# -*- coding: utf-8 -*- """GAQDAQI.321.890 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/10yCiraevWJgKWVmJno07vSCNVIvsiA8q """ import pandas as pd file_path = '/content/global_air_quality_data_10000.csv' df_air_quality = pd.read_csv(file_path) df_air_quality.head() df_air_quality.info() df_air_quality.describe(include='all') df_air_quality.isnull().sum() df_air_quality.isnull().sum() df_air_quality.describe(include='all') import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10, 6)) sns.histplot(df_air_quality['PM2.5'], bins=30, kde=True) plt.title('Distribution of PM2.5') plt.xlabel('PM2.5') plt.ylabel('Frequency') plt.show() plt.figure(figsize=(12, 6)) plt.plot(df_air_quality['Date'], df_air_quality['PM2.5']) plt.title('PM2.5 Levels Over Time') plt.xlabel('Date') plt.ylabel('PM2.5') plt.show() plt.figure(figsize=(15, 8)) sns.boxplot(x='City', y='PM2.5', data=df_air_quality) plt.title('PM2.5 Levels by City') plt.xlabel('City') plt.ylabel('PM2.5') plt.xticks(rotation=90) plt.show() numeric_cols = df_air_quality.select_dtypes(include=['number']) plt.figure(figsize=(12, 10)) sns.heatmap(numeric_cols.corr(), annot=True, cmap='coolwarm', linewidths=0.5) plt.title('Correlation Heatmap') plt.show() plt.figure(figsize=(10, 6)) sns.scatterplot(x='PM2.5', y='PM10', data=df_air_quality) plt.title('Scatter Plot of PM2.5 vs. PM10') plt.xlabel('PM2.5') plt.ylabel('PM10') plt.show() city_pollutants_mean = df_air_quality.groupby('City')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean() city_pollutants_mean plt.figure(figsize=(15, 8)) city_pollutants_mean['PM2.5'].plot(kind='bar') plt.title('Mean PM2.5 Levels by City') plt.xlabel('City') plt.ylabel('Mean PM2.5') plt.xticks(rotation=90) plt.show() sns.pairplot(df_air_quality[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']]) plt.suptitle('Pair Plot of Selected Pollutants', y=1.02) plt.show() import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np data = { 'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'), 'PM2.5' : np.random.rand(100) * 100, 'OtherMetric': np.random.rand(100) * 50 } df_air_quality = pd.DataFrame(data) df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date']) df_air_quality.set_index('Date', inplace= True) seasonal_trends = df_air_quality.resample('M').mean(numeric_only=True) plt.figure(figsize=(12, 8)) plt.plot(seasonal_trends) plt.title('Seasonal Trends in Air Quallity') plt.xlabel('Month') plt.ylabel('Mean Value') plt.legend(seasonal_trends.columns, loc='upper right') plt.show() import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np # Example DataFrame creation (Replace this with your actual data loading step) data = { 'Date': pd.date_range(start='1/1/2020', periods=100, freq='D'), 'Country': np.random.choice(['USA', 'China', 'India', 'Germany', 'Brazil'], 100), 'PM2.5': np.random.rand(100) * 100, 'PM10': np.random.rand(100) * 150, 'NO2': np.random.rand(100) * 50, 'SO2': np.random.rand(100) * 20, 'CO': np.random.rand(100) * 10, 'O3': np.random.rand(100) * 70, 'OtherMetric': np.random.rand(100) * 50 } df_air_quality = pd.DataFrame(data) # Ensure the Date column is in datetime format and set it as the index df_air_quality['Date'] = pd.to_datetime(df_air_quality['Date']) df_air_quality.set_index('Date', inplace=True) # Group by country and compute mean of pollutants country_pollutants_mean = df_air_quality.groupby('Country')[['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3']].mean() print(country_pollutants_mean) # Plot the mean values of pollutants by country fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15)) pollutants = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'O3'] for i, pollutant in enumerate(pollutants): row, col = divmod(i, 2) sns.barplot(x=country_pollutants_mean.index, y=country_pollutants_mean[pollutant], ax=axes[row, col]) axes[row, col].set_title(f'Mean {pollutant} by Country') axes[row, col].set_xlabel('Country') axes[row, col].set_ylabel(f'Mean {pollutant}') plt.tight_layout() plt.show() plt.figure(figsize=(15, 10)) sns.heatmap(country_pollutants_mean, annot=True, cmap= 'YlGnBu', linewidths=0.5) plt.title('Mean Pollutant Levels by Country') plt.xlabel('Pollutants') plt.ylabel('Country') plt.show()