body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): 'Should use dev browser firstrun template for 36.0a2' req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
-6,082,857,057,709,693,000
Should use dev browser firstrun template for 36.0a2
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_36_0_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
@override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): 'Should use standard firstrun template for older aurora' req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html'])
3,963,251,421,227,757,600
Should use standard firstrun template for older aurora
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_34_0_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): 'Should use search tour template for 34.0' req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html'])
597,794,562,570,242,400
Should use search tour template for 34.0
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): 'Should use search tour template for 34.0.5' req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html'])
-1,516,847,940,988,662,300
Should use search tour template for 34.0.5
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0_5
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): 'Should use australis template for 34.0 non en-US locales' req = self.rf.get('/en-US/firefox/tour/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html'])
-147,627,887,027,707,520
Should use australis template for 34.0 non en-US locales
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0_locales
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): req = self.rf.get('/en-US/firefox/tour/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html'])
@override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): 'Should redirect to https' url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], ('https://testserver' + url))
6,487,019,531,341,117,000
Should redirect to https
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect
MozFux/bedrock
python
@override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], ('https://testserver' + url))
@override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): 'Should not redirect to https: in DEV mode.' url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
-1,218,235,115,904,298,800
Should not redirect to https: in DEV mode.
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect_not_dev
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
@override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): 'Should not redirect to https: when already secure.' url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
8,461,759,121,701,641,000
Should not redirect to https: when already secure.
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect_secure
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
@override_settings(DEV=True) def test_can_post(self, render_mock): 'Home page must accept post for newsletter signup.' req = self.rf.post('/en-US/firefox/firstrun/') self.view(req) render_mock.assert_called_once_with(req, ['firefox/australis/firstrun-tour.html'], ANY)
-5,104,610,902,209,316,000
Home page must accept post for newsletter signup.
bedrock/firefox/tests/test_base.py
test_can_post
MozFux/bedrock
python
@override_settings(DEV=True) def test_can_post(self, render_mock): req = self.rf.post('/en-US/firefox/firstrun/') self.view(req) render_mock.assert_called_once_with(req, ['firefox/australis/firstrun-tour.html'], ANY)
@override_settings(DEV=True) def test_fx_australis_29(self, render_mock): 'Should use firstrun tour template' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='29.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
178,032,531,148,716,450
Should use firstrun tour template
bedrock/firefox/tests/test_base.py
test_fx_australis_29
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_australis_29(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='29.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
@override_settings(DEV=True) def test_fx_dev_browser_35_0_a2(self, render_mock): 'Should use dev browser firstrun template for 35.0a2' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
7,794,727,572,872,333,000
Should use dev browser firstrun template for 35.0a2
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_35_0_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_35_0_a2(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
@override_settings(DEV=True) def test_fx_dev_browser_35_1_a2(self, render_mock): 'Should use dev browser firstrun template for 35.1a2' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.1a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
4,322,405,846,441,060,000
Should use dev browser firstrun template for 35.1a2
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_35_1_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_35_1_a2(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.1a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
@override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): 'Should use dev browser firstrun template for 36.0a2' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
-873,573,943,611,264,300
Should use dev browser firstrun template for 36.0a2
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_36_0_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html'])
@override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): 'Should use standard firstrun template for older aurora' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
7,913,842,625,163,997,000
Should use standard firstrun template for older aurora
bedrock/firefox/tests/test_base.py
test_fx_dev_browser_34_0_a2
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): 'Should use search tour template for 34.0' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html'])
-2,371,753,744,900,670,500
Should use search tour template for 34.0
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): 'Should use search tour template for 34.0.5' req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html'])
6,636,234,812,839,590,000
Should use search tour template for 34.0.5
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0_5
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html'])
@override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): 'Should use australis template for 34.0 non en-US locales' req = self.rf.get('/en-US/firefox/firstrun/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
-3,163,513,675,798,710,000
Should use australis template for 34.0 non en-US locales
bedrock/firefox/tests/test_base.py
test_fx_search_tour_34_0_locales
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): req = self.rf.get('/en-US/firefox/firstrun/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html'])
@override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): 'Should redirect to https:' url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], ('https://testserver' + url))
-2,393,300,253,933,957,600
Should redirect to https:
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect
MozFux/bedrock
python
@override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], ('https://testserver' + url))
@override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): 'Should not redirect to https: in DEV mode.' url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
-5,515,797,027,378,008,000
Should not redirect to https: in DEV mode.
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect_not_dev
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
@override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): 'Should not redirect to https: when already secure.' url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
8,509,083,562,283,158,000
Should not redirect to https: when already secure.
bedrock/firefox/tests/test_base.py
test_fx_australis_secure_redirect_secure
MozFux/bedrock
python
@override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200)
def test_non_firefox(self): '\n Any non-Firefox user agents should be permanently redirected to\n /firefox/new/.\n ' user_agent = 'random' self.assert_ua_redirects_to(user_agent, 'firefox.new')
7,932,674,574,691,870,000
Any non-Firefox user agents should be permanently redirected to /firefox/new/.
bedrock/firefox/tests/test_base.py
test_non_firefox
MozFux/bedrock
python
def test_non_firefox(self): '\n Any non-Firefox user agents should be permanently redirected to\n /firefox/new/.\n ' user_agent = 'random' self.assert_ua_redirects_to(user_agent, 'firefox.new')
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='13.0.5') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('13.0.5', GOOD_PLATS)) def test_current_minor_version_firefox(self, latest_mock): '\n Should show current even if behind by a patch version\n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:13.0) Gecko/20100101 Firefox/13.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
-2,307,934,918,529,319,400
Should show current even if behind by a patch version
bedrock/firefox/tests/test_base.py
test_current_minor_version_firefox
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='13.0.5') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('13.0.5', GOOD_PLATS)) def test_current_minor_version_firefox(self, latest_mock): '\n \n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:13.0) Gecko/20100101 Firefox/13.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='25.0', FIREFOX_ESR='24.1') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('25.0', GOOD_PLATS)) def test_esr_firefox(self, latest_mock): '\n Currently released ESR firefoxen should not redirect. At present\n that is 24.0.x.\n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:24.0) Gecko/20100101 Firefox/24.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
-1,867,156,132,769,996,800
Currently released ESR firefoxen should not redirect. At present that is 24.0.x.
bedrock/firefox/tests/test_base.py
test_esr_firefox
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='25.0', FIREFOX_ESR='24.1') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('25.0', GOOD_PLATS)) def test_esr_firefox(self, latest_mock): '\n Currently released ESR firefoxen should not redirect. At present\n that is 24.0.x.\n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:24.0) Gecko/20100101 Firefox/24.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_current_firefox(self, latest_mock): '\n Currently released firefoxen should not redirect.\n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:16.0) Gecko/20100101 Firefox/16.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
438,300,697,182,293,600
Currently released firefoxen should not redirect.
bedrock/firefox/tests/test_base.py
test_current_firefox
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_current_firefox(self, latest_mock): '\n \n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:16.0) Gecko/20100101 Firefox/16.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_future_firefox(self, latest_mock): '\n Pre-release firefoxen should not redirect.\n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:18.0) Gecko/20100101 Firefox/18.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
6,772,237,399,750,246,000
Pre-release firefoxen should not redirect.
bedrock/firefox/tests/test_base.py
test_future_firefox
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_future_firefox(self, latest_mock): '\n \n ' user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:18.0) Gecko/20100101 Firefox/18.0' response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent')
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_tour_oldversion(self): 'Should not show tour if upgrading from 33.1 onwards.' response = self.client.get((self.url + '?oldversion=28.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=27.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=4.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=rv:10.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.1.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=35.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content)
3,527,238,019,798,652,400
Should not show tour if upgrading from 33.1 onwards.
bedrock/firefox/tests/test_base.py
test_whatsnew_tour_oldversion
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_tour_oldversion(self): response = self.client.get((self.url + '?oldversion=28.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=27.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=4.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=rv:10.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.1.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=35.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content)
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_search_tour_oldversion(self): 'Should not show tour if upgrading from 34.0 onwards.' self.url = reverse('firefox.whatsnew', args=['34.1']) response = self.client.get((self.url + '?oldversion=28.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=27.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=4.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=rv:10.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=35.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content)
3,656,918,458,974,156,300
Should not show tour if upgrading from 34.0 onwards.
bedrock/firefox/tests/test_base.py
test_whatsnew_search_tour_oldversion
MozFux/bedrock
python
@override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_search_tour_oldversion(self): self.url = reverse('firefox.whatsnew', args=['34.1']) response = self.client.get((self.url + '?oldversion=28.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=27.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=4.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=rv:10.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=33.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.0.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=34.1'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get((self.url + '?oldversion=35.0'), HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content)
def calculate_statistics(Y_hat, Y, beta=1, average=None): "\n\tCalculate the precisions, recalls, F-beta scores, and\n\tsupports for each class in `targets`.\n\n\tParameters\n\t----------\n\tY_hat : array-like, shape=(n_samples,)\n\t\tList of data labels.\n\n\tY : array-like, shape=(n_samples,)\n\t\tList of target truth labels.\n\n\tbeta : float, default=1\n\t\tStrength of recall relative to precision in the F-score.\n\n\taverage : {'micro', 'macro', 'weighted', None}, default=None\n\t\tThe type of averaging to perform on statistics. Must be one of:\n\t\t - None : Do not perform averaging, statistics for each class\n\t\t \t\t\tare returned.\n\t\t - 'micro' : Calculate globally, counting total true positives,\n\t\t \t\t\t\tfalse negatives, and false positives.\n\t\t - 'macro' : Calculate per class an unweighted mean.\n\t\t - 'weighted' : Calculate per class the mean weighted by support.\n\n\tReturns\n\t-------\n\tprecisions : float or dict\n\t\tDictionary of precisions for each class if `average` is None.\n\t\tAveraged precision based on averaging method if provided.\n\n\trecalls : float or dict\n\t\tDictionary of recalls for each class if `average` is None.\n\t\tAveraged recall based on averaging method if provided.\n\n\tfscores : float or dict\n\t\tDictionary of fscores for each class if `average` is None.\n\t\tAveraged fscore based on averaging method if provided.\n\n\tsupports : float or dict\n\t\tDictionary of supports for each class if `average` is None.\n\t\tTotal support (number of classes) if averaging method is provided.\n\t" if (beta < 0): raise ValueError('Beta must be non-negative') matrix = multiconfusion_matrix(Y_hat, Y) matrix_labels = list(matrix.keys()) matrix = np.array([matrix[l] for l in matrix_labels]) tp_sum = matrix[:, 1, 1] label_sum = (tp_sum + matrix[:, 0, 1]) target_sum = (tp_sum + matrix[:, 1, 0]) if (average == 'micro'): tp_sum = np.array([tp_sum.sum()]) label_sum = np.array([label_sum.sum()]) target_sum = np.array([target_sum.sum()]) with np.errstate(divide='ignore', invalid='ignore'): precisions = np.divide(tp_sum, label_sum, out=np.zeros(tp_sum.shape, dtype=float), where=(label_sum != 0)) recalls = np.divide(tp_sum, target_sum, out=np.zeros(tp_sum.shape, dtype=float), where=(target_sum != 0)) if np.isposinf(beta): fscores = recalls else: beta2 = (beta ** 2) denom = ((beta2 * precisions) + recalls) valid = np.where((denom != 0))[0] fscores = np.zeros_like(denom) fscores[valid] = ((((1 + beta2) * precisions[valid]) * recalls[valid]) / denom[valid]) if (average == 'weighted'): weights = target_sum if (target_sum.sum() == 0): return (0, 0, 0, target_sum.sum()) else: weights = None if (average is not None): precisions = np.average(precisions, weights=weights) recalls = np.average(recalls, weights=weights) fscores = np.average(fscores, weights=weights) supports = target_sum.sum() else: precisions = {matrix_labels[k]: precisions[k] for k in range(len(matrix_labels))} recalls = {matrix_labels[k]: recalls[k] for k in range(len(matrix_labels))} fscores = {matrix_labels[k]: fscores[k] for k in range(len(matrix_labels))} supports = {matrix_labels[k]: target_sum[k] for k in range(len(matrix_labels))} return (precisions, recalls, fscores, supports)
492,335,461,752,231,600
Calculate the precisions, recalls, F-beta scores, and supports for each class in `targets`. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. average : {'micro', 'macro', 'weighted', None}, default=None The type of averaging to perform on statistics. Must be one of: - None : Do not perform averaging, statistics for each class are returned. - 'micro' : Calculate globally, counting total true positives, false negatives, and false positives. - 'macro' : Calculate per class an unweighted mean. - 'weighted' : Calculate per class the mean weighted by support. Returns ------- precisions : float or dict Dictionary of precisions for each class if `average` is None. Averaged precision based on averaging method if provided. recalls : float or dict Dictionary of recalls for each class if `average` is None. Averaged recall based on averaging method if provided. fscores : float or dict Dictionary of fscores for each class if `average` is None. Averaged fscore based on averaging method if provided. supports : float or dict Dictionary of supports for each class if `average` is None. Total support (number of classes) if averaging method is provided.
sleepens/analysis/_report.py
calculate_statistics
paradoxysm/sleepens
python
def calculate_statistics(Y_hat, Y, beta=1, average=None): "\n\tCalculate the precisions, recalls, F-beta scores, and\n\tsupports for each class in `targets`.\n\n\tParameters\n\t----------\n\tY_hat : array-like, shape=(n_samples,)\n\t\tList of data labels.\n\n\tY : array-like, shape=(n_samples,)\n\t\tList of target truth labels.\n\n\tbeta : float, default=1\n\t\tStrength of recall relative to precision in the F-score.\n\n\taverage : {'micro', 'macro', 'weighted', None}, default=None\n\t\tThe type of averaging to perform on statistics. Must be one of:\n\t\t - None : Do not perform averaging, statistics for each class\n\t\t \t\t\tare returned.\n\t\t - 'micro' : Calculate globally, counting total true positives,\n\t\t \t\t\t\tfalse negatives, and false positives.\n\t\t - 'macro' : Calculate per class an unweighted mean.\n\t\t - 'weighted' : Calculate per class the mean weighted by support.\n\n\tReturns\n\t-------\n\tprecisions : float or dict\n\t\tDictionary of precisions for each class if `average` is None.\n\t\tAveraged precision based on averaging method if provided.\n\n\trecalls : float or dict\n\t\tDictionary of recalls for each class if `average` is None.\n\t\tAveraged recall based on averaging method if provided.\n\n\tfscores : float or dict\n\t\tDictionary of fscores for each class if `average` is None.\n\t\tAveraged fscore based on averaging method if provided.\n\n\tsupports : float or dict\n\t\tDictionary of supports for each class if `average` is None.\n\t\tTotal support (number of classes) if averaging method is provided.\n\t" if (beta < 0): raise ValueError('Beta must be non-negative') matrix = multiconfusion_matrix(Y_hat, Y) matrix_labels = list(matrix.keys()) matrix = np.array([matrix[l] for l in matrix_labels]) tp_sum = matrix[:, 1, 1] label_sum = (tp_sum + matrix[:, 0, 1]) target_sum = (tp_sum + matrix[:, 1, 0]) if (average == 'micro'): tp_sum = np.array([tp_sum.sum()]) label_sum = np.array([label_sum.sum()]) target_sum = np.array([target_sum.sum()]) with np.errstate(divide='ignore', invalid='ignore'): precisions = np.divide(tp_sum, label_sum, out=np.zeros(tp_sum.shape, dtype=float), where=(label_sum != 0)) recalls = np.divide(tp_sum, target_sum, out=np.zeros(tp_sum.shape, dtype=float), where=(target_sum != 0)) if np.isposinf(beta): fscores = recalls else: beta2 = (beta ** 2) denom = ((beta2 * precisions) + recalls) valid = np.where((denom != 0))[0] fscores = np.zeros_like(denom) fscores[valid] = ((((1 + beta2) * precisions[valid]) * recalls[valid]) / denom[valid]) if (average == 'weighted'): weights = target_sum if (target_sum.sum() == 0): return (0, 0, 0, target_sum.sum()) else: weights = None if (average is not None): precisions = np.average(precisions, weights=weights) recalls = np.average(recalls, weights=weights) fscores = np.average(fscores, weights=weights) supports = target_sum.sum() else: precisions = {matrix_labels[k]: precisions[k] for k in range(len(matrix_labels))} recalls = {matrix_labels[k]: recalls[k] for k in range(len(matrix_labels))} fscores = {matrix_labels[k]: fscores[k] for k in range(len(matrix_labels))} supports = {matrix_labels[k]: target_sum[k] for k in range(len(matrix_labels))} return (precisions, recalls, fscores, supports)
def classification_report(Y_hat, Y, beta=1): "\n\tCreate a report on classification statistics.\n\n\tParameters\n\t----------\n\tY_hat : array-like, shape=(n_samples,)\n\t\tList of data labels.\n\n\tY : array-like, shape=(n_samples,)\n\t\tList of target truth labels.\n\n\tbeta : float, default=1\n\t\tStrength of recall relative to precision in the F-score.\n\n\tReturns\n\t-------\n\treport : dict\n\t\tDictionary containing classification statistics in the following\n\t\tstructure:\n\t\t - 'label': {\n\t\t \t\t\t\t'precision':0.5,\n\t\t\t\t\t\t'recall':1.0,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t\t\t\t\t'support':1\n\t\t \t\t\t},\n\t\t ...\n\t\t - 'beta': 1,\n\t\t - 'support': 5,\n\t\t - 'accuracy': 0.8,\n\t\t - 'macro avg': {\n\t\t \t\t\t\t'precision':0.6,\n\t\t\t\t\t\t'recall':0.9,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t \t\t\t},\n\t\t - 'weighted avg': {\n\t\t \t\t\t\t'precision':0.67,\n\t\t\t\t\t\t'recall':0.9,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t \t\t\t}\n\t" stats = calculate_statistics(Y_hat, Y, beta=beta) (_, _, accuracy, total) = calculate_statistics(Y_hat, Y, beta=beta, average='micro') macro = calculate_statistics(Y_hat, Y, beta=beta, average='macro') weighted = calculate_statistics(Y_hat, Y, beta=beta, average='weighted') h = ['precision', 'recall', 'f-score', 'support'] report = {'beta': beta, 'support': total, 'accuracy': accuracy, 'macro avg': {h[i]: macro[i] for i in range(len(h))}, 'weighted avg': {h[i]: weighted[i] for i in range(len(h))}} classes = set(stats[0].keys()) for c in classes: report[c] = {h[i]: stats[i][c] for i in range(len(h))} return report
-4,029,619,413,932,635,000
Create a report on classification statistics. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. Returns ------- report : dict Dictionary containing classification statistics in the following structure: - 'label': { 'precision':0.5, 'recall':1.0, 'f-score':0.67, 'support':1 }, ... - 'beta': 1, - 'support': 5, - 'accuracy': 0.8, - 'macro avg': { 'precision':0.6, 'recall':0.9, 'f-score':0.67, }, - 'weighted avg': { 'precision':0.67, 'recall':0.9, 'f-score':0.67, }
sleepens/analysis/_report.py
classification_report
paradoxysm/sleepens
python
def classification_report(Y_hat, Y, beta=1): "\n\tCreate a report on classification statistics.\n\n\tParameters\n\t----------\n\tY_hat : array-like, shape=(n_samples,)\n\t\tList of data labels.\n\n\tY : array-like, shape=(n_samples,)\n\t\tList of target truth labels.\n\n\tbeta : float, default=1\n\t\tStrength of recall relative to precision in the F-score.\n\n\tReturns\n\t-------\n\treport : dict\n\t\tDictionary containing classification statistics in the following\n\t\tstructure:\n\t\t - 'label': {\n\t\t \t\t\t\t'precision':0.5,\n\t\t\t\t\t\t'recall':1.0,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t\t\t\t\t'support':1\n\t\t \t\t\t},\n\t\t ...\n\t\t - 'beta': 1,\n\t\t - 'support': 5,\n\t\t - 'accuracy': 0.8,\n\t\t - 'macro avg': {\n\t\t \t\t\t\t'precision':0.6,\n\t\t\t\t\t\t'recall':0.9,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t \t\t\t},\n\t\t - 'weighted avg': {\n\t\t \t\t\t\t'precision':0.67,\n\t\t\t\t\t\t'recall':0.9,\n\t\t\t\t\t\t'f-score':0.67,\n\t\t \t\t\t}\n\t" stats = calculate_statistics(Y_hat, Y, beta=beta) (_, _, accuracy, total) = calculate_statistics(Y_hat, Y, beta=beta, average='micro') macro = calculate_statistics(Y_hat, Y, beta=beta, average='macro') weighted = calculate_statistics(Y_hat, Y, beta=beta, average='weighted') h = ['precision', 'recall', 'f-score', 'support'] report = {'beta': beta, 'support': total, 'accuracy': accuracy, 'macro avg': {h[i]: macro[i] for i in range(len(h))}, 'weighted avg': {h[i]: weighted[i] for i in range(len(h))}} classes = set(stats[0].keys()) for c in classes: report[c] = {h[i]: stats[i][c] for i in range(len(h))} return report
def conv_forward_im2col(x, w, b, conv_param): '\n A fast implementation of the forward pass for a convolutional layer\n based on im2col and col2im.\n ' (N, C, H, W) = x.shape (num_filters, _, filter_height, filter_width) = w.shape (stride, pad) = (conv_param['stride'], conv_param['pad']) assert ((((W + (2 * pad)) - filter_width) % stride) == 0), 'width does not work' assert ((((H + (2 * pad)) - filter_height) % stride) == 0), 'height does not work' out_height = ((((H + (2 * pad)) - filter_height) / stride) + 1) out_width = ((((W + (2 * pad)) - filter_width) / stride) + 1) out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = (w.reshape((w.shape[0], (- 1))).dot(x_cols) + b.reshape((- 1), 1)) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return (out, cache)
-9,140,524,359,592,905,000
A fast implementation of the forward pass for a convolutional layer based on im2col and col2im.
2016winter/assignment2/cs231n/fast_layers.py
conv_forward_im2col
anandsaha/cs231n.assignments
python
def conv_forward_im2col(x, w, b, conv_param): '\n A fast implementation of the forward pass for a convolutional layer\n based on im2col and col2im.\n ' (N, C, H, W) = x.shape (num_filters, _, filter_height, filter_width) = w.shape (stride, pad) = (conv_param['stride'], conv_param['pad']) assert ((((W + (2 * pad)) - filter_width) % stride) == 0), 'width does not work' assert ((((H + (2 * pad)) - filter_height) % stride) == 0), 'height does not work' out_height = ((((H + (2 * pad)) - filter_height) / stride) + 1) out_width = ((((W + (2 * pad)) - filter_width) / stride) + 1) out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = (w.reshape((w.shape[0], (- 1))).dot(x_cols) + b.reshape((- 1), 1)) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return (out, cache)
def conv_backward_im2col(dout, cache): '\n A fast implementation of the backward pass for a convolutional layer\n based on im2col and col2im.\n ' (x, w, b, conv_param, x_cols) = cache (stride, pad) = (conv_param['stride'], conv_param['pad']) db = np.sum(dout, axis=(0, 2, 3)) (num_filters, _, filter_height, filter_width) = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, (- 1)) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, (- 1)).T.dot(dout_reshaped) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return (dx, dw, db)
6,272,160,090,445,658,000
A fast implementation of the backward pass for a convolutional layer based on im2col and col2im.
2016winter/assignment2/cs231n/fast_layers.py
conv_backward_im2col
anandsaha/cs231n.assignments
python
def conv_backward_im2col(dout, cache): '\n A fast implementation of the backward pass for a convolutional layer\n based on im2col and col2im.\n ' (x, w, b, conv_param, x_cols) = cache (stride, pad) = (conv_param['stride'], conv_param['pad']) db = np.sum(dout, axis=(0, 2, 3)) (num_filters, _, filter_height, filter_width) = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, (- 1)) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, (- 1)).T.dot(dout_reshaped) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return (dx, dw, db)
def max_pool_forward_fast(x, pool_param): '\n A fast implementation of the forward pass for a max pooling layer.\n\n This chooses between the reshape method and the im2col method. If the pooling\n regions are square and tile the input image, then we can use the reshape\n method which is very fast. Otherwise we fall back on the im2col method, which\n is not much faster than the naive method.\n ' (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] same_size = (pool_height == pool_width == stride) tiles = (((H % pool_height) == 0) and ((W % pool_width) == 0)) if (same_size and tiles): (out, reshape_cache) = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: (out, im2col_cache) = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return (out, cache)
7,199,667,716,231,183,000
A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_forward_fast
anandsaha/cs231n.assignments
python
def max_pool_forward_fast(x, pool_param): '\n A fast implementation of the forward pass for a max pooling layer.\n\n This chooses between the reshape method and the im2col method. If the pooling\n regions are square and tile the input image, then we can use the reshape\n method which is very fast. Otherwise we fall back on the im2col method, which\n is not much faster than the naive method.\n ' (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] same_size = (pool_height == pool_width == stride) tiles = (((H % pool_height) == 0) and ((W % pool_width) == 0)) if (same_size and tiles): (out, reshape_cache) = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: (out, im2col_cache) = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return (out, cache)
def max_pool_backward_fast(dout, cache): '\n A fast implementation of the backward pass for a max pooling layer.\n\n This switches between the reshape method an the im2col method depending on\n which method was used to generate the cache.\n ' (method, real_cache) = cache if (method == 'reshape'): return max_pool_backward_reshape(dout, real_cache) elif (method == 'im2col'): return max_pool_backward_im2col(dout, real_cache) else: raise ValueError(('Unrecognized method "%s"' % method))
2,514,422,792,829,799,400
A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_backward_fast
anandsaha/cs231n.assignments
python
def max_pool_backward_fast(dout, cache): '\n A fast implementation of the backward pass for a max pooling layer.\n\n This switches between the reshape method an the im2col method depending on\n which method was used to generate the cache.\n ' (method, real_cache) = cache if (method == 'reshape'): return max_pool_backward_reshape(dout, real_cache) elif (method == 'im2col'): return max_pool_backward_im2col(dout, real_cache) else: raise ValueError(('Unrecognized method "%s"' % method))
def max_pool_forward_reshape(x, pool_param): '\n A fast implementation of the forward pass for the max pooling layer that uses\n some clever reshaping.\n\n This can only be used for square pooling regions that tile the input.\n ' (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] assert (pool_height == pool_width == stride), 'Invalid pool params' assert ((H % pool_height) == 0) assert ((W % pool_height) == 0) x_reshaped = x.reshape(N, C, (H / pool_height), pool_height, (W / pool_width), pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return (out, cache)
1,881,753,171,530,993,200
A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_forward_reshape
anandsaha/cs231n.assignments
python
def max_pool_forward_reshape(x, pool_param): '\n A fast implementation of the forward pass for the max pooling layer that uses\n some clever reshaping.\n\n This can only be used for square pooling regions that tile the input.\n ' (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] assert (pool_height == pool_width == stride), 'Invalid pool params' assert ((H % pool_height) == 0) assert ((W % pool_height) == 0) x_reshaped = x.reshape(N, C, (H / pool_height), pool_height, (W / pool_width), pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return (out, cache)
def max_pool_backward_reshape(dout, cache): "\n A fast implementation of the backward pass for the max pooling layer that\n uses some clever broadcasting and reshaping.\n\n This can only be used if the forward pass was computed using\n max_pool_forward_reshape.\n\n NOTE: If there are multiple argmaxes, this method will assign gradient to\n ALL argmax elements of the input rather than picking one. In this case the\n gradient will actually be incorrect. However this is unlikely to occur in\n practice, so it shouldn't matter much. One possible solution is to split the\n upstream gradient equally among all argmax elements; this should result in a\n valid subgradient. You can make this happen by uncommenting the line below;\n however this results in a significant performance penalty (about 40% slower)\n and is unlikely to matter in practice so we don't do it.\n " (x, x_reshaped, out) = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] (dout_broadcast, _) = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx
3,009,217,698,752,915,000
A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_backward_reshape
anandsaha/cs231n.assignments
python
def max_pool_backward_reshape(dout, cache): "\n A fast implementation of the backward pass for the max pooling layer that\n uses some clever broadcasting and reshaping.\n\n This can only be used if the forward pass was computed using\n max_pool_forward_reshape.\n\n NOTE: If there are multiple argmaxes, this method will assign gradient to\n ALL argmax elements of the input rather than picking one. In this case the\n gradient will actually be incorrect. However this is unlikely to occur in\n practice, so it shouldn't matter much. One possible solution is to split the\n upstream gradient equally among all argmax elements; this should result in a\n valid subgradient. You can make this happen by uncommenting the line below;\n however this results in a significant performance penalty (about 40% slower)\n and is unlikely to matter in practice so we don't do it.\n " (x, x_reshaped, out) = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] (dout_broadcast, _) = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx
def max_pool_forward_im2col(x, pool_param): "\n An implementation of the forward pass for max pooling based on im2col.\n\n This isn't much faster than the naive version, so it should be avoided if\n possible.\n " (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] assert (((H - pool_height) % stride) == 0), 'Invalid height' assert (((W - pool_width) % stride) == 0), 'Invalid width' out_height = (((H - pool_height) / stride) + 1) out_width = (((W - pool_width) / stride) + 1) x_split = x.reshape((N * C), 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[(x_cols_argmax, np.arange(x_cols.shape[1]))] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return (out, cache)
-5,186,576,365,797,148,000
An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_forward_im2col
anandsaha/cs231n.assignments
python
def max_pool_forward_im2col(x, pool_param): "\n An implementation of the forward pass for max pooling based on im2col.\n\n This isn't much faster than the naive version, so it should be avoided if\n possible.\n " (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] assert (((H - pool_height) % stride) == 0), 'Invalid height' assert (((W - pool_width) % stride) == 0), 'Invalid width' out_height = (((H - pool_height) / stride) + 1) out_width = (((W - pool_width) / stride) + 1) x_split = x.reshape((N * C), 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[(x_cols_argmax, np.arange(x_cols.shape[1]))] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return (out, cache)
def max_pool_backward_im2col(dout, cache): "\n An implementation of the backward pass for max pooling based on im2col.\n\n This isn't much faster than the naive version, so it should be avoided if\n possible.\n " (x, x_cols, x_cols_argmax, pool_param) = cache (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[(x_cols_argmax, np.arange(dx_cols.shape[1]))] = dout_reshaped dx = col2im_indices(dx_cols, ((N * C), 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
8,171,853,346,095,398,000
An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible.
2016winter/assignment2/cs231n/fast_layers.py
max_pool_backward_im2col
anandsaha/cs231n.assignments
python
def max_pool_backward_im2col(dout, cache): "\n An implementation of the backward pass for max pooling based on im2col.\n\n This isn't much faster than the naive version, so it should be avoided if\n possible.\n " (x, x_cols, x_cols_argmax, pool_param) = cache (N, C, H, W) = x.shape (pool_height, pool_width) = (pool_param['pool_height'], pool_param['pool_width']) stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[(x_cols_argmax, np.arange(dx_cols.shape[1]))] = dout_reshaped dx = col2im_indices(dx_cols, ((N * C), 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
def _deserialize_session_json(serialized_json_str: bytes) -> str: '\n Helper function to deserialize sessiond:sessions hash list values\n :param serialized_json_str\n ' res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped
-1,428,529,131,481,541,400
Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str
lte/gateway/python/scripts/state_cli.py
_deserialize_session_json
Rajpratik71/magma
python
def _deserialize_session_json(serialized_json_str: bytes) -> str: '\n Helper function to deserialize sessiond:sessions hash list values\n :param serialized_json_str\n ' res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped
def _deserialize_generic_json(element: Union[(str, dict, list)]) -> Union[(str, dict, list)]: '\n Helper function to deserialize dictionaries or list with nested\n json strings\n :param element\n ' if isinstance(element, str): try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element
-6,177,858,682,929,662,000
Helper function to deserialize dictionaries or list with nested json strings :param element
lte/gateway/python/scripts/state_cli.py
_deserialize_generic_json
Rajpratik71/magma
python
def _deserialize_generic_json(element: Union[(str, dict, list)]) -> Union[(str, dict, list)]: '\n Helper function to deserialize dictionaries or list with nested\n json strings\n :param element\n ' if isinstance(element, str): try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element
def keys(self, redis_key: str): '\n Get current keys on redis db that match the pattern\n\n Args:\n redis_key:pattern to match the redis keys\n\n ' for k in self.client.keys(pattern='{}*'.format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key)
6,918,490,644,040,773,000
Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys
lte/gateway/python/scripts/state_cli.py
keys
Rajpratik71/magma
python
def keys(self, redis_key: str): '\n Get current keys on redis db that match the pattern\n\n Args:\n redis_key:pattern to match the redis keys\n\n ' for k in self.client.keys(pattern='{}*'.format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key)
def parse(self, key: str): '\n Parse value of redis key on redis for encoded HASH, SET types, or\n JSON / Protobuf encoded state-wrapped types and prints it\n\n Args:\n key: key on redis\n\n ' redis_type = self.client.type(key).decode('utf-8') key_type = key if (':' in key): key_type = key.split(':')[1] if (redis_type == 'hash'): deserializer = self.STATE_DESERIALIZERS.get(key_type) if (not deserializer): raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif (redis_type == 'set'): deserializer = self.STATE_DESERIALIZERS.get(key_type) if (not deserializer): raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value)
7,372,065,754,419,361,000
Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis
lte/gateway/python/scripts/state_cli.py
parse
Rajpratik71/magma
python
def parse(self, key: str): '\n Parse value of redis key on redis for encoded HASH, SET types, or\n JSON / Protobuf encoded state-wrapped types and prints it\n\n Args:\n key: key on redis\n\n ' redis_type = self.client.type(key).decode('utf-8') key_type = key if (':' in key): key_type = key.split(':')[1] if (redis_type == 'hash'): deserializer = self.STATE_DESERIALIZERS.get(key_type) if (not deserializer): raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif (redis_type == 'set'): deserializer = self.STATE_DESERIALIZERS.get(key_type) if (not deserializer): raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value)
def corrupt(self, key): '\n Mostly used for debugging, purposely corrupts state encoded protobuf\n in redis, and writes it back to datastore\n\n Args:\n key: key on redis\n\n ' rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print(('Corrupted %s in redis' % key))
-9,030,612,015,798,433,000
Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis
lte/gateway/python/scripts/state_cli.py
corrupt
Rajpratik71/magma
python
def corrupt(self, key): '\n Mostly used for debugging, purposely corrupts state encoded protobuf\n in redis, and writes it back to datastore\n\n Args:\n key: key on redis\n\n ' rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print(('Corrupted %s in redis' % key))
def mlp_discriminator(in_signal, non_linearity=tf.nn.relu, reuse=False, scope=None, b_norm=True, dropout_prob=None): ' used in nips submission.\n ' encoder_args = {'n_filters': [64, 128, 256, 256, 512], 'filter_sizes': [1, 1, 1, 1, 1], 'strides': [1, 1, 1, 1, 1]} encoder_args['reuse'] = reuse encoder_args['scope'] = scope encoder_args['non_linearity'] = non_linearity encoder_args['dropout_prob'] = dropout_prob encoder_args['b_norm'] = b_norm layer = encoder_with_convs_and_symmetry(in_signal, **encoder_args) name = 'decoding_logits' scope_e = expand_scope_by_name(scope, name) d_logit = decoder_with_fc_only(layer, layer_sizes=[128, 64, 1], b_norm=b_norm, reuse=reuse, scope=scope_e) d_prob = tf.nn.sigmoid(d_logit) return (d_prob, d_logit)
-1,285,864,863,545,570,800
used in nips submission.
src/generators_discriminators.py
mlp_discriminator
15034458181/latent_3d_points
python
def mlp_discriminator(in_signal, non_linearity=tf.nn.relu, reuse=False, scope=None, b_norm=True, dropout_prob=None): ' \n ' encoder_args = {'n_filters': [64, 128, 256, 256, 512], 'filter_sizes': [1, 1, 1, 1, 1], 'strides': [1, 1, 1, 1, 1]} encoder_args['reuse'] = reuse encoder_args['scope'] = scope encoder_args['non_linearity'] = non_linearity encoder_args['dropout_prob'] = dropout_prob encoder_args['b_norm'] = b_norm layer = encoder_with_convs_and_symmetry(in_signal, **encoder_args) name = 'decoding_logits' scope_e = expand_scope_by_name(scope, name) d_logit = decoder_with_fc_only(layer, layer_sizes=[128, 64, 1], b_norm=b_norm, reuse=reuse, scope=scope_e) d_prob = tf.nn.sigmoid(d_logit) return (d_prob, d_logit)
def point_cloud_generator(z, pc_dims, layer_sizes=[64, 128, 512, 1024], non_linearity=tf.nn.relu, b_norm=False, b_norm_last=False, dropout_prob=None): ' used in nips submission.\n ' (n_points, dummy) = pc_dims if (dummy != 3): raise ValueError() out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm) out_signal = non_linearity(out_signal) if (dropout_prob is not None): out_signal = dropout(out_signal, dropout_prob) if b_norm_last: out_signal = batch_normalization(out_signal) out_signal = fully_connected(out_signal, np.prod([n_points, 3]), activation='linear', weights_init='xavier') out_signal = tf.reshape(out_signal, [(- 1), n_points, 3]) return out_signal
1,197,973,983,239,007,500
used in nips submission.
src/generators_discriminators.py
point_cloud_generator
15034458181/latent_3d_points
python
def point_cloud_generator(z, pc_dims, layer_sizes=[64, 128, 512, 1024], non_linearity=tf.nn.relu, b_norm=False, b_norm_last=False, dropout_prob=None): ' \n ' (n_points, dummy) = pc_dims if (dummy != 3): raise ValueError() out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm) out_signal = non_linearity(out_signal) if (dropout_prob is not None): out_signal = dropout(out_signal, dropout_prob) if b_norm_last: out_signal = batch_normalization(out_signal) out_signal = fully_connected(out_signal, np.prod([n_points, 3]), activation='linear', weights_init='xavier') out_signal = tf.reshape(out_signal, [(- 1), n_points, 3]) return out_signal
def latent_code_discriminator_two_layers(in_signal, layer_sizes=[256, 512], b_norm=False, non_linearity=tf.nn.relu, reuse=False, scope=None): ' Used in ICML submission.\n ' layer_sizes = (layer_sizes + [1]) d_logit = decoder_with_fc_only(in_signal, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm, reuse=reuse, scope=scope) d_prob = tf.nn.sigmoid(d_logit) return (d_prob, d_logit)
-5,338,603,358,653,517,000
Used in ICML submission.
src/generators_discriminators.py
latent_code_discriminator_two_layers
15034458181/latent_3d_points
python
def latent_code_discriminator_two_layers(in_signal, layer_sizes=[256, 512], b_norm=False, non_linearity=tf.nn.relu, reuse=False, scope=None): ' \n ' layer_sizes = (layer_sizes + [1]) d_logit = decoder_with_fc_only(in_signal, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm, reuse=reuse, scope=scope) d_prob = tf.nn.sigmoid(d_logit) return (d_prob, d_logit)
def latent_code_generator_two_layers(z, out_dim, layer_sizes=[128], b_norm=False): ' Used in ICML submission.\n ' layer_sizes = (layer_sizes + out_dim) out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, b_norm=b_norm) out_signal = tf.nn.relu(out_signal) return out_signal
-8,565,647,461,382,028,000
Used in ICML submission.
src/generators_discriminators.py
latent_code_generator_two_layers
15034458181/latent_3d_points
python
def latent_code_generator_two_layers(z, out_dim, layer_sizes=[128], b_norm=False): ' \n ' layer_sizes = (layer_sizes + out_dim) out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, b_norm=b_norm) out_signal = tf.nn.relu(out_signal) return out_signal
def maxNumber(self, nums1, nums2, k): '\n :type nums1: List[int]\n :type nums2: List[int]\n :type k: int\n :rtype: List[int]\n ' def prep(nums, k): dr = (len(nums) - k) stay = [] for num in nums: while (dr and stay and (stay[(- 1)] < num)): stay.pop() dr -= 1 stay.append(num) return stay[:k] def merge(x, y): return [max(x, y).pop(0) for _ in (x + y)] l1 = len(nums1) l2 = len(nums2) r = [0] for i in range((k + 1)): if ((i <= l1) and ((k - i) <= l2)): r = max(merge(prep(nums1, i), prep(nums2, (k - i))), r) return r
-3,527,442,808,947,760,600
:type nums1: List[int] :type nums2: List[int] :type k: int :rtype: List[int]
src/321. Create Maximum Number.py
maxNumber
wisesky/LeetCode-Practice
python
def maxNumber(self, nums1, nums2, k): '\n :type nums1: List[int]\n :type nums2: List[int]\n :type k: int\n :rtype: List[int]\n ' def prep(nums, k): dr = (len(nums) - k) stay = [] for num in nums: while (dr and stay and (stay[(- 1)] < num)): stay.pop() dr -= 1 stay.append(num) return stay[:k] def merge(x, y): return [max(x, y).pop(0) for _ in (x + y)] l1 = len(nums1) l2 = len(nums2) r = [0] for i in range((k + 1)): if ((i <= l1) and ((k - i) <= l2)): r = max(merge(prep(nums1, i), prep(nums2, (k - i))), r) return r
def dbdirname(db, rc): 'Gets the database dir name.' if (db.get('local', False) is False): dbsdir = os.path.join(rc.builddir, '_dbs') dbdir = os.path.join(dbsdir, db['name']) else: dbdir = db['url'] return dbdir
2,476,350,037,564,095,500
Gets the database dir name.
regolith/tools.py
dbdirname
jc-umana/regolith
python
def dbdirname(db, rc): if (db.get('local', False) is False): dbsdir = os.path.join(rc.builddir, '_dbs') dbdir = os.path.join(dbsdir, db['name']) else: dbdir = db['url'] return dbdir
def dbpathname(db, rc): 'Gets the database path name.' dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db['path']) return dbpath
8,634,322,216,610,822,000
Gets the database path name.
regolith/tools.py
dbpathname
jc-umana/regolith
python
def dbpathname(db, rc): dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db['path']) return dbpath
def fallback(cond, backup): 'Decorator for returning the object if cond is true and a backup if\n cond is false. ' def dec(obj): return (obj if cond else backup) return dec
-7,055,294,061,139,205,000
Decorator for returning the object if cond is true and a backup if cond is false.
regolith/tools.py
fallback
jc-umana/regolith
python
def fallback(cond, backup): 'Decorator for returning the object if cond is true and a backup if\n cond is false. ' def dec(obj): return (obj if cond else backup) return dec
def all_docs_from_collection(client, collname, copy=True): 'Yield all entries in for all collections of a given name in a given\n database. ' (yield from client.all_documents(collname, copy=copy))
4,186,418,632,788,220,000
Yield all entries in for all collections of a given name in a given database.
regolith/tools.py
all_docs_from_collection
jc-umana/regolith
python
def all_docs_from_collection(client, collname, copy=True): 'Yield all entries in for all collections of a given name in a given\n database. ' (yield from client.all_documents(collname, copy=copy))
def date_to_rfc822(y, m, d=1): 'Converts a date to an RFC 822 formatted string.' d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d)
9,035,443,693,733,744,000
Converts a date to an RFC 822 formatted string.
regolith/tools.py
date_to_rfc822
jc-umana/regolith
python
def date_to_rfc822(y, m, d=1): d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d)
def rfc822now(): 'Creates a string of the current time according to RFC 822.' now = datetime.utcnow() return email.utils.format_datetime(now)
8,775,209,818,638,581,000
Creates a string of the current time according to RFC 822.
regolith/tools.py
rfc822now
jc-umana/regolith
python
def rfc822now(): now = datetime.utcnow() return email.utils.format_datetime(now)
def gets(seq, key, default=None): 'Gets a key from every element of a sequence if possible.' for x in seq: (yield x.get(key, default))
2,666,311,277,258,468,400
Gets a key from every element of a sequence if possible.
regolith/tools.py
gets
jc-umana/regolith
python
def gets(seq, key, default=None): for x in seq: (yield x.get(key, default))
def month_and_year(m=None, y=None): 'Creates a string from month and year data, if available.' if (y is None): return 'present' if (m is None): return str(y) m = month_to_int(m) return '{0} {1}'.format(SHORT_MONTH_NAMES[m], y)
13,686,799,063,267,366
Creates a string from month and year data, if available.
regolith/tools.py
month_and_year
jc-umana/regolith
python
def month_and_year(m=None, y=None): if (y is None): return 'present' if (m is None): return str(y) m = month_to_int(m) return '{0} {1}'.format(SHORT_MONTH_NAMES[m], y)
def is_since(y, sy, m=1, d=1, sm=1, sd=1): '\n tests whether a date is on or since another date\n\n Parameters\n ----------\n y : int\n the year to be tested\n sy : int\n the since year\n m : int or str\n the month to be tested. Optional, defaults to Jan\n d : int\n the day to be tested. Defaults to 1\n sm : int or str\n the since month. Optional, defaults to Jan\n sd: int\n the since day. Optional, defaults to 1\n\n Returns\n -------\n True if the target date is the same as, or more recent than, the since date\n\n ' s = '{}/{}/{}'.format(sd, month_to_int(sm), sy) d = '{}/{}/{}'.format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, '%d/%m/%Y').timetuple()) date = time.mktime(datetime.strptime(d, '%d/%m/%Y').timetuple()) return (since <= date)
-8,613,150,611,452,172,000
tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date
regolith/tools.py
is_since
jc-umana/regolith
python
def is_since(y, sy, m=1, d=1, sm=1, sd=1): '\n tests whether a date is on or since another date\n\n Parameters\n ----------\n y : int\n the year to be tested\n sy : int\n the since year\n m : int or str\n the month to be tested. Optional, defaults to Jan\n d : int\n the day to be tested. Defaults to 1\n sm : int or str\n the since month. Optional, defaults to Jan\n sd: int\n the since day. Optional, defaults to 1\n\n Returns\n -------\n True if the target date is the same as, or more recent than, the since date\n\n ' s = '{}/{}/{}'.format(sd, month_to_int(sm), sy) d = '{}/{}/{}'.format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, '%d/%m/%Y').timetuple()) date = time.mktime(datetime.strptime(d, '%d/%m/%Y').timetuple()) return (since <= date)
def is_before(y, by, m=12, d=None, bm=12, bd=None): '\n tests whether a date is on or before another date\n\n Parameters\n ----------\n y : int\n the year to be tested\n by : int\n the before year\n m : int or str\n the month to be tested. Optional, defaults to Dec\n d : int\n the day to be tested. Defaults to last day of the month\n bm : int or str\n the before month. Optional, defaults to Dec\n bd: int\n the before day. Optional, defaults to last day of the month\n\n Returns\n -------\n True if the target date is the same as, or earlier than, the before date\n\n ' if (not d): d = monthrange(y, month_to_int(m))[1] if (not bd): bd = monthrange(by, month_to_int(bm))[1] b = '{}/{}/{}'.format(bd, month_to_int(bm), by) d = '{}/{}/{}'.format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, '%d/%m/%Y').timetuple()) date = time.mktime(datetime.strptime(d, '%d/%m/%Y').timetuple()) return (before >= date)
-1,713,290,861,960,713,700
tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date
regolith/tools.py
is_before
jc-umana/regolith
python
def is_before(y, by, m=12, d=None, bm=12, bd=None): '\n tests whether a date is on or before another date\n\n Parameters\n ----------\n y : int\n the year to be tested\n by : int\n the before year\n m : int or str\n the month to be tested. Optional, defaults to Dec\n d : int\n the day to be tested. Defaults to last day of the month\n bm : int or str\n the before month. Optional, defaults to Dec\n bd: int\n the before day. Optional, defaults to last day of the month\n\n Returns\n -------\n True if the target date is the same as, or earlier than, the before date\n\n ' if (not d): d = monthrange(y, month_to_int(m))[1] if (not bd): bd = monthrange(by, month_to_int(bm))[1] b = '{}/{}/{}'.format(bd, month_to_int(bm), by) d = '{}/{}/{}'.format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, '%d/%m/%Y').timetuple()) date = time.mktime(datetime.strptime(d, '%d/%m/%Y').timetuple()) return (before >= date)
def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): '\n tests whether a date is on or between two other dates\n\n returns true if the target date is between the since date and the before\n date, inclusive.\n\n Parameters\n ----------\n y : int\n the year to be tested\n sy : int\n the since year\n by : int\n the before year\n m : int or str\n the month to be tested. Optional, defaults to Jan\n d : int\n the day to be tested. Defaults to 1\n sm : int or str\n the since month. Optional, defaults to Jan\n bm : int or str\n the before month. Optional, defaults to Dec\n sd: int\n the since day. Optional, defaults to 1\n bd: int\n the before day. Optional, defaults to 28\n\n Returns\n -------\n True if the target date is between the since date and the before date,\n inclusive (i.e., returns true if the target date is the same as either the\n since date or the before date)\n\n ' if (not bd): bd = monthrange(by, month_to_int(bm))[1] return (is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before(y, by, m=m, d=d, bm=bm, bd=bd))
2,456,960,928,022,609,000
tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date)
regolith/tools.py
is_between
jc-umana/regolith
python
def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): '\n tests whether a date is on or between two other dates\n\n returns true if the target date is between the since date and the before\n date, inclusive.\n\n Parameters\n ----------\n y : int\n the year to be tested\n sy : int\n the since year\n by : int\n the before year\n m : int or str\n the month to be tested. Optional, defaults to Jan\n d : int\n the day to be tested. Defaults to 1\n sm : int or str\n the since month. Optional, defaults to Jan\n bm : int or str\n the before month. Optional, defaults to Dec\n sd: int\n the since day. Optional, defaults to 1\n bd: int\n the before day. Optional, defaults to 28\n\n Returns\n -------\n True if the target date is between the since date and the before date,\n inclusive (i.e., returns true if the target date is the same as either the\n since date or the before date)\n\n ' if (not bd): bd = monthrange(by, month_to_int(bm))[1] return (is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before(y, by, m=m, d=d, bm=bm, bd=bd))
def has_started(sy, sm=None, sd=None): '\n true if today is after the dates given, inclusive\n\n Parameters\n ----------\n sy : int\n the year to check today against\n sm : int or str.\n the month to check today against. Should be integer or in regolith MONTHS.\n default is 1\n sd : int.\n the day to check today against. Default is 1\n\n Returns\n -------\n bool\n true if today is after dates given\n ' if (not sm): sm = 1 if (not sd): sd = 1 s = '{}/{}/{}'.format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, '%d/%m/%Y').timetuple()) return (start <= time.time())
878,695,831,259,082,100
true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given
regolith/tools.py
has_started
jc-umana/regolith
python
def has_started(sy, sm=None, sd=None): '\n true if today is after the dates given, inclusive\n\n Parameters\n ----------\n sy : int\n the year to check today against\n sm : int or str.\n the month to check today against. Should be integer or in regolith MONTHS.\n default is 1\n sd : int.\n the day to check today against. Default is 1\n\n Returns\n -------\n bool\n true if today is after dates given\n ' if (not sm): sm = 1 if (not sd): sd = 1 s = '{}/{}/{}'.format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, '%d/%m/%Y').timetuple()) return (start <= time.time())
def has_finished(ey, em=None, ed=None): '\n true if today is before the dates given, inclusive\n\n Parameters\n ----------\n ey : int\n end year, the year to check today against\n em : int or str.\n end month, the month to check today against. Should be integer or in regolith MONTHS.\n default is 1\n ed : int.\n end-day, the day to check today against. Default is last day of the month\n\n Returns\n -------\n bool\n true if today is before dates given\n ' if (not em): em = 12 if (not ed): ed = monthrange(ey, month_to_int(em))[1] e = '{}/{}/{}'.format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, '%d/%m/%Y').timetuple()) return (end <= time.time())
-2,508,334,573,039,119,000
true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given
regolith/tools.py
has_finished
jc-umana/regolith
python
def has_finished(ey, em=None, ed=None): '\n true if today is before the dates given, inclusive\n\n Parameters\n ----------\n ey : int\n end year, the year to check today against\n em : int or str.\n end month, the month to check today against. Should be integer or in regolith MONTHS.\n default is 1\n ed : int.\n end-day, the day to check today against. Default is last day of the month\n\n Returns\n -------\n bool\n true if today is before dates given\n ' if (not em): em = 12 if (not ed): ed = monthrange(ey, month_to_int(em))[1] e = '{}/{}/{}'.format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, '%d/%m/%Y').timetuple()) return (end <= time.time())
def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): '\n true if today is between the dates given, inclusive\n\n Parameters\n ----------\n sy : int\n start year, the year to check today is after\n ey : int\n end year, the year to check today is before\n sm : int or str\n start month, the month to check today is after. Should be integer or in\n regolith MONTHS. Default is 1\n sd : int\n start day, the day to check today after. Default is 1\n em : int or str.\n end month, the month to check today against. Should be integer or in\n regolith MONTHS. Default is 12\n ed : int.\n end-day, the day to check today against. Default is last day of the month\n\n Returns\n -------\n bool\n true if today is before dates given\n ' return (has_started(sy, sm, sd) and (not has_finished(ey, em, ed)))
6,748,978,171,058,761,000
true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given
regolith/tools.py
is_current
jc-umana/regolith
python
def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): '\n true if today is between the dates given, inclusive\n\n Parameters\n ----------\n sy : int\n start year, the year to check today is after\n ey : int\n end year, the year to check today is before\n sm : int or str\n start month, the month to check today is after. Should be integer or in\n regolith MONTHS. Default is 1\n sd : int\n start day, the day to check today after. Default is 1\n em : int or str.\n end month, the month to check today against. Should be integer or in\n regolith MONTHS. Default is 12\n ed : int.\n end-day, the day to check today against. Default is last day of the month\n\n Returns\n -------\n bool\n true if today is before dates given\n ' return (has_started(sy, sm, sd) and (not has_finished(ey, em, ed)))
def filter_publications(citations, authors, reverse=False, bold=True): 'Filter publications by the author(s)/editor(s)\n\n Parameters\n ----------\n citations : list of dict\n The publication citations\n authors : set of str\n The authors to be filtered against\n reverse : bool, optional\n If True reverse the order, defaults to False\n bold : bool, optional\n If True put latex bold around the author(s) in question\n ' pubs = [] for pub in citations: if (len(((set(pub.get('author', [])) | set(pub.get('editor', []))) & authors)) == 0): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub['author']: if (a in authors): bold_self.append((('\\textbf{' + a) + '}')) else: bold_self.append(a) pub['author'] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs
9,065,536,602,894,445,000
Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question
regolith/tools.py
filter_publications
jc-umana/regolith
python
def filter_publications(citations, authors, reverse=False, bold=True): 'Filter publications by the author(s)/editor(s)\n\n Parameters\n ----------\n citations : list of dict\n The publication citations\n authors : set of str\n The authors to be filtered against\n reverse : bool, optional\n If True reverse the order, defaults to False\n bold : bool, optional\n If True put latex bold around the author(s) in question\n ' pubs = [] for pub in citations: if (len(((set(pub.get('author', [])) | set(pub.get('editor', []))) & authors)) == 0): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub['author']: if (a in authors): bold_self.append((('\\textbf{' + a) + '}')) else: bold_self.append(a) pub['author'] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs
def filter_projects(projects, authors, reverse=False): 'Filter projects by the author(s)\n\n Parameters\n ----------\n projects : list of dict\n The publication citations\n authors : set of list of str\n The authors to be filtered against\n reverse : bool, optional\n If True reverse the order, defaults to False\n ' projs = [] for proj in projects: team_names = set(gets(proj['team'], 'name')) if (len((team_names & authors)) == 0): continue projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs
-185,094,831,037,862,050
Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False
regolith/tools.py
filter_projects
jc-umana/regolith
python
def filter_projects(projects, authors, reverse=False): 'Filter projects by the author(s)\n\n Parameters\n ----------\n projects : list of dict\n The publication citations\n authors : set of list of str\n The authors to be filtered against\n reverse : bool, optional\n If True reverse the order, defaults to False\n ' projs = [] for proj in projects: team_names = set(gets(proj['team'], 'name')) if (len((team_names & authors)) == 0): continue projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs
def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): "Filter grants by those involved\n\n Parameters\n ----------\n input_grants : list of dict\n The grants to filter\n names : set of str\n The authors to be filtered against\n pi : bool, optional\n If True add the grant amount to that person's total amount\n reverse : bool, optional\n If True reverse the order, defaults to False\n multi_pi : bool, optional\n If True compute sub-awards for multi PI grants, defaults to False\n " grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant['team'], 'name')) if (len((team_names & names)) == 0): continue grant = deepcopy(grant) person = [x for x in grant['team'] if (x['name'] in names)][0] if pi: if (person['position'].lower() == 'pi'): total_amount += grant['amount'] else: continue elif multi_pi: grant['subaward_amount'] = person.get('subaward_amount', 0.0) grant['multi_pi'] = any(gets(grant['team'], 'subaward_amount')) elif (person['position'].lower() == 'pi'): continue else: total_amount += grant['amount'] subaward_amount += person.get('subaward_amount', 0.0) grant['subaward_amount'] = person.get('subaward_amount', 0.0) grant['pi'] = [x for x in grant['team'] if (x['position'].lower() == 'pi')][0] grant['me'] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return (grants, total_amount, subaward_amount)
8,310,129,862,167,256,000
Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False
regolith/tools.py
filter_grants
jc-umana/regolith
python
def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): "Filter grants by those involved\n\n Parameters\n ----------\n input_grants : list of dict\n The grants to filter\n names : set of str\n The authors to be filtered against\n pi : bool, optional\n If True add the grant amount to that person's total amount\n reverse : bool, optional\n If True reverse the order, defaults to False\n multi_pi : bool, optional\n If True compute sub-awards for multi PI grants, defaults to False\n " grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant['team'], 'name')) if (len((team_names & names)) == 0): continue grant = deepcopy(grant) person = [x for x in grant['team'] if (x['name'] in names)][0] if pi: if (person['position'].lower() == 'pi'): total_amount += grant['amount'] else: continue elif multi_pi: grant['subaward_amount'] = person.get('subaward_amount', 0.0) grant['multi_pi'] = any(gets(grant['team'], 'subaward_amount')) elif (person['position'].lower() == 'pi'): continue else: total_amount += grant['amount'] subaward_amount += person.get('subaward_amount', 0.0) grant['subaward_amount'] = person.get('subaward_amount', 0.0) grant['pi'] = [x for x in grant['team'] if (x['position'].lower() == 'pi')][0] grant['me'] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return (grants, total_amount, subaward_amount)
def awards_grants_honors(p): 'Make sorted awards grants and honors list.\n\n Parameters\n ----------\n p : dict\n The person entry\n ' aghs = [] for x in p.get('funding', ()): d = {'description': '{0} ({1}{2:,})'.format(latex_safe(x['name']), x.get('currency', '$').replace('$', '\\$'), x['value']), 'year': x['year'], '_key': date_to_float(x['year'], x.get('month', 0))} aghs.append(d) for x in (p.get('service', []) + p.get('honors', [])): d = {'description': latex_safe(x['name'])} if ('year' in x): d.update({'year': x['year'], '_key': date_to_float(x['year'], x.get('month', 0))}) elif (('begin_year' in x) and ('end_year' in x)): d.update({'year': '{}-{}'.format(x['begin_year'], x['end_year']), '_key': date_to_float(x['begin_year'], x.get('month', 0))}) elif ('begin_year' in x): d.update({'year': '{}'.format(x['begin_year']), '_key': date_to_float(x['begin_year'], x.get('month', 0))}) aghs.append(d) aghs.sort(key=(lambda x: x.get('_key', 0.0)), reverse=True) return aghs
6,206,872,766,831,139,000
Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry
regolith/tools.py
awards_grants_honors
jc-umana/regolith
python
def awards_grants_honors(p): 'Make sorted awards grants and honors list.\n\n Parameters\n ----------\n p : dict\n The person entry\n ' aghs = [] for x in p.get('funding', ()): d = {'description': '{0} ({1}{2:,})'.format(latex_safe(x['name']), x.get('currency', '$').replace('$', '\\$'), x['value']), 'year': x['year'], '_key': date_to_float(x['year'], x.get('month', 0))} aghs.append(d) for x in (p.get('service', []) + p.get('honors', [])): d = {'description': latex_safe(x['name'])} if ('year' in x): d.update({'year': x['year'], '_key': date_to_float(x['year'], x.get('month', 0))}) elif (('begin_year' in x) and ('end_year' in x)): d.update({'year': '{}-{}'.format(x['begin_year'], x['end_year']), '_key': date_to_float(x['begin_year'], x.get('month', 0))}) elif ('begin_year' in x): d.update({'year': '{}'.format(x['begin_year']), '_key': date_to_float(x['begin_year'], x.get('month', 0))}) aghs.append(d) aghs.sort(key=(lambda x: x.get('_key', 0.0)), reverse=True) return aghs
def latex_safe_url(s): 'Makes a string that is a URL latex safe.' return s.replace('#', '\\#')
6,571,294,783,630,191,000
Makes a string that is a URL latex safe.
regolith/tools.py
latex_safe_url
jc-umana/regolith
python
def latex_safe_url(s): return s.replace('#', '\\#')
def latex_safe(s, url_check=True, wrapper='url'): "Make string latex safe\n\n Parameters\n ----------\n s : str\n url_check : bool, optional\n If True check for URLs and wrap them, if False check for URL but don't\n wrap, defaults to True\n wrapper : str, optional\n The wrapper for wrapping urls defaults to url\n " if (not s): return s if url_check: url_search = HTTP_RE.search(s) if url_search: url = '{start}\\{wrapper}{{{s}}}{end}'.format(start=latex_safe(s[:url_search.start()]), end=latex_safe(s[url_search.end():]), wrapper=wrapper, s=latex_safe_url(s[url_search.start():url_search.end()])) return url return s.replace('&', '\\&').replace('$', '\\$').replace('#', '\\#').replace('_', '\\_')
7,536,975,964,445,699,000
Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url
regolith/tools.py
latex_safe
jc-umana/regolith
python
def latex_safe(s, url_check=True, wrapper='url'): "Make string latex safe\n\n Parameters\n ----------\n s : str\n url_check : bool, optional\n If True check for URLs and wrap them, if False check for URL but don't\n wrap, defaults to True\n wrapper : str, optional\n The wrapper for wrapping urls defaults to url\n " if (not s): return s if url_check: url_search = HTTP_RE.search(s) if url_search: url = '{start}\\{wrapper}{{{s}}}{end}'.format(start=latex_safe(s[:url_search.start()]), end=latex_safe(s[url_search.end():]), wrapper=wrapper, s=latex_safe_url(s[url_search.start():url_search.end()])) return url return s.replace('&', '\\&').replace('$', '\\$').replace('#', '\\#').replace('_', '\\_')
def make_bibtex_file(pubs, pid, person_dir='.'): "Make a bibtex file given the publications\n\n Parameters\n ----------\n pubs : list of dict\n The publications\n pid : str\n The person id\n person_dir : str, optional\n The person's directory\n " if (not HAVE_BIBTEX_PARSER): return None skip_keys = {'ID', 'ENTRYTYPE', 'author'} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent['ID'] = ent.pop('_id') ent['ENTRYTYPE'] = ent.pop('entrytype') for n in ['author', 'editor']: if (n in ent): ent[n] = ' and '.join(ent[n]) for key in ent.keys(): if (key in skip_keys): continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = (os.path.join(person_dir, pid) + '.bib') with open(fname, 'w', encoding='utf-8') as f: f.write(bibwriter.write(bibdb)) return fname
7,067,784,381,179,065,000
Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory
regolith/tools.py
make_bibtex_file
jc-umana/regolith
python
def make_bibtex_file(pubs, pid, person_dir='.'): "Make a bibtex file given the publications\n\n Parameters\n ----------\n pubs : list of dict\n The publications\n pid : str\n The person id\n person_dir : str, optional\n The person's directory\n " if (not HAVE_BIBTEX_PARSER): return None skip_keys = {'ID', 'ENTRYTYPE', 'author'} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent['ID'] = ent.pop('_id') ent['ENTRYTYPE'] = ent.pop('entrytype') for n in ['author', 'editor']: if (n in ent): ent[n] = ' and '.join(ent[n]) for key in ent.keys(): if (key in skip_keys): continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = (os.path.join(person_dir, pid) + '.bib') with open(fname, 'w', encoding='utf-8') as f: f.write(bibwriter.write(bibdb)) return fname
def document_by_value(documents, address, value): 'Get a specific document by one of its values\n\n Parameters\n ----------\n documents: generator\n Generator which yields the documents\n address: str or tuple\n The address of the data in the document\n value: any\n The expected value for the document\n\n Returns\n -------\n dict:\n The first document which matches the request\n ' if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if (doc == value): return g_doc
-6,065,343,237,551,224,000
Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request
regolith/tools.py
document_by_value
jc-umana/regolith
python
def document_by_value(documents, address, value): 'Get a specific document by one of its values\n\n Parameters\n ----------\n documents: generator\n Generator which yields the documents\n address: str or tuple\n The address of the data in the document\n value: any\n The expected value for the document\n\n Returns\n -------\n dict:\n The first document which matches the request\n ' if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if (doc == value): return g_doc
def fuzzy_retrieval(documents, sources, value, case_sensitive=True): "Retrieve a document from the documents where value is compared against\n multiple potential sources\n\n Parameters\n ----------\n documents: generator\n The documents\n sources: iterable\n The potential data sources\n value:\n The value to compare against to find the document of interest\n case_sensitive: Bool\n When true will match case (Default = True)\n\n Returns\n -------\n dict:\n The document\n\n Examples\n --------\n >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False)\n\n This would get the person entry for which either the alias or the name was\n ``pi_name``.\n\n " for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if (not isinstance(ret, list)): ret = [ret] returns.extend(ret) if (not case_sensitive): returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if (value.lower() in frozenset(returns)): return doc elif (value in frozenset(returns)): return doc
2,397,259,811,125,256,700
Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``.
regolith/tools.py
fuzzy_retrieval
jc-umana/regolith
python
def fuzzy_retrieval(documents, sources, value, case_sensitive=True): "Retrieve a document from the documents where value is compared against\n multiple potential sources\n\n Parameters\n ----------\n documents: generator\n The documents\n sources: iterable\n The potential data sources\n value:\n The value to compare against to find the document of interest\n case_sensitive: Bool\n When true will match case (Default = True)\n\n Returns\n -------\n dict:\n The document\n\n Examples\n --------\n >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False)\n\n This would get the person entry for which either the alias or the name was\n ``pi_name``.\n\n " for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if (not isinstance(ret, list)): ret = [ret] returns.extend(ret) if (not case_sensitive): returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if (value.lower() in frozenset(returns)): return doc elif (value in frozenset(returns)): return doc
def number_suffix(number): 'returns the suffix that adjectivises a number (st, nd, rd, th)\n\n Paramters\n ---------\n number: integer\n The number. If number is not an integer, returns an empty string\n\n Returns\n -------\n suffix: string\n The suffix (st, nd, rd, th)\n ' if (not isinstance(number, (int, float))): return '' if (10 < number < 20): suffix = 'th' else: suffix = {1: 'st', 2: 'nd', 3: 'rd'}.get((number % 10), 'th') return suffix
-1,537,146,430,695,771,000
returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th)
regolith/tools.py
number_suffix
jc-umana/regolith
python
def number_suffix(number): 'returns the suffix that adjectivises a number (st, nd, rd, th)\n\n Paramters\n ---------\n number: integer\n The number. If number is not an integer, returns an empty string\n\n Returns\n -------\n suffix: string\n The suffix (st, nd, rd, th)\n ' if (not isinstance(number, (int, float))): return if (10 < number < 20): suffix = 'th' else: suffix = {1: 'st', 2: 'nd', 3: 'rd'}.get((number % 10), 'th') return suffix
def dereference_institution(input_record, institutions): 'Tool for replacing placeholders for institutions with the actual\n institution data. Note that the replacement is done inplace\n\n Parameters\n ----------\n input_record : dict\n The record to dereference\n institutions : iterable of dicts\n The institutions\n ' inst = (input_record.get('institution') or input_record.get('organization')) if (not inst): error = (input_record.get('position') or input_record.get('degree')) print('WARNING: no institution or organization but found {}'.format(error)) db_inst = fuzzy_retrieval(institutions, ['name', '_id', 'aka'], inst) if db_inst: input_record['institution'] = db_inst['name'] input_record['organization'] = db_inst['name'] if (db_inst.get('country') == 'USA'): state_country = db_inst.get('state') else: state_country = db_inst.get('country') input_record['location'] = '{}, {}'.format(db_inst['city'], state_country) if (not db_inst.get('departments')): print('WARNING: no departments in {}. {} sought'.format(db_inst.get('_id'), inst)) if (('department' in input_record) and db_inst.get('departments')): input_record['department'] = fuzzy_retrieval([db_inst['departments']], ['name', 'aka'], input_record['department']) else: input_record['department'] = inst
-8,456,008,445,291,992,000
Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions
regolith/tools.py
dereference_institution
jc-umana/regolith
python
def dereference_institution(input_record, institutions): 'Tool for replacing placeholders for institutions with the actual\n institution data. Note that the replacement is done inplace\n\n Parameters\n ----------\n input_record : dict\n The record to dereference\n institutions : iterable of dicts\n The institutions\n ' inst = (input_record.get('institution') or input_record.get('organization')) if (not inst): error = (input_record.get('position') or input_record.get('degree')) print('WARNING: no institution or organization but found {}'.format(error)) db_inst = fuzzy_retrieval(institutions, ['name', '_id', 'aka'], inst) if db_inst: input_record['institution'] = db_inst['name'] input_record['organization'] = db_inst['name'] if (db_inst.get('country') == 'USA'): state_country = db_inst.get('state') else: state_country = db_inst.get('country') input_record['location'] = '{}, {}'.format(db_inst['city'], state_country) if (not db_inst.get('departments')): print('WARNING: no departments in {}. {} sought'.format(db_inst.get('_id'), inst)) if (('department' in input_record) and db_inst.get('departments')): input_record['department'] = fuzzy_retrieval([db_inst['departments']], ['name', 'aka'], input_record['department']) else: input_record['department'] = inst
def merge_collections(a, b, target_id): '\n merge two collections into a single merged collection\n\n for keys that are in both collections, the value in b will be kept\n\n Parameters\n ----------\n a the inferior collection (will lose values of shared keys)\n b the superior collection (will keep values of shared keys)\n target_id str the name of the key used in b to dereference ids in a\n\n Returns\n -------\n the combined collection. Note that it returns a collection only containing\n merged items from a and b that are dereferenced in b, i.e., the merged\n intercept. If you want the union you can update the returned collection\n with a.\n\n Examples\n --------\n >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id")\n\n This would merge all entries in the proposals collection with entries in the\n grants collection for which "_id" in proposals has the value of\n "proposal_id" in grants.\n ' adict = {} for k in a: adict[k.get('_id')] = k bdict = {} for k in b: bdict[k.get('_id')] = k b_for_a = {} for k in adict: for (kk, v) in bdict.items(): if (v.get(target_id, '') == k): b_for_a[k] = kk chained = {} for (k, v) in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values())
101,764,650,393,760,800
merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants.
regolith/tools.py
merge_collections
jc-umana/regolith
python
def merge_collections(a, b, target_id): '\n merge two collections into a single merged collection\n\n for keys that are in both collections, the value in b will be kept\n\n Parameters\n ----------\n a the inferior collection (will lose values of shared keys)\n b the superior collection (will keep values of shared keys)\n target_id str the name of the key used in b to dereference ids in a\n\n Returns\n -------\n the combined collection. Note that it returns a collection only containing\n merged items from a and b that are dereferenced in b, i.e., the merged\n intercept. If you want the union you can update the returned collection\n with a.\n\n Examples\n --------\n >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id")\n\n This would merge all entries in the proposals collection with entries in the\n grants collection for which "_id" in proposals has the value of\n "proposal_id" in grants.\n ' adict = {} for k in a: adict[k.get('_id')] = k bdict = {} for k in b: bdict[k.get('_id')] = k b_for_a = {} for k in adict: for (kk, v) in bdict.items(): if (v.get(target_id, ) == k): b_for_a[k] = kk chained = {} for (k, v) in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values())
def update_schemas(default_schema, user_schema): '\n Merging the user schema into the default schema recursively and return the\n merged schema. The default schema and user schema will not be modified\n during the merging.\n\n Parameters\n ----------\n default_schema : dict\n The default schema.\n user_schema : dict\n The user defined schema.\n\n Returns\n -------\n updated_schema : dict\n The merged schema.\n ' updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if ((key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance(user_schema[key], dict)): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema
-8,252,402,807,327,927,000
Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema.
regolith/tools.py
update_schemas
jc-umana/regolith
python
def update_schemas(default_schema, user_schema): '\n Merging the user schema into the default schema recursively and return the\n merged schema. The default schema and user schema will not be modified\n during the merging.\n\n Parameters\n ----------\n default_schema : dict\n The default schema.\n user_schema : dict\n The user defined schema.\n\n Returns\n -------\n updated_schema : dict\n The merged schema.\n ' updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if ((key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance(user_schema[key], dict)): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema
def group(db, by): '\n Group the document in the database according to the value of the doc[by] in db.\n\n Parameters\n ----------\n db : iterable\n The database of documents.\n by : basestring\n The key to group the documents.\n\n Returns\n -------\n grouped: dict\n A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have\n the same value of doc[by].\n\n Examples\n --------\n Here, we use a tuple of dict as an example of the database.\n >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"})\n >>> group(db)\n This will return\n >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]}\n ' grouped = {} doc: dict for doc in db: key = doc.get(by) if (not key): print('There is no field {} in {}'.format(by, id_key(doc))) elif (key not in grouped): grouped[key] = [doc] else: grouped[key].append(doc) return grouped
-8,126,863,572,966,259,000
Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]}
regolith/tools.py
group
jc-umana/regolith
python
def group(db, by): '\n Group the document in the database according to the value of the doc[by] in db.\n\n Parameters\n ----------\n db : iterable\n The database of documents.\n by : basestring\n The key to group the documents.\n\n Returns\n -------\n grouped: dict\n A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have\n the same value of doc[by].\n\n Examples\n --------\n Here, we use a tuple of dict as an example of the database.\n >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"})\n >>> group(db)\n This will return\n >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]}\n ' grouped = {} doc: dict for doc in db: key = doc.get(by) if (not key): print('There is no field {} in {}'.format(by, id_key(doc))) elif (key not in grouped): grouped[key] = [doc] else: grouped[key].append(doc) return grouped
def get_pi_id(rc): "\n Gets the database id of the group PI\n\n Parameters\n ----------\n rc: runcontrol object\n The runcontrol object. It must contain the 'groups' and 'people'\n collections in the needed databases\n\n Returns\n -------\n The database '_id' of the group PI\n\n " groupiter = list(all_docs_from_collection(rc.client, 'groups')) peoplecoll = all_docs_from_collection(rc.client, 'people') pi_ref = [i.get('pi_name') for i in groupiter if (i.get('name').casefold() == rc.groupname.casefold())] pi = fuzzy_retrieval(peoplecoll, ['_id', 'aka', 'name'], pi_ref[0]) return pi.get('_id')
3,363,426,960,476,733,000
Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI
regolith/tools.py
get_pi_id
jc-umana/regolith
python
def get_pi_id(rc): "\n Gets the database id of the group PI\n\n Parameters\n ----------\n rc: runcontrol object\n The runcontrol object. It must contain the 'groups' and 'people'\n collections in the needed databases\n\n Returns\n -------\n The database '_id' of the group PI\n\n " groupiter = list(all_docs_from_collection(rc.client, 'groups')) peoplecoll = all_docs_from_collection(rc.client, 'people') pi_ref = [i.get('pi_name') for i in groupiter if (i.get('name').casefold() == rc.groupname.casefold())] pi = fuzzy_retrieval(peoplecoll, ['_id', 'aka', 'name'], pi_ref[0]) return pi.get('_id')
def group_member_ids(ppl_coll, grpname): 'Get a list of all group member ids\n\n Parameters\n ----------\n ppl_coll: collection (list of dicts)\n The people collection that should contain the group members\n grp: string\n The id of the group in groups.yml\n\n Returns\n -------\n set:\n The set of ids of the people in the group\n\n Notes\n -----\n - Groups that are being tracked are listed in the groups.yml collection\n with a name and an id.\n - People are in a group during an educational or employment period.\n - To assign a person to a tracked group during one such period, add\n a "group" key to that education/employment item with a value\n that is the group id.\n - This function takes the group id that is passed and searches\n the people collection for all people that have been\n assigned to that group in some period of time and returns a list of\n ' grpmembers = set() for person in ppl_coll: for k in ['education', 'employment']: for position in person.get(k, {}): if (position.get('group', None) == grpname): grpmembers.add(person['_id']) return grpmembers
7,553,083,287,698,605,000
Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of
regolith/tools.py
group_member_ids
jc-umana/regolith
python
def group_member_ids(ppl_coll, grpname): 'Get a list of all group member ids\n\n Parameters\n ----------\n ppl_coll: collection (list of dicts)\n The people collection that should contain the group members\n grp: string\n The id of the group in groups.yml\n\n Returns\n -------\n set:\n The set of ids of the people in the group\n\n Notes\n -----\n - Groups that are being tracked are listed in the groups.yml collection\n with a name and an id.\n - People are in a group during an educational or employment period.\n - To assign a person to a tracked group during one such period, add\n a "group" key to that education/employment item with a value\n that is the group id.\n - This function takes the group id that is passed and searches\n the people collection for all people that have been\n assigned to that group in some period of time and returns a list of\n ' grpmembers = set() for person in ppl_coll: for k in ['education', 'employment']: for position in person.get(k, {}): if (position.get('group', None) == grpname): grpmembers.add(person['_id']) return grpmembers
def report_func(df: pd.DataFrame, **kwargs: Any) -> None: '\n Create report function, used for performance testing.\n ' create_report(df, **kwargs)
-991,893,151,365,360,800
Create report function, used for performance testing.
dataprep/tests/benchmarks/eda.py
report_func
Bowen0729/dataprep
python
def report_func(df: pd.DataFrame, **kwargs: Any) -> None: '\n \n ' create_report(df, **kwargs)
def test_create_report(benchmark: Any) -> None: '\n Performance test of create report on titanic dataset.\n ' df = load_dataset('titanic') benchmark(partial(report_func), df)
2,975,394,867,720,784,000
Performance test of create report on titanic dataset.
dataprep/tests/benchmarks/eda.py
test_create_report
Bowen0729/dataprep
python
def test_create_report(benchmark: Any) -> None: '\n \n ' df = load_dataset('titanic') benchmark(partial(report_func), df)
def _get_metadata(*parameters: Parameter) -> Dict[(str, Any)]: '\n Return a dictionary that contains the parameter metadata grouped by the\n instrument it belongs to.\n ' metadata_timestamp = time.time() metas: dict = defaultdict(list) for parameter in parameters: meta: Dict[(str, Optional[Union[(float, str)]])] = {} meta['value'] = str(parameter.get_latest()) timestamp = parameter.get_latest.get_timestamp() if (timestamp is not None): meta['ts'] = timestamp.timestamp() else: meta['ts'] = None meta['name'] = (parameter.label or parameter.name) meta['unit'] = parameter.unit baseinst = parameter.root_instrument if (baseinst is None): metas['Unbound Parameter'].append(meta) else: metas[str(baseinst)].append(meta) parameters_out = [] for instrument in metas: temp = {'instrument': instrument, 'parameters': metas[instrument]} parameters_out.append(temp) state = {'ts': metadata_timestamp, 'parameters': parameters_out} return state
-1,330,515,832,946,222,600
Return a dictionary that contains the parameter metadata grouped by the instrument it belongs to.
qcodes/monitor/monitor.py
_get_metadata
Akshita07/Qcodes
python
def _get_metadata(*parameters: Parameter) -> Dict[(str, Any)]: '\n Return a dictionary that contains the parameter metadata grouped by the\n instrument it belongs to.\n ' metadata_timestamp = time.time() metas: dict = defaultdict(list) for parameter in parameters: meta: Dict[(str, Optional[Union[(float, str)]])] = {} meta['value'] = str(parameter.get_latest()) timestamp = parameter.get_latest.get_timestamp() if (timestamp is not None): meta['ts'] = timestamp.timestamp() else: meta['ts'] = None meta['name'] = (parameter.label or parameter.name) meta['unit'] = parameter.unit baseinst = parameter.root_instrument if (baseinst is None): metas['Unbound Parameter'].append(meta) else: metas[str(baseinst)].append(meta) parameters_out = [] for instrument in metas: temp = {'instrument': instrument, 'parameters': metas[instrument]} parameters_out.append(temp) state = {'ts': metadata_timestamp, 'parameters': parameters_out} return state
def _handler(parameters: Sequence[Parameter], interval: float) -> Callable[([websockets.WebSocketServerProtocol, str], Awaitable[None])]: '\n Return the websockets server handler.\n ' async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: '\n Create a websockets handler that sends parameter values to a listener\n every "interval" seconds.\n ' while True: try: try: meta = _get_metadata(*parameters) except ValueError: log.exception('Error getting parameters') break log.debug('sending.. to %r', websocket) (await websocket.send(json.dumps(meta))) (await asyncio.sleep(interval)) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug('Got CancelledError or ConnectionClosed', exc_info=True) break log.debug('Closing websockets connection') return server_func
2,602,754,282,914,915,300
Return the websockets server handler.
qcodes/monitor/monitor.py
_handler
Akshita07/Qcodes
python
def _handler(parameters: Sequence[Parameter], interval: float) -> Callable[([websockets.WebSocketServerProtocol, str], Awaitable[None])]: '\n \n ' async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: '\n Create a websockets handler that sends parameter values to a listener\n every "interval" seconds.\n ' while True: try: try: meta = _get_metadata(*parameters) except ValueError: log.exception('Error getting parameters') break log.debug('sending.. to %r', websocket) (await websocket.send(json.dumps(meta))) (await asyncio.sleep(interval)) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug('Got CancelledError or ConnectionClosed', exc_info=True) break log.debug('Closing websockets connection') return server_func
async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: '\n Create a websockets handler that sends parameter values to a listener\n every "interval" seconds.\n ' while True: try: try: meta = _get_metadata(*parameters) except ValueError: log.exception('Error getting parameters') break log.debug('sending.. to %r', websocket) (await websocket.send(json.dumps(meta))) (await asyncio.sleep(interval)) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug('Got CancelledError or ConnectionClosed', exc_info=True) break log.debug('Closing websockets connection')
-3,658,804,037,770,032,600
Create a websockets handler that sends parameter values to a listener every "interval" seconds.
qcodes/monitor/monitor.py
server_func
Akshita07/Qcodes
python
async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: '\n Create a websockets handler that sends parameter values to a listener\n every "interval" seconds.\n ' while True: try: try: meta = _get_metadata(*parameters) except ValueError: log.exception('Error getting parameters') break log.debug('sending.. to %r', websocket) (await websocket.send(json.dumps(meta))) (await asyncio.sleep(interval)) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug('Got CancelledError or ConnectionClosed', exc_info=True) break log.debug('Closing websockets connection')
def __init__(self, *parameters: Parameter, interval: float=1): '\n Monitor qcodes parameters.\n\n Args:\n *parameters: Parameters to monitor.\n interval: How often one wants to refresh the values.\n ' super().__init__() for parameter in parameters: if (not isinstance(parameter, Parameter)): raise TypeError(f'We can only monitor QCodes Parameters, not {type(parameter)}') self.loop: Optional[asyncio.AbstractEventLoop] = None self.server: Optional[websockets.WebSocketServer] = None self._parameters = parameters self.loop_is_closed = Event() self.server_is_started = Event() self.handler = _handler(parameters, interval=interval) log.debug('Start monitoring thread') if Monitor.running: log.debug('Stopping and restarting server') Monitor.running.stop() self.start() self.server_is_started.wait(timeout=5) if (not self.server_is_started.is_set()): raise RuntimeError('Failed to start server') Monitor.running = self
5,824,786,925,298,103,000
Monitor qcodes parameters. Args: *parameters: Parameters to monitor. interval: How often one wants to refresh the values.
qcodes/monitor/monitor.py
__init__
Akshita07/Qcodes
python
def __init__(self, *parameters: Parameter, interval: float=1): '\n Monitor qcodes parameters.\n\n Args:\n *parameters: Parameters to monitor.\n interval: How often one wants to refresh the values.\n ' super().__init__() for parameter in parameters: if (not isinstance(parameter, Parameter)): raise TypeError(f'We can only monitor QCodes Parameters, not {type(parameter)}') self.loop: Optional[asyncio.AbstractEventLoop] = None self.server: Optional[websockets.WebSocketServer] = None self._parameters = parameters self.loop_is_closed = Event() self.server_is_started = Event() self.handler = _handler(parameters, interval=interval) log.debug('Start monitoring thread') if Monitor.running: log.debug('Stopping and restarting server') Monitor.running.stop() self.start() self.server_is_started.wait(timeout=5) if (not self.server_is_started.is_set()): raise RuntimeError('Failed to start server') Monitor.running = self
def run(self) -> None: '\n Start the event loop and run forever.\n ' log.debug('Running Websocket server') self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) try: server_start = websockets.serve(self.handler, '127.0.0.1', WEBSOCKET_PORT, close_timeout=1) self.server = self.loop.run_until_complete(server_start) self.server_is_started.set() self.loop.run_forever() except OSError: log.exception('Server could not be started') finally: log.debug('loop stopped') log.debug('Pending tasks at close: %r', all_tasks(self.loop)) self.loop.close() log.debug('loop closed') self.loop_is_closed.set()
6,689,847,950,625,658,000
Start the event loop and run forever.
qcodes/monitor/monitor.py
run
Akshita07/Qcodes
python
def run(self) -> None: '\n \n ' log.debug('Running Websocket server') self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) try: server_start = websockets.serve(self.handler, '127.0.0.1', WEBSOCKET_PORT, close_timeout=1) self.server = self.loop.run_until_complete(server_start) self.server_is_started.set() self.loop.run_forever() except OSError: log.exception('Server could not be started') finally: log.debug('loop stopped') log.debug('Pending tasks at close: %r', all_tasks(self.loop)) self.loop.close() log.debug('loop closed') self.loop_is_closed.set()
def update_all(self) -> None: '\n Update all parameters in the monitor.\n ' for parameter in self._parameters: with suppress(TypeError): parameter.get()
6,364,364,353,977,618,000
Update all parameters in the monitor.
qcodes/monitor/monitor.py
update_all
Akshita07/Qcodes
python
def update_all(self) -> None: '\n \n ' for parameter in self._parameters: with suppress(TypeError): parameter.get()
def stop(self) -> None: '\n Shutdown the server, close the event loop and join the thread.\n Setting active Monitor to ``None``.\n ' self.join() Monitor.running = None
-9,010,464,473,570,652,000
Shutdown the server, close the event loop and join the thread. Setting active Monitor to ``None``.
qcodes/monitor/monitor.py
stop
Akshita07/Qcodes
python
def stop(self) -> None: '\n Shutdown the server, close the event loop and join the thread.\n Setting active Monitor to ``None``.\n ' self.join() Monitor.running = None
def join(self, timeout: Optional[float]=None) -> None: '\n Overwrite ``Thread.join`` to make sure server is stopped before\n joining avoiding a potential deadlock.\n ' log.debug('Shutting down server') if (not self.is_alive()): log.debug('monitor is dead') return try: if (self.loop is not None): asyncio.run_coroutine_threadsafe(self.__stop_server(), self.loop) except RuntimeError: log.exception('Could not close loop') self.loop_is_closed.wait(timeout=5) if (not self.loop_is_closed.is_set()): raise RuntimeError('Failed to join loop') log.debug('Loop reported closed') super().join(timeout=timeout) log.debug('Monitor Thread has joined')
1,480,710,171,094,641,700
Overwrite ``Thread.join`` to make sure server is stopped before joining avoiding a potential deadlock.
qcodes/monitor/monitor.py
join
Akshita07/Qcodes
python
def join(self, timeout: Optional[float]=None) -> None: '\n Overwrite ``Thread.join`` to make sure server is stopped before\n joining avoiding a potential deadlock.\n ' log.debug('Shutting down server') if (not self.is_alive()): log.debug('monitor is dead') return try: if (self.loop is not None): asyncio.run_coroutine_threadsafe(self.__stop_server(), self.loop) except RuntimeError: log.exception('Could not close loop') self.loop_is_closed.wait(timeout=5) if (not self.loop_is_closed.is_set()): raise RuntimeError('Failed to join loop') log.debug('Loop reported closed') super().join(timeout=timeout) log.debug('Monitor Thread has joined')
@staticmethod def show() -> None: '\n Overwrite this method to show/raise your monitor GUI\n F.ex.\n\n ::\n\n import webbrowser\n url = "localhost:3000"\n # Open URL in new window, raising the window if possible.\n webbrowser.open_new(url)\n\n ' webbrowser.open('http://localhost:{}'.format(SERVER_PORT))
3,710,049,875,675,028,000
Overwrite this method to show/raise your monitor GUI F.ex. :: import webbrowser url = "localhost:3000" # Open URL in new window, raising the window if possible. webbrowser.open_new(url)
qcodes/monitor/monitor.py
show
Akshita07/Qcodes
python
@staticmethod def show() -> None: '\n Overwrite this method to show/raise your monitor GUI\n F.ex.\n\n ::\n\n import webbrowser\n url = "localhost:3000"\n # Open URL in new window, raising the window if possible.\n webbrowser.open_new(url)\n\n ' webbrowser.open('http://localhost:{}'.format(SERVER_PORT))
def set_test_params(self): ' Setup test environment\n :param:\n :return:\n ' self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = ([['-staking=1', '-debug=net']] * self.num_nodes)
-2,748,070,360,690,059,300
Setup test environment :param: :return:
test/functional/fake_stake/base_test.py
set_test_params
tdpsdevextreme/TradePlusCoin
python
def set_test_params(self): ' Setup test environment\n :param:\n :return:\n ' self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = ([['-staking=1', '-debug=net']] * self.num_nodes)
def setup_network(self): " Can't rely on syncing all the nodes when staking=1\n :param:\n :return:\n " self.setup_nodes() for i in range((self.num_nodes - 1)): for j in range((i + 1), self.num_nodes): connect_nodes_bi(self.nodes, i, j)
4,878,764,237,105,450,000
Can't rely on syncing all the nodes when staking=1 :param: :return:
test/functional/fake_stake/base_test.py
setup_network
tdpsdevextreme/TradePlusCoin
python
def setup_network(self): " Can't rely on syncing all the nodes when staking=1\n :param:\n :return:\n " self.setup_nodes() for i in range((self.num_nodes - 1)): for j in range((i + 1), self.num_nodes): connect_nodes_bi(self.nodes, i, j)
def init_test(self): ' Initializes test parameters\n :param:\n :return:\n ' title = ('*** Starting %s ***' % self.__class__.__name__) underline = ('-' * len(title)) self.log.info('\n\n%s\n%s\n%s\n', title, underline, self.description) self.DEFAULT_FEE = 0.1 self.NUM_BLOCKS = 30 self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(TestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) network_thread_start() self.node = self.nodes[0] for i in range(self.num_nodes): self.test_nodes[i].wait_for_verack()
-5,515,092,755,267,224,000
Initializes test parameters :param: :return:
test/functional/fake_stake/base_test.py
init_test
tdpsdevextreme/TradePlusCoin
python
def init_test(self): ' Initializes test parameters\n :param:\n :return:\n ' title = ('*** Starting %s ***' % self.__class__.__name__) underline = ('-' * len(title)) self.log.info('\n\n%s\n%s\n%s\n', title, underline, self.description) self.DEFAULT_FEE = 0.1 self.NUM_BLOCKS = 30 self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(TestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) network_thread_start() self.node = self.nodes[0] for i in range(self.num_nodes): self.test_nodes[i].wait_for_verack()
def run_test(self): ' Performs the attack of this test - run init_test first.\n :param:\n :return:\n ' self.description = '' self.init_test() return
3,115,403,244,731,384,000
Performs the attack of this test - run init_test first. :param: :return:
test/functional/fake_stake/base_test.py
run_test
tdpsdevextreme/TradePlusCoin
python
def run_test(self): ' Performs the attack of this test - run init_test first.\n :param:\n :return:\n ' self.description = self.init_test() return
def create_spam_block(self, hashPrevBlock, stakingPrevOuts, height, fStakeDoubleSpent=False, fZPoS=False, spendingPrevOuts={}): ' creates a block to spam the network with\n :param hashPrevBlock: (hex string) hash of previous block\n stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints (to be used as staking inputs) to amount, block_time, nStakeModifier, hashStake\n height: (int) block height\n fStakeDoubleSpent: (bool) spend the coinstake input inside the block\n fZPoS: (bool) stake the block with zerocoin\n spendingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints (to be used as tx inputs) to amount, block_time, nStakeModifier, hashStake\n :return block: (CBlock) generated block\n ' if (len(spendingPrevOuts) == 0): spendingPrevOuts = dict(stakingPrevOuts) current_time = int(time.time()) nTime = (current_time & 4294967280) coinbase = create_coinbase(height) coinbase.vout[0].nValue = 0 coinbase.vout[0].scriptPubKey = b'' coinbase.nTime = nTime coinbase.rehash() block = create_block(int(hashPrevBlock, 16), coinbase, nTime) if (not block.solve_stake(stakingPrevOuts)): raise Exception('Not able to solve for any prev_outpoint') signed_stake_tx = self.sign_stake_tx(block, stakingPrevOuts[block.prevoutStake][0], fZPoS) block.vtx.append(signed_stake_tx) if ((not fZPoS) and (not fStakeDoubleSpent)): del spendingPrevOuts[block.prevoutStake] if (len(spendingPrevOuts) > 0): del spendingPrevOuts[choice(list(spendingPrevOuts))] for outPoint in spendingPrevOuts: value_out = int((spendingPrevOuts[outPoint][0] - (self.DEFAULT_FEE * COIN))) tx = create_transaction(outPoint, b'', value_out, nTime, scriptPubKey=CScript([self.block_sig_key.get_pubkey(), OP_CHECKSIG])) signed_tx_hex = self.node.signrawtransaction(bytes_to_hex_str(tx.serialize()))['hex'] signed_tx = CTransaction() signed_tx.deserialize(BytesIO(hex_str_to_bytes(signed_tx_hex))) block.vtx.append(signed_tx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.sign_block(self.block_sig_key) return block
5,502,691,599,703,268,000
creates a block to spam the network with :param hashPrevBlock: (hex string) hash of previous block stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints (to be used as staking inputs) to amount, block_time, nStakeModifier, hashStake height: (int) block height fStakeDoubleSpent: (bool) spend the coinstake input inside the block fZPoS: (bool) stake the block with zerocoin spendingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints (to be used as tx inputs) to amount, block_time, nStakeModifier, hashStake :return block: (CBlock) generated block
test/functional/fake_stake/base_test.py
create_spam_block
tdpsdevextreme/TradePlusCoin
python
def create_spam_block(self, hashPrevBlock, stakingPrevOuts, height, fStakeDoubleSpent=False, fZPoS=False, spendingPrevOuts={}): ' creates a block to spam the network with\n :param hashPrevBlock: (hex string) hash of previous block\n stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints (to be used as staking inputs) to amount, block_time, nStakeModifier, hashStake\n height: (int) block height\n fStakeDoubleSpent: (bool) spend the coinstake input inside the block\n fZPoS: (bool) stake the block with zerocoin\n spendingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints (to be used as tx inputs) to amount, block_time, nStakeModifier, hashStake\n :return block: (CBlock) generated block\n ' if (len(spendingPrevOuts) == 0): spendingPrevOuts = dict(stakingPrevOuts) current_time = int(time.time()) nTime = (current_time & 4294967280) coinbase = create_coinbase(height) coinbase.vout[0].nValue = 0 coinbase.vout[0].scriptPubKey = b coinbase.nTime = nTime coinbase.rehash() block = create_block(int(hashPrevBlock, 16), coinbase, nTime) if (not block.solve_stake(stakingPrevOuts)): raise Exception('Not able to solve for any prev_outpoint') signed_stake_tx = self.sign_stake_tx(block, stakingPrevOuts[block.prevoutStake][0], fZPoS) block.vtx.append(signed_stake_tx) if ((not fZPoS) and (not fStakeDoubleSpent)): del spendingPrevOuts[block.prevoutStake] if (len(spendingPrevOuts) > 0): del spendingPrevOuts[choice(list(spendingPrevOuts))] for outPoint in spendingPrevOuts: value_out = int((spendingPrevOuts[outPoint][0] - (self.DEFAULT_FEE * COIN))) tx = create_transaction(outPoint, b, value_out, nTime, scriptPubKey=CScript([self.block_sig_key.get_pubkey(), OP_CHECKSIG])) signed_tx_hex = self.node.signrawtransaction(bytes_to_hex_str(tx.serialize()))['hex'] signed_tx = CTransaction() signed_tx.deserialize(BytesIO(hex_str_to_bytes(signed_tx_hex))) block.vtx.append(signed_tx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.sign_block(self.block_sig_key) return block
def spend_utxo(self, utxo, address_list): ' spend amount from previously unspent output to a provided address\n :param utxo: (JSON) returned from listunspent used as input\n addresslist: (string) destination address\n :return: txhash: (string) tx hash if successful, empty string otherwise\n ' try: inputs = [{'txid': utxo['txid'], 'vout': utxo['vout']}] out_amount = ((float(utxo['amount']) - self.DEFAULT_FEE) / len(address_list)) outputs = {} for address in address_list: outputs[address] = out_amount spendingTx = self.node.createrawtransaction(inputs, outputs) spendingTx_signed = self.node.signrawtransaction(spendingTx) if spendingTx_signed['complete']: txhash = self.node.sendrawtransaction(spendingTx_signed['hex']) return txhash else: self.log.warning(('Error: %s' % str(spendingTx_signed['errors']))) return '' except JSONRPCException as e: self.log.error(('JSONRPCException: %s' % str(e))) return ''
-1,279,210,864,629,148,000
spend amount from previously unspent output to a provided address :param utxo: (JSON) returned from listunspent used as input addresslist: (string) destination address :return: txhash: (string) tx hash if successful, empty string otherwise
test/functional/fake_stake/base_test.py
spend_utxo
tdpsdevextreme/TradePlusCoin
python
def spend_utxo(self, utxo, address_list): ' spend amount from previously unspent output to a provided address\n :param utxo: (JSON) returned from listunspent used as input\n addresslist: (string) destination address\n :return: txhash: (string) tx hash if successful, empty string otherwise\n ' try: inputs = [{'txid': utxo['txid'], 'vout': utxo['vout']}] out_amount = ((float(utxo['amount']) - self.DEFAULT_FEE) / len(address_list)) outputs = {} for address in address_list: outputs[address] = out_amount spendingTx = self.node.createrawtransaction(inputs, outputs) spendingTx_signed = self.node.signrawtransaction(spendingTx) if spendingTx_signed['complete']: txhash = self.node.sendrawtransaction(spendingTx_signed['hex']) return txhash else: self.log.warning(('Error: %s' % str(spendingTx_signed['errors']))) return except JSONRPCException as e: self.log.error(('JSONRPCException: %s' % str(e))) return
def spend_utxos(self, utxo_list, address_list=[]): ' spend utxos to provided list of addresses or 10 new generate ones.\n :param utxo_list: (JSON list) returned from listunspent used as input\n address_list: (string list) [optional] recipient TradePlus_Coin addresses. if not set,\n 10 new addresses will be generated from the wallet for each tx.\n :return: txHashes (string list) tx hashes\n ' txHashes = [] if (address_list == []): for i in range(10): address_list.append(self.node.getnewaddress()) for utxo in utxo_list: try: txHash = self.spend_utxo(utxo, address_list) if (txHash != ''): txHashes.append(txHash) except JSONRPCException as e: self.log.error(('JSONRPCException: %s' % str(e))) continue return txHashes
-6,621,179,609,126,178,000
spend utxos to provided list of addresses or 10 new generate ones. :param utxo_list: (JSON list) returned from listunspent used as input address_list: (string list) [optional] recipient TradePlus_Coin addresses. if not set, 10 new addresses will be generated from the wallet for each tx. :return: txHashes (string list) tx hashes
test/functional/fake_stake/base_test.py
spend_utxos
tdpsdevextreme/TradePlusCoin
python
def spend_utxos(self, utxo_list, address_list=[]): ' spend utxos to provided list of addresses or 10 new generate ones.\n :param utxo_list: (JSON list) returned from listunspent used as input\n address_list: (string list) [optional] recipient TradePlus_Coin addresses. if not set,\n 10 new addresses will be generated from the wallet for each tx.\n :return: txHashes (string list) tx hashes\n ' txHashes = [] if (address_list == []): for i in range(10): address_list.append(self.node.getnewaddress()) for utxo in utxo_list: try: txHash = self.spend_utxo(utxo, address_list) if (txHash != ): txHashes.append(txHash) except JSONRPCException as e: self.log.error(('JSONRPCException: %s' % str(e))) continue return txHashes
def stake_amplification_step(self, utxo_list, address_list=[]): ' spends a list of utxos providing the list of new outputs\n :param utxo_list: (JSON list) returned from listunspent used as input\n address_list: (string list) [optional] recipient TradePlus_Coin addresses.\n :return: new_utxos: (JSON list) list of new (valid) inputs after the spends\n ' self.log.info('--> Stake Amplification step started with %d UTXOs', len(utxo_list)) txHashes = self.spend_utxos(utxo_list, address_list) num_of_txes = len(txHashes) new_utxos = [] if (num_of_txes > 0): self.log.info(('Created %d transactions...Mining 2 blocks to include them...' % num_of_txes)) self.node.generate(2) time.sleep(2) new_utxos = self.node.listunspent() self.log.info(('Amplification step produced %d new "Fake Stake" inputs:' % len(new_utxos))) return new_utxos
1,172,270,517,256,876,300
spends a list of utxos providing the list of new outputs :param utxo_list: (JSON list) returned from listunspent used as input address_list: (string list) [optional] recipient TradePlus_Coin addresses. :return: new_utxos: (JSON list) list of new (valid) inputs after the spends
test/functional/fake_stake/base_test.py
stake_amplification_step
tdpsdevextreme/TradePlusCoin
python
def stake_amplification_step(self, utxo_list, address_list=[]): ' spends a list of utxos providing the list of new outputs\n :param utxo_list: (JSON list) returned from listunspent used as input\n address_list: (string list) [optional] recipient TradePlus_Coin addresses.\n :return: new_utxos: (JSON list) list of new (valid) inputs after the spends\n ' self.log.info('--> Stake Amplification step started with %d UTXOs', len(utxo_list)) txHashes = self.spend_utxos(utxo_list, address_list) num_of_txes = len(txHashes) new_utxos = [] if (num_of_txes > 0): self.log.info(('Created %d transactions...Mining 2 blocks to include them...' % num_of_txes)) self.node.generate(2) time.sleep(2) new_utxos = self.node.listunspent() self.log.info(('Amplification step produced %d new "Fake Stake" inputs:' % len(new_utxos))) return new_utxos
def stake_amplification(self, utxo_list, iterations, address_list=[]): ' performs the "stake amplification" which gives higher chances at finding fake stakes\n :param utxo_list: (JSON list) returned from listunspent used as input\n iterations: (int) amount of stake amplification steps to perform\n address_list: (string list) [optional] recipient TradePlus_Coin addresses.\n :return: all_inputs: (JSON list) list of all spent inputs\n ' self.log.info('** Stake Amplification started with %d UTXOs', len(utxo_list)) valid_inputs = utxo_list all_inputs = [] for i in range(iterations): all_inputs = (all_inputs + valid_inputs) old_inputs = valid_inputs valid_inputs = self.stake_amplification_step(old_inputs, address_list) self.log.info('** Stake Amplification ended with %d "fake" UTXOs', len(all_inputs)) return all_inputs
5,069,938,516,817,489,000
performs the "stake amplification" which gives higher chances at finding fake stakes :param utxo_list: (JSON list) returned from listunspent used as input iterations: (int) amount of stake amplification steps to perform address_list: (string list) [optional] recipient TradePlus_Coin addresses. :return: all_inputs: (JSON list) list of all spent inputs
test/functional/fake_stake/base_test.py
stake_amplification
tdpsdevextreme/TradePlusCoin
python
def stake_amplification(self, utxo_list, iterations, address_list=[]): ' performs the "stake amplification" which gives higher chances at finding fake stakes\n :param utxo_list: (JSON list) returned from listunspent used as input\n iterations: (int) amount of stake amplification steps to perform\n address_list: (string list) [optional] recipient TradePlus_Coin addresses.\n :return: all_inputs: (JSON list) list of all spent inputs\n ' self.log.info('** Stake Amplification started with %d UTXOs', len(utxo_list)) valid_inputs = utxo_list all_inputs = [] for i in range(iterations): all_inputs = (all_inputs + valid_inputs) old_inputs = valid_inputs valid_inputs = self.stake_amplification_step(old_inputs, address_list) self.log.info('** Stake Amplification ended with %d "fake" UTXOs', len(all_inputs)) return all_inputs
def sign_stake_tx(self, block, stake_in_value, fZPoS=False): ' signs a coinstake transaction\n :param block: (CBlock) block with stake to sign\n stake_in_value: (int) staked amount\n fZPoS: (bool) zerocoin stake\n :return: stake_tx_signed: (CTransaction) signed tx\n ' self.block_sig_key = CECKey() if fZPoS: self.log.info('Signing zPoS stake...') raw_stake = self.node.createrawzerocoinstake(block.prevoutStake) stake_tx_signed_raw_hex = raw_stake['hex'] stake_pkey = raw_stake['private-key'] self.block_sig_key.set_compressed(True) self.block_sig_key.set_secretbytes(bytes.fromhex(stake_pkey)) else: self.block_sig_key.set_secretbytes(hash256(pack('<I', 65535))) pubkey = self.block_sig_key.get_pubkey() scriptPubKey = CScript([pubkey, OP_CHECKSIG]) outNValue = int((stake_in_value + (2 * COIN))) stake_tx_unsigned = CTransaction() stake_tx_unsigned.nTime = block.nTime stake_tx_unsigned.vin.append(CTxIn(block.prevoutStake)) stake_tx_unsigned.vin[0].nSequence = 4294967295 stake_tx_unsigned.vout.append(CTxOut()) stake_tx_unsigned.vout.append(CTxOut(outNValue, scriptPubKey)) stake_tx_signed_raw_hex = self.node.signrawtransaction(bytes_to_hex_str(stake_tx_unsigned.serialize()))['hex'] stake_tx_signed = CTransaction() stake_tx_signed.deserialize(BytesIO(hex_str_to_bytes(stake_tx_signed_raw_hex))) return stake_tx_signed
-4,420,679,656,985,043,500
signs a coinstake transaction :param block: (CBlock) block with stake to sign stake_in_value: (int) staked amount fZPoS: (bool) zerocoin stake :return: stake_tx_signed: (CTransaction) signed tx
test/functional/fake_stake/base_test.py
sign_stake_tx
tdpsdevextreme/TradePlusCoin
python
def sign_stake_tx(self, block, stake_in_value, fZPoS=False): ' signs a coinstake transaction\n :param block: (CBlock) block with stake to sign\n stake_in_value: (int) staked amount\n fZPoS: (bool) zerocoin stake\n :return: stake_tx_signed: (CTransaction) signed tx\n ' self.block_sig_key = CECKey() if fZPoS: self.log.info('Signing zPoS stake...') raw_stake = self.node.createrawzerocoinstake(block.prevoutStake) stake_tx_signed_raw_hex = raw_stake['hex'] stake_pkey = raw_stake['private-key'] self.block_sig_key.set_compressed(True) self.block_sig_key.set_secretbytes(bytes.fromhex(stake_pkey)) else: self.block_sig_key.set_secretbytes(hash256(pack('<I', 65535))) pubkey = self.block_sig_key.get_pubkey() scriptPubKey = CScript([pubkey, OP_CHECKSIG]) outNValue = int((stake_in_value + (2 * COIN))) stake_tx_unsigned = CTransaction() stake_tx_unsigned.nTime = block.nTime stake_tx_unsigned.vin.append(CTxIn(block.prevoutStake)) stake_tx_unsigned.vin[0].nSequence = 4294967295 stake_tx_unsigned.vout.append(CTxOut()) stake_tx_unsigned.vout.append(CTxOut(outNValue, scriptPubKey)) stake_tx_signed_raw_hex = self.node.signrawtransaction(bytes_to_hex_str(stake_tx_unsigned.serialize()))['hex'] stake_tx_signed = CTransaction() stake_tx_signed.deserialize(BytesIO(hex_str_to_bytes(stake_tx_signed_raw_hex))) return stake_tx_signed
def get_prevouts(self, utxo_list, blockHeight, zpos=False): ' get prevouts (map) for each utxo in a list\n :param utxo_list: <if zpos=False> (JSON list) utxos returned from listunspent used as input\n <if zpos=True> (JSON list) mints returned from listmintedzerocoins used as input\n blockHeight: (int) height of the previous block\n zpos: (bool) type of utxo_list\n :return: stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints to amount, block_time, nStakeModifier, hashStake\n ' zerocoinDenomList = [1, 5, 10, 50, 100, 500, 1000, 5000] stakingPrevOuts = {} for utxo in utxo_list: if zpos: checkpointHeight = (blockHeight - 200) checkpointBlock = self.node.getblock(self.node.getblockhash(checkpointHeight), True) checkpoint = int(checkpointBlock['acc_checkpoint'], 16) pos = zerocoinDenomList.index(utxo['denomination']) checksum = ((checkpoint >> (32 * ((len(zerocoinDenomList) - 1) - pos))) & 4294967295) checksumBlock = self.node.getchecksumblock(hex(checksum), utxo['denomination'], True) txBlockhash = checksumBlock['hash'] txBlocktime = checksumBlock['time'] else: utxo_tx = self.node.getrawtransaction(utxo['txid'], 1) txBlocktime = utxo_tx['blocktime'] txBlockhash = utxo_tx['blockhash'] stakeModifier = int(self.node.getblock(txBlockhash)['modifier'], 16) utxo_to_stakingPrevOuts(utxo, stakingPrevOuts, txBlocktime, stakeModifier, zpos) return stakingPrevOuts
-6,867,077,410,439,967,000
get prevouts (map) for each utxo in a list :param utxo_list: <if zpos=False> (JSON list) utxos returned from listunspent used as input <if zpos=True> (JSON list) mints returned from listmintedzerocoins used as input blockHeight: (int) height of the previous block zpos: (bool) type of utxo_list :return: stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints to amount, block_time, nStakeModifier, hashStake
test/functional/fake_stake/base_test.py
get_prevouts
tdpsdevextreme/TradePlusCoin
python
def get_prevouts(self, utxo_list, blockHeight, zpos=False): ' get prevouts (map) for each utxo in a list\n :param utxo_list: <if zpos=False> (JSON list) utxos returned from listunspent used as input\n <if zpos=True> (JSON list) mints returned from listmintedzerocoins used as input\n blockHeight: (int) height of the previous block\n zpos: (bool) type of utxo_list\n :return: stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary)\n map outpoints to amount, block_time, nStakeModifier, hashStake\n ' zerocoinDenomList = [1, 5, 10, 50, 100, 500, 1000, 5000] stakingPrevOuts = {} for utxo in utxo_list: if zpos: checkpointHeight = (blockHeight - 200) checkpointBlock = self.node.getblock(self.node.getblockhash(checkpointHeight), True) checkpoint = int(checkpointBlock['acc_checkpoint'], 16) pos = zerocoinDenomList.index(utxo['denomination']) checksum = ((checkpoint >> (32 * ((len(zerocoinDenomList) - 1) - pos))) & 4294967295) checksumBlock = self.node.getchecksumblock(hex(checksum), utxo['denomination'], True) txBlockhash = checksumBlock['hash'] txBlocktime = checksumBlock['time'] else: utxo_tx = self.node.getrawtransaction(utxo['txid'], 1) txBlocktime = utxo_tx['blocktime'] txBlockhash = utxo_tx['blockhash'] stakeModifier = int(self.node.getblock(txBlockhash)['modifier'], 16) utxo_to_stakingPrevOuts(utxo, stakingPrevOuts, txBlocktime, stakeModifier, zpos) return stakingPrevOuts
def log_data_dir_size(self): " Prints the size of the '/regtest/blocks' directory.\n :param:\n :return:\n " init_size = dir_size((self.node.datadir + '/regtest/blocks')) self.log.info(('Size of data dir: %s kilobytes' % str(init_size)))
4,494,430,405,223,330,000
Prints the size of the '/regtest/blocks' directory. :param: :return:
test/functional/fake_stake/base_test.py
log_data_dir_size
tdpsdevextreme/TradePlusCoin
python
def log_data_dir_size(self): " Prints the size of the '/regtest/blocks' directory.\n :param:\n :return:\n " init_size = dir_size((self.node.datadir + '/regtest/blocks')) self.log.info(('Size of data dir: %s kilobytes' % str(init_size)))