(rescale=(1.0 / 255), shear_range=0.2, zoom_range=0.2, horizontal_flip=True) else: datagen = ImageDataGenerator(rescale=(1.0 / 255)) generator = datagen.flow_from_directory(input_dir, target_size=self._target_size, batch_size=batch_size, class_mode=class_mode, shuffle=False) generator.steps = (generator.n // generator.batch_size) return generator
1,026,942,451,619,151,200
Load Generator Load files from an input directory into a Keras generator. Parameters ---------- input_dir : str Input directory batch_size : int, optional Batch size class_mode : str, optional Generator class mode shuffle : bool, optional Option to shuffle input files Returns ------- keras_preprocessing.image.DirectoryIterator Keras generator
blendhunter/network.py
_load_generator
CosmoStat/BlendHunter
python
def _load_generator(self, input_dir, batch_size=None, class_mode=None, augmentation=False): ' Load Generator\n\n Load files from an input directory into a Keras generator.\n\n Parameters\n ----------\n input_dir : str\n Input directory\n batch_size : int, optional\n Batch size\n class_mode : str, optional\n Generator class mode\n shuffle : bool, optional\n Option to shuffle input files\n\n Returns\n -------\n keras_preprocessing.image.DirectoryIterator\n Keras generator\n\n ' if augmentation: datagen = ImageDataGenerator(rescale=(1.0 / 255), shear_range=0.2, zoom_range=0.2, horizontal_flip=True) else: datagen = ImageDataGenerator(rescale=(1.0 / 255)) generator = datagen.flow_from_directory(input_dir, target_size=self._target_size, batch_size=batch_size, class_mode=class_mode, shuffle=False) generator.steps = (generator.n // generator.batch_size) return generator
def _get_feature(self, input_dir): ' Get Feature\n\n Get network feature and labels from VGG16 model.\n\n Parameters\n ----------\n input_dir : str\n Input directory\n\n Returns\n -------\n tuple\n VGG16 bottleneck feature, class labels\n\n ' generator = self._load_generator(input_dir, batch_size=self._batch_size_top) labels = generator.classes[:(generator.steps * self._batch_size_top)] return (self._vgg16_model.predict_generator(generator, generator.steps), labels)
-3,918,324,106,689,351,700
Get Feature Get network feature and labels from VGG16 model. Parameters ---------- input_dir : str Input directory Returns ------- tuple VGG16 bottleneck feature, class labels
blendhunter/network.py
_get_feature
CosmoStat/BlendHunter
python
def _get_feature(self, input_dir): ' Get Feature\n\n Get network feature and labels from VGG16 model.\n\n Parameters\n ----------\n input_dir : str\n Input directory\n\n Returns\n -------\n tuple\n VGG16 bottleneck feature, class labels\n\n ' generator = self._load_generator(input_dir, batch_size=self._batch_size_top) labels = generator.classes[:(generator.steps * self._batch_size_top)] return (self._vgg16_model.predict_generator(generator, generator.steps), labels)
@staticmethod def _save_data(data, data_type, file_path): ' Save Data\n\n Save data to file.\n\n Parameters\n ----------\n data : np.ndarray\n Output data\n data_type : str\n Type of feature to be saved\n file_path : str\n File path\n\n ' file_name = '{}_{}.npy'.format(file_path, data_type) np.save(file_name, data)
-6,445,560,500,047,569,000
Save Data Save data to file. Parameters ---------- data : np.ndarray Output data data_type : str Type of feature to be saved file_path : str File path
blendhunter/network.py
_save_data
CosmoStat/BlendHunter
python
@staticmethod def _save_data(data, data_type, file_path): ' Save Data\n\n Save data to file.\n\n Parameters\n ----------\n data : np.ndarray\n Output data\n data_type : str\n Type of feature to be saved\n file_path : str\n File path\n\n ' file_name = '{}_{}.npy'.format(file_path, data_type) np.save(file_name, data)
@staticmethod def _load_data(data_type, file_path): ' Load Data\n\n Load data from file.\n\n Parameters\n ----------\n data_type : str\n Type of feature to be loaded\n file_path : str\n File path\n\n ' file_name = '{}_{}.npy'.format(file_path, data_type) if os.path.isfile(file_name): return np.load(file_name) else: raise IOError('{} not found'.format(file_name))
-7,156,602,867,933,073,000
Load Data Load data from file. Parameters ---------- data_type : str Type of feature to be loaded file_path : str File path
blendhunter/network.py
_load_data
CosmoStat/BlendHunter
python
@staticmethod def _load_data(data_type, file_path): ' Load Data\n\n Load data from file.\n\n Parameters\n ----------\n data_type : str\n Type of feature to be loaded\n file_path : str\n File path\n\n ' file_name = '{}_{}.npy'.format(file_path, data_type) if os.path.isfile(file_name): return np.load(file_name) else: raise IOError('{} not found'.format(file_name))
@staticmethod def _build_vgg16_model(input_shape=None): ' Build VGG16 Model\n\n Build VGG16 CNN model using imagenet weights.\n\n Parameters\n ----------\n input_shape : str, optional\n Input data shape\n\n Returns\n -------\n\n VGG16 model\n\n ' return VGG16(include_top=False, weights='imagenet', input_shape=input_shape)
-989,531,759,942,366,100
Build VGG16 Model Build VGG16 CNN model using imagenet weights. Parameters ---------- input_shape : str, optional Input data shape Returns ------- VGG16 model
blendhunter/network.py
_build_vgg16_model
CosmoStat/BlendHunter
python
@staticmethod def _build_vgg16_model(input_shape=None): ' Build VGG16 Model\n\n Build VGG16 CNN model using imagenet weights.\n\n Parameters\n ----------\n input_shape : str, optional\n Input data shape\n\n Returns\n -------\n\n VGG16 model\n\n ' return VGG16(include_top=False, weights='imagenet', input_shape=input_shape)
def _get_features(self): ' Get Features\n\n Get the network (bottleneck) features from the VGG16 model.\n\n ' self._vgg16_model = self._build_vgg16_model() for (key, value) in self._features.items(): (bot_feat, labels) = self._get_feature(value['dir']) if self._save_bottleneck: self._save_data(bot_feat, key, self._bottleneck_file) if self._save_labels: self._save_data(labels, key, self._labels_file) value['bottleneck'] = bot_feat value['labels'] = labels
5,985,295,128,808,247,000
Get Features Get the network (bottleneck) features from the VGG16 model.
blendhunter/network.py
_get_features
CosmoStat/BlendHunter
python
def _get_features(self): ' Get Features\n\n Get the network (bottleneck) features from the VGG16 model.\n\n ' self._vgg16_model = self._build_vgg16_model() for (key, value) in self._features.items(): (bot_feat, labels) = self._get_feature(value['dir']) if self._save_bottleneck: self._save_data(bot_feat, key, self._bottleneck_file) if self._save_labels: self._save_data(labels, key, self._labels_file) value['bottleneck'] = bot_feat value['labels'] = labels
def _load_features(self): ' Load Bottleneck Features\n\n Load VGG16 bottleneck features.\n\n ' for feature_name in ('bottleneck', 'labels'): if (feature_name == 'bottleneck'): out_path = self._bottleneck_file else: out_path = self._labels_file for (key, value) in self._features.items(): if (feature_name not in value): value[feature_name] = self._load_data(key, out_path)
-4,141,505,175,619,262,000
Load Bottleneck Features Load VGG16 bottleneck features.
blendhunter/network.py
_load_features
CosmoStat/BlendHunter
python
def _load_features(self): ' Load Bottleneck Features\n\n Load VGG16 bottleneck features.\n\n ' for feature_name in ('bottleneck', 'labels'): if (feature_name == 'bottleneck'): out_path = self._bottleneck_file else: out_path = self._labels_file for (key, value) in self._features.items(): if (feature_name not in value): value[feature_name] = self._load_data(key, out_path)
@staticmethod def _build_top_model(input_shape, dense_output=(256, 1024), dropout=0.1): ' Build Top Model\n\n Build the fully connected layers of the network.\n\n Parameters\n ----------\n input_shape : tuple\n Input data shape\n dense_output : tuple, optional\n Size of dense output layers, default is (256, 1024)\n dropout : float, optional\n Dropout rate, default is 0.1\n\n Returns\n -------\n keras.model\n Fully connected top model\n\n ' model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(dense_output[0])) model.add(Dropout(dropout)) model.add(Dense(dense_output[1], activation='relu')) model.add(Dense(1, activation='sigmoid')) return model
8,246,173,569,645,649,000
Build Top Model Build the fully connected layers of the network. Parameters ---------- input_shape : tuple Input data shape dense_output : tuple, optional Size of dense output layers, default is (256, 1024) dropout : float, optional Dropout rate, default is 0.1 Returns ------- keras.model Fully connected top model
blendhunter/network.py
_build_top_model
CosmoStat/BlendHunter
python
@staticmethod def _build_top_model(input_shape, dense_output=(256, 1024), dropout=0.1): ' Build Top Model\n\n Build the fully connected layers of the network.\n\n Parameters\n ----------\n input_shape : tuple\n Input data shape\n dense_output : tuple, optional\n Size of dense output layers, default is (256, 1024)\n dropout : float, optional\n Dropout rate, default is 0.1\n\n Returns\n -------\n keras.model\n Fully connected top model\n\n ' model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(dense_output[0])) model.add(Dropout(dropout)) model.add(Dense(dense_output[1], activation='relu')) model.add(Dense(1, activation='sigmoid')) return model
def _train_top_model(self): ' Train Top Model\n\n Train fully connected top model of the network.\n\n ' self._load_features() model = self._build_top_model(input_shape=self._features['train']['bottleneck'].shape[1:]) model.compile(optimizer=self.getkwarg('top_opt', 'adam'), loss=self.getkwarg('top_loss', 'binary_crossentropy'), metrics=self.getkwarg('top_metrics', ['accuracy'])) top_model_file = '{}.h5'.format(self._top_model_file) callbacks = [] callbacks.append(ModelCheckpoint(top_model_file, monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) if self.getkwarg('top_early_stop', True): min_delta = self.getkwarg('top_min_delta', 0.001) patience = self.getkwarg('top_patience', 10) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=min_delta, patience=patience, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) self.history = model.fit(self._features['train']['bottleneck'], self._features['train']['labels'], epochs=self._epochs_top, batch_size=self._batch_size_top, callbacks=callbacks, validation_data=(self._features['valid']['bottleneck'], self._features['valid']['labels']), verbose=self._verbose) model.save_weights(top_model_file)
5,451,557,413,038,301,000
Train Top Model Train fully connected top model of the network.
blendhunter/network.py
_train_top_model
CosmoStat/BlendHunter
python
def _train_top_model(self): ' Train Top Model\n\n Train fully connected top model of the network.\n\n ' self._load_features() model = self._build_top_model(input_shape=self._features['train']['bottleneck'].shape[1:]) model.compile(optimizer=self.getkwarg('top_opt', 'adam'), loss=self.getkwarg('top_loss', 'binary_crossentropy'), metrics=self.getkwarg('top_metrics', ['accuracy'])) top_model_file = '{}.h5'.format(self._top_model_file) callbacks = [] callbacks.append(ModelCheckpoint(top_model_file, monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) if self.getkwarg('top_early_stop', True): min_delta = self.getkwarg('top_min_delta', 0.001) patience = self.getkwarg('top_patience', 10) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=min_delta, patience=patience, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) self.history = model.fit(self._features['train']['bottleneck'], self._features['train']['labels'], epochs=self._epochs_top, batch_size=self._batch_size_top, callbacks=callbacks, validation_data=(self._features['valid']['bottleneck'], self._features['valid']['labels']), verbose=self._verbose) model.save_weights(top_model_file)
def plot_history(self): ' Plot History\n\n Plot the training history metrics.\n\n ' sns.set(style='darkgrid') if (not isinstance(self.history, type(None))): plt.figure(figsize=(16, 8)) plt.subplot(121) plt.plot(self.history.history['acc']) plt.plot(self.history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.subplot(122) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.show() else: print('No history to display. Run training first.')
6,298,212,048,318,549,000
Plot History Plot the training history metrics.
blendhunter/network.py
plot_history
CosmoStat/BlendHunter
python
def plot_history(self): ' Plot History\n\n Plot the training history metrics.\n\n ' sns.set(style='darkgrid') if (not isinstance(self.history, type(None))): plt.figure(figsize=(16, 8)) plt.subplot(121) plt.plot(self.history.history['acc']) plt.plot(self.history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.subplot(122) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.show() else: print('No history to display. Run training first.')
def _freeze_layers(self, model, depth): ' Freeze Network Layers\n\n Parameters\n ----------\n model :\n Keras model\n depth : int\n Depth of layers to be frozen\n\n ' for layer in model.layers[:depth]: layer.trainable = False
5,375,483,744,825,306,000
Freeze Network Layers Parameters ---------- model : Keras model depth : int Depth of layers to be frozen
blendhunter/network.py
_freeze_layers
CosmoStat/BlendHunter
python
def _freeze_layers(self, model, depth): ' Freeze Network Layers\n\n Parameters\n ----------\n model :\n Keras model\n depth : int\n Depth of layers to be frozen\n\n ' for layer in model.layers[:depth]: layer.trainable = False
def _build_final_model(self, load_top_weights=False, load_final_weights=False): ' Build Final Model\n\n Build the final BlendHunter model.\n\n Parameters\n ----------\n load_top_weights : bool\n Option to load the top model weights\n load_final_weights : bool\n Option to load the final model weights\n\n Returns\n -------\n\n Final model\n\n ' vgg16_model = self._build_vgg16_model(self._image_shape) top_model = self._build_top_model(vgg16_model.output_shape[1:], dropout=0.4) if load_top_weights: top_model.load_weights('{}.h5'.format(self._top_model_file)) model = Model(inputs=vgg16_model.input, outputs=top_model(vgg16_model.output)) if load_final_weights: model.load_weights('{}.h5'.format(self._final_model_file)) return model
5,757,908,744,617,628,000
Build Final Model Build the final BlendHunter model. Parameters ---------- load_top_weights : bool Option to load the top model weights load_final_weights : bool Option to load the final model weights Returns ------- Final model
blendhunter/network.py
_build_final_model
CosmoStat/BlendHunter
python
def _build_final_model(self, load_top_weights=False, load_final_weights=False): ' Build Final Model\n\n Build the final BlendHunter model.\n\n Parameters\n ----------\n load_top_weights : bool\n Option to load the top model weights\n load_final_weights : bool\n Option to load the final model weights\n\n Returns\n -------\n\n Final model\n\n ' vgg16_model = self._build_vgg16_model(self._image_shape) top_model = self._build_top_model(vgg16_model.output_shape[1:], dropout=0.4) if load_top_weights: top_model.load_weights('{}.h5'.format(self._top_model_file)) model = Model(inputs=vgg16_model.input, outputs=top_model(vgg16_model.output)) if load_final_weights: model.load_weights('{}.h5'.format(self._final_model_file)) return model
def _fine_tune(self): ' Fine Tune\n\n Fine tune the final model training.\n\n ' model = self._build_final_model(load_top_weights=True) self._freeze_layers(model, 18) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001), metrics=['binary_accuracy']) train_gen = self._load_generator(self._features['train']['dir'], batch_size=self._batch_size_fine, class_mode='binary', augmentation=True) valid_gen = self._load_generator(self._features['valid']['dir'], batch_size=self._batch_size_fine, class_mode='binary') callbacks = [] callbacks.append(ModelCheckpoint('{}.h5'.format(self._fine_tune_file), monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=0.001, patience=10, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) self._freeze_layers(model, 19) model.layers[17].trainable = True model.compile(loss='binary_crossentropy', optimizer=SGD(lr=0.0001), metrics=['binary_accuracy']) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) model.save_weights('{}.h5'.format(self._final_model_file))
-8,034,878,660,751,384,000
Fine Tune Fine tune the final model training.
blendhunter/network.py
_fine_tune
CosmoStat/BlendHunter
python
def _fine_tune(self): ' Fine Tune\n\n Fine tune the final model training.\n\n ' model = self._build_final_model(load_top_weights=True) self._freeze_layers(model, 18) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001), metrics=['binary_accuracy']) train_gen = self._load_generator(self._features['train']['dir'], batch_size=self._batch_size_fine, class_mode='binary', augmentation=True) valid_gen = self._load_generator(self._features['valid']['dir'], batch_size=self._batch_size_fine, class_mode='binary') callbacks = [] callbacks.append(ModelCheckpoint('{}.h5'.format(self._fine_tune_file), monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=0.001, patience=10, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) self._freeze_layers(model, 19) model.layers[17].trainable = True model.compile(loss='binary_crossentropy', optimizer=SGD(lr=0.0001), metrics=['binary_accuracy']) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) model.save_weights('{}.h5'.format(self._final_model_file))
def train(self, input_path, get_features=True, train_top=True, fine_tune=True, train_dir_name='train', valid_dir_name='validation', epochs_top=500, epochs_fine=50, batch_size_top=250, batch_size_fine=16, save_bottleneck=True, bottleneck_file='bottleneck_features', save_labels=True, labels_file='labels', fine_tune_file='fine_tune_checkpoint', top_model_file='top_model_weights', **kwargs): " Train\n\n Train the BlendHunter network.\n\n Parameters\n ----------\n input_path : str\n Path to input data\n get_features : bool, optional\n Option to get bottleneck features, default is True\n train_top : bool, optional\n Option to train top model, default is True\n fine_tune : bool, optional\n Option to run fine tuning component of training, default is True\n train_dir_name : str, optional\n Training data directory name, default is 'train'\n valid_dir_name : str, optional\n Validation data directory name, default is 'validation'\n epochs_top : int, optional\n Number of training epochs for top model, default is 500\n epochs_fine : int, optional\n Number of training epochs for fine tuning, default is 50\n batch_size_top : int, optional\n Batch size for top model, default is 256\n batch_size_fine : int, optional\n Batch size for fine tuning, default is 16\n save_bottleneck : bool, optional\n Option to save bottleneck features, default is True\n bottleneck_file : str, optional\n File name for bottleneck features, default is\n 'bottleneck_features'\n fine_tune_file : str, optional\n Training checkpoint for the fine tuning step, default is\n 'fine_tune_checkpoint'\n\n " start = time() self._epochs_top = epochs_top self._epochs_fine = epochs_fine self._batch_size_top = batch_size_top self._batch_size_fine = batch_size_fine self._save_bottleneck = save_bottleneck self._save_labels = save_labels self._bottleneck_file = self._format(self._weights_path, bottleneck_file) self._labels_file = self._format(self._weights_path, labels_file) self._fine_tune_file = self._format(self._weights_path, fine_tune_file) self._features = {'train': {}, 'valid': {}} self._features['train']['dir'] = self._format(input_path, train_dir_name) self._features['valid']['dir'] = self._format(input_path, valid_dir_name) self._kwargs = kwargs self._get_target_shape(self._format(self._features['train']['dir'], self._classes[0])) if get_features: self._get_features() if train_top: self._train_top_model() if fine_tune: self._fine_tune() end = time() print('Duration {:0.2f}s'.format((end - start)))
-3,860,889,324,644,368,000
Train Train the BlendHunter network. Parameters ---------- input_path : str Path to input data get_features : bool, optional Option to get bottleneck features, default is True train_top : bool, optional Option to train top model, default is True fine_tune : bool, optional Option to run fine tuning component of training, default is True train_dir_name : str, optional Training data directory name, default is 'train' valid_dir_name : str, optional Validation data directory name, default is 'validation' epochs_top : int, optional Number of training epochs for top model, default is 500 epochs_fine : int, optional Number of training epochs for fine tuning, default is 50 batch_size_top : int, optional Batch size for top model, default is 256 batch_size_fine : int, optional Batch size for fine tuning, default is 16 save_bottleneck : bool, optional Option to save bottleneck features, default is True bottleneck_file : str, optional File name for bottleneck features, default is 'bottleneck_features' fine_tune_file : str, optional Training checkpoint for the fine tuning step, default is 'fine_tune_checkpoint'
blendhunter/network.py
train
CosmoStat/BlendHunter
python
def train(self, input_path, get_features=True, train_top=True, fine_tune=True, train_dir_name='train', valid_dir_name='validation', epochs_top=500, epochs_fine=50, batch_size_top=250, batch_size_fine=16, save_bottleneck=True, bottleneck_file='bottleneck_features', save_labels=True, labels_file='labels', fine_tune_file='fine_tune_checkpoint', top_model_file='top_model_weights', **kwargs): " Train\n\n Train the BlendHunter network.\n\n Parameters\n ----------\n input_path : str\n Path to input data\n get_features : bool, optional\n Option to get bottleneck features, default is True\n train_top : bool, optional\n Option to train top model, default is True\n fine_tune : bool, optional\n Option to run fine tuning component of training, default is True\n train_dir_name : str, optional\n Training data directory name, default is 'train'\n valid_dir_name : str, optional\n Validation data directory name, default is 'validation'\n epochs_top : int, optional\n Number of training epochs for top model, default is 500\n epochs_fine : int, optional\n Number of training epochs for fine tuning, default is 50\n batch_size_top : int, optional\n Batch size for top model, default is 256\n batch_size_fine : int, optional\n Batch size for fine tuning, default is 16\n save_bottleneck : bool, optional\n Option to save bottleneck features, default is True\n bottleneck_file : str, optional\n File name for bottleneck features, default is\n 'bottleneck_features'\n fine_tune_file : str, optional\n Training checkpoint for the fine tuning step, default is\n 'fine_tune_checkpoint'\n\n " start = time() self._epochs_top = epochs_top self._epochs_fine = epochs_fine self._batch_size_top = batch_size_top self._batch_size_fine = batch_size_fine self._save_bottleneck = save_bottleneck self._save_labels = save_labels self._bottleneck_file = self._format(self._weights_path, bottleneck_file) self._labels_file = self._format(self._weights_path, labels_file) self._fine_tune_file = self._format(self._weights_path, fine_tune_file) self._features = {'train': {}, 'valid': {}} self._features['train']['dir'] = self._format(input_path, train_dir_name) self._features['valid']['dir'] = self._format(input_path, valid_dir_name) self._kwargs = kwargs self._get_target_shape(self._format(self._features['train']['dir'], self._classes[0])) if get_features: self._get_features() if train_top: self._train_top_model() if fine_tune: self._fine_tune() end = time() print('Duration {:0.2f}s'.format((end - start)))
def predict(self, input_path=None, input_path_keras=None, input_data=None, weights_type='fine'): " Predict\n\n Predict classes for test data\n\n Parameters\n ----------\n input_path : str\n Path to input data\n input_path_keras : str\n Path to input data in Keras format, i.e. path to directory one\n level above where the data is stored\n input_data : np.ndarray\n Array of input images\n weights_type : str, optional {'fine', 'top'}\n Type of weights to use for predition, default is 'fine'\n\n Returns\n -------\n dict\n Dictionary of file names and corresponding classes\n\n " if input_path: test_path = '/'.join(input_path.split('/')[:(- 1)]) elif input_path_keras: test_path = input_path_keras else: test_path = None if (weights_type not in ('fine', 'top')): raise ValueError('Invalid value for weights_type. Options are "fine" or "top"') if test_path: self._get_target_shape(self._format(test_path, os.listdir(test_path)[0])) if (weights_type == 'fine'): model = self._build_final_model(load_final_weights=True) elif (weights_type == 'top'): model = self._build_final_model(load_top_weights=True) test_gen = self._load_generator(test_path, class_mode='categorical', batch_size=1) self.filenames = test_gen.filenames test_gen.reset() res = model.predict_generator(test_gen, verbose=self._verbose, steps=test_gen.steps).flatten() elif (not isinstance(input_data, type(None))): self._image_shape = input_data.shape[1:] self._get_target_shape() model = self._build_final_model(load_final_weights=True) res = model.predict(input_data, verbose=self._verbose).flatten() else: raise RuntimeError('No input data provided.') labels = {0: self._classes[0], 1: self._classes[1]} preds = [labels[k] for k in np.around(res)] return preds
-3,499,259,897,700,017,000
Predict Predict classes for test data Parameters ---------- input_path : str Path to input data input_path_keras : str Path to input data in Keras format, i.e. path to directory one level above where the data is stored input_data : np.ndarray Array of input images weights_type : str, optional {'fine', 'top'} Type of weights to use for predition, default is 'fine' Returns ------- dict Dictionary of file names and corresponding classes
blendhunter/network.py
predict
CosmoStat/BlendHunter
python
def predict(self, input_path=None, input_path_keras=None, input_data=None, weights_type='fine'): " Predict\n\n Predict classes for test data\n\n Parameters\n ----------\n input_path : str\n Path to input data\n input_path_keras : str\n Path to input data in Keras format, i.e. path to directory one\n level above where the data is stored\n input_data : np.ndarray\n Array of input images\n weights_type : str, optional {'fine', 'top'}\n Type of weights to use for predition, default is 'fine'\n\n Returns\n -------\n dict\n Dictionary of file names and corresponding classes\n\n " if input_path: test_path = '/'.join(input_path.split('/')[:(- 1)]) elif input_path_keras: test_path = input_path_keras else: test_path = None if (weights_type not in ('fine', 'top')): raise ValueError('Invalid value for weights_type. Options are "fine" or "top"') if test_path: self._get_target_shape(self._format(test_path, os.listdir(test_path)[0])) if (weights_type == 'fine'): model = self._build_final_model(load_final_weights=True) elif (weights_type == 'top'): model = self._build_final_model(load_top_weights=True) test_gen = self._load_generator(test_path, class_mode='categorical', batch_size=1) self.filenames = test_gen.filenames test_gen.reset() res = model.predict_generator(test_gen, verbose=self._verbose, steps=test_gen.steps).flatten() elif (not isinstance(input_data, type(None))): self._image_shape = input_data.shape[1:] self._get_target_shape() model = self._build_final_model(load_final_weights=True) res = model.predict(input_data, verbose=self._verbose).flatten() else: raise RuntimeError('No input data provided.') labels = {0: self._classes[0], 1: self._classes[1]} preds = [labels[k] for k in np.around(res)] return preds
def __init_subclass__(cls, **kwargs): '\n An __init_subclass__ hook initializes all of the subclasses of a given class.\n So for each subclass, it will call this block of code on import.\n This replicates some metaclass magic without the need to be aware of metaclasses.\n Here we use this to register each subclass in a dict that has the `is_datasource_for`\n attribute. This is then passed into the TimeSeries Factory so we can register them.\n ' super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for
8,528,098,994,569,175,000
An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them.
sunpy/timeseries/timeseriesbase.py
__init_subclass__
yashrsharma44/sunpy
python
def __init_subclass__(cls, **kwargs): '\n An __init_subclass__ hook initializes all of the subclasses of a given class.\n So for each subclass, it will call this block of code on import.\n This replicates some metaclass magic without the need to be aware of metaclasses.\n Here we use this to register each subclass in a dict that has the `is_datasource_for`\n attribute. This is then passed into the TimeSeries Factory so we can register them.\n ' super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for
@property def source(self): '\n A string/object used to specify the source class of the TimeSeries.\n ' return self._source
-5,948,268,673,498,676,000
A string/object used to specify the source class of the TimeSeries.
sunpy/timeseries/timeseriesbase.py
source
yashrsharma44/sunpy
python
@property def source(self): '\n \n ' return self._source
@property def columns(self): 'A list of all the names of the columns in the data.' return list(self.data.columns.values)
-1,494,880,558,403,497,500
A list of all the names of the columns in the data.
sunpy/timeseries/timeseriesbase.py
columns
yashrsharma44/sunpy
python
@property def columns(self): return list(self.data.columns.values)
@property def index(self): 'The time index of the data.' return self.data.index
-2,782,964,505,124,396,000
The time index of the data.
sunpy/timeseries/timeseriesbase.py
index
yashrsharma44/sunpy
python
@property def index(self): return self.data.index
@property def time_range(self): '\n The start and end times of the TimeSeries as a `~sunpy.time.TimeRange`\n object\n ' if (len(self.data) > 0): return TimeRange(self.data.index.min(), self.data.index.max()) else: return None
1,425,110,208,352,478,700
The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object
sunpy/timeseries/timeseriesbase.py
time_range
yashrsharma44/sunpy
python
@property def time_range(self): '\n The start and end times of the TimeSeries as a `~sunpy.time.TimeRange`\n object\n ' if (len(self.data) > 0): return TimeRange(self.data.index.min(), self.data.index.max()) else: return None
def quantity(self, colname, **kwargs): '\n Return a `~astropy.units.quantity.Quantity` for the given column.\n\n Parameters\n ----------\n colname : `str`\n The heading of the column you want output.\n\n Returns\n -------\n quantity : `~astropy.units.quantity.Quantity`\n ' values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit)
-6,461,061,768,238,513,000
Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity`
sunpy/timeseries/timeseriesbase.py
quantity
yashrsharma44/sunpy
python
def quantity(self, colname, **kwargs): '\n Return a `~astropy.units.quantity.Quantity` for the given column.\n\n Parameters\n ----------\n colname : `str`\n The heading of the column you want output.\n\n Returns\n -------\n quantity : `~astropy.units.quantity.Quantity`\n ' values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit)
def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): '\n Return an new TimeSeries with the given column added or updated.\n\n Parameters\n ----------\n colname : `str`\n The heading of the column you want output.\n\n quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray`\n The values to be placed within the column.\n If updating values only then a numpy array is permitted.\n\n overwrite : `bool`, optional, default:True\n Set to true to allow the method to overwrite a column already present\n in the TimeSeries.\n\n Returns\n -------\n newts : TimeSeries\n\n ' if ((not unit) and isinstance(quantity, astropy.units.quantity.Quantity)): unit = quantity.unit elif (not unit): unit = u.dimensionless_unscaled data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) if (not (colname in self.data.columns)): units[colname] = unit values = quantity if (isinstance(values, astropy.units.quantity.Quantity) and overwrite): values = values.to(units[colname]).value if ((not (colname in self.data.columns)) or overwrite): data[colname] = values return self.__class__(data, meta, units)
7,198,475,854,216,336,000
Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries
sunpy/timeseries/timeseriesbase.py
add_column
yashrsharma44/sunpy
python
def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): '\n Return an new TimeSeries with the given column added or updated.\n\n Parameters\n ----------\n colname : `str`\n The heading of the column you want output.\n\n quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray`\n The values to be placed within the column.\n If updating values only then a numpy array is permitted.\n\n overwrite : `bool`, optional, default:True\n Set to true to allow the method to overwrite a column already present\n in the TimeSeries.\n\n Returns\n -------\n newts : TimeSeries\n\n ' if ((not unit) and isinstance(quantity, astropy.units.quantity.Quantity)): unit = quantity.unit elif (not unit): unit = u.dimensionless_unscaled data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) if (not (colname in self.data.columns)): units[colname] = unit values = quantity if (isinstance(values, astropy.units.quantity.Quantity) and overwrite): values = values.to(units[colname]).value if ((not (colname in self.data.columns)) or overwrite): data[colname] = values return self.__class__(data, meta, units)
def sort_index(self, **kwargs): "Returns a sorted version of the TimeSeries object.\n Generally this shouldn't be necessary as most TimeSeries operations sort\n the data anyway to ensure consistent behaviour when truncating.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series in ascending chronological order.\n " return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units))
-3,113,045,102,198,193,000
Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order.
sunpy/timeseries/timeseriesbase.py
sort_index
yashrsharma44/sunpy
python
def sort_index(self, **kwargs): "Returns a sorted version of the TimeSeries object.\n Generally this shouldn't be necessary as most TimeSeries operations sort\n the data anyway to ensure consistent behaviour when truncating.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series in ascending chronological order.\n " return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units))
def truncate(self, a, b=None, int=None): 'Returns a truncated version of the TimeSeries object.\n\n Parameters\n ----------\n a : `sunpy.time.TimeRange`, `str` or `int`\n Either a time range to truncate to, or a start time in some format\n recognised by pandas, or a index integer.\n\n b : `str` or `int`\n If specified, the end time of the time range in some format\n recognised by pandas, or a index integer.\n\n int : `int`\n If specified, the integer indicating the slicing intervals.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series with only the selected times.\n ' if (isinstance(a, str) and isinstance(b, str)): a = TimeRange(a, b) if isinstance(a, TimeRange): start = a.start.datetime end = a.end.datetime else: start = a end = b truncated_data = self.data.sort_index()[start:end:int] truncated_meta = TimeSeriesMetaData([]) if (len(truncated_data) > 0): tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object
-1,181,497,150,398,642,000
Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times.
sunpy/timeseries/timeseriesbase.py
truncate
yashrsharma44/sunpy
python
def truncate(self, a, b=None, int=None): 'Returns a truncated version of the TimeSeries object.\n\n Parameters\n ----------\n a : `sunpy.time.TimeRange`, `str` or `int`\n Either a time range to truncate to, or a start time in some format\n recognised by pandas, or a index integer.\n\n b : `str` or `int`\n If specified, the end time of the time range in some format\n recognised by pandas, or a index integer.\n\n int : `int`\n If specified, the integer indicating the slicing intervals.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series with only the selected times.\n ' if (isinstance(a, str) and isinstance(b, str)): a = TimeRange(a, b) if isinstance(a, TimeRange): start = a.start.datetime end = a.end.datetime else: start = a end = b truncated_data = self.data.sort_index()[start:end:int] truncated_meta = TimeSeriesMetaData([]) if (len(truncated_data) > 0): tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object
def extract(self, column_name): 'Returns a new time series with the chosen column.\n\n Parameters\n ----------\n column_name : `str`\n A valid column name.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series with only the selected column.\n ' '\n # TODO allow the extract function to pick more than one column\n if isinstance(self, pandas.Series):\n return self\n else:\n return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy()))\n ' data = self.data[[column_name]].dropna() object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object
-4,715,312,840,530,796,000
Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column.
sunpy/timeseries/timeseriesbase.py
extract
yashrsharma44/sunpy
python
def extract(self, column_name): 'Returns a new time series with the chosen column.\n\n Parameters\n ----------\n column_name : `str`\n A valid column name.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series with only the selected column.\n ' '\n # TODO allow the extract function to pick more than one column\n if isinstance(self, pandas.Series):\n return self\n else:\n return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy()))\n ' data = self.data[[column_name]].dropna() object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object
def concatenate(self, otherts, **kwargs): 'Concatenate with another TimeSeries. This function will check and\n remove any duplicate times. It will keep the column values from the\n original time series to which the new time series is being added.\n\n Parameters\n ----------\n otherts : `~sunpy.timeseries.TimeSeries`\n Another time series.\n\n same_source : `bool` Optional\n Set to true to check if the sources of the time series match.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series.\n\n Debate: decide if we want to be able to concatenate multiple time series\n at once.\n ' if (self == otherts): return self same_source = kwargs.get('same_source', False) if (same_source and (not isinstance(otherts, self.__class__))): raise TypeError('TimeSeries classes must match if specified.') meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) units = OrderedDict() units.update(self.units) units.update(otherts.units) if (self.__class__ == otherts.__class__): object = self.__class__(data.sort_index(), meta, units) else: object = GenericTimeSeries(data.sort_index(), meta, units) object._sanitize_metadata() object._sanitize_units() return object
7,234,888,421,910,104,000
Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once.
sunpy/timeseries/timeseriesbase.py
concatenate
yashrsharma44/sunpy
python
def concatenate(self, otherts, **kwargs): 'Concatenate with another TimeSeries. This function will check and\n remove any duplicate times. It will keep the column values from the\n original time series to which the new time series is being added.\n\n Parameters\n ----------\n otherts : `~sunpy.timeseries.TimeSeries`\n Another time series.\n\n same_source : `bool` Optional\n Set to true to check if the sources of the time series match.\n\n Returns\n -------\n newts : `~sunpy.timeseries.TimeSeries`\n A new time series.\n\n Debate: decide if we want to be able to concatenate multiple time series\n at once.\n ' if (self == otherts): return self same_source = kwargs.get('same_source', False) if (same_source and (not isinstance(otherts, self.__class__))): raise TypeError('TimeSeries classes must match if specified.') meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) units = OrderedDict() units.update(self.units) units.update(otherts.units) if (self.__class__ == otherts.__class__): object = self.__class__(data.sort_index(), meta, units) else: object = GenericTimeSeries(data.sort_index(), meta, units) object._sanitize_metadata() object._sanitize_units() return object
def plot(self, axes=None, **plot_args): 'Plot a plot of the time series\n\n Parameters\n ----------\n axes : `~matplotlib.axes.Axes` or None\n If provided the image will be plotted on the given axes. Otherwise\n the current axes will be used.\n\n **plot_args : `dict`\n Any additional plot arguments that should be used\n when plotting.\n\n Returns\n -------\n axes : `~matplotlib.axes.Axes`\n The plot axes.\n ' if (axes is None): axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes
3,276,638,724,602,902,000
Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes.
sunpy/timeseries/timeseriesbase.py
plot
yashrsharma44/sunpy
python
def plot(self, axes=None, **plot_args): 'Plot a plot of the time series\n\n Parameters\n ----------\n axes : `~matplotlib.axes.Axes` or None\n If provided the image will be plotted on the given axes. Otherwise\n the current axes will be used.\n\n **plot_args : `dict`\n Any additional plot arguments that should be used\n when plotting.\n\n Returns\n -------\n axes : `~matplotlib.axes.Axes`\n The plot axes.\n ' if (axes is None): axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes
def peek(self, **kwargs): 'Displays the time series in a new figure.\n\n Parameters\n ----------\n **kwargs : `dict`\n Any additional plot arguments that should be used when plotting.\n ' self._validate_data_for_ploting() figure = plt.figure() self.plot(**kwargs) figure.show()
-7,159,612,167,630,332,000
Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting.
sunpy/timeseries/timeseriesbase.py
peek
yashrsharma44/sunpy
python
def peek(self, **kwargs): 'Displays the time series in a new figure.\n\n Parameters\n ----------\n **kwargs : `dict`\n Any additional plot arguments that should be used when plotting.\n ' self._validate_data_for_ploting() figure = plt.figure() self.plot(**kwargs) figure.show()
def _validate_data_for_ploting(self): 'Raises an exception if the timeseries is invalid for plotting.\n To be added into all the peek methods in all source sup-classes.\n Currently only checks if we have an empty timeseries, where:\n len(self.data) == 0\n\n ' if (len(self.data) == 0): raise ValueError("The timeseries can't be plotted as it has no data present. (len(self.data) == 0)")
4,499,807,279,462,531,600
Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0
sunpy/timeseries/timeseriesbase.py
_validate_data_for_ploting
yashrsharma44/sunpy
python
def _validate_data_for_ploting(self): 'Raises an exception if the timeseries is invalid for plotting.\n To be added into all the peek methods in all source sup-classes.\n Currently only checks if we have an empty timeseries, where:\n len(self.data) == 0\n\n ' if (len(self.data) == 0): raise ValueError("The timeseries can't be plotted as it has no data present. (len(self.data) == 0)")
def _validate_meta(self): '\n Validates the meta-information associated with a TimeSeries.\n\n This method includes very basic validation checks which apply to\n all of the kinds of files that SunPy can read. Datasource-specific\n validation should be handled in the relevant file in the\n sunpy.timeseries.sources package.\n\n Allows for default unit assignment for:\n COL_UNITS\n\n ' warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and (u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown')): warnings.warn(f'Unknown value for {meta_property.upper()}.', SunpyUserWarning)
7,407,329,041,437,525,000
Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS
sunpy/timeseries/timeseriesbase.py
_validate_meta
yashrsharma44/sunpy
python
def _validate_meta(self): '\n Validates the meta-information associated with a TimeSeries.\n\n This method includes very basic validation checks which apply to\n all of the kinds of files that SunPy can read. Datasource-specific\n validation should be handled in the relevant file in the\n sunpy.timeseries.sources package.\n\n Allows for default unit assignment for:\n COL_UNITS\n\n ' warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and (u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown')): warnings.warn(f'Unknown value for {meta_property.upper()}.', SunpyUserWarning)
def _validate_units(self, units, **kwargs): '\n Validates the astropy unit-information associated with a TimeSeries.\n\n This method includes very basic validation checks which apply to\n all of the kinds of files that SunPy can read. Datasource-specific\n validation should be handled in the relevant file in the\n sunpy.timeseries.sources package.\n\n Allows for default unit assignment for:\n COL_UNITS\n\n ' warnings.simplefilter('always', Warning) result = True for key in units: if (not isinstance(units[key], astropy.units.UnitBase)): result = False warnings.warn(f'Invalid unit given for {key}.', SunpyUserWarning) return result
-8,785,898,291,672,626,000
Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS
sunpy/timeseries/timeseriesbase.py
_validate_units
yashrsharma44/sunpy
python
def _validate_units(self, units, **kwargs): '\n Validates the astropy unit-information associated with a TimeSeries.\n\n This method includes very basic validation checks which apply to\n all of the kinds of files that SunPy can read. Datasource-specific\n validation should be handled in the relevant file in the\n sunpy.timeseries.sources package.\n\n Allows for default unit assignment for:\n COL_UNITS\n\n ' warnings.simplefilter('always', Warning) result = True for key in units: if (not isinstance(units[key], astropy.units.UnitBase)): result = False warnings.warn(f'Invalid unit given for {key}.', SunpyUserWarning) return result
def _sanitize_units(self, **kwargs): "\n Sanitises the collections.OrderedDict used to store the units.\n Primarily this method will:\n\n Remove entries that don't match up to a column,\n Add unitless entries for columns with no units defined.\n Re-arrange the order of the dictionary to match the columns.\n " warnings.simplefilter('always', Warning) for column in (set(self.data.columns.tolist()) - set(self.units.keys())): self.units[column] = u.dimensionless_unscaled warnings.warn(f'Unknown units for {column}.', SunpyUserWarning) units = OrderedDict() for column in self.data.columns.tolist(): units.update({column: self.units[column]}) self.units = units
-7,829,692,574,669,847,000
Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns.
sunpy/timeseries/timeseriesbase.py
_sanitize_units
yashrsharma44/sunpy
python
def _sanitize_units(self, **kwargs): "\n Sanitises the collections.OrderedDict used to store the units.\n Primarily this method will:\n\n Remove entries that don't match up to a column,\n Add unitless entries for columns with no units defined.\n Re-arrange the order of the dictionary to match the columns.\n " warnings.simplefilter('always', Warning) for column in (set(self.data.columns.tolist()) - set(self.units.keys())): self.units[column] = u.dimensionless_unscaled warnings.warn(f'Unknown units for {column}.', SunpyUserWarning) units = OrderedDict() for column in self.data.columns.tolist(): units.update({column: self.units[column]}) self.units = units
def _sanitize_metadata(self, **kwargs): "\n Sanitises the TimeSeriesMetaData object used to store the metadata.\n Primarily this method will:\n\n Remove entries outside of the datas TimeRange or truncate TimeRanges\n if the metadata overflows past the data,\n Remove column references in the metadata that don't match to a column\n in the data.\n Remove metadata entries that have no columns matching the data.\n " warnings.simplefilter('always', Warning) self.meta._truncate(self.time_range) redundant_cols = list((set(self.meta.columns) - set(self.columns))) self.meta._remove_columns(redundant_cols)
908,350,509,889,361,200
Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data.
sunpy/timeseries/timeseriesbase.py
_sanitize_metadata
yashrsharma44/sunpy
python
def _sanitize_metadata(self, **kwargs): "\n Sanitises the TimeSeriesMetaData object used to store the metadata.\n Primarily this method will:\n\n Remove entries outside of the datas TimeRange or truncate TimeRanges\n if the metadata overflows past the data,\n Remove column references in the metadata that don't match to a column\n in the data.\n Remove metadata entries that have no columns matching the data.\n " warnings.simplefilter('always', Warning) self.meta._truncate(self.time_range) redundant_cols = list((set(self.meta.columns) - set(self.columns))) self.meta._remove_columns(redundant_cols)
def to_table(self, **kwargs): '\n Return an Astropy Table of the give TimeSeries object.\n\n Returns\n -------\n newtable : `~astrpy.table`\n A new astropy table containing the data from the time series.\n The table will include units where relevant.\n ' table = Table.from_pandas(self.data) index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) for key in self.units: table[key].unit = self.units[key] return table
3,324,495,531,496,266,000
Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant.
sunpy/timeseries/timeseriesbase.py
to_table
yashrsharma44/sunpy
python
def to_table(self, **kwargs): '\n Return an Astropy Table of the give TimeSeries object.\n\n Returns\n -------\n newtable : `~astrpy.table`\n A new astropy table containing the data from the time series.\n The table will include units where relevant.\n ' table = Table.from_pandas(self.data) index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) for key in self.units: table[key].unit = self.units[key] return table
def to_dataframe(self, **kwargs): '\n Return a Pandas DataFrame of the give TimeSeries object.\n\n Returns\n -------\n newdf : `~pandas.core.frame.DataFrame`\n A Pandas Dataframe containing the data.\n ' return self.data
-745,279,484,466,440,700
Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data.
sunpy/timeseries/timeseriesbase.py
to_dataframe
yashrsharma44/sunpy
python
def to_dataframe(self, **kwargs): '\n Return a Pandas DataFrame of the give TimeSeries object.\n\n Returns\n -------\n newdf : `~pandas.core.frame.DataFrame`\n A Pandas Dataframe containing the data.\n ' return self.data
def to_array(self, columns=None): '\n Return a numpy array of the give TimeSeries object.\n\n Parameters\n ----------\n columns: `list`, optional, default:None\n If None, return all columns minus the index, otherwise, returns\n specified columns.\n\n Returns\n -------\n values : `~numpy.ndarray`\n If the caller is heterogeneous and contains booleans or objects,\n the result will be of dtype=object. See Notes.\n ' if columns: return self.data.values[columns] else: return self.data.values
-7,989,567,506,834,727,000
Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.
sunpy/timeseries/timeseriesbase.py
to_array
yashrsharma44/sunpy
python
def to_array(self, columns=None): '\n Return a numpy array of the give TimeSeries object.\n\n Parameters\n ----------\n columns: `list`, optional, default:None\n If None, return all columns minus the index, otherwise, returns\n specified columns.\n\n Returns\n -------\n values : `~numpy.ndarray`\n If the caller is heterogeneous and contains booleans or objects,\n the result will be of dtype=object. See Notes.\n ' if columns: return self.data.values[columns] else: return self.data.values
def __eq__(self, other): '\n Check two TimeSeries objects are the same, they have matching type, data,\n metadata and units entries.\n\n Parameters\n ----------\n other : `~sunpy.timeseries.GenericTimeSeries`\n The second TimeSeries object to compare with.\n\n Returns\n -------\n result : `bool`\n ' match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match
-553,668,783,808,033,660
Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool`
sunpy/timeseries/timeseriesbase.py
__eq__
yashrsharma44/sunpy
python
def __eq__(self, other): '\n Check two TimeSeries objects are the same, they have matching type, data,\n metadata and units entries.\n\n Parameters\n ----------\n other : `~sunpy.timeseries.GenericTimeSeries`\n The second TimeSeries object to compare with.\n\n Returns\n -------\n result : `bool`\n ' match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match
def __ne__(self, other): "\n Check two TimeSeries objects are not the same, they don't have matching\n type, data, metadata and/or units entries.\n\n Parameters\n ----------\n other : `~sunpy.timeseries.GenericTimeSeries`\n The second TimeSeries object to compare with.\n\n Returns\n -------\n result : `bool`\n " return (not (self == other))
6,942,846,282,346,546,000
Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool`
sunpy/timeseries/timeseriesbase.py
__ne__
yashrsharma44/sunpy
python
def __ne__(self, other): "\n Check two TimeSeries objects are not the same, they don't have matching\n type, data, metadata and/or units entries.\n\n Parameters\n ----------\n other : `~sunpy.timeseries.GenericTimeSeries`\n The second TimeSeries object to compare with.\n\n Returns\n -------\n result : `bool`\n " return (not (self == other))
@classmethod def _parse_file(cls, filepath): 'Parses a file - to be implemented in any subclass that may use files' return NotImplemented
6,994,217,759,058,817,000
Parses a file - to be implemented in any subclass that may use files
sunpy/timeseries/timeseriesbase.py
_parse_file
yashrsharma44/sunpy
python
@classmethod def _parse_file(cls, filepath): return NotImplemented
def set_total(self, sum_value): 'This is an example of how a subclass would implement a direct setter.\n\n Args:\n sum_value: The total to set.\n ' self.sum.assign(sum_value)
8,071,151,840,042,293,000
This is an example of how a subclass would implement a direct setter. Args: sum_value: The total to set.
keras/engine/base_preprocessing_layer_test.py
set_total
01-vyom/keras
python
def set_total(self, sum_value): 'This is an example of how a subclass would implement a direct setter.\n\n Args:\n sum_value: The total to set.\n ' self.sum.assign(sum_value)
def test_adapt_bad_input_fails(self): 'Test that non-Dataset/Numpy inputs cause a reasonable error.' input_dataset = {'foo': 0} layer = AddingPreprocessingLayer() if tf.executing_eagerly(): with self.assertRaisesRegex(ValueError, 'Failed to find data adapter'): layer.adapt(input_dataset) else: with self.assertRaisesRegex(ValueError, 'requires a'): layer.adapt(input_dataset)
504,718,727,793,669,800
Test that non-Dataset/Numpy inputs cause a reasonable error.
keras/engine/base_preprocessing_layer_test.py
test_adapt_bad_input_fails
01-vyom/keras
python
def test_adapt_bad_input_fails(self): input_dataset = {'foo': 0} layer = AddingPreprocessingLayer() if tf.executing_eagerly(): with self.assertRaisesRegex(ValueError, 'Failed to find data adapter'): layer.adapt(input_dataset) else: with self.assertRaisesRegex(ValueError, 'requires a'): layer.adapt(input_dataset)
def test_adapt_infinite_dataset_fails(self): 'Test that preproc layers fail if an infinite dataset is passed.' input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])).repeat() layer = AddingPreprocessingLayer() if tf.executing_eagerly(): with self.assertRaisesRegex(ValueError, 'infinite dataset'): layer.adapt(input_dataset) else: with self.assertRaisesRegex(ValueError, '.*infinite number of elements.*'): layer.adapt(input_dataset)
1,876,904,811,739,438,600
Test that preproc layers fail if an infinite dataset is passed.
keras/engine/base_preprocessing_layer_test.py
test_adapt_infinite_dataset_fails
01-vyom/keras
python
def test_adapt_infinite_dataset_fails(self): input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])).repeat() layer = AddingPreprocessingLayer() if tf.executing_eagerly(): with self.assertRaisesRegex(ValueError, 'infinite dataset'): layer.adapt(input_dataset) else: with self.assertRaisesRegex(ValueError, '.*infinite number of elements.*'): layer.adapt(input_dataset)
def test_setter_update(self): 'Test the prototyped setter method.' input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.set_total(15) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
6,372,803,395,745,935,000
Test the prototyped setter method.
keras/engine/base_preprocessing_layer_test.py
test_setter_update
01-vyom/keras
python
def test_setter_update(self): input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.set_total(15) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
def test_pre_build_adapt_update_numpy(self): 'Test that preproc layers can adapt() before build() is called.' input_dataset = np.array([1, 2, 3, 4, 5]) layer = AddingPreprocessingLayer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
8,383,667,575,545,763,000
Test that preproc layers can adapt() before build() is called.
keras/engine/base_preprocessing_layer_test.py
test_pre_build_adapt_update_numpy
01-vyom/keras
python
def test_pre_build_adapt_update_numpy(self): input_dataset = np.array([1, 2, 3, 4, 5]) layer = AddingPreprocessingLayer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
def test_post_build_adapt_update_numpy(self): 'Test that preproc layers can adapt() after build() is called.' input_dataset = np.array([1, 2, 3, 4, 5]) input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
-5,922,545,801,141,978,000
Test that preproc layers can adapt() after build() is called.
keras/engine/base_preprocessing_layer_test.py
test_post_build_adapt_update_numpy
01-vyom/keras
python
def test_post_build_adapt_update_numpy(self): input_dataset = np.array([1, 2, 3, 4, 5]) input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
def test_pre_build_adapt_update_dataset(self): 'Test that preproc layers can adapt() before build() is called.' input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])) layer = AddingPreprocessingLayer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
1,788,629,159,740,084,700
Test that preproc layers can adapt() before build() is called.
keras/engine/base_preprocessing_layer_test.py
test_pre_build_adapt_update_dataset
01-vyom/keras
python
def test_pre_build_adapt_update_dataset(self): input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])) layer = AddingPreprocessingLayer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
def test_post_build_adapt_update_dataset(self): 'Test that preproc layers can adapt() after build() is called.' input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])) input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
-1,618,166,909,450,582,300
Test that preproc layers can adapt() after build() is called.
keras/engine/base_preprocessing_layer_test.py
test_post_build_adapt_update_dataset
01-vyom/keras
python
def test_post_build_adapt_update_dataset(self): input_dataset = tf.data.Dataset.from_tensor_slices(np.array([[1], [2], [3], [4], [5], [0]])) input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0]))
def test_weight_based_state_transfer(self): 'Test that preproc layers can transfer state via get/set weights..' def get_model(): input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() return (model, layer) input_dataset = np.array([1, 2, 3, 4, 5]) (model, layer) = get_model() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) weights = model.get_weights() (model_2, _) = get_model() self.assertAllEqual([[1], [2], [3]], model_2.predict([1.0, 2.0, 3.0])) model_2.set_weights(weights) self.assertAllEqual([[16], [17], [18]], model_2.predict([1.0, 2.0, 3.0]))
3,336,310,296,255,985,000
Test that preproc layers can transfer state via get/set weights..
keras/engine/base_preprocessing_layer_test.py
test_weight_based_state_transfer
01-vyom/keras
python
def test_weight_based_state_transfer(self): def get_model(): input_data = keras.Input(shape=(1,)) layer = AddingPreprocessingLayer() output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() return (model, layer) input_dataset = np.array([1, 2, 3, 4, 5]) (model, layer) = get_model() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) weights = model.get_weights() (model_2, _) = get_model() self.assertAllEqual([[1], [2], [3]], model_2.predict([1.0, 2.0, 3.0])) model_2.set_weights(weights) self.assertAllEqual([[16], [17], [18]], model_2.predict([1.0, 2.0, 3.0]))
def test_adapt_sets_input_shape_rank(self): "Check that `.adapt()` sets the `input_shape`'s rank." adapt_dataset = np.array([[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32) layer = AddingPreprocessingLayer() layer.adapt(adapt_dataset) input_dataset = np.array([[[1.0, 2.0], [3.0, 4.0]], [[3.0, 4.0], [5.0, 6.0]]], dtype=np.float32) layer(input_dataset) model = keras.Sequential([layer]) self.assertTrue(model.built) self.assertEqual(model.input_shape, (None, None, None))
452,410,190,368,058,430
Check that `.adapt()` sets the `input_shape`'s rank.
keras/engine/base_preprocessing_layer_test.py
test_adapt_sets_input_shape_rank
01-vyom/keras
python
def test_adapt_sets_input_shape_rank(self): adapt_dataset = np.array([[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32) layer = AddingPreprocessingLayer() layer.adapt(adapt_dataset) input_dataset = np.array([[[1.0, 2.0], [3.0, 4.0]], [[3.0, 4.0], [5.0, 6.0]]], dtype=np.float32) layer(input_dataset) model = keras.Sequential([layer]) self.assertTrue(model.built) self.assertEqual(model.input_shape, (None, None, None))
def test_adapt_doesnt_overwrite_input_shape(self): "Check that `.adapt()` doesn't change the `input_shape`." adapt_dataset = np.array([[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32) layer = AddingPreprocessingLayer(input_shape=[1, 2]) layer.adapt(adapt_dataset) model = keras.Sequential([layer]) self.assertTrue(model.built) self.assertEqual(model.input_shape, (None, 1, 2))
8,446,419,764,574,836,000
Check that `.adapt()` doesn't change the `input_shape`.
keras/engine/base_preprocessing_layer_test.py
test_adapt_doesnt_overwrite_input_shape
01-vyom/keras
python
def test_adapt_doesnt_overwrite_input_shape(self): adapt_dataset = np.array([[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32) layer = AddingPreprocessingLayer(input_shape=[1, 2]) layer.adapt(adapt_dataset) model = keras.Sequential([layer]) self.assertTrue(model.built) self.assertEqual(model.input_shape, (None, 1, 2))
def test_adapt_fails(self): 'Test that calling adapt leads to a runtime error.' input_dataset = {'foo': 0} with tf.Graph().as_default(): layer = AddingPreprocessingLayer() with self.assertRaisesRegex(RuntimeError, '`adapt` is only supported in tensorflow v2'): layer.adapt(input_dataset)
-7,956,983,366,574,396,000
Test that calling adapt leads to a runtime error.
keras/engine/base_preprocessing_layer_test.py
test_adapt_fails
01-vyom/keras
python
def test_adapt_fails(self): input_dataset = {'foo': 0} with tf.Graph().as_default(): layer = AddingPreprocessingLayer() with self.assertRaisesRegex(RuntimeError, '`adapt` is only supported in tensorflow v2'): layer.adapt(input_dataset)
@callback @bind_hass def entity_sources(hass: HomeAssistant) -> dict[(str, dict[(str, str)])]: 'Get the entity sources.' return hass.data.get(DATA_ENTITY_SOURCE, {})
-6,891,118,196,048,396,000
Get the entity sources.
homeassistant/helpers/entity.py
entity_sources
algra4/core
python
@callback @bind_hass def entity_sources(hass: HomeAssistant) -> dict[(str, dict[(str, str)])]: return hass.data.get(DATA_ENTITY_SOURCE, {})
def generate_entity_id(entity_id_format: str, name: (str | None), current_ids: (list[str] | None)=None, hass: (HomeAssistant | None)=None) -> str: 'Generate a unique entity ID based on given entity IDs or used IDs.' return async_generate_entity_id(entity_id_format, name, current_ids, hass)
-3,719,838,031,144,718,000
Generate a unique entity ID based on given entity IDs or used IDs.
homeassistant/helpers/entity.py
generate_entity_id
algra4/core
python
def generate_entity_id(entity_id_format: str, name: (str | None), current_ids: (list[str] | None)=None, hass: (HomeAssistant | None)=None) -> str: return async_generate_entity_id(entity_id_format, name, current_ids, hass)
@callback def async_generate_entity_id(entity_id_format: str, name: (str | None), current_ids: (Iterable[str] | None)=None, hass: (HomeAssistant | None)=None) -> str: 'Generate a unique entity ID based on given entity IDs or used IDs.' name = (name or DEVICE_DEFAULT_NAME).lower() preferred_string = entity_id_format.format(slugify(name)) if (current_ids is not None): return ensure_unique_string(preferred_string, current_ids) if (hass is None): raise ValueError('Missing required parameter current_ids or hass') test_string = preferred_string tries = 1 while (not hass.states.async_available(test_string)): tries += 1 test_string = f'{preferred_string}_{tries}' return test_string
-7,373,176,610,640,175,000
Generate a unique entity ID based on given entity IDs or used IDs.
homeassistant/helpers/entity.py
async_generate_entity_id
algra4/core
python
@callback def async_generate_entity_id(entity_id_format: str, name: (str | None), current_ids: (Iterable[str] | None)=None, hass: (HomeAssistant | None)=None) -> str: name = (name or DEVICE_DEFAULT_NAME).lower() preferred_string = entity_id_format.format(slugify(name)) if (current_ids is not None): return ensure_unique_string(preferred_string, current_ids) if (hass is None): raise ValueError('Missing required parameter current_ids or hass') test_string = preferred_string tries = 1 while (not hass.states.async_available(test_string)): tries += 1 test_string = f'{preferred_string}_{tries}' return test_string
def get_capability(hass: HomeAssistant, entity_id: str, capability: str) -> (Any | None): 'Get a capability attribute of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(capability) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.capabilities.get(capability) if entry.capabilities else None)
-1,369,188,086,554,530,000
Get a capability attribute of an entity. First try the statemachine, then entity registry.
homeassistant/helpers/entity.py
get_capability
algra4/core
python
def get_capability(hass: HomeAssistant, entity_id: str, capability: str) -> (Any | None): 'Get a capability attribute of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(capability) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.capabilities.get(capability) if entry.capabilities else None)
def get_device_class(hass: HomeAssistant, entity_id: str) -> (str | None): 'Get device class of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_DEVICE_CLASS) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.device_class or entry.original_device_class)
6,866,142,974,874,640,000
Get device class of an entity. First try the statemachine, then entity registry.
homeassistant/helpers/entity.py
get_device_class
algra4/core
python
def get_device_class(hass: HomeAssistant, entity_id: str) -> (str | None): 'Get device class of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_DEVICE_CLASS) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.device_class or entry.original_device_class)
def get_supported_features(hass: HomeAssistant, entity_id: str) -> int: 'Get supported features for an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.supported_features or 0)
-2,023,362,472,376,857,000
Get supported features for an entity. First try the statemachine, then entity registry.
homeassistant/helpers/entity.py
get_supported_features
algra4/core
python
def get_supported_features(hass: HomeAssistant, entity_id: str) -> int: 'Get supported features for an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return (entry.supported_features or 0)
def get_unit_of_measurement(hass: HomeAssistant, entity_id: str) -> (str | None): 'Get unit of measurement class of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return entry.unit_of_measurement
-3,598,349,409,584,291,300
Get unit of measurement class of an entity. First try the statemachine, then entity registry.
homeassistant/helpers/entity.py
get_unit_of_measurement
algra4/core
python
def get_unit_of_measurement(hass: HomeAssistant, entity_id: str) -> (str | None): 'Get unit of measurement class of an entity.\n\n First try the statemachine, then entity registry.\n ' if (state := hass.states.get(entity_id)): return state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) entity_registry = er.async_get(hass) if (not (entry := entity_registry.async_get(entity_id))): raise HomeAssistantError(f'Unknown entity {entity_id}') return entry.unit_of_measurement
@property def should_poll(self) -> bool: 'Return True if entity has to be polled for state.\n\n False if entity pushes its state to HA.\n ' return self._attr_should_poll
4,027,934,016,660,659,000
Return True if entity has to be polled for state. False if entity pushes its state to HA.
homeassistant/helpers/entity.py
should_poll
algra4/core
python
@property def should_poll(self) -> bool: 'Return True if entity has to be polled for state.\n\n False if entity pushes its state to HA.\n ' return self._attr_should_poll
@property def unique_id(self) -> (str | None): 'Return a unique ID.' return self._attr_unique_id
-237,840,374,900,852,200
Return a unique ID.
homeassistant/helpers/entity.py
unique_id
algra4/core
python
@property def unique_id(self) -> (str | None): return self._attr_unique_id
@property def name(self) -> (str | None): 'Return the name of the entity.' if hasattr(self, '_attr_name'): return self._attr_name if hasattr(self, 'entity_description'): return self.entity_description.name return None
8,010,586,074,726,211,000
Return the name of the entity.
homeassistant/helpers/entity.py
name
algra4/core
python
@property def name(self) -> (str | None): if hasattr(self, '_attr_name'): return self._attr_name if hasattr(self, 'entity_description'): return self.entity_description.name return None
@property def state(self) -> StateType: 'Return the state of the entity.' return self._attr_state
-2,358,687,993,022,337,500
Return the state of the entity.
homeassistant/helpers/entity.py
state
algra4/core
python
@property def state(self) -> StateType: return self._attr_state
@property def capability_attributes(self) -> (Mapping[(str, Any)] | None): 'Return the capability attributes.\n\n Attributes that explain the capabilities of an entity.\n\n Implemented by component base class. Convention for attribute names\n is lowercase snake_case.\n ' return None
-4,403,257,508,118,563,300
Return the capability attributes. Attributes that explain the capabilities of an entity. Implemented by component base class. Convention for attribute names is lowercase snake_case.
homeassistant/helpers/entity.py
capability_attributes
algra4/core
python
@property def capability_attributes(self) -> (Mapping[(str, Any)] | None): 'Return the capability attributes.\n\n Attributes that explain the capabilities of an entity.\n\n Implemented by component base class. Convention for attribute names\n is lowercase snake_case.\n ' return None
@property def state_attributes(self) -> (dict[(str, Any)] | None): 'Return the state attributes.\n\n Implemented by component base class, should not be extended by integrations.\n Convention for attribute names is lowercase snake_case.\n ' return None
-8,200,392,401,859,698,000
Return the state attributes. Implemented by component base class, should not be extended by integrations. Convention for attribute names is lowercase snake_case.
homeassistant/helpers/entity.py
state_attributes
algra4/core
python
@property def state_attributes(self) -> (dict[(str, Any)] | None): 'Return the state attributes.\n\n Implemented by component base class, should not be extended by integrations.\n Convention for attribute names is lowercase snake_case.\n ' return None