Upload gaqdaqi_321_890.py
Browse files- gaqdaqi_321_890.py +152 -0
gaqdaqi_321_890.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""GAQDAQI.321.890
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/10yCiraevWJgKWVmJno07vSCNVIvsiA8q
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
file_path = '/content/global_air_quality_data_10000.csv'
|
| 13 |
+
df_air_quality = pd.read_csv(file_path)
|
| 14 |
+
|
| 15 |
+
df_air_quality.head()
|
| 16 |
+
|
| 17 |
+
df_air_quality.info()
|
| 18 |
+
|
| 19 |
+
df_air_quality.describe(include='all')
|
| 20 |
+
|
| 21 |
+
df_air_quality.isnull().sum()
|
| 22 |
+
|
| 23 |
+
df_air_quality.isnull().sum()
|
| 24 |
+
|
| 25 |
+
df_air_quality.describe(include='all')
|
| 26 |
+
|
| 27 |
+
import matplotlib.pyplot as plt
|
| 28 |
+
import seaborn as sns
|
| 29 |
+
|
| 30 |
+
plt.figure(figsize=(10, 6))
|
| 31 |
+
sns.histplot(df_air_quality['PM2.5'], bins=30, kde=True)
|
| 32 |
+
plt.title('Distribution of PM2.5')
|
| 33 |
+
plt.xlabel('PM2.5')
|
| 34 |
+
plt.ylabel('Frequency')
|
| 35 |
+
plt.show()
|
| 36 |
+
|
| 37 |
+
plt.figure(figsize=(12, 6))
|
| 38 |
+
plt.plot(df_air_quality['Date'], df_air_quality['PM2.5'])
|
| 39 |
+
plt.title('PM2.5 Levels Over Time')
|
| 40 |
+
plt.xlabel('Date')
|
| 41 |
+
plt.ylabel('PM2.5')
|
| 42 |
+
plt.show()
|
| 43 |
+
|
| 44 |
+
plt.figure(figsize=(15, 8))
|
| 45 |
+
sns.boxplot(x='City', y='PM2.5', data=df_air_quality)
|
| 46 |
+
plt.title('PM2.5 Levels by City')
|
| 47 |
+
plt.xlabel('City')
|
| 48 |
+
plt.ylabel('PM2.5')
|
| 49 |
+
plt.xticks(rotation=90)
|
| 50 |
+
plt.show()
|
| 51 |
+
|
| 52 |
+
numeric_cols = df_air_quality.select_dtypes(include=['number'])
|
| 53 |
+
|
| 54 |
+
plt.figure(figsize=(12, 10))
|
| 55 |
+
sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
|
| 56 |
+
plt.title('Correlation Heatmap')
|
| 57 |
+
plt.show()
|
| 58 |
+
|
| 59 |
+
plt.figure(figsize=(10, 6))
|
| 60 |
+
sns.scatterplot(x='PM2.5', y='PM10', data=df_air_quality)
|
| 61 |
+
plt.title('Scatter Plot of PM2.5 vs. PM10')
|
| 62 |
+
plt.xlabel('PM2.5')
|
| 63 |
+
plt.ylabel('PM10')
|
| 64 |
+
plt.show()
|
| 65 |
+
|
| 66 |
+
city_pollutants_mean = df_air_quality.groupby('City')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
|
| 67 |
+
city_pollutants_mean
|
| 68 |
+
|
| 69 |
+
plt.figure(figsize=(15, 8))
|
| 70 |
+
city_pollutants_mean['PM2.5'].plot(kind='bar')
|
| 71 |
+
plt.title('Mean PM2.5 Levels by City')
|
| 72 |
+
plt.xlabel('City')
|
| 73 |
+
plt.ylabel('Mean PM2.5')
|
| 74 |
+
plt.xticks(rotation=90)
|
| 75 |
+
plt.show()
|
| 76 |
+
|
| 77 |
+
sns.pairplot(df_air_quality[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']])
|
| 78 |
+
plt.suptitle('Pair Plot of Selected Pollutants', y=1.02)
|
| 79 |
+
plt.show()
|
| 80 |
+
|
| 81 |
+
import matplotlib.pyplot as plt
|
| 82 |
+
import seaborn as sns
|
| 83 |
+
import pandas as pd
|
| 84 |
+
import numpy as np
|
| 85 |
+
|
| 86 |
+
data = {
|
| 87 |
+
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
|
| 88 |
+
'PM2.5' : np.random.rand(100) * 100,
|
| 89 |
+
'OtherMetric': np.random.rand(100) * 50
|
| 90 |
+
}
|
| 91 |
+
df_air_quality = pd.DataFrame(data)
|
| 92 |
+
|
| 93 |
+
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
|
| 94 |
+
df_air_quality.set_index('Date', inplace= True)
|
| 95 |
+
|
| 96 |
+
seasonal_trends = df_air_quality.resample('M').mean(numeric_only=True)
|
| 97 |
+
|
| 98 |
+
plt.figure(figsize=(12, 8))
|
| 99 |
+
plt.plot(seasonal_trends)
|
| 100 |
+
plt.title('Seasonal Trends in Air Quallity')
|
| 101 |
+
plt.xlabel('Month')
|
| 102 |
+
plt.ylabel('Mean Value')
|
| 103 |
+
plt.legend(seasonal_trends.columns, loc='upper right')
|
| 104 |
+
plt.show()
|
| 105 |
+
|
| 106 |
+
import matplotlib.pyplot as plt
|
| 107 |
+
import seaborn as sns
|
| 108 |
+
import pandas as pd
|
| 109 |
+
import numpy as np
|
| 110 |
+
|
| 111 |
+
# Example DataFrame creation (Replace this with your actual data loading step)
|
| 112 |
+
data = {
|
| 113 |
+
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
|
| 114 |
+
'Country': np.random.choice(['USA', 'China', 'India', 'Germany', 'Brazil'], 100),
|
| 115 |
+
'PM2.5': np.random.rand(100) * 100,
|
| 116 |
+
'PM10': np.random.rand(100) * 150,
|
| 117 |
+
'NO2': np.random.rand(100) * 50,
|
| 118 |
+
'SO2': np.random.rand(100) * 20,
|
| 119 |
+
'CO': np.random.rand(100) * 10,
|
| 120 |
+
'O3': np.random.rand(100) * 70,
|
| 121 |
+
'OtherMetric': np.random.rand(100) * 50
|
| 122 |
+
}
|
| 123 |
+
df_air_quality = pd.DataFrame(data)
|
| 124 |
+
|
| 125 |
+
# Ensure the Date column is in datetime format and set it as the index
|
| 126 |
+
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
|
| 127 |
+
df_air_quality.set_index('Date', inplace=True)
|
| 128 |
+
|
| 129 |
+
# Group by country and compute mean of pollutants
|
| 130 |
+
country_pollutants_mean = df_air_quality.groupby('Country')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
|
| 131 |
+
print(country_pollutants_mean)
|
| 132 |
+
|
| 133 |
+
# Plot the mean values of pollutants by country
|
| 134 |
+
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15))
|
| 135 |
+
|
| 136 |
+
pollutants = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']
|
| 137 |
+
for i, pollutant in enumerate(pollutants):
|
| 138 |
+
row, col = divmod(i, 2)
|
| 139 |
+
sns.barplot(x=country_pollutants_mean.index, y=country_pollutants_mean[pollutant], ax=axes[row, col])
|
| 140 |
+
axes[row, col].set_title(f'Mean {pollutant} by Country')
|
| 141 |
+
axes[row, col].set_xlabel('Country')
|
| 142 |
+
axes[row, col].set_ylabel(f'Mean {pollutant}')
|
| 143 |
+
|
| 144 |
+
plt.tight_layout()
|
| 145 |
+
plt.show()
|
| 146 |
+
|
| 147 |
+
plt.figure(figsize=(15, 10))
|
| 148 |
+
sns.heatmap(country_pollutants_mean, annot=True, cmap= 'YlGnBu', linewidths=0.5)
|
| 149 |
+
plt.title('Mean Pollutant Levels by Country')
|
| 150 |
+
plt.xlabel('Pollutants')
|
| 151 |
+
plt.ylabel('Country')
|
| 152 |
+
plt.show()
|