File size: 4,409 Bytes
1bbe34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# -*- coding: utf-8 -*-
"""GAQDAQI.321.890

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/10yCiraevWJgKWVmJno07vSCNVIvsiA8q
"""

import pandas as pd

file_path = '/content/global_air_quality_data_10000.csv'
df_air_quality = pd.read_csv(file_path)

df_air_quality.head()

df_air_quality.info()

df_air_quality.describe(include='all')

df_air_quality.isnull().sum()

df_air_quality.isnull().sum()

df_air_quality.describe(include='all')

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 6))
sns.histplot(df_air_quality['PM2.5'], bins=30, kde=True)
plt.title('Distribution of PM2.5')
plt.xlabel('PM2.5')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(12, 6))
plt.plot(df_air_quality['Date'], df_air_quality['PM2.5'])
plt.title('PM2.5 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('PM2.5')
plt.show()

plt.figure(figsize=(15, 8))
sns.boxplot(x='City', y='PM2.5', data=df_air_quality)
plt.title('PM2.5 Levels by City')
plt.xlabel('City')
plt.ylabel('PM2.5')
plt.xticks(rotation=90)
plt.show()

numeric_cols = df_air_quality.select_dtypes(include=['number'])

plt.figure(figsize=(12, 10))
sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()

plt.figure(figsize=(10, 6))
sns.scatterplot(x='PM2.5', y='PM10', data=df_air_quality)
plt.title('Scatter Plot of PM2.5 vs. PM10')
plt.xlabel('PM2.5')
plt.ylabel('PM10')
plt.show()

city_pollutants_mean = df_air_quality.groupby('City')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
city_pollutants_mean

plt.figure(figsize=(15, 8))
city_pollutants_mean['PM2.5'].plot(kind='bar')
plt.title('Mean PM2.5 Levels by City')
plt.xlabel('City')
plt.ylabel('Mean PM2.5')
plt.xticks(rotation=90)
plt.show()

sns.pairplot(df_air_quality[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']])
plt.suptitle('Pair Plot of Selected Pollutants', y=1.02)
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

data = {
    'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
    'PM2.5' : np.random.rand(100) * 100,
    'OtherMetric': np.random.rand(100) * 50
}
df_air_quality = pd.DataFrame(data)

df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
df_air_quality.set_index('Date', inplace= True)

seasonal_trends = df_air_quality.resample('M').mean(numeric_only=True)

plt.figure(figsize=(12, 8))
plt.plot(seasonal_trends)
plt.title('Seasonal Trends in Air Quallity')
plt.xlabel('Month')
plt.ylabel('Mean Value')
plt.legend(seasonal_trends.columns, loc='upper right')
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

# Example DataFrame creation (Replace this with your actual data loading step)
data = {
    'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'),
    'Country': np.random.choice(['USA', 'China', 'India', 'Germany', 'Brazil'], 100),
    'PM2.5': np.random.rand(100) * 100,
    'PM10': np.random.rand(100) * 150,
    'NO2': np.random.rand(100) * 50,
    'SO2': np.random.rand(100) * 20,
    'CO': np.random.rand(100) * 10,
    'O3': np.random.rand(100) * 70,
    'OtherMetric': np.random.rand(100) * 50
}
df_air_quality = pd.DataFrame(data)

# Ensure the Date column is in datetime format and set it as the index
df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date'])
df_air_quality.set_index('Date', inplace=True)

# Group by country and compute mean of pollutants
country_pollutants_mean = df_air_quality.groupby('Country')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean()
print(country_pollutants_mean)

# Plot the mean values of pollutants by country
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15))

pollutants = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']
for i, pollutant in enumerate(pollutants):
    row, col = divmod(i, 2)
    sns.barplot(x=country_pollutants_mean.index, y=country_pollutants_mean[pollutant], ax=axes[row, col])
    axes[row, col].set_title(f'Mean {pollutant} by Country')
    axes[row, col].set_xlabel('Country')
    axes[row, col].set_ylabel(f'Mean {pollutant}')

plt.tight_layout()
plt.show()

plt.figure(figsize=(15, 10))
sns.heatmap(country_pollutants_mean, annot=True, cmap= 'YlGnBu', linewidths=0.5)
plt.title('Mean Pollutant Levels by Country')
plt.xlabel('Pollutants')
plt.ylabel('Country')
plt.show()