File size: 4,409 Bytes
1bbe34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# -*- coding: utf-8 -*-
"""GAQDAQI.321.890
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/10yCiraevWJgKWVmJno07vSCNVIvsiA8q
"""
import pandas as pd
file_path = '/content/global_air_quality_data_10000.csv'
df_air_quality = pd.read_csv(file_path)
df_air_quality.head()
df_air_quality.info()
df_air_quality.describe(include='all')
df_air_quality.isnull().sum()
df_air_quality.isnull().sum()
df_air_quality.describe(include='all')
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(df_air_quality['PM2.5'], bins=30, kde=True)
plt.title('Distribution of PM2.5')
plt.xlabel('PM2.5')
plt.ylabel('Frequency')
plt.show()
plt.figure(figsize=(12, 6))
plt.plot(df_air_quality['Date'], df_air_quality['PM2.5'])
plt.title('PM2.5 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('PM2.5')
plt.show()
plt.figure(figsize=(15, 8))
sns.boxplot(x='City', y='PM2.5', data=df_air_quality)
plt.title('PM2.5 Levels by City')
plt.xlabel('City')
plt.ylabel('PM2.5')
plt.xticks(rotation=90)
plt.show()
numeric_cols = df_air_quality.select_dtypes(include=['number'])
plt.figure(figsize=(12, 10))
sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
plt.figure(figsize=(10, 6))
sns.scatterplot(x='PM2.5', y='PM10', data=df_air_quality)
plt.title('Scatter Plot of PM2.5 vs. PM10')
plt.xlabel('PM2.5')
plt.ylabel('PM10')
plt.show()
city_pollutants_mean = df_air_quality.groupby('City')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
city_pollutants_mean
plt.figure(figsize=(15, 8))
city_pollutants_mean['PM2.5'].plot(kind='bar')
plt.title('Mean PM2.5 Levels by City')
plt.xlabel('City')
plt.ylabel('Mean PM2.5')
plt.xticks(rotation=90)
plt.show()
sns.pairplot(df_air_quality[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']])
plt.suptitle('Pair Plot of Selected Pollutants', y=1.02)
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
data = {
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
'PM2.5' : np.random.rand(100) * 100,
'OtherMetric': np.random.rand(100) * 50
}
df_air_quality = pd.DataFrame(data)
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
df_air_quality.set_index('Date', inplace= True)
seasonal_trends = df_air_quality.resample('M').mean(numeric_only=True)
plt.figure(figsize=(12, 8))
plt.plot(seasonal_trends)
plt.title('Seasonal Trends in Air Quallity')
plt.xlabel('Month')
plt.ylabel('Mean Value')
plt.legend(seasonal_trends.columns, loc='upper right')
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
# Example DataFrame creation (Replace this with your actual data loading step)
data = {
'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
'Country': np.random.choice(['USA', 'China', 'India', 'Germany', 'Brazil'], 100),
'PM2.5': np.random.rand(100) * 100,
'PM10': np.random.rand(100) * 150,
'NO2': np.random.rand(100) * 50,
'SO2': np.random.rand(100) * 20,
'CO': np.random.rand(100) * 10,
'O3': np.random.rand(100) * 70,
'OtherMetric': np.random.rand(100) * 50
}
df_air_quality = pd.DataFrame(data)
# Ensure the Date column is in datetime format and set it as the index
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
df_air_quality.set_index('Date', inplace=True)
# Group by country and compute mean of pollutants
country_pollutants_mean = df_air_quality.groupby('Country')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
print(country_pollutants_mean)
# Plot the mean values of pollutants by country
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15))
pollutants = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']
for i, pollutant in enumerate(pollutants):
row, col = divmod(i, 2)
sns.barplot(x=country_pollutants_mean.index, y=country_pollutants_mean[pollutant], ax=axes[row, col])
axes[row, col].set_title(f'Mean {pollutant} by Country')
axes[row, col].set_xlabel('Country')
axes[row, col].set_ylabel(f'Mean {pollutant}')
plt.tight_layout()
plt.show()
plt.figure(figsize=(15, 10))
sns.heatmap(country_pollutants_mean, annot=True, cmap= 'YlGnBu', linewidths=0.5)
plt.title('Mean Pollutant Levels by Country')
plt.xlabel('Pollutants')
plt.ylabel('Country')
plt.show() |