body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def grangercausalitytests(x, maxlag, addconst=True, verbose=True): "four tests for granger non causality of 2 timeseries\n\n all four tests give similar results\n `params_ftest` and `ssr_ftest` are equivalent based on F test which is\n identical to lmtest:grangertest in R\n\n Parameters\n ----------\n x : array, 2d\n data for test whether the time series in the second column Granger\n causes the time series in the first column\n maxlag : integer\n the Granger causality test results are calculated for all lags up to\n maxlag\n verbose : bool\n print results if true\n\n Returns\n -------\n results : dictionary\n all test results, dictionary keys are the number of lags. For each\n lag the values are a tuple, with the first element a dictionary with\n teststatistic, pvalues, degrees of freedom, the second element are\n the OLS estimation results for the restricted model, the unrestricted\n model and the restriction (contrast) matrix for the parameter f_test.\n\n Notes\n -----\n TODO: convert to class and attach results properly\n\n The Null hypothesis for grangercausalitytests is that the time series in\n the second column, x2, does NOT Granger cause the time series in the first\n column, x1. Grange causality means that past values of x2 have a\n statistically significant effect on the current value of x1, taking past\n values of x1 into account as regressors. We reject the null hypothesis\n that x2 does not Granger cause x1 if the pvalues are below a desired size\n of the test.\n\n The null hypothesis for all four test is that the coefficients\n corresponding to past values of the second time series are zero.\n\n 'params_ftest', 'ssr_ftest' are based on F distribution\n\n 'ssr_chi2test', 'lrtest' are based on chi-square distribution\n\n References\n ----------\n http://en.wikipedia.org/wiki/Granger_causality\n Greene: Econometric Analysis\n\n " from scipy import stats x = np.asarray(x) if (x.shape[0] <= ((3 * maxlag) + int(addconst))): raise ValueError('Insufficient observations. Maximum allowable lag is {0}'.format((int(((x.shape[0] - int(addconst)) / 3)) - 1))) resli = {} for mlg in range(1, (maxlag + 1)): result = {} if verbose: print('\nGranger Causality') print('number of lags (no zero)', mlg) mxlg = mlg dta = lagmat2ds(x, mxlg, trim='both', dropex=1) if addconst: dtaown = add_constant(dta[:, 1:(mxlg + 1)], prepend=False) dtajoint = add_constant(dta[:, 1:], prepend=False) else: raise NotImplementedError('Not Implemented') res2down = OLS(dta[:, 0], dtaown).fit() res2djoint = OLS(dta[:, 0], dtajoint).fit() fgc1 = ((((res2down.ssr - res2djoint.ssr) / res2djoint.ssr) / mxlg) * res2djoint.df_resid) if verbose: print(('ssr based F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg))) result['ssr_ftest'] = (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg) fgc2 = ((res2down.nobs * (res2down.ssr - res2djoint.ssr)) / res2djoint.ssr) if verbose: print(('ssr based chi2 test: chi2=%-8.4f, p=%-8.4f, df=%d' % (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg))) result['ssr_chi2test'] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg) lr = ((- 2) * (res2down.llf - res2djoint.llf)) if verbose: print(('likelihood ratio test: chi2=%-8.4f, p=%-8.4f, df=%d' % (lr, stats.chi2.sf(lr, mxlg), mxlg))) result['lrtest'] = (lr, stats.chi2.sf(lr, mxlg), mxlg) rconstr = np.column_stack((np.zeros((mxlg, mxlg)), np.eye(mxlg, mxlg), np.zeros((mxlg, 1)))) ftres = res2djoint.f_test(rconstr) if verbose: print(('parameter F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % (ftres.fvalue, ftres.pvalue, ftres.df_denom, ftres.df_num))) result['params_ftest'] = (np.squeeze(ftres.fvalue)[()], np.squeeze(ftres.pvalue)[()], ftres.df_denom, ftres.df_num) resli[mxlg] = (result, [res2down, res2djoint, rconstr]) return resli
2,497,703,576,321,163,000
four tests for granger non causality of 2 timeseries all four tests give similar results `params_ftest` and `ssr_ftest` are equivalent based on F test which is identical to lmtest:grangertest in R Parameters ---------- x : array, 2d data for test whether the time series in the second column Granger causes the time series in the first column maxlag : integer the Granger causality test results are calculated for all lags up to maxlag verbose : bool print results if true Returns ------- results : dictionary all test results, dictionary keys are the number of lags. For each lag the values are a tuple, with the first element a dictionary with teststatistic, pvalues, degrees of freedom, the second element are the OLS estimation results for the restricted model, the unrestricted model and the restriction (contrast) matrix for the parameter f_test. Notes ----- TODO: convert to class and attach results properly The Null hypothesis for grangercausalitytests is that the time series in the second column, x2, does NOT Granger cause the time series in the first column, x1. Grange causality means that past values of x2 have a statistically significant effect on the current value of x1, taking past values of x1 into account as regressors. We reject the null hypothesis that x2 does not Granger cause x1 if the pvalues are below a desired size of the test. The null hypothesis for all four test is that the coefficients corresponding to past values of the second time series are zero. 'params_ftest', 'ssr_ftest' are based on F distribution 'ssr_chi2test', 'lrtest' are based on chi-square distribution References ---------- http://en.wikipedia.org/wiki/Granger_causality Greene: Econometric Analysis
statsmodels/tsa/stattools.py
grangercausalitytests
josef-pkt/statsmodels
python
def grangercausalitytests(x, maxlag, addconst=True, verbose=True): "four tests for granger non causality of 2 timeseries\n\n all four tests give similar results\n `params_ftest` and `ssr_ftest` are equivalent based on F test which is\n identical to lmtest:grangertest in R\n\n Parameters\n ----------\n x : array, 2d\n data for test whether the time series in the second column Granger\n causes the time series in the first column\n maxlag : integer\n the Granger causality test results are calculated for all lags up to\n maxlag\n verbose : bool\n print results if true\n\n Returns\n -------\n results : dictionary\n all test results, dictionary keys are the number of lags. For each\n lag the values are a tuple, with the first element a dictionary with\n teststatistic, pvalues, degrees of freedom, the second element are\n the OLS estimation results for the restricted model, the unrestricted\n model and the restriction (contrast) matrix for the parameter f_test.\n\n Notes\n -----\n TODO: convert to class and attach results properly\n\n The Null hypothesis for grangercausalitytests is that the time series in\n the second column, x2, does NOT Granger cause the time series in the first\n column, x1. Grange causality means that past values of x2 have a\n statistically significant effect on the current value of x1, taking past\n values of x1 into account as regressors. We reject the null hypothesis\n that x2 does not Granger cause x1 if the pvalues are below a desired size\n of the test.\n\n The null hypothesis for all four test is that the coefficients\n corresponding to past values of the second time series are zero.\n\n 'params_ftest', 'ssr_ftest' are based on F distribution\n\n 'ssr_chi2test', 'lrtest' are based on chi-square distribution\n\n References\n ----------\n http://en.wikipedia.org/wiki/Granger_causality\n Greene: Econometric Analysis\n\n " from scipy import stats x = np.asarray(x) if (x.shape[0] <= ((3 * maxlag) + int(addconst))): raise ValueError('Insufficient observations. Maximum allowable lag is {0}'.format((int(((x.shape[0] - int(addconst)) / 3)) - 1))) resli = {} for mlg in range(1, (maxlag + 1)): result = {} if verbose: print('\nGranger Causality') print('number of lags (no zero)', mlg) mxlg = mlg dta = lagmat2ds(x, mxlg, trim='both', dropex=1) if addconst: dtaown = add_constant(dta[:, 1:(mxlg + 1)], prepend=False) dtajoint = add_constant(dta[:, 1:], prepend=False) else: raise NotImplementedError('Not Implemented') res2down = OLS(dta[:, 0], dtaown).fit() res2djoint = OLS(dta[:, 0], dtajoint).fit() fgc1 = ((((res2down.ssr - res2djoint.ssr) / res2djoint.ssr) / mxlg) * res2djoint.df_resid) if verbose: print(('ssr based F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg))) result['ssr_ftest'] = (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg) fgc2 = ((res2down.nobs * (res2down.ssr - res2djoint.ssr)) / res2djoint.ssr) if verbose: print(('ssr based chi2 test: chi2=%-8.4f, p=%-8.4f, df=%d' % (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg))) result['ssr_chi2test'] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg) lr = ((- 2) * (res2down.llf - res2djoint.llf)) if verbose: print(('likelihood ratio test: chi2=%-8.4f, p=%-8.4f, df=%d' % (lr, stats.chi2.sf(lr, mxlg), mxlg))) result['lrtest'] = (lr, stats.chi2.sf(lr, mxlg), mxlg) rconstr = np.column_stack((np.zeros((mxlg, mxlg)), np.eye(mxlg, mxlg), np.zeros((mxlg, 1)))) ftres = res2djoint.f_test(rconstr) if verbose: print(('parameter F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % (ftres.fvalue, ftres.pvalue, ftres.df_denom, ftres.df_num))) result['params_ftest'] = (np.squeeze(ftres.fvalue)[()], np.squeeze(ftres.pvalue)[()], ftres.df_denom, ftres.df_num) resli[mxlg] = (result, [res2down, res2djoint, rconstr]) return resli
def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic', return_results=None): 'Test for no-cointegration of a univariate equation\n\n The null hypothesis is no cointegration. Variables in y0 and y1 are\n assumed to be integrated of order 1, I(1).\n\n This uses the augmented Engle-Granger two-step cointegration test.\n Constant or trend is included in 1st stage regression, i.e. in\n cointegrating equation.\n\n **Warning:** The autolag default has changed compared to statsmodels 0.8.\n In 0.8 autolag was always None, no the keyword is used and defaults to\n \'aic\'. Use `autolag=None` to avoid the lag search.\n\n Parameters\n ----------\n y1 : array_like, 1d\n first element in cointegrating vector\n y2 : array_like\n remaining elements in cointegrating vector\n trend : str {\'c\', \'ct\'}\n trend term included in regression for cointegrating equation\n * \'c\' : constant\n * \'ct\' : constant and linear trend\n * also available quadratic trend \'ctt\', and no constant \'nc\'\n\n method : string\n currently only \'aeg\' for augmented Engle-Granger test is available.\n default might change.\n maxlag : None or int\n keyword for `adfuller`, largest or given number of lags\n autolag : string\n keyword for `adfuller`, lag selection criterion.\n * if None, then maxlag lags are used without lag search\n * if \'AIC\' (default) or \'BIC\', then the number of lags is chosen\n to minimize the corresponding information criterion\n * \'t-stat\' based choice of maxlag. Starts with maxlag and drops a\n lag until the t-statistic on the last lag length is significant\n using a 5%-sized test\n\n return_results : bool\n for future compatibility, currently only tuple available.\n If True, then a results instance is returned. Otherwise, a tuple\n with the test outcome is returned.\n Set `return_results=False` to avoid future changes in return.\n\n\n Returns\n -------\n coint_t : float\n t-statistic of unit-root test on residuals\n pvalue : float\n MacKinnon\'s approximate, asymptotic p-value based on MacKinnon (1994)\n crit_value : dict\n Critical values for the test statistic at the 1 %, 5 %, and 10 %\n levels based on regression curve. This depends on the number of\n observations.\n\n Notes\n -----\n The Null hypothesis is that there is no cointegration, the alternative\n hypothesis is that there is cointegrating relationship. If the pvalue is\n small, below a critical size, then we can reject the hypothesis that there\n is no cointegrating relationship.\n\n P-values and critical values are obtained through regression surface\n approximation from MacKinnon 1994 and 2010.\n\n If the two series are almost perfectly collinear, then computing the\n test is numerically unstable. However, the two series will be cointegrated\n under the maintained assumption that they are integrated. In this case\n the t-statistic will be set to -inf and the pvalue to zero.\n\n TODO: We could handle gaps in data by dropping rows with nans in the\n auxiliary regressions. Not implemented yet, currently assumes no nans\n and no gaps in time series.\n\n References\n ----------\n MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for\n Unit-Root and Cointegration Tests." Journal of Business & Economics\n Statistics, 12.2, 167-76.\n MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests."\n Queen\'s University, Dept of Economics Working Papers 1227.\n http://ideas.repec.org/p/qed/wpaper/1227.html\n ' trend = trend.lower() if (trend not in ['c', 'nc', 'ct', 'ctt']): raise ValueError(('trend option %s not understood' % trend)) y0 = np.asarray(y0) y1 = np.asarray(y1) if (y1.ndim < 2): y1 = y1[:, None] (nobs, k_vars) = y1.shape k_vars += 1 if (trend == 'nc'): xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() if (res_co.rsquared < (1 - (100 * SQRTEPS))): res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=autolag, regression='nc') else: import warnings warnings.warn('y0 and y1 are (almost) perfectly colinear.Cointegration test is not reliable in this case.') res_adf = ((- np.inf),) if (trend == 'nc'): crit = ([np.nan] * 3) else: crit = mackinnoncrit(N=k_vars, regression=trend, nobs=(nobs - 1)) pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return (res_adf[0], pval_asy, crit)
3,271,704,490,787,290,600
Test for no-cointegration of a univariate equation The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. **Warning:** The autolag default has changed compared to statsmodels 0.8. In 0.8 autolag was always None, no the keyword is used and defaults to 'aic'. Use `autolag=None` to avoid the lag search. Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector trend : str {'c', 'ct'} trend term included in regression for cointegrating equation * 'c' : constant * 'ct' : constant and linear trend * also available quadratic trend 'ctt', and no constant 'nc' method : string currently only 'aeg' for augmented Engle-Granger test is available. default might change. maxlag : None or int keyword for `adfuller`, largest or given number of lags autolag : string keyword for `adfuller`, lag selection criterion. * if None, then maxlag lags are used without lag search * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterion * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test return_results : bool for future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. If the two series are almost perfectly collinear, then computing the test is numerically unstable. However, the two series will be cointegrated under the maintained assumption that they are integrated. In this case the t-statistic will be set to -inf and the pvalue to zero. TODO: We could handle gaps in data by dropping rows with nans in the auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html
statsmodels/tsa/stattools.py
coint
josef-pkt/statsmodels
python
def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic', return_results=None): 'Test for no-cointegration of a univariate equation\n\n The null hypothesis is no cointegration. Variables in y0 and y1 are\n assumed to be integrated of order 1, I(1).\n\n This uses the augmented Engle-Granger two-step cointegration test.\n Constant or trend is included in 1st stage regression, i.e. in\n cointegrating equation.\n\n **Warning:** The autolag default has changed compared to statsmodels 0.8.\n In 0.8 autolag was always None, no the keyword is used and defaults to\n \'aic\'. Use `autolag=None` to avoid the lag search.\n\n Parameters\n ----------\n y1 : array_like, 1d\n first element in cointegrating vector\n y2 : array_like\n remaining elements in cointegrating vector\n trend : str {\'c\', \'ct\'}\n trend term included in regression for cointegrating equation\n * \'c\' : constant\n * \'ct\' : constant and linear trend\n * also available quadratic trend \'ctt\', and no constant \'nc\'\n\n method : string\n currently only \'aeg\' for augmented Engle-Granger test is available.\n default might change.\n maxlag : None or int\n keyword for `adfuller`, largest or given number of lags\n autolag : string\n keyword for `adfuller`, lag selection criterion.\n * if None, then maxlag lags are used without lag search\n * if \'AIC\' (default) or \'BIC\', then the number of lags is chosen\n to minimize the corresponding information criterion\n * \'t-stat\' based choice of maxlag. Starts with maxlag and drops a\n lag until the t-statistic on the last lag length is significant\n using a 5%-sized test\n\n return_results : bool\n for future compatibility, currently only tuple available.\n If True, then a results instance is returned. Otherwise, a tuple\n with the test outcome is returned.\n Set `return_results=False` to avoid future changes in return.\n\n\n Returns\n -------\n coint_t : float\n t-statistic of unit-root test on residuals\n pvalue : float\n MacKinnon\'s approximate, asymptotic p-value based on MacKinnon (1994)\n crit_value : dict\n Critical values for the test statistic at the 1 %, 5 %, and 10 %\n levels based on regression curve. This depends on the number of\n observations.\n\n Notes\n -----\n The Null hypothesis is that there is no cointegration, the alternative\n hypothesis is that there is cointegrating relationship. If the pvalue is\n small, below a critical size, then we can reject the hypothesis that there\n is no cointegrating relationship.\n\n P-values and critical values are obtained through regression surface\n approximation from MacKinnon 1994 and 2010.\n\n If the two series are almost perfectly collinear, then computing the\n test is numerically unstable. However, the two series will be cointegrated\n under the maintained assumption that they are integrated. In this case\n the t-statistic will be set to -inf and the pvalue to zero.\n\n TODO: We could handle gaps in data by dropping rows with nans in the\n auxiliary regressions. Not implemented yet, currently assumes no nans\n and no gaps in time series.\n\n References\n ----------\n MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for\n Unit-Root and Cointegration Tests." Journal of Business & Economics\n Statistics, 12.2, 167-76.\n MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests."\n Queen\'s University, Dept of Economics Working Papers 1227.\n http://ideas.repec.org/p/qed/wpaper/1227.html\n ' trend = trend.lower() if (trend not in ['c', 'nc', 'ct', 'ctt']): raise ValueError(('trend option %s not understood' % trend)) y0 = np.asarray(y0) y1 = np.asarray(y1) if (y1.ndim < 2): y1 = y1[:, None] (nobs, k_vars) = y1.shape k_vars += 1 if (trend == 'nc'): xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() if (res_co.rsquared < (1 - (100 * SQRTEPS))): res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=autolag, regression='nc') else: import warnings warnings.warn('y0 and y1 are (almost) perfectly colinear.Cointegration test is not reliable in this case.') res_adf = ((- np.inf),) if (trend == 'nc'): crit = ([np.nan] * 3) else: crit = mackinnoncrit(N=k_vars, regression=trend, nobs=(nobs - 1)) pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return (res_adf[0], pval_asy, crit)
def arma_order_select_ic(y, max_ar=4, max_ma=2, ic='bic', trend='c', model_kw={}, fit_kw={}): "\n Returns information criteria for many ARMA models\n\n Parameters\n ----------\n y : array-like\n Time-series data\n max_ar : int\n Maximum number of AR lags to use. Default 4.\n max_ma : int\n Maximum number of MA lags to use. Default 2.\n ic : str, list\n Information criteria to report. Either a single string or a list\n of different criteria is possible.\n trend : str\n The trend to use when fitting the ARMA models.\n model_kw : dict\n Keyword arguments to be passed to the ``ARMA`` model\n fit_kw : dict\n Keyword arguments to be passed to ``ARMA.fit``.\n\n Returns\n -------\n obj : Results object\n Each ic is an attribute with a DataFrame for the results. The AR order\n used is the row index. The ma order used is the column index. The\n minimum orders are available as ``ic_min_order``.\n\n Examples\n --------\n\n >>> from statsmodels.tsa.arima_process import arma_generate_sample\n >>> import statsmodels.api as sm\n >>> import numpy as np\n\n >>> arparams = np.array([.75, -.25])\n >>> maparams = np.array([.65, .35])\n >>> arparams = np.r_[1, -arparams]\n >>> maparam = np.r_[1, maparams]\n >>> nobs = 250\n >>> np.random.seed(2014)\n >>> y = arma_generate_sample(arparams, maparams, nobs)\n >>> res = sm.tsa.arma_order_select_ic(y, ic=['aic', 'bic'], trend='nc')\n >>> res.aic_min_order\n >>> res.bic_min_order\n\n Notes\n -----\n This method can be used to tentatively identify the order of an ARMA\n process, provided that the time series is stationary and invertible. This\n function computes the full exact MLE estimate of each model and can be,\n therefore a little slow. An implementation using approximate estimates\n will be provided in the future. In the meantime, consider passing\n {method : 'css'} to fit_kw.\n " from pandas import DataFrame ar_range = lrange(0, (max_ar + 1)) ma_range = lrange(0, (max_ma + 1)) if isinstance(ic, string_types): ic = [ic] elif (not isinstance(ic, (list, tuple))): raise ValueError('Need a list or a tuple for ic if not a string.') results = np.zeros((len(ic), (max_ar + 1), (max_ma + 1))) for ar in ar_range: for ma in ma_range: if ((ar == 0) and (ma == 0) and (trend == 'nc')): results[:, ar, ma] = np.nan continue mod = _safe_arma_fit(y, (ar, ma), model_kw, trend, fit_kw) if (mod is None): results[:, ar, ma] = np.nan continue for (i, criteria) in enumerate(ic): results[(i, ar, ma)] = getattr(mod, criteria) dfs = [DataFrame(res, columns=ma_range, index=ar_range) for res in results] res = dict(zip(ic, dfs)) min_res = {} for (i, result) in iteritems(res): mins = np.where((result.min().min() == result)) min_res.update({(i + '_min_order'): (mins[0][0], mins[1][0])}) res.update(min_res) return Bunch(**res)
-3,637,179,301,659,311,600
Returns information criteria for many ARMA models Parameters ---------- y : array-like Time-series data max_ar : int Maximum number of AR lags to use. Default 4. max_ma : int Maximum number of MA lags to use. Default 2. ic : str, list Information criteria to report. Either a single string or a list of different criteria is possible. trend : str The trend to use when fitting the ARMA models. model_kw : dict Keyword arguments to be passed to the ``ARMA`` model fit_kw : dict Keyword arguments to be passed to ``ARMA.fit``. Returns ------- obj : Results object Each ic is an attribute with a DataFrame for the results. The AR order used is the row index. The ma order used is the column index. The minimum orders are available as ``ic_min_order``. Examples -------- >>> from statsmodels.tsa.arima_process import arma_generate_sample >>> import statsmodels.api as sm >>> import numpy as np >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> arparams = np.r_[1, -arparams] >>> maparam = np.r_[1, maparams] >>> nobs = 250 >>> np.random.seed(2014) >>> y = arma_generate_sample(arparams, maparams, nobs) >>> res = sm.tsa.arma_order_select_ic(y, ic=['aic', 'bic'], trend='nc') >>> res.aic_min_order >>> res.bic_min_order Notes ----- This method can be used to tentatively identify the order of an ARMA process, provided that the time series is stationary and invertible. This function computes the full exact MLE estimate of each model and can be, therefore a little slow. An implementation using approximate estimates will be provided in the future. In the meantime, consider passing {method : 'css'} to fit_kw.
statsmodels/tsa/stattools.py
arma_order_select_ic
josef-pkt/statsmodels
python
def arma_order_select_ic(y, max_ar=4, max_ma=2, ic='bic', trend='c', model_kw={}, fit_kw={}): "\n Returns information criteria for many ARMA models\n\n Parameters\n ----------\n y : array-like\n Time-series data\n max_ar : int\n Maximum number of AR lags to use. Default 4.\n max_ma : int\n Maximum number of MA lags to use. Default 2.\n ic : str, list\n Information criteria to report. Either a single string or a list\n of different criteria is possible.\n trend : str\n The trend to use when fitting the ARMA models.\n model_kw : dict\n Keyword arguments to be passed to the ``ARMA`` model\n fit_kw : dict\n Keyword arguments to be passed to ``ARMA.fit``.\n\n Returns\n -------\n obj : Results object\n Each ic is an attribute with a DataFrame for the results. The AR order\n used is the row index. The ma order used is the column index. The\n minimum orders are available as ``ic_min_order``.\n\n Examples\n --------\n\n >>> from statsmodels.tsa.arima_process import arma_generate_sample\n >>> import statsmodels.api as sm\n >>> import numpy as np\n\n >>> arparams = np.array([.75, -.25])\n >>> maparams = np.array([.65, .35])\n >>> arparams = np.r_[1, -arparams]\n >>> maparam = np.r_[1, maparams]\n >>> nobs = 250\n >>> np.random.seed(2014)\n >>> y = arma_generate_sample(arparams, maparams, nobs)\n >>> res = sm.tsa.arma_order_select_ic(y, ic=['aic', 'bic'], trend='nc')\n >>> res.aic_min_order\n >>> res.bic_min_order\n\n Notes\n -----\n This method can be used to tentatively identify the order of an ARMA\n process, provided that the time series is stationary and invertible. This\n function computes the full exact MLE estimate of each model and can be,\n therefore a little slow. An implementation using approximate estimates\n will be provided in the future. In the meantime, consider passing\n {method : 'css'} to fit_kw.\n " from pandas import DataFrame ar_range = lrange(0, (max_ar + 1)) ma_range = lrange(0, (max_ma + 1)) if isinstance(ic, string_types): ic = [ic] elif (not isinstance(ic, (list, tuple))): raise ValueError('Need a list or a tuple for ic if not a string.') results = np.zeros((len(ic), (max_ar + 1), (max_ma + 1))) for ar in ar_range: for ma in ma_range: if ((ar == 0) and (ma == 0) and (trend == 'nc')): results[:, ar, ma] = np.nan continue mod = _safe_arma_fit(y, (ar, ma), model_kw, trend, fit_kw) if (mod is None): results[:, ar, ma] = np.nan continue for (i, criteria) in enumerate(ic): results[(i, ar, ma)] = getattr(mod, criteria) dfs = [DataFrame(res, columns=ma_range, index=ar_range) for res in results] res = dict(zip(ic, dfs)) min_res = {} for (i, result) in iteritems(res): mins = np.where((result.min().min() == result)) min_res.update({(i + '_min_order'): (mins[0][0], mins[1][0])}) res.update(min_res) return Bunch(**res)
def has_missing(data): "\n Returns True if 'data' contains missing entries, otherwise False\n " return np.isnan(np.sum(data))
-7,950,675,208,535,767,000
Returns True if 'data' contains missing entries, otherwise False
statsmodels/tsa/stattools.py
has_missing
josef-pkt/statsmodels
python
def has_missing(data): "\n \n " return np.isnan(np.sum(data))
def kpss(x, regression='c', lags=None, store=False): "\n Kwiatkowski-Phillips-Schmidt-Shin test for stationarity.\n\n Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null\n hypothesis that x is level or trend stationary.\n\n Parameters\n ----------\n x : array_like, 1d\n Data series\n regression : str{'c', 'ct'}\n Indicates the null hypothesis for the KPSS test\n * 'c' : The data is stationary around a constant (default)\n * 'ct' : The data is stationary around a trend\n lags : int\n Indicates the number of lags to be used. If None (default),\n lags is set to int(12 * (n / 100)**(1 / 4)), as outlined in\n Schwert (1989).\n store : bool\n If True, then a result instance is returned additionally to\n the KPSS statistic (default is False).\n\n Returns\n -------\n kpss_stat : float\n The KPSS test statistic\n p_value : float\n The p-value of the test. The p-value is interpolated from\n Table 1 in Kwiatkowski et al. (1992), and a boundary point\n is returned if the test statistic is outside the table of\n critical values, that is, if the p-value is outside the\n interval (0.01, 0.1).\n lags : int\n The truncation lag parameter\n crit : dict\n The critical values at 10%, 5%, 2.5% and 1%. Based on\n Kwiatkowski et al. (1992).\n resstore : (optional) instance of ResultStore\n An instance of a dummy class with results attached as attributes\n\n Notes\n -----\n To estimate sigma^2 the Newey-West estimator is used. If lags is None,\n the truncation lag parameter is set to int(12 * (n / 100) ** (1 / 4)),\n as outlined in Schwert (1989). The p-values are interpolated from\n Table 1 of Kwiatkowski et al. (1992). If the computed statistic is\n outside the table of critical values, then a warning message is\n generated.\n\n Missing values are not handled.\n\n References\n ----------\n D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): Testing\n the Null Hypothesis of Stationarity against the Alternative of a Unit Root.\n `Journal of Econometrics` 54, 159-178.\n " from warnings import warn nobs = len(x) x = np.asarray(x) hypo = regression.lower() if (nobs != x.size): raise ValueError('x of shape {0} not understood'.format(x.shape)) if (hypo == 'ct'): resids = OLS(x, add_constant(np.arange(1, (nobs + 1)))).fit().resid crit = [0.119, 0.146, 0.176, 0.216] elif (hypo == 'c'): resids = (x - x.mean()) crit = [0.347, 0.463, 0.574, 0.739] else: raise ValueError("hypothesis '{0}' not understood".format(hypo)) if (lags is None): lags = int(np.ceil((12.0 * np.power((nobs / 100.0), (1 / 4.0))))) pvals = [0.1, 0.05, 0.025, 0.01] eta = (sum((resids.cumsum() ** 2)) / (nobs ** 2)) s_hat = _sigma_est_kpss(resids, nobs, lags) kpss_stat = (eta / s_hat) p_value = np.interp(kpss_stat, crit, pvals) if (p_value == pvals[(- 1)]): warn('p-value is smaller than the indicated p-value', InterpolationWarning) elif (p_value == pvals[0]): warn('p-value is greater than the indicated p-value', InterpolationWarning) crit_dict = {'10%': crit[0], '5%': crit[1], '2.5%': crit[2], '1%': crit[3]} if store: rstore = ResultsStore() rstore.lags = lags rstore.nobs = nobs stationary_type = ('level' if (hypo == 'c') else 'trend') rstore.H0 = 'The series is {0} stationary'.format(stationary_type) rstore.HA = 'The series is not {0} stationary'.format(stationary_type) return (kpss_stat, p_value, crit_dict, rstore) else: return (kpss_stat, p_value, lags, crit_dict)
-7,045,372,392,550,583,000
Kwiatkowski-Phillips-Schmidt-Shin test for stationarity. Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that x is level or trend stationary. Parameters ---------- x : array_like, 1d Data series regression : str{'c', 'ct'} Indicates the null hypothesis for the KPSS test * 'c' : The data is stationary around a constant (default) * 'ct' : The data is stationary around a trend lags : int Indicates the number of lags to be used. If None (default), lags is set to int(12 * (n / 100)**(1 / 4)), as outlined in Schwert (1989). store : bool If True, then a result instance is returned additionally to the KPSS statistic (default is False). Returns ------- kpss_stat : float The KPSS test statistic p_value : float The p-value of the test. The p-value is interpolated from Table 1 in Kwiatkowski et al. (1992), and a boundary point is returned if the test statistic is outside the table of critical values, that is, if the p-value is outside the interval (0.01, 0.1). lags : int The truncation lag parameter crit : dict The critical values at 10%, 5%, 2.5% and 1%. Based on Kwiatkowski et al. (1992). resstore : (optional) instance of ResultStore An instance of a dummy class with results attached as attributes Notes ----- To estimate sigma^2 the Newey-West estimator is used. If lags is None, the truncation lag parameter is set to int(12 * (n / 100) ** (1 / 4)), as outlined in Schwert (1989). The p-values are interpolated from Table 1 of Kwiatkowski et al. (1992). If the computed statistic is outside the table of critical values, then a warning message is generated. Missing values are not handled. References ---------- D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. `Journal of Econometrics` 54, 159-178.
statsmodels/tsa/stattools.py
kpss
josef-pkt/statsmodels
python
def kpss(x, regression='c', lags=None, store=False): "\n Kwiatkowski-Phillips-Schmidt-Shin test for stationarity.\n\n Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null\n hypothesis that x is level or trend stationary.\n\n Parameters\n ----------\n x : array_like, 1d\n Data series\n regression : str{'c', 'ct'}\n Indicates the null hypothesis for the KPSS test\n * 'c' : The data is stationary around a constant (default)\n * 'ct' : The data is stationary around a trend\n lags : int\n Indicates the number of lags to be used. If None (default),\n lags is set to int(12 * (n / 100)**(1 / 4)), as outlined in\n Schwert (1989).\n store : bool\n If True, then a result instance is returned additionally to\n the KPSS statistic (default is False).\n\n Returns\n -------\n kpss_stat : float\n The KPSS test statistic\n p_value : float\n The p-value of the test. The p-value is interpolated from\n Table 1 in Kwiatkowski et al. (1992), and a boundary point\n is returned if the test statistic is outside the table of\n critical values, that is, if the p-value is outside the\n interval (0.01, 0.1).\n lags : int\n The truncation lag parameter\n crit : dict\n The critical values at 10%, 5%, 2.5% and 1%. Based on\n Kwiatkowski et al. (1992).\n resstore : (optional) instance of ResultStore\n An instance of a dummy class with results attached as attributes\n\n Notes\n -----\n To estimate sigma^2 the Newey-West estimator is used. If lags is None,\n the truncation lag parameter is set to int(12 * (n / 100) ** (1 / 4)),\n as outlined in Schwert (1989). The p-values are interpolated from\n Table 1 of Kwiatkowski et al. (1992). If the computed statistic is\n outside the table of critical values, then a warning message is\n generated.\n\n Missing values are not handled.\n\n References\n ----------\n D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): Testing\n the Null Hypothesis of Stationarity against the Alternative of a Unit Root.\n `Journal of Econometrics` 54, 159-178.\n " from warnings import warn nobs = len(x) x = np.asarray(x) hypo = regression.lower() if (nobs != x.size): raise ValueError('x of shape {0} not understood'.format(x.shape)) if (hypo == 'ct'): resids = OLS(x, add_constant(np.arange(1, (nobs + 1)))).fit().resid crit = [0.119, 0.146, 0.176, 0.216] elif (hypo == 'c'): resids = (x - x.mean()) crit = [0.347, 0.463, 0.574, 0.739] else: raise ValueError("hypothesis '{0}' not understood".format(hypo)) if (lags is None): lags = int(np.ceil((12.0 * np.power((nobs / 100.0), (1 / 4.0))))) pvals = [0.1, 0.05, 0.025, 0.01] eta = (sum((resids.cumsum() ** 2)) / (nobs ** 2)) s_hat = _sigma_est_kpss(resids, nobs, lags) kpss_stat = (eta / s_hat) p_value = np.interp(kpss_stat, crit, pvals) if (p_value == pvals[(- 1)]): warn('p-value is smaller than the indicated p-value', InterpolationWarning) elif (p_value == pvals[0]): warn('p-value is greater than the indicated p-value', InterpolationWarning) crit_dict = {'10%': crit[0], '5%': crit[1], '2.5%': crit[2], '1%': crit[3]} if store: rstore = ResultsStore() rstore.lags = lags rstore.nobs = nobs stationary_type = ('level' if (hypo == 'c') else 'trend') rstore.H0 = 'The series is {0} stationary'.format(stationary_type) rstore.HA = 'The series is not {0} stationary'.format(stationary_type) return (kpss_stat, p_value, crit_dict, rstore) else: return (kpss_stat, p_value, lags, crit_dict)
def _sigma_est_kpss(resids, nobs, lags): '\n Computes equation 10, p. 164 of Kwiatkowski et al. (1992). This is the\n consistent estimator for the variance.\n ' s_hat = sum((resids ** 2)) for i in range(1, (lags + 1)): resids_prod = np.dot(resids[i:], resids[:(nobs - i)]) s_hat += ((2 * resids_prod) * (1.0 - (i / (lags + 1.0)))) return (s_hat / nobs)
-4,347,780,852,716,475,400
Computes equation 10, p. 164 of Kwiatkowski et al. (1992). This is the consistent estimator for the variance.
statsmodels/tsa/stattools.py
_sigma_est_kpss
josef-pkt/statsmodels
python
def _sigma_est_kpss(resids, nobs, lags): '\n Computes equation 10, p. 164 of Kwiatkowski et al. (1992). This is the\n consistent estimator for the variance.\n ' s_hat = sum((resids ** 2)) for i in range(1, (lags + 1)): resids_prod = np.dot(resids[i:], resids[:(nobs - i)]) s_hat += ((2 * resids_prod) * (1.0 - (i / (lags + 1.0)))) return (s_hat / nobs)
async def trigger_update(opp): 'Trigger a polling update by moving time forward.' new_time = (dt.utcnow() + timedelta(seconds=(SCAN_INTERVAL + 1))) async_fire_time_changed(opp, new_time) (await opp.async_block_till_done())
-1,536,932,550,561,218,800
Trigger a polling update by moving time forward.
tests/components/smarttub/__init__.py
trigger_update
OpenPeerPower/core
python
async def trigger_update(opp): new_time = (dt.utcnow() + timedelta(seconds=(SCAN_INTERVAL + 1))) async_fire_time_changed(opp, new_time) (await opp.async_block_till_done())
def __init__(self, dataclass_types: Union[(DataClassType, Iterable[DataClassType])], **kwargs): '\n Args:\n dataclass_types:\n Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.\n kwargs:\n (Optional) Passed to `argparse.ArgumentParser()` in the regular way.\n ' super().__init__(**kwargs) if dataclasses.is_dataclass(dataclass_types): dataclass_types = [dataclass_types] self.dataclass_types = dataclass_types for dtype in self.dataclass_types: self._add_dataclass_arguments(dtype)
5,540,399,526,315,942,000
Args: dataclass_types: Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args. kwargs: (Optional) Passed to `argparse.ArgumentParser()` in the regular way.
toolbox/KGArgsParser.py
__init__
LinXueyuanStdio/KGE-toolbox
python
def __init__(self, dataclass_types: Union[(DataClassType, Iterable[DataClassType])], **kwargs): '\n Args:\n dataclass_types:\n Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.\n kwargs:\n (Optional) Passed to `argparse.ArgumentParser()` in the regular way.\n ' super().__init__(**kwargs) if dataclasses.is_dataclass(dataclass_types): dataclass_types = [dataclass_types] self.dataclass_types = dataclass_types for dtype in self.dataclass_types: self._add_dataclass_arguments(dtype)
def parse_args_into_dataclasses(self, args=None, return_remaining_strings=False, look_for_args_file=True, args_filename=None) -> Tuple[(DataClass, ...)]: '\n Parse command-line args into instances of the specified dataclass types.\n\n This relies on argparse\'s `ArgumentParser.parse_known_args`. See the doc at:\n docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args\n\n Args:\n args:\n List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)\n return_remaining_strings:\n If true, also return a list of remaining argument strings.\n look_for_args_file:\n If true, will look for a ".args" file with the same base name as the entry point script for this\n process, and will append its potential content to the command line args.\n args_filename:\n If not None, will uses this file instead of the ".args" file specified in the previous argument.\n\n Returns:\n Tuple consisting of:\n\n - the dataclass instances in the same order as they were passed to the initializer.abspath\n - if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser\n after initialization.\n - The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)\n ' if (args_filename or (look_for_args_file and len(sys.argv))): if args_filename: args_file = Path(args_filename) else: args_file = Path(sys.argv[0]).with_suffix('.args') if args_file.exists(): fargs = args_file.read_text().split() args = ((fargs + args) if (args is not None) else (fargs + sys.argv[1:])) (namespace, remaining_args) = self.parse_known_args(args=args) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in vars(namespace).items() if (k in keys)} for k in keys: delattr(namespace, k) obj = dtype(**inputs) outputs.append(obj) if (len(namespace.__dict__) > 0): outputs.append(namespace) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'Some specified arguments are not used by the KGEArgParser: {remaining_args}') return (*outputs,)
7,657,435,898,646,354,000
Parse command-line args into instances of the specified dataclass types. This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at: docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args Args: args: List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser) return_remaining_strings: If true, also return a list of remaining argument strings. look_for_args_file: If true, will look for a ".args" file with the same base name as the entry point script for this process, and will append its potential content to the command line args. args_filename: If not None, will uses this file instead of the ".args" file specified in the previous argument. Returns: Tuple consisting of: - the dataclass instances in the same order as they were passed to the initializer.abspath - if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser after initialization. - The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)
toolbox/KGArgsParser.py
parse_args_into_dataclasses
LinXueyuanStdio/KGE-toolbox
python
def parse_args_into_dataclasses(self, args=None, return_remaining_strings=False, look_for_args_file=True, args_filename=None) -> Tuple[(DataClass, ...)]: '\n Parse command-line args into instances of the specified dataclass types.\n\n This relies on argparse\'s `ArgumentParser.parse_known_args`. See the doc at:\n docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args\n\n Args:\n args:\n List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)\n return_remaining_strings:\n If true, also return a list of remaining argument strings.\n look_for_args_file:\n If true, will look for a ".args" file with the same base name as the entry point script for this\n process, and will append its potential content to the command line args.\n args_filename:\n If not None, will uses this file instead of the ".args" file specified in the previous argument.\n\n Returns:\n Tuple consisting of:\n\n - the dataclass instances in the same order as they were passed to the initializer.abspath\n - if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser\n after initialization.\n - The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)\n ' if (args_filename or (look_for_args_file and len(sys.argv))): if args_filename: args_file = Path(args_filename) else: args_file = Path(sys.argv[0]).with_suffix('.args') if args_file.exists(): fargs = args_file.read_text().split() args = ((fargs + args) if (args is not None) else (fargs + sys.argv[1:])) (namespace, remaining_args) = self.parse_known_args(args=args) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in vars(namespace).items() if (k in keys)} for k in keys: delattr(namespace, k) obj = dtype(**inputs) outputs.append(obj) if (len(namespace.__dict__) > 0): outputs.append(namespace) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'Some specified arguments are not used by the KGEArgParser: {remaining_args}') return (*outputs,)
def parse_json_file(self, json_file: str) -> Tuple[(DataClass, ...)]: '\n Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the\n dataclass types.\n ' data = json.loads(Path(json_file).read_text()) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in data.items() if (k in keys)} obj = dtype(**inputs) outputs.append(obj) return (*outputs,)
-4,033,736,629,704,605,700
Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the dataclass types.
toolbox/KGArgsParser.py
parse_json_file
LinXueyuanStdio/KGE-toolbox
python
def parse_json_file(self, json_file: str) -> Tuple[(DataClass, ...)]: '\n Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the\n dataclass types.\n ' data = json.loads(Path(json_file).read_text()) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in data.items() if (k in keys)} obj = dtype(**inputs) outputs.append(obj) return (*outputs,)
def parse_dict(self, args: dict) -> Tuple[(DataClass, ...)]: '\n Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass\n types.\n ' outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in args.items() if (k in keys)} obj = dtype(**inputs) outputs.append(obj) return (*outputs,)
3,798,765,331,785,445,000
Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass types.
toolbox/KGArgsParser.py
parse_dict
LinXueyuanStdio/KGE-toolbox
python
def parse_dict(self, args: dict) -> Tuple[(DataClass, ...)]: '\n Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass\n types.\n ' outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for (k, v) in args.items() if (k in keys)} obj = dtype(**inputs) outputs.append(obj) return (*outputs,)
def __init__(self, pkg_dict: Dict[(str, Any)]): '\n Class containing data that describes a package API\n\n :param pkg_dict: A dictionary representation of a\n software package, complying with the output format of\n doppel-describe.\n\n ' self._validate_pkg(pkg_dict) self.pkg_dict = pkg_dict
-6,044,739,435,903,076,000
Class containing data that describes a package API :param pkg_dict: A dictionary representation of a software package, complying with the output format of doppel-describe.
doppel/PackageAPI.py
__init__
franklinen/doppel-cli
python
def __init__(self, pkg_dict: Dict[(str, Any)]): '\n Class containing data that describes a package API\n\n :param pkg_dict: A dictionary representation of a\n software package, complying with the output format of\n doppel-describe.\n\n ' self._validate_pkg(pkg_dict) self.pkg_dict = pkg_dict
@classmethod def from_json(cls, filename: str) -> 'PackageAPI': "\n Instantiate a Package object from a file.\n\n :param filename: Name of the JSON file\n that contains the description of the\n target package's API.\n\n " _log_info(f'Creating package from {filename}') with open(filename, 'r') as f: pkg_dict = json.loads(f.read()) return cls(pkg_dict)
-6,133,293,852,267,853,000
Instantiate a Package object from a file. :param filename: Name of the JSON file that contains the description of the target package's API.
doppel/PackageAPI.py
from_json
franklinen/doppel-cli
python
@classmethod def from_json(cls, filename: str) -> 'PackageAPI': "\n Instantiate a Package object from a file.\n\n :param filename: Name of the JSON file\n that contains the description of the\n target package's API.\n\n " _log_info(f'Creating package from {filename}') with open(filename, 'r') as f: pkg_dict = json.loads(f.read()) return cls(pkg_dict)
def name(self) -> str: '\n Get the name of the package.\n ' return self.pkg_dict['name']
-4,031,569,820,273,227,000
Get the name of the package.
doppel/PackageAPI.py
name
franklinen/doppel-cli
python
def name(self) -> str: '\n \n ' return self.pkg_dict['name']
def num_functions(self) -> int: '\n Get the number of exported functions in the package.\n ' return len(self.function_names())
358,728,798,804,206,400
Get the number of exported functions in the package.
doppel/PackageAPI.py
num_functions
franklinen/doppel-cli
python
def num_functions(self) -> int: '\n \n ' return len(self.function_names())
def function_names(self) -> List[str]: '\n Get a list with the names of all exported functions\n in the package.\n ' return sorted(list(self.pkg_dict['functions'].keys()))
3,015,912,207,251,559,000
Get a list with the names of all exported functions in the package.
doppel/PackageAPI.py
function_names
franklinen/doppel-cli
python
def function_names(self) -> List[str]: '\n Get a list with the names of all exported functions\n in the package.\n ' return sorted(list(self.pkg_dict['functions'].keys()))
def functions_with_args(self) -> Dict[(str, Dict[(str, Any)])]: '\n Get a dictionary with all exported functions in the package\n and some details describing them.\n ' return self.pkg_dict['functions']
-5,598,182,101,801,267,000
Get a dictionary with all exported functions in the package and some details describing them.
doppel/PackageAPI.py
functions_with_args
franklinen/doppel-cli
python
def functions_with_args(self) -> Dict[(str, Dict[(str, Any)])]: '\n Get a dictionary with all exported functions in the package\n and some details describing them.\n ' return self.pkg_dict['functions']
def num_classes(self) -> int: '\n Get the number of exported classes in the package.\n ' return len(self.class_names())
-5,579,227,444,031,814,000
Get the number of exported classes in the package.
doppel/PackageAPI.py
num_classes
franklinen/doppel-cli
python
def num_classes(self) -> int: '\n \n ' return len(self.class_names())
def class_names(self) -> List[str]: '\n Get a list with the names of all exported classes\n in the package.\n ' return sorted(list(self.pkg_dict['classes'].keys()))
-6,672,906,188,787,706,000
Get a list with the names of all exported classes in the package.
doppel/PackageAPI.py
class_names
franklinen/doppel-cli
python
def class_names(self) -> List[str]: '\n Get a list with the names of all exported classes\n in the package.\n ' return sorted(list(self.pkg_dict['classes'].keys()))
def public_methods(self, class_name: str) -> List[str]: '\n Get a list with the names of all public methods for a class.\n\n :param class_name: Name of a class in the package\n ' return sorted(list(self.pkg_dict['classes'][class_name]['public_methods'].keys()))
1,912,717,380,565,422,000
Get a list with the names of all public methods for a class. :param class_name: Name of a class in the package
doppel/PackageAPI.py
public_methods
franklinen/doppel-cli
python
def public_methods(self, class_name: str) -> List[str]: '\n Get a list with the names of all public methods for a class.\n\n :param class_name: Name of a class in the package\n ' return sorted(list(self.pkg_dict['classes'][class_name]['public_methods'].keys()))
def public_method_args(self, class_name: str, method_name: str) -> List[str]: '\n Get a list of arguments for a public method from a class.\n\n :param class_name: Name of a class in the package\n :param method-name: Name of the method to get arguments for\n ' return list(self.pkg_dict['classes'][class_name]['public_methods'][method_name]['args'])
8,502,998,262,803,455,000
Get a list of arguments for a public method from a class. :param class_name: Name of a class in the package :param method-name: Name of the method to get arguments for
doppel/PackageAPI.py
public_method_args
franklinen/doppel-cli
python
def public_method_args(self, class_name: str, method_name: str) -> List[str]: '\n Get a list of arguments for a public method from a class.\n\n :param class_name: Name of a class in the package\n :param method-name: Name of the method to get arguments for\n ' return list(self.pkg_dict['classes'][class_name]['public_methods'][method_name]['args'])
@staticmethod def get_placeholder(page, slot=None): '\n Returns the named placeholder or, if no «slot» provided, the first\n editable, non-static placeholder or None.\n ' placeholders = page.get_placeholders() if slot: placeholders = placeholders.filter(slot=slot) for ph in placeholders: if ((not ph.is_static) and ph.is_editable): return ph return None
1,405,203,255,283,725,800
Returns the named placeholder or, if no «slot» provided, the first editable, non-static placeholder or None.
cms/forms/wizards.py
get_placeholder
rspeed/django-cms-contrib
python
@staticmethod def get_placeholder(page, slot=None): '\n Returns the named placeholder or, if no «slot» provided, the first\n editable, non-static placeholder or None.\n ' placeholders = page.get_placeholders() if slot: placeholders = placeholders.filter(slot=slot) for ph in placeholders: if ((not ph.is_static) and ph.is_editable): return ph return None
def clean(self): '\n Validates that either the slug is provided, or that slugification from\n `title` produces a valid slug.\n :return:\n ' cleaned_data = super(CreateCMSPageForm, self).clean() slug = cleaned_data.get('slug') sub_page = cleaned_data.get('sub_page') title = cleaned_data.get('title') if self.page: if sub_page: parent = self.page else: parent = self.page.parent else: parent = None if slug: starting_point = slug elif title: starting_point = title else: starting_point = _('page') slug = generate_valid_slug(starting_point, parent, self.language_code) if (not slug): raise forms.ValidationError('Please provide a valid slug.') cleaned_data['slug'] = slug return cleaned_data
13,318,186,756,332,642
Validates that either the slug is provided, or that slugification from `title` produces a valid slug. :return:
cms/forms/wizards.py
clean
rspeed/django-cms-contrib
python
def clean(self): '\n Validates that either the slug is provided, or that slugification from\n `title` produces a valid slug.\n :return:\n ' cleaned_data = super(CreateCMSPageForm, self).clean() slug = cleaned_data.get('slug') sub_page = cleaned_data.get('sub_page') title = cleaned_data.get('title') if self.page: if sub_page: parent = self.page else: parent = self.page.parent else: parent = None if slug: starting_point = slug elif title: starting_point = title else: starting_point = _('page') slug = generate_valid_slug(starting_point, parent, self.language_code) if (not slug): raise forms.ValidationError('Please provide a valid slug.') cleaned_data['slug'] = slug return cleaned_data
def __init__(self, application, hostname, key): "\n\t\t:param application: The application to associate this popup dialog with.\n\t\t:type application: :py:class:`.KingPhisherClientApplication`\n\t\t:param str hostname: The hostname associated with the key.\n\t\t:param key: The host's SSH key.\n\t\t:type key: :py:class:`paramiko.pkey.PKey`\n\t\t" super(BaseHostKeyDialog, self).__init__(application) self.hostname = hostname self.key = key textview = self.gobjects['textview_key_details'] textview.modify_font(Pango.FontDescription('monospace 9')) textview.get_buffer().set_text(self.key_details) if (self.default_response is not None): button = self.dialog.get_widget_for_response(response_id=self.default_response) button.grab_default()
-28,344,514,441,261,160
:param application: The application to associate this popup dialog with. :type application: :py:class:`.KingPhisherClientApplication` :param str hostname: The hostname associated with the key. :param key: The host's SSH key. :type key: :py:class:`paramiko.pkey.PKey`
king_phisher/client/dialogs/ssh_host_key.py
__init__
tanc7/king-phisher
python
def __init__(self, application, hostname, key): "\n\t\t:param application: The application to associate this popup dialog with.\n\t\t:type application: :py:class:`.KingPhisherClientApplication`\n\t\t:param str hostname: The hostname associated with the key.\n\t\t:param key: The host's SSH key.\n\t\t:type key: :py:class:`paramiko.pkey.PKey`\n\t\t" super(BaseHostKeyDialog, self).__init__(application) self.hostname = hostname self.key = key textview = self.gobjects['textview_key_details'] textview.modify_font(Pango.FontDescription('monospace 9')) textview.get_buffer().set_text(self.key_details) if (self.default_response is not None): button = self.dialog.get_widget_for_response(response_id=self.default_response) button.grab_default()
def __init__(self, application): '\n\t\t:param application: The application which is using this policy.\n\t\t:type application: :py:class:`.KingPhisherClientApplication`\n\t\t' self.application = application self.logger = logging.getLogger(('KingPhisher.Client.' + self.__class__.__name__)) super(MissingHostKeyPolicy, self).__init__()
-4,761,189,396,857,635,000
:param application: The application which is using this policy. :type application: :py:class:`.KingPhisherClientApplication`
king_phisher/client/dialogs/ssh_host_key.py
__init__
tanc7/king-phisher
python
def __init__(self, application): '\n\t\t:param application: The application which is using this policy.\n\t\t:type application: :py:class:`.KingPhisherClientApplication`\n\t\t' self.application = application self.logger = logging.getLogger(('KingPhisher.Client.' + self.__class__.__name__)) super(MissingHostKeyPolicy, self).__init__()
def generate_bubblesort(prefix, num_examples, debug=False, maximum=10000000000, debug_every=1000): "\n Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified\n number of examples.\n\n :param prefix: String prefix for saving the file ('train', 'test')\n :param num_examples: Number of examples to generate.\n " data = [] for i in range(num_examples): array = np.random.randint(10, size=5) if (debug and ((i % debug_every) == 0)): traces = Trace(array, True).traces else: traces = Trace(array).traces data.append((array, traces)) with open('tasks/bubblesort/data/{}.pik'.format(prefix), 'wb') as f: pickle.dump(data, f)
-4,308,264,678,087,419,000
Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified number of examples. :param prefix: String prefix for saving the file ('train', 'test') :param num_examples: Number of examples to generate.
tasks/bubblesort/env/generate_data.py
generate_bubblesort
ford-core-ai/neural-programming-architectures
python
def generate_bubblesort(prefix, num_examples, debug=False, maximum=10000000000, debug_every=1000): "\n Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified\n number of examples.\n\n :param prefix: String prefix for saving the file ('train', 'test')\n :param num_examples: Number of examples to generate.\n " data = [] for i in range(num_examples): array = np.random.randint(10, size=5) if (debug and ((i % debug_every) == 0)): traces = Trace(array, True).traces else: traces = Trace(array).traces data.append((array, traces)) with open('tasks/bubblesort/data/{}.pik'.format(prefix), 'wb') as f: pickle.dump(data, f)
def check(): ' check that all paths are properly defined' checked = True print(f' - history tar files will be mounted on: {dirmounted_root}') print(f' - ratarmount executable is in : {ratarmount}')
7,019,680,802,621,906,000
check that all paths are properly defined
paragridded/giga_tools.py
check
Mesharou/paragridded
python
def check(): ' ' checked = True print(f' - history tar files will be mounted on: {dirmounted_root}') print(f' - ratarmount executable is in : {ratarmount}')
def get_subdmap(directory): 'Reconstruct how netCDF files are stored in fused directory\n\n directory == dirgrid | dirhis ' _subdmap = {} for subd in subdomains: fs = glob.glob((directory.format(subd=subd) + '/*.nc')) tiles = [int(f.split('.')[(- 2)]) for f in fs] for t in tiles: _subdmap[t] = subd return _subdmap
5,205,752,084,815,372,000
Reconstruct how netCDF files are stored in fused directory directory == dirgrid | dirhis
paragridded/giga_tools.py
get_subdmap
Mesharou/paragridded
python
def get_subdmap(directory): 'Reconstruct how netCDF files are stored in fused directory\n\n directory == dirgrid | dirhis ' _subdmap = {} for subd in subdomains: fs = glob.glob((directory.format(subd=subd) + '/*.nc')) tiles = [int(f.split('.')[(- 2)]) for f in fs] for t in tiles: _subdmap[t] = subd return _subdmap
def mount_tar(source, tarfile, destdir): '\n source: str, directory of the tar files\n template: str, template name for the tar file containing "{subd"\n subd: int, index of the subdomain (0<=subd<=13)\n destdir: str, directory where to archivemount\n\n ' srcfile = f'{source}/{tarfile}' assert os.path.isfile(srcfile), f'{srcfile} does not exsit' sqlitefile = get_sqlitefilename(srcfile) home = os.path.expanduser('~') ratardirsqlite = f'{home}/.ratarmount' if os.path.isfile(f'{ratardirsqlite}/{sqlitefile}'): pass elif os.path.isfile(f'{sqlitesdir}/{sqlitefile}'): command = f'cp {sqlitesdir}/{sqlitefile} {ratardirsqlite}/' os.system(command) assert (len(ratarmount) > 0), BB('You forgot to set the ratarmount path') command = f'{ratarmount} {srcfile} {destdir}' os.system(command) if os.path.isfile(f'{sqlitesdir}/{sqlitefile}'): pass else: command = f'cp {ratardirsqlite}/{sqlitefile} {sqlitesdir}/' os.system(command)
4,785,231,440,578,954,000
source: str, directory of the tar files template: str, template name for the tar file containing "{subd" subd: int, index of the subdomain (0<=subd<=13) destdir: str, directory where to archivemount
paragridded/giga_tools.py
mount_tar
Mesharou/paragridded
python
def mount_tar(source, tarfile, destdir): '\n source: str, directory of the tar files\n template: str, template name for the tar file containing "{subd"\n subd: int, index of the subdomain (0<=subd<=13)\n destdir: str, directory where to archivemount\n\n ' srcfile = f'{source}/{tarfile}' assert os.path.isfile(srcfile), f'{srcfile} does not exsit' sqlitefile = get_sqlitefilename(srcfile) home = os.path.expanduser('~') ratardirsqlite = f'{home}/.ratarmount' if os.path.isfile(f'{ratardirsqlite}/{sqlitefile}'): pass elif os.path.isfile(f'{sqlitesdir}/{sqlitefile}'): command = f'cp {sqlitesdir}/{sqlitefile} {ratardirsqlite}/' os.system(command) assert (len(ratarmount) > 0), BB('You forgot to set the ratarmount path') command = f'{ratarmount} {srcfile} {destdir}' os.system(command) if os.path.isfile(f'{sqlitesdir}/{sqlitefile}'): pass else: command = f'cp {ratardirsqlite}/{sqlitefile} {sqlitesdir}/' os.system(command)
def mount(subd, grid=False, overwrite=True): 'Mount tar file `subd`' if grid: destdir = dirgrid.format(subd=subd) srcdir = dirgridtar.format(subd=subd) tarfile = targridtemplate.format(subd=subd) else: destdir = dirhis.format(subd=subd) srcdir = dirgigaref.format(subd=subd) tarfile = tarhistemplate.format(hisdate=hisdate, subd=subd) tomount = True if os.path.exists(destdir): if (len(os.listdir(destdir)) == 0): pass elif overwrite: command = f'fusermount -u {destdir}' try: os.system(command) except: pass assert (len(os.listdir(f'{destdir}')) == 0) else: tomount = False else: print(f'*** makedir {destdir}') if tomount: mount_tar(srcdir, tarfile, destdir) if (not grid): write_toc(destdir, subd, hisdate)
-7,433,501,504,231,536,000
Mount tar file `subd`
paragridded/giga_tools.py
mount
Mesharou/paragridded
python
def mount(subd, grid=False, overwrite=True): if grid: destdir = dirgrid.format(subd=subd) srcdir = dirgridtar.format(subd=subd) tarfile = targridtemplate.format(subd=subd) else: destdir = dirhis.format(subd=subd) srcdir = dirgigaref.format(subd=subd) tarfile = tarhistemplate.format(hisdate=hisdate, subd=subd) tomount = True if os.path.exists(destdir): if (len(os.listdir(destdir)) == 0): pass elif overwrite: command = f'fusermount -u {destdir}' try: os.system(command) except: pass assert (len(os.listdir(f'{destdir}')) == 0) else: tomount = False else: print(f'*** makedir {destdir}') if tomount: mount_tar(srcdir, tarfile, destdir) if (not grid): write_toc(destdir, subd, hisdate)
def mount_stats(grid=False): ' Print statistics on mounted tar files' print(('-' * 40)) print(BB('statistics on mounted tar files')) print(f'mounting point: {dirmounted}') for subd in subdomains: if grid: destdir = dirgrid.format(subd=subd) else: destdir = dirhis.format(subd=subd) if os.path.exists(destdir): filelist = os.listdir(f'{destdir}') nbfiles = len(filelist) if (nbfiles > 0): tiles = set([int(f.split('.')[(- 2)]) for f in filelist]) nbtiles = len(tiles) tile = list(tiles)[0] fs = [f for f in filelist if (f'{tile:04}.nc' in f)] if grid: msg = f' - {subd:02} : {nbtiles:03} tiles' else: _hisdate = read_toc(destdir, subd) bbhisdate = BB(_hisdate) msg = f' - {subd:02} : {bbhisdate} with {nbtiles:03} tiles' else: msg = f' - {subd:02} : empty' else: warning = BB('destroyed') msg = f' - {subd:02} : {warning}' print(msg)
8,784,130,287,067,626,000
Print statistics on mounted tar files
paragridded/giga_tools.py
mount_stats
Mesharou/paragridded
python
def mount_stats(grid=False): ' ' print(('-' * 40)) print(BB('statistics on mounted tar files')) print(f'mounting point: {dirmounted}') for subd in subdomains: if grid: destdir = dirgrid.format(subd=subd) else: destdir = dirhis.format(subd=subd) if os.path.exists(destdir): filelist = os.listdir(f'{destdir}') nbfiles = len(filelist) if (nbfiles > 0): tiles = set([int(f.split('.')[(- 2)]) for f in filelist]) nbtiles = len(tiles) tile = list(tiles)[0] fs = [f for f in filelist if (f'{tile:04}.nc' in f)] if grid: msg = f' - {subd:02} : {nbtiles:03} tiles' else: _hisdate = read_toc(destdir, subd) bbhisdate = BB(_hisdate) msg = f' - {subd:02} : {bbhisdate} with {nbtiles:03} tiles' else: msg = f' - {subd:02} : empty' else: warning = BB('destroyed') msg = f' - {subd:02} : {warning}' print(msg)
def umount(subd, grid=False): ' Unmount `subd` tar archive folder\n\n The command to unmount a fuse folder is fusermount -u' if grid: destdir = dirgrid.format(subd=subd) else: destdir = dirhis.format(subd=subd) if (os.path.isdir(destdir) and (len(os.listdir(f'{destdir}')) != 0)): command = f'fusermount -u {destdir}' os.system(command) else: pass
-2,445,494,873,886,492,700
Unmount `subd` tar archive folder The command to unmount a fuse folder is fusermount -u
paragridded/giga_tools.py
umount
Mesharou/paragridded
python
def umount(subd, grid=False): ' Unmount `subd` tar archive folder\n\n The command to unmount a fuse folder is fusermount -u' if grid: destdir = dirgrid.format(subd=subd) else: destdir = dirhis.format(subd=subd) if (os.path.isdir(destdir) and (len(os.listdir(f'{destdir}')) != 0)): command = f'fusermount -u {destdir}' os.system(command) else: pass
def LLTP2domain(lowerleft, topright): 'Convert the two pairs of (lower, left), (top, right) in (lat, lon)\n into the four pairs of (lat, lon) of the corners ' (xa, ya) = lowerleft (xb, yb) = topright domain = [(xa, ya), (xa, yb), (xb, yb), (xb, ya)] return domain
-7,237,054,415,005,802,000
Convert the two pairs of (lower, left), (top, right) in (lat, lon) into the four pairs of (lat, lon) of the corners
paragridded/giga_tools.py
LLTP2domain
Mesharou/paragridded
python
def LLTP2domain(lowerleft, topright): 'Convert the two pairs of (lower, left), (top, right) in (lat, lon)\n into the four pairs of (lat, lon) of the corners ' (xa, ya) = lowerleft (xb, yb) = topright domain = [(xa, ya), (xa, yb), (xb, yb), (xb, ya)] return domain
def find_tiles_inside(domain, corners): 'Determine which tiles are inside `domain`\n\n The function uses `corners` the list of corners for each tile\n ' p = Polygon(domain) tileslist = [] for (tile, c) in corners.items(): q = Polygon(c) if (p.overlaps(q) or p.contains(q)): tileslist += [tile] return tileslist
-2,155,202,173,137,227,300
Determine which tiles are inside `domain` The function uses `corners` the list of corners for each tile
paragridded/giga_tools.py
find_tiles_inside
Mesharou/paragridded
python
def find_tiles_inside(domain, corners): 'Determine which tiles are inside `domain`\n\n The function uses `corners` the list of corners for each tile\n ' p = Polygon(domain) tileslist = [] for (tile, c) in corners.items(): q = Polygon(c) if (p.overlaps(q) or p.contains(q)): tileslist += [tile] return tileslist
def get_dates(): '\n Scan dirgiga for *tar files\n ' subd = 1 pattern = f'{dirgigaref}/*.{subd:02}.tar'.format(subd=subd) files = glob.glob(pattern) _dates_tar = [f.split('/')[(- 1)].split('.')[(- 3)] for f in files] return sorted(_dates_tar)
2,012,071,602,746,254,300
Scan dirgiga for *tar files
paragridded/giga_tools.py
get_dates
Mesharou/paragridded
python
def get_dates(): '\n \n ' subd = 1 pattern = f'{dirgigaref}/*.{subd:02}.tar'.format(subd=subd) files = glob.glob(pattern) _dates_tar = [f.split('/')[(- 1)].split('.')[(- 3)] for f in files] return sorted(_dates_tar)
def set_default_time_zone(time_zone: dt.tzinfo) -> None: 'Set a default time zone to be used when none is specified.\n\n Async friendly.\n ' global DEFAULT_TIME_ZONE assert isinstance(time_zone, dt.tzinfo) DEFAULT_TIME_ZONE = time_zone
8,305,351,147,355,129,000
Set a default time zone to be used when none is specified. Async friendly.
homeassistant/util/dt.py
set_default_time_zone
854562/home-assistant
python
def set_default_time_zone(time_zone: dt.tzinfo) -> None: 'Set a default time zone to be used when none is specified.\n\n Async friendly.\n ' global DEFAULT_TIME_ZONE assert isinstance(time_zone, dt.tzinfo) DEFAULT_TIME_ZONE = time_zone
def get_time_zone(time_zone_str: str) -> Optional[dt.tzinfo]: 'Get time zone from string. Return None if unable to determine.\n\n Async friendly.\n ' try: return pytz.timezone(time_zone_str) except pytzexceptions.UnknownTimeZoneError: return None
808,354,402,533,898,000
Get time zone from string. Return None if unable to determine. Async friendly.
homeassistant/util/dt.py
get_time_zone
854562/home-assistant
python
def get_time_zone(time_zone_str: str) -> Optional[dt.tzinfo]: 'Get time zone from string. Return None if unable to determine.\n\n Async friendly.\n ' try: return pytz.timezone(time_zone_str) except pytzexceptions.UnknownTimeZoneError: return None
def utcnow() -> dt.datetime: 'Get now in UTC time.' return dt.datetime.now(UTC)
-7,757,326,031,541,859,000
Get now in UTC time.
homeassistant/util/dt.py
utcnow
854562/home-assistant
python
def utcnow() -> dt.datetime: return dt.datetime.now(UTC)
def now(time_zone: Optional[dt.tzinfo]=None) -> dt.datetime: 'Get now in specified time zone.' return dt.datetime.now((time_zone or DEFAULT_TIME_ZONE))
-7,334,469,809,376,690,000
Get now in specified time zone.
homeassistant/util/dt.py
now
854562/home-assistant
python
def now(time_zone: Optional[dt.tzinfo]=None) -> dt.datetime: return dt.datetime.now((time_zone or DEFAULT_TIME_ZONE))
def as_utc(dattim: dt.datetime) -> dt.datetime: 'Return a datetime as UTC time.\n\n Assumes datetime without tzinfo to be in the DEFAULT_TIME_ZONE.\n ' if (dattim.tzinfo == UTC): return dattim if (dattim.tzinfo is None): dattim = DEFAULT_TIME_ZONE.localize(dattim) return dattim.astimezone(UTC)
-256,635,588,040,750,370
Return a datetime as UTC time. Assumes datetime without tzinfo to be in the DEFAULT_TIME_ZONE.
homeassistant/util/dt.py
as_utc
854562/home-assistant
python
def as_utc(dattim: dt.datetime) -> dt.datetime: 'Return a datetime as UTC time.\n\n Assumes datetime without tzinfo to be in the DEFAULT_TIME_ZONE.\n ' if (dattim.tzinfo == UTC): return dattim if (dattim.tzinfo is None): dattim = DEFAULT_TIME_ZONE.localize(dattim) return dattim.astimezone(UTC)
def as_timestamp(dt_value: dt.datetime) -> float: 'Convert a date/time into a unix time (seconds since 1970).' if hasattr(dt_value, 'timestamp'): parsed_dt: Optional[dt.datetime] = dt_value else: parsed_dt = parse_datetime(str(dt_value)) if (parsed_dt is None): raise ValueError('not a valid date/time.') return parsed_dt.timestamp()
7,903,070,737,980,607,000
Convert a date/time into a unix time (seconds since 1970).
homeassistant/util/dt.py
as_timestamp
854562/home-assistant
python
def as_timestamp(dt_value: dt.datetime) -> float: if hasattr(dt_value, 'timestamp'): parsed_dt: Optional[dt.datetime] = dt_value else: parsed_dt = parse_datetime(str(dt_value)) if (parsed_dt is None): raise ValueError('not a valid date/time.') return parsed_dt.timestamp()
def as_local(dattim: dt.datetime) -> dt.datetime: 'Convert a UTC datetime object to local time zone.' if (dattim.tzinfo == DEFAULT_TIME_ZONE): return dattim if (dattim.tzinfo is None): dattim = UTC.localize(dattim) return dattim.astimezone(DEFAULT_TIME_ZONE)
2,996,560,705,096,557,600
Convert a UTC datetime object to local time zone.
homeassistant/util/dt.py
as_local
854562/home-assistant
python
def as_local(dattim: dt.datetime) -> dt.datetime: if (dattim.tzinfo == DEFAULT_TIME_ZONE): return dattim if (dattim.tzinfo is None): dattim = UTC.localize(dattim) return dattim.astimezone(DEFAULT_TIME_ZONE)
def utc_from_timestamp(timestamp: float) -> dt.datetime: 'Return a UTC time from a timestamp.' return UTC.localize(dt.datetime.utcfromtimestamp(timestamp))
-6,724,019,066,667,065,000
Return a UTC time from a timestamp.
homeassistant/util/dt.py
utc_from_timestamp
854562/home-assistant
python
def utc_from_timestamp(timestamp: float) -> dt.datetime: return UTC.localize(dt.datetime.utcfromtimestamp(timestamp))
def start_of_local_day(dt_or_d: Union[(dt.date, dt.datetime, None)]=None) -> dt.datetime: 'Return local datetime object of start of day from date or datetime.' if (dt_or_d is None): date: dt.date = now().date() elif isinstance(dt_or_d, dt.datetime): date = dt_or_d.date() return DEFAULT_TIME_ZONE.localize(dt.datetime.combine(date, dt.time()))
-5,787,161,904,655,488,000
Return local datetime object of start of day from date or datetime.
homeassistant/util/dt.py
start_of_local_day
854562/home-assistant
python
def start_of_local_day(dt_or_d: Union[(dt.date, dt.datetime, None)]=None) -> dt.datetime: if (dt_or_d is None): date: dt.date = now().date() elif isinstance(dt_or_d, dt.datetime): date = dt_or_d.date() return DEFAULT_TIME_ZONE.localize(dt.datetime.combine(date, dt.time()))
def parse_datetime(dt_str: str) -> Optional[dt.datetime]: "Parse a string and return a datetime.datetime.\n\n This function supports time zone offsets. When the input contains one,\n the output uses a timezone with a fixed offset from UTC.\n Raises ValueError if the input is well formatted but not a valid datetime.\n Returns None if the input isn't well formatted.\n " match = DATETIME_RE.match(dt_str) if (not match): return None kws: Dict[(str, Any)] = match.groupdict() if kws['microsecond']: kws['microsecond'] = kws['microsecond'].ljust(6, '0') tzinfo_str = kws.pop('tzinfo') tzinfo: Optional[dt.tzinfo] = None if (tzinfo_str == 'Z'): tzinfo = UTC elif (tzinfo_str is not None): offset_mins = (int(tzinfo_str[(- 2):]) if (len(tzinfo_str) > 3) else 0) offset_hours = int(tzinfo_str[1:3]) offset = dt.timedelta(hours=offset_hours, minutes=offset_mins) if (tzinfo_str[0] == '-'): offset = (- offset) tzinfo = dt.timezone(offset) kws = {k: int(v) for (k, v) in kws.items() if (v is not None)} kws['tzinfo'] = tzinfo return dt.datetime(**kws)
-1,937,966,146,818,874,600
Parse a string and return a datetime.datetime. This function supports time zone offsets. When the input contains one, the output uses a timezone with a fixed offset from UTC. Raises ValueError if the input is well formatted but not a valid datetime. Returns None if the input isn't well formatted.
homeassistant/util/dt.py
parse_datetime
854562/home-assistant
python
def parse_datetime(dt_str: str) -> Optional[dt.datetime]: "Parse a string and return a datetime.datetime.\n\n This function supports time zone offsets. When the input contains one,\n the output uses a timezone with a fixed offset from UTC.\n Raises ValueError if the input is well formatted but not a valid datetime.\n Returns None if the input isn't well formatted.\n " match = DATETIME_RE.match(dt_str) if (not match): return None kws: Dict[(str, Any)] = match.groupdict() if kws['microsecond']: kws['microsecond'] = kws['microsecond'].ljust(6, '0') tzinfo_str = kws.pop('tzinfo') tzinfo: Optional[dt.tzinfo] = None if (tzinfo_str == 'Z'): tzinfo = UTC elif (tzinfo_str is not None): offset_mins = (int(tzinfo_str[(- 2):]) if (len(tzinfo_str) > 3) else 0) offset_hours = int(tzinfo_str[1:3]) offset = dt.timedelta(hours=offset_hours, minutes=offset_mins) if (tzinfo_str[0] == '-'): offset = (- offset) tzinfo = dt.timezone(offset) kws = {k: int(v) for (k, v) in kws.items() if (v is not None)} kws['tzinfo'] = tzinfo return dt.datetime(**kws)
def parse_date(dt_str: str) -> Optional[dt.date]: 'Convert a date string to a date object.' try: return dt.datetime.strptime(dt_str, DATE_STR_FORMAT).date() except ValueError: return None
-1,140,153,710,754,188,500
Convert a date string to a date object.
homeassistant/util/dt.py
parse_date
854562/home-assistant
python
def parse_date(dt_str: str) -> Optional[dt.date]: try: return dt.datetime.strptime(dt_str, DATE_STR_FORMAT).date() except ValueError: return None
def parse_time(time_str: str) -> Optional[dt.time]: 'Parse a time string (00:20:00) into Time object.\n\n Return None if invalid.\n ' parts = str(time_str).split(':') if (len(parts) < 2): return None try: hour = int(parts[0]) minute = int(parts[1]) second = (int(parts[2]) if (len(parts) > 2) else 0) return dt.time(hour, minute, second) except ValueError: return None
4,760,396,034,145,555,000
Parse a time string (00:20:00) into Time object. Return None if invalid.
homeassistant/util/dt.py
parse_time
854562/home-assistant
python
def parse_time(time_str: str) -> Optional[dt.time]: 'Parse a time string (00:20:00) into Time object.\n\n Return None if invalid.\n ' parts = str(time_str).split(':') if (len(parts) < 2): return None try: hour = int(parts[0]) minute = int(parts[1]) second = (int(parts[2]) if (len(parts) > 2) else 0) return dt.time(hour, minute, second) except ValueError: return None
def get_age(date: dt.datetime) -> str: '\n Take a datetime and return its "age" as a string.\n\n The age can be in second, minute, hour, day, month or year. Only the\n biggest unit is considered, e.g. if it\'s 2 days and 3 hours, "2 days" will\n be returned.\n Make sure date is not in the future, or else it won\'t work.\n ' def formatn(number: int, unit: str) -> str: 'Add "unit" if it\'s plural.' if (number == 1): return f'1 {unit}' return f'{number:d} {unit}s' def q_n_r(first: int, second: int) -> Tuple[(int, int)]: 'Return quotient and remaining.' return ((first // second), (first % second)) delta = (now() - date) day = delta.days second = delta.seconds (year, day) = q_n_r(day, 365) if (year > 0): return formatn(year, 'year') (month, day) = q_n_r(day, 30) if (month > 0): return formatn(month, 'month') if (day > 0): return formatn(day, 'day') (hour, second) = q_n_r(second, 3600) if (hour > 0): return formatn(hour, 'hour') (minute, second) = q_n_r(second, 60) if (minute > 0): return formatn(minute, 'minute') return formatn(second, 'second')
-8,345,418,009,683,860,000
Take a datetime and return its "age" as a string. The age can be in second, minute, hour, day, month or year. Only the biggest unit is considered, e.g. if it's 2 days and 3 hours, "2 days" will be returned. Make sure date is not in the future, or else it won't work.
homeassistant/util/dt.py
get_age
854562/home-assistant
python
def get_age(date: dt.datetime) -> str: '\n Take a datetime and return its "age" as a string.\n\n The age can be in second, minute, hour, day, month or year. Only the\n biggest unit is considered, e.g. if it\'s 2 days and 3 hours, "2 days" will\n be returned.\n Make sure date is not in the future, or else it won\'t work.\n ' def formatn(number: int, unit: str) -> str: 'Add "unit" if it\'s plural.' if (number == 1): return f'1 {unit}' return f'{number:d} {unit}s' def q_n_r(first: int, second: int) -> Tuple[(int, int)]: 'Return quotient and remaining.' return ((first // second), (first % second)) delta = (now() - date) day = delta.days second = delta.seconds (year, day) = q_n_r(day, 365) if (year > 0): return formatn(year, 'year') (month, day) = q_n_r(day, 30) if (month > 0): return formatn(month, 'month') if (day > 0): return formatn(day, 'day') (hour, second) = q_n_r(second, 3600) if (hour > 0): return formatn(hour, 'hour') (minute, second) = q_n_r(second, 60) if (minute > 0): return formatn(minute, 'minute') return formatn(second, 'second')
def parse_time_expression(parameter: Any, min_value: int, max_value: int) -> List[int]: 'Parse the time expression part and return a list of times to match.' if ((parameter is None) or (parameter == MATCH_ALL)): res = list(range(min_value, (max_value + 1))) elif (isinstance(parameter, str) and parameter.startswith('/')): parameter = int(parameter[1:]) res = [x for x in range(min_value, (max_value + 1)) if ((x % parameter) == 0)] elif (not hasattr(parameter, '__iter__')): res = [int(parameter)] else: res = list(sorted((int(x) for x in parameter))) for val in res: if ((val < min_value) or (val > max_value)): raise ValueError("Time expression '{}': parameter {} out of range ({} to {})".format(parameter, val, min_value, max_value)) return res
8,850,174,465,410,132,000
Parse the time expression part and return a list of times to match.
homeassistant/util/dt.py
parse_time_expression
854562/home-assistant
python
def parse_time_expression(parameter: Any, min_value: int, max_value: int) -> List[int]: if ((parameter is None) or (parameter == MATCH_ALL)): res = list(range(min_value, (max_value + 1))) elif (isinstance(parameter, str) and parameter.startswith('/')): parameter = int(parameter[1:]) res = [x for x in range(min_value, (max_value + 1)) if ((x % parameter) == 0)] elif (not hasattr(parameter, '__iter__')): res = [int(parameter)] else: res = list(sorted((int(x) for x in parameter))) for val in res: if ((val < min_value) or (val > max_value)): raise ValueError("Time expression '{}': parameter {} out of range ({} to {})".format(parameter, val, min_value, max_value)) return res
def find_next_time_expression_time(now: dt.datetime, seconds: List[int], minutes: List[int], hours: List[int]) -> dt.datetime: 'Find the next datetime from now for which the time expression matches.\n\n The algorithm looks at each time unit separately and tries to find the\n next one that matches for each. If any of them would roll over, all\n time units below that are reset to the first matching value.\n\n Timezones are also handled (the tzinfo of the now object is used),\n including daylight saving time.\n ' if ((not seconds) or (not minutes) or (not hours)): raise ValueError('Cannot find a next time: Time expression never matches!') def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: 'Return the first value in arr greater or equal to cmp.\n\n Return None if no such value exists.\n ' left = 0 right = len(arr) while (left < right): mid = ((left + right) // 2) if (arr[mid] < cmp): left = (mid + 1) else: right = mid if (left == len(arr)): return None return arr[left] result = now.replace(microsecond=0) next_second = _lower_bound(seconds, result.second) if (next_second is None): next_second = seconds[0] result += dt.timedelta(minutes=1) result = result.replace(second=next_second) next_minute = _lower_bound(minutes, result.minute) if (next_minute != result.minute): result = result.replace(second=seconds[0]) if (next_minute is None): next_minute = minutes[0] result += dt.timedelta(hours=1) result = result.replace(minute=next_minute) next_hour = _lower_bound(hours, result.hour) if (next_hour != result.hour): result = result.replace(second=seconds[0], minute=minutes[0]) if (next_hour is None): next_hour = hours[0] result += dt.timedelta(days=1) result = result.replace(hour=next_hour) if (result.tzinfo is None): return result tzinfo: pytzinfo.DstTzInfo = result.tzinfo result = result.replace(tzinfo=None) try: result = tzinfo.localize(result, is_dst=None) except pytzexceptions.AmbiguousTimeError: use_dst = bool(now.dst()) result = tzinfo.localize(result, is_dst=use_dst) except pytzexceptions.NonExistentTimeError: result = (result.replace(tzinfo=tzinfo) + dt.timedelta(seconds=1)) return find_next_time_expression_time(result, seconds, minutes, hours) result_dst = cast(dt.timedelta, result.dst()) now_dst = cast(dt.timedelta, now.dst()) if (result_dst >= now_dst): return result try: tzinfo.localize(now.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass check = (now - now_dst) check_result = find_next_time_expression_time(check, seconds, minutes, hours) try: tzinfo.localize(check_result.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass check_result = tzinfo.localize(check_result.replace(tzinfo=None), is_dst=False) return check_result
-6,388,431,229,437,913,000
Find the next datetime from now for which the time expression matches. The algorithm looks at each time unit separately and tries to find the next one that matches for each. If any of them would roll over, all time units below that are reset to the first matching value. Timezones are also handled (the tzinfo of the now object is used), including daylight saving time.
homeassistant/util/dt.py
find_next_time_expression_time
854562/home-assistant
python
def find_next_time_expression_time(now: dt.datetime, seconds: List[int], minutes: List[int], hours: List[int]) -> dt.datetime: 'Find the next datetime from now for which the time expression matches.\n\n The algorithm looks at each time unit separately and tries to find the\n next one that matches for each. If any of them would roll over, all\n time units below that are reset to the first matching value.\n\n Timezones are also handled (the tzinfo of the now object is used),\n including daylight saving time.\n ' if ((not seconds) or (not minutes) or (not hours)): raise ValueError('Cannot find a next time: Time expression never matches!') def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: 'Return the first value in arr greater or equal to cmp.\n\n Return None if no such value exists.\n ' left = 0 right = len(arr) while (left < right): mid = ((left + right) // 2) if (arr[mid] < cmp): left = (mid + 1) else: right = mid if (left == len(arr)): return None return arr[left] result = now.replace(microsecond=0) next_second = _lower_bound(seconds, result.second) if (next_second is None): next_second = seconds[0] result += dt.timedelta(minutes=1) result = result.replace(second=next_second) next_minute = _lower_bound(minutes, result.minute) if (next_minute != result.minute): result = result.replace(second=seconds[0]) if (next_minute is None): next_minute = minutes[0] result += dt.timedelta(hours=1) result = result.replace(minute=next_minute) next_hour = _lower_bound(hours, result.hour) if (next_hour != result.hour): result = result.replace(second=seconds[0], minute=minutes[0]) if (next_hour is None): next_hour = hours[0] result += dt.timedelta(days=1) result = result.replace(hour=next_hour) if (result.tzinfo is None): return result tzinfo: pytzinfo.DstTzInfo = result.tzinfo result = result.replace(tzinfo=None) try: result = tzinfo.localize(result, is_dst=None) except pytzexceptions.AmbiguousTimeError: use_dst = bool(now.dst()) result = tzinfo.localize(result, is_dst=use_dst) except pytzexceptions.NonExistentTimeError: result = (result.replace(tzinfo=tzinfo) + dt.timedelta(seconds=1)) return find_next_time_expression_time(result, seconds, minutes, hours) result_dst = cast(dt.timedelta, result.dst()) now_dst = cast(dt.timedelta, now.dst()) if (result_dst >= now_dst): return result try: tzinfo.localize(now.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass check = (now - now_dst) check_result = find_next_time_expression_time(check, seconds, minutes, hours) try: tzinfo.localize(check_result.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass check_result = tzinfo.localize(check_result.replace(tzinfo=None), is_dst=False) return check_result
def formatn(number: int, unit: str) -> str: 'Add "unit" if it\'s plural.' if (number == 1): return f'1 {unit}' return f'{number:d} {unit}s'
6,630,770,749,241,600,000
Add "unit" if it's plural.
homeassistant/util/dt.py
formatn
854562/home-assistant
python
def formatn(number: int, unit: str) -> str: 'Add "unit" if it\'s plural.' if (number == 1): return f'1 {unit}' return f'{number:d} {unit}s'
def q_n_r(first: int, second: int) -> Tuple[(int, int)]: 'Return quotient and remaining.' return ((first // second), (first % second))
-3,372,020,599,350,087,700
Return quotient and remaining.
homeassistant/util/dt.py
q_n_r
854562/home-assistant
python
def q_n_r(first: int, second: int) -> Tuple[(int, int)]: return ((first // second), (first % second))
def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: 'Return the first value in arr greater or equal to cmp.\n\n Return None if no such value exists.\n ' left = 0 right = len(arr) while (left < right): mid = ((left + right) // 2) if (arr[mid] < cmp): left = (mid + 1) else: right = mid if (left == len(arr)): return None return arr[left]
-4,479,979,004,816,162,300
Return the first value in arr greater or equal to cmp. Return None if no such value exists.
homeassistant/util/dt.py
_lower_bound
854562/home-assistant
python
def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: 'Return the first value in arr greater or equal to cmp.\n\n Return None if no such value exists.\n ' left = 0 right = len(arr) while (left < right): mid = ((left + right) // 2) if (arr[mid] < cmp): left = (mid + 1) else: right = mid if (left == len(arr)): return None return arr[left]
def __init__(self, location: str=dataset_dir('MSLR10K'), split: str='train', fold: int=1, normalize: bool=True, filter_queries: Optional[bool]=None, download: bool=True, validate_checksums: bool=True): '\n Args:\n location: Directory where the dataset is located.\n split: The data split to load ("train", "test" or "vali")\n fold: Which data fold to load (1...5)\n normalize: Whether to perform query-level feature\n normalization.\n filter_queries: Whether to filter out queries that\n have no relevant items. If not given this will filter queries\n for the test set but not the train set.\n download: Whether to download the dataset if it does not\n exist.\n validate_checksums: Whether to validate the dataset files\n via sha256.\n ' if (split not in MSLR10K.splits.keys()): raise ValueError(("unrecognized data split '%s'" % str(split))) if (fold not in MSLR10K.per_fold_expected_files.keys()): raise ValueError(("unrecognized data fold '%s'" % str(fold))) validate_and_download(location=location, expected_files=MSLR10K.per_fold_expected_files[fold], downloader=(MSLR10K.downloader if download else None), validate_checksums=validate_checksums) if (filter_queries is None): filter_queries = (False if (split == 'train') else True) datafile = os.path.join(location, ('Fold%d' % fold), MSLR10K.splits[split]) super().__init__(file=datafile, sparse=False, normalize=normalize, filter_queries=filter_queries, zero_based='auto')
7,654,225,927,789,626,000
Args: location: Directory where the dataset is located. split: The data split to load ("train", "test" or "vali") fold: Which data fold to load (1...5) normalize: Whether to perform query-level feature normalization. filter_queries: Whether to filter out queries that have no relevant items. If not given this will filter queries for the test set but not the train set. download: Whether to download the dataset if it does not exist. validate_checksums: Whether to validate the dataset files via sha256.
pytorchltr/datasets/svmrank/mslr10k.py
__init__
SuperXiang/pytorchltr
python
def __init__(self, location: str=dataset_dir('MSLR10K'), split: str='train', fold: int=1, normalize: bool=True, filter_queries: Optional[bool]=None, download: bool=True, validate_checksums: bool=True): '\n Args:\n location: Directory where the dataset is located.\n split: The data split to load ("train", "test" or "vali")\n fold: Which data fold to load (1...5)\n normalize: Whether to perform query-level feature\n normalization.\n filter_queries: Whether to filter out queries that\n have no relevant items. If not given this will filter queries\n for the test set but not the train set.\n download: Whether to download the dataset if it does not\n exist.\n validate_checksums: Whether to validate the dataset files\n via sha256.\n ' if (split not in MSLR10K.splits.keys()): raise ValueError(("unrecognized data split '%s'" % str(split))) if (fold not in MSLR10K.per_fold_expected_files.keys()): raise ValueError(("unrecognized data fold '%s'" % str(fold))) validate_and_download(location=location, expected_files=MSLR10K.per_fold_expected_files[fold], downloader=(MSLR10K.downloader if download else None), validate_checksums=validate_checksums) if (filter_queries is None): filter_queries = (False if (split == 'train') else True) datafile = os.path.join(location, ('Fold%d' % fold), MSLR10K.splits[split]) super().__init__(file=datafile, sparse=False, normalize=normalize, filter_queries=filter_queries, zero_based='auto')
def tokenizeInput(self, token): "\n Cleans and tokenizes the user's input.\n\n empty characters and spaces are trimmed to prevent\n matching all paths in the index.\n " return list(filter(None, re.split(self.options.input_tokenizer, self.clean(token))))
5,647,962,165,047,563,000
Cleans and tokenizes the user's input. empty characters and spaces are trimmed to prevent matching all paths in the index.
gooey/gui/components/filtering/prefix_filter.py
tokenizeInput
QuantumSpatialInc/Gooey
python
def tokenizeInput(self, token): "\n Cleans and tokenizes the user's input.\n\n empty characters and spaces are trimmed to prevent\n matching all paths in the index.\n " return list(filter(None, re.split(self.options.input_tokenizer, self.clean(token))))
def tokenizeChoice(self, choice): "\n Splits the `choice` into a series of tokens based on\n the user's criteria.\n\n If suffix indexing is enabled, the individual tokens\n are further broken down and indexed by their suffix offsets. e.g.\n\n 'Banana', 'anana', 'nana', 'ana'\n " choice_ = self.clean(choice) tokens = re.split(self.options.choice_tokenizer, choice_) if self.options.index_suffix: return [token[i:] for token in tokens for i in range((len(token) - 2))] else: return tokens
7,454,731,504,844,039,000
Splits the `choice` into a series of tokens based on the user's criteria. If suffix indexing is enabled, the individual tokens are further broken down and indexed by their suffix offsets. e.g. 'Banana', 'anana', 'nana', 'ana'
gooey/gui/components/filtering/prefix_filter.py
tokenizeChoice
QuantumSpatialInc/Gooey
python
def tokenizeChoice(self, choice): "\n Splits the `choice` into a series of tokens based on\n the user's criteria.\n\n If suffix indexing is enabled, the individual tokens\n are further broken down and indexed by their suffix offsets. e.g.\n\n 'Banana', 'anana', 'nana', 'ana'\n " choice_ = self.clean(choice) tokens = re.split(self.options.choice_tokenizer, choice_) if self.options.index_suffix: return [token[i:] for token in tokens for i in range((len(token) - 2))] else: return tokens
def decov(h, reduce='half_squared_sum'): "Computes the DeCov loss of ``h``\n\n The output is a variable whose value depends on the value of\n the option ``reduce``. If it is ``'no'``, it holds a matrix\n whose size is same as the number of columns of ``y``.\n If it is ``'half_squared_sum'``, it holds the half of the\n squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened\n to a vector) of the matrix.\n\n Args:\n h (:class:`~chainer.Variable` or :ref:`ndarray`):\n Variable holding a matrix where the first dimension\n corresponds to the batches.\n recude (str): Reduction option. Its value must be either\n ``'half_squared_sum'`` or ``'no'``.\n Otherwise, :class:`ValueError` is raised.\n\n Returns:\n ~chainer.Variable:\n A variable holding a scalar of the DeCov loss.\n If ``reduce`` is ``'no'``, the output variable holds\n 2-dimensional array matrix of shape ``(N, N)`` where\n ``N`` is the number of columns of ``y``.\n If it is ``'half_squared_sum'``, the output variable\n holds a scalar value.\n\n .. note::\n\n See https://arxiv.org/abs/1511.06068 for details.\n\n " return DeCov(reduce)(h)
6,244,738,837,472,731,000
Computes the DeCov loss of ``h`` The output is a variable whose value depends on the value of the option ``reduce``. If it is ``'no'``, it holds a matrix whose size is same as the number of columns of ``y``. If it is ``'half_squared_sum'``, it holds the half of the squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix. Args: h (:class:`~chainer.Variable` or :ref:`ndarray`): Variable holding a matrix where the first dimension corresponds to the batches. recude (str): Reduction option. Its value must be either ``'half_squared_sum'`` or ``'no'``. Otherwise, :class:`ValueError` is raised. Returns: ~chainer.Variable: A variable holding a scalar of the DeCov loss. If ``reduce`` is ``'no'``, the output variable holds 2-dimensional array matrix of shape ``(N, N)`` where ``N`` is the number of columns of ``y``. If it is ``'half_squared_sum'``, the output variable holds a scalar value. .. note:: See https://arxiv.org/abs/1511.06068 for details.
chainer/functions/loss/decov.py
decov
Anyz01/chainer
python
def decov(h, reduce='half_squared_sum'): "Computes the DeCov loss of ``h``\n\n The output is a variable whose value depends on the value of\n the option ``reduce``. If it is ``'no'``, it holds a matrix\n whose size is same as the number of columns of ``y``.\n If it is ``'half_squared_sum'``, it holds the half of the\n squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened\n to a vector) of the matrix.\n\n Args:\n h (:class:`~chainer.Variable` or :ref:`ndarray`):\n Variable holding a matrix where the first dimension\n corresponds to the batches.\n recude (str): Reduction option. Its value must be either\n ``'half_squared_sum'`` or ``'no'``.\n Otherwise, :class:`ValueError` is raised.\n\n Returns:\n ~chainer.Variable:\n A variable holding a scalar of the DeCov loss.\n If ``reduce`` is ``'no'``, the output variable holds\n 2-dimensional array matrix of shape ``(N, N)`` where\n ``N`` is the number of columns of ``y``.\n If it is ``'half_squared_sum'``, the output variable\n holds a scalar value.\n\n .. note::\n\n See https://arxiv.org/abs/1511.06068 for details.\n\n " return DeCov(reduce)(h)
def _findFirstTraceInsideTensorFlowPyLibrary(self, op): 'Find the first trace of an op that belongs to the TF Python library.' for trace in op.traceback: if source_utils.guess_is_tensorflow_py_library(trace.filename): return trace
-7,241,050,063,364,547,000
Find the first trace of an op that belongs to the TF Python library.
tensorflow/python/debug/lib/source_remote_test.py
_findFirstTraceInsideTensorFlowPyLibrary
05259/tensorflow
python
def _findFirstTraceInsideTensorFlowPyLibrary(self, op): for trace in op.traceback: if source_utils.guess_is_tensorflow_py_library(trace.filename): return trace
def testGRPCServerMessageSizeLimit(self): 'Assert gRPC debug server is started with unlimited message size.' with test.mock.patch.object(grpc, 'server', wraps=grpc.server) as mock_grpc_server: (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread(poll_server=True) mock_grpc_server.assert_called_with(test.mock.ANY, options=[('grpc.max_receive_message_length', (- 1)), ('grpc.max_send_message_length', (- 1))]) server.stop_server().wait() server_thread.join()
-3,176,832,388,540,558,000
Assert gRPC debug server is started with unlimited message size.
tensorflow/python/debug/lib/source_remote_test.py
testGRPCServerMessageSizeLimit
05259/tensorflow
python
def testGRPCServerMessageSizeLimit(self): with test.mock.patch.object(grpc, 'server', wraps=grpc.server) as mock_grpc_server: (_, _, _, server_thread, server) = grpc_debug_test_server.start_server_on_separate_thread(poll_server=True) mock_grpc_server.assert_called_with(test.mock.ANY, options=[('grpc.max_receive_message_length', (- 1)), ('grpc.max_send_message_length', (- 1))]) server.stop_server().wait() server_thread.join()
def list_combinations_generator(modalities: list): 'Generates combinations for items in the given list.\n\n Args:\n modalities: List of modalities available in the dataset.\n\n Returns:\n Combinations of items in the given list.\n ' modality_combinations = list() for length in range(1, (len(modalities) + 1)): current_length_combinations = itertools.combinations(modalities, length) for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations
4,698,962,698,077,386,000
Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list.
codes/model_training_testing.py
list_combinations_generator
preetham-ganesh/multi-sensor-human-activity-recognition
python
def list_combinations_generator(modalities: list): 'Generates combinations for items in the given list.\n\n Args:\n modalities: List of modalities available in the dataset.\n\n Returns:\n Combinations of items in the given list.\n ' modality_combinations = list() for length in range(1, (len(modalities) + 1)): current_length_combinations = itertools.combinations(modalities, length) for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations
def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): 'Combines skeleton point information for all actions, all takes, given list of subject ids and given list of\n modalities.\n\n Args:\n n_actions: Total number of actions in the original dataset.\n subject_ids: List of subjects in the current set.\n n_takes: Total number of takes in the original dataset.\n modalities: Current combination of modalities.\n skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point\n information.\n\n Returns:\n A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list\n of subject ids and given list of modalities.\n ' combined_modality_skeleton_information = pd.DataFrame() for i in range(1, (n_actions + 1)): for j in range(len(subject_ids)): for k in range(1, (n_takes + 1)): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) try: current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format(modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue if (len(modalities) != 1): for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format(modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') current_data_name_modality_information['data_name'] = [data_name for _ in range(len(current_data_name_modality_information))] current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) current_data_name_modality_information['action'] = [i for _ in range(len(current_data_name_modality_information))] combined_modality_skeleton_information = combined_modality_skeleton_information.append(current_data_name_modality_information) return combined_modality_skeleton_information
-6,621,214,251,104,755,000
Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities.
codes/model_training_testing.py
data_combiner
preetham-ganesh/multi-sensor-human-activity-recognition
python
def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): 'Combines skeleton point information for all actions, all takes, given list of subject ids and given list of\n modalities.\n\n Args:\n n_actions: Total number of actions in the original dataset.\n subject_ids: List of subjects in the current set.\n n_takes: Total number of takes in the original dataset.\n modalities: Current combination of modalities.\n skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point\n information.\n\n Returns:\n A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list\n of subject ids and given list of modalities.\n ' combined_modality_skeleton_information = pd.DataFrame() for i in range(1, (n_actions + 1)): for j in range(len(subject_ids)): for k in range(1, (n_takes + 1)): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) try: current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format(modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue if (len(modalities) != 1): for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format(modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') current_data_name_modality_information['data_name'] = [data_name for _ in range(len(current_data_name_modality_information))] current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) current_data_name_modality_information['action'] = [i for _ in range(len(current_data_name_modality_information))] combined_modality_skeleton_information = combined_modality_skeleton_information.append(current_data_name_modality_information) return combined_modality_skeleton_information
def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): 'Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall,\n and f1 scores.\n\n Args:\n actual_values: Actual action labels in the dataset\n predicted_values: Action labels predicted by the currently trained model\n\n Returns:\n Dictionary contains keys as score names and values as scores which are floating point values.\n ' return {'accuracy_score': round((accuracy_score(actual_values, predicted_values) * 100), 3), 'balanced_accuracy_score': round((balanced_accuracy_score(actual_values, predicted_values) * 100), 3), 'precision_score': round((precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3), 'recall_score': round((recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3), 'f1_score': round((f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3)}
-4,365,684,577,823,481,300
Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values.
codes/model_training_testing.py
calculate_metrics
preetham-ganesh/multi-sensor-human-activity-recognition
python
def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): 'Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall,\n and f1 scores.\n\n Args:\n actual_values: Actual action labels in the dataset\n predicted_values: Action labels predicted by the currently trained model\n\n Returns:\n Dictionary contains keys as score names and values as scores which are floating point values.\n ' return {'accuracy_score': round((accuracy_score(actual_values, predicted_values) * 100), 3), 'balanced_accuracy_score': round((balanced_accuracy_score(actual_values, predicted_values) * 100), 3), 'precision_score': round((precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3), 'recall_score': round((recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3), 'f1_score': round((f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100), 3)}
def retrieve_hyperparameters(current_model_name: str): 'Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary).\n\n Args:\n current_model_name: Name of the model currently expected to be trained\n\n Returns:\n A dictionary containing the hyperparameter name and the values that will be used to optimize the model\n ' if (current_model_name == 'support_vector_classifier'): parameters = {'kernel': ['linear', 'poly', 'rbf']} elif (current_model_name == 'decision_tree_classifier'): parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} elif ((current_model_name == 'random_forest_classifier') or (current_model_name == 'extra_trees_classifier')): parameters = {'n_estimators': [(i * 10) for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} elif (current_model_name == 'gradient_boosting_classifier'): parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [(i * 10) for i in range(2, 11, 2)]} else: parameters = {'None': ['None']} return parameters
2,844,473,804,344,919,600
Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model
codes/model_training_testing.py
retrieve_hyperparameters
preetham-ganesh/multi-sensor-human-activity-recognition
python
def retrieve_hyperparameters(current_model_name: str): 'Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary).\n\n Args:\n current_model_name: Name of the model currently expected to be trained\n\n Returns:\n A dictionary containing the hyperparameter name and the values that will be used to optimize the model\n ' if (current_model_name == 'support_vector_classifier'): parameters = {'kernel': ['linear', 'poly', 'rbf']} elif (current_model_name == 'decision_tree_classifier'): parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} elif ((current_model_name == 'random_forest_classifier') or (current_model_name == 'extra_trees_classifier')): parameters = {'n_estimators': [(i * 10) for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} elif (current_model_name == 'gradient_boosting_classifier'): parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [(i * 10) for i in range(2, 11, 2)]} else: parameters = {'None': ['None']} return parameters
def split_data_input_target(skeleton_data: pd.DataFrame): 'Splits skeleton_data into input and target datasets by filtering / selecting certain columns.\n\n Args:\n skeleton_data: Train / Validation / Test dataset used to split / filter certain columns.\n\n Returns:\n A tuple containing 2 numpy ndarrays for the input and target datasets.\n ' skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return (np.array(skeleton_data_input), np.array(skeleton_data_target))
-172,952,320,064,424,670
Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets.
codes/model_training_testing.py
split_data_input_target
preetham-ganesh/multi-sensor-human-activity-recognition
python
def split_data_input_target(skeleton_data: pd.DataFrame): 'Splits skeleton_data into input and target datasets by filtering / selecting certain columns.\n\n Args:\n skeleton_data: Train / Validation / Test dataset used to split / filter certain columns.\n\n Returns:\n A tuple containing 2 numpy ndarrays for the input and target datasets.\n ' skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return (np.array(skeleton_data_input), np.array(skeleton_data_target))
def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): 'Tests performance of the currently trained model on the validation or testing sets, where the performance is\n evaluated per video / file, instead of evaluating per frame.\n\n Args:\n test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the validation or testing sets.\n current_model: Scikit-learn model that is currently being trained and tested.\n\n Returns:\n A tuple contains the target and predicted action for each video in the validation / testing set.\n ' test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] for i in range(len(test_data_names)): current_data_name_skeleton_information = test_skeleton_information[(test_skeleton_information['data_name'] == test_data_names[i])] (test_skeleton_input_data, test_skeleton_target_data) = split_data_input_target(current_data_name_skeleton_information) test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return (np.array(test_target_data), np.array(test_predicted_data))
3,758,275,840,654,412,000
Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set.
codes/model_training_testing.py
video_based_model_testing
preetham-ganesh/multi-sensor-human-activity-recognition
python
def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): 'Tests performance of the currently trained model on the validation or testing sets, where the performance is\n evaluated per video / file, instead of evaluating per frame.\n\n Args:\n test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the validation or testing sets.\n current_model: Scikit-learn model that is currently being trained and tested.\n\n Returns:\n A tuple contains the target and predicted action for each video in the validation / testing set.\n ' test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] for i in range(len(test_data_names)): current_data_name_skeleton_information = test_skeleton_information[(test_skeleton_information['data_name'] == test_data_names[i])] (test_skeleton_input_data, test_skeleton_target_data) = split_data_input_target(current_data_name_skeleton_information) test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return (np.array(test_target_data), np.array(test_predicted_data))
def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): 'Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and\n validation_skeleton_information.\n\n Args:\n train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Training set.\n validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Validation set.\n test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Test set.\n current_model_name: Name of the model currently expected to be trained.\n parameters: Current parameter values used for training and validating the model.\n\n Returns:\n A tuple which contains the training metrics, validation metrics, & test metrics.\n ' if (current_model_name == 'support_vector_classifier'): model = SVC(kernel=parameters['kernel']) elif (current_model_name == 'decision_tree_classifier'): model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif (current_model_name == 'random_forest_classifier'): model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif (current_model_name == 'extra_trees_classifier'): model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif (current_model_name == 'gradient_boosting_classifier'): model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() (train_skeleton_input_data, train_skeleton_target_data) = split_data_input_target(train_skeleton_information) model.fit(train_skeleton_input_data, train_skeleton_target_data) (train_skeleton_target_data, train_skeleton_predicted_data) = video_based_model_testing(train_skeleton_information, model) (validation_skeleton_target_data, validation_skeleton_predicted_data) = video_based_model_testing(validation_skeleton_information, model) (test_skeleton_target_data, test_skeleton_predicted_data) = video_based_model_testing(test_skeleton_information, model) train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return (train_metrics, validation_metrics, test_metrics)
8,992,935,888,324,668,000
Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics.
codes/model_training_testing.py
model_training_testing
preetham-ganesh/multi-sensor-human-activity-recognition
python
def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): 'Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and\n validation_skeleton_information.\n\n Args:\n train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Training set.\n validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Validation set.\n test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions,\n subject_ids, and takes in the Test set.\n current_model_name: Name of the model currently expected to be trained.\n parameters: Current parameter values used for training and validating the model.\n\n Returns:\n A tuple which contains the training metrics, validation metrics, & test metrics.\n ' if (current_model_name == 'support_vector_classifier'): model = SVC(kernel=parameters['kernel']) elif (current_model_name == 'decision_tree_classifier'): model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif (current_model_name == 'random_forest_classifier'): model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif (current_model_name == 'extra_trees_classifier'): model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif (current_model_name == 'gradient_boosting_classifier'): model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() (train_skeleton_input_data, train_skeleton_target_data) = split_data_input_target(train_skeleton_information) model.fit(train_skeleton_input_data, train_skeleton_target_data) (train_skeleton_target_data, train_skeleton_predicted_data) = video_based_model_testing(train_skeleton_information, model) (validation_skeleton_target_data, validation_skeleton_predicted_data) = video_based_model_testing(validation_skeleton_information, model) (test_skeleton_target_data, test_skeleton_predicted_data) = video_based_model_testing(test_skeleton_information, model) train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return (train_metrics, validation_metrics, test_metrics)
def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): 'Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist,\n then the folder is created.\n\n Args:\n combination_name: Name of the current combination of modalities and skeleton pose model.\n data_split: Name of the split the subset of the dataset belongs to.\n metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models.\n\n Returns:\n None.\n ' directory_path = '{}/{}'.format('../results/combination_results', combination_name) if (not os.path.isdir(directory_path)): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False)
-7,363,266,707,070,975,000
Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None.
codes/model_training_testing.py
per_combination_results_export
preetham-ganesh/multi-sensor-human-activity-recognition
python
def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): 'Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist,\n then the folder is created.\n\n Args:\n combination_name: Name of the current combination of modalities and skeleton pose model.\n data_split: Name of the split the subset of the dataset belongs to.\n metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models.\n\n Returns:\n None.\n ' directory_path = '{}/{}'.format('../results/combination_results', combination_name) if (not os.path.isdir(directory_path)): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False)
def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): 'Appends the metrics for the current model and current parameter combination to the main dataframe.\n\n Args:\n current_model_name: Name of the model currently being trained.\n current_combination_name: Current combination of parameters used for training the model.\n current_split_metrics: Metrics for the current parameter combination for the model.\n split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities.\n\n Returns:\n Updated version of the pandas dataframe which contains metrics for the current combination of modalities.\n ' current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe
8,218,222,589,331,363,000
Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities.
codes/model_training_testing.py
appends_parameter_metrics_combination
preetham-ganesh/multi-sensor-human-activity-recognition
python
def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): 'Appends the metrics for the current model and current parameter combination to the main dataframe.\n\n Args:\n current_model_name: Name of the model currently being trained.\n current_combination_name: Current combination of parameters used for training the model.\n current_split_metrics: Metrics for the current parameter combination for the model.\n split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities.\n\n Returns:\n Updated version of the pandas dataframe which contains metrics for the current combination of modalities.\n ' current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe
def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): 'Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and\n tests the list of classifier models. Calculates metrics for each data split, model and parameter combination.\n\n Args:\n train_subject_ids: List of subject ids in the training set.\n validation_subject_ids: List of subject ids in the validation set.\n test_subject_ids: List of subject ids in the testing set.\n n_actions: Total number of actions in the original dataset.\n n_takes: Total number of takes in the original dataset.\n current_combination_modalities: Current combination of modalities which will be used to import and combine\n the dataset.\n skeleton_pose_model: Name of the model currently used for extracting skeleton model.\n model_names: List of ML classifier model names which will used creating the objects.\n\n Returns:\n None.\n ' train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) validation_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) test_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) combination_name = '_'.join((current_combination_modalities + [skeleton_pose_model])) for i in range(len(model_names)): parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) (training_metrics, validation_metrics, test_metrics) = model_training_testing(train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) train_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if (model_names[i] != 'gaussian_naive_bayes'): print('modality_combination={}, model={}, {} completed successfully.'.format(combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'test_metrics', test_models_parameters_metrics)
-7,157,611,953,615,802,000
Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None.
codes/model_training_testing.py
per_combination_model_training_testing
preetham-ganesh/multi-sensor-human-activity-recognition
python
def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): 'Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and\n tests the list of classifier models. Calculates metrics for each data split, model and parameter combination.\n\n Args:\n train_subject_ids: List of subject ids in the training set.\n validation_subject_ids: List of subject ids in the validation set.\n test_subject_ids: List of subject ids in the testing set.\n n_actions: Total number of actions in the original dataset.\n n_takes: Total number of takes in the original dataset.\n current_combination_modalities: Current combination of modalities which will be used to import and combine\n the dataset.\n skeleton_pose_model: Name of the model currently used for extracting skeleton model.\n model_names: List of ML classifier model names which will used creating the objects.\n\n Returns:\n None.\n ' train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) validation_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) test_models_parameters_metrics = pd.DataFrame(columns=(['model_names', 'parameters'] + metrics_features)) combination_name = '_'.join((current_combination_modalities + [skeleton_pose_model])) for i in range(len(model_names)): parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) (training_metrics, validation_metrics, test_metrics) = model_training_testing(train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) train_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination(model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if (model_names[i] != 'gaussian_naive_bayes'): print('modality_combination={}, model={}, {} completed successfully.'.format(combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join((current_combination_modalities + [skeleton_pose_model])), 'test_metrics', test_models_parameters_metrics)
def __init__(self, multi_scale=False, multi_image_sizes=(320, 352, 384, 416, 448, 480, 512, 544, 576, 608), misc_effect=None, visual_effect=None, batch_size=1, group_method='ratio', shuffle_groups=True, input_size=512, max_objects=100): "\n Initialize Generator object.\n\n Args:\n batch_size: The size of the batches to generate.\n group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')).\n shuffle_groups: If True, shuffles the groups each epoch.\n input_size:\n max_objects:\n " self.misc_effect = misc_effect self.visual_effect = visual_effect self.batch_size = int(batch_size) self.group_method = group_method self.shuffle_groups = shuffle_groups self.input_size = input_size self.output_size = (self.input_size // 4) self.max_objects = max_objects self.groups = None self.multi_scale = multi_scale self.multi_image_sizes = multi_image_sizes self.current_index = 0 self.group_images() if self.shuffle_groups: random.shuffle(self.groups)
1,858,173,405,841,341,700
Initialize Generator object. Args: batch_size: The size of the batches to generate. group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')). shuffle_groups: If True, shuffles the groups each epoch. input_size: max_objects:
generators/common.py
__init__
lbcsept/keras-CenterNet
python
def __init__(self, multi_scale=False, multi_image_sizes=(320, 352, 384, 416, 448, 480, 512, 544, 576, 608), misc_effect=None, visual_effect=None, batch_size=1, group_method='ratio', shuffle_groups=True, input_size=512, max_objects=100): "\n Initialize Generator object.\n\n Args:\n batch_size: The size of the batches to generate.\n group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')).\n shuffle_groups: If True, shuffles the groups each epoch.\n input_size:\n max_objects:\n " self.misc_effect = misc_effect self.visual_effect = visual_effect self.batch_size = int(batch_size) self.group_method = group_method self.shuffle_groups = shuffle_groups self.input_size = input_size self.output_size = (self.input_size // 4) self.max_objects = max_objects self.groups = None self.multi_scale = multi_scale self.multi_image_sizes = multi_image_sizes self.current_index = 0 self.group_images() if self.shuffle_groups: random.shuffle(self.groups)
def size(self): '\n Size of the dataset.\n ' raise NotImplementedError('size method not implemented')
2,519,970,720,400,613,400
Size of the dataset.
generators/common.py
size
lbcsept/keras-CenterNet
python
def size(self): '\n \n ' raise NotImplementedError('size method not implemented')
def num_classes(self): '\n Number of classes in the dataset.\n ' raise NotImplementedError('num_classes method not implemented')
2,245,586,942,049,278,500
Number of classes in the dataset.
generators/common.py
num_classes
lbcsept/keras-CenterNet
python
def num_classes(self): '\n \n ' raise NotImplementedError('num_classes method not implemented')
def has_label(self, label): '\n Returns True if label is a known label.\n ' raise NotImplementedError('has_label method not implemented')
8,231,604,603,183,398,000
Returns True if label is a known label.
generators/common.py
has_label
lbcsept/keras-CenterNet
python
def has_label(self, label): '\n \n ' raise NotImplementedError('has_label method not implemented')
def has_name(self, name): '\n Returns True if name is a known class.\n ' raise NotImplementedError('has_name method not implemented')
5,509,816,958,451,983,000
Returns True if name is a known class.
generators/common.py
has_name
lbcsept/keras-CenterNet
python
def has_name(self, name): '\n \n ' raise NotImplementedError('has_name method not implemented')
def name_to_label(self, name): '\n Map name to label.\n ' raise NotImplementedError('name_to_label method not implemented')
-3,816,862,996,482,635,300
Map name to label.
generators/common.py
name_to_label
lbcsept/keras-CenterNet
python
def name_to_label(self, name): '\n \n ' raise NotImplementedError('name_to_label method not implemented')
def label_to_name(self, label): '\n Map label to name.\n ' raise NotImplementedError('label_to_name method not implemented')
5,471,730,362,505,122,000
Map label to name.
generators/common.py
label_to_name
lbcsept/keras-CenterNet
python
def label_to_name(self, label): '\n \n ' raise NotImplementedError('label_to_name method not implemented')
def image_aspect_ratio(self, image_index): '\n Compute the aspect ratio for an image with image_index.\n ' raise NotImplementedError('image_aspect_ratio method not implemented')
5,160,404,832,456,020,000
Compute the aspect ratio for an image with image_index.
generators/common.py
image_aspect_ratio
lbcsept/keras-CenterNet
python
def image_aspect_ratio(self, image_index): '\n \n ' raise NotImplementedError('image_aspect_ratio method not implemented')
def load_image(self, image_index): '\n Load an image at the image_index.\n ' raise NotImplementedError('load_image method not implemented')
-7,955,758,498,265,859,000
Load an image at the image_index.
generators/common.py
load_image
lbcsept/keras-CenterNet
python
def load_image(self, image_index): '\n \n ' raise NotImplementedError('load_image method not implemented')
def load_annotations(self, image_index): '\n Load annotations for an image_index.\n ' raise NotImplementedError('load_annotations method not implemented')
-7,710,779,890,866,678,000
Load annotations for an image_index.
generators/common.py
load_annotations
lbcsept/keras-CenterNet
python
def load_annotations(self, image_index): '\n \n ' raise NotImplementedError('load_annotations method not implemented')
def load_annotations_group(self, group): '\n Load annotations for all images in group.\n ' annotations_group = [self.load_annotations(image_index) for image_index in group] for annotations in annotations_group: assert isinstance(annotations, dict), "'load_annotations' should return a list of dictionaries, received: {}".format(type(annotations)) assert ('labels' in annotations), "'load_annotations' should return a list of dictionaries that contain 'labels' and 'bboxes'." assert ('bboxes' in annotations), "'load_annotations' should return a list of dictionaries that contain 'labels' and 'bboxes'." return annotations_group
1,904,131,570,393,643,300
Load annotations for all images in group.
generators/common.py
load_annotations_group
lbcsept/keras-CenterNet
python
def load_annotations_group(self, group): '\n \n ' annotations_group = [self.load_annotations(image_index) for image_index in group] for annotations in annotations_group: assert isinstance(annotations, dict), "'load_annotations' should return a list of dictionaries, received: {}".format(type(annotations)) assert ('labels' in annotations), "'load_annotations' should return a list of dictionaries that contain 'labels' and 'bboxes'." assert ('bboxes' in annotations), "'load_annotations' should return a list of dictionaries that contain 'labels' and 'bboxes'." return annotations_group
def filter_annotations(self, image_group, annotations_group, group): '\n Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.\n ' for (index, (image, annotations)) in enumerate(zip(image_group, annotations_group)): invalid_indices = np.where(((((((((annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) | (annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1])) | (annotations['bboxes'][:, 0] < 0)) | (annotations['bboxes'][:, 1] < 0)) | (annotations['bboxes'][:, 2] <= 0)) | (annotations['bboxes'][:, 3] <= 0)) | (annotations['bboxes'][:, 2] > image.shape[1])) | (annotations['bboxes'][:, 3] > image.shape[0])))[0] if len(invalid_indices): warnings.warn('Image with id {} (shape {}) contains the following invalid boxes: {}.'.format(group[index], image.shape, annotations['bboxes'][invalid_indices, :])) for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0) if (annotations['bboxes'].shape[0] == 0): warnings.warn('Image with id {} (shape {}) contains no valid boxes before transform'.format(group[index], image.shape)) return (image_group, annotations_group)
-5,141,735,004,164,665,000
Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.
generators/common.py
filter_annotations
lbcsept/keras-CenterNet
python
def filter_annotations(self, image_group, annotations_group, group): '\n \n ' for (index, (image, annotations)) in enumerate(zip(image_group, annotations_group)): invalid_indices = np.where(((((((((annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) | (annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1])) | (annotations['bboxes'][:, 0] < 0)) | (annotations['bboxes'][:, 1] < 0)) | (annotations['bboxes'][:, 2] <= 0)) | (annotations['bboxes'][:, 3] <= 0)) | (annotations['bboxes'][:, 2] > image.shape[1])) | (annotations['bboxes'][:, 3] > image.shape[0])))[0] if len(invalid_indices): warnings.warn('Image with id {} (shape {}) contains the following invalid boxes: {}.'.format(group[index], image.shape, annotations['bboxes'][invalid_indices, :])) for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0) if (annotations['bboxes'].shape[0] == 0): warnings.warn('Image with id {} (shape {}) contains no valid boxes before transform'.format(group[index], image.shape)) return (image_group, annotations_group)
def clip_transformed_annotations(self, image_group, annotations_group, group): '\n Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.\n ' filtered_image_group = [] filtered_annotations_group = [] for (index, (image, annotations)) in enumerate(zip(image_group, annotations_group)): image_height = image.shape[0] image_width = image.shape[1] annotations['bboxes'][:, 0] = np.clip(annotations['bboxes'][:, 0], 0, (image_width - 2)) annotations['bboxes'][:, 1] = np.clip(annotations['bboxes'][:, 1], 0, (image_height - 2)) annotations['bboxes'][:, 2] = np.clip(annotations['bboxes'][:, 2], 1, (image_width - 1)) annotations['bboxes'][:, 3] = np.clip(annotations['bboxes'][:, 3], 1, (image_height - 1)) small_indices = np.where((((annotations['bboxes'][:, 2] - annotations['bboxes'][:, 0]) < 10) | ((annotations['bboxes'][:, 3] - annotations['bboxes'][:, 1]) < 10)))[0] if len(small_indices): for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], small_indices, axis=0) if (annotations_group[index]['bboxes'].shape[0] != 0): filtered_image_group.append(image) filtered_annotations_group.append(annotations_group[index]) else: warnings.warn('Image with id {} (shape {}) contains no valid boxes after transform'.format(group[index], image.shape)) return (filtered_image_group, filtered_annotations_group)
4,534,439,093,873,950,700
Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.
generators/common.py
clip_transformed_annotations
lbcsept/keras-CenterNet
python
def clip_transformed_annotations(self, image_group, annotations_group, group): '\n \n ' filtered_image_group = [] filtered_annotations_group = [] for (index, (image, annotations)) in enumerate(zip(image_group, annotations_group)): image_height = image.shape[0] image_width = image.shape[1] annotations['bboxes'][:, 0] = np.clip(annotations['bboxes'][:, 0], 0, (image_width - 2)) annotations['bboxes'][:, 1] = np.clip(annotations['bboxes'][:, 1], 0, (image_height - 2)) annotations['bboxes'][:, 2] = np.clip(annotations['bboxes'][:, 2], 1, (image_width - 1)) annotations['bboxes'][:, 3] = np.clip(annotations['bboxes'][:, 3], 1, (image_height - 1)) small_indices = np.where((((annotations['bboxes'][:, 2] - annotations['bboxes'][:, 0]) < 10) | ((annotations['bboxes'][:, 3] - annotations['bboxes'][:, 1]) < 10)))[0] if len(small_indices): for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], small_indices, axis=0) if (annotations_group[index]['bboxes'].shape[0] != 0): filtered_image_group.append(image) filtered_annotations_group.append(annotations_group[index]) else: warnings.warn('Image with id {} (shape {}) contains no valid boxes after transform'.format(group[index], image.shape)) return (filtered_image_group, filtered_annotations_group)
def load_image_group(self, group): '\n Load images for all images in a group.\n ' return [self.load_image(image_index) for image_index in group]
-208,212,597,319,730,600
Load images for all images in a group.
generators/common.py
load_image_group
lbcsept/keras-CenterNet
python
def load_image_group(self, group): '\n \n ' return [self.load_image(image_index) for image_index in group]
def random_visual_effect_group_entry(self, image, annotations): '\n Randomly transforms image and annotation.\n ' image = self.visual_effect(image) return (image, annotations)
-7,949,354,188,122,564,000
Randomly transforms image and annotation.
generators/common.py
random_visual_effect_group_entry
lbcsept/keras-CenterNet
python
def random_visual_effect_group_entry(self, image, annotations): '\n \n ' image = self.visual_effect(image) return (image, annotations)
def random_visual_effect_group(self, image_group, annotations_group): '\n Randomly apply visual effect on each image.\n ' assert (len(image_group) == len(annotations_group)) if (self.visual_effect is None): return (image_group, annotations_group) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_visual_effect_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
6,606,122,371,543,051,000
Randomly apply visual effect on each image.
generators/common.py
random_visual_effect_group
lbcsept/keras-CenterNet
python
def random_visual_effect_group(self, image_group, annotations_group): '\n \n ' assert (len(image_group) == len(annotations_group)) if (self.visual_effect is None): return (image_group, annotations_group) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_visual_effect_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
def random_transform_group_entry(self, image, annotations, transform=None): '\n Randomly transforms image and annotation.\n ' if ((transform is not None) or self.transform_generator): if (transform is None): transform = adjust_transform_for_image(next(self.transform_generator), image, self.transform_parameters.relative_translation) image = apply_transform(transform, image, self.transform_parameters) annotations['bboxes'] = annotations['bboxes'].copy() for index in range(annotations['bboxes'].shape[0]): annotations['bboxes'][index, :] = transform_aabb(transform, annotations['bboxes'][index, :]) return (image, annotations)
3,619,452,415,224,716,000
Randomly transforms image and annotation.
generators/common.py
random_transform_group_entry
lbcsept/keras-CenterNet
python
def random_transform_group_entry(self, image, annotations, transform=None): '\n \n ' if ((transform is not None) or self.transform_generator): if (transform is None): transform = adjust_transform_for_image(next(self.transform_generator), image, self.transform_parameters.relative_translation) image = apply_transform(transform, image, self.transform_parameters) annotations['bboxes'] = annotations['bboxes'].copy() for index in range(annotations['bboxes'].shape[0]): annotations['bboxes'][index, :] = transform_aabb(transform, annotations['bboxes'][index, :]) return (image, annotations)
def random_transform_group(self, image_group, annotations_group): '\n Randomly transforms each image and its annotations.\n ' assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_transform_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
-6,856,956,971,389,891,000
Randomly transforms each image and its annotations.
generators/common.py
random_transform_group
lbcsept/keras-CenterNet
python
def random_transform_group(self, image_group, annotations_group): '\n \n ' assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_transform_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
def random_misc_group_entry(self, image, annotations): '\n Randomly transforms image and annotation.\n ' assert (annotations['bboxes'].shape[0] != 0) (image, boxes) = self.misc_effect(image, annotations['bboxes']) annotations['bboxes'] = boxes return (image, annotations)
-9,044,219,135,588,454,000
Randomly transforms image and annotation.
generators/common.py
random_misc_group_entry
lbcsept/keras-CenterNet
python
def random_misc_group_entry(self, image, annotations): '\n \n ' assert (annotations['bboxes'].shape[0] != 0) (image, boxes) = self.misc_effect(image, annotations['bboxes']) annotations['bboxes'] = boxes return (image, annotations)
def random_misc_group(self, image_group, annotations_group): '\n Randomly transforms each image and its annotations.\n ' assert (len(image_group) == len(annotations_group)) if (self.misc_effect is None): return (image_group, annotations_group) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_misc_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
3,756,365,868,291,788,000
Randomly transforms each image and its annotations.
generators/common.py
random_misc_group
lbcsept/keras-CenterNet
python
def random_misc_group(self, image_group, annotations_group): '\n \n ' assert (len(image_group) == len(annotations_group)) if (self.misc_effect is None): return (image_group, annotations_group) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.random_misc_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
def preprocess_group_entry(self, image, annotations): '\n Preprocess image and its annotations.\n ' (image, scale, offset_h, offset_w) = self.preprocess_image(image) annotations['bboxes'] *= scale annotations['bboxes'][:, [0, 2]] += offset_w annotations['bboxes'][:, [1, 3]] += offset_h return (image, annotations)
-2,648,293,636,791,352,300
Preprocess image and its annotations.
generators/common.py
preprocess_group_entry
lbcsept/keras-CenterNet
python
def preprocess_group_entry(self, image, annotations): '\n \n ' (image, scale, offset_h, offset_w) = self.preprocess_image(image) annotations['bboxes'] *= scale annotations['bboxes'][:, [0, 2]] += offset_w annotations['bboxes'][:, [1, 3]] += offset_h return (image, annotations)
def preprocess_group(self, image_group, annotations_group): '\n Preprocess each image and its annotations in its group.\n ' assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.preprocess_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
-3,169,902,642,537,334,300
Preprocess each image and its annotations in its group.
generators/common.py
preprocess_group
lbcsept/keras-CenterNet
python
def preprocess_group(self, image_group, annotations_group): '\n \n ' assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): (image_group[index], annotations_group[index]) = self.preprocess_group_entry(image_group[index], annotations_group[index]) return (image_group, annotations_group)
def group_images(self): '\n Order the images according to self.order and makes groups of self.batch_size.\n ' order = list(range(self.size())) if (self.group_method == 'random'): random.shuffle(order) elif (self.group_method == 'ratio'): order.sort(key=(lambda x: self.image_aspect_ratio(x))) self.groups = [[order[(x % len(order))] for x in range(i, (i + self.batch_size))] for i in range(0, len(order), self.batch_size)]
-2,192,540,384,019,374,800
Order the images according to self.order and makes groups of self.batch_size.
generators/common.py
group_images
lbcsept/keras-CenterNet
python
def group_images(self): '\n \n ' order = list(range(self.size())) if (self.group_method == 'random'): random.shuffle(order) elif (self.group_method == 'ratio'): order.sort(key=(lambda x: self.image_aspect_ratio(x))) self.groups = [[order[(x % len(order))] for x in range(i, (i + self.batch_size))] for i in range(0, len(order), self.batch_size)]
def compute_inputs(self, image_group, annotations_group): '\n Compute inputs for the network using an image_group.\n ' batch_images = np.zeros((len(image_group), self.input_size, self.input_size, 3), dtype=np.float32) batch_hms = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_hms_2 = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_whs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_regs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_reg_masks = np.zeros((len(image_group), self.max_objects), dtype=np.float32) batch_indices = np.zeros((len(image_group), self.max_objects), dtype=np.float32) for (b, (image, annotations)) in enumerate(zip(image_group, annotations_group)): c = np.array([(image.shape[1] / 2.0), (image.shape[0] / 2.0)], dtype=np.float32) s = (max(image.shape[0], image.shape[1]) * 1.0) trans_input = get_affine_transform(c, s, self.input_size) image = self.preprocess_image(image, c, s, tgt_w=self.input_size, tgt_h=self.input_size) batch_images[b] = image bboxes = annotations['bboxes'] assert (bboxes.shape[0] != 0) class_ids = annotations['labels'] assert (class_ids.shape[0] != 0) trans_output = get_affine_transform(c, s, self.output_size) for i in range(bboxes.shape[0]): bbox = bboxes[i].copy() cls_id = class_ids[i] bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, (self.output_size - 1)) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, (self.output_size - 1)) (h, w) = ((bbox[3] - bbox[1]), (bbox[2] - bbox[0])) if ((h > 0) and (w > 0)): (radius_h, radius_w) = gaussian_radius((math.ceil(h), math.ceil(w))) radius_h = max(0, int(radius_h)) radius_w = max(0, int(radius_w)) radius = gaussian_radius_2((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([((bbox[0] + bbox[2]) / 2), ((bbox[1] + bbox[3]) / 2)], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(batch_hms[b, :, :, cls_id], ct_int, radius_h, radius_w) draw_gaussian_2(batch_hms_2[b, :, :, cls_id], ct_int, radius) batch_whs[(b, i)] = ((1.0 * w), (1.0 * h)) batch_indices[(b, i)] = ((ct_int[1] * self.output_size) + ct_int[0]) batch_regs[(b, i)] = (ct - ct_int) batch_reg_masks[(b, i)] = 1 return [batch_images, batch_hms_2, batch_whs, batch_regs, batch_reg_masks, batch_indices]
-7,551,723,626,296,321,000
Compute inputs for the network using an image_group.
generators/common.py
compute_inputs
lbcsept/keras-CenterNet
python
def compute_inputs(self, image_group, annotations_group): '\n \n ' batch_images = np.zeros((len(image_group), self.input_size, self.input_size, 3), dtype=np.float32) batch_hms = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_hms_2 = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_whs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_regs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_reg_masks = np.zeros((len(image_group), self.max_objects), dtype=np.float32) batch_indices = np.zeros((len(image_group), self.max_objects), dtype=np.float32) for (b, (image, annotations)) in enumerate(zip(image_group, annotations_group)): c = np.array([(image.shape[1] / 2.0), (image.shape[0] / 2.0)], dtype=np.float32) s = (max(image.shape[0], image.shape[1]) * 1.0) trans_input = get_affine_transform(c, s, self.input_size) image = self.preprocess_image(image, c, s, tgt_w=self.input_size, tgt_h=self.input_size) batch_images[b] = image bboxes = annotations['bboxes'] assert (bboxes.shape[0] != 0) class_ids = annotations['labels'] assert (class_ids.shape[0] != 0) trans_output = get_affine_transform(c, s, self.output_size) for i in range(bboxes.shape[0]): bbox = bboxes[i].copy() cls_id = class_ids[i] bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, (self.output_size - 1)) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, (self.output_size - 1)) (h, w) = ((bbox[3] - bbox[1]), (bbox[2] - bbox[0])) if ((h > 0) and (w > 0)): (radius_h, radius_w) = gaussian_radius((math.ceil(h), math.ceil(w))) radius_h = max(0, int(radius_h)) radius_w = max(0, int(radius_w)) radius = gaussian_radius_2((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([((bbox[0] + bbox[2]) / 2), ((bbox[1] + bbox[3]) / 2)], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(batch_hms[b, :, :, cls_id], ct_int, radius_h, radius_w) draw_gaussian_2(batch_hms_2[b, :, :, cls_id], ct_int, radius) batch_whs[(b, i)] = ((1.0 * w), (1.0 * h)) batch_indices[(b, i)] = ((ct_int[1] * self.output_size) + ct_int[0]) batch_regs[(b, i)] = (ct - ct_int) batch_reg_masks[(b, i)] = 1 return [batch_images, batch_hms_2, batch_whs, batch_regs, batch_reg_masks, batch_indices]
def compute_targets(self, image_group, annotations_group): '\n Compute target outputs for the network using images and their annotations.\n ' return np.zeros((len(image_group),))
-4,948,169,037,549,393,000
Compute target outputs for the network using images and their annotations.
generators/common.py
compute_targets
lbcsept/keras-CenterNet
python
def compute_targets(self, image_group, annotations_group): '\n \n ' return np.zeros((len(image_group),))
def compute_inputs_targets(self, group): '\n Compute inputs and target outputs for the network.\n ' image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) (image_group, annotations_group) = self.filter_annotations(image_group, annotations_group, group) (image_group, annotations_group) = self.random_visual_effect_group(image_group, annotations_group) (image_group, annotations_group) = self.random_misc_group(image_group, annotations_group) if (len(image_group) == 0): return (None, None) inputs = self.compute_inputs(image_group, annotations_group) targets = self.compute_targets(image_group, annotations_group) return (inputs, targets)
3,504,434,119,494,047,000
Compute inputs and target outputs for the network.
generators/common.py
compute_inputs_targets
lbcsept/keras-CenterNet
python
def compute_inputs_targets(self, group): '\n \n ' image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) (image_group, annotations_group) = self.filter_annotations(image_group, annotations_group, group) (image_group, annotations_group) = self.random_visual_effect_group(image_group, annotations_group) (image_group, annotations_group) = self.random_misc_group(image_group, annotations_group) if (len(image_group) == 0): return (None, None) inputs = self.compute_inputs(image_group, annotations_group) targets = self.compute_targets(image_group, annotations_group) return (inputs, targets)
def __len__(self): '\n Number of batches for generator.\n ' return len(self.groups)
4,036,216,262,415,912,000
Number of batches for generator.
generators/common.py
__len__
lbcsept/keras-CenterNet
python
def __len__(self): '\n \n ' return len(self.groups)
def __getitem__(self, index): '\n Keras sequence method for generating batches.\n ' group = self.groups[self.current_index] if self.multi_scale: if ((self.current_index % 10) == 0): random_size_index = np.random.randint(0, len(self.multi_image_sizes)) self.image_size = self.multi_image_sizes[random_size_index] (inputs, targets) = self.compute_inputs_targets(group) while (inputs is None): current_index = (self.current_index + 1) if (current_index >= len(self.groups)): current_index = (current_index % len(self.groups)) self.current_index = current_index group = self.groups[self.current_index] (inputs, targets) = self.compute_inputs_targets(group) current_index = (self.current_index + 1) if (current_index >= len(self.groups)): current_index = (current_index % len(self.groups)) self.current_index = current_index return (inputs, targets)
2,202,590,093,009,340,400
Keras sequence method for generating batches.
generators/common.py
__getitem__
lbcsept/keras-CenterNet
python
def __getitem__(self, index): '\n \n ' group = self.groups[self.current_index] if self.multi_scale: if ((self.current_index % 10) == 0): random_size_index = np.random.randint(0, len(self.multi_image_sizes)) self.image_size = self.multi_image_sizes[random_size_index] (inputs, targets) = self.compute_inputs_targets(group) while (inputs is None): current_index = (self.current_index + 1) if (current_index >= len(self.groups)): current_index = (current_index % len(self.groups)) self.current_index = current_index group = self.groups[self.current_index] (inputs, targets) = self.compute_inputs_targets(group) current_index = (self.current_index + 1) if (current_index >= len(self.groups)): current_index = (current_index % len(self.groups)) self.current_index = current_index return (inputs, targets)
def test_fas(): '\n Testing based upon the work provided in\n https://github.com/arkottke/notebooks/blob/master/effective_amp_spectrum.ipynb\n ' ddir = os.path.join('data', 'testdata') datadir = pkg_resources.resource_filename('gmprocess', ddir) fas_file = os.path.join(datadir, 'fas_greater_of_two_horizontals.pkl') p1 = os.path.join(datadir, 'peer', 'RSN763_LOMAP_GIL067.AT2') p2 = os.path.join(datadir, 'peer', 'RSN763_LOMAP_GIL337.AT2') stream = StationStream([]) for (idx, fpath) in enumerate([p1, p2]): with open(fpath, encoding='utf-8') as file_obj: for _ in range(3): next(file_obj) meta = re.findall('[.0-9]+', next(file_obj)) dt = float(meta[1]) accels = np.array([col for line in file_obj for col in line.split()]) trace = StationTrace(data=accels, header={'channel': ('H' + str(idx)), 'delta': dt, 'units': 'acc', 'standard': {'corner_frequency': np.nan, 'station_name': '', 'source': 'json', 'instrument': '', 'instrument_period': np.nan, 'source_format': 'json', 'comments': '', 'structure_type': '', 'sensor_serial_number': '', 'source_file': '', 'process_level': 'raw counts', 'process_time': '', 'horizontal_orientation': np.nan, 'vertical_orientation': np.nan, 'units': 'acc', 'units_type': 'acc', 'instrument_sensitivity': np.nan, 'instrument_damping': np.nan}}) stream.append(trace) for tr in stream: response = {'input_units': 'counts', 'output_units': 'cm/s^2'} tr.setProvenance('remove_response', response) target_df = pd.read_pickle(fas_file) ind_vals = target_df.index.values per = np.unique([float(i[0].split(')')[0].split('(')[1]) for i in ind_vals]) freqs = (1 / per) imts = [('fas' + str(p)) for p in per] summary = StationSummary.from_stream(stream, ['greater_of_two_horizontals'], imts, bandwidth=30) pgms = summary.pgms for (idx, f) in enumerate(freqs): fstr = ('FAS(%.3f)' % (1 / f)) fval1 = pgms.loc[(fstr, 'GREATER_OF_TWO_HORIZONTALS')].Result fval2 = target_df.loc[(fstr, 'GREATER_OF_TWO_HORIZONTALS')].Result np.testing.assert_allclose(fval1, fval2, rtol=1e-05, atol=1e-05)
5,979,378,271,937,405,000
Testing based upon the work provided in https://github.com/arkottke/notebooks/blob/master/effective_amp_spectrum.ipynb
tests/gmprocess/metrics/imt/fas_greater_of_two_test.py
test_fas
jrekoske-usgs/groundmotion-processing
python
def test_fas(): '\n Testing based upon the work provided in\n https://github.com/arkottke/notebooks/blob/master/effective_amp_spectrum.ipynb\n ' ddir = os.path.join('data', 'testdata') datadir = pkg_resources.resource_filename('gmprocess', ddir) fas_file = os.path.join(datadir, 'fas_greater_of_two_horizontals.pkl') p1 = os.path.join(datadir, 'peer', 'RSN763_LOMAP_GIL067.AT2') p2 = os.path.join(datadir, 'peer', 'RSN763_LOMAP_GIL337.AT2') stream = StationStream([]) for (idx, fpath) in enumerate([p1, p2]): with open(fpath, encoding='utf-8') as file_obj: for _ in range(3): next(file_obj) meta = re.findall('[.0-9]+', next(file_obj)) dt = float(meta[1]) accels = np.array([col for line in file_obj for col in line.split()]) trace = StationTrace(data=accels, header={'channel': ('H' + str(idx)), 'delta': dt, 'units': 'acc', 'standard': {'corner_frequency': np.nan, 'station_name': , 'source': 'json', 'instrument': , 'instrument_period': np.nan, 'source_format': 'json', 'comments': , 'structure_type': , 'sensor_serial_number': , 'source_file': , 'process_level': 'raw counts', 'process_time': , 'horizontal_orientation': np.nan, 'vertical_orientation': np.nan, 'units': 'acc', 'units_type': 'acc', 'instrument_sensitivity': np.nan, 'instrument_damping': np.nan}}) stream.append(trace) for tr in stream: response = {'input_units': 'counts', 'output_units': 'cm/s^2'} tr.setProvenance('remove_response', response) target_df = pd.read_pickle(fas_file) ind_vals = target_df.index.values per = np.unique([float(i[0].split(')')[0].split('(')[1]) for i in ind_vals]) freqs = (1 / per) imts = [('fas' + str(p)) for p in per] summary = StationSummary.from_stream(stream, ['greater_of_two_horizontals'], imts, bandwidth=30) pgms = summary.pgms for (idx, f) in enumerate(freqs): fstr = ('FAS(%.3f)' % (1 / f)) fval1 = pgms.loc[(fstr, 'GREATER_OF_TWO_HORIZONTALS')].Result fval2 = target_df.loc[(fstr, 'GREATER_OF_TWO_HORIZONTALS')].Result np.testing.assert_allclose(fval1, fval2, rtol=1e-05, atol=1e-05)
def transcribe_audio(project_slug, creds, overwrite=False): '\n project_slug: ./projects/audiostreams/filename.wav\n ' watson_jobs = [] audio_fn = (project_slug + '.wav') print(('audio_filename:' + audio_fn)) time_slug = make_slug_from_path(audio_fn) transcript_fn = (join(transcripts_dir(project_slug), time_slug) + '.json') print(('transcript_fn' + transcript_fn)) if (not exists(transcript_fn)): print('Sending to Watson API:\n\t', audio_fn) job = Process(target=process_transcript_call, args=(audio_fn, transcript_fn, creds)) job.start() watson_jobs.append(job) for job in watson_jobs: job.join() return transcript_fn
1,367,059,603,446,845,000
project_slug: ./projects/audiostreams/filename.wav
watsoncloud/foo/high.py
transcribe_audio
audip/youtubeseek
python
def transcribe_audio(project_slug, creds, overwrite=False): '\n \n ' watson_jobs = [] audio_fn = (project_slug + '.wav') print(('audio_filename:' + audio_fn)) time_slug = make_slug_from_path(audio_fn) transcript_fn = (join(transcripts_dir(project_slug), time_slug) + '.json') print(('transcript_fn' + transcript_fn)) if (not exists(transcript_fn)): print('Sending to Watson API:\n\t', audio_fn) job = Process(target=process_transcript_call, args=(audio_fn, transcript_fn, creds)) job.start() watson_jobs.append(job) for job in watson_jobs: job.join() return transcript_fn
@abstractmethod def _plot_init(self): 'Setup MPL figure display with empty data.' pass
-3,701,202,470,411,182,000
Setup MPL figure display with empty data.
src/pymor/discretizers/builtin/gui/matplotlib.py
_plot_init
TreeerT/pymor
python
@abstractmethod def _plot_init(self): pass