|
|
|
"""GAQDAQI.321.890 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/10yCiraevWJgKWVmJno07vSCNVIvsiA8q |
|
""" |
|
|
|
import pandas as pd |
|
|
|
file_path = '/content/global_air_quality_data_10000.csv' |
|
df_air_quality = pd.read_csv(file_path) |
|
|
|
df_air_quality.head() |
|
|
|
df_air_quality.info() |
|
|
|
df_air_quality.describe(include='all') |
|
|
|
df_air_quality.isnull().sum() |
|
|
|
df_air_quality.isnull().sum() |
|
|
|
df_air_quality.describe(include='all') |
|
|
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.histplot(df_air_quality['PM2.5'], bins=30, kde=True) |
|
plt.title('Distribution of PM2.5') |
|
plt.xlabel('PM2.5') |
|
plt.ylabel('Frequency') |
|
plt.show() |
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(df_air_quality['Date'], df_air_quality['PM2.5']) |
|
plt.title('PM2.5 Levels Over Time') |
|
plt.xlabel('Date') |
|
plt.ylabel('PM2.5') |
|
plt.show() |
|
|
|
plt.figure(figsize=(15, 8)) |
|
sns.boxplot(x='City', y='PM2.5', data=df_air_quality) |
|
plt.title('PM2.5 Levels by City') |
|
plt.xlabel('City') |
|
plt.ylabel('PM2.5') |
|
plt.xticks(rotation=90) |
|
plt.show() |
|
|
|
numeric_cols = df_air_quality.select_dtypes(include=['number']) |
|
|
|
plt.figure(figsize=(12, 10)) |
|
sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm', linewidths=0.5) |
|
plt.title('Correlation Heatmap') |
|
plt.show() |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.scatterplot(x='PM2.5', y='PM10', data=df_air_quality) |
|
plt.title('Scatter Plot of PM2.5 vs. PM10') |
|
plt.xlabel('PM2.5') |
|
plt.ylabel('PM10') |
|
plt.show() |
|
|
|
city_pollutants_mean = df_air_quality.groupby('City')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean() |
|
city_pollutants_mean |
|
|
|
plt.figure(figsize=(15, 8)) |
|
city_pollutants_mean['PM2.5'].plot(kind='bar') |
|
plt.title('Mean PM2.5 Levels by City') |
|
plt.xlabel('City') |
|
plt.ylabel('Mean PM2.5') |
|
plt.xticks(rotation=90) |
|
plt.show() |
|
|
|
sns.pairplot(df_air_quality[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']]) |
|
plt.suptitle('Pair Plot of Selected Pollutants', y=1.02) |
|
plt.show() |
|
|
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import pandas as pd |
|
import numpy as np |
|
|
|
data = { |
|
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'), |
|
'PM2.5' : np.random.rand(100) * 100, |
|
'OtherMetric': np.random.rand(100) * 50 |
|
} |
|
df_air_quality = pd.DataFrame(data) |
|
|
|
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date']) |
|
df_air_quality.set_index('Date', inplace= True) |
|
|
|
seasonal_trends = df_air_quality.resample('M').mean(numeric_only=True) |
|
|
|
plt.figure(figsize=(12, 8)) |
|
plt.plot(seasonal_trends) |
|
plt.title('Seasonal Trends in Air Quallity') |
|
plt.xlabel('Month') |
|
plt.ylabel('Mean Value') |
|
plt.legend(seasonal_trends.columns, loc='upper right') |
|
plt.show() |
|
|
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
data = { |
|
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'), |
|
'Country': np.random.choice(['USA', 'China', 'India', 'Germany', 'Brazil'], 100), |
|
'PM2.5': np.random.rand(100) * 100, |
|
'PM10': np.random.rand(100) * 150, |
|
'NO2': np.random.rand(100) * 50, |
|
'SO2': np.random.rand(100) * 20, |
|
'CO': np.random.rand(100) * 10, |
|
'O3': np.random.rand(100) * 70, |
|
'OtherMetric': np.random.rand(100) * 50 |
|
} |
|
df_air_quality = pd.DataFrame(data) |
|
|
|
|
|
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date']) |
|
df_air_quality.set_index('Date', inplace=True) |
|
|
|
|
|
country_pollutants_mean = df_air_quality.groupby('Country')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean() |
|
print(country_pollutants_mean) |
|
|
|
|
|
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15)) |
|
|
|
pollutants = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3'] |
|
for i, pollutant in enumerate(pollutants): |
|
row, col = divmod(i, 2) |
|
sns.barplot(x=country_pollutants_mean.index, y=country_pollutants_mean[pollutant], ax=axes[row, col]) |
|
axes[row, col].set_title(f'Mean {pollutant} by Country') |
|
axes[row, col].set_xlabel('Country') |
|
axes[row, col].set_ylabel(f'Mean {pollutant}') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
plt.figure(figsize=(15, 10)) |
|
sns.heatmap(country_pollutants_mean, annot=True, cmap= 'YlGnBu', linewidths=0.5) |
|
plt.title('Mean Pollutant Levels by Country') |
|
plt.xlabel('Pollutants') |
|
plt.ylabel('Country') |
|
plt.show() |