body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def test_icmp_source_ip_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward an ICMP packet on source IP.' src_ip = ('0.0.0.0' if (ip_version == 'ipv4') else '0000:0000:0000:0000:0000:0000:0000:0000') pkt = self.icmp_packet(setup, direction, ptfadapter, ip_version, src_ip=src_ip) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(12)
7,093,914,005,455,209,000
Verify that we can match and forward an ICMP packet on source IP.
tests/acl/test_acl.py
test_icmp_source_ip_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_icmp_source_ip_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): src_ip = ('0.0.0.0' if (ip_version == 'ipv4') else '0000:0000:0000:0000:0000:0000:0000:0000') pkt = self.icmp_packet(setup, direction, ptfadapter, ip_version, src_ip=src_ip) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(12)
def test_l4_dport_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on L4 destination port.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4631) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(5)
2,258,876,962,748,210,000
Verify that we can match and forward on L4 destination port.
tests/acl/test_acl.py
test_l4_dport_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_dport_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4631) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(5)
def test_l4_sport_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on L4 source port.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4621) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(4)
-8,989,014,313,405,647,000
Verify that we can match and forward on L4 source port.
tests/acl/test_acl.py
test_l4_sport_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_sport_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4621) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(4)
def test_l4_dport_range_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on a range of L4 destination ports.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4667) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(11)
-3,062,690,915,067,301,000
Verify that we can match and forward on a range of L4 destination ports.
tests/acl/test_acl.py
test_l4_dport_range_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_dport_range_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4667) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(11)
def test_l4_sport_range_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on a range of L4 source ports.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4666) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(10)
824,063,328,700,767,600
Verify that we can match and forward on a range of L4 source ports.
tests/acl/test_acl.py
test_l4_sport_range_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_sport_range_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4666) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(10)
def test_l4_dport_range_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on a range of L4 destination ports.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4731) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(22)
7,259,250,634,837,906,000
Verify that we can match and drop on a range of L4 destination ports.
tests/acl/test_acl.py
test_l4_dport_range_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_dport_range_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4731) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(22)
def test_l4_sport_range_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on a range of L4 source ports.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4721) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(17)
-2,294,721,210,880,217,900
Verify that we can match and drop on a range of L4 source ports.
tests/acl/test_acl.py
test_l4_sport_range_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_sport_range_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4721) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(17)
def test_ip_proto_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on the IP protocol.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, proto=126) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(5)
-8,920,681,152,454,606,000
Verify that we can match and forward on the IP protocol.
tests/acl/test_acl.py
test_ip_proto_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_ip_proto_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, proto=126) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(5)
def test_tcp_flags_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and forward on the TCP flags.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, flags=27) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(6)
-4,084,106,370,377,682,400
Verify that we can match and forward on the TCP flags.
tests/acl/test_acl.py
test_tcp_flags_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_tcp_flags_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, flags=27) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(6)
def test_l4_dport_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on L4 destination port.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4731) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(22)
1,433,740,755,603,244,300
Verify that we can match and drop on L4 destination port.
tests/acl/test_acl.py
test_l4_dport_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_dport_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, dport=4731) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(22)
def test_l4_sport_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on L4 source port.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4721) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(10)
-3,961,363,212,683,512,300
Verify that we can match and drop on L4 source port.
tests/acl/test_acl.py
test_l4_sport_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_l4_sport_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, sport=4721) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(10)
def test_ip_proto_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on the IP protocol.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, proto=127) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(18)
7,359,134,178,617,844,000
Verify that we can match and drop on the IP protocol.
tests/acl/test_acl.py
test_ip_proto_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_ip_proto_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, proto=127) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(18)
def test_tcp_flags_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on the TCP flags.' pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, flags=36) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(5)
-7,891,738,788,045,145,000
Verify that we can match and drop on the TCP flags.
tests/acl/test_acl.py
test_tcp_flags_match_dropped
KostiantynYarovyiBf/sonic-mgmt
python
def test_tcp_flags_match_dropped(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): pkt = self.tcp_packet(setup, direction, ptfadapter, ip_version, flags=36) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, True, ip_version) counters_sanity_check.append(5)
def test_icmp_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): 'Verify that we can match and drop on the TCP flags.' src_ip = ('0.0.0.0' if (ip_version == 'ipv4') else '0000:0000:0000:0000:0000:0000:0000:0000') pkt = self.icmp_packet(setup, direction, ptfadapter, ip_version, src_ip=src_ip, icmp_type=3, icmp_code=1) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(29)
-4,987,940,843,696,471,000
Verify that we can match and drop on the TCP flags.
tests/acl/test_acl.py
test_icmp_match_forwarded
KostiantynYarovyiBf/sonic-mgmt
python
def test_icmp_match_forwarded(self, setup, direction, ptfadapter, counters_sanity_check, ip_version): src_ip = ('0.0.0.0' if (ip_version == 'ipv4') else '0000:0000:0000:0000:0000:0000:0000:0000') pkt = self.icmp_packet(setup, direction, ptfadapter, ip_version, src_ip=src_ip, icmp_type=3, icmp_code=1) self._verify_acl_traffic(setup, direction, ptfadapter, pkt, False, ip_version) counters_sanity_check.append(29)
def setup_rules(self, dut, acl_table, ip_version): 'Setup ACL rules for testing.\n\n Args:\n dut: The DUT having ACLs applied.\n acl_table: Configuration info for the ACL table.\n\n ' table_name = acl_table['table_name'] dut.host.options['variable_manager'].extra_vars.update({'acl_table_name': table_name}) logger.info('Generating basic ACL rules config for ACL table "{}" on {}'.format(table_name, dut)) dut_conf_file_path = os.path.join(DUT_TMP_DIR, 'acl_rules_{}.json'.format(table_name)) dut.template(src=os.path.join(TEMPLATE_DIR, ACL_RULES_FULL_TEMPLATE[ip_version]), dest=dut_conf_file_path) logger.info('Applying ACL rules config "{}"'.format(dut_conf_file_path)) dut.command('config acl update full {}'.format(dut_conf_file_path))
-9,207,895,307,831,951,000
Setup ACL rules for testing. Args: dut: The DUT having ACLs applied. acl_table: Configuration info for the ACL table.
tests/acl/test_acl.py
setup_rules
KostiantynYarovyiBf/sonic-mgmt
python
def setup_rules(self, dut, acl_table, ip_version): 'Setup ACL rules for testing.\n\n Args:\n dut: The DUT having ACLs applied.\n acl_table: Configuration info for the ACL table.\n\n ' table_name = acl_table['table_name'] dut.host.options['variable_manager'].extra_vars.update({'acl_table_name': table_name}) logger.info('Generating basic ACL rules config for ACL table "{}" on {}'.format(table_name, dut)) dut_conf_file_path = os.path.join(DUT_TMP_DIR, 'acl_rules_{}.json'.format(table_name)) dut.template(src=os.path.join(TEMPLATE_DIR, ACL_RULES_FULL_TEMPLATE[ip_version]), dest=dut_conf_file_path) logger.info('Applying ACL rules config "{}"'.format(dut_conf_file_path)) dut.command('config acl update full {}'.format(dut_conf_file_path))
def setup_rules(self, dut, acl_table, ip_version): 'Setup ACL rules for testing.\n\n Args:\n dut: The DUT having ACLs applied.\n acl_table: Configuration info for the ACL table.\n\n ' table_name = acl_table['table_name'] dut.host.options['variable_manager'].extra_vars.update({'acl_table_name': table_name}) logger.info('Generating incremental ACL rules config for ACL table "{}"'.format(table_name)) for (part, config_file) in enumerate(ACL_RULES_PART_TEMPLATES[ip_version]): dut_conf_file_path = os.path.join(DUT_TMP_DIR, 'acl_rules_{}_part_{}.json'.format(table_name, part)) dut.template(src=os.path.join(TEMPLATE_DIR, config_file), dest=dut_conf_file_path) logger.info('Applying ACL rules config "{}"'.format(dut_conf_file_path)) dut.command('config acl update incremental {}'.format(dut_conf_file_path))
187,118,581,047,614,400
Setup ACL rules for testing. Args: dut: The DUT having ACLs applied. acl_table: Configuration info for the ACL table.
tests/acl/test_acl.py
setup_rules
KostiantynYarovyiBf/sonic-mgmt
python
def setup_rules(self, dut, acl_table, ip_version): 'Setup ACL rules for testing.\n\n Args:\n dut: The DUT having ACLs applied.\n acl_table: Configuration info for the ACL table.\n\n ' table_name = acl_table['table_name'] dut.host.options['variable_manager'].extra_vars.update({'acl_table_name': table_name}) logger.info('Generating incremental ACL rules config for ACL table "{}"'.format(table_name)) for (part, config_file) in enumerate(ACL_RULES_PART_TEMPLATES[ip_version]): dut_conf_file_path = os.path.join(DUT_TMP_DIR, 'acl_rules_{}_part_{}.json'.format(table_name, part)) dut.template(src=os.path.join(TEMPLATE_DIR, config_file), dest=dut_conf_file_path) logger.info('Applying ACL rules config "{}"'.format(dut_conf_file_path)) dut.command('config acl update incremental {}'.format(dut_conf_file_path))
def post_setup_hook(self, dut, localhost, populate_vlan_arp_entries, tbinfo): 'Save configuration and reboot after rules are applied.\n\n Args:\n dut: The DUT having ACLs applied.\n localhost: The host from which tests are run.\n populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.\n\n ' dut.command('config save -y') reboot(dut, localhost, wait=240) if (dut.facts['platform'] == 'x86_64-cel_e1031-r0'): time.sleep(240) populate_vlan_arp_entries()
-1,384,489,803,225,975,800
Save configuration and reboot after rules are applied. Args: dut: The DUT having ACLs applied. localhost: The host from which tests are run. populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.
tests/acl/test_acl.py
post_setup_hook
KostiantynYarovyiBf/sonic-mgmt
python
def post_setup_hook(self, dut, localhost, populate_vlan_arp_entries, tbinfo): 'Save configuration and reboot after rules are applied.\n\n Args:\n dut: The DUT having ACLs applied.\n localhost: The host from which tests are run.\n populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.\n\n ' dut.command('config save -y') reboot(dut, localhost, wait=240) if (dut.facts['platform'] == 'x86_64-cel_e1031-r0'): time.sleep(240) populate_vlan_arp_entries()
def post_setup_hook(self, dut, localhost, populate_vlan_arp_entries, tbinfo): 'Toggle ports after rules are applied.\n\n Args:\n dut: The DUT having ACLs applied.\n localhost: The host from which tests are run.\n populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.\n\n ' port_toggle(dut, tbinfo) populate_vlan_arp_entries()
1,083,809,853,983,803,800
Toggle ports after rules are applied. Args: dut: The DUT having ACLs applied. localhost: The host from which tests are run. populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.
tests/acl/test_acl.py
post_setup_hook
KostiantynYarovyiBf/sonic-mgmt
python
def post_setup_hook(self, dut, localhost, populate_vlan_arp_entries, tbinfo): 'Toggle ports after rules are applied.\n\n Args:\n dut: The DUT having ACLs applied.\n localhost: The host from which tests are run.\n populate_vlan_arp_entries: A fixture to populate ARP/FDB tables for VLAN interfaces.\n\n ' port_toggle(dut, tbinfo) populate_vlan_arp_entries()
def compute_ade(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber) -> NDArrayFloat: 'Compute the average displacement error for a set of K predicted trajectories (for the same actor).\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory.\n\n Returns:\n (K,) Average displacement error for each of the predicted trajectories.\n ' displacement_errors = np.linalg.norm((forecasted_trajectories - gt_trajectory), axis=2) ade: NDArrayFloat = np.mean(displacement_errors, axis=1) return ade
-3,052,068,636,033,702,000
Compute the average displacement error for a set of K predicted trajectories (for the same actor). Args: forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length. gt_trajectory: (N, 2) ground truth trajectory. Returns: (K,) Average displacement error for each of the predicted trajectories.
src/av2/datasets/motion_forecasting/eval/metrics.py
compute_ade
johnwlambert/argoverse2-api
python
def compute_ade(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber) -> NDArrayFloat: 'Compute the average displacement error for a set of K predicted trajectories (for the same actor).\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory.\n\n Returns:\n (K,) Average displacement error for each of the predicted trajectories.\n ' displacement_errors = np.linalg.norm((forecasted_trajectories - gt_trajectory), axis=2) ade: NDArrayFloat = np.mean(displacement_errors, axis=1) return ade
def compute_fde(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber) -> NDArrayFloat: 'Compute the final displacement error for a set of K predicted trajectories (for the same actor).\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory, FDE will be evaluated against true position at index `N-1`.\n\n Returns:\n (K,) Final displacement error for each of the predicted trajectories.\n ' fde_vector = (forecasted_trajectories - gt_trajectory)[:, (- 1)] fde: NDArrayFloat = np.linalg.norm(fde_vector, axis=(- 1)) return fde
-7,312,789,622,416,517,000
Compute the final displacement error for a set of K predicted trajectories (for the same actor). Args: forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length. gt_trajectory: (N, 2) ground truth trajectory, FDE will be evaluated against true position at index `N-1`. Returns: (K,) Final displacement error for each of the predicted trajectories.
src/av2/datasets/motion_forecasting/eval/metrics.py
compute_fde
johnwlambert/argoverse2-api
python
def compute_fde(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber) -> NDArrayFloat: 'Compute the final displacement error for a set of K predicted trajectories (for the same actor).\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory, FDE will be evaluated against true position at index `N-1`.\n\n Returns:\n (K,) Final displacement error for each of the predicted trajectories.\n ' fde_vector = (forecasted_trajectories - gt_trajectory)[:, (- 1)] fde: NDArrayFloat = np.linalg.norm(fde_vector, axis=(- 1)) return fde
def compute_is_missed_prediction(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber, miss_threshold_m: float=2.0) -> NDArrayBool: 'Compute whether each of K predicted trajectories (for the same actor) missed by more than a distance threshold.\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory, miss will be evaluated against true position at index `N-1`.\n miss_threshold_m: Minimum distance threshold for final displacement to be considered a miss.\n\n Returns:\n (K,) Bools indicating whether prediction missed by more than specified threshold.\n ' fde = compute_fde(forecasted_trajectories, gt_trajectory) is_missed_prediction = (fde > miss_threshold_m) return is_missed_prediction
3,236,725,978,363,458,000
Compute whether each of K predicted trajectories (for the same actor) missed by more than a distance threshold. Args: forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length. gt_trajectory: (N, 2) ground truth trajectory, miss will be evaluated against true position at index `N-1`. miss_threshold_m: Minimum distance threshold for final displacement to be considered a miss. Returns: (K,) Bools indicating whether prediction missed by more than specified threshold.
src/av2/datasets/motion_forecasting/eval/metrics.py
compute_is_missed_prediction
johnwlambert/argoverse2-api
python
def compute_is_missed_prediction(forecasted_trajectories: NDArrayNumber, gt_trajectory: NDArrayNumber, miss_threshold_m: float=2.0) -> NDArrayBool: 'Compute whether each of K predicted trajectories (for the same actor) missed by more than a distance threshold.\n\n Args:\n forecasted_trajectories: (K, N, 2) predicted trajectories, each N timestamps in length.\n gt_trajectory: (N, 2) ground truth trajectory, miss will be evaluated against true position at index `N-1`.\n miss_threshold_m: Minimum distance threshold for final displacement to be considered a miss.\n\n Returns:\n (K,) Bools indicating whether prediction missed by more than specified threshold.\n ' fde = compute_fde(forecasted_trajectories, gt_trajectory) is_missed_prediction = (fde > miss_threshold_m) return is_missed_prediction
def get_ts_pipeline(window_size): ' Function return pipeline with lagged transformation in it ' node_lagged = PrimaryNode('lagged') node_lagged.custom_params = {'window_size': window_size} node_final = SecondaryNode('ridge', nodes_from=[node_lagged]) pipeline = Pipeline(node_final) return pipeline
-2,480,786,781,826,258,400
Function return pipeline with lagged transformation in it
test/unit/data_operations/test_data_operation_params.py
get_ts_pipeline
vkirilenko/FEDOT
python
def get_ts_pipeline(window_size): ' ' node_lagged = PrimaryNode('lagged') node_lagged.custom_params = {'window_size': window_size} node_final = SecondaryNode('ridge', nodes_from=[node_lagged]) pipeline = Pipeline(node_final) return pipeline
def get_ransac_pipeline(): ' Function return pipeline with lagged transformation in it ' node_ransac = PrimaryNode('ransac_lin_reg') node_final = SecondaryNode('linear', nodes_from=[node_ransac]) pipeline = Pipeline(node_final) return pipeline
5,672,901,399,378,419,000
Function return pipeline with lagged transformation in it
test/unit/data_operations/test_data_operation_params.py
get_ransac_pipeline
vkirilenko/FEDOT
python
def get_ransac_pipeline(): ' ' node_ransac = PrimaryNode('ransac_lin_reg') node_final = SecondaryNode('linear', nodes_from=[node_ransac]) pipeline = Pipeline(node_final) return pipeline
def test_lagged_with_invalid_params_fit_correctly(): " The function define a pipeline with incorrect parameters in the lagged\n transformation. During the training of the pipeline, the parameter 'window_size'\n is corrected\n " window_size = 600 len_forecast = 50 project_root_path = str(fedot_project_root()) file_path = os.path.join(project_root_path, 'test/data/short_time_series.csv') df = pd.read_csv(file_path) time_series = np.array(df['sea_height']) task = Task(TaskTypesEnum.ts_forecasting, TsForecastingParams(forecast_length=len_forecast)) ts_input = InputData(idx=np.arange(0, len(time_series)), features=time_series, target=time_series, task=task, data_type=DataTypesEnum.ts) pipeline = get_ts_pipeline(window_size) pipeline.fit(ts_input) lagged_node = pipeline.nodes[1] fixed_params = lagged_node.custom_params assert pipeline.is_fitted assert (fixed_params['window_size'] == 439)
-847,786,012,287,908,600
The function define a pipeline with incorrect parameters in the lagged transformation. During the training of the pipeline, the parameter 'window_size' is corrected
test/unit/data_operations/test_data_operation_params.py
test_lagged_with_invalid_params_fit_correctly
vkirilenko/FEDOT
python
def test_lagged_with_invalid_params_fit_correctly(): " The function define a pipeline with incorrect parameters in the lagged\n transformation. During the training of the pipeline, the parameter 'window_size'\n is corrected\n " window_size = 600 len_forecast = 50 project_root_path = str(fedot_project_root()) file_path = os.path.join(project_root_path, 'test/data/short_time_series.csv') df = pd.read_csv(file_path) time_series = np.array(df['sea_height']) task = Task(TaskTypesEnum.ts_forecasting, TsForecastingParams(forecast_length=len_forecast)) ts_input = InputData(idx=np.arange(0, len(time_series)), features=time_series, target=time_series, task=task, data_type=DataTypesEnum.ts) pipeline = get_ts_pipeline(window_size) pipeline.fit(ts_input) lagged_node = pipeline.nodes[1] fixed_params = lagged_node.custom_params assert pipeline.is_fitted assert (fixed_params['window_size'] == 439)
def test_ransac_with_invalid_params_fit_correctly(): ' Check that on a small dataset the RANSAC anomaly search algorithm can\n adjust the values of hyperparameters\n\n As stated in the sklearn documentation, min_samples is determined by default\n based on how many features are in the dataset\n Therefore, problems can arise when there are more attributes in a dataset\n than the number of objects\n ' input_regression = get_synthetic_regression_data(n_samples=20, n_features=23) ransac_pipeline = get_ransac_pipeline() ransac_pipeline.fit(input_regression) predicted = ransac_pipeline.predict(input_regression) assert ransac_pipeline.is_fitted assert (predicted is not None)
-6,346,821,675,250,235,000
Check that on a small dataset the RANSAC anomaly search algorithm can adjust the values of hyperparameters As stated in the sklearn documentation, min_samples is determined by default based on how many features are in the dataset Therefore, problems can arise when there are more attributes in a dataset than the number of objects
test/unit/data_operations/test_data_operation_params.py
test_ransac_with_invalid_params_fit_correctly
vkirilenko/FEDOT
python
def test_ransac_with_invalid_params_fit_correctly(): ' Check that on a small dataset the RANSAC anomaly search algorithm can\n adjust the values of hyperparameters\n\n As stated in the sklearn documentation, min_samples is determined by default\n based on how many features are in the dataset\n Therefore, problems can arise when there are more attributes in a dataset\n than the number of objects\n ' input_regression = get_synthetic_regression_data(n_samples=20, n_features=23) ransac_pipeline = get_ransac_pipeline() ransac_pipeline.fit(input_regression) predicted = ransac_pipeline.predict(input_regression) assert ransac_pipeline.is_fitted assert (predicted is not None)
def undo_logger_setup(): 'Undoes the automatic logging setup done by OpenAI Gym. You should call\n this function if you want to manually configure logging\n yourself. Typical usage would involve putting something like the\n following at the top of your script:\n\n gym.undo_logger_setup()\n logger = logging.getLogger()\n logger.addHandler(logging.StreamHandler(sys.stderr))\n ' root_logger.removeHandler(handler) gym.logger.setLevel(logging.NOTSET) requests_logger.setLevel(logging.NOTSET)
5,744,155,521,019,760,000
Undoes the automatic logging setup done by OpenAI Gym. You should call this function if you want to manually configure logging yourself. Typical usage would involve putting something like the following at the top of your script: gym.undo_logger_setup() logger = logging.getLogger() logger.addHandler(logging.StreamHandler(sys.stderr))
gym/configuration.py
undo_logger_setup
HosseynGT/GYM
python
def undo_logger_setup(): 'Undoes the automatic logging setup done by OpenAI Gym. You should call\n this function if you want to manually configure logging\n yourself. Typical usage would involve putting something like the\n following at the top of your script:\n\n gym.undo_logger_setup()\n logger = logging.getLogger()\n logger.addHandler(logging.StreamHandler(sys.stderr))\n ' root_logger.removeHandler(handler) gym.logger.setLevel(logging.NOTSET) requests_logger.setLevel(logging.NOTSET)
def parse_cmdline(): 'Child worker command line parsing' parser = argparse.ArgumentParser(description='Remote runner parser') parser.add_argument('--address', action='store') parser.add_argument('--index', action='store') parser.add_argument('--wd', action='store') parser.add_argument('--runpath', action='store', default=None) parser.add_argument('--type', action='store') parser.add_argument('--log-level', action='store', default=0, type=int) parser.add_argument('--remote-pool-type', action='store', default='thread') parser.add_argument('--remote-pool-size', action='store', default=1) parser.add_argument('--sys-path-file', action='store') return parser.parse_args()
1,849,809,748,026,798,000
Child worker command line parsing
testplan/runners/pools/child.py
parse_cmdline
kn-ms/testplan
python
def parse_cmdline(): parser = argparse.ArgumentParser(description='Remote runner parser') parser.add_argument('--address', action='store') parser.add_argument('--index', action='store') parser.add_argument('--wd', action='store') parser.add_argument('--runpath', action='store', default=None) parser.add_argument('--type', action='store') parser.add_argument('--log-level', action='store', default=0, type=int) parser.add_argument('--remote-pool-type', action='store', default='thread') parser.add_argument('--remote-pool-size', action='store', default=1) parser.add_argument('--sys-path-file', action='store') return parser.parse_args()
def child_logic(args): 'Able to be imported child logic.' import psutil from testplan.runners.pools.base import Pool, Worker from testplan.runners.pools.process import ProcessPool, ProcessWorker from testplan.runners.pools.connection import ZMQClient if args.log_level: from testplan.common.utils.logger import TESTPLAN_LOGGER, STDOUT_HANDLER TESTPLAN_LOGGER.setLevel(args.log_level) TESTPLAN_LOGGER.removeHandler(STDOUT_HANDLER) print('Starting child process worker on {}, {} with parent {}'.format(socket.gethostname(), os.getpid(), psutil.Process(os.getpid()).ppid())) if args.runpath: print('Removing old runpath: {}'.format(args.runpath)) shutil.rmtree(args.runpath, ignore_errors=True) class NoRunpathPool(Pool): '\n Pool that creates no runpath directory.\n Has only one worker.\n Will use the one already created by parent process.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath class NoRunpathThreadPool(Pool): '\n Pool that creates no runpath directory.\n Will use the one already created by parent process.\n Supports multiple thread workers.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath class NoRunpathProcessPool(ProcessPool): '\n Pool that creates no runpath directory.\n Will use the one already created by parent process.\n Supports multiple process workers.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath transport = ZMQClient(address=args.address, recv_timeout=30) if (args.type == 'process_worker'): loop = ChildLoop(args.index, transport, NoRunpathPool, 1, Worker, TESTPLAN_LOGGER) loop.worker_loop() elif (args.type == 'remote_worker'): if (args.remote_pool_type == 'process'): pool_type = NoRunpathProcessPool worker_type = ProcessWorker else: pool_type = NoRunpathThreadPool worker_type = Worker loop = RemoteChildLoop(args.index, transport, pool_type, args.remote_pool_size, worker_type, TESTPLAN_LOGGER, runpath=args.runpath) loop.worker_loop()
6,453,819,297,988,365,000
Able to be imported child logic.
testplan/runners/pools/child.py
child_logic
kn-ms/testplan
python
def child_logic(args): import psutil from testplan.runners.pools.base import Pool, Worker from testplan.runners.pools.process import ProcessPool, ProcessWorker from testplan.runners.pools.connection import ZMQClient if args.log_level: from testplan.common.utils.logger import TESTPLAN_LOGGER, STDOUT_HANDLER TESTPLAN_LOGGER.setLevel(args.log_level) TESTPLAN_LOGGER.removeHandler(STDOUT_HANDLER) print('Starting child process worker on {}, {} with parent {}'.format(socket.gethostname(), os.getpid(), psutil.Process(os.getpid()).ppid())) if args.runpath: print('Removing old runpath: {}'.format(args.runpath)) shutil.rmtree(args.runpath, ignore_errors=True) class NoRunpathPool(Pool): '\n Pool that creates no runpath directory.\n Has only one worker.\n Will use the one already created by parent process.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath class NoRunpathThreadPool(Pool): '\n Pool that creates no runpath directory.\n Will use the one already created by parent process.\n Supports multiple thread workers.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath class NoRunpathProcessPool(ProcessPool): '\n Pool that creates no runpath directory.\n Will use the one already created by parent process.\n Supports multiple process workers.\n ' def make_runpath_dirs(self): self._runpath = self.cfg.runpath transport = ZMQClient(address=args.address, recv_timeout=30) if (args.type == 'process_worker'): loop = ChildLoop(args.index, transport, NoRunpathPool, 1, Worker, TESTPLAN_LOGGER) loop.worker_loop() elif (args.type == 'remote_worker'): if (args.remote_pool_type == 'process'): pool_type = NoRunpathProcessPool worker_type = ProcessWorker else: pool_type = NoRunpathThreadPool worker_type = Worker loop = RemoteChildLoop(args.index, transport, pool_type, args.remote_pool_size, worker_type, TESTPLAN_LOGGER, runpath=args.runpath) loop.worker_loop()
def parse_syspath_file(filename): '\n Read and parse the syspath file, which should contain each sys.path entry\n on a separate line.\n ' with open(filename) as f: new_syspath = f.read().split('\n') return new_syspath
-1,310,237,507,953,183,500
Read and parse the syspath file, which should contain each sys.path entry on a separate line.
testplan/runners/pools/child.py
parse_syspath_file
kn-ms/testplan
python
def parse_syspath_file(filename): '\n Read and parse the syspath file, which should contain each sys.path entry\n on a separate line.\n ' with open(filename) as f: new_syspath = f.read().split('\n') return new_syspath
@property def metadata(self): 'Metadata information.' return self._metadata
4,025,160,648,801,091,000
Metadata information.
testplan/runners/pools/child.py
metadata
kn-ms/testplan
python
@property def metadata(self): return self._metadata
def worker_loop(self): '\n Child process worker loop. Manages an underlying thread pool, pulls and\n sends back results to the main pool.\n ' from testplan.runners.pools.communication import Message message = Message(**self.metadata) try: self._pre_loop_setup(message) except Exception: print('_pre_loop_setup failed') self._transport.send_and_receive(message.make(message.SetupFailed, data=traceback.format_exc()), expect=message.Ack) return with self._child_pool(): message = Message(**self.metadata) next_possible_request = time.time() next_heartbeat = time.time() request_delay = self._pool_cfg.active_loop_sleep while True: now = time.time() if (self._pool_cfg.worker_heartbeat and (now > next_heartbeat)): hb_resp = self._transport.send_and_receive(message.make(message.Heartbeat, data=time.time())) if (hb_resp is None): self.logger.critical('Pool seems dead, child exits1.') self.exit_loop() break else: self.logger.debug('Pool heartbeat response: {} at {} before {}s.'.format(hb_resp.cmd, hb_resp.data, (time.time() - hb_resp.data))) next_heartbeat = (now + self._pool_cfg.worker_heartbeat) if self._pool.results: task_results = [] for uid in list(self._pool.results.keys()): task_results.append(self._pool.results[uid]) self.logger.debug('Sending back result for {}'.format(self._pool.results[uid].task)) del self._pool.results[uid] self._transport.send_and_receive(message.make(message.TaskResults, data=task_results), expect=message.Ack) demand = (self._pool.workers_requests() - self._pool.unassigned.qsize()) if ((demand > 0) and (time.time() > next_possible_request)): received = self._transport.send_and_receive(message.make(message.TaskPullRequest, data=demand)) if ((received is None) or (received.cmd == Message.Stop)): self.logger.critical('Pool seems dead or stopping, child exits.') self.exit_loop() break elif (received.cmd == Message.TaskSending): next_possible_request = time.time() request_delay = 0 for task in received.data: self.logger.debug('Added {} to local pool'.format(task)) self._pool.add(task, task.uid()) for worker in self._pool._workers: worker.requesting = 0 elif (received.cmd == Message.Ack): request_delay = min(((request_delay + 0.2) * 1.5), self._pool_cfg.max_active_loop_sleep) next_possible_request = (time.time() + request_delay) pass time.sleep(self._pool_cfg.active_loop_sleep) self.logger.info('Local pool {} stopped.'.format(self._pool))
5,512,556,476,780,485,000
Child process worker loop. Manages an underlying thread pool, pulls and sends back results to the main pool.
testplan/runners/pools/child.py
worker_loop
kn-ms/testplan
python
def worker_loop(self): '\n Child process worker loop. Manages an underlying thread pool, pulls and\n sends back results to the main pool.\n ' from testplan.runners.pools.communication import Message message = Message(**self.metadata) try: self._pre_loop_setup(message) except Exception: print('_pre_loop_setup failed') self._transport.send_and_receive(message.make(message.SetupFailed, data=traceback.format_exc()), expect=message.Ack) return with self._child_pool(): message = Message(**self.metadata) next_possible_request = time.time() next_heartbeat = time.time() request_delay = self._pool_cfg.active_loop_sleep while True: now = time.time() if (self._pool_cfg.worker_heartbeat and (now > next_heartbeat)): hb_resp = self._transport.send_and_receive(message.make(message.Heartbeat, data=time.time())) if (hb_resp is None): self.logger.critical('Pool seems dead, child exits1.') self.exit_loop() break else: self.logger.debug('Pool heartbeat response: {} at {} before {}s.'.format(hb_resp.cmd, hb_resp.data, (time.time() - hb_resp.data))) next_heartbeat = (now + self._pool_cfg.worker_heartbeat) if self._pool.results: task_results = [] for uid in list(self._pool.results.keys()): task_results.append(self._pool.results[uid]) self.logger.debug('Sending back result for {}'.format(self._pool.results[uid].task)) del self._pool.results[uid] self._transport.send_and_receive(message.make(message.TaskResults, data=task_results), expect=message.Ack) demand = (self._pool.workers_requests() - self._pool.unassigned.qsize()) if ((demand > 0) and (time.time() > next_possible_request)): received = self._transport.send_and_receive(message.make(message.TaskPullRequest, data=demand)) if ((received is None) or (received.cmd == Message.Stop)): self.logger.critical('Pool seems dead or stopping, child exits.') self.exit_loop() break elif (received.cmd == Message.TaskSending): next_possible_request = time.time() request_delay = 0 for task in received.data: self.logger.debug('Added {} to local pool'.format(task)) self._pool.add(task, task.uid()) for worker in self._pool._workers: worker.requesting = 0 elif (received.cmd == Message.Ack): request_delay = min(((request_delay + 0.2) * 1.5), self._pool_cfg.max_active_loop_sleep) next_possible_request = (time.time() + request_delay) pass time.sleep(self._pool_cfg.active_loop_sleep) self.logger.info('Local pool {} stopped.'.format(self._pool))
@property def contours(self): '\n :obj:`ipywidgets.Text`: String defining sets of contours.\n Contours can be defined over an interval `50:200:10` and/or at a fix value `215`.\n Any combination of the above can be used:\n 50:200:10, 215 => Contours between values 50 and 200 every 10, with a contour at 215.\n ' return self._contours
7,233,617,114,043,155,000
:obj:`ipywidgets.Text`: String defining sets of contours. Contours can be defined over an interval `50:200:10` and/or at a fix value `215`. Any combination of the above can be used: 50:200:10, 215 => Contours between values 50 and 200 every 10, with a contour at 215.
geoapps/contours/application.py
contours
MiraGeoscience/mirageoscience-apps
python
@property def contours(self): '\n :obj:`ipywidgets.Text`: String defining sets of contours.\n Contours can be defined over an interval `50:200:10` and/or at a fix value `215`.\n Any combination of the above can be used:\n 50:200:10, 215 => Contours between values 50 and 200 every 10, with a contour at 215.\n ' return self._contours
@property def export(self): '\n :obj:`ipywidgets.ToggleButton`: Write contours to the target geoh5\n ' return self._export
4,496,233,297,618,209,000
:obj:`ipywidgets.ToggleButton`: Write contours to the target geoh5
geoapps/contours/application.py
export
MiraGeoscience/mirageoscience-apps
python
@property def export(self): '\n \n ' return self._export
@property def export_as(self): '\n :obj:`ipywidgets.Text`: Name given to the Curve object\n ' return self._export_as
6,315,409,722,409,907,000
:obj:`ipywidgets.Text`: Name given to the Curve object
geoapps/contours/application.py
export_as
MiraGeoscience/mirageoscience-apps
python
@property def export_as(self): '\n \n ' return self._export_as
@property def z_value(self): '\n :obj:`ipywidgets.Checkbox`: Assign z-coordinate based on contour values\n ' return self._z_value
2,001,201,542,359,263,200
:obj:`ipywidgets.Checkbox`: Assign z-coordinate based on contour values
geoapps/contours/application.py
z_value
MiraGeoscience/mirageoscience-apps
python
@property def z_value(self): '\n \n ' return self._z_value
@property def main(self): '\n :obj:`ipywidgets.VBox`: A box containing all widgets forming the application.\n ' if (self._main is None): self._main = VBox([self.project_panel, HBox([VBox([Label('Input options:'), self.data_panel, self.contours, self.window_selection]), VBox([Label('Save as:'), self.export_as, self.z_value, self.output_panel], layout=Layout(width='50%'))]), self.selection]) return self._main
8,673,694,421,341,043,000
:obj:`ipywidgets.VBox`: A box containing all widgets forming the application.
geoapps/contours/application.py
main
MiraGeoscience/mirageoscience-apps
python
@property def main(self): '\n \n ' if (self._main is None): self._main = VBox([self.project_panel, HBox([VBox([Label('Input options:'), self.data_panel, self.contours, self.window_selection]), VBox([Label('Save as:'), self.export_as, self.z_value, self.output_panel], layout=Layout(width='50%'))]), self.selection]) return self._main
def compute_plot(self, contour_values): '\n Get current selection and trigger update\n ' (entity, data) = self.get_selected_entities() if (data is None): return if (contour_values is not None): self.contours.value = contour_values
-7,983,605,261,530,699,000
Get current selection and trigger update
geoapps/contours/application.py
compute_plot
MiraGeoscience/mirageoscience-apps
python
def compute_plot(self, contour_values): '\n \n ' (entity, data) = self.get_selected_entities() if (data is None): return if (contour_values is not None): self.contours.value = contour_values
def update_contours(self): '\n Assign\n ' if (self.data.value is not None): self.export_as.value = ((self.data.uid_name_map[self.data.value] + '_') + self.contours.value)
6,880,116,803,218,988,000
Assign
geoapps/contours/application.py
update_contours
MiraGeoscience/mirageoscience-apps
python
def update_contours(self): '\n \n ' if (self.data.value is not None): self.export_as.value = ((self.data.uid_name_map[self.data.value] + '_') + self.contours.value)
def clean(text: str) -> list: 'A simple function to cleanup text data' wnl = nltk.stem.WordNetLemmatizer() stopwords = nltk.corpus.stopwords.words('english') text = text.encode('ascii', 'ignore').decode('utf-8', 'ignore').lower() words = re.sub('[^\\w\\s]', '', text).split() return [wnl.lemmatize(word) for word in words if (word not in stopwords)]
3,515,189,398,334,247,400
A simple function to cleanup text data
fake_news_nlp_detection/fake_news_nlp_detection_2.py
clean
bflaven/BlogArticlesExamples
python
def clean(text: str) -> list: wnl = nltk.stem.WordNetLemmatizer() stopwords = nltk.corpus.stopwords.words('english') text = text.encode('ascii', 'ignore').decode('utf-8', 'ignore').lower() words = re.sub('[^\\w\\s]', , text).split() return [wnl.lemmatize(word) for word in words if (word not in stopwords)]
def example_data_binomial(): '\n Returns an output dataframe with categorical\n features (country and test variation), and orginal features (date),\n as well as number of successes and total observations for each combination\n ' countries = ['ca', 'us'] dates = pd.date_range('2018-01-01', '2018-02-01') variation_names = ['test', 'control', 'test2'] success_rates = [0.3, 0.32, 0.24, 0.22, 0.25, 0.42] n_observations = [50, 80, 30, 50, 40, 50] return_df = pd.DataFrame() for (i, (country, variation)) in enumerate(product(countries, variation_names)): df = pd.DataFrame({'date': dates}) df['country'] = country df['variation_name'] = variation df['total'] = np.random.poisson(n_observations[i], size=len(dates)) df['success'] = df['total'].apply((lambda x: np.random.binomial(x, success_rates[i]))) return_df = pd.concat([return_df, df], axis=0) return return_df
-2,332,233,384,005,863,000
Returns an output dataframe with categorical features (country and test variation), and orginal features (date), as well as number of successes and total observations for each combination
spotify_confidence/examples.py
example_data_binomial
MSchultzberg/confidence
python
def example_data_binomial(): '\n Returns an output dataframe with categorical\n features (country and test variation), and orginal features (date),\n as well as number of successes and total observations for each combination\n ' countries = ['ca', 'us'] dates = pd.date_range('2018-01-01', '2018-02-01') variation_names = ['test', 'control', 'test2'] success_rates = [0.3, 0.32, 0.24, 0.22, 0.25, 0.42] n_observations = [50, 80, 30, 50, 40, 50] return_df = pd.DataFrame() for (i, (country, variation)) in enumerate(product(countries, variation_names)): df = pd.DataFrame({'date': dates}) df['country'] = country df['variation_name'] = variation df['total'] = np.random.poisson(n_observations[i], size=len(dates)) df['success'] = df['total'].apply((lambda x: np.random.binomial(x, success_rates[i]))) return_df = pd.concat([return_df, df], axis=0) return return_df
def _get_exogs(self): 'list of exogs, for internal use in post-estimation\n ' return (self.exog, self.exog_infl)
-4,565,227,752,000,230,000
list of exogs, for internal use in post-estimation
statsmodels/discrete/count_model.py
_get_exogs
CCHiggins/statsmodels
python
def _get_exogs(self): '\n ' return (self.exog, self.exog_infl)
def loglike(self, params): '\n Loglikelihood of Generic Zero Inflated model.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n\n Returns\n -------\n loglike : float\n The log-likelihood function of the model evaluated at `params`.\n See notes.\n\n Notes\n -----\n .. math:: \\ln L=\\sum_{y_{i}=0}\\ln(w_{i}+(1-w_{i})*P_{main\\_model})+\n \\sum_{y_{i}>0}(\\ln(1-w_{i})+L_{main\\_model})\n where P - pdf of main model, L - loglike function of main model.\n ' return np.sum(self.loglikeobs(params))
417,392,512,980,127,400
Loglikelihood of Generic Zero Inflated model. Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \ln L=\sum_{y_{i}=0}\ln(w_{i}+(1-w_{i})*P_{main\_model})+ \sum_{y_{i}>0}(\ln(1-w_{i})+L_{main\_model}) where P - pdf of main model, L - loglike function of main model.
statsmodels/discrete/count_model.py
loglike
CCHiggins/statsmodels
python
def loglike(self, params): '\n Loglikelihood of Generic Zero Inflated model.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n\n Returns\n -------\n loglike : float\n The log-likelihood function of the model evaluated at `params`.\n See notes.\n\n Notes\n -----\n .. math:: \\ln L=\\sum_{y_{i}=0}\\ln(w_{i}+(1-w_{i})*P_{main\\_model})+\n \\sum_{y_{i}>0}(\\ln(1-w_{i})+L_{main\\_model})\n where P - pdf of main model, L - loglike function of main model.\n ' return np.sum(self.loglikeobs(params))
def loglikeobs(self, params): '\n Loglikelihood for observations of Generic Zero Inflated model.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n\n Returns\n -------\n loglike : ndarray\n The log likelihood for each observation of the model evaluated\n at `params`. See Notes for definition.\n\n Notes\n -----\n .. math:: \\ln L=\\ln(w_{i}+(1-w_{i})*P_{main\\_model})+\n \\ln(1-w_{i})+L_{main\\_model}\n where P - pdf of main model, L - loglike function of main model.\n\n for observations :math:`i=1,...,n`\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] y = self.endog w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) llf_main = self.model_main.loglikeobs(params_main) zero_idx = np.nonzero((y == 0))[0] nonzero_idx = np.nonzero(y)[0] llf = np.zeros_like(y, dtype=np.float64) llf[zero_idx] = np.log((w[zero_idx] + ((1 - w[zero_idx]) * np.exp(llf_main[zero_idx])))) llf[nonzero_idx] = (np.log((1 - w[nonzero_idx])) + llf_main[nonzero_idx]) return llf
-223,660,727,974,160,800
Loglikelihood for observations of Generic Zero Inflated model. Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes for definition. Notes ----- .. math:: \ln L=\ln(w_{i}+(1-w_{i})*P_{main\_model})+ \ln(1-w_{i})+L_{main\_model} where P - pdf of main model, L - loglike function of main model. for observations :math:`i=1,...,n`
statsmodels/discrete/count_model.py
loglikeobs
CCHiggins/statsmodels
python
def loglikeobs(self, params): '\n Loglikelihood for observations of Generic Zero Inflated model.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n\n Returns\n -------\n loglike : ndarray\n The log likelihood for each observation of the model evaluated\n at `params`. See Notes for definition.\n\n Notes\n -----\n .. math:: \\ln L=\\ln(w_{i}+(1-w_{i})*P_{main\\_model})+\n \\ln(1-w_{i})+L_{main\\_model}\n where P - pdf of main model, L - loglike function of main model.\n\n for observations :math:`i=1,...,n`\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] y = self.endog w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) llf_main = self.model_main.loglikeobs(params_main) zero_idx = np.nonzero((y == 0))[0] nonzero_idx = np.nonzero(y)[0] llf = np.zeros_like(y, dtype=np.float64) llf[zero_idx] = np.log((w[zero_idx] + ((1 - w[zero_idx]) * np.exp(llf_main[zero_idx])))) llf[nonzero_idx] = (np.log((1 - w[nonzero_idx])) + llf_main[nonzero_idx]) return llf
def score_obs(self, params): '\n Generic Zero Inflated model score (gradient) vector of the log-likelihood\n\n Parameters\n ----------\n params : array_like\n The parameters of the model\n\n Returns\n -------\n score : ndarray, 1-D\n The score vector of the model, i.e. the first derivative of the\n loglikelihood function, evaluated at `params`\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] y = self.endog w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) score_main = self.model_main.score_obs(params_main) llf_main = self.model_main.loglikeobs(params_main) llf = self.loglikeobs(params) zero_idx = np.nonzero((y == 0))[0] nonzero_idx = np.nonzero(y)[0] mu = self.model_main.predict(params_main) dldp = np.zeros((self.exog.shape[0], self.k_exog), dtype=np.float64) dldw = np.zeros_like(self.exog_infl, dtype=np.float64) dldp[zero_idx, :] = (score_main[zero_idx].T * (1 - (w[zero_idx] / np.exp(llf[zero_idx])))).T dldp[nonzero_idx, :] = score_main[nonzero_idx] if (self.inflation == 'logit'): dldw[zero_idx, :] = ((((self.exog_infl[zero_idx].T * w[zero_idx]) * (1 - w[zero_idx])) * (1 - np.exp(llf_main[zero_idx]))) / np.exp(llf[zero_idx])).T dldw[nonzero_idx, :] = (- (self.exog_infl[nonzero_idx].T * w[nonzero_idx]).T) elif (self.inflation == 'probit'): return approx_fprime(params, self.loglikeobs) return np.hstack((dldw, dldp))
7,217,557,069,048,554,000
Generic Zero Inflated model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
statsmodels/discrete/count_model.py
score_obs
CCHiggins/statsmodels
python
def score_obs(self, params): '\n Generic Zero Inflated model score (gradient) vector of the log-likelihood\n\n Parameters\n ----------\n params : array_like\n The parameters of the model\n\n Returns\n -------\n score : ndarray, 1-D\n The score vector of the model, i.e. the first derivative of the\n loglikelihood function, evaluated at `params`\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] y = self.endog w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) score_main = self.model_main.score_obs(params_main) llf_main = self.model_main.loglikeobs(params_main) llf = self.loglikeobs(params) zero_idx = np.nonzero((y == 0))[0] nonzero_idx = np.nonzero(y)[0] mu = self.model_main.predict(params_main) dldp = np.zeros((self.exog.shape[0], self.k_exog), dtype=np.float64) dldw = np.zeros_like(self.exog_infl, dtype=np.float64) dldp[zero_idx, :] = (score_main[zero_idx].T * (1 - (w[zero_idx] / np.exp(llf[zero_idx])))).T dldp[nonzero_idx, :] = score_main[nonzero_idx] if (self.inflation == 'logit'): dldw[zero_idx, :] = ((((self.exog_infl[zero_idx].T * w[zero_idx]) * (1 - w[zero_idx])) * (1 - np.exp(llf_main[zero_idx]))) / np.exp(llf[zero_idx])).T dldw[nonzero_idx, :] = (- (self.exog_infl[nonzero_idx].T * w[nonzero_idx]).T) elif (self.inflation == 'probit'): return approx_fprime(params, self.loglikeobs) return np.hstack((dldw, dldp))
def hessian(self, params): '\n Generic Zero Inflated model Hessian matrix of the loglikelihood\n\n Parameters\n ----------\n params : array_like\n The parameters of the model\n\n Returns\n -------\n hess : ndarray, (k_vars, k_vars)\n The Hessian, second derivative of loglikelihood function,\n evaluated at `params`\n\n Notes\n -----\n ' hess_arr_main = self._hessian_main(params) hess_arr_infl = self._hessian_inflate(params) if ((hess_arr_main is None) or (hess_arr_infl is None)): return approx_hess(params, self.loglike) dim = (self.k_exog + self.k_inflate) hess_arr = np.zeros((dim, dim)) hess_arr[:self.k_inflate, :] = hess_arr_infl hess_arr[self.k_inflate:, self.k_inflate:] = hess_arr_main tri_idx = np.triu_indices((self.k_exog + self.k_inflate), k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] return hess_arr
4,171,844,446,509,990,000
Generic Zero Inflated model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes -----
statsmodels/discrete/count_model.py
hessian
CCHiggins/statsmodels
python
def hessian(self, params): '\n Generic Zero Inflated model Hessian matrix of the loglikelihood\n\n Parameters\n ----------\n params : array_like\n The parameters of the model\n\n Returns\n -------\n hess : ndarray, (k_vars, k_vars)\n The Hessian, second derivative of loglikelihood function,\n evaluated at `params`\n\n Notes\n -----\n ' hess_arr_main = self._hessian_main(params) hess_arr_infl = self._hessian_inflate(params) if ((hess_arr_main is None) or (hess_arr_infl is None)): return approx_hess(params, self.loglike) dim = (self.k_exog + self.k_inflate) hess_arr = np.zeros((dim, dim)) hess_arr[:self.k_inflate, :] = hess_arr_infl hess_arr[self.k_inflate:, self.k_inflate:] = hess_arr_main tri_idx = np.triu_indices((self.k_exog + self.k_inflate), k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] return hess_arr
def predict(self, params, exog=None, exog_infl=None, exposure=None, offset=None, which='mean', y_values=None): '\n Predict response variable or other statistic given exogenous variables.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n exog : ndarray, optional\n Explanatory variables for the main count model.\n If ``exog`` is None, then the data from the model will be used.\n exog_infl : ndarray, optional\n Explanatory variables for the zero-inflation model.\n ``exog_infl`` has to be provided if ``exog`` was provided unless\n ``exog_infl`` in the model is only a constant.\n offset : ndarray, optional\n Offset is added to the linear predictor of the mean function with\n coefficient equal to 1.\n Default is zero if exog is not None, and the model offset if exog\n is None.\n exposure : ndarray, optional\n Log(exposure) is added to the linear predictor with coefficient\n equal to 1. If exposure is specified, then it will be logged by\n the method. The user does not need to log it first.\n Default is one if exog is is not None, and it is the model exposure\n if exog is None.\n which : str (optional)\n Statitistic to predict. Default is \'mean\'.\n\n - \'mean\' : the conditional expectation of endog E(y | x),\n i.e. exp of linear predictor.\n - \'linear\' : the linear predictor of the mean function.\n - \'var\' : returns the estimated variance of endog implied by the\n model.\n - \'mean-main\' : mean of the main count model\n - \'prob-main\' : probability of selecting the main model.\n The probability of zero inflation is ``1 - prob-main``.\n - \'mean-nonzero\' : expected value conditional on having observation\n larger than zero, E(y | X, y>0)\n - \'prob-zero\' : probability of observing a zero count. P(y=0 | x)\n - \'prob\' : probabilities of each count from 0 to max(endog), or\n for y_values if those are provided. This is a multivariate\n return (2-dim when predicting for several observations).\n\n y_values : array_like\n Values of the random variable endog at which pmf is evaluated.\n Only used if ``which="prob"``\n ' no_exog = False if (exog is None): no_exog = True exog = self.exog if (exog_infl is None): if no_exog: exog_infl = self.exog_infl elif self._no_exog_infl: exog_infl = np.ones((len(exog), 1)) else: exog_infl = np.asarray(exog_infl) if ((exog_infl.ndim == 1) and (self.k_inflate == 1)): exog_infl = exog_infl[:, None] if (exposure is None): if no_exog: exposure = getattr(self, 'exposure', 0) else: exposure = 0 else: exposure = np.log(exposure) if (offset is None): if no_exog: offset = getattr(self, 'offset', 0) else: offset = 0 params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] prob_main = (1 - self.model_infl.predict(params_infl, exog_infl)) lin_pred = ((np.dot(exog, params_main[:self.exog.shape[1]]) + exposure) + offset) tmp_exog = self.model_main.exog tmp_endog = self.model_main.endog tmp_offset = getattr(self.model_main, 'offset', False) tmp_exposure = getattr(self.model_main, 'exposure', False) self.model_main.exog = exog self.model_main.endog = np.zeros(exog.shape[0]) self.model_main.offset = offset self.model_main.exposure = exposure llf = self.model_main.loglikeobs(params_main) self.model_main.exog = tmp_exog self.model_main.endog = tmp_endog if (tmp_offset is False): del self.model_main.offset else: self.model_main.offset = tmp_offset if (tmp_exposure is False): del self.model_main.exposure else: self.model_main.exposure = tmp_exposure prob_zero = ((1 - prob_main) + (prob_main * np.exp(llf))) if (which == 'mean'): return (prob_main * np.exp(lin_pred)) elif (which == 'mean-main'): return np.exp(lin_pred) elif (which == 'linear'): return lin_pred elif (which == 'mean-nonzero'): return ((prob_main * np.exp(lin_pred)) / (1 - prob_zero)) elif (which == 'prob-zero'): return prob_zero elif (which == 'prob-main'): return prob_main elif (which == 'var'): mu = np.exp(lin_pred) return self._predict_var(params, mu, (1 - prob_main)) elif (which == 'prob'): return self._predict_prob(params, exog, exog_infl, exposure, offset, y_values=y_values) else: raise ValueError(('which = %s is not available' % which))
3,388,781,732,946,094,600
Predict response variable or other statistic given exogenous variables. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. exog_infl : ndarray, optional Explanatory variables for the zero-inflation model. ``exog_infl`` has to be provided if ``exog`` was provided unless ``exog_infl`` in the model is only a constant. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. which : str (optional) Statitistic to predict. Default is 'mean'. - 'mean' : the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' : the linear predictor of the mean function. - 'var' : returns the estimated variance of endog implied by the model. - 'mean-main' : mean of the main count model - 'prob-main' : probability of selecting the main model. The probability of zero inflation is ``1 - prob-main``. - 'mean-nonzero' : expected value conditional on having observation larger than zero, E(y | X, y>0) - 'prob-zero' : probability of observing a zero count. P(y=0 | x) - 'prob' : probabilities of each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"``
statsmodels/discrete/count_model.py
predict
CCHiggins/statsmodels
python
def predict(self, params, exog=None, exog_infl=None, exposure=None, offset=None, which='mean', y_values=None): '\n Predict response variable or other statistic given exogenous variables.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n exog : ndarray, optional\n Explanatory variables for the main count model.\n If ``exog`` is None, then the data from the model will be used.\n exog_infl : ndarray, optional\n Explanatory variables for the zero-inflation model.\n ``exog_infl`` has to be provided if ``exog`` was provided unless\n ``exog_infl`` in the model is only a constant.\n offset : ndarray, optional\n Offset is added to the linear predictor of the mean function with\n coefficient equal to 1.\n Default is zero if exog is not None, and the model offset if exog\n is None.\n exposure : ndarray, optional\n Log(exposure) is added to the linear predictor with coefficient\n equal to 1. If exposure is specified, then it will be logged by\n the method. The user does not need to log it first.\n Default is one if exog is is not None, and it is the model exposure\n if exog is None.\n which : str (optional)\n Statitistic to predict. Default is \'mean\'.\n\n - \'mean\' : the conditional expectation of endog E(y | x),\n i.e. exp of linear predictor.\n - \'linear\' : the linear predictor of the mean function.\n - \'var\' : returns the estimated variance of endog implied by the\n model.\n - \'mean-main\' : mean of the main count model\n - \'prob-main\' : probability of selecting the main model.\n The probability of zero inflation is ``1 - prob-main``.\n - \'mean-nonzero\' : expected value conditional on having observation\n larger than zero, E(y | X, y>0)\n - \'prob-zero\' : probability of observing a zero count. P(y=0 | x)\n - \'prob\' : probabilities of each count from 0 to max(endog), or\n for y_values if those are provided. This is a multivariate\n return (2-dim when predicting for several observations).\n\n y_values : array_like\n Values of the random variable endog at which pmf is evaluated.\n Only used if ``which="prob"``\n ' no_exog = False if (exog is None): no_exog = True exog = self.exog if (exog_infl is None): if no_exog: exog_infl = self.exog_infl elif self._no_exog_infl: exog_infl = np.ones((len(exog), 1)) else: exog_infl = np.asarray(exog_infl) if ((exog_infl.ndim == 1) and (self.k_inflate == 1)): exog_infl = exog_infl[:, None] if (exposure is None): if no_exog: exposure = getattr(self, 'exposure', 0) else: exposure = 0 else: exposure = np.log(exposure) if (offset is None): if no_exog: offset = getattr(self, 'offset', 0) else: offset = 0 params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] prob_main = (1 - self.model_infl.predict(params_infl, exog_infl)) lin_pred = ((np.dot(exog, params_main[:self.exog.shape[1]]) + exposure) + offset) tmp_exog = self.model_main.exog tmp_endog = self.model_main.endog tmp_offset = getattr(self.model_main, 'offset', False) tmp_exposure = getattr(self.model_main, 'exposure', False) self.model_main.exog = exog self.model_main.endog = np.zeros(exog.shape[0]) self.model_main.offset = offset self.model_main.exposure = exposure llf = self.model_main.loglikeobs(params_main) self.model_main.exog = tmp_exog self.model_main.endog = tmp_endog if (tmp_offset is False): del self.model_main.offset else: self.model_main.offset = tmp_offset if (tmp_exposure is False): del self.model_main.exposure else: self.model_main.exposure = tmp_exposure prob_zero = ((1 - prob_main) + (prob_main * np.exp(llf))) if (which == 'mean'): return (prob_main * np.exp(lin_pred)) elif (which == 'mean-main'): return np.exp(lin_pred) elif (which == 'linear'): return lin_pred elif (which == 'mean-nonzero'): return ((prob_main * np.exp(lin_pred)) / (1 - prob_zero)) elif (which == 'prob-zero'): return prob_zero elif (which == 'prob-main'): return prob_main elif (which == 'var'): mu = np.exp(lin_pred) return self._predict_var(params, mu, (1 - prob_main)) elif (which == 'prob'): return self._predict_prob(params, exog, exog_infl, exposure, offset, y_values=y_values) else: raise ValueError(('which = %s is not available' % which))
def _derivative_predict(self, params, exog=None, transform='dydx'): 'NotImplemented\n ' raise NotImplementedError
-5,167,511,772,959,260,000
NotImplemented
statsmodels/discrete/count_model.py
_derivative_predict
CCHiggins/statsmodels
python
def _derivative_predict(self, params, exog=None, transform='dydx'): '\n ' raise Error
def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): 'NotImplemented\n ' raise NotImplementedError
-8,214,879,038,659,339,000
NotImplemented
statsmodels/discrete/count_model.py
_derivative_exog
CCHiggins/statsmodels
python
def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): '\n ' raise Error
def _deriv_mean_dparams(self, params): '\n Derivative of the expected endog with respect to the parameters.\n\n Parameters\n ----------\n params : ndarray\n parameter at which score is evaluated\n\n Returns\n -------\n The value of the derivative of the expected endog with respect\n to the parameter vector.\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) mu = self.model_main.predict(params_main) score_infl = self.model_infl._deriv_mean_dparams(params_infl) score_main = self.model_main._deriv_mean_dparams(params_main) dmat_infl = ((- mu[:, None]) * score_infl) dmat_main = ((1 - w[:, None]) * score_main) dmat = np.column_stack((dmat_infl, dmat_main)) return dmat
402,093,562,052,171,800
Derivative of the expected endog with respect to the parameters. Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector.
statsmodels/discrete/count_model.py
_deriv_mean_dparams
CCHiggins/statsmodels
python
def _deriv_mean_dparams(self, params): '\n Derivative of the expected endog with respect to the parameters.\n\n Parameters\n ----------\n params : ndarray\n parameter at which score is evaluated\n\n Returns\n -------\n The value of the derivative of the expected endog with respect\n to the parameter vector.\n ' params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] w = self.model_infl.predict(params_infl) w = np.clip(w, np.finfo(float).eps, (1 - np.finfo(float).eps)) mu = self.model_main.predict(params_main) score_infl = self.model_infl._deriv_mean_dparams(params_infl) score_main = self.model_main._deriv_mean_dparams(params_main) dmat_infl = ((- mu[:, None]) * score_infl) dmat_main = ((1 - w[:, None]) * score_main) dmat = np.column_stack((dmat_infl, dmat_main)) return dmat
def _deriv_score_obs_dendog(self, params): 'derivative of score_obs w.r.t. endog\n\n Parameters\n ----------\n params : ndarray\n parameter at which score is evaluated\n\n Returns\n -------\n derivative : ndarray_2d\n The derivative of the score_obs with respect to endog.\n ' raise NotImplementedError from statsmodels.tools.numdiff import _approx_fprime_scalar endog_original = self.endog def f(y): if ((y.ndim == 2) and (y.shape[1] == 1)): y = y[:, 0] self.endog = y self.model_main.endog = y sf = self.score_obs(params) self.endog = endog_original self.model_main.endog = endog_original return sf ds = _approx_fprime_scalar(self.endog[:, None], f, epsilon=0.01) return ds
2,757,558,158,860,996,000
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog.
statsmodels/discrete/count_model.py
_deriv_score_obs_dendog
CCHiggins/statsmodels
python
def _deriv_score_obs_dendog(self, params): 'derivative of score_obs w.r.t. endog\n\n Parameters\n ----------\n params : ndarray\n parameter at which score is evaluated\n\n Returns\n -------\n derivative : ndarray_2d\n The derivative of the score_obs with respect to endog.\n ' raise NotImplementedError from statsmodels.tools.numdiff import _approx_fprime_scalar endog_original = self.endog def f(y): if ((y.ndim == 2) and (y.shape[1] == 1)): y = y[:, 0] self.endog = y self.model_main.endog = y sf = self.score_obs(params) self.endog = endog_original self.model_main.endog = endog_original return sf ds = _approx_fprime_scalar(self.endog[:, None], f, epsilon=0.01) return ds
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' w = prob_infl var_ = (((1 - w) * mu) * (1 + (w * mu))) return var_
-6,191,421,135,787,848,000
predict values for conditional variance V(endog | exog) Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. prob_inlf : array_like Array of predicted probabilities of zero-inflation `w`. Returns ------- Predicted conditional variance.
statsmodels/discrete/count_model.py
_predict_var
CCHiggins/statsmodels
python
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' w = prob_infl var_ = (((1 - w) * mu) * (1 + (w * mu))) return var_
def get_distribution(self, params, exog=None, exog_infl=None, exposure=None, offset=None): 'Get frozen instance of distribution based on predicted parameters.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n exog : ndarray, optional\n Explanatory variables for the main count model.\n If ``exog`` is None, then the data from the model will be used.\n exog_infl : ndarray, optional\n Explanatory variables for the zero-inflation model.\n ``exog_infl`` has to be provided if ``exog`` was provided unless\n ``exog_infl`` in the model is only a constant.\n offset : ndarray, optional\n Offset is added to the linear predictor of the mean function with\n coefficient equal to 1.\n Default is zero if exog is not None, and the model offset if exog\n is None.\n exposure : ndarray, optional\n Log(exposure) is added to the linear predictor of the mean\n function with coefficient equal to 1. If exposure is specified,\n then it will be logged by the method. The user does not need to\n log it first.\n Default is one if exog is is not None, and it is the model exposure\n if exog is None.\n\n Returns\n -------\n Instance of frozen scipy distribution subclass.\n ' mu = self.predict(params, exog=exog, exog_infl=exog_infl, exposure=exposure, offset=offset, which='mean-main') w = self.predict(params, exog=exog, exog_infl=exog_infl, exposure=exposure, offset=offset, which='prob-main') distr = self.distribution(mu[:, None], (1 - w[:, None])) return distr
-7,243,537,759,134,085,000
Get frozen instance of distribution based on predicted parameters. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. exog_infl : ndarray, optional Explanatory variables for the zero-inflation model. ``exog_infl`` has to be provided if ``exog`` was provided unless ``exog_infl`` in the model is only a constant. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor of the mean function with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. Returns ------- Instance of frozen scipy distribution subclass.
statsmodels/discrete/count_model.py
get_distribution
CCHiggins/statsmodels
python
def get_distribution(self, params, exog=None, exog_infl=None, exposure=None, offset=None): 'Get frozen instance of distribution based on predicted parameters.\n\n Parameters\n ----------\n params : array_like\n The parameters of the model.\n exog : ndarray, optional\n Explanatory variables for the main count model.\n If ``exog`` is None, then the data from the model will be used.\n exog_infl : ndarray, optional\n Explanatory variables for the zero-inflation model.\n ``exog_infl`` has to be provided if ``exog`` was provided unless\n ``exog_infl`` in the model is only a constant.\n offset : ndarray, optional\n Offset is added to the linear predictor of the mean function with\n coefficient equal to 1.\n Default is zero if exog is not None, and the model offset if exog\n is None.\n exposure : ndarray, optional\n Log(exposure) is added to the linear predictor of the mean\n function with coefficient equal to 1. If exposure is specified,\n then it will be logged by the method. The user does not need to\n log it first.\n Default is one if exog is is not None, and it is the model exposure\n if exog is None.\n\n Returns\n -------\n Instance of frozen scipy distribution subclass.\n ' mu = self.predict(params, exog=exog, exog_infl=exog_infl, exposure=exposure, offset=offset, which='mean-main') w = self.predict(params, exog=exog, exog_infl=exog_infl, exposure=exposure, offset=offset, which='prob-main') distr = self.distribution(mu[:, None], (1 - w[:, None])) return distr
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' alpha = params[(- 1)] w = prob_infl p = self.model_main.parameterization var_ = (((1 - w) * mu) * (((1 + (alpha * (mu ** p))) ** 2) + (w * mu))) return var_
-991,814,010,985,005,300
predict values for conditional variance V(endog | exog) Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. prob_inlf : array_like Array of predicted probabilities of zero-inflation `w`. Returns ------- Predicted conditional variance.
statsmodels/discrete/count_model.py
_predict_var
CCHiggins/statsmodels
python
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' alpha = params[(- 1)] w = prob_infl p = self.model_main.parameterization var_ = (((1 - w) * mu) * (((1 + (alpha * (mu ** p))) ** 2) + (w * mu))) return var_
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' alpha = params[(- 1)] w = prob_infl p = self.model_main.parameterization var_ = (((1 - w) * mu) * ((1 + (alpha * (mu ** (p - 1)))) + (w * mu))) return var_
-6,530,486,237,952,336,000
predict values for conditional variance V(endog | exog) Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. prob_inlf : array_like Array of predicted probabilities of zero-inflation `w`. Returns ------- Predicted conditional variance.
statsmodels/discrete/count_model.py
_predict_var
CCHiggins/statsmodels
python
def _predict_var(self, params, mu, prob_infl): 'predict values for conditional variance V(endog | exog)\n\n Parameters\n ----------\n params : array_like\n The model parameters. This is only used to extract extra params\n like dispersion parameter.\n mu : array_like\n Array of mean predictions for main model.\n prob_inlf : array_like\n Array of predicted probabilities of zero-inflation `w`.\n\n Returns\n -------\n Predicted conditional variance.\n ' alpha = params[(- 1)] w = prob_infl p = self.model_main.parameterization var_ = (((1 - w) * mu) * ((1 + (alpha * (mu ** (p - 1)))) + (w * mu))) return var_
def get_influence(self): '\n Influence and outlier measures\n\n See notes section for influence measures that do not apply for\n zero inflated models.\n\n Returns\n -------\n MLEInfluence\n The instance has methods to calculate the main influence and\n outlier measures as attributes.\n\n See Also\n --------\n statsmodels.stats.outliers_influence.MLEInfluence\n\n Notes\n -----\n ZeroInflated models have functions that are not differentiable\n with respect to sample endog if endog=0. This means that generalized\n leverage cannot be computed in the usual definition.\n\n Currently, both the generalized leverage, in `hat_matrix_diag`\n attribute and studetized residuals are not available. In the influence\n plot generalized leverage is replaced by a hat matrix diagonal that\n only takes combined exog into account, computed in the same way as\n for OLS. This is a measure for exog outliers but does not take\n specific features of the model into account.\n ' from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
-3,719,969,506,475,364,000
Influence and outlier measures See notes section for influence measures that do not apply for zero inflated models. Returns ------- MLEInfluence The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence Notes ----- ZeroInflated models have functions that are not differentiable with respect to sample endog if endog=0. This means that generalized leverage cannot be computed in the usual definition. Currently, both the generalized leverage, in `hat_matrix_diag` attribute and studetized residuals are not available. In the influence plot generalized leverage is replaced by a hat matrix diagonal that only takes combined exog into account, computed in the same way as for OLS. This is a measure for exog outliers but does not take specific features of the model into account.
statsmodels/discrete/count_model.py
get_influence
CCHiggins/statsmodels
python
def get_influence(self): '\n Influence and outlier measures\n\n See notes section for influence measures that do not apply for\n zero inflated models.\n\n Returns\n -------\n MLEInfluence\n The instance has methods to calculate the main influence and\n outlier measures as attributes.\n\n See Also\n --------\n statsmodels.stats.outliers_influence.MLEInfluence\n\n Notes\n -----\n ZeroInflated models have functions that are not differentiable\n with respect to sample endog if endog=0. This means that generalized\n leverage cannot be computed in the usual definition.\n\n Currently, both the generalized leverage, in `hat_matrix_diag`\n attribute and studetized residuals are not available. In the influence\n plot generalized leverage is replaced by a hat matrix diagonal that\n only takes combined exog into account, computed in the same way as\n for OLS. This is a measure for exog outliers but does not take\n specific features of the model into account.\n ' from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
2,202,878,501,041,609,000
Get marginal effects of the fitted model. Not yet implemented for Zero Inflated Models
statsmodels/discrete/count_model.py
get_margeff
CCHiggins/statsmodels
python
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
2,202,878,501,041,609,000
Get marginal effects of the fitted model. Not yet implemented for Zero Inflated Models
statsmodels/discrete/count_model.py
get_margeff
CCHiggins/statsmodels
python
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
2,202,878,501,041,609,000
Get marginal effects of the fitted model. Not yet implemented for Zero Inflated Models
statsmodels/discrete/count_model.py
get_margeff
CCHiggins/statsmodels
python
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): 'Get marginal effects of the fitted model.\n\n Not yet implemented for Zero Inflated Models\n ' raise NotImplementedError('not yet implemented for zero inflation')
def __init__(self, x, y, p): '\n :param x: The x-coordinate of a chip, between 0 and 255\n :type x: int\n :param y: The y-coordinate of a chip, between 0 and 255\n :type y: int\n :param p: The processor running the dropped packet reinjector, between 0 and 17\n :type p: int\n ' AbstractSCPRequest.__init__(self, SDPHeader(flags=SDPFlag.REPLY_EXPECTED, destination_port=0, destination_cpu=p, destination_chip_x=x, destination_chip_y=y), SCPRequestHeader(command=SCPCommand.CMD_DPRI), argument_1=SCPDPRICommand.GET_STATUS.value)
52,052,433,146,354,320
:param x: The x-coordinate of a chip, between 0 and 255 :type x: int :param y: The y-coordinate of a chip, between 0 and 255 :type y: int :param p: The processor running the dropped packet reinjector, between 0 and 17 :type p: int
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spinnman/messages/scp/impl/scp_dpri_get_status_request.py
__init__
Roboy/LSM_SpiNNaker_MyoArm
python
def __init__(self, x, y, p): '\n :param x: The x-coordinate of a chip, between 0 and 255\n :type x: int\n :param y: The y-coordinate of a chip, between 0 and 255\n :type y: int\n :param p: The processor running the dropped packet reinjector, between 0 and 17\n :type p: int\n ' AbstractSCPRequest.__init__(self, SDPHeader(flags=SDPFlag.REPLY_EXPECTED, destination_port=0, destination_cpu=p, destination_chip_x=x, destination_chip_y=y), SCPRequestHeader(command=SCPCommand.CMD_DPRI), argument_1=SCPDPRICommand.GET_STATUS.value)
def __init__(self, *args): ' x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature ' pass
-90,002,593,062,007,400
x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature
release/stubs.min/System/Runtime/InteropServices/__init___parts/ComConversionLossAttribute.py
__init__
YKato521/ironpython-stubs
python
def __init__(self, *args): ' ' pass
@property def compressed(self): ' Is this section compressed?\n ' return self._compressed
-6,363,948,235,129,757,000
Is this section compressed?
elftools/elf/sections.py
compressed
ClangBuiltLinux/pyelftools
python
@property def compressed(self): ' \n ' return self._compressed
@property def data_size(self): " Return the logical size for this section's data.\n\n This can be different from the .sh_size header field when the section\n is compressed.\n " return self._decompressed_size
4,456,647,565,215,163,400
Return the logical size for this section's data. This can be different from the .sh_size header field when the section is compressed.
elftools/elf/sections.py
data_size
ClangBuiltLinux/pyelftools
python
@property def data_size(self): " Return the logical size for this section's data.\n\n This can be different from the .sh_size header field when the section\n is compressed.\n " return self._decompressed_size
@property def data_alignment(self): " Return the logical alignment for this section's data.\n\n This can be different from the .sh_addralign header field when the\n section is compressed.\n " return self._decompressed_align
-6,104,594,075,586,130,000
Return the logical alignment for this section's data. This can be different from the .sh_addralign header field when the section is compressed.
elftools/elf/sections.py
data_alignment
ClangBuiltLinux/pyelftools
python
@property def data_alignment(self): " Return the logical alignment for this section's data.\n\n This can be different from the .sh_addralign header field when the\n section is compressed.\n " return self._decompressed_align
def data(self): ' The section data from the file.\n\n Note that data is decompressed if the stored section data is\n compressed.\n ' if (self.header['sh_type'] == 'SHT_NOBITS'): return (b'\x00' * self.data_size) if self.compressed: c_type = self._compression_type if (c_type == 'ELFCOMPRESS_ZLIB'): hdr_size = self.structs.Elf_Chdr.sizeof() self.stream.seek((self['sh_offset'] + hdr_size)) compressed = self.stream.read((self['sh_size'] - hdr_size)) decomp = zlib.decompressobj() result = decomp.decompress(compressed, self.data_size) else: raise ELFCompressionError('Unknown compression type: {:#0x}'.format(c_type)) if (len(result) != self._decompressed_size): raise ELFCompressionError('Decompressed data is {} bytes long, should be {} bytes long'.format(len(result), self._decompressed_size)) else: self.stream.seek(self['sh_offset']) result = self.stream.read(self._decompressed_size) return result
-3,319,943,269,107,768,000
The section data from the file. Note that data is decompressed if the stored section data is compressed.
elftools/elf/sections.py
data
ClangBuiltLinux/pyelftools
python
def data(self): ' The section data from the file.\n\n Note that data is decompressed if the stored section data is\n compressed.\n ' if (self.header['sh_type'] == 'SHT_NOBITS'): return (b'\x00' * self.data_size) if self.compressed: c_type = self._compression_type if (c_type == 'ELFCOMPRESS_ZLIB'): hdr_size = self.structs.Elf_Chdr.sizeof() self.stream.seek((self['sh_offset'] + hdr_size)) compressed = self.stream.read((self['sh_size'] - hdr_size)) decomp = zlib.decompressobj() result = decomp.decompress(compressed, self.data_size) else: raise ELFCompressionError('Unknown compression type: {:#0x}'.format(c_type)) if (len(result) != self._decompressed_size): raise ELFCompressionError('Decompressed data is {} bytes long, should be {} bytes long'.format(len(result), self._decompressed_size)) else: self.stream.seek(self['sh_offset']) result = self.stream.read(self._decompressed_size) return result
def is_null(self): ' Is this a null section?\n ' return False
-1,337,224,107,243,885,000
Is this a null section?
elftools/elf/sections.py
is_null
ClangBuiltLinux/pyelftools
python
def is_null(self): ' \n ' return False
def __getitem__(self, name): ' Implement dict-like access to header entries\n ' return self.header[name]
4,776,510,660,069,088,000
Implement dict-like access to header entries
elftools/elf/sections.py
__getitem__
ClangBuiltLinux/pyelftools
python
def __getitem__(self, name): ' \n ' return self.header[name]
def get_string(self, offset): ' Get the string stored at the given offset in this string table.\n ' table_offset = self['sh_offset'] s = parse_cstring_from_stream(self.stream, (table_offset + offset)) return (s.decode('utf-8', errors='replace') if s else '')
-2,138,778,314,726,144,300
Get the string stored at the given offset in this string table.
elftools/elf/sections.py
get_string
ClangBuiltLinux/pyelftools
python
def get_string(self, offset): ' \n ' table_offset = self['sh_offset'] s = parse_cstring_from_stream(self.stream, (table_offset + offset)) return (s.decode('utf-8', errors='replace') if s else )
def num_symbols(self): ' Number of symbols in the table\n ' return (self['sh_size'] // self['sh_entsize'])
-2,688,675,508,393,189,400
Number of symbols in the table
elftools/elf/sections.py
num_symbols
ClangBuiltLinux/pyelftools
python
def num_symbols(self): ' \n ' return (self['sh_size'] // self['sh_entsize'])
def get_symbol(self, n): ' Get the symbol at index #n from the table (Symbol object)\n ' entry_offset = (self['sh_offset'] + (n * self['sh_entsize'])) entry = struct_parse(self.structs.Elf_Sym, self.stream, stream_pos=entry_offset) name = self.stringtable.get_string(entry['st_name']) return Symbol(entry, name)
-657,288,017,696,840,000
Get the symbol at index #n from the table (Symbol object)
elftools/elf/sections.py
get_symbol
ClangBuiltLinux/pyelftools
python
def get_symbol(self, n): ' \n ' entry_offset = (self['sh_offset'] + (n * self['sh_entsize'])) entry = struct_parse(self.structs.Elf_Sym, self.stream, stream_pos=entry_offset) name = self.stringtable.get_string(entry['st_name']) return Symbol(entry, name)
def get_symbol_by_name(self, name): ' Get a symbol(s) by name. Return None if no symbol by the given name\n exists.\n ' if (self._symbol_name_map is None): self._symbol_name_map = defaultdict(list) for (i, sym) in enumerate(self.iter_symbols()): self._symbol_name_map[sym.name].append(i) symnums = self._symbol_name_map.get(name) return ([self.get_symbol(i) for i in symnums] if symnums else None)
1,906,267,310,430,917,000
Get a symbol(s) by name. Return None if no symbol by the given name exists.
elftools/elf/sections.py
get_symbol_by_name
ClangBuiltLinux/pyelftools
python
def get_symbol_by_name(self, name): ' Get a symbol(s) by name. Return None if no symbol by the given name\n exists.\n ' if (self._symbol_name_map is None): self._symbol_name_map = defaultdict(list) for (i, sym) in enumerate(self.iter_symbols()): self._symbol_name_map[sym.name].append(i) symnums = self._symbol_name_map.get(name) return ([self.get_symbol(i) for i in symnums] if symnums else None)
def iter_symbols(self): ' Yield all the symbols in the table\n ' for i in range(self.num_symbols()): (yield self.get_symbol(i))
-7,099,017,408,749,516,000
Yield all the symbols in the table
elftools/elf/sections.py
iter_symbols
ClangBuiltLinux/pyelftools
python
def iter_symbols(self): ' \n ' for i in range(self.num_symbols()): (yield self.get_symbol(i))
def __getitem__(self, name): ' Implement dict-like access to entries\n ' return self.entry[name]
2,554,947,221,678,688,000
Implement dict-like access to entries
elftools/elf/sections.py
__getitem__
ClangBuiltLinux/pyelftools
python
def __getitem__(self, name): ' \n ' return self.entry[name]
def num_symbols(self): ' Number of symbols in the table\n ' return ((self['sh_size'] // self['sh_entsize']) - 1)
-3,125,342,592,382,193,700
Number of symbols in the table
elftools/elf/sections.py
num_symbols
ClangBuiltLinux/pyelftools
python
def num_symbols(self): ' \n ' return ((self['sh_size'] // self['sh_entsize']) - 1)
def get_symbol(self, n): ' Get the symbol at index #n from the table (Symbol object).\n It begins at 1 and not 0 since the first entry is used to\n store the current version of the syminfo table.\n ' entry_offset = (self['sh_offset'] + (n * self['sh_entsize'])) entry = struct_parse(self.structs.Elf_Sunw_Syminfo, self.stream, stream_pos=entry_offset) name = self.symboltable.get_symbol(n).name return Symbol(entry, name)
2,648,948,556,581,666,000
Get the symbol at index #n from the table (Symbol object). It begins at 1 and not 0 since the first entry is used to store the current version of the syminfo table.
elftools/elf/sections.py
get_symbol
ClangBuiltLinux/pyelftools
python
def get_symbol(self, n): ' Get the symbol at index #n from the table (Symbol object).\n It begins at 1 and not 0 since the first entry is used to\n store the current version of the syminfo table.\n ' entry_offset = (self['sh_offset'] + (n * self['sh_entsize'])) entry = struct_parse(self.structs.Elf_Sunw_Syminfo, self.stream, stream_pos=entry_offset) name = self.symboltable.get_symbol(n).name return Symbol(entry, name)
def iter_symbols(self): ' Yield all the symbols in the table\n ' for i in range(1, (self.num_symbols() + 1)): (yield self.get_symbol(i))
-2,949,914,189,310,369,300
Yield all the symbols in the table
elftools/elf/sections.py
iter_symbols
ClangBuiltLinux/pyelftools
python
def iter_symbols(self): ' \n ' for i in range(1, (self.num_symbols() + 1)): (yield self.get_symbol(i))
def iter_notes(self): ' Yield all the notes in the section. Each result is a dictionary-\n like object with "n_name", "n_type", and "n_desc" fields, amongst\n others.\n ' return iter_notes(self.elffile, self['sh_offset'], self['sh_size'])
2,130,948,451,512,502,000
Yield all the notes in the section. Each result is a dictionary- like object with "n_name", "n_type", and "n_desc" fields, amongst others.
elftools/elf/sections.py
iter_notes
ClangBuiltLinux/pyelftools
python
def iter_notes(self): ' Yield all the notes in the section. Each result is a dictionary-\n like object with "n_name", "n_type", and "n_desc" fields, amongst\n others.\n ' return iter_notes(self.elffile, self['sh_offset'], self['sh_size'])
def iter_stabs(self): ' Yield all stab entries. Result type is ELFStructs.Elf_Stabs.\n ' offset = self['sh_offset'] size = self['sh_size'] end = (offset + size) while (offset < end): stabs = struct_parse(self.structs.Elf_Stabs, self.stream, stream_pos=offset) stabs['n_offset'] = offset offset += self.structs.Elf_Stabs.sizeof() self.stream.seek(offset) (yield stabs)
-220,474,480,617,224,350
Yield all stab entries. Result type is ELFStructs.Elf_Stabs.
elftools/elf/sections.py
iter_stabs
ClangBuiltLinux/pyelftools
python
def iter_stabs(self): ' \n ' offset = self['sh_offset'] size = self['sh_size'] end = (offset + size) while (offset < end): stabs = struct_parse(self.structs.Elf_Stabs, self.stream, stream_pos=offset) stabs['n_offset'] = offset offset += self.structs.Elf_Stabs.sizeof() self.stream.seek(offset) (yield stabs)
def iter_attributes(self, tag=None): ' Yield all attributes (limit to |tag| if specified).\n ' for attribute in self._make_attributes(): if ((tag is None) or (attribute.tag == tag)): (yield attribute)
2,320,219,259,272,997,000
Yield all attributes (limit to |tag| if specified).
elftools/elf/sections.py
iter_attributes
ClangBuiltLinux/pyelftools
python
def iter_attributes(self, tag=None): ' \n ' for attribute in self._make_attributes(): if ((tag is None) or (attribute.tag == tag)): (yield attribute)
@property def num_attributes(self): ' Number of attributes in the subsubsection.\n ' return (sum((1 for _ in self.iter_attributes())) + 1)
-6,371,965,361,598,495,000
Number of attributes in the subsubsection.
elftools/elf/sections.py
num_attributes
ClangBuiltLinux/pyelftools
python
@property def num_attributes(self): ' \n ' return (sum((1 for _ in self.iter_attributes())) + 1)
@property def attributes(self): ' List of all attributes in the subsubsection.\n ' return ([self.header] + list(self.iter_attributes()))
-8,697,860,494,321,396,000
List of all attributes in the subsubsection.
elftools/elf/sections.py
attributes
ClangBuiltLinux/pyelftools
python
@property def attributes(self): ' \n ' return ([self.header] + list(self.iter_attributes()))
def _make_attributes(self): ' Create all attributes for this subsubsection except the first one\n which is the header.\n ' end = (self.offset + self.header.value) self.stream.seek(self.attr_start) while (self.stream.tell() != end): (yield ARMAttribute(self.structs, self.stream))
-5,594,182,459,205,179,000
Create all attributes for this subsubsection except the first one which is the header.
elftools/elf/sections.py
_make_attributes
ClangBuiltLinux/pyelftools
python
def _make_attributes(self): ' Create all attributes for this subsubsection except the first one\n which is the header.\n ' end = (self.offset + self.header.value) self.stream.seek(self.attr_start) while (self.stream.tell() != end): (yield ARMAttribute(self.structs, self.stream))
def iter_subsubsections(self, scope=None): ' Yield all subsubsections (limit to |scope| if specified).\n ' for subsubsec in self._make_subsubsections(): if ((scope is None) or (subsubsec.header.tag == scope)): (yield subsubsec)
-1,735,162,264,016,125,000
Yield all subsubsections (limit to |scope| if specified).
elftools/elf/sections.py
iter_subsubsections
ClangBuiltLinux/pyelftools
python
def iter_subsubsections(self, scope=None): ' \n ' for subsubsec in self._make_subsubsections(): if ((scope is None) or (subsubsec.header.tag == scope)): (yield subsubsec)
@property def num_subsubsections(self): ' Number of subsubsections in the subsection.\n ' return sum((1 for _ in self.iter_subsubsections()))
5,231,861,895,987,968,000
Number of subsubsections in the subsection.
elftools/elf/sections.py
num_subsubsections
ClangBuiltLinux/pyelftools
python
@property def num_subsubsections(self): ' \n ' return sum((1 for _ in self.iter_subsubsections()))
@property def subsubsections(self): ' List of all subsubsections in the subsection.\n ' return list(self.iter_subsubsections())
-6,974,233,147,596,687,000
List of all subsubsections in the subsection.
elftools/elf/sections.py
subsubsections
ClangBuiltLinux/pyelftools
python
@property def subsubsections(self): ' \n ' return list(self.iter_subsubsections())
def _make_subsubsections(self): ' Create all subsubsections for this subsection.\n ' end = (self.offset + self['length']) self.stream.seek(self.subsubsec_start) while (self.stream.tell() != end): subsubsec = ARMAttributesSubsubsection(self.stream, self.structs, self.stream.tell()) self.stream.seek((self.subsubsec_start + subsubsec.header.value)) (yield subsubsec)
835,896,700,131,857,900
Create all subsubsections for this subsection.
elftools/elf/sections.py
_make_subsubsections
ClangBuiltLinux/pyelftools
python
def _make_subsubsections(self): ' \n ' end = (self.offset + self['length']) self.stream.seek(self.subsubsec_start) while (self.stream.tell() != end): subsubsec = ARMAttributesSubsubsection(self.stream, self.structs, self.stream.tell()) self.stream.seek((self.subsubsec_start + subsubsec.header.value)) (yield subsubsec)
def __getitem__(self, name): ' Implement dict-like access to header entries.\n ' return self.header[name]
-1,310,959,397,063,310,300
Implement dict-like access to header entries.
elftools/elf/sections.py
__getitem__
ClangBuiltLinux/pyelftools
python
def __getitem__(self, name): ' \n ' return self.header[name]
def iter_subsections(self, vendor_name=None): ' Yield all subsections (limit to |vendor_name| if specified).\n ' for subsec in self._make_subsections(): if ((vendor_name is None) or (subsec['vendor_name'] == vendor_name)): (yield subsec)
3,568,005,328,186,459,600
Yield all subsections (limit to |vendor_name| if specified).
elftools/elf/sections.py
iter_subsections
ClangBuiltLinux/pyelftools
python
def iter_subsections(self, vendor_name=None): ' \n ' for subsec in self._make_subsections(): if ((vendor_name is None) or (subsec['vendor_name'] == vendor_name)): (yield subsec)
@property def num_subsections(self): ' Number of subsections in the section.\n ' return sum((1 for _ in self.iter_subsections()))
8,485,527,661,879,181,000
Number of subsections in the section.
elftools/elf/sections.py
num_subsections
ClangBuiltLinux/pyelftools
python
@property def num_subsections(self): ' \n ' return sum((1 for _ in self.iter_subsections()))
@property def subsections(self): ' List of all subsections in the section.\n ' return list(self.iter_subsections())
-5,966,918,885,840,222,000
List of all subsections in the section.
elftools/elf/sections.py
subsections
ClangBuiltLinux/pyelftools
python
@property def subsections(self): ' \n ' return list(self.iter_subsections())
def _make_subsections(self): ' Create all subsections for this section.\n ' end = (self['sh_offset'] + self.data_size) self.stream.seek(self.subsec_start) while (self.stream.tell() != end): subsec = ARMAttributesSubsection(self.stream, self.structs, self.stream.tell()) self.stream.seek((self.subsec_start + subsec['length'])) (yield subsec)
5,842,532,078,691,184,000
Create all subsections for this section.
elftools/elf/sections.py
_make_subsections
ClangBuiltLinux/pyelftools
python
def _make_subsections(self): ' \n ' end = (self['sh_offset'] + self.data_size) self.stream.seek(self.subsec_start) while (self.stream.tell() != end): subsec = ARMAttributesSubsection(self.stream, self.structs, self.stream.tell()) self.stream.seek((self.subsec_start + subsec['length'])) (yield subsec)
def register_task(self, task, callback_function): 'Register a function with this worker\n\n def function_callback(calling_gearman_worker, current_job):\n return current_job.data\n ' self.worker_abilities[task] = callback_function self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_abilities(self.handler_initial_state['abilities']) return task
4,803,041,758,010,575,000
Register a function with this worker def function_callback(calling_gearman_worker, current_job): return current_job.data
client/python3_gearman/worker.py
register_task
aixiwang/gearman_test
python
def register_task(self, task, callback_function): 'Register a function with this worker\n\n def function_callback(calling_gearman_worker, current_job):\n return current_job.data\n ' self.worker_abilities[task] = callback_function self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_abilities(self.handler_initial_state['abilities']) return task
def unregister_task(self, task): 'Unregister a function with worker' self.worker_abilities.pop(task, None) self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_abilities(self.handler_initial_state['abilities']) return task
5,574,631,156,250,707,000
Unregister a function with worker
client/python3_gearman/worker.py
unregister_task
aixiwang/gearman_test
python
def unregister_task(self, task): self.worker_abilities.pop(task, None) self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_abilities(self.handler_initial_state['abilities']) return task
def set_client_id(self, client_id): 'Notify the server that we should be identified as this client ID' self.worker_client_id = client_id self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_client_id(self.handler_initial_state['client_id']) return client_id
-357,448,471,174,599,600
Notify the server that we should be identified as this client ID
client/python3_gearman/worker.py
set_client_id
aixiwang/gearman_test
python
def set_client_id(self, client_id): self.worker_client_id = client_id self._update_initial_state() for command_handler in self.handler_to_connection_map.keys(): command_handler.set_client_id(self.handler_initial_state['client_id']) return client_id
def work(self, poll_timeout=POLL_TIMEOUT_IN_SECONDS): 'Loop indefinitely, complete tasks from all connections.' continue_working = True worker_connections = [] def continue_while_connections_alive(any_activity): return self.after_poll(any_activity) while continue_working: worker_connections = self.establish_worker_connections() continue_working = self.poll_connections_until_stopped(worker_connections, continue_while_connections_alive, timeout=poll_timeout) for current_connection in worker_connections: current_connection.close()
-5,721,381,411,356,950,000
Loop indefinitely, complete tasks from all connections.
client/python3_gearman/worker.py
work
aixiwang/gearman_test
python
def work(self, poll_timeout=POLL_TIMEOUT_IN_SECONDS): continue_working = True worker_connections = [] def continue_while_connections_alive(any_activity): return self.after_poll(any_activity) while continue_working: worker_connections = self.establish_worker_connections() continue_working = self.poll_connections_until_stopped(worker_connections, continue_while_connections_alive, timeout=poll_timeout) for current_connection in worker_connections: current_connection.close()
def establish_worker_connections(self): 'Return a shuffled list of connections that are alive, and try to\n reconnect to dead connections if necessary.' self.randomized_connections = list(self.connection_list) random.shuffle(self.randomized_connections) output_connections = [] for current_connection in self.randomized_connections: try: valid_connection = self.establish_connection(current_connection) output_connections.append(valid_connection) except ConnectionError: pass return output_connections
-699,241,287,962,732,400
Return a shuffled list of connections that are alive, and try to reconnect to dead connections if necessary.
client/python3_gearman/worker.py
establish_worker_connections
aixiwang/gearman_test
python
def establish_worker_connections(self): 'Return a shuffled list of connections that are alive, and try to\n reconnect to dead connections if necessary.' self.randomized_connections = list(self.connection_list) random.shuffle(self.randomized_connections) output_connections = [] for current_connection in self.randomized_connections: try: valid_connection = self.establish_connection(current_connection) output_connections.append(valid_connection) except ConnectionError: pass return output_connections
def after_poll(self, any_activity): 'Polling callback to notify any outside listeners whats going on\n with the GearmanWorker.\n\n Return True to continue polling, False to exit the work loop' return True
-8,650,101,808,506,423,000
Polling callback to notify any outside listeners whats going on with the GearmanWorker. Return True to continue polling, False to exit the work loop
client/python3_gearman/worker.py
after_poll
aixiwang/gearman_test
python
def after_poll(self, any_activity): 'Polling callback to notify any outside listeners whats going on\n with the GearmanWorker.\n\n Return True to continue polling, False to exit the work loop' return True
def handle_error(self, current_connection): 'If we discover that a connection has a problem, we better release\n the job lock' current_handler = self.connection_to_handler_map.get(current_connection) if current_handler: self.set_job_lock(current_handler, lock=False) super(GearmanWorker, self).handle_error(current_connection)
-3,679,210,255,511,415,300
If we discover that a connection has a problem, we better release the job lock
client/python3_gearman/worker.py
handle_error
aixiwang/gearman_test
python
def handle_error(self, current_connection): 'If we discover that a connection has a problem, we better release\n the job lock' current_handler = self.connection_to_handler_map.get(current_connection) if current_handler: self.set_job_lock(current_handler, lock=False) super(GearmanWorker, self).handle_error(current_connection)
def send_job_status(self, current_job, numerator, denominator, poll_timeout=None): 'Send a Gearman JOB_STATUS update for an inflight job' current_handler = self._get_handler_for_job(current_job) current_handler.send_job_status(current_job, numerator=numerator, denominator=denominator) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
-3,530,889,081,956,161,500
Send a Gearman JOB_STATUS update for an inflight job
client/python3_gearman/worker.py
send_job_status
aixiwang/gearman_test
python
def send_job_status(self, current_job, numerator, denominator, poll_timeout=None): current_handler = self._get_handler_for_job(current_job) current_handler.send_job_status(current_job, numerator=numerator, denominator=denominator) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
def send_job_failure(self, current_job, poll_timeout=None): 'Removes a job from the queue if its backgrounded' current_handler = self._get_handler_for_job(current_job) current_handler.send_job_failure(current_job) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
-4,447,113,273,108,501,500
Removes a job from the queue if its backgrounded
client/python3_gearman/worker.py
send_job_failure
aixiwang/gearman_test
python
def send_job_failure(self, current_job, poll_timeout=None): current_handler = self._get_handler_for_job(current_job) current_handler.send_job_failure(current_job) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
def send_job_exception(self, current_job, data, poll_timeout=None): 'Removes a job from the queue if its backgrounded' current_handler = self._get_handler_for_job(current_job) current_handler.send_job_exception(current_job, data=data) current_handler.send_job_failure(current_job) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)
732,896,769,008,873,300
Removes a job from the queue if its backgrounded
client/python3_gearman/worker.py
send_job_exception
aixiwang/gearman_test
python
def send_job_exception(self, current_job, data, poll_timeout=None): current_handler = self._get_handler_for_job(current_job) current_handler.send_job_exception(current_job, data=data) current_handler.send_job_failure(current_job) self.wait_until_updates_sent([current_job], poll_timeout=poll_timeout)