body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def send_job_data(self, current_job, data, poll_timeout=None): 'Send a Gearman JOB_DATA update for an inflight job' current_handler = self._get_handler_for_job(current_job) current_handler.send_job_data(current_job, data=data) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
500,194,096,815,165,760
Send a Gearman JOB_DATA update for an inflight job
client/python3_gearman/worker.py
send_job_data
aixiwang/gearman_test
python
def send_job_data(self, current_job, data, poll_timeout=None): current_handler = self._get_handler_for_job(current_job) current_handler.send_job_data(current_job, data=data) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
def send_job_warning(self, current_job, data, poll_timeout=None): 'Send a Gearman JOB_WARNING update for an inflight job' current_handler = self._get_handler_for_job(current_job) current_handler.send_job_warning(current_job, data=data) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
1,950,741,434,473,703,000
Send a Gearman JOB_WARNING update for an inflight job
client/python3_gearman/worker.py
send_job_warning
aixiwang/gearman_test
python
def send_job_warning(self, current_job, data, poll_timeout=None): current_handler = self._get_handler_for_job(current_job) current_handler.send_job_warning(current_job, data=data) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
def create_job(self, command_handler, job_handle, task, unique, data): 'Create a new job using our self.job_class' current_connection = self.handler_to_connection_map[command_handler] return self.job_class(current_connection, job_handle, task, unique, data)
4,949,514,335,659,896,000
Create a new job using our self.job_class
client/python3_gearman/worker.py
create_job
aixiwang/gearman_test
python
def create_job(self, command_handler, job_handle, task, unique, data): current_connection = self.handler_to_connection_map[command_handler] return self.job_class(current_connection, job_handle, task, unique, data)
def set_job_lock(self, command_handler, lock): "Set a worker level job lock so we don't try to hold onto 2 jobs at\n anytime" if (command_handler not in self.handler_to_connection_map): return False failed_lock = bool((lock and (self.command_handler_holding_job_lock is not None))) failed_unlock = bool(((not lock) and (self.command_handler_holding_job_lock != command_handler))) if (failed_lock or failed_unlock): return False if lock: self.command_handler_holding_job_lock = command_handler else: self.command_handler_holding_job_lock = None return True
-614,135,064,642,233,300
Set a worker level job lock so we don't try to hold onto 2 jobs at anytime
client/python3_gearman/worker.py
set_job_lock
aixiwang/gearman_test
python
def set_job_lock(self, command_handler, lock): "Set a worker level job lock so we don't try to hold onto 2 jobs at\n anytime" if (command_handler not in self.handler_to_connection_map): return False failed_lock = bool((lock and (self.command_handler_holding_job_lock is not None))) failed_unlock = bool(((not lock) and (self.command_handler_holding_job_lock != command_handler))) if (failed_lock or failed_unlock): return False if lock: self.command_handler_holding_job_lock = command_handler else: self.command_handler_holding_job_lock = None return True
def check_job_lock(self, command_handler): 'Check to see if we hold the job lock' return bool((self.command_handler_holding_job_lock == command_handler))
5,963,652,033,655,536,000
Check to see if we hold the job lock
client/python3_gearman/worker.py
check_job_lock
aixiwang/gearman_test
python
def check_job_lock(self, command_handler): return bool((self.command_handler_holding_job_lock == command_handler))
def get_bond_length_distribution_inner(input_fname, output_fname): 'Generate bond length distibutions.\n\n Args:\n input_fname: An existing TFRecord file containing Conformer protos.\n output_fname: An output file that will be created that contains all bond\n length distributions - all bond types, all atom types. Requires\n post-processing to generate bond length distribution files.\n ' print('Reading from {input_fname} output to {output_fname}') options = PipelineOptions(direct_num_workers=6, direct_running_mode='multi_processing') with beam.Pipeline(options=options) as p: protos = (((((p | beam.io.tfrecordio.ReadFromTFRecord(input_fname, coder=beam.coders.ProtoCoder(dataset_pb2.Conformer().__class__))) | beam.ParDo(bond_lengths.GetBondLengthDistribution())) | beam.CombinePerKey(sum)) | beam.ParDo(BondDistToString())) | beam.io.WriteToText(output_fname)) print(protos)
1,118,417,521,258,524,800
Generate bond length distibutions. Args: input_fname: An existing TFRecord file containing Conformer protos. output_fname: An output file that will be created that contains all bond length distributions - all bond types, all atom types. Requires post-processing to generate bond length distribution files.
smu/geometry/get_bond_length_distribution.py
get_bond_length_distribution_inner
10088/google-research
python
def get_bond_length_distribution_inner(input_fname, output_fname): 'Generate bond length distibutions.\n\n Args:\n input_fname: An existing TFRecord file containing Conformer protos.\n output_fname: An output file that will be created that contains all bond\n length distributions - all bond types, all atom types. Requires\n post-processing to generate bond length distribution files.\n ' print('Reading from {input_fname} output to {output_fname}') options = PipelineOptions(direct_num_workers=6, direct_running_mode='multi_processing') with beam.Pipeline(options=options) as p: protos = (((((p | beam.io.tfrecordio.ReadFromTFRecord(input_fname, coder=beam.coders.ProtoCoder(dataset_pb2.Conformer().__class__))) | beam.ParDo(bond_lengths.GetBondLengthDistribution())) | beam.CombinePerKey(sum)) | beam.ParDo(BondDistToString())) | beam.io.WriteToText(output_fname)) print(protos)
def get_bond_length_distribution(unused_argv): 'Scan Conformer protos to extract bond length distributions.' del unused_argv get_bond_length_distribution_inner(FLAGS.input, FLAGS.output)
-6,997,662,189,550,810,000
Scan Conformer protos to extract bond length distributions.
smu/geometry/get_bond_length_distribution.py
get_bond_length_distribution
10088/google-research
python
def get_bond_length_distribution(unused_argv): del unused_argv get_bond_length_distribution_inner(FLAGS.input, FLAGS.output)
@contextmanager def mktemp(contents): ' Create a temporary file with the given contents, and yield its path ' (_, path) = tempfile.mkstemp() fp = io.open(path, 'wt+', encoding='utf-8') fp.write(contents) fp.flush() try: (yield path) finally: fp.close() os.unlink(path)
-1,387,237,215,766,695,400
Create a temporary file with the given contents, and yield its path
tests/render-test.py
mktemp
arrikto/kolypto-j2cli
python
@contextmanager def mktemp(contents): ' ' (_, path) = tempfile.mkstemp() fp = io.open(path, 'wt+', encoding='utf-8') fp.write(contents) fp.flush() try: (yield path) finally: fp.close() os.unlink(path)
def _testme(self, argv, expected_output, stdin=None, env=None): ' Helper test shortcut ' with mock_environ((env or {})): result = render_command(os.getcwd(), (env or {}), stdin, argv) if isinstance(result, bytes): result = result.decode('utf-8') self.assertEqual(result, expected_output)
1,795,941,189,374,585,600
Helper test shortcut
tests/render-test.py
_testme
arrikto/kolypto-j2cli
python
def _testme(self, argv, expected_output, stdin=None, env=None): ' ' with mock_environ((env or {})): result = render_command(os.getcwd(), (env or {}), stdin, argv) if isinstance(result, bytes): result = result.decode('utf-8') self.assertEqual(result, expected_output)
def test_undefined(self): ' Test --undefined ' self.assertRaises(UndefinedError, self._testme, ['resources/name.j2'], u'Hello !\n', env=dict()) self._testme(['--undefined', 'resources/name.j2'], u'Hello !\n', env=dict())
-1,063,750,977,480,168,600
Test --undefined
tests/render-test.py
test_undefined
arrikto/kolypto-j2cli
python
def test_undefined(self): ' ' self.assertRaises(UndefinedError, self._testme, ['resources/name.j2'], u'Hello !\n', env=dict()) self._testme(['--undefined', 'resources/name.j2'], u'Hello !\n', env=dict())
def test_jinja2_extensions(self): ' Test that an extension is enabled ' with mktemp('{% do [] %}') as template: self._testme([template], '')
2,100,193,027,615,986,400
Test that an extension is enabled
tests/render-test.py
test_jinja2_extensions
arrikto/kolypto-j2cli
python
def test_jinja2_extensions(self): ' ' with mktemp('{% do [] %}') as template: self._testme([template], )
def test_customize(self): ' Test --customize ' with mktemp('<% if 1 %>1<% else %>2<% endif %>') as template: self._testme(['--customize=resources/customize.py', template], '1') with mktemp('<< my_function("hey") >>') as template: self._testme(['--customize=resources/customize.py', template], 'my function says "hey"') with mktemp('<< ADD >>') as template: self._testme(['--customize=resources/customize.py', template], '127') with mktemp('<< ADD|parentheses >>') as template: self._testme(['--customize=resources/customize.py', template], '(127)') with mktemp('<% if ADD|int is custom_odd %>odd<% endif %>') as template: self._testme(['--customize=resources/customize.py', template], 'odd') del sys.modules['customize-module'] with mktemp('{% if 1 %}1{% endif %}') as template: self._testme(['--customize=render-test.py', template], '1')
-1,975,867,084,036,834,000
Test --customize
tests/render-test.py
test_customize
arrikto/kolypto-j2cli
python
def test_customize(self): ' ' with mktemp('<% if 1 %>1<% else %>2<% endif %>') as template: self._testme(['--customize=resources/customize.py', template], '1') with mktemp('<< my_function("hey") >>') as template: self._testme(['--customize=resources/customize.py', template], 'my function says "hey"') with mktemp('<< ADD >>') as template: self._testme(['--customize=resources/customize.py', template], '127') with mktemp('<< ADD|parentheses >>') as template: self._testme(['--customize=resources/customize.py', template], '(127)') with mktemp('<% if ADD|int is custom_odd %>odd<% endif %>') as template: self._testme(['--customize=resources/customize.py', template], 'odd') del sys.modules['customize-module'] with mktemp('{% if 1 %}1{% endif %}') as template: self._testme(['--customize=render-test.py', template], '1')
def _load_coco_keypoint_annotation_kernel(self, img_id): 'load annotation from COCOAPI.\n\n Note:\n bbox:[x1, y1, w, h]\n Args:\n img_id: coco image id\n Returns:\n dict: db entry\n ' img_ann = self.coco.loadImgs(img_id)[0] width = img_ann['width'] height = img_ann['height'] num_joints = self.ann_info['num_joints'] ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=False) objs = self.coco.loadAnns(ann_ids) valid_objs = [] for obj in objs: if ('bbox' not in obj): continue (x, y, w, h) = obj['bbox'] x1 = max(0, x) y1 = max(0, y) x2 = min((width - 1), (x1 + max(0, (w - 1)))) y2 = min((height - 1), (y1 + max(0, (h - 1)))) if ((('area' not in obj) or (obj['area'] > 0)) and (x2 > x1) and (y2 > y1)): obj['clean_bbox'] = [x1, y1, (x2 - x1), (y2 - y1)] valid_objs.append(obj) objs = valid_objs rec = [] bbox_id = 0 for obj in objs: if ('keypoints' not in obj): continue if (max(obj['keypoints']) == 0): continue joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) keypoints = np.array(((((obj['keypoints'] + obj['foot_kpts']) + obj['face_kpts']) + obj['lefthand_kpts']) + obj['righthand_kpts'])).reshape((- 1), 3) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible[:, :2] = np.minimum(1, (keypoints[:, 2:3] > 0)) (center, scale) = self._xywh2cs(*obj['clean_bbox'][:4]) image_file = os.path.join(self.img_prefix, self.id2name[img_id]) rec.append({'image_file': image_file, 'center': center, 'scale': scale, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'dataset': self.dataset_name, 'bbox_score': 1, 'bbox_id': bbox_id}) bbox_id = (bbox_id + 1) return rec
-3,409,155,877,235,542,500
load annotation from COCOAPI. Note: bbox:[x1, y1, w, h] Args: img_id: coco image id Returns: dict: db entry
mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py
_load_coco_keypoint_annotation_kernel
674106399/mmpose
python
def _load_coco_keypoint_annotation_kernel(self, img_id): 'load annotation from COCOAPI.\n\n Note:\n bbox:[x1, y1, w, h]\n Args:\n img_id: coco image id\n Returns:\n dict: db entry\n ' img_ann = self.coco.loadImgs(img_id)[0] width = img_ann['width'] height = img_ann['height'] num_joints = self.ann_info['num_joints'] ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=False) objs = self.coco.loadAnns(ann_ids) valid_objs = [] for obj in objs: if ('bbox' not in obj): continue (x, y, w, h) = obj['bbox'] x1 = max(0, x) y1 = max(0, y) x2 = min((width - 1), (x1 + max(0, (w - 1)))) y2 = min((height - 1), (y1 + max(0, (h - 1)))) if ((('area' not in obj) or (obj['area'] > 0)) and (x2 > x1) and (y2 > y1)): obj['clean_bbox'] = [x1, y1, (x2 - x1), (y2 - y1)] valid_objs.append(obj) objs = valid_objs rec = [] bbox_id = 0 for obj in objs: if ('keypoints' not in obj): continue if (max(obj['keypoints']) == 0): continue joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) keypoints = np.array(((((obj['keypoints'] + obj['foot_kpts']) + obj['face_kpts']) + obj['lefthand_kpts']) + obj['righthand_kpts'])).reshape((- 1), 3) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible[:, :2] = np.minimum(1, (keypoints[:, 2:3] > 0)) (center, scale) = self._xywh2cs(*obj['clean_bbox'][:4]) image_file = os.path.join(self.img_prefix, self.id2name[img_id]) rec.append({'image_file': image_file, 'center': center, 'scale': scale, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'dataset': self.dataset_name, 'bbox_score': 1, 'bbox_id': bbox_id}) bbox_id = (bbox_id + 1) return rec
def _coco_keypoint_results_one_category_kernel(self, data_pack): 'Get coco keypoint results.' cat_id = data_pack['cat_id'] keypoints = data_pack['keypoints'] cat_results = [] for img_kpts in keypoints: if (len(img_kpts) == 0): continue _key_points = np.array([img_kpt['keypoints'] for img_kpt in img_kpts]) key_points = _key_points.reshape((- 1), (self.ann_info['num_joints'] * 3)) cuts = (np.cumsum([0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, self.right_hand_num]) * 3) result = [{'image_id': img_kpt['image_id'], 'category_id': cat_id, 'keypoints': key_point[cuts[0]:cuts[1]].tolist(), 'foot_kpts': key_point[cuts[1]:cuts[2]].tolist(), 'face_kpts': key_point[cuts[2]:cuts[3]].tolist(), 'lefthand_kpts': key_point[cuts[3]:cuts[4]].tolist(), 'righthand_kpts': key_point[cuts[4]:cuts[5]].tolist(), 'score': float(img_kpt['score']), 'center': img_kpt['center'].tolist(), 'scale': img_kpt['scale'].tolist()} for (img_kpt, key_point) in zip(img_kpts, key_points)] cat_results.extend(result) return cat_results
911,176,376,589,387,800
Get coco keypoint results.
mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py
_coco_keypoint_results_one_category_kernel
674106399/mmpose
python
def _coco_keypoint_results_one_category_kernel(self, data_pack): cat_id = data_pack['cat_id'] keypoints = data_pack['keypoints'] cat_results = [] for img_kpts in keypoints: if (len(img_kpts) == 0): continue _key_points = np.array([img_kpt['keypoints'] for img_kpt in img_kpts]) key_points = _key_points.reshape((- 1), (self.ann_info['num_joints'] * 3)) cuts = (np.cumsum([0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, self.right_hand_num]) * 3) result = [{'image_id': img_kpt['image_id'], 'category_id': cat_id, 'keypoints': key_point[cuts[0]:cuts[1]].tolist(), 'foot_kpts': key_point[cuts[1]:cuts[2]].tolist(), 'face_kpts': key_point[cuts[2]:cuts[3]].tolist(), 'lefthand_kpts': key_point[cuts[3]:cuts[4]].tolist(), 'righthand_kpts': key_point[cuts[4]:cuts[5]].tolist(), 'score': float(img_kpt['score']), 'center': img_kpt['center'].tolist(), 'scale': img_kpt['scale'].tolist()} for (img_kpt, key_point) in zip(img_kpts, key_points)] cat_results.extend(result) return cat_results
def _do_python_keypoint_eval(self, res_file): 'Keypoint evaluation using COCOAPI.' coco_det = self.coco.loadRes(res_file) cuts = np.cumsum([0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, self.right_hand_num]) coco_eval = COCOeval(self.coco, coco_det, 'keypoints_body', self.sigmas[cuts[0]:cuts[1]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_foot', self.sigmas[cuts[1]:cuts[2]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_face', self.sigmas[cuts[2]:cuts[3]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_lefthand', self.sigmas[cuts[3]:cuts[4]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_righthand', self.sigmas[cuts[4]:cuts[5]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_wholebody', self.sigmas, use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() stats_names = ['AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)'] info_str = list(zip(stats_names, coco_eval.stats)) return info_str
147,649,272,100,721,250
Keypoint evaluation using COCOAPI.
mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py
_do_python_keypoint_eval
674106399/mmpose
python
def _do_python_keypoint_eval(self, res_file): coco_det = self.coco.loadRes(res_file) cuts = np.cumsum([0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, self.right_hand_num]) coco_eval = COCOeval(self.coco, coco_det, 'keypoints_body', self.sigmas[cuts[0]:cuts[1]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_foot', self.sigmas[cuts[1]:cuts[2]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_face', self.sigmas[cuts[2]:cuts[3]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_lefthand', self.sigmas[cuts[3]:cuts[4]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_righthand', self.sigmas[cuts[4]:cuts[5]], use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_eval = COCOeval(self.coco, coco_det, 'keypoints_wholebody', self.sigmas, use_area=True) coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() stats_names = ['AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)'] info_str = list(zip(stats_names, coco_eval.stats)) return info_str
def tearDown(self): 'Reset all bridge blocks in between test method runs.' for bridge in self.bridges: bridge._blockedIn = {}
-8,374,115,032,258,045,000
Reset all bridge blocks in between test method runs.
bridgedb/test/test_https_distributor.py
tearDown
isislovecruft/bridgedb
python
def tearDown(self): for bridge in self.bridges: bridge._blockedIn = {}
def test_HTTPSDistributor_init_with_proxies(self): 'The HTTPSDistributor, when initialised with proxies, should add an\n extra hashring for proxy users.\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) self.assertIsNotNone(dist.proxies) self.assertGreater(dist.proxySubring, 0) self.assertEqual(dist.proxySubring, 4) self.assertEqual(dist.totalSubrings, 4)
3,944,217,055,337,707,000
The HTTPSDistributor, when initialised with proxies, should add an extra hashring for proxy users.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_init_with_proxies
isislovecruft/bridgedb
python
def test_HTTPSDistributor_init_with_proxies(self): 'The HTTPSDistributor, when initialised with proxies, should add an\n extra hashring for proxy users.\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) self.assertIsNotNone(dist.proxies) self.assertGreater(dist.proxySubring, 0) self.assertEqual(dist.proxySubring, 4) self.assertEqual(dist.totalSubrings, 4)
def test_HTTPSDistributor_getSubnet_usingProxy(self): 'HTTPSDistributor.getSubnet(usingProxy=True) should return a proxy\n group number.\n ' clientRequest = self.randomClientRequest() expectedGroup = ((int(ipaddr.IPAddress(clientRequest.client)) % 4) + 1) subnet = distributor.HTTPSDistributor.getSubnet(clientRequest.client, usingProxy=True) self.assertTrue(subnet.startswith('proxy-group-')) self.assertEqual(int(subnet[(- 1)]), expectedGroup)
-178,428,863,725,358,530
HTTPSDistributor.getSubnet(usingProxy=True) should return a proxy group number.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getSubnet_usingProxy
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getSubnet_usingProxy(self): 'HTTPSDistributor.getSubnet(usingProxy=True) should return a proxy\n group number.\n ' clientRequest = self.randomClientRequest() expectedGroup = ((int(ipaddr.IPAddress(clientRequest.client)) % 4) + 1) subnet = distributor.HTTPSDistributor.getSubnet(clientRequest.client, usingProxy=True) self.assertTrue(subnet.startswith('proxy-group-')) self.assertEqual(int(subnet[(- 1)]), expectedGroup)
def test_HTTPSDistributor_mapSubnetToSubring_usingProxy(self): 'HTTPSDistributor.mapSubnetToSubring() when the client was using a\n proxy should map the client to the proxy subhashring.\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) subnet = 'proxy-group-3' subring = dist.mapSubnetToSubring(subnet, usingProxy=True) self.assertEqual(subring, dist.proxySubring)
1,929,354,051,178,406,100
HTTPSDistributor.mapSubnetToSubring() when the client was using a proxy should map the client to the proxy subhashring.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_mapSubnetToSubring_usingProxy
isislovecruft/bridgedb
python
def test_HTTPSDistributor_mapSubnetToSubring_usingProxy(self): 'HTTPSDistributor.mapSubnetToSubring() when the client was using a\n proxy should map the client to the proxy subhashring.\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) subnet = 'proxy-group-3' subring = dist.mapSubnetToSubring(subnet, usingProxy=True) self.assertEqual(subring, dist.proxySubring)
def test_HTTPSDistributor_mapSubnetToSubring_with_proxies(self): "HTTPSDistributor.mapSubnetToSubring() when the client wasn't using\n a proxy, but the distributor does have some known proxies and a\n proxySubring, should not map the client to the proxy subhashring.\n " dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) subnet = '15.1.0.0/16' subring = dist.mapSubnetToSubring(subnet, usingProxy=False) self.assertNotEqual(subring, dist.proxySubring)
9,026,591,236,788,420,000
HTTPSDistributor.mapSubnetToSubring() when the client wasn't using a proxy, but the distributor does have some known proxies and a proxySubring, should not map the client to the proxy subhashring.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_mapSubnetToSubring_with_proxies
isislovecruft/bridgedb
python
def test_HTTPSDistributor_mapSubnetToSubring_with_proxies(self): "HTTPSDistributor.mapSubnetToSubring() when the client wasn't using\n a proxy, but the distributor does have some known proxies and a\n proxySubring, should not map the client to the proxy subhashring.\n " dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) subnet = '15.1.0.0/16' subring = dist.mapSubnetToSubring(subnet, usingProxy=False) self.assertNotEqual(subring, dist.proxySubring)
def test_HTTPSDistributor_prepopulateRings_with_proxies(self): 'An HTTPSDistributor with proxies should prepopulate two extra\n subhashrings (one for each of HTTP-Proxy-IPv4 and HTTP-Proxy-IPv6).\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) [dist.insert(bridge) for bridge in self.bridges] dist.prepopulateRings() self.assertEqual(len(dist.hashring.filterRings), 8)
2,776,454,485,375,904,300
An HTTPSDistributor with proxies should prepopulate two extra subhashrings (one for each of HTTP-Proxy-IPv4 and HTTP-Proxy-IPv6).
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_prepopulateRings_with_proxies
isislovecruft/bridgedb
python
def test_HTTPSDistributor_prepopulateRings_with_proxies(self): 'An HTTPSDistributor with proxies should prepopulate two extra\n subhashrings (one for each of HTTP-Proxy-IPv4 and HTTP-Proxy-IPv6).\n ' dist = distributor.HTTPSDistributor(3, self.key, ProxySet(['1.1.1.1', '2.2.2.2'])) [dist.insert(bridge) for bridge in self.bridges] dist.prepopulateRings() self.assertEqual(len(dist.hashring.filterRings), 8)
def test_HTTPSDistributor_prepopulateRings_without_proxies(self): 'An HTTPSDistributor without proxies should prepopulate\n totalSubrings * 2 subrings.\n ' dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges] dist.prepopulateRings() self.assertEqual(len(dist.hashring.filterRings), 6) ipv4subrings = [] ipv6subrings = [] for (subringName, (filters, subring)) in dist.hashring.filterRings.items(): if ('IPv4' in subringName): ipv6subrings.append(subring) if ('IPv6' in subringName): ipv6subrings.append(subring) self.assertEqual(len(ipv4subrings), len(ipv6subrings))
-71,506,198,677,698,360
An HTTPSDistributor without proxies should prepopulate totalSubrings * 2 subrings.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_prepopulateRings_without_proxies
isislovecruft/bridgedb
python
def test_HTTPSDistributor_prepopulateRings_without_proxies(self): 'An HTTPSDistributor without proxies should prepopulate\n totalSubrings * 2 subrings.\n ' dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges] dist.prepopulateRings() self.assertEqual(len(dist.hashring.filterRings), 6) ipv4subrings = [] ipv6subrings = [] for (subringName, (filters, subring)) in dist.hashring.filterRings.items(): if ('IPv4' in subringName): ipv6subrings.append(subring) if ('IPv6' in subringName): ipv6subrings.append(subring) self.assertEqual(len(ipv4subrings), len(ipv6subrings))
def test_HTTPSDistributor_getBridges_with_proxy_and_nonproxy_users(self): 'An HTTPSDistributor should give separate bridges to proxy users.' proxies = ProxySet(['.'.join(['1.1.1', str(x)]) for x in range(1, 256)]) dist = distributor.HTTPSDistributor(3, self.key, proxies) [dist.insert(bridge) for bridge in self.bridges] for _ in range(10): bridgeRequest1 = self.randomClientRequest() bridgeRequest1.client = '.'.join(['1.1.1', str(random.randrange(1, 255))]) bridgeRequest2 = self.randomClientRequest() bridgeRequest2.client = '.'.join(['9.9.9', str(random.randrange(1, 255))]) n1 = dist.getBridges(bridgeRequest1, 1) n2 = dist.getBridges(bridgeRequest2, 1) self.assertGreater(len(n1), 0) self.assertGreater(len(n2), 0) for b in n1: self.assertNotIn(b, n2) for b in n2: self.assertNotIn(b, n1)
6,604,173,368,182,695,000
An HTTPSDistributor should give separate bridges to proxy users.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_with_proxy_and_nonproxy_users
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_with_proxy_and_nonproxy_users(self): proxies = ProxySet(['.'.join(['1.1.1', str(x)]) for x in range(1, 256)]) dist = distributor.HTTPSDistributor(3, self.key, proxies) [dist.insert(bridge) for bridge in self.bridges] for _ in range(10): bridgeRequest1 = self.randomClientRequest() bridgeRequest1.client = '.'.join(['1.1.1', str(random.randrange(1, 255))]) bridgeRequest2 = self.randomClientRequest() bridgeRequest2.client = '.'.join(['9.9.9', str(random.randrange(1, 255))]) n1 = dist.getBridges(bridgeRequest1, 1) n2 = dist.getBridges(bridgeRequest2, 1) self.assertGreater(len(n1), 0) self.assertGreater(len(n2), 0) for b in n1: self.assertNotIn(b, n2) for b in n2: self.assertNotIn(b, n1)
def test_HTTPSDistributor_getBridges_same_bridges_to_same_client(self): 'The same client asking for bridges from the HTTPSDistributor\n multiple times in a row should get the same bridges in response each\n time.\n ' dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() responses = {} for i in range(5): responses[i] = dist.getBridges(bridgeRequest, 1) for i in range(4): self.assertItemsEqual(responses[i], responses[(i + 1)])
7,259,232,939,965,180,000
The same client asking for bridges from the HTTPSDistributor multiple times in a row should get the same bridges in response each time.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_same_bridges_to_same_client
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_same_bridges_to_same_client(self): 'The same client asking for bridges from the HTTPSDistributor\n multiple times in a row should get the same bridges in response each\n time.\n ' dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() responses = {} for i in range(5): responses[i] = dist.getBridges(bridgeRequest, 1) for i in range(4): self.assertItemsEqual(responses[i], responses[(i + 1)])
def test_HTTPSDistributor_getBridges_ipv4_ipv6(self): 'Asking for bridge addresses which are simultaneously IPv4 and IPv6\n (in that order) should return IPv4 bridges.\n ' dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv4() bridgeRequest.filters.append(byIPv6) bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 1) self.assertEqual(len(bridges), 3) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv4Address) self.assertIsNotNone(byIPv4(random.choice(bridges)))
6,034,760,044,908,151,000
Asking for bridge addresses which are simultaneously IPv4 and IPv6 (in that order) should return IPv4 bridges.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_ipv4_ipv6
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_ipv4_ipv6(self): 'Asking for bridge addresses which are simultaneously IPv4 and IPv6\n (in that order) should return IPv4 bridges.\n ' dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv4() bridgeRequest.filters.append(byIPv6) bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 1) self.assertEqual(len(bridges), 3) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv4Address) self.assertIsNotNone(byIPv4(random.choice(bridges)))
def test_HTTPSDistributor_getBridges_ipv6_ipv4(self): 'Asking for bridge addresses which are simultaneously IPv6 and IPv4\n (in that order) should return IPv6 bridges.\n ' dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv6() bridgeRequest.generateFilters() bridgeRequest.filters.append(byIPv4) bridges = dist.getBridges(bridgeRequest, 1) self.assertEqual(len(bridges), 3) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv6Address) self.assertIsNotNone(byIPv6(random.choice(bridges)))
4,826,968,932,339,698,000
Asking for bridge addresses which are simultaneously IPv6 and IPv4 (in that order) should return IPv6 bridges.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_ipv6_ipv4
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_ipv6_ipv4(self): 'Asking for bridge addresses which are simultaneously IPv6 and IPv4\n (in that order) should return IPv6 bridges.\n ' dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv6() bridgeRequest.generateFilters() bridgeRequest.filters.append(byIPv4) bridges = dist.getBridges(bridgeRequest, 1) self.assertEqual(len(bridges), 3) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv6Address) self.assertIsNotNone(byIPv6(random.choice(bridges)))
def test_HTTPSDistributor_getBridges_ipv6(self): 'A request for IPv6 bridges should return IPv6 bridges.' dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] for i in xrange(500): bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv6() bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 'faketimestamp') self.assertTrue((type(bridges) is list)) self.assertGreater(len(bridges), 0) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv6Address) self.assertIsNotNone(byIPv6(random.choice(bridges)))
2,056,632,888,544,047,600
A request for IPv6 bridges should return IPv6 bridges.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_ipv6
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_ipv6(self): dist = distributor.HTTPSDistributor(3, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] for i in xrange(500): bridgeRequest = self.randomClientRequest() bridgeRequest.withIPv6() bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 'faketimestamp') self.assertTrue((type(bridges) is list)) self.assertGreater(len(bridges), 0) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) address = address.strip('[]') self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv6Address) self.assertIsNotNone(byIPv6(random.choice(bridges)))
def test_HTTPSDistributor_getBridges_ipv4(self): 'A request for IPv4 bridges should return IPv4 bridges.' dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] for i in xrange(500): bridgeRequest = self.randomClientRequest() bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 'faketimestamp') self.assertTrue((type(bridges) is list)) self.assertGreater(len(bridges), 0) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv4Address) self.assertIsNotNone(byIPv4(random.choice(bridges)))
3,335,645,459,602,166,300
A request for IPv4 bridges should return IPv4 bridges.
bridgedb/test/test_https_distributor.py
test_HTTPSDistributor_getBridges_ipv4
isislovecruft/bridgedb
python
def test_HTTPSDistributor_getBridges_ipv4(self): dist = distributor.HTTPSDistributor(1, self.key) [dist.insert(bridge) for bridge in self.bridges[:250]] for i in xrange(500): bridgeRequest = self.randomClientRequest() bridgeRequest.generateFilters() bridges = dist.getBridges(bridgeRequest, 'faketimestamp') self.assertTrue((type(bridges) is list)) self.assertGreater(len(bridges), 0) bridge = random.choice(bridges) bridgeLine = bridge.getBridgeLine(bridgeRequest) (addrport, fingerprint) = bridgeLine.split() (address, port) = addrport.rsplit(':', 1) self.assertIsInstance(ipaddr.IPAddress(address), ipaddr.IPv4Address) self.assertIsNotNone(byIPv4(random.choice(bridges)))
def _stash_exp(self, *args, params: Optional[dict]=None, detach_rev: Optional[str]=None, baseline_rev: Optional[str]=None, branch: Optional[str]=None, name: Optional[str]=None, **kwargs): "Stash changes from the workspace as an experiment.\n\n Args:\n params: Optional dictionary of parameter values to be used.\n Values take priority over any parameters specified in the\n user's workspace.\n baseline_rev: Optional baseline rev for this experiment, defaults\n to the current SCM rev.\n branch: Optional experiment branch name. If specified, the\n experiment will be added to `branch` instead of creating\n a new branch.\n name: Optional experiment name. If specified this will be used as\n the human-readable name in the experiment branch ref. Has no\n effect of branch is specified.\n " with self.scm.stash_workspace(include_untracked=(detach_rev or branch)) as workspace: if ((not (branch or detach_rev)) and workspace): self.stash.apply(workspace) self._prune_lockfiles() if detach_rev: head = detach_rev elif branch: head = branch else: head = None with self.scm.detach_head(head) as rev: if (baseline_rev is None): baseline_rev = rev if params: self._update_params(params) self._pack_args(*args, **kwargs) msg = self._stash_msg(rev, baseline_rev=baseline_rev, branch=branch, name=name) stash_rev = self.stash.push(message=msg) logger.debug("Stashed experiment '%s' with baseline '%s' for future execution.", stash_rev[:7], baseline_rev[:7]) self.scm.reset(hard=True) return stash_rev
1,772,051,208,236,786,200
Stash changes from the workspace as an experiment. Args: params: Optional dictionary of parameter values to be used. Values take priority over any parameters specified in the user's workspace. baseline_rev: Optional baseline rev for this experiment, defaults to the current SCM rev. branch: Optional experiment branch name. If specified, the experiment will be added to `branch` instead of creating a new branch. name: Optional experiment name. If specified this will be used as the human-readable name in the experiment branch ref. Has no effect of branch is specified.
dvc/repo/experiments/__init__.py
_stash_exp
esthergold/dvc
python
def _stash_exp(self, *args, params: Optional[dict]=None, detach_rev: Optional[str]=None, baseline_rev: Optional[str]=None, branch: Optional[str]=None, name: Optional[str]=None, **kwargs): "Stash changes from the workspace as an experiment.\n\n Args:\n params: Optional dictionary of parameter values to be used.\n Values take priority over any parameters specified in the\n user's workspace.\n baseline_rev: Optional baseline rev for this experiment, defaults\n to the current SCM rev.\n branch: Optional experiment branch name. If specified, the\n experiment will be added to `branch` instead of creating\n a new branch.\n name: Optional experiment name. If specified this will be used as\n the human-readable name in the experiment branch ref. Has no\n effect of branch is specified.\n " with self.scm.stash_workspace(include_untracked=(detach_rev or branch)) as workspace: if ((not (branch or detach_rev)) and workspace): self.stash.apply(workspace) self._prune_lockfiles() if detach_rev: head = detach_rev elif branch: head = branch else: head = None with self.scm.detach_head(head) as rev: if (baseline_rev is None): baseline_rev = rev if params: self._update_params(params) self._pack_args(*args, **kwargs) msg = self._stash_msg(rev, baseline_rev=baseline_rev, branch=branch, name=name) stash_rev = self.stash.push(message=msg) logger.debug("Stashed experiment '%s' with baseline '%s' for future execution.", stash_rev[:7], baseline_rev[:7]) self.scm.reset(hard=True) return stash_rev
def _update_params(self, params: dict): 'Update experiment params files with the specified values.' from benedict import benedict from dvc.utils.serialize import MODIFIERS logger.debug("Using experiment params '%s'", params) for params_fname in params: path = (PathInfo(self.repo.root_dir) / params_fname) suffix = path.suffix.lower() modify_data = MODIFIERS[suffix] with modify_data(path, tree=self.repo.tree) as data: benedict(data).merge(params[params_fname], overwrite=True) self.scm.add(list(params.keys()))
6,649,994,754,235,740,000
Update experiment params files with the specified values.
dvc/repo/experiments/__init__.py
_update_params
esthergold/dvc
python
def _update_params(self, params: dict): from benedict import benedict from dvc.utils.serialize import MODIFIERS logger.debug("Using experiment params '%s'", params) for params_fname in params: path = (PathInfo(self.repo.root_dir) / params_fname) suffix = path.suffix.lower() modify_data = MODIFIERS[suffix] with modify_data(path, tree=self.repo.tree) as data: benedict(data).merge(params[params_fname], overwrite=True) self.scm.add(list(params.keys()))
def reproduce_one(self, queue=False, **kwargs): 'Reproduce and checkout a single experiment.' stash_rev = self.new(**kwargs) if queue: logger.info("Queued experiment '%s' for future execution.", stash_rev[:7]) return [stash_rev] results = self.reproduce([stash_rev], keep_stash=False) exp_rev = first(results) if (exp_rev is not None): self._log_reproduced(results) return results
-7,046,387,588,810,680,000
Reproduce and checkout a single experiment.
dvc/repo/experiments/__init__.py
reproduce_one
esthergold/dvc
python
def reproduce_one(self, queue=False, **kwargs): stash_rev = self.new(**kwargs) if queue: logger.info("Queued experiment '%s' for future execution.", stash_rev[:7]) return [stash_rev] results = self.reproduce([stash_rev], keep_stash=False) exp_rev = first(results) if (exp_rev is not None): self._log_reproduced(results) return results
@scm_locked def new(self, *args, checkpoint_resume: Optional[str]=None, **kwargs): "Create a new experiment.\n\n Experiment will be reproduced and checked out into the user's\n workspace.\n " if (checkpoint_resume is not None): return self._resume_checkpoint(*args, checkpoint_resume=checkpoint_resume, **kwargs) return self._stash_exp(*args, **kwargs)
7,423,319,692,721,970,000
Create a new experiment. Experiment will be reproduced and checked out into the user's workspace.
dvc/repo/experiments/__init__.py
new
esthergold/dvc
python
@scm_locked def new(self, *args, checkpoint_resume: Optional[str]=None, **kwargs): "Create a new experiment.\n\n Experiment will be reproduced and checked out into the user's\n workspace.\n " if (checkpoint_resume is not None): return self._resume_checkpoint(*args, checkpoint_resume=checkpoint_resume, **kwargs) return self._stash_exp(*args, **kwargs)
def _resume_checkpoint(self, *args, checkpoint_resume: Optional[str]=None, **kwargs): "Resume an existing (checkpoint) experiment.\n\n Experiment will be reproduced and checked out into the user's\n workspace.\n " assert checkpoint_resume if (checkpoint_resume == self.LAST_CHECKPOINT): resume_rev = self._get_last_checkpoint() else: resume_rev = self.scm.resolve_rev(checkpoint_resume) allow_multiple = ('params' in kwargs) branch = self.get_branch_by_rev(resume_rev, allow_multiple=allow_multiple) if (not branch): raise DvcException(f"Could not find checkpoint experiment '{checkpoint_resume}'") baseline_rev = self._get_baseline(branch) if kwargs.get('params', None): logger.debug("Branching from checkpoint '%s' with modified params, baseline '%s'", checkpoint_resume, baseline_rev[:7]) detach_rev = resume_rev branch = None else: logger.debug("Continuing from tip of checkpoint '%s'", checkpoint_resume) detach_rev = None return self._stash_exp(*args, detach_rev=detach_rev, baseline_rev=baseline_rev, branch=branch, **kwargs)
8,775,670,305,476,068,000
Resume an existing (checkpoint) experiment. Experiment will be reproduced and checked out into the user's workspace.
dvc/repo/experiments/__init__.py
_resume_checkpoint
esthergold/dvc
python
def _resume_checkpoint(self, *args, checkpoint_resume: Optional[str]=None, **kwargs): "Resume an existing (checkpoint) experiment.\n\n Experiment will be reproduced and checked out into the user's\n workspace.\n " assert checkpoint_resume if (checkpoint_resume == self.LAST_CHECKPOINT): resume_rev = self._get_last_checkpoint() else: resume_rev = self.scm.resolve_rev(checkpoint_resume) allow_multiple = ('params' in kwargs) branch = self.get_branch_by_rev(resume_rev, allow_multiple=allow_multiple) if (not branch): raise DvcException(f"Could not find checkpoint experiment '{checkpoint_resume}'") baseline_rev = self._get_baseline(branch) if kwargs.get('params', None): logger.debug("Branching from checkpoint '%s' with modified params, baseline '%s'", checkpoint_resume, baseline_rev[:7]) detach_rev = resume_rev branch = None else: logger.debug("Continuing from tip of checkpoint '%s'", checkpoint_resume) detach_rev = None return self._stash_exp(*args, detach_rev=detach_rev, baseline_rev=baseline_rev, branch=branch, **kwargs)
@scm_locked def reproduce(self, revs: Optional[Iterable]=None, keep_stash: Optional[bool]=True, **kwargs): 'Reproduce the specified experiments.\n\n Args:\n revs: If revs is not specified, all stashed experiments will be\n reproduced.\n keep_stash: If True, stashed experiments will be preserved if they\n fail to reproduce successfully.\n ' stash_revs = self.stash_revs if (revs is None): to_run = dict(stash_revs) else: to_run = {rev: (stash_revs[rev] if (rev in stash_revs) else self.StashEntry(None, rev, rev, None, None)) for rev in revs} logger.debug("Reproducing experiment revs '%s'", ', '.join((rev[:7] for rev in to_run))) executors = self._init_executors(to_run) exec_results = self._reproduce(executors, **kwargs) if keep_stash: to_drop = sorted((stash_revs[rev][0] for rev in exec_results if (rev in stash_revs)), reverse=True) else: to_drop = sorted((stash_revs[rev][0] for rev in to_run if (rev in stash_revs)), reverse=True) for index in to_drop: self.stash.drop(index) result = {} for (_, exp_result) in exec_results.items(): result.update(exp_result) return result
-8,775,852,405,187,722,000
Reproduce the specified experiments. Args: revs: If revs is not specified, all stashed experiments will be reproduced. keep_stash: If True, stashed experiments will be preserved if they fail to reproduce successfully.
dvc/repo/experiments/__init__.py
reproduce
esthergold/dvc
python
@scm_locked def reproduce(self, revs: Optional[Iterable]=None, keep_stash: Optional[bool]=True, **kwargs): 'Reproduce the specified experiments.\n\n Args:\n revs: If revs is not specified, all stashed experiments will be\n reproduced.\n keep_stash: If True, stashed experiments will be preserved if they\n fail to reproduce successfully.\n ' stash_revs = self.stash_revs if (revs is None): to_run = dict(stash_revs) else: to_run = {rev: (stash_revs[rev] if (rev in stash_revs) else self.StashEntry(None, rev, rev, None, None)) for rev in revs} logger.debug("Reproducing experiment revs '%s'", ', '.join((rev[:7] for rev in to_run))) executors = self._init_executors(to_run) exec_results = self._reproduce(executors, **kwargs) if keep_stash: to_drop = sorted((stash_revs[rev][0] for rev in exec_results if (rev in stash_revs)), reverse=True) else: to_drop = sorted((stash_revs[rev][0] for rev in to_run if (rev in stash_revs)), reverse=True) for index in to_drop: self.stash.drop(index) result = {} for (_, exp_result) in exec_results.items(): result.update(exp_result) return result
def _reproduce(self, executors: dict, jobs: Optional[int]=1) -> Mapping[(str, Mapping[(str, str)])]: 'Run dvc repro for the specified BaseExecutors in parallel.\n\n Returns dict containing successfully executed experiments.\n ' result = defaultdict(dict) manager = Manager() pid_q = manager.Queue() with ProcessPoolExecutor(max_workers=jobs) as workers: futures = {} for (rev, executor) in executors.items(): future = workers.submit(executor.reproduce, executor.dvc_dir, pid_q, rev, name=executor.name) futures[future] = (rev, executor) try: wait(futures) except KeyboardInterrupt: pids = {} while (not pid_q.empty()): (rev, pid) = pid_q.get() pids[rev] = pid for (future, (rev, _)) in futures.items(): if future.running(): os.kill(pids[rev], signal.SIGINT) elif (not future.done()): future.cancel() for (future, (rev, executor)) in futures.items(): (rev, executor) = futures[future] exc = future.exception() try: if (exc is None): (exp_hash, force) = future.result() result[rev].update(self._collect_executor(executor, exp_hash, force)) elif (not isinstance(exc, CheckpointKilledError)): logger.exception("Failed to reproduce experiment '%s'", rev[:7], exc_info=exc) except CancelledError: logger.error("Cancelled before attempting to reproduce experiment '%s'", rev[:7]) finally: executor.cleanup() return result
5,327,217,892,181,162,000
Run dvc repro for the specified BaseExecutors in parallel. Returns dict containing successfully executed experiments.
dvc/repo/experiments/__init__.py
_reproduce
esthergold/dvc
python
def _reproduce(self, executors: dict, jobs: Optional[int]=1) -> Mapping[(str, Mapping[(str, str)])]: 'Run dvc repro for the specified BaseExecutors in parallel.\n\n Returns dict containing successfully executed experiments.\n ' result = defaultdict(dict) manager = Manager() pid_q = manager.Queue() with ProcessPoolExecutor(max_workers=jobs) as workers: futures = {} for (rev, executor) in executors.items(): future = workers.submit(executor.reproduce, executor.dvc_dir, pid_q, rev, name=executor.name) futures[future] = (rev, executor) try: wait(futures) except KeyboardInterrupt: pids = {} while (not pid_q.empty()): (rev, pid) = pid_q.get() pids[rev] = pid for (future, (rev, _)) in futures.items(): if future.running(): os.kill(pids[rev], signal.SIGINT) elif (not future.done()): future.cancel() for (future, (rev, executor)) in futures.items(): (rev, executor) = futures[future] exc = future.exception() try: if (exc is None): (exp_hash, force) = future.result() result[rev].update(self._collect_executor(executor, exp_hash, force)) elif (not isinstance(exc, CheckpointKilledError)): logger.exception("Failed to reproduce experiment '%s'", rev[:7], exc_info=exc) except CancelledError: logger.error("Cancelled before attempting to reproduce experiment '%s'", rev[:7]) finally: executor.cleanup() return result
@scm_locked def get_baseline(self, rev): 'Return the baseline rev for an experiment rev.' return self._get_baseline(rev)
7,143,182,011,199,181,000
Return the baseline rev for an experiment rev.
dvc/repo/experiments/__init__.py
get_baseline
esthergold/dvc
python
@scm_locked def get_baseline(self, rev): return self._get_baseline(rev)
def get_branch_by_rev(self, rev: str, allow_multiple: bool=False) -> str: 'Returns full refname for the experiment branch containing rev.' ref_infos = list(exp_refs_by_rev(self.scm, rev)) if (not ref_infos): return None if ((len(ref_infos) > 1) and (not allow_multiple)): raise MultipleBranchError(rev) return str(ref_infos[0])
6,905,835,126,619,686,000
Returns full refname for the experiment branch containing rev.
dvc/repo/experiments/__init__.py
get_branch_by_rev
esthergold/dvc
python
def get_branch_by_rev(self, rev: str, allow_multiple: bool=False) -> str: ref_infos = list(exp_refs_by_rev(self.scm, rev)) if (not ref_infos): return None if ((len(ref_infos) > 1) and (not allow_multiple)): raise MultipleBranchError(rev) return str(ref_infos[0])
def get_exact_name(self, rev: str): 'Returns preferred name for the specified revision.\n\n Prefers tags, branches (heads), experiments in that orer.\n ' exclude = f'{EXEC_NAMESPACE}/*' ref = self.scm.describe(rev, base=EXPS_NAMESPACE, exclude=exclude) if ref: return ExpRefInfo.from_ref(ref).name return None
-4,535,959,236,294,254,000
Returns preferred name for the specified revision. Prefers tags, branches (heads), experiments in that orer.
dvc/repo/experiments/__init__.py
get_exact_name
esthergold/dvc
python
def get_exact_name(self, rev: str): 'Returns preferred name for the specified revision.\n\n Prefers tags, branches (heads), experiments in that orer.\n ' exclude = f'{EXEC_NAMESPACE}/*' ref = self.scm.describe(rev, base=EXPS_NAMESPACE, exclude=exclude) if ref: return ExpRefInfo.from_ref(ref).name return None
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a CNN model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " model_input = tf.reshape(model_input, [(- 1), 32, 32]) model_input = tf.expand_dims(model_input, 3) net = slim.conv2d(model_input, 3, [3, 3], scope='conv1', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [4, 4], scope='conv2', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [5, 5], scope='conv3', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.max_pool2d(net, [2, 2], scope='pool2') net = tf.reshape(net, [(- 1), ((16 * 16) * 3)]) output = slim.fully_connected(net, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
-8,735,807,252,078,989,000
Creates a CNN model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.
video_level_models.py
create_model
abdoo8080/youtube-8m
python
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a CNN model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " model_input = tf.reshape(model_input, [(- 1), 32, 32]) model_input = tf.expand_dims(model_input, 3) net = slim.conv2d(model_input, 3, [3, 3], scope='conv1', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [4, 4], scope='conv2', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [5, 5], scope='conv3', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.max_pool2d(net, [2, 2], scope='pool2') net = tf.reshape(net, [(- 1), ((16 * 16) * 3)]) output = slim.fully_connected(net, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a ResNet model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " model_input = tf.reshape(model_input, [(- 1), 32, 32]) model_input = tf.expand_dims(model_input, 3) net = slim.conv2d(model_input, 3, [3, 3], scope='conv1', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [4, 4], scope='conv2', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [5, 5], scope='conv3', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) shortcut = tf.tile(model_input, [1, 1, 1, 3]) for i in range(0, 9): temp = (net + shortcut) net = slim.conv2d(temp, 3, [3, 3], scope=('conv%d_1' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(temp, 3, [4, 4], scope=('conv%d_2' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(temp, 3, [5, 5], scope=('conv%d_3' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) shortcut = temp net = slim.max_pool2d(net, [2, 2], scope='pool2') net = tf.reshape(net, [(- 1), ((16 * 16) * 3)]) output = slim.fully_connected(net, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
6,562,285,822,841,482,000
Creates a ResNet model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.
video_level_models.py
create_model
abdoo8080/youtube-8m
python
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a ResNet model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " model_input = tf.reshape(model_input, [(- 1), 32, 32]) model_input = tf.expand_dims(model_input, 3) net = slim.conv2d(model_input, 3, [3, 3], scope='conv1', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [4, 4], scope='conv2', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(net, 3, [5, 5], scope='conv3', activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) shortcut = tf.tile(model_input, [1, 1, 1, 3]) for i in range(0, 9): temp = (net + shortcut) net = slim.conv2d(temp, 3, [3, 3], scope=('conv%d_1' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(temp, 3, [4, 4], scope=('conv%d_2' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) net = slim.conv2d(temp, 3, [5, 5], scope=('conv%d_3' % (i + 1)), activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(l2_penalty)) shortcut = temp net = slim.max_pool2d(net, [2, 2], scope='pool2') net = tf.reshape(net, [(- 1), ((16 * 16) * 3)]) output = slim.fully_connected(net, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a logistic model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " output = slim.fully_connected(model_input, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
6,376,754,502,288,288,000
Creates a logistic model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.
video_level_models.py
create_model
abdoo8080/youtube-8m
python
def create_model(self, model_input, vocab_size, l2_penalty=1e-08, **unused_params): "Creates a logistic model.\n\n Args:\n model_input: 'batch' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " output = slim.fully_connected(model_input, vocab_size, activation_fn=tf.nn.sigmoid, weights_regularizer=slim.l2_regularizer(l2_penalty)) return {'predictions': output}
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-08, **unused_params): "Creates a Mixture of (Logistic) Experts model.\n\n The model consists of a per-class softmax distribution over a\n configurable number of logistic classifiers. One of the classifiers in the\n mixture is not trained, and always predicts 0.\n\n Args:\n model_input: 'batch_size' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n num_mixtures: The number of mixtures (excluding a dummy 'expert' that\n always predicts the non-existence of an entity).\n l2_penalty: How much to penalize the squared magnitudes of parameter\n values.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " num_mixtures = (num_mixtures or FLAGS.moe_num_mixtures) gate_activations = slim.fully_connected(model_input, (vocab_size * (num_mixtures + 1)), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope='gates') expert_activations = slim.fully_connected(model_input, (vocab_size * num_mixtures), activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope='experts') gating_distribution = tf.nn.softmax(tf.reshape(gate_activations, [(- 1), (num_mixtures + 1)])) expert_distribution = tf.nn.sigmoid(tf.reshape(expert_activations, [(- 1), num_mixtures])) final_probabilities_by_class_and_batch = tf.reduce_sum((gating_distribution[:, :num_mixtures] * expert_distribution), 1) final_probabilities = tf.reshape(final_probabilities_by_class_and_batch, [(- 1), vocab_size]) return {'predictions': final_probabilities}
-6,447,030,492,059,986,000
Creates a Mixture of (Logistic) Experts model. The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.
video_level_models.py
create_model
abdoo8080/youtube-8m
python
def create_model(self, model_input, vocab_size, num_mixtures=None, l2_penalty=1e-08, **unused_params): "Creates a Mixture of (Logistic) Experts model.\n\n The model consists of a per-class softmax distribution over a\n configurable number of logistic classifiers. One of the classifiers in the\n mixture is not trained, and always predicts 0.\n\n Args:\n model_input: 'batch_size' x 'num_features' matrix of input features.\n vocab_size: The number of classes in the dataset.\n num_mixtures: The number of mixtures (excluding a dummy 'expert' that\n always predicts the non-existence of an entity).\n l2_penalty: How much to penalize the squared magnitudes of parameter\n values.\n\n Returns:\n A dictionary with a tensor containing the probability predictions of the\n model in the 'predictions' key. The dimensions of the tensor are\n batch_size x num_classes.\n " num_mixtures = (num_mixtures or FLAGS.moe_num_mixtures) gate_activations = slim.fully_connected(model_input, (vocab_size * (num_mixtures + 1)), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope='gates') expert_activations = slim.fully_connected(model_input, (vocab_size * num_mixtures), activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope='experts') gating_distribution = tf.nn.softmax(tf.reshape(gate_activations, [(- 1), (num_mixtures + 1)])) expert_distribution = tf.nn.sigmoid(tf.reshape(expert_activations, [(- 1), num_mixtures])) final_probabilities_by_class_and_batch = tf.reduce_sum((gating_distribution[:, :num_mixtures] * expert_distribution), 1) final_probabilities = tf.reshape(final_probabilities_by_class_and_batch, [(- 1), vocab_size]) return {'predictions': final_probabilities}
def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): '\n Args:\n pred_bbox3d: (N, 7) float Tensor.\n gt_bbox3d: (N, 7) float Tensor.\n\n Returns:\n corner_loss: (N) float Tensor.\n ' assert (pred_bbox3d.shape[0] == gt_bbox3d.shape[0]) pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) gt_bbox3d_flip = gt_bbox3d.clone() gt_bbox3d_flip[:, 6] += np.pi gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip) corner_dist = torch.min(torch.norm((pred_box_corners - gt_box_corners), dim=2), torch.norm((pred_box_corners - gt_box_corners_flip), dim=2)) corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0) return corner_loss.mean(dim=1)
5,956,361,160,264,300,000
Args: pred_bbox3d: (N, 7) float Tensor. gt_bbox3d: (N, 7) float Tensor. Returns: corner_loss: (N) float Tensor.
pcdet/utils/loss_utils.py
get_corner_loss_lidar
ocNflag/point2seq
python
def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): '\n Args:\n pred_bbox3d: (N, 7) float Tensor.\n gt_bbox3d: (N, 7) float Tensor.\n\n Returns:\n corner_loss: (N) float Tensor.\n ' assert (pred_bbox3d.shape[0] == gt_bbox3d.shape[0]) pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) gt_bbox3d_flip = gt_bbox3d.clone() gt_bbox3d_flip[:, 6] += np.pi gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip) corner_dist = torch.min(torch.norm((pred_box_corners - gt_box_corners), dim=2), torch.norm((pred_box_corners - gt_box_corners_flip), dim=2)) corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0) return corner_loss.mean(dim=1)
def __init__(self, gamma: float=2.0, alpha: float=0.25): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super().__init__() self.alpha = alpha self.gamma = gamma
2,511,071,533,760,564,700
Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples.
pcdet/utils/loss_utils.py
__init__
ocNflag/point2seq
python
def __init__(self, gamma: float=2.0, alpha: float=0.25): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super().__init__() self.alpha = alpha self.gamma = gamma
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
-8,905,405,198,205,577,000
PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction
pcdet/utils/loss_utils.py
sigmoid_cross_entropy_with_logits
ocNflag/point2seq
python
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1 - target) * (1 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) if ((weights.shape.__len__() == 2) or ((weights.shape.__len__() == 1) and (target.shape.__len__() == 2))): weights = weights.unsqueeze((- 1)) assert (weights.shape.__len__() == loss.shape.__len__()) return (loss * weights)
-8,421,976,740,454,377,000
Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting.
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1 - target) * (1 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) if ((weights.shape.__len__() == 2) or ((weights.shape.__len__() == 1) and (target.shape.__len__() == 2))): weights = weights.unsqueeze((- 1)) assert (weights.shape.__len__() == loss.shape.__len__()) return (loss * weights)
def __init__(self, beta: float=(1.0 / 9.0), code_weights: list=None): '\n Args:\n beta: Scalar float.\n L1 to L2 change point.\n For beta values < 1e-5, L1 loss is computed.\n code_weights: (#codes) float list if not None.\n Code-wise weights.\n ' super(WeightedSmoothL1Loss, self).__init__() self.beta = beta if (code_weights is not None): self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda()
6,300,698,351,211,915,000
Args: beta: Scalar float. L1 to L2 change point. For beta values < 1e-5, L1 loss is computed. code_weights: (#codes) float list if not None. Code-wise weights.
pcdet/utils/loss_utils.py
__init__
ocNflag/point2seq
python
def __init__(self, beta: float=(1.0 / 9.0), code_weights: list=None): '\n Args:\n beta: Scalar float.\n L1 to L2 change point.\n For beta values < 1e-5, L1 loss is computed.\n code_weights: (#codes) float list if not None.\n Code-wise weights.\n ' super(WeightedSmoothL1Loss, self).__init__() self.beta = beta if (code_weights is not None): self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda()
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor=None): '\n Args:\n input: (B, #anchors, #codes) float tensor.\n Ecoded predicted locations of objects.\n target: (B, #anchors, #codes) float tensor.\n Regression targets.\n weights: (B, #anchors) float tensor if not None.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted smooth l1 loss without reduction.\n ' target = torch.where(torch.isnan(target), input, target) diff = (input - target) if (self.code_weights is not None): diff = (diff * self.code_weights.view(1, 1, (- 1))) loss = self.smooth_l1_loss(diff, self.beta) if (weights is not None): assert ((weights.shape[0] == loss.shape[0]) and (weights.shape[1] == loss.shape[1])) loss = (loss * weights.unsqueeze((- 1))) return loss
-3,411,104,254,395,770,400
Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction.
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor=None): '\n Args:\n input: (B, #anchors, #codes) float tensor.\n Ecoded predicted locations of objects.\n target: (B, #anchors, #codes) float tensor.\n Regression targets.\n weights: (B, #anchors) float tensor if not None.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted smooth l1 loss without reduction.\n ' target = torch.where(torch.isnan(target), input, target) diff = (input - target) if (self.code_weights is not None): diff = (diff * self.code_weights.view(1, 1, (- 1))) loss = self.smooth_l1_loss(diff, self.beta) if (weights is not None): assert ((weights.shape[0] == loss.shape[0]) and (weights.shape[1] == loss.shape[1])) loss = (loss * weights.unsqueeze((- 1))) return loss
def __init__(self, code_weights: list=None): '\n Args:\n code_weights: (#codes) float list if not None.\n Code-wise weights.\n ' super(WeightedL1Loss, self).__init__() if (code_weights is not None): self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda()
-778,590,620,506,814,300
Args: code_weights: (#codes) float list if not None. Code-wise weights.
pcdet/utils/loss_utils.py
__init__
ocNflag/point2seq
python
def __init__(self, code_weights: list=None): '\n Args:\n code_weights: (#codes) float list if not None.\n Code-wise weights.\n ' super(WeightedL1Loss, self).__init__() if (code_weights is not None): self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda()
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor=None): '\n Args:\n input: (B, #anchors, #codes) float tensor.\n Ecoded predicted locations of objects.\n target: (B, #anchors, #codes) float tensor.\n Regression targets.\n weights: (B, #anchors) float tensor if not None.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted smooth l1 loss without reduction.\n ' target = torch.where(torch.isnan(target), input, target) diff = (input - target) if (self.code_weights is not None): diff = (diff * self.code_weights.view(1, 1, (- 1))) loss = torch.abs(diff) if (weights is not None): assert ((weights.shape[0] == loss.shape[0]) and (weights.shape[1] == loss.shape[1])) loss = (loss * weights.unsqueeze((- 1))) return loss
-169,834,570,559,773,700
Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction.
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor=None): '\n Args:\n input: (B, #anchors, #codes) float tensor.\n Ecoded predicted locations of objects.\n target: (B, #anchors, #codes) float tensor.\n Regression targets.\n weights: (B, #anchors) float tensor if not None.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted smooth l1 loss without reduction.\n ' target = torch.where(torch.isnan(target), input, target) diff = (input - target) if (self.code_weights is not None): diff = (diff * self.code_weights.view(1, 1, (- 1))) loss = torch.abs(diff) if (weights is not None): assert ((weights.shape[0] == loss.shape[0]) and (weights.shape[1] == loss.shape[1])) loss = (loss * weights.unsqueeze((- 1))) return loss
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predited logits for each class.\n target: (B, #anchors, #classes) float tensor.\n One-hot classification targets.\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted cross entropy loss without reduction\n ' input = input.permute(0, 2, 1) target = target.argmax(dim=(- 1)) loss = (F.cross_entropy(input, target, reduction='none') * weights) return loss
5,017,373,398,995,985,000
Args: input: (B, #anchors, #classes) float tensor. Predited logits for each class. target: (B, #anchors, #classes) float tensor. One-hot classification targets. weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: loss: (B, #anchors) float tensor. Weighted cross entropy loss without reduction
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predited logits for each class.\n target: (B, #anchors, #classes) float tensor.\n One-hot classification targets.\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n loss: (B, #anchors) float tensor.\n Weighted cross entropy loss without reduction\n ' input = input.permute(0, 2, 1) target = target.argmax(dim=(- 1)) loss = (F.cross_entropy(input, target, reduction='none') * weights) return loss
def _neg_loss(self, pred, gt): ' Modified focal loss. Exactly the same as CornerNet.\n Runs faster and costs a little bit more memory\n Arguments:\n pred (batch x c x h x w)\n gt_regr (batch x c x h x w)\n ' pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() neg_weights = torch.pow((1 - gt), 4) loss = 0 pos_loss = ((torch.log(pred) * torch.pow((1 - pred), 2)) * pos_inds) neg_loss = (((torch.log((1 - pred)) * torch.pow(pred, 2)) * neg_weights) * neg_inds) num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if (num_pos == 0): loss = (loss - neg_loss) else: loss = (loss - ((pos_loss + neg_loss) / num_pos)) return loss
389,137,059,020,501,800
Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Arguments: pred (batch x c x h x w) gt_regr (batch x c x h x w)
pcdet/utils/loss_utils.py
_neg_loss
ocNflag/point2seq
python
def _neg_loss(self, pred, gt): ' Modified focal loss. Exactly the same as CornerNet.\n Runs faster and costs a little bit more memory\n Arguments:\n pred (batch x c x h x w)\n gt_regr (batch x c x h x w)\n ' pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() neg_weights = torch.pow((1 - gt), 4) loss = 0 pos_loss = ((torch.log(pred) * torch.pow((1 - pred), 2)) * pos_inds) neg_loss = (((torch.log((1 - pred)) * torch.pow(pred, 2)) * neg_weights) * neg_inds) num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if (num_pos == 0): loss = (loss - neg_loss) else: loss = (loss - ((pos_loss + neg_loss) / num_pos)) return loss
def _reg_loss(self, regr, gt_regr, mask): ' L1 regression loss\n Arguments:\n regr (batch x max_objects x dim)\n gt_regr (batch x max_objects x dim)\n mask (batch x max_objects)\n ' num = mask.float().sum() mask = mask.unsqueeze(2).expand_as(gt_regr).float() isnotnan = (~ torch.isnan(gt_regr)).float() mask *= isnotnan regr = (regr * mask) gt_regr = (gt_regr * mask) loss = torch.abs((regr - gt_regr)) loss = loss.transpose(2, 0).contiguous() loss = torch.sum(loss, dim=2) loss = torch.sum(loss, dim=1) loss = (loss / (num + 0.0001)) return loss
-2,449,150,389,028,161,000
L1 regression loss Arguments: regr (batch x max_objects x dim) gt_regr (batch x max_objects x dim) mask (batch x max_objects)
pcdet/utils/loss_utils.py
_reg_loss
ocNflag/point2seq
python
def _reg_loss(self, regr, gt_regr, mask): ' L1 regression loss\n Arguments:\n regr (batch x max_objects x dim)\n gt_regr (batch x max_objects x dim)\n mask (batch x max_objects)\n ' num = mask.float().sum() mask = mask.unsqueeze(2).expand_as(gt_regr).float() isnotnan = (~ torch.isnan(gt_regr)).float() mask *= isnotnan regr = (regr * mask) gt_regr = (gt_regr * mask) loss = torch.abs((regr - gt_regr)) loss = loss.transpose(2, 0).contiguous() loss = torch.sum(loss, dim=2) loss = torch.sum(loss, dim=1) loss = (loss / (num + 0.0001)) return loss
def __init__(self, gamma: float=2.0, alpha: float=0.25): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super(ForegroundFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma
-5,609,581,717,160,888,000
Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples.
pcdet/utils/loss_utils.py
__init__
ocNflag/point2seq
python
def __init__(self, gamma: float=2.0, alpha: float=0.25): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super(ForegroundFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
-8,905,405,198,205,577,000
PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction
pcdet/utils/loss_utils.py
sigmoid_cross_entropy_with_logits
ocNflag/point2seq
python
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
def forward(self, input: torch.Tensor, target: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' num_pos = torch.sum(target) pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1 - target) * (1 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) loss = (loss.sum() / num_pos) return loss
-8,527,889,468,556,255,000
Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting.
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' num_pos = torch.sum(target) pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1 - target) * (1 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) loss = (loss.sum() / num_pos) return loss
def _smooth_reg_loss(self, regr, gt_regr, mask, sigma=3): ' L1 regression loss\n Arguments:\n regr (batch x max_objects x dim)\n gt_regr (batch x max_objects x dim)\n mask (batch x max_objects)\n ' num = mask.float().sum() mask = mask.unsqueeze(2).expand_as(gt_regr).float() isnotnan = (~ torch.isnan(gt_regr)).float() mask *= isnotnan regr = (regr * mask) gt_regr = (gt_regr * mask) abs_diff = torch.abs((regr - gt_regr)) abs_diff_lt_1 = torch.le(abs_diff, (1 / (sigma ** 2))).type_as(abs_diff) loss = (((abs_diff_lt_1 * 0.5) * torch.pow((abs_diff * sigma), 2)) + ((abs_diff - (0.5 / (sigma ** 2))) * (1.0 - abs_diff_lt_1))) loss = loss.transpose(2, 0).contiguous() loss = torch.sum(loss, dim=2) loss = torch.sum(loss, dim=1) loss = (loss / (num + 0.0001)) return loss
7,120,285,669,924,297,000
L1 regression loss Arguments: regr (batch x max_objects x dim) gt_regr (batch x max_objects x dim) mask (batch x max_objects)
pcdet/utils/loss_utils.py
_smooth_reg_loss
ocNflag/point2seq
python
def _smooth_reg_loss(self, regr, gt_regr, mask, sigma=3): ' L1 regression loss\n Arguments:\n regr (batch x max_objects x dim)\n gt_regr (batch x max_objects x dim)\n mask (batch x max_objects)\n ' num = mask.float().sum() mask = mask.unsqueeze(2).expand_as(gt_regr).float() isnotnan = (~ torch.isnan(gt_regr)).float() mask *= isnotnan regr = (regr * mask) gt_regr = (gt_regr * mask) abs_diff = torch.abs((regr - gt_regr)) abs_diff_lt_1 = torch.le(abs_diff, (1 / (sigma ** 2))).type_as(abs_diff) loss = (((abs_diff_lt_1 * 0.5) * torch.pow((abs_diff * sigma), 2)) + ((abs_diff - (0.5 / (sigma ** 2))) * (1.0 - abs_diff_lt_1))) loss = loss.transpose(2, 0).contiguous() loss = torch.sum(loss, dim=2) loss = torch.sum(loss, dim=1) loss = (loss / (num + 0.0001)) return loss
def __init__(self, gamma: float=2.0, alpha: float=0.25, reduction='mean'): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super(E2ESigmoidFocalClassificationLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction
8,031,476,695,436,176,000
Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples.
pcdet/utils/loss_utils.py
__init__
ocNflag/point2seq
python
def __init__(self, gamma: float=2.0, alpha: float=0.25, reduction='mean'): '\n Args:\n gamma: Weighting parameter to balance loss for hard and easy examples.\n alpha: Weighting parameter to balance loss for positive and negative examples.\n ' super(E2ESigmoidFocalClassificationLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
-8,905,405,198,205,577,000
PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction
pcdet/utils/loss_utils.py
sigmoid_cross_entropy_with_logits
ocNflag/point2seq
python
@staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): ' PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:\n max(x, 0) - x * z + log(1 + exp(-abs(x))) in\n https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits\n\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n\n Returns:\n loss: (B, #anchors, #classes) float tensor.\n Sigmoid cross entropy loss without reduction\n ' loss = ((torch.clamp(input, min=0) - (input * target)) + torch.log1p(torch.exp((- torch.abs(input))))) return loss
def forward(self, input: torch.Tensor, target: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1.0 - target) * (1.0 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) if (self.reduction == 'sum'): return loss.sum() else: return loss.mean()
7,519,885,252,206,170,000
Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting.
pcdet/utils/loss_utils.py
forward
ocNflag/point2seq
python
def forward(self, input: torch.Tensor, target: torch.Tensor): '\n Args:\n input: (B, #anchors, #classes) float tensor.\n Predicted logits for each class\n target: (B, #anchors, #classes) float tensor.\n One-hot encoded classification targets\n weights: (B, #anchors) float tensor.\n Anchor-wise weights.\n\n Returns:\n weighted_loss: (B, #anchors, #classes) float tensor after weighting.\n ' pred_sigmoid = torch.sigmoid(input) alpha_weight = ((target * self.alpha) + ((1.0 - target) * (1.0 - self.alpha))) pt = ((target * (1.0 - pred_sigmoid)) + ((1.0 - target) * pred_sigmoid)) focal_weight = (alpha_weight * torch.pow(pt, self.gamma)) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = (focal_weight * bce_loss) if (self.reduction == 'sum'): return loss.sum() else: return loss.mean()
def parse_model_config_params(model_params, num_settings, random_state): '\n\n Args:\n model_params:\n num_settings:\n random_state:\n\n Returns:\n\n ' param_distributions = dict() dist_types = dict(randint=randint, expon=expon, uniform=uniform) for (param, param_value) in model_params.items(): if (param_value[0] in ['randint', 'expon', 'uniform']): param_distributions[param] = dist_types[param_value[0]](*param_value[1:]) else: param_distributions[param] = param_value return sampler_generator(ParameterSampler(param_distributions, n_iter=num_settings, random_state=random_state))
-215,715,886,021,214,560
Args: model_params: num_settings: random_state: Returns:
scripts/search_ml_model_params.py
parse_model_config_params
NCAR/mlmicrophysics
python
def parse_model_config_params(model_params, num_settings, random_state): '\n\n Args:\n model_params:\n num_settings:\n random_state:\n\n Returns:\n\n ' param_distributions = dict() dist_types = dict(randint=randint, expon=expon, uniform=uniform) for (param, param_value) in model_params.items(): if (param_value[0] in ['randint', 'expon', 'uniform']): param_distributions[param] = dist_types[param_value[0]](*param_value[1:]) else: param_distributions[param] = param_value return sampler_generator(ParameterSampler(param_distributions, n_iter=num_settings, random_state=random_state))
def validate_model_configuration(classifier_model_name, classifier_model_config, regressor_model_name, regressor_model_config, config_index, train_scaled_input, train_labels, train_scaled_output, val_scaled_input, val_labels, val_scaled_output, classifier_metric_list, regressor_metric_list): '\n Train a single machine learning model configuration to predict each microphysical tendency.\n\n Args:\n classifier_model_name:\n classifier_model_config:\n regressor_model_name:\n regressor_model_config:\n config_index:\n train_scaled_input:\n train_labels:\n train_scaled_output:\n val_scaled_input:\n val_labels:\n val_scaled_output:\n classifier_metric_list:\n regressor_metric_list:\n\n Returns:\n\n ' from mlmicrophysics.models import DenseNeuralNetwork, DenseGAN import keras.backend as K metrics = {'mse': mean_squared_error, 'mae': mean_absolute_error, 'r2': r2_score, 'hellinger': hellinger_distance, 'acc': accuracy_score, 'hss': heidke_skill_score, 'pss': peirce_skill_score} sess = K.tf.Session(config=K.tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)) K.set_session(sess) with sess.as_default(): model_classes = {'RandomForestRegressor': RandomForestRegressor, 'RandomForestClassifier': RandomForestClassifier, 'DenseNeuralNetwork': DenseNeuralNetwork, 'DenseGAN': DenseGAN} classifier_models = {} regressor_models = {} output_label_preds = pd.DataFrame(0, index=val_labels.index, columns=val_labels.columns, dtype=np.int32) output_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_regressor_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_metric_columns = [] for output_col in train_scaled_output.columns: for metric in classifier_metric_list: output_metric_columns.append(((output_col + '_') + metric)) for metric in regressor_metric_list: output_metric_columns.append(((output_col + '_') + metric)) unique_labels = np.unique(train_labels[output_col]) for unique_label in unique_labels: for metric in regressor_metric_list: output_metric_columns.append(f'{output_col}_{unique_label}_{metric}') output_metrics = pd.Series(index=output_metric_columns, name=config_index, dtype=np.float32) for output_col in train_scaled_output.columns: print(output_col) unique_labels = np.unique(train_labels[output_col]) if (unique_labels.size > 1): if (classifier_model_name in ['DenseNeuralNetwork', 'DenseGAN']): classifier_models[output_col] = model_classes[classifier_model_name](outputs=unique_labels.size, classifier=True, **classifier_model_config) else: classifier_models[output_col] = model_classes[classifier_model_name](**classifier_model_config) classifier_models[output_col].fit(train_scaled_input, train_labels[output_col]) output_label_preds.loc[:, output_col] = classifier_models[output_col].predict(val_scaled_input) for metric in classifier_metric_list: output_metrics[((output_col + '_') + metric)] = metrics[metric](val_labels[output_col].values, output_label_preds[output_col].values) else: output_label_preds.loc[:, output_col] = unique_labels[0] regressor_models[output_col] = {} for label in unique_labels: if (label != 0): if (regressor_model_name in ['DenseNeuralNetwork', 'DenseGAN']): regressor_models[output_col][label] = model_classes[regressor_model_name](classifier=False, **regressor_model_config) else: regressor_models[output_col][label] = model_classes[regressor_model_name](**regressor_model_config) regressor_models[output_col][label].fit(train_scaled_input.loc[(train_labels[output_col] == label)], train_scaled_output.loc[((train_labels[output_col] == label), output_col)]) if (np.count_nonzero((output_label_preds[output_col] == label)) > 0): output_preds.loc[((output_label_preds[output_col] == label), output_col)] = regressor_models[output_col][label].predict(val_scaled_input.loc[(output_label_preds[output_col] == label)]) output_regressor_preds.loc[((val_labels[output_col] == label), output_col)] = regressor_models[output_col][label].predict(val_scaled_input.loc[(val_labels[output_col] == label)]) for metric in regressor_metric_list: output_metrics[f'{output_col}_{label}_{metric}'] = metrics[metric](val_scaled_output.loc[((val_labels[output_col] == label), output_col)].values, output_regressor_preds.loc[((val_labels[output_col] == label), output_col)].values) for metric in regressor_metric_list: output_metrics[((output_col + '_') + metric)] = metrics[metric](val_scaled_output[output_col].values, output_preds[output_col].values) return output_metrics
-7,930,543,682,850,534,000
Train a single machine learning model configuration to predict each microphysical tendency. Args: classifier_model_name: classifier_model_config: regressor_model_name: regressor_model_config: config_index: train_scaled_input: train_labels: train_scaled_output: val_scaled_input: val_labels: val_scaled_output: classifier_metric_list: regressor_metric_list: Returns:
scripts/search_ml_model_params.py
validate_model_configuration
NCAR/mlmicrophysics
python
def validate_model_configuration(classifier_model_name, classifier_model_config, regressor_model_name, regressor_model_config, config_index, train_scaled_input, train_labels, train_scaled_output, val_scaled_input, val_labels, val_scaled_output, classifier_metric_list, regressor_metric_list): '\n Train a single machine learning model configuration to predict each microphysical tendency.\n\n Args:\n classifier_model_name:\n classifier_model_config:\n regressor_model_name:\n regressor_model_config:\n config_index:\n train_scaled_input:\n train_labels:\n train_scaled_output:\n val_scaled_input:\n val_labels:\n val_scaled_output:\n classifier_metric_list:\n regressor_metric_list:\n\n Returns:\n\n ' from mlmicrophysics.models import DenseNeuralNetwork, DenseGAN import keras.backend as K metrics = {'mse': mean_squared_error, 'mae': mean_absolute_error, 'r2': r2_score, 'hellinger': hellinger_distance, 'acc': accuracy_score, 'hss': heidke_skill_score, 'pss': peirce_skill_score} sess = K.tf.Session(config=K.tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)) K.set_session(sess) with sess.as_default(): model_classes = {'RandomForestRegressor': RandomForestRegressor, 'RandomForestClassifier': RandomForestClassifier, 'DenseNeuralNetwork': DenseNeuralNetwork, 'DenseGAN': DenseGAN} classifier_models = {} regressor_models = {} output_label_preds = pd.DataFrame(0, index=val_labels.index, columns=val_labels.columns, dtype=np.int32) output_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_regressor_preds = pd.DataFrame(0, index=val_scaled_output.index, columns=val_scaled_output.columns, dtype=np.float32) output_metric_columns = [] for output_col in train_scaled_output.columns: for metric in classifier_metric_list: output_metric_columns.append(((output_col + '_') + metric)) for metric in regressor_metric_list: output_metric_columns.append(((output_col + '_') + metric)) unique_labels = np.unique(train_labels[output_col]) for unique_label in unique_labels: for metric in regressor_metric_list: output_metric_columns.append(f'{output_col}_{unique_label}_{metric}') output_metrics = pd.Series(index=output_metric_columns, name=config_index, dtype=np.float32) for output_col in train_scaled_output.columns: print(output_col) unique_labels = np.unique(train_labels[output_col]) if (unique_labels.size > 1): if (classifier_model_name in ['DenseNeuralNetwork', 'DenseGAN']): classifier_models[output_col] = model_classes[classifier_model_name](outputs=unique_labels.size, classifier=True, **classifier_model_config) else: classifier_models[output_col] = model_classes[classifier_model_name](**classifier_model_config) classifier_models[output_col].fit(train_scaled_input, train_labels[output_col]) output_label_preds.loc[:, output_col] = classifier_models[output_col].predict(val_scaled_input) for metric in classifier_metric_list: output_metrics[((output_col + '_') + metric)] = metrics[metric](val_labels[output_col].values, output_label_preds[output_col].values) else: output_label_preds.loc[:, output_col] = unique_labels[0] regressor_models[output_col] = {} for label in unique_labels: if (label != 0): if (regressor_model_name in ['DenseNeuralNetwork', 'DenseGAN']): regressor_models[output_col][label] = model_classes[regressor_model_name](classifier=False, **regressor_model_config) else: regressor_models[output_col][label] = model_classes[regressor_model_name](**regressor_model_config) regressor_models[output_col][label].fit(train_scaled_input.loc[(train_labels[output_col] == label)], train_scaled_output.loc[((train_labels[output_col] == label), output_col)]) if (np.count_nonzero((output_label_preds[output_col] == label)) > 0): output_preds.loc[((output_label_preds[output_col] == label), output_col)] = regressor_models[output_col][label].predict(val_scaled_input.loc[(output_label_preds[output_col] == label)]) output_regressor_preds.loc[((val_labels[output_col] == label), output_col)] = regressor_models[output_col][label].predict(val_scaled_input.loc[(val_labels[output_col] == label)]) for metric in regressor_metric_list: output_metrics[f'{output_col}_{label}_{metric}'] = metrics[metric](val_scaled_output.loc[((val_labels[output_col] == label), output_col)].values, output_regressor_preds.loc[((val_labels[output_col] == label), output_col)].values) for metric in regressor_metric_list: output_metrics[((output_col + '_') + metric)] = metrics[metric](val_scaled_output[output_col].values, output_preds[output_col].values) return output_metrics
def test_integers(self): 'Adding an integer as a tag should raise a ValueError (#237).' apple = self.food_model.objects.create(name='apple') with self.assertRaisesRegexp(ValueError, "Cannot add 1 \\(<(type|class) 'int'>\\). Expected <class 'django.db.models.base.ModelBase'> or str."): apple.tags.add(1)
2,789,897,774,914,508,000
Adding an integer as a tag should raise a ValueError (#237).
tests/tests.py
test_integers
Immensa/django-taggit
python
def test_integers(self): apple = self.food_model.objects.create(name='apple') with self.assertRaisesRegexp(ValueError, "Cannot add 1 \\(<(type|class) 'int'>\\). Expected <class 'django.db.models.base.ModelBase'> or str."): apple.tags.add(1)
def test_similarity_by_tag(self): 'Test that pears are more similar to apples than watermelons' apple = self.food_model.objects.create(name='apple') apple.tags.add('green', 'juicy', 'small', 'sour') pear = self.food_model.objects.create(name='pear') pear.tags.add('green', 'juicy', 'small', 'sweet') watermelon = self.food_model.objects.create(name='watermelon') watermelon.tags.add('green', 'juicy', 'large', 'sweet') similar_objs = apple.tags.similar_objects() self.assertEqual(similar_objs, [pear, watermelon]) self.assertEqual([obj.similar_tags for obj in similar_objs], [3, 2])
1,360,618,908,624,745,200
Test that pears are more similar to apples than watermelons
tests/tests.py
test_similarity_by_tag
Immensa/django-taggit
python
def test_similarity_by_tag(self): apple = self.food_model.objects.create(name='apple') apple.tags.add('green', 'juicy', 'small', 'sour') pear = self.food_model.objects.create(name='pear') pear.tags.add('green', 'juicy', 'small', 'sweet') watermelon = self.food_model.objects.create(name='watermelon') watermelon.tags.add('green', 'juicy', 'large', 'sweet') similar_objs = apple.tags.similar_objects() self.assertEqual(similar_objs, [pear, watermelon]) self.assertEqual([obj.similar_tags for obj in similar_objs], [3, 2])
def test_with_simple_space_delimited_tags(self): '\n Test with simple space-delimited tags.\n ' self.assertEqual(parse_tags('one'), ['one']) self.assertEqual(parse_tags('one two'), ['one', 'two']) self.assertEqual(parse_tags('one two three'), ['one', 'three', 'two']) self.assertEqual(parse_tags('one one two two'), ['one', 'two'])
-1,707,843,335,423,203,600
Test with simple space-delimited tags.
tests/tests.py
test_with_simple_space_delimited_tags
Immensa/django-taggit
python
def test_with_simple_space_delimited_tags(self): '\n \n ' self.assertEqual(parse_tags('one'), ['one']) self.assertEqual(parse_tags('one two'), ['one', 'two']) self.assertEqual(parse_tags('one two three'), ['one', 'three', 'two']) self.assertEqual(parse_tags('one one two two'), ['one', 'two'])
def test_with_comma_delimited_multiple_words(self): '\n Test with comma-delimited multiple words.\n An unquoted comma in the input will trigger this.\n ' self.assertEqual(parse_tags(',one'), ['one']) self.assertEqual(parse_tags(',one two'), ['one two']) self.assertEqual(parse_tags(',one two three'), ['one two three']) self.assertEqual(parse_tags('a-one, a-two and a-three'), ['a-one', 'a-two and a-three'])
2,158,762,115,256,022,300
Test with comma-delimited multiple words. An unquoted comma in the input will trigger this.
tests/tests.py
test_with_comma_delimited_multiple_words
Immensa/django-taggit
python
def test_with_comma_delimited_multiple_words(self): '\n Test with comma-delimited multiple words.\n An unquoted comma in the input will trigger this.\n ' self.assertEqual(parse_tags(',one'), ['one']) self.assertEqual(parse_tags(',one two'), ['one two']) self.assertEqual(parse_tags(',one two three'), ['one two three']) self.assertEqual(parse_tags('a-one, a-two and a-three'), ['a-one', 'a-two and a-three'])
def test_with_double_quoted_multiple_words(self): '\n Test with double-quoted multiple words.\n A completed quote will trigger this. Unclosed quotes are ignored.\n ' self.assertEqual(parse_tags('"one'), ['one']) self.assertEqual(parse_tags('"one two'), ['one', 'two']) self.assertEqual(parse_tags('"one two three'), ['one', 'three', 'two']) self.assertEqual(parse_tags('"one two"'), ['one two']) self.assertEqual(parse_tags('a-one "a-two and a-three"'), ['a-one', 'a-two and a-three'])
5,358,388,618,481,210,000
Test with double-quoted multiple words. A completed quote will trigger this. Unclosed quotes are ignored.
tests/tests.py
test_with_double_quoted_multiple_words
Immensa/django-taggit
python
def test_with_double_quoted_multiple_words(self): '\n Test with double-quoted multiple words.\n A completed quote will trigger this. Unclosed quotes are ignored.\n ' self.assertEqual(parse_tags('"one'), ['one']) self.assertEqual(parse_tags('"one two'), ['one', 'two']) self.assertEqual(parse_tags('"one two three'), ['one', 'three', 'two']) self.assertEqual(parse_tags('"one two"'), ['one two']) self.assertEqual(parse_tags('a-one "a-two and a-three"'), ['a-one', 'a-two and a-three'])
def test_with_no_loose_commas(self): '\n Test with no loose commas -- split on spaces.\n ' self.assertEqual(parse_tags('one two "thr,ee"'), ['one', 'thr,ee', 'two'])
6,121,131,418,971,766,000
Test with no loose commas -- split on spaces.
tests/tests.py
test_with_no_loose_commas
Immensa/django-taggit
python
def test_with_no_loose_commas(self): '\n \n ' self.assertEqual(parse_tags('one two "thr,ee"'), ['one', 'thr,ee', 'two'])
def test_with_loose_commas(self): '\n Loose commas - split on commas\n ' self.assertEqual(parse_tags('"one", two three'), ['one', 'two three'])
4,144,708,498,068,357,000
Loose commas - split on commas
tests/tests.py
test_with_loose_commas
Immensa/django-taggit
python
def test_with_loose_commas(self): '\n \n ' self.assertEqual(parse_tags('"one", two three'), ['one', 'two three'])
def test_tags_with_double_quotes_can_contain_commas(self): '\n Double quotes can contain commas\n ' self.assertEqual(parse_tags('a-one "a-two, and a-three"'), ['a-one', 'a-two, and a-three']) self.assertEqual(parse_tags('"two", one, one, two, "one"'), ['one', 'two'])
2,664,990,977,619,601,400
Double quotes can contain commas
tests/tests.py
test_tags_with_double_quotes_can_contain_commas
Immensa/django-taggit
python
def test_tags_with_double_quotes_can_contain_commas(self): '\n \n ' self.assertEqual(parse_tags('a-one "a-two, and a-three"'), ['a-one', 'a-two, and a-three']) self.assertEqual(parse_tags('"two", one, one, two, "one"'), ['one', 'two'])
def test_with_naughty_input(self): '\n Test with naughty input.\n ' self.assertEqual(parse_tags(None), []) self.assertEqual(parse_tags(''), []) self.assertEqual(parse_tags('"'), []) self.assertEqual(parse_tags('""'), []) self.assertEqual(parse_tags(('"' * 7)), []) self.assertEqual(parse_tags(',,,,,,'), []) self.assertEqual(parse_tags('",",",",",",","'), [',']) self.assertEqual(parse_tags('a-one "a-two" and "a-three'), ['a-one', 'a-three', 'a-two', 'and'])
6,806,080,594,845,519,000
Test with naughty input.
tests/tests.py
test_with_naughty_input
Immensa/django-taggit
python
def test_with_naughty_input(self): '\n \n ' self.assertEqual(parse_tags(None), []) self.assertEqual(parse_tags(), []) self.assertEqual(parse_tags('"'), []) self.assertEqual(parse_tags(''), []) self.assertEqual(parse_tags(('"' * 7)), []) self.assertEqual(parse_tags(',,,,,,'), []) self.assertEqual(parse_tags('",",",",",",","'), [',']) self.assertEqual(parse_tags('a-one "a-two" and "a-three'), ['a-one', 'a-three', 'a-two', 'and'])
@pytest.fixture def cache(request): '\n Return a cache object that can persist state between testing sessions.\n\n cache.get(key, default)\n cache.set(key, value)\n\n Keys must be a ``/`` separated value, where the first part is usually the\n name of your plugin or application to avoid clashes with other cache users.\n\n Values can be any object handled by the json stdlib module.\n ' return request.config.cache
-824,272,688,077,182,200
Return a cache object that can persist state between testing sessions. cache.get(key, default) cache.set(key, value) Keys must be a ``/`` separated value, where the first part is usually the name of your plugin or application to avoid clashes with other cache users. Values can be any object handled by the json stdlib module.
src/_pytest/cacheprovider.py
cache
bigbZik/pytest
python
@pytest.fixture def cache(request): '\n Return a cache object that can persist state between testing sessions.\n\n cache.get(key, default)\n cache.set(key, value)\n\n Keys must be a ``/`` separated value, where the first part is usually the\n name of your plugin or application to avoid clashes with other cache users.\n\n Values can be any object handled by the json stdlib module.\n ' return request.config.cache
def makedir(self, name): ' return a directory path object with the given name. If the\n directory does not yet exist, it will be created. You can use it\n to manage files likes e. g. store/retrieve database\n dumps across test sessions.\n\n :param name: must be a string not containing a ``/`` separator.\n Make sure the name contains your plugin or application\n identifiers to prevent clashes with other cache users.\n ' name = Path(name) if (len(name.parts) > 1): raise ValueError('name is not allowed to contain path separators') res = self._cachedir.joinpath('d', name) res.mkdir(exist_ok=True, parents=True) return py.path.local(res)
-4,155,896,975,680,624,600
return a directory path object with the given name. If the directory does not yet exist, it will be created. You can use it to manage files likes e. g. store/retrieve database dumps across test sessions. :param name: must be a string not containing a ``/`` separator. Make sure the name contains your plugin or application identifiers to prevent clashes with other cache users.
src/_pytest/cacheprovider.py
makedir
bigbZik/pytest
python
def makedir(self, name): ' return a directory path object with the given name. If the\n directory does not yet exist, it will be created. You can use it\n to manage files likes e. g. store/retrieve database\n dumps across test sessions.\n\n :param name: must be a string not containing a ``/`` separator.\n Make sure the name contains your plugin or application\n identifiers to prevent clashes with other cache users.\n ' name = Path(name) if (len(name.parts) > 1): raise ValueError('name is not allowed to contain path separators') res = self._cachedir.joinpath('d', name) res.mkdir(exist_ok=True, parents=True) return py.path.local(res)
def get(self, key, default): ' return cached value for the given key. If no value\n was yet cached or the value cannot be read, the specified\n default is returned.\n\n :param key: must be a ``/`` separated value. Usually the first\n name is the name of your plugin or your application.\n :param default: must be provided in case of a cache-miss or\n invalid cache values.\n\n ' path = self._getvaluepath(key) try: with path.open('r') as f: return json.load(f) except (ValueError, IOError, OSError): return default
1,390,270,008,379,693,000
return cached value for the given key. If no value was yet cached or the value cannot be read, the specified default is returned. :param key: must be a ``/`` separated value. Usually the first name is the name of your plugin or your application. :param default: must be provided in case of a cache-miss or invalid cache values.
src/_pytest/cacheprovider.py
get
bigbZik/pytest
python
def get(self, key, default): ' return cached value for the given key. If no value\n was yet cached or the value cannot be read, the specified\n default is returned.\n\n :param key: must be a ``/`` separated value. Usually the first\n name is the name of your plugin or your application.\n :param default: must be provided in case of a cache-miss or\n invalid cache values.\n\n ' path = self._getvaluepath(key) try: with path.open('r') as f: return json.load(f) except (ValueError, IOError, OSError): return default
def set(self, key, value): ' save value for the given key.\n\n :param key: must be a ``/`` separated value. Usually the first\n name is the name of your plugin or your application.\n :param value: must be of any combination of basic\n python types, including nested types\n like e. g. lists of dictionaries.\n ' path = self._getvaluepath(key) try: path.parent.mkdir(exist_ok=True, parents=True) except (IOError, OSError): self.warn('could not create cache path {path}', path=path) return try: f = path.open(('wb' if PY2 else 'w')) except (IOError, OSError): self.warn('cache could not write path {path}', path=path) else: with f: json.dump(value, f, indent=2, sort_keys=True) self._ensure_readme()
1,058,034,138,620,027,000
save value for the given key. :param key: must be a ``/`` separated value. Usually the first name is the name of your plugin or your application. :param value: must be of any combination of basic python types, including nested types like e. g. lists of dictionaries.
src/_pytest/cacheprovider.py
set
bigbZik/pytest
python
def set(self, key, value): ' save value for the given key.\n\n :param key: must be a ``/`` separated value. Usually the first\n name is the name of your plugin or your application.\n :param value: must be of any combination of basic\n python types, including nested types\n like e. g. lists of dictionaries.\n ' path = self._getvaluepath(key) try: path.parent.mkdir(exist_ok=True, parents=True) except (IOError, OSError): self.warn('could not create cache path {path}', path=path) return try: f = path.open(('wb' if PY2 else 'w')) except (IOError, OSError): self.warn('cache could not write path {path}', path=path) else: with f: json.dump(value, f, indent=2, sort_keys=True) self._ensure_readme()
def __init__(self, policyId=None, policyType=None): '\n :param policyId: (Optional) 自动任务策略ID。\n :param policyType: (Optional) 自动任务策略类型,当前只支持 `AutoImage` 自动备份镜像。\n ' self.policyId = policyId self.policyType = policyType
-6,499,586,989,692,238,000
:param policyId: (Optional) 自动任务策略ID。 :param policyType: (Optional) 自动任务策略类型,当前只支持 `AutoImage` 自动备份镜像。
jdcloud_sdk/services/vm/models/Policy.py
__init__
jdcloud-api/jdcloud-sdk-python
python
def __init__(self, policyId=None, policyType=None): '\n :param policyId: (Optional) 自动任务策略ID。\n :param policyType: (Optional) 自动任务策略类型,当前只支持 `AutoImage` 自动备份镜像。\n ' self.policyId = policyId self.policyType = policyType
def _compute_delta(log_moments, eps): 'Compute delta for given log_moments and eps.\n\n Args:\n log_moments: the log moments of privacy loss, in the form of pairs\n of (moment_order, log_moment)\n eps: the target epsilon.\n Returns:\n delta\n ' min_delta = 1.0 for (moment_order, log_moment) in log_moments: if (moment_order == 0): continue if (math.isinf(log_moment) or math.isnan(log_moment)): sys.stderr.write(('The %d-th order is inf or Nan\n' % moment_order)) continue if (log_moment < (moment_order * eps)): min_delta = min(min_delta, math.exp((log_moment - (moment_order * eps)))) return min_delta
8,862,847,200,555,492,000
Compute delta for given log_moments and eps. Args: log_moments: the log moments of privacy loss, in the form of pairs of (moment_order, log_moment) eps: the target epsilon. Returns: delta
CIFAR_tests/gaussian_moments.py
_compute_delta
DPBayes/ADADP
python
def _compute_delta(log_moments, eps): 'Compute delta for given log_moments and eps.\n\n Args:\n log_moments: the log moments of privacy loss, in the form of pairs\n of (moment_order, log_moment)\n eps: the target epsilon.\n Returns:\n delta\n ' min_delta = 1.0 for (moment_order, log_moment) in log_moments: if (moment_order == 0): continue if (math.isinf(log_moment) or math.isnan(log_moment)): sys.stderr.write(('The %d-th order is inf or Nan\n' % moment_order)) continue if (log_moment < (moment_order * eps)): min_delta = min(min_delta, math.exp((log_moment - (moment_order * eps)))) return min_delta
def _compute_eps(log_moments, delta): 'Compute epsilon for given log_moments and delta.\n\n Args:\n log_moments: the log moments of privacy loss, in the form of pairs\n of (moment_order, log_moment)\n delta: the target delta.\n Returns:\n epsilon\n ' min_eps = float('inf') for (moment_order, log_moment) in log_moments: if (moment_order == 0): continue if (math.isinf(log_moment) or math.isnan(log_moment)): sys.stderr.write(('The %d-th order is inf or Nan\n' % moment_order)) continue min_eps = min(min_eps, ((log_moment - math.log(delta)) / moment_order)) return min_eps
-6,687,883,152,029,463,000
Compute epsilon for given log_moments and delta. Args: log_moments: the log moments of privacy loss, in the form of pairs of (moment_order, log_moment) delta: the target delta. Returns: epsilon
CIFAR_tests/gaussian_moments.py
_compute_eps
DPBayes/ADADP
python
def _compute_eps(log_moments, delta): 'Compute epsilon for given log_moments and delta.\n\n Args:\n log_moments: the log moments of privacy loss, in the form of pairs\n of (moment_order, log_moment)\n delta: the target delta.\n Returns:\n epsilon\n ' min_eps = float('inf') for (moment_order, log_moment) in log_moments: if (moment_order == 0): continue if (math.isinf(log_moment) or math.isnan(log_moment)): sys.stderr.write(('The %d-th order is inf or Nan\n' % moment_order)) continue min_eps = min(min_eps, ((log_moment - math.log(delta)) / moment_order)) return min_eps
def compute_log_moment(q, sigma, steps, lmbd, verify=False, verbose=False): 'Compute the log moment of Gaussian mechanism for given parameters.\n\n Args:\n q: the sampling ratio.\n sigma: the noise sigma.\n steps: the number of steps.\n lmbd: the moment order.\n verify: if False, only compute the symbolic version. If True, computes\n both symbolic and numerical solutions and verifies the results match.\n verbose: if True, print out debug information.\n Returns:\n the log moment with type np.float64, could be np.inf.\n ' moment = compute_a(sigma, q, lmbd, verbose=verbose) if verify: mp.dps = 50 moment_a_mp = compute_a_mp(sigma, q, lmbd, verbose=verbose) moment_b_mp = compute_b_mp(sigma, q, lmbd, verbose=verbose) np.testing.assert_allclose(moment, moment_a_mp, rtol=1e-10) if (not np.isinf(moment_a_mp)): np.testing.assert_array_less(moment_b_mp, moment_a_mp) if np.isinf(moment): return np.inf else: return (np.log(moment) * steps)
-2,424,217,040,214,786,000
Compute the log moment of Gaussian mechanism for given parameters. Args: q: the sampling ratio. sigma: the noise sigma. steps: the number of steps. lmbd: the moment order. verify: if False, only compute the symbolic version. If True, computes both symbolic and numerical solutions and verifies the results match. verbose: if True, print out debug information. Returns: the log moment with type np.float64, could be np.inf.
CIFAR_tests/gaussian_moments.py
compute_log_moment
DPBayes/ADADP
python
def compute_log_moment(q, sigma, steps, lmbd, verify=False, verbose=False): 'Compute the log moment of Gaussian mechanism for given parameters.\n\n Args:\n q: the sampling ratio.\n sigma: the noise sigma.\n steps: the number of steps.\n lmbd: the moment order.\n verify: if False, only compute the symbolic version. If True, computes\n both symbolic and numerical solutions and verifies the results match.\n verbose: if True, print out debug information.\n Returns:\n the log moment with type np.float64, could be np.inf.\n ' moment = compute_a(sigma, q, lmbd, verbose=verbose) if verify: mp.dps = 50 moment_a_mp = compute_a_mp(sigma, q, lmbd, verbose=verbose) moment_b_mp = compute_b_mp(sigma, q, lmbd, verbose=verbose) np.testing.assert_allclose(moment, moment_a_mp, rtol=1e-10) if (not np.isinf(moment_a_mp)): np.testing.assert_array_less(moment_b_mp, moment_a_mp) if np.isinf(moment): return np.inf else: return (np.log(moment) * steps)
def get_privacy_spent(log_moments, target_eps=None, target_delta=None): 'Compute delta (or eps) for given eps (or delta) from log moments.\n\n Args:\n log_moments: array of (moment_order, log_moment) pairs.\n target_eps: if not None, the epsilon for which we would like to compute\n corresponding delta value.\n target_delta: if not None, the delta for which we would like to compute\n corresponding epsilon value. Exactly one of target_eps and target_delta\n is None.\n Returns:\n eps, delta pair\n ' assert ((target_eps is None) ^ (target_delta is None)) assert (not ((target_eps is None) and (target_delta is None))) if (target_eps is not None): return (target_eps, _compute_delta(log_moments, target_eps)) else: return (_compute_eps(log_moments, target_delta), target_delta)
7,915,246,685,305,713,000
Compute delta (or eps) for given eps (or delta) from log moments. Args: log_moments: array of (moment_order, log_moment) pairs. target_eps: if not None, the epsilon for which we would like to compute corresponding delta value. target_delta: if not None, the delta for which we would like to compute corresponding epsilon value. Exactly one of target_eps and target_delta is None. Returns: eps, delta pair
CIFAR_tests/gaussian_moments.py
get_privacy_spent
DPBayes/ADADP
python
def get_privacy_spent(log_moments, target_eps=None, target_delta=None): 'Compute delta (or eps) for given eps (or delta) from log moments.\n\n Args:\n log_moments: array of (moment_order, log_moment) pairs.\n target_eps: if not None, the epsilon for which we would like to compute\n corresponding delta value.\n target_delta: if not None, the delta for which we would like to compute\n corresponding epsilon value. Exactly one of target_eps and target_delta\n is None.\n Returns:\n eps, delta pair\n ' assert ((target_eps is None) ^ (target_delta is None)) assert (not ((target_eps is None) and (target_delta is None))) if (target_eps is not None): return (target_eps, _compute_delta(log_moments, target_eps)) else: return (_compute_eps(log_moments, target_delta), target_delta)
def create(self, validated_data): 'Create a new user with encrypted password and return it' return get_user_model().objects.create_user(**validated_data)
-1,686,897,521,577,608,400
Create a new user with encrypted password and return it
app/user/serializers.py
create
siddharthisaiah/recipe-app-api
python
def create(self, validated_data): return get_user_model().objects.create_user(**validated_data)
def update(self, instance, validated_data): 'Update a user, setting the password correctly and return it' password = validated_data.pop('password', None) user = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user
-203,708,244,252,171,460
Update a user, setting the password correctly and return it
app/user/serializers.py
update
siddharthisaiah/recipe-app-api
python
def update(self, instance, validated_data): password = validated_data.pop('password', None) user = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user
def validate(self, attrs): 'Validate and authenticate the user' email = attrs.get('email') password = attrs.get('password') user = authenticate(request=self.context.get('request'), username=email, password=password) if (not user): msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
6,380,639,698,687,869,000
Validate and authenticate the user
app/user/serializers.py
validate
siddharthisaiah/recipe-app-api
python
def validate(self, attrs): email = attrs.get('email') password = attrs.get('password') user = authenticate(request=self.context.get('request'), username=email, password=password) if (not user): msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
def testProjectWorkflowStepDtoV2(self): 'Test ProjectWorkflowStepDtoV2' pass
5,664,496,987,346,935,000
Test ProjectWorkflowStepDtoV2
test/test_project_workflow_step_dto_v2.py
testProjectWorkflowStepDtoV2
unofficial-memsource/memsource-cli
python
def testProjectWorkflowStepDtoV2(self): pass
def binarize(tensor: tf.Tensor, bitsize: Optional[int]=None) -> tf.Tensor: 'Extract bits of values in `tensor`, returning a `tf.Tensor` with same\n dtype.' with tf.name_scope('binarize'): bitsize = (bitsize or (tensor.dtype.size * 8)) bit_indices_shape = (([1] * len(tensor.shape)) + [bitsize]) bit_indices = tf.range(bitsize, dtype=tensor.dtype) bit_indices = tf.reshape(bit_indices, bit_indices_shape) val = tf.expand_dims(tensor, (- 1)) val = tf.bitwise.bitwise_and(tf.bitwise.right_shift(val, bit_indices), 1) assert (val.dtype == tensor.dtype) return val
3,900,341,414,611,682,300
Extract bits of values in `tensor`, returning a `tf.Tensor` with same dtype.
tf_encrypted/tensor/shared.py
binarize
Arash-Afshar/tf-encrypted
python
def binarize(tensor: tf.Tensor, bitsize: Optional[int]=None) -> tf.Tensor: 'Extract bits of values in `tensor`, returning a `tf.Tensor` with same\n dtype.' with tf.name_scope('binarize'): bitsize = (bitsize or (tensor.dtype.size * 8)) bit_indices_shape = (([1] * len(tensor.shape)) + [bitsize]) bit_indices = tf.range(bitsize, dtype=tensor.dtype) bit_indices = tf.reshape(bit_indices, bit_indices_shape) val = tf.expand_dims(tensor, (- 1)) val = tf.bitwise.bitwise_and(tf.bitwise.right_shift(val, bit_indices), 1) assert (val.dtype == tensor.dtype) return val
def bits(tensor: tf.Tensor, bitsize: Optional[int]=None) -> list: 'Extract bits of values in `tensor`, returning a list of tensors.' with tf.name_scope('bits'): bitsize = (bitsize or (tensor.dtype.size * 8)) the_bits = [tf.bitwise.bitwise_and(tf.bitwise.right_shift(tensor, i), 1) for i in range(bitsize)] return the_bits
7,872,300,279,742,978,000
Extract bits of values in `tensor`, returning a list of tensors.
tf_encrypted/tensor/shared.py
bits
Arash-Afshar/tf-encrypted
python
def bits(tensor: tf.Tensor, bitsize: Optional[int]=None) -> list: with tf.name_scope('bits'): bitsize = (bitsize or (tensor.dtype.size * 8)) the_bits = [tf.bitwise.bitwise_and(tf.bitwise.right_shift(tensor, i), 1) for i in range(bitsize)] return the_bits
def im2col(x: Union[(tf.Tensor, np.ndarray)], h_filter: int, w_filter: int, padding: str, stride: int) -> tf.Tensor: 'Generic implementation of im2col on tf.Tensors.' with tf.name_scope('im2col'): nhwc_tensor = tf.transpose(x, [0, 2, 3, 1]) channels = int(nhwc_tensor.shape[3]) patch_tensor = tf.extract_image_patches(nhwc_tensor, ksizes=[1, h_filter, w_filter, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding=padding) patch_tensor_nchw = tf.reshape(tf.transpose(patch_tensor, [3, 1, 2, 0]), (h_filter, w_filter, channels, (- 1))) x_col_tensor = tf.reshape(tf.transpose(patch_tensor_nchw, [2, 0, 1, 3]), (((channels * h_filter) * w_filter), (- 1))) return x_col_tensor
426,579,149,317,277,900
Generic implementation of im2col on tf.Tensors.
tf_encrypted/tensor/shared.py
im2col
Arash-Afshar/tf-encrypted
python
def im2col(x: Union[(tf.Tensor, np.ndarray)], h_filter: int, w_filter: int, padding: str, stride: int) -> tf.Tensor: with tf.name_scope('im2col'): nhwc_tensor = tf.transpose(x, [0, 2, 3, 1]) channels = int(nhwc_tensor.shape[3]) patch_tensor = tf.extract_image_patches(nhwc_tensor, ksizes=[1, h_filter, w_filter, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding=padding) patch_tensor_nchw = tf.reshape(tf.transpose(patch_tensor, [3, 1, 2, 0]), (h_filter, w_filter, channels, (- 1))) x_col_tensor = tf.reshape(tf.transpose(patch_tensor_nchw, [2, 0, 1, 3]), (((channels * h_filter) * w_filter), (- 1))) return x_col_tensor
def conv2d(x: AbstractTensor, y: AbstractTensor, stride, padding) -> AbstractTensor: 'Generic convolution implementation with im2col over AbstractTensors.' with tf.name_scope('conv2d'): (h_filter, w_filter, in_filters, out_filters) = map(int, y.shape) (n_x, c_x, h_x, w_x) = map(int, x.shape) if (c_x != in_filters): out_filters = in_filters if (padding == 'SAME'): h_out = int(math.ceil((float(h_x) / float(stride)))) w_out = int(math.ceil((float(w_x) / float(stride)))) elif (padding == 'VALID'): h_out = int(math.ceil((float(((h_x - h_filter) + 1)) / float(stride)))) w_out = int(math.ceil((float(((w_x - w_filter) + 1)) / float(stride)))) else: raise ValueError("Don't know padding method '{}'".format(padding)) x_col = x.im2col(h_filter, w_filter, padding, stride) w_col = y.transpose([3, 2, 0, 1]).reshape([int(out_filters), (- 1)]) out = w_col.matmul(x_col) out = out.reshape([out_filters, h_out, w_out, n_x]) out = out.transpose([3, 0, 1, 2]) return out
-1,181,663,389,733,783,800
Generic convolution implementation with im2col over AbstractTensors.
tf_encrypted/tensor/shared.py
conv2d
Arash-Afshar/tf-encrypted
python
def conv2d(x: AbstractTensor, y: AbstractTensor, stride, padding) -> AbstractTensor: with tf.name_scope('conv2d'): (h_filter, w_filter, in_filters, out_filters) = map(int, y.shape) (n_x, c_x, h_x, w_x) = map(int, x.shape) if (c_x != in_filters): out_filters = in_filters if (padding == 'SAME'): h_out = int(math.ceil((float(h_x) / float(stride)))) w_out = int(math.ceil((float(w_x) / float(stride)))) elif (padding == 'VALID'): h_out = int(math.ceil((float(((h_x - h_filter) + 1)) / float(stride)))) w_out = int(math.ceil((float(((w_x - w_filter) + 1)) / float(stride)))) else: raise ValueError("Don't know padding method '{}'".format(padding)) x_col = x.im2col(h_filter, w_filter, padding, stride) w_col = y.transpose([3, 2, 0, 1]).reshape([int(out_filters), (- 1)]) out = w_col.matmul(x_col) out = out.reshape([out_filters, h_out, w_out, n_x]) out = out.transpose([3, 0, 1, 2]) return out
def _autolag(mod, endog, exog, startlag, maxlag, method, modargs=(), fitargs=(), regresults=False): "\n Returns the results for the lag length that maximizes the info criterion.\n\n Parameters\n ----------\n mod : Model class\n Model estimator class\n endog : array-like\n nobs array containing endogenous variable\n exog : array-like\n nobs by (startlag + maxlag) array containing lags and possibly other\n variables\n startlag : int\n The first zero-indexed column to hold a lag. See Notes.\n maxlag : int\n The highest lag order for lag length selection.\n method : {'aic', 'bic', 't-stat'}\n aic - Akaike Information Criterion\n bic - Bayes Information Criterion\n t-stat - Based on last lag\n modargs : tuple, optional\n args to pass to model. See notes.\n fitargs : tuple, optional\n args to pass to fit. See notes.\n regresults : bool, optional\n Flag indicating to return optional return results\n\n Returns\n -------\n icbest : float\n Best information criteria.\n bestlag : int\n The lag length that maximizes the information criterion.\n results : dict, optional\n Dictionary containing all estimation results\n\n Notes\n -----\n Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs)\n where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are\n assumed to be in contiguous columns from low to high lag length with\n the highest lag in the last column.\n " results = {} method = method.lower() for lag in range(startlag, ((startlag + maxlag) + 1)): mod_instance = mod(endog, exog[:, :lag], *modargs) results[lag] = mod_instance.fit() if (method == 'aic'): (icbest, bestlag) = min(((v.aic, k) for (k, v) in iteritems(results))) elif (method == 'bic'): (icbest, bestlag) = min(((v.bic, k) for (k, v) in iteritems(results))) elif (method == 't-stat'): stop = 1.6448536269514722 for lag in range((startlag + maxlag), (startlag - 1), (- 1)): icbest = np.abs(results[lag].tvalues[(- 1)]) if (np.abs(icbest) >= stop): bestlag = lag icbest = icbest break else: raise (ValueError('Information Criterion %s not understood.') % method) if (not regresults): return (icbest, bestlag) else: return (icbest, bestlag, results)
-3,476,040,984,998,727,700
Returns the results for the lag length that maximizes the info criterion. Parameters ---------- mod : Model class Model estimator class endog : array-like nobs array containing endogenous variable exog : array-like nobs by (startlag + maxlag) array containing lags and possibly other variables startlag : int The first zero-indexed column to hold a lag. See Notes. maxlag : int The highest lag order for lag length selection. method : {'aic', 'bic', 't-stat'} aic - Akaike Information Criterion bic - Bayes Information Criterion t-stat - Based on last lag modargs : tuple, optional args to pass to model. See notes. fitargs : tuple, optional args to pass to fit. See notes. regresults : bool, optional Flag indicating to return optional return results Returns ------- icbest : float Best information criteria. bestlag : int The lag length that maximizes the information criterion. results : dict, optional Dictionary containing all estimation results Notes ----- Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs) where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are assumed to be in contiguous columns from low to high lag length with the highest lag in the last column.
statsmodels/tsa/stattools.py
_autolag
josef-pkt/statsmodels
python
def _autolag(mod, endog, exog, startlag, maxlag, method, modargs=(), fitargs=(), regresults=False): "\n Returns the results for the lag length that maximizes the info criterion.\n\n Parameters\n ----------\n mod : Model class\n Model estimator class\n endog : array-like\n nobs array containing endogenous variable\n exog : array-like\n nobs by (startlag + maxlag) array containing lags and possibly other\n variables\n startlag : int\n The first zero-indexed column to hold a lag. See Notes.\n maxlag : int\n The highest lag order for lag length selection.\n method : {'aic', 'bic', 't-stat'}\n aic - Akaike Information Criterion\n bic - Bayes Information Criterion\n t-stat - Based on last lag\n modargs : tuple, optional\n args to pass to model. See notes.\n fitargs : tuple, optional\n args to pass to fit. See notes.\n regresults : bool, optional\n Flag indicating to return optional return results\n\n Returns\n -------\n icbest : float\n Best information criteria.\n bestlag : int\n The lag length that maximizes the information criterion.\n results : dict, optional\n Dictionary containing all estimation results\n\n Notes\n -----\n Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs)\n where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are\n assumed to be in contiguous columns from low to high lag length with\n the highest lag in the last column.\n " results = {} method = method.lower() for lag in range(startlag, ((startlag + maxlag) + 1)): mod_instance = mod(endog, exog[:, :lag], *modargs) results[lag] = mod_instance.fit() if (method == 'aic'): (icbest, bestlag) = min(((v.aic, k) for (k, v) in iteritems(results))) elif (method == 'bic'): (icbest, bestlag) = min(((v.bic, k) for (k, v) in iteritems(results))) elif (method == 't-stat'): stop = 1.6448536269514722 for lag in range((startlag + maxlag), (startlag - 1), (- 1)): icbest = np.abs(results[lag].tvalues[(- 1)]) if (np.abs(icbest) >= stop): bestlag = lag icbest = icbest break else: raise (ValueError('Information Criterion %s not understood.') % method) if (not regresults): return (icbest, bestlag) else: return (icbest, bestlag, results)
def adfuller(x, maxlag=None, regression='c', autolag='AIC', store=False, regresults=False): '\n Augmented Dickey-Fuller unit root test\n\n The Augmented Dickey-Fuller test can be used to test for a unit root in a\n univariate process in the presence of serial correlation.\n\n Parameters\n ----------\n x : array_like, 1d\n data series\n maxlag : int\n Maximum lag which is included in test, default 12*(nobs/100)^{1/4}\n regression : {\'c\',\'ct\',\'ctt\',\'nc\'}\n Constant and trend order to include in regression\n\n * \'c\' : constant only (default)\n * \'ct\' : constant and trend\n * \'ctt\' : constant, and linear and quadratic trend\n * \'nc\' : no constant, no trend\n autolag : {\'AIC\', \'BIC\', \'t-stat\', None}\n * if None, then maxlag lags are used\n * if \'AIC\' (default) or \'BIC\', then the number of lags is chosen\n to minimize the corresponding information criterion\n * \'t-stat\' based choice of maxlag. Starts with maxlag and drops a\n lag until the t-statistic on the last lag length is significant\n using a 5%-sized test\n store : bool\n If True, then a result instance is returned additionally to\n the adf statistic. Default is False\n regresults : bool, optional\n If True, the full regression results are returned. Default is False\n\n Returns\n -------\n adf : float\n Test statistic\n pvalue : float\n MacKinnon\'s approximate p-value based on MacKinnon (1994, 2010)\n usedlag : int\n Number of lags used\n nobs : int\n Number of observations used for the ADF regression and calculation of\n the critical values\n critical values : dict\n Critical values for the test statistic at the 1 %, 5 %, and 10 %\n levels. Based on MacKinnon (2010)\n icbest : float\n The maximized information criterion if autolag is not None.\n resstore : ResultStore, optional\n A dummy class with results attached as attributes\n\n Notes\n -----\n The null hypothesis of the Augmented Dickey-Fuller is that there is a unit\n root, with the alternative that there is no unit root. If the pvalue is\n above a critical size, then we cannot reject that there is a unit root.\n\n The p-values are obtained through regression surface approximation from\n MacKinnon 1994, but using the updated 2010 tables. If the p-value is close\n to significant, then the critical values should be used to judge whether\n to reject the null.\n\n The autolag option and maxlag for it are described in Greene.\n\n Examples\n --------\n See example notebook\n\n References\n ----------\n .. [*] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003.\n\n .. [*] Hamilton, J.D. "Time Series Analysis". Princeton, 1994.\n\n .. [*] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for\n unit-root and cointegration tests. `Journal of Business and Economic\n Statistics` 12, 167-76.\n\n .. [*] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen\'s\n University, Dept of Economics, Working Papers. Available at\n http://ideas.repec.org/p/qed/wpaper/1227.html\n ' if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if ((regression is None) or isinstance(regression, (int, long))): regression = trenddict[regression] regression = regression.lower() if (regression not in ['c', 'nc', 'ct', 'ctt']): raise (ValueError('regression option %s not understood') % regression) x = np.asarray(x) nobs = x.shape[0] if (maxlag is None): maxlag = int(np.ceil((12.0 * np.power((nobs / 100.0), (1 / 4.0))))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] xdall[:, 0] = x[((- nobs) - 1):(- 1)] xdshort = xdiff[(- nobs):] if store: resstore = ResultsStore() if autolag: if (regression != 'nc'): fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = ((fullRHS.shape[1] - xdall.shape[1]) + 1) if (not regresults): (icbest, bestlag) = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: (icbest, bestlag, alres) = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] xdall[:, 0] = x[((- nobs) - 1):(- 1)] xdshort = xdiff[(- nobs):] usedlag = bestlag else: usedlag = maxlag icbest = None if (regression != 'nc'): resols = OLS(xdshort, add_trend(xdall[:, :(usedlag + 1)], regression)).fit() else: resols = OLS(xdshort, xdall[:, :(usedlag + 1)]).fit() adfstat = resols.tvalues[0] pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {'1%': critvalues[0], '5%': critvalues[1], '10%': critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = 'The coefficient on the lagged level equals 1 - unit root' resstore.HA = 'The coefficient on the lagged level < 1 - stationary' resstore.icbest = icbest resstore._str = 'Augmented Dickey-Fuller Test Results' return (adfstat, pvalue, critvalues, resstore) elif (not autolag): return (adfstat, pvalue, usedlag, nobs, critvalues) else: return (adfstat, pvalue, usedlag, nobs, critvalues, icbest)
-4,962,697,273,032,497,000
Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterion * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False regresults : bool, optional If True, the full regression results are returned. Default is False Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010) usedlag : int Number of lags used nobs : int Number of observations used for the ADF regression and calculation of the critical values critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- See example notebook References ---------- .. [*] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [*] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [*] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html
statsmodels/tsa/stattools.py
adfuller
josef-pkt/statsmodels
python
def adfuller(x, maxlag=None, regression='c', autolag='AIC', store=False, regresults=False): '\n Augmented Dickey-Fuller unit root test\n\n The Augmented Dickey-Fuller test can be used to test for a unit root in a\n univariate process in the presence of serial correlation.\n\n Parameters\n ----------\n x : array_like, 1d\n data series\n maxlag : int\n Maximum lag which is included in test, default 12*(nobs/100)^{1/4}\n regression : {\'c\',\'ct\',\'ctt\',\'nc\'}\n Constant and trend order to include in regression\n\n * \'c\' : constant only (default)\n * \'ct\' : constant and trend\n * \'ctt\' : constant, and linear and quadratic trend\n * \'nc\' : no constant, no trend\n autolag : {\'AIC\', \'BIC\', \'t-stat\', None}\n * if None, then maxlag lags are used\n * if \'AIC\' (default) or \'BIC\', then the number of lags is chosen\n to minimize the corresponding information criterion\n * \'t-stat\' based choice of maxlag. Starts with maxlag and drops a\n lag until the t-statistic on the last lag length is significant\n using a 5%-sized test\n store : bool\n If True, then a result instance is returned additionally to\n the adf statistic. Default is False\n regresults : bool, optional\n If True, the full regression results are returned. Default is False\n\n Returns\n -------\n adf : float\n Test statistic\n pvalue : float\n MacKinnon\'s approximate p-value based on MacKinnon (1994, 2010)\n usedlag : int\n Number of lags used\n nobs : int\n Number of observations used for the ADF regression and calculation of\n the critical values\n critical values : dict\n Critical values for the test statistic at the 1 %, 5 %, and 10 %\n levels. Based on MacKinnon (2010)\n icbest : float\n The maximized information criterion if autolag is not None.\n resstore : ResultStore, optional\n A dummy class with results attached as attributes\n\n Notes\n -----\n The null hypothesis of the Augmented Dickey-Fuller is that there is a unit\n root, with the alternative that there is no unit root. If the pvalue is\n above a critical size, then we cannot reject that there is a unit root.\n\n The p-values are obtained through regression surface approximation from\n MacKinnon 1994, but using the updated 2010 tables. If the p-value is close\n to significant, then the critical values should be used to judge whether\n to reject the null.\n\n The autolag option and maxlag for it are described in Greene.\n\n Examples\n --------\n See example notebook\n\n References\n ----------\n .. [*] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003.\n\n .. [*] Hamilton, J.D. "Time Series Analysis". Princeton, 1994.\n\n .. [*] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for\n unit-root and cointegration tests. `Journal of Business and Economic\n Statistics` 12, 167-76.\n\n .. [*] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen\'s\n University, Dept of Economics, Working Papers. Available at\n http://ideas.repec.org/p/qed/wpaper/1227.html\n ' if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if ((regression is None) or isinstance(regression, (int, long))): regression = trenddict[regression] regression = regression.lower() if (regression not in ['c', 'nc', 'ct', 'ctt']): raise (ValueError('regression option %s not understood') % regression) x = np.asarray(x) nobs = x.shape[0] if (maxlag is None): maxlag = int(np.ceil((12.0 * np.power((nobs / 100.0), (1 / 4.0))))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] xdall[:, 0] = x[((- nobs) - 1):(- 1)] xdshort = xdiff[(- nobs):] if store: resstore = ResultsStore() if autolag: if (regression != 'nc'): fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = ((fullRHS.shape[1] - xdall.shape[1]) + 1) if (not regresults): (icbest, bestlag) = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: (icbest, bestlag, alres) = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] xdall[:, 0] = x[((- nobs) - 1):(- 1)] xdshort = xdiff[(- nobs):] usedlag = bestlag else: usedlag = maxlag icbest = None if (regression != 'nc'): resols = OLS(xdshort, add_trend(xdall[:, :(usedlag + 1)], regression)).fit() else: resols = OLS(xdshort, xdall[:, :(usedlag + 1)]).fit() adfstat = resols.tvalues[0] pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {'1%': critvalues[0], '5%': critvalues[1], '10%': critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = 'The coefficient on the lagged level equals 1 - unit root' resstore.HA = 'The coefficient on the lagged level < 1 - stationary' resstore.icbest = icbest resstore._str = 'Augmented Dickey-Fuller Test Results' return (adfstat, pvalue, critvalues, resstore) elif (not autolag): return (adfstat, pvalue, usedlag, nobs, critvalues) else: return (adfstat, pvalue, usedlag, nobs, critvalues, icbest)
def acovf(x, unbiased=False, demean=True, fft=False, missing='none'): "\n Autocovariance for 1D\n\n Parameters\n ----------\n x : array\n Time series data. Must be 1d.\n unbiased : bool\n If True, then denominators is n-k, otherwise n\n demean : bool\n If True, then subtract the mean x from each element of x\n fft : bool\n If True, use FFT convolution. This method should be preferred\n for long time series.\n missing : str\n A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs\n are to be treated.\n\n Returns\n -------\n acovf : array\n autocovariance function\n\n References\n -----------\n .. [*] Parzen, E., 1963. On spectral analysis with missing observations\n and amplitude modulation. Sankhya: The Indian Journal of\n Statistics, Series A, pp.383-392.\n " x = np.squeeze(np.asarray(x)) if (x.ndim > 1): raise ValueError(('x must be 1d. Got %d dims.' % x.ndim)) missing = missing.lower() if (missing not in ['none', 'raise', 'conservative', 'drop']): raise ValueError(('missing option %s not understood' % missing)) if (missing == 'none'): deal_with_masked = False else: deal_with_masked = has_missing(x) if deal_with_masked: if (missing == 'raise'): raise MissingDataError('NaNs were encountered in the data') notmask_bool = (~ np.isnan(x)) if (missing == 'conservative'): x[(~ notmask_bool)] = 0 else: x = x[notmask_bool] notmask_int = notmask_bool.astype(int) if (demean and deal_with_masked): xo = (x - (x.sum() / notmask_int.sum())) if (missing == 'conservative'): xo[(~ notmask_bool)] = 0 elif demean: xo = (x - x.mean()) else: xo = x n = len(x) if (unbiased and deal_with_masked and (missing == 'conservative')): d = np.correlate(notmask_int, notmask_int, 'full') elif unbiased: xi = np.arange(1, (n + 1)) d = np.hstack((xi, xi[:(- 1)][::(- 1)])) elif deal_with_masked: d = (notmask_int.sum() * np.ones(((2 * n) - 1))) else: d = (n * np.ones(((2 * n) - 1))) if fft: nobs = len(xo) n = _next_regular(((2 * nobs) + 1)) Frf = np.fft.fft(xo, n=n) acov = (np.fft.ifft((Frf * np.conjugate(Frf)))[:nobs] / d[(nobs - 1):]) acov = acov.real else: acov = (np.correlate(xo, xo, 'full') / d)[(n - 1):] if (deal_with_masked and (missing == 'conservative')): x[(~ notmask_bool)] = np.nan return acov
-5,403,537,379,756,743,000
Autocovariance for 1D Parameters ---------- x : array Time series data. Must be 1d. unbiased : bool If True, then denominators is n-k, otherwise n demean : bool If True, then subtract the mean x from each element of x fft : bool If True, use FFT convolution. This method should be preferred for long time series. missing : str A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs are to be treated. Returns ------- acovf : array autocovariance function References ----------- .. [*] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392.
statsmodels/tsa/stattools.py
acovf
josef-pkt/statsmodels
python
def acovf(x, unbiased=False, demean=True, fft=False, missing='none'): "\n Autocovariance for 1D\n\n Parameters\n ----------\n x : array\n Time series data. Must be 1d.\n unbiased : bool\n If True, then denominators is n-k, otherwise n\n demean : bool\n If True, then subtract the mean x from each element of x\n fft : bool\n If True, use FFT convolution. This method should be preferred\n for long time series.\n missing : str\n A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs\n are to be treated.\n\n Returns\n -------\n acovf : array\n autocovariance function\n\n References\n -----------\n .. [*] Parzen, E., 1963. On spectral analysis with missing observations\n and amplitude modulation. Sankhya: The Indian Journal of\n Statistics, Series A, pp.383-392.\n " x = np.squeeze(np.asarray(x)) if (x.ndim > 1): raise ValueError(('x must be 1d. Got %d dims.' % x.ndim)) missing = missing.lower() if (missing not in ['none', 'raise', 'conservative', 'drop']): raise ValueError(('missing option %s not understood' % missing)) if (missing == 'none'): deal_with_masked = False else: deal_with_masked = has_missing(x) if deal_with_masked: if (missing == 'raise'): raise MissingDataError('NaNs were encountered in the data') notmask_bool = (~ np.isnan(x)) if (missing == 'conservative'): x[(~ notmask_bool)] = 0 else: x = x[notmask_bool] notmask_int = notmask_bool.astype(int) if (demean and deal_with_masked): xo = (x - (x.sum() / notmask_int.sum())) if (missing == 'conservative'): xo[(~ notmask_bool)] = 0 elif demean: xo = (x - x.mean()) else: xo = x n = len(x) if (unbiased and deal_with_masked and (missing == 'conservative')): d = np.correlate(notmask_int, notmask_int, 'full') elif unbiased: xi = np.arange(1, (n + 1)) d = np.hstack((xi, xi[:(- 1)][::(- 1)])) elif deal_with_masked: d = (notmask_int.sum() * np.ones(((2 * n) - 1))) else: d = (n * np.ones(((2 * n) - 1))) if fft: nobs = len(xo) n = _next_regular(((2 * nobs) + 1)) Frf = np.fft.fft(xo, n=n) acov = (np.fft.ifft((Frf * np.conjugate(Frf)))[:nobs] / d[(nobs - 1):]) acov = acov.real else: acov = (np.correlate(xo, xo, 'full') / d)[(n - 1):] if (deal_with_masked and (missing == 'conservative')): x[(~ notmask_bool)] = np.nan return acov
def q_stat(x, nobs, type='ljungbox'): "\n Return's Ljung-Box Q Statistic\n\n x : array-like\n Array of autocorrelation coefficients. Can be obtained from acf.\n nobs : int\n Number of observations in the entire sample (ie., not just the length\n of the autocorrelation function results.\n\n Returns\n -------\n q-stat : array\n Ljung-Box Q-statistic for autocorrelation parameters\n p-value : array\n P-value of the Q statistic\n\n Notes\n ------\n Written to be used with acf.\n " x = np.asarray(x) if (type == 'ljungbox'): ret = ((nobs * (nobs + 2)) * np.cumsum(((1.0 / (nobs - np.arange(1, (len(x) + 1)))) * (x ** 2)))) chi2 = stats.chi2.sf(ret, np.arange(1, (len(x) + 1))) return (ret, chi2)
-7,626,575,831,499,459,000
Return's Ljung-Box Q Statistic x : array-like Array of autocorrelation coefficients. Can be obtained from acf. nobs : int Number of observations in the entire sample (ie., not just the length of the autocorrelation function results. Returns ------- q-stat : array Ljung-Box Q-statistic for autocorrelation parameters p-value : array P-value of the Q statistic Notes ------ Written to be used with acf.
statsmodels/tsa/stattools.py
q_stat
josef-pkt/statsmodels
python
def q_stat(x, nobs, type='ljungbox'): "\n Return's Ljung-Box Q Statistic\n\n x : array-like\n Array of autocorrelation coefficients. Can be obtained from acf.\n nobs : int\n Number of observations in the entire sample (ie., not just the length\n of the autocorrelation function results.\n\n Returns\n -------\n q-stat : array\n Ljung-Box Q-statistic for autocorrelation parameters\n p-value : array\n P-value of the Q statistic\n\n Notes\n ------\n Written to be used with acf.\n " x = np.asarray(x) if (type == 'ljungbox'): ret = ((nobs * (nobs + 2)) * np.cumsum(((1.0 / (nobs - np.arange(1, (len(x) + 1)))) * (x ** 2)))) chi2 = stats.chi2.sf(ret, np.arange(1, (len(x) + 1))) return (ret, chi2)
def acf(x, unbiased=False, nlags=40, qstat=False, fft=False, alpha=None, missing='none'): "\n Autocorrelation function for 1d arrays.\n\n Parameters\n ----------\n x : array\n Time series data\n unbiased : bool\n If True, then denominators for autocovariance are n-k, otherwise n\n nlags: int, optional\n Number of lags to return autocorrelation for.\n qstat : bool, optional\n If True, returns the Ljung-Box q statistic for each autocorrelation\n coefficient. See q_stat for more information.\n fft : bool, optional\n If True, computes the ACF via FFT.\n alpha : scalar, optional\n If a number is given, the confidence intervals for the given level are\n returned. For instance if alpha=.05, 95 % confidence intervals are\n returned where the standard deviation is computed according to\n Bartlett's formula.\n missing : str, optional\n A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs\n are to be treated.\n\n Returns\n -------\n acf : array\n autocorrelation function\n confint : array, optional\n Confidence intervals for the ACF. Returned if confint is not None.\n qstat : array, optional\n The Ljung-Box Q-Statistic. Returned if q_stat is True.\n pvalues : array, optional\n The p-values associated with the Q-statistics. Returned if q_stat is\n True.\n\n Notes\n -----\n The acf at lag 0 (ie., 1) is returned.\n\n This is based np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n\n If unbiased is true, the denominator for the autocovariance is adjusted\n but the autocorrelation is not an unbiased estimtor.\n\n References\n ----------\n .. [*] Parzen, E., 1963. On spectral analysis with missing observations\n and amplitude modulation. Sankhya: The Indian Journal of\n Statistics, Series A, pp.383-392.\n\n " nobs = len(x) avf = acovf(x, unbiased=unbiased, demean=True, fft=fft, missing=missing) acf = (avf[:(nlags + 1)] / avf[0]) if (not (qstat or alpha)): return acf if (alpha is not None): varacf = (np.ones((nlags + 1)) / nobs) varacf[0] = 0 varacf[1] = (1.0 / nobs) varacf[2:] *= (1 + (2 * np.cumsum((acf[1:(- 1)] ** 2)))) interval = (stats.norm.ppf((1 - (alpha / 2.0))) * np.sqrt(varacf)) confint = np.array(lzip((acf - interval), (acf + interval))) if (not qstat): return (acf, confint) if qstat: (qstat, pvalue) = q_stat(acf[1:], nobs=nobs) if (alpha is not None): return (acf, confint, qstat, pvalue) else: return (acf, qstat, pvalue)
-6,031,796,841,099,306,000
Autocorrelation function for 1d arrays. Parameters ---------- x : array Time series data unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n nlags: int, optional Number of lags to return autocorrelation for. qstat : bool, optional If True, returns the Ljung-Box q statistic for each autocorrelation coefficient. See q_stat for more information. fft : bool, optional If True, computes the ACF via FFT. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett's formula. missing : str, optional A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs are to be treated. Returns ------- acf : array autocorrelation function confint : array, optional Confidence intervals for the ACF. Returned if confint is not None. qstat : array, optional The Ljung-Box Q-Statistic. Returned if q_stat is True. pvalues : array, optional The p-values associated with the Q-statistics. Returned if q_stat is True. Notes ----- The acf at lag 0 (ie., 1) is returned. This is based np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead. If unbiased is true, the denominator for the autocovariance is adjusted but the autocorrelation is not an unbiased estimtor. References ---------- .. [*] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392.
statsmodels/tsa/stattools.py
acf
josef-pkt/statsmodels
python
def acf(x, unbiased=False, nlags=40, qstat=False, fft=False, alpha=None, missing='none'): "\n Autocorrelation function for 1d arrays.\n\n Parameters\n ----------\n x : array\n Time series data\n unbiased : bool\n If True, then denominators for autocovariance are n-k, otherwise n\n nlags: int, optional\n Number of lags to return autocorrelation for.\n qstat : bool, optional\n If True, returns the Ljung-Box q statistic for each autocorrelation\n coefficient. See q_stat for more information.\n fft : bool, optional\n If True, computes the ACF via FFT.\n alpha : scalar, optional\n If a number is given, the confidence intervals for the given level are\n returned. For instance if alpha=.05, 95 % confidence intervals are\n returned where the standard deviation is computed according to\n Bartlett's formula.\n missing : str, optional\n A string in ['none', 'raise', 'conservative', 'drop'] specifying how the NaNs\n are to be treated.\n\n Returns\n -------\n acf : array\n autocorrelation function\n confint : array, optional\n Confidence intervals for the ACF. Returned if confint is not None.\n qstat : array, optional\n The Ljung-Box Q-Statistic. Returned if q_stat is True.\n pvalues : array, optional\n The p-values associated with the Q-statistics. Returned if q_stat is\n True.\n\n Notes\n -----\n The acf at lag 0 (ie., 1) is returned.\n\n This is based np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n\n If unbiased is true, the denominator for the autocovariance is adjusted\n but the autocorrelation is not an unbiased estimtor.\n\n References\n ----------\n .. [*] Parzen, E., 1963. On spectral analysis with missing observations\n and amplitude modulation. Sankhya: The Indian Journal of\n Statistics, Series A, pp.383-392.\n\n " nobs = len(x) avf = acovf(x, unbiased=unbiased, demean=True, fft=fft, missing=missing) acf = (avf[:(nlags + 1)] / avf[0]) if (not (qstat or alpha)): return acf if (alpha is not None): varacf = (np.ones((nlags + 1)) / nobs) varacf[0] = 0 varacf[1] = (1.0 / nobs) varacf[2:] *= (1 + (2 * np.cumsum((acf[1:(- 1)] ** 2)))) interval = (stats.norm.ppf((1 - (alpha / 2.0))) * np.sqrt(varacf)) confint = np.array(lzip((acf - interval), (acf + interval))) if (not qstat): return (acf, confint) if qstat: (qstat, pvalue) = q_stat(acf[1:], nobs=nobs) if (alpha is not None): return (acf, confint, qstat, pvalue) else: return (acf, qstat, pvalue)
def pacf_yw(x, nlags=40, method='unbiased'): "Partial autocorrelation estimated with non-recursive yule_walker\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n largest lag for which pacf is returned\n method : 'unbiased' (default) or 'mle'\n method for the autocovariance calculations in yule walker\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, maxlag+1 elements\n\n Notes\n -----\n This solves yule_walker for each desired lag and contains\n currently duplicate calculations.\n " pacf = [1.0] for k in range(1, (nlags + 1)): pacf.append(yule_walker(x, k, method=method)[0][(- 1)]) return np.array(pacf)
7,176,742,949,149,395,000
Partial autocorrelation estimated with non-recursive yule_walker Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int largest lag for which pacf is returned method : 'unbiased' (default) or 'mle' method for the autocovariance calculations in yule walker Returns ------- pacf : 1d array partial autocorrelations, maxlag+1 elements Notes ----- This solves yule_walker for each desired lag and contains currently duplicate calculations.
statsmodels/tsa/stattools.py
pacf_yw
josef-pkt/statsmodels
python
def pacf_yw(x, nlags=40, method='unbiased'): "Partial autocorrelation estimated with non-recursive yule_walker\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n largest lag for which pacf is returned\n method : 'unbiased' (default) or 'mle'\n method for the autocovariance calculations in yule walker\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, maxlag+1 elements\n\n Notes\n -----\n This solves yule_walker for each desired lag and contains\n currently duplicate calculations.\n " pacf = [1.0] for k in range(1, (nlags + 1)): pacf.append(yule_walker(x, k, method=method)[0][(- 1)]) return np.array(pacf)
def pacf_ols(x, nlags=40): 'Calculate partial autocorrelations\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n Number of lags for which pacf is returned. Lag 0 is not returned.\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, maxlag+1 elements\n\n Notes\n -----\n This solves a separate OLS estimation for each desired lag.\n ' (xlags, x0) = lagmat(x, nlags, original='sep') xlags = add_constant(xlags) pacf = [1.0] for k in range(1, (nlags + 1)): res = OLS(x0[k:], xlags[k:, :(k + 1)]).fit() pacf.append(res.params[(- 1)]) return np.array(pacf)
6,238,843,439,734,900,000
Calculate partial autocorrelations Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int Number of lags for which pacf is returned. Lag 0 is not returned. Returns ------- pacf : 1d array partial autocorrelations, maxlag+1 elements Notes ----- This solves a separate OLS estimation for each desired lag.
statsmodels/tsa/stattools.py
pacf_ols
josef-pkt/statsmodels
python
def pacf_ols(x, nlags=40): 'Calculate partial autocorrelations\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n Number of lags for which pacf is returned. Lag 0 is not returned.\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, maxlag+1 elements\n\n Notes\n -----\n This solves a separate OLS estimation for each desired lag.\n ' (xlags, x0) = lagmat(x, nlags, original='sep') xlags = add_constant(xlags) pacf = [1.0] for k in range(1, (nlags + 1)): res = OLS(x0[k:], xlags[k:, :(k + 1)]).fit() pacf.append(res.params[(- 1)]) return np.array(pacf)
def pacf(x, nlags=40, method='ywunbiased', alpha=None): "\n Partial autocorrelation estimated\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n largest lag for which pacf is returned\n method : {'ywunbiased', 'ywmle', 'ols'}\n specifies which method for the calculations to use:\n\n - yw or ywunbiased : yule walker with bias correction in denominator\n for acovf. Default.\n - ywm or ywmle : yule walker without bias correction\n - ols - regression of time series on lags of it and on constant\n - ld or ldunbiased : Levinson-Durbin recursion with bias correction\n - ldb or ldbiased : Levinson-Durbin recursion without bias correction\n alpha : float, optional\n If a number is given, the confidence intervals for the given level are\n returned. For instance if alpha=.05, 95 % confidence intervals are\n returned where the standard deviation is computed according to\n 1/sqrt(len(x))\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, nlags elements, including lag zero\n confint : array, optional\n Confidence intervals for the PACF. Returned if confint is not None.\n\n Notes\n -----\n This solves yule_walker equations or ols for each desired lag\n and contains currently duplicate calculations.\n " if (method == 'ols'): ret = pacf_ols(x, nlags=nlags) elif (method in ['yw', 'ywu', 'ywunbiased', 'yw_unbiased']): ret = pacf_yw(x, nlags=nlags, method='unbiased') elif (method in ['ywm', 'ywmle', 'yw_mle']): ret = pacf_yw(x, nlags=nlags, method='mle') elif (method in ['ld', 'ldu', 'ldunbiase', 'ld_unbiased']): acv = acovf(x, unbiased=True) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] elif (method in ['ldb', 'ldbiased', 'ld_biased']): acv = acovf(x, unbiased=False) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] else: raise ValueError('method not available') if (alpha is not None): varacf = (1.0 / len(x)) interval = (stats.norm.ppf((1.0 - (alpha / 2.0))) * np.sqrt(varacf)) confint = np.array(lzip((ret - interval), (ret + interval))) confint[0] = ret[0] return (ret, confint) else: return ret
2,415,925,801,062,447,000
Partial autocorrelation estimated Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int largest lag for which pacf is returned method : {'ywunbiased', 'ywmle', 'ols'} specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf. Default. - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) Returns ------- pacf : 1d array partial autocorrelations, nlags elements, including lag zero confint : array, optional Confidence intervals for the PACF. Returned if confint is not None. Notes ----- This solves yule_walker equations or ols for each desired lag and contains currently duplicate calculations.
statsmodels/tsa/stattools.py
pacf
josef-pkt/statsmodels
python
def pacf(x, nlags=40, method='ywunbiased', alpha=None): "\n Partial autocorrelation estimated\n\n Parameters\n ----------\n x : 1d array\n observations of time series for which pacf is calculated\n nlags : int\n largest lag for which pacf is returned\n method : {'ywunbiased', 'ywmle', 'ols'}\n specifies which method for the calculations to use:\n\n - yw or ywunbiased : yule walker with bias correction in denominator\n for acovf. Default.\n - ywm or ywmle : yule walker without bias correction\n - ols - regression of time series on lags of it and on constant\n - ld or ldunbiased : Levinson-Durbin recursion with bias correction\n - ldb or ldbiased : Levinson-Durbin recursion without bias correction\n alpha : float, optional\n If a number is given, the confidence intervals for the given level are\n returned. For instance if alpha=.05, 95 % confidence intervals are\n returned where the standard deviation is computed according to\n 1/sqrt(len(x))\n\n Returns\n -------\n pacf : 1d array\n partial autocorrelations, nlags elements, including lag zero\n confint : array, optional\n Confidence intervals for the PACF. Returned if confint is not None.\n\n Notes\n -----\n This solves yule_walker equations or ols for each desired lag\n and contains currently duplicate calculations.\n " if (method == 'ols'): ret = pacf_ols(x, nlags=nlags) elif (method in ['yw', 'ywu', 'ywunbiased', 'yw_unbiased']): ret = pacf_yw(x, nlags=nlags, method='unbiased') elif (method in ['ywm', 'ywmle', 'yw_mle']): ret = pacf_yw(x, nlags=nlags, method='mle') elif (method in ['ld', 'ldu', 'ldunbiase', 'ld_unbiased']): acv = acovf(x, unbiased=True) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] elif (method in ['ldb', 'ldbiased', 'ld_biased']): acv = acovf(x, unbiased=False) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] else: raise ValueError('method not available') if (alpha is not None): varacf = (1.0 / len(x)) interval = (stats.norm.ppf((1.0 - (alpha / 2.0))) * np.sqrt(varacf)) confint = np.array(lzip((ret - interval), (ret + interval))) confint[0] = ret[0] return (ret, confint) else: return ret
def ccovf(x, y, unbiased=True, demean=True): ' crosscovariance for 1D\n\n Parameters\n ----------\n x, y : arrays\n time series data\n unbiased : boolean\n if True, then denominators is n-k, otherwise n\n\n Returns\n -------\n ccovf : array\n autocovariance function\n\n Notes\n -----\n This uses np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n ' n = len(x) if demean: xo = (x - x.mean()) yo = (y - y.mean()) else: xo = x yo = y if unbiased: xi = np.ones(n) d = np.correlate(xi, xi, 'full') else: d = n return (np.correlate(xo, yo, 'full') / d)[(n - 1):]
4,675,003,449,293,840,000
crosscovariance for 1D Parameters ---------- x, y : arrays time series data unbiased : boolean if True, then denominators is n-k, otherwise n Returns ------- ccovf : array autocovariance function Notes ----- This uses np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead.
statsmodels/tsa/stattools.py
ccovf
josef-pkt/statsmodels
python
def ccovf(x, y, unbiased=True, demean=True): ' crosscovariance for 1D\n\n Parameters\n ----------\n x, y : arrays\n time series data\n unbiased : boolean\n if True, then denominators is n-k, otherwise n\n\n Returns\n -------\n ccovf : array\n autocovariance function\n\n Notes\n -----\n This uses np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n ' n = len(x) if demean: xo = (x - x.mean()) yo = (y - y.mean()) else: xo = x yo = y if unbiased: xi = np.ones(n) d = np.correlate(xi, xi, 'full') else: d = n return (np.correlate(xo, yo, 'full') / d)[(n - 1):]
def ccf(x, y, unbiased=True): 'cross-correlation function for 1d\n\n Parameters\n ----------\n x, y : arrays\n time series data\n unbiased : boolean\n if True, then denominators for autocovariance is n-k, otherwise n\n\n Returns\n -------\n ccf : array\n cross-correlation function of x and y\n\n Notes\n -----\n This is based np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n\n If unbiased is true, the denominator for the autocovariance is adjusted\n but the autocorrelation is not an unbiased estimtor.\n\n ' cvf = ccovf(x, y, unbiased=unbiased, demean=True) return (cvf / (np.std(x) * np.std(y)))
-2,296,032,143,774,643,000
cross-correlation function for 1d Parameters ---------- x, y : arrays time series data unbiased : boolean if True, then denominators for autocovariance is n-k, otherwise n Returns ------- ccf : array cross-correlation function of x and y Notes ----- This is based np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead. If unbiased is true, the denominator for the autocovariance is adjusted but the autocorrelation is not an unbiased estimtor.
statsmodels/tsa/stattools.py
ccf
josef-pkt/statsmodels
python
def ccf(x, y, unbiased=True): 'cross-correlation function for 1d\n\n Parameters\n ----------\n x, y : arrays\n time series data\n unbiased : boolean\n if True, then denominators for autocovariance is n-k, otherwise n\n\n Returns\n -------\n ccf : array\n cross-correlation function of x and y\n\n Notes\n -----\n This is based np.correlate which does full convolution. For very long time\n series it is recommended to use fft convolution instead.\n\n If unbiased is true, the denominator for the autocovariance is adjusted\n but the autocorrelation is not an unbiased estimtor.\n\n ' cvf = ccovf(x, y, unbiased=unbiased, demean=True) return (cvf / (np.std(x) * np.std(y)))
def periodogram(X): '\n Returns the periodogram for the natural frequency of X\n\n Parameters\n ----------\n X : array-like\n Array for which the periodogram is desired.\n\n Returns\n -------\n pgram : array\n 1./len(X) * np.abs(np.fft.fft(X))**2\n\n\n References\n ----------\n Brockwell and Davis.\n ' X = np.asarray(X) pergr = ((1.0 / len(X)) * (np.abs(np.fft.fft(X)) ** 2)) pergr[0] = 0.0 return pergr
6,612,493,813,122,968,000
Returns the periodogram for the natural frequency of X Parameters ---------- X : array-like Array for which the periodogram is desired. Returns ------- pgram : array 1./len(X) * np.abs(np.fft.fft(X))**2 References ---------- Brockwell and Davis.
statsmodels/tsa/stattools.py
periodogram
josef-pkt/statsmodels
python
def periodogram(X): '\n Returns the periodogram for the natural frequency of X\n\n Parameters\n ----------\n X : array-like\n Array for which the periodogram is desired.\n\n Returns\n -------\n pgram : array\n 1./len(X) * np.abs(np.fft.fft(X))**2\n\n\n References\n ----------\n Brockwell and Davis.\n ' X = np.asarray(X) pergr = ((1.0 / len(X)) * (np.abs(np.fft.fft(X)) ** 2)) pergr[0] = 0.0 return pergr
def levinson_durbin(s, nlags=10, isacov=False): 'Levinson-Durbin recursion for autoregressive processes\n\n Parameters\n ----------\n s : array_like\n If isacov is False, then this is the time series. If iasacov is true\n then this is interpreted as autocovariance starting with lag 0\n nlags : integer\n largest lag to include in recursion or order of the autoregressive\n process\n isacov : boolean\n flag to indicate whether the first argument, s, contains the\n autocovariances or the data series.\n\n Returns\n -------\n sigma_v : float\n estimate of the error variance ?\n arcoefs : ndarray\n estimate of the autoregressive coefficients\n pacf : ndarray\n partial autocorrelation function\n sigma : ndarray\n entire sigma array from intermediate result, last value is sigma_v\n phi : ndarray\n entire phi array from intermediate result, last column contains\n autoregressive coefficients for AR(nlags) with a leading 1\n\n Notes\n -----\n This function returns currently all results, but maybe we drop sigma and\n phi from the returns.\n\n If this function is called with the time series (isacov=False), then the\n sample autocovariance function is calculated with the default options\n (biased, no fft).\n ' s = np.asarray(s) order = nlags if isacov: sxx_m = s else: sxx_m = acovf(s)[:(order + 1)] phi = np.zeros(((order + 1), (order + 1)), 'd') sig = np.zeros((order + 1)) phi[(1, 1)] = (sxx_m[1] / sxx_m[0]) sig[1] = (sxx_m[0] - (phi[(1, 1)] * sxx_m[1])) for k in range(2, (order + 1)): phi[(k, k)] = ((sxx_m[k] - np.dot(phi[1:k, (k - 1)], sxx_m[1:k][::(- 1)])) / sig[(k - 1)]) for j in range(1, k): phi[(j, k)] = (phi[(j, (k - 1))] - (phi[(k, k)] * phi[((k - j), (k - 1))])) sig[k] = (sig[(k - 1)] * (1 - (phi[(k, k)] ** 2))) sigma_v = sig[(- 1)] arcoefs = phi[1:, (- 1)] pacf_ = np.diag(phi).copy() pacf_[0] = 1.0 return (sigma_v, arcoefs, pacf_, sig, phi)
-1,512,750,122,343,626,200
Levinson-Durbin recursion for autoregressive processes Parameters ---------- s : array_like If isacov is False, then this is the time series. If iasacov is true then this is interpreted as autocovariance starting with lag 0 nlags : integer largest lag to include in recursion or order of the autoregressive process isacov : boolean flag to indicate whether the first argument, s, contains the autocovariances or the data series. Returns ------- sigma_v : float estimate of the error variance ? arcoefs : ndarray estimate of the autoregressive coefficients pacf : ndarray partial autocorrelation function sigma : ndarray entire sigma array from intermediate result, last value is sigma_v phi : ndarray entire phi array from intermediate result, last column contains autoregressive coefficients for AR(nlags) with a leading 1 Notes ----- This function returns currently all results, but maybe we drop sigma and phi from the returns. If this function is called with the time series (isacov=False), then the sample autocovariance function is calculated with the default options (biased, no fft).
statsmodels/tsa/stattools.py
levinson_durbin
josef-pkt/statsmodels
python
def levinson_durbin(s, nlags=10, isacov=False): 'Levinson-Durbin recursion for autoregressive processes\n\n Parameters\n ----------\n s : array_like\n If isacov is False, then this is the time series. If iasacov is true\n then this is interpreted as autocovariance starting with lag 0\n nlags : integer\n largest lag to include in recursion or order of the autoregressive\n process\n isacov : boolean\n flag to indicate whether the first argument, s, contains the\n autocovariances or the data series.\n\n Returns\n -------\n sigma_v : float\n estimate of the error variance ?\n arcoefs : ndarray\n estimate of the autoregressive coefficients\n pacf : ndarray\n partial autocorrelation function\n sigma : ndarray\n entire sigma array from intermediate result, last value is sigma_v\n phi : ndarray\n entire phi array from intermediate result, last column contains\n autoregressive coefficients for AR(nlags) with a leading 1\n\n Notes\n -----\n This function returns currently all results, but maybe we drop sigma and\n phi from the returns.\n\n If this function is called with the time series (isacov=False), then the\n sample autocovariance function is calculated with the default options\n (biased, no fft).\n ' s = np.asarray(s) order = nlags if isacov: sxx_m = s else: sxx_m = acovf(s)[:(order + 1)] phi = np.zeros(((order + 1), (order + 1)), 'd') sig = np.zeros((order + 1)) phi[(1, 1)] = (sxx_m[1] / sxx_m[0]) sig[1] = (sxx_m[0] - (phi[(1, 1)] * sxx_m[1])) for k in range(2, (order + 1)): phi[(k, k)] = ((sxx_m[k] - np.dot(phi[1:k, (k - 1)], sxx_m[1:k][::(- 1)])) / sig[(k - 1)]) for j in range(1, k): phi[(j, k)] = (phi[(j, (k - 1))] - (phi[(k, k)] * phi[((k - j), (k - 1))])) sig[k] = (sig[(k - 1)] * (1 - (phi[(k, k)] ** 2))) sigma_v = sig[(- 1)] arcoefs = phi[1:, (- 1)] pacf_ = np.diag(phi).copy() pacf_[0] = 1.0 return (sigma_v, arcoefs, pacf_, sig, phi)