html_url
stringlengths 48
51
| title
stringlengths 1
290
| comments
sequencelengths 0
30
| body
stringlengths 0
228k
⌀ | number
int64 2
7.08k
|
---|---|---|---|---|
https://github.com/huggingface/datasets/issues/5834 | Is uint8 supported? | [
"Hi ! The numpy formatting detaults to int64 and float32 - but you can use uint8 using\r\n```python\r\nds = ds.with_format(\"numpy\", dtype=np.uint8)\r\n```",
"Related to https://github.com/huggingface/datasets/issues/5517.",
"Thank you!\r\nBy setting `ds.with_format(\"numpy\", dtype=np.uint8)`, the dataset returns the data in `uint8`.\r\n\r\nHowever, `with_format` and `set_format` seem to cast the data on-the-fly.\r\nI want to reduce the dataset size by using `uint8` instead of `int64` and I observe no difference between using `int64` and `uint8` for the vector.\r\nIs there any way to actually store the data in `uint8` and save the disk space and the downloading time when loaded from the hub?\r\n",
"If the feature type is `Value(\"uint8\")` then it's written an uint8 on disk using the uint8 Arrow dtype.\r\n\r\ne.g.\r\n```python\r\nds = Dataset.from_dict({\"a\": range(10)}, features=Features({\"a\": Value(\"uint8\")}))\r\nds.data.nbytes\r\n# 10\r\n```",
"Oh, I understand now.\r\nThe data was stored in `uint8` from the beginning (when the dataset returns `int64`).\r\n\r\nThank you for your time!\r\nMy question is fully resolved."
] | ### Describe the bug
I expect the dataset to store the data in the `uint8` data type, but it's returning `int64` instead.
While I've found that `datasets` doesn't yet support float16 (https://github.com/huggingface/datasets/issues/4981), I'm wondering if this is the case for other data types as well.
Is there a way to store vector data as `uint8` and then upload it to the hub?
### Steps to reproduce the bug
```python
from datasets import Features, Dataset, Sequence, Value
import numpy as np
dataset = Dataset.from_dict(
{"vector": [np.array([0, 1, 2], dtype=np.uint8)]}, features=Features({"vector": Sequence(Value("uint8"))})
).with_format("numpy")
print(dataset[0]["vector"].dtype)
```
### Expected behavior
Expected: `uint8`
Actual: `int64`
### Environment info
- `datasets` version: 2.12.0
- Platform: macOS-12.1-x86_64-i386-64bit
- Python version: 3.8.12
- Huggingface_hub version: 0.12.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,834 |
https://github.com/huggingface/datasets/issues/5833 | Unable to push dataset - `create_pr` problem | [
"Thanks for reporting, @agombert.\r\n\r\nIn this case, I think the root issue is authentication: before pushing to Hub, you should authenticate. See our docs: https://huggingface.co/docs/datasets/upload_dataset#upload-with-python\r\n> 2. To upload a dataset on the Hub in Python, you need to log in to your Hugging Face account:\r\n ```\r\n huggingface-cli login\r\n ```",
"Hey @albertvillanova well I actually did :D \r\n\r\n<img width=\"1079\" alt=\"Capture d’écran 2023-05-09 à 18 02 58\" src=\"https://github.com/huggingface/datasets/assets/17645711/e091aa20-06b1-4dd3-bfdb-35e832c66f8d\">\r\n",
"That is weird that you get a Forbidden error if you are properly authenticated...\r\n\r\nToday we had a big outage issue affecting the Hugging Face Hub. Could you please retry to push_to_hub your dataset? Maybe that was the cause...",
"Yes I've just tried again and same error 403 :/",
"Login successful but also got this error \"Forbidden: pass `create_pr=1` as a query parameter to create a Pull Request\"",
"Make sure your API token has a `write` role. I had the same issue as you with the `read` token. Creating a `write` token and using that solved the issue.",
"> Make sure your API token has a `write` role. I had the same issue as you with the `read` token. Creating a `write` token and using that solved the issue.\r\n\r\nI generate a token with write role. It works! thank you so much.",
"@dmitrijsk amazing thanks so much ! \r\nThe error should be clearer when the token is read-only – I wasted a lot of time there..",
"Based on the number of reactions (https://github.com/huggingface/datasets/issues/5833#issuecomment-1586521001), many users have issues debugging this. @Wauplin Maybe a more informative error can be thrown in `hfh` if a token's role is insufficient for an op. WDYT?",
"Yes indeed. I created an issue some time ago about it: https://github.com/huggingface/huggingface_hub/issues/1653. I'll prioritize it more and let you know. Thanks for the ping.",
"Hey everyone :wave: The error message has been fixed to be more informative. As mentioned in https://github.com/huggingface/datasets/issues/5833#issuecomment-1586521001, the n°1 reason why this is happening is that a `read` token has been used instead of `write`. The fix has being shipped on the server meaning that you don't need to update any client library. The new error message looks like this: \r\n\r\n```\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/models/Wauplin/test_recovered/preupload/main (Request ID: Root=1-6532752e-1ee492b070d9e3020e68bddc;25ca3387-44bc-433e-b49f-6e290305ed10)\r\n\r\nForbidden: you must use a write token to upload to a repository.\r\n```\r\n\r\n---\r\n\r\ncc @mariosasko I let you close this issue if you feel it's completely solved",
"@Wauplin Reopening it. Indeed, the above error message is thrown if pushing to an **existing** repo with a `read` token. However, if the repo does not exist and needs to be created (by calling `create_repo` in `push_to_hub`), then passing a `read` token will raise the following:\r\n```python\r\nHTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/repos/create\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nHfHubHTTPError Traceback (most recent call last)\r\n[/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py](https://localhost:8080/#) in hf_raise_for_status(response, endpoint_name)\r\n 318 # Convert `HTTPError` into a `HfHubHTTPError` to display request information\r\n 319 # as well (request id and/or server error message)\r\n--> 320 raise HfHubHTTPError(str(e), response=response) from e\r\n 321 \r\n 322 \r\n\r\nHfHubHTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/repos/create (Request ID: Root=1-653291a1-0e9cc2b16c049ff510834d47;7edeb8a3-4bf1-4d9b-8f7f-06d430da9ee7)\r\n\r\nYou don't have the rights to create a dataset under this namespace\r\n```\r\n\r\nI think this error message should also be more informative!",
"> However, if the repo does not exist and needs to be created (by calling create_repo in push_to_hub), then passing a read token will raise the following:\r\n\r\nThis seems to be a different issue than the one reported above right? Still agree that a more informative message would be nice. Can you open an issue on moon-landing for it please? (not sure I can open a PR myself for this one :grimacing: )",
"@Wauplin Done :)"
] | ### Describe the bug
I can't upload to the hub the dataset I manually created locally (Image dataset). I have a problem when using the method `.push_to_hub` which asks for a `create_pr` attribute which is not compatible.
### Steps to reproduce the bug
here what I have:
```python
dataset.push_to_hub("agomberto/FrenchCensus-handwritten-texts")
```
Output:
```python
Pushing split train to the Hub.
Pushing dataset shards to the dataset hub: 0%| | 0/2 [00:00<?, ?it/s]
Creating parquet from Arrow format: 0%| | 0/3 [00:00<?, ?ba/s]
Creating parquet from Arrow format: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 12.70ba/s]
Pushing dataset shards to the dataset hub: 0%| | 0/2 [00:01<?, ?it/s]
---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py:259, in hf_raise_for_status(response, endpoint_name)
258 try:
--> 259 response.raise_for_status()
260 except HTTPError as e:
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/requests/models.py:1021, in Response.raise_for_status(self)
1020 if http_error_msg:
-> 1021 raise HTTPError(http_error_msg, response=self)
HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/datasets/agomberto/FrenchCensus-handwritten-texts/commit/main
The above exception was the direct cause of the following exception:
HfHubHTTPError Traceback (most recent call last)
Cell In[7], line 1
----> 1 dataset.push_to_hub("agomberto/FrenchCensus-handwritten-texts")
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/datasets/dataset_dict.py:1583, in DatasetDict.push_to_hub(self, repo_id, private, token, branch, max_shard_size, num_shards, embed_external_files)
1581 logger.warning(f"Pushing split {split} to the Hub.")
1582 # The split=key needs to be removed before merging
-> 1583 repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(
1584 repo_id,
1585 split=split,
1586 private=private,
1587 token=token,
1588 branch=branch,
1589 max_shard_size=max_shard_size,
1590 num_shards=num_shards.get(split),
1591 embed_external_files=embed_external_files,
1592 )
1593 total_uploaded_size += uploaded_size
1594 total_dataset_nbytes += dataset_nbytes
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/datasets/arrow_dataset.py:5275, in Dataset._push_parquet_shards_to_hub(self, repo_id, split, private, token, branch, max_shard_size, num_shards, embed_external_files)
5273 shard.to_parquet(buffer)
5274 uploaded_size += buffer.tell()
-> 5275 _retry(
5276 api.upload_file,
5277 func_kwargs={
5278 "path_or_fileobj": buffer.getvalue(),
5279 "path_in_repo": shard_path_in_repo,
5280 "repo_id": repo_id,
5281 "token": token,
5282 "repo_type": "dataset",
5283 "revision": branch,
5284 },
5285 exceptions=HTTPError,
5286 status_codes=[504],
5287 base_wait_time=2.0,
5288 max_retries=5,
5289 max_wait_time=20.0,
5290 )
5291 shards_path_in_repo.append(shard_path_in_repo)
5293 # Cleanup to remove unused files
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/datasets/utils/file_utils.py:285, in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time)
283 except exceptions as err:
284 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes):
--> 285 raise err
286 else:
287 sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/datasets/utils/file_utils.py:282, in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time)
280 while True:
281 try:
--> 282 return func(*func_args, **func_kwargs)
283 except exceptions as err:
284 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes):
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:120, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)
117 if check_use_auth_token:
118 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
--> 120 return fn(*args, **kwargs)
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/hf_api.py:2998, in HfApi.upload_file(self, path_or_fileobj, path_in_repo, repo_id, token, repo_type, revision, commit_message, commit_description, create_pr, parent_commit)
2990 commit_message = (
2991 commit_message if commit_message is not None else f"Upload {path_in_repo} with huggingface_hub"
2992 )
2993 operation = CommitOperationAdd(
2994 path_or_fileobj=path_or_fileobj,
2995 path_in_repo=path_in_repo,
2996 )
-> 2998 commit_info = self.create_commit(
2999 repo_id=repo_id,
3000 repo_type=repo_type,
3001 operations=[operation],
3002 commit_message=commit_message,
3003 commit_description=commit_description,
3004 token=token,
3005 revision=revision,
3006 create_pr=create_pr,
3007 parent_commit=parent_commit,
3008 )
3010 if commit_info.pr_url is not None:
3011 revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="")
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:120, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)
117 if check_use_auth_token:
118 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
--> 120 return fn(*args, **kwargs)
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/hf_api.py:2548, in HfApi.create_commit(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit)
2546 try:
2547 commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params)
-> 2548 hf_raise_for_status(commit_resp, endpoint_name="commit")
2549 except RepositoryNotFoundError as e:
2550 e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)
File ~/miniconda3/envs/hwocr/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py:301, in hf_raise_for_status(response, endpoint_name)
297 raise BadRequestError(message, response=response) from e
299 # Convert `HTTPError` into a `HfHubHTTPError` to display request information
300 # as well (request id and/or server error message)
--> 301 raise HfHubHTTPError(str(e), response=response) from e
HfHubHTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/datasets/agomberto/FrenchCensus-handwritten-texts/commit/main (Request ID: Root=1-645a66bf-255ad91602a6404e6cb70fba)
Forbidden: pass `create_pr=1` as a query parameter to create a Pull Request
```
And then when I do
```python
dataset.push_to_hub("agomberto/FrenchCensus-handwritten-texts", create_pr=1)
```
I get
```python
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[8], line 1
----> 1 dataset.push_to_hub("agomberto/FrenchCensus-handwritten-texts", create_pr=1)
TypeError: push_to_hub() got an unexpected keyword argument 'create_pr'
```
### Expected behavior
I would like to have the dataset updloaded [here](https://huggingface.co/datasets/agomberto/FrenchCensus-handwritten-texts).
### Environment info
```bash
- `datasets` version: 2.12.0
- Platform: macOS-13.3.1-arm64-arm-64bit
- Python version: 3.8.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 1.5.3
``` | 5,833 |
https://github.com/huggingface/datasets/issues/5832 | 404 Client Error: Not Found for url: https://huggingface.co/api/models/bert-large-cased | [
"moved to https://github.com/huggingface/transformers/issues/23233"
] | ### Describe the bug
Running [Bert-Large-Cased](https://huggingface.co/bert-large-cased) model causes `HTTPError`, with the following traceback-
```
HTTPError Traceback (most recent call last)
<ipython-input-6-5c580443a1ad> in <module>
----> 1 tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
~/miniconda3/envs/cmd-chall/lib/python3.7/site-packages/transformers/tokenization_utils_base.py in from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)
1646 # At this point pretrained_model_name_or_path is either a directory or a model identifier name
1647 fast_tokenizer_file = get_fast_tokenizer_file(
-> 1648 pretrained_model_name_or_path, revision=revision, use_auth_token=use_auth_token
1649 )
1650 additional_files_names = {
~/miniconda3/envs/cmd-chall/lib/python3.7/site-packages/transformers/tokenization_utils_base.py in get_fast_tokenizer_file(path_or_repo, revision, use_auth_token)
3406 """
3407 # Inspect all files from the repo/folder.
-> 3408 all_files = get_list_of_files(path_or_repo, revision=revision, use_auth_token=use_auth_token)
3409 tokenizer_files_map = {}
3410 for file_name in all_files:
~/miniconda3/envs/cmd-chall/lib/python3.7/site-packages/transformers/file_utils.py in get_list_of_files(path_or_repo, revision, use_auth_token)
1685 token = None
1686 model_info = HfApi(endpoint=HUGGINGFACE_CO_RESOLVE_ENDPOINT).model_info(
-> 1687 path_or_repo, revision=revision, token=token
1688 )
1689 return [f.rfilename for f in model_info.siblings]
~/miniconda3/envs/cmd-chall/lib/python3.7/site-packages/huggingface_hub/hf_api.py in model_info(self, repo_id, revision, token)
246 )
247 r = requests.get(path, headers=headers)
--> 248 r.raise_for_status()
249 d = r.json()
250 return ModelInfo(**d)
~/miniconda3/envs/cmd-chall/lib/python3.7/site-packages/requests/models.py in raise_for_status(self)
951
952 if http_error_msg:
--> 953 raise HTTPError(http_error_msg, response=self)
954
955 def close(self):
HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/api/models/bert-large-cased
```
I have also tried running in offline mode, as [discussed here](https://huggingface.co/docs/transformers/installation#offline-mode)
```
HF_DATASETS_OFFLINE=1
TRANSFORMERS_OFFLINE=1
```
### Steps to reproduce the bug
1. `from transformers import BertTokenizer, BertModel`
2. `tokenizer = BertTokenizer.from_pretrained('bert-large-cased')`
### Expected behavior
Run without the HTTP error.
### Environment info
| # Name | Version | Build | Channel | |
|--------------------|------------|-----------------------------|---------|---|
| _libgcc_mutex | 0.1 | main | | |
| _openmp_mutex | 4.5 | 1_gnu | | |
| _pytorch_select | 0.1 | cpu_0 | | |
| appdirs | 1.4.4 | pypi_0 | pypi | |
| backcall | 0.2.0 | pypi_0 | pypi | |
| blas | 1.0 | mkl | | |
| bzip2 | 1.0.8 | h7b6447c_0 | | |
| ca-certificates | 2021.7.5 | h06a4308_1 | | |
| certifi | 2021.5.30 | py37h06a4308_0 | | |
| cffi | 1.14.6 | py37h400218f_0 | | |
| charset-normalizer | 2.0.3 | pypi_0 | pypi | |
| click | 8.0.1 | pypi_0 | pypi | |
| colorama | 0.4.4 | pypi_0 | pypi | |
| cudatoolkit | 11.1.74 | h6bb024c_0 | nvidia | |
| cycler | 0.11.0 | pypi_0 | pypi | |
| decorator | 5.0.9 | pypi_0 | pypi | |
| docker-pycreds | 0.4.0 | pypi_0 | pypi | |
| docopt | 0.6.2 | pypi_0 | pypi | |
| dominate | 2.6.0 | pypi_0 | pypi | |
| ffmpeg | 4.3 | hf484d3e_0 | pytorch | |
| filelock | 3.0.12 | pypi_0 | pypi | |
| fonttools | 4.38.0 | pypi_0 | pypi | |
| freetype | 2.10.4 | h5ab3b9f_0 | | |
| gitdb | 4.0.7 | pypi_0 | pypi | |
| gitpython | 3.1.18 | pypi_0 | pypi | |
| gmp | 6.2.1 | h2531618_2 | | |
| gnutls | 3.6.15 | he1e5248_0 | | |
| huggingface-hub | 0.0.12 | pypi_0 | pypi | |
| humanize | 3.10.0 | pypi_0 | pypi | |
| idna | 3.2 | pypi_0 | pypi | |
| importlib-metadata | 4.6.1 | pypi_0 | pypi | |
| intel-openmp | 2019.4 | 243 | | |
| ipdb | 0.13.9 | pypi_0 | pypi | |
| ipython | 7.25.0 | pypi_0 | pypi | |
| ipython-genutils | 0.2.0 | pypi_0 | pypi | |
| jedi | 0.18.0 | pypi_0 | pypi | |
| joblib | 1.0.1 | pypi_0 | pypi | |
| jpeg | 9b | h024ee3a_2 | | |
| jsonpickle | 1.5.2 | pypi_0 | pypi | |
| kiwisolver | 1.4.4 | pypi_0 | pypi | |
| lame | 3.100 | h7b6447c_0 | | |
| lcms2 | 2.12 | h3be6417_0 | | |
| ld_impl_linux-64 | 2.35.1 | h7274673_9 | | |
| libffi | 3.3 | he6710b0_2 | | |
| libgcc-ng | 9.3.0 | h5101ec6_17 | | |
| libgomp | 9.3.0 | h5101ec6_17 | | |
| libiconv | 1.15 | h63c8f33_5 | | |
| libidn2 | 2.3.2 | h7f8727e_0 | | |
| libmklml | 2019.0.5 | 0 | | |
| libpng | 1.6.37 | hbc83047_0 | | |
| libstdcxx-ng | 9.3.0 | hd4cf53a_17 | | |
| libtasn1 | 4.16.0 | h27cfd23_0 | | |
| libtiff | 4.2.0 | h85742a9_0 | | |
| libunistring | 0.9.10 | h27cfd23_0 | | |
| libuv | 1.40.0 | h7b6447c_0 | | |
| libwebp-base | 1.2.0 | h27cfd23_0 | | |
| lz4-c | 1.9.3 | h2531618_0 | | |
| matplotlib | 3.5.3 | pypi_0 | pypi | |
| matplotlib-inline | 0.1.2 | pypi_0 | pypi | |
| mergedeep | 1.3.4 | pypi_0 | pypi | |
| mkl | 2020.2 | 256 | | |
| mkl-service | 2.3.0 | py37he8ac12f_0 | | |
| mkl_fft | 1.3.0 | py37h54f3939_0 | | |
| mkl_random | 1.1.1 | py37h0573a6f_0 | | |
| msgpack | 1.0.2 | pypi_0 | pypi | |
| munch | 2.5.0 | pypi_0 | pypi | |
| ncurses | 6.2 | he6710b0_1 | | |
| nettle | 3.7.3 | hbbd107a_1 | | |
| ninja | 1.10.2 | hff7bd54_1 | | |
| nltk | 3.8.1 | pypi_0 | pypi | |
| numpy | 1.19.2 | py37h54aff64_0 | | |
| numpy-base | 1.19.2 | py37hfa32c7d_0 | | |
| olefile | 0.46 | py37_0 | | |
| openh264 | 2.1.0 | hd408876_0 | | |
| openjpeg | 2.3.0 | h05c96fa_1 | | |
| openssl | 1.1.1k | h27cfd23_0 | | |
| packaging | 21.0 | pypi_0 | pypi | |
| pandas | 1.3.1 | pypi_0 | pypi | |
| parso | 0.8.2 | pypi_0 | pypi | |
| pathtools | 0.1.2 | pypi_0 | pypi | |
| pexpect | 4.8.0 | pypi_0 | pypi | |
| pickleshare | 0.7.5 | pypi_0 | pypi | |
| pillow | 8.3.1 | py37h2c7a002_0 | | |
| pip | 21.1.3 | py37h06a4308_0 | | |
| prompt-toolkit | 3.0.19 | pypi_0 | pypi | |
| protobuf | 4.21.12 | pypi_0 | pypi | |
| psutil | 5.8.0 | pypi_0 | pypi | |
| ptyprocess | 0.7.0 | pypi_0 | pypi | |
| py-cpuinfo | 8.0.0 | pypi_0 | pypi | |
| pycparser | 2.20 | py_2 | | |
| pygments | 2.9.0 | pypi_0 | pypi | |
| pyparsing | 2.4.7 | pypi_0 | pypi | |
| python | 3.7.10 | h12debd9_4 | | |
| python-dateutil | 2.8.2 | pypi_0 | pypi | |
| pytorch | 1.9.0 | py3.7_cuda11.1_cudnn8.0.5_0 | pytorch | |
| pytz | 2021.1 | pypi_0 | pypi | |
| pyyaml | 5.4.1 | pypi_0 | pypi | |
| readline | 8.1 | h27cfd23_0 | | |
| regex | 2022.10.31 | pypi_0 | pypi | |
| requests | 2.26.0 | pypi_0 | pypi | |
| sacred | 0.8.2 | pypi_0 | pypi | |
| sacremoses | 0.0.45 | pypi_0 | pypi | |
| scikit-learn | 0.24.2 | pypi_0 | pypi | |
| scipy | 1.7.0 | pypi_0 | pypi | |
| sentry-sdk | 1.15.0 | pypi_0 | pypi | |
| setproctitle | 1.3.2 | pypi_0 | pypi | |
| setuptools | 52.0.0 | py37h06a4308_0 | | |
| six | 1.16.0 | pyhd3eb1b0_0 | | |
| smmap | 4.0.0 | pypi_0 | pypi | |
| sqlite | 3.36.0 | hc218d9a_0 | | |
| threadpoolctl | 2.2.0 | pypi_0 | pypi | |
| tk | 8.6.10 | hbc83047_0 | | |
| tokenizers | 0.10.3 | pypi_0 | pypi | |
| toml | 0.10.2 | pypi_0 | pypi | |
| torchaudio | 0.9.0 | py37 | pytorch | |
| torchvision | 0.10.0 | py37_cu111 | pytorch | |
| tqdm | 4.61.2 | pypi_0 | pypi | |
| traitlets | 5.0.5 | pypi_0 | pypi | |
| transformers | 4.9.1 | pypi_0 | pypi | |
| typing-extensions | 3.10.0.0 | hd3eb1b0_0 | | |
| typing_extensions | 3.10.0.0 | pyh06a4308_0 | | |
| urllib3 | 1.26.14 | pypi_0 | pypi | |
| wandb | 0.13.10 | pypi_0 | pypi | |
| wcwidth | 0.2.5 | pypi_0 | pypi | |
| wheel | 0.36.2 | pyhd3eb1b0_0 | | |
| wrapt | 1.12.1 | pypi_0 | pypi | |
| xz | 5.2.5 | h7b6447c_0 | | |
| zipp | 3.5.0 | pypi_0 | pypi | |
| zlib | 1.2.11 | h7b6447c_3 | | |
| zstd | 1.4.9 | haebb681_0 | | | | 5,832 |
https://github.com/huggingface/datasets/issues/5831 | [Bug]504 Server Error when loading dataset which was already cached | [
"I am experiencing the same problem with the following environment:\r\n\r\n* `datasets` version: 2.11.0\r\n* Platform: `Linux 5.19.0-41-generic x86_64 GNU/Linux`\r\n* Python version: `3.8.5`\r\n* Huggingface_hub version: 0.13.3\r\n* PyArrow version: `11.0.0`\r\n* Pandas version: `1.5.3`\r\n\r\nTrying to get some diagnostics, I got the following: \r\n\r\n```python\r\n>>> from huggingface_hub import scan_cache_dir\r\n>>> sd = scan_cache_dir()\r\n>>> sd\r\nHFCacheInfo(size_on_disk=0, repos=frozenset(), warnings=[CorruptedCacheException('Repo path is not a directory: /home/myname/.cache/huggingface/hub/version_diffusers_cache.txt')])\r\n\r\n```\r\nHowever, that might also be because I had tried to manually specify the `cache_dir` and that resulted in trying to download the dataset again ... but into a folder one level higher up than it should have.\r\n\r\nNote that my issue is with the `huggan/wikiart` dataset, so it is not a dataset-specific issue.",
"same problem with a private dataset repo, seems the huggingface hub server got some connection problem?",
"Yes, dataset server seems down for now",
"@SingL3 You can avoid this error by setting the [`HF_DATASETS_OFFLINE`](https://huggingface.co/docs/datasets/v2.12.0/en/loading#offline) env variable to 1. By default, if an internet connection is available, we check whether the cache of a cached dataset is up-to-date.\r\n\r\n@lucidBrot `datasets`' cache is still not aligned with `huggigface_hub`'s. We plan to align it eventually.",
"Today we had a big issue affecting the Hugging Face Hub, thus all the `504 Server Error: Gateway Time-out` errors.\r\n\r\nIt is fixed now and loading your datasets should work as expected.",
"Hi, @albertvillanova.\r\nIf there is a locally cached version of datasets or something cache using huggingface_hub, when a network problem(either client or server) occurs, is it a better way to fallback to use the current cached version rather than raise a exception and exit?"
] | ### Describe the bug
I have already cached the dataset using:
```
dataset = load_dataset("databricks/databricks-dolly-15k",
cache_dir="/mnt/data/llm/datasets/databricks-dolly-15k")
```
After that, I tried to load it again using the same machine, I got this error:
```
Traceback (most recent call last):
File "/mnt/home/llm/pythia/train.py", line 16, in <module>
dataset = load_dataset("databricks/databricks-dolly-15k",
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1773, in load_dataset
builder_instance = load_dataset_builder(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1502, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1219, in dataset_module_factory
raise e1 from None
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1186, in dataset_module_factory
raise e
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1160, in dataset_module_factory
dataset_info = hf_api.dataset_info(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 120, in _inner_fn
return fn(*args, **kwargs)
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 1667, in dataset_info
hf_raise_for_status(r)
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/utils/_errors.py", line 301, in hf_raise_for_status
raise HfHubHTTPError(str(e), response=response) from e
huggingface_hub.utils._errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/databricks/databricks-dolly-15k
```
### Steps to reproduce the bug
1. cache the databrick-dolly-15k dataset using load_dataset, setting a cache_dir
2. use load_dataset again, setting the same cache_dir
### Expected behavior
Dataset loaded succuessfully.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-4.18.0-372.16.1.el8_6.x86_64-x86_64-with-glibc2.27
- Python version: 3.9.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,831 |
https://github.com/huggingface/datasets/issues/5829 | (mach-o file, but is an incompatible architecture (have 'arm64', need 'x86_64')) | [
"Can you paste the error stack trace?",
"That is weird. I can't reproduce it again after reboot.\r\n```python\r\nIn [2]: import platform\r\n\r\nIn [3]: platform.platform()\r\nOut[3]: 'macOS-13.2-arm64-arm-64bit'\r\n\r\nIn [4]: from datasets import load_dataset\r\n ...:\r\n ...: jazzy = load_dataset(\"nomic-ai/gpt4all-j-prompt-generations\", revision='v1.2-jazzy')\r\nFound cached dataset parquet (/Users/sarit/.cache/huggingface/datasets/nomic-ai___parquet/nomic-ai--gpt4all-j-prompt-generations-a3b62015e2e52043/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 63.25it/s]\r\n```"
] | ### Describe the bug
M2 MBP can't run
```python
from datasets import load_dataset
jazzy = load_dataset("nomic-ai/gpt4all-j-prompt-generations", revision='v1.2-jazzy')
```
### Steps to reproduce the bug
1. Use M2 MBP
2. Python 3.10.10 from pyenv
3. Run
```
from datasets import load_dataset
jazzy = load_dataset("nomic-ai/gpt4all-j-prompt-generations", revision='v1.2-jazzy')
```
### Expected behavior
Be able to run normally
### Environment info
```
from datasets import load_dataset
jazzy = load_dataset("nomic-ai/gpt4all-j-prompt-generations", revision='v1.2-jazzy')
```
OSX: 13.2
CPU: M2
| 5,829 |
https://github.com/huggingface/datasets/issues/5828 | Stream data concatenation issue | [
"Hi! \r\n\r\nYou can call `map` as follows to avoid the error:\r\n```python\r\naugmented_dataset_cln = dataset_cln['train'].map(augment_dataset, features=dataset_cln['train'].features)\r\n```",
"Thanks it is solved",
"Hi! \r\nI have run into the same problem with you. Could you please let me know how you solve it? Thanks!"
] | ### Describe the bug
I am not able to concatenate the augmentation of the stream data. I am using the latest version of dataset.
ValueError: The features can't be aligned because the key audio of features {'audio_id': Value(dtype='string',
id=None), 'audio': {'array': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'path':
Value(dtype='null', id=None), 'sampling_rate': Value(dtype='int64', id=None)}, 'transcript': Value(dtype='string',
id=None)} has unexpected type - {'array': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None),
'path': Value(dtype='null', id=None), 'sampling_rate': Value(dtype='int64', id=None)} (expected either
Audio(sampling_rate=16000, mono=True, decode=True, id=None) or Value("null").
### Steps to reproduce the bug
dataset = load_dataset("tobiolatunji/afrispeech-200", "all", streaming=True).shuffle(seed=42)
dataset_cln = dataset.remove_columns(['speaker_id', 'path', 'age_group', 'gender', 'accent', 'domain', 'country', 'duration'])
dataset_cln = dataset_cln.cast_column("audio", Audio(sampling_rate=16000))
from audiomentations import AddGaussianNoise,Compose,Gain,OneOf,PitchShift,PolarityInversion,TimeStretch
augmentation = Compose([
AddGaussianNoise(min_amplitude=0.005, max_amplitude=0.015, p=0.2)
])
def augment_dataset(batch):
audio = batch["audio"]
audio["array"] = augmentation(audio["array"], sample_rate=audio["sampling_rate"])
return batch
augmented_dataset_cln = dataset_cln['train'].map(augment_dataset)
dataset_cln['train'] = interleave_datasets([dataset_cln['train'], augmented_dataset_cln])
dataset_cln['train'] = dataset_cln['train'].shuffle(seed=42)
### Expected behavior
I should be able to merge as sampling rate is same.
### Environment info
import datasets
import transformers
import accelerate
print(datasets.__version__)
print(transformers.__version__)
print(torch.__version__)
print(evaluate.__version__)
print(accelerate.__version__)
2.12.0
4.28.1
2.0.0
0.4.0
0.18.0 | 5,828 |
https://github.com/huggingface/datasets/issues/5827 | load json dataset interrupt when dtype cast problem occured | [
"Indeed the JSON dataset builder raises an error when it encounters an unexpected type.\r\n\r\nThere's an old PR open to add away to ignore such elements though, if it can help: https://github.com/huggingface/datasets/pull/2838"
] | ### Describe the bug
i have a json like this:
[
{"id": 1, "name": 1},
{"id": 2, "name": "Nan"},
{"id": 3, "name": 3},
....
]
,which have several problematic rows data like row 2, then i load it with datasets.load_dataset('json', data_files=['xx.json'], split='train'), it will report like this:
Generating train split: 0 examples [00:00, ? examples/s]Failed to read file 'C:\Users\gawinjunwu\Downloads\test\data\a.json' with error <class 'pyarrow.lib.ArrowInvalid'>: Could not convert '2' with type str: tried to convert to int64
Traceback (most recent call last):
File "D:\Python3.9\lib\site-packages\datasets\builder.py", line 1858, in _prepare_split_single
for _, table in generator:
File "D:\Python3.9\lib\site-packages\datasets\packaged_modules\json\json.py", line 146, in _generate_tables
raise ValueError(f"Not able to read records in the JSON file at {file}.") from None
ValueError: Not able to read records in the JSON file at C:\Users\gawinjunwu\Downloads\test\data\a.json.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "c:\Users\gawinjunwu\Downloads\test\scripts\a.py", line 4, in <module>
ds = load_dataset('json', data_dir='data', split='train')
File "D:\Python3.9\lib\site-packages\datasets\load.py", line 1797, in load_dataset
builder_instance.download_and_prepare(
File "D:\Python3.9\lib\site-packages\datasets\builder.py", line 890, in download_and_prepare
self._download_and_prepare(
File "D:\Python3.9\lib\site-packages\datasets\builder.py", line 985, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "D:\Python3.9\lib\site-packages\datasets\builder.py", line 1746, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "D:\Python3.9\lib\site-packages\datasets\builder.py", line 1891, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset.
Could datasets skip those problematic data row?
### Steps to reproduce the bug
prepare a json file like this:
[
{"id": 1, "name": 1},
{"id": 2, "name": "Nan"},
{"id": 3, "name": 3}
]
then use datasets.load_dataset('json', dir_files=['xxx.json']) to load the json file
### Expected behavior
skip the problematic data row and load row1 and row3
### Environment info
python3.9 | 5,827 |
https://github.com/huggingface/datasets/issues/5825 | FileNotFound even though exists | [
"Hi! \r\n\r\nThis would only work if `bigscience/xP3` was a no-code dataset, but it isn't (it has a Python builder script).\r\n\r\nBut this should work: \r\n```python\r\nload_dataset(\"json\", data_files=\"https://huggingface.co/datasets/bigscience/xP3/resolve/main/ur/xp3_facebook_flores_spa_Latn-urd_Arab_devtest_ab-spa_Latn-urd_Arab.jsonl\")\r\n```\r\n\r\n",
"I see, it's not compatible w/ regex right?\r\ne.g.\r\n`load_dataset(\"json\", data_files=\"https://huggingface.co/datasets/bigscience/xP3/resolve/main/ur/*\")`",
"> I see, it's not compatible w/ regex right? e.g. `load_dataset(\"json\", data_files=\"https://huggingface.co/datasets/bigscience/xP3/resolve/main/ur/*\")`\r\n\r\nIt should work for patterns that \"reference\" the local filesystem, but to make this work with the Hub, we must implement https://github.com/huggingface/datasets/issues/5281 first.\r\n\r\nIn the meantime, you can fetch these glob files with `HfFileSystem` and pass them as a list to `load_dataset`:\r\n```python\r\nfrom datasets import load_dataset\r\nfrom huggingface_hub import HfFileSystem, hf_hub_url # `HfFileSystem` requires the latest version of `huggingface_hub`\r\n\r\nfs = HfFileSystem()\r\nglob_files = fs.glob(\"datasets/bigscience/xP3/ur/*\")\r\n# convert fsspec URLs to HTTP URLs\r\nresolved_paths = [fs.resolve_path(file) for file in glob_files]\r\ndata_files = [hf_hub_url(resolved_path.repo_id, resolved_path.path_in_repo, repo_type=resolved_path.repo_type) for resolved_path in resolved_paths]\r\n\r\nds = load_dataset(\"json\", data_files=data_files)\r\n```",
"This works using `load_dataset(\"json\", data_files=\"hf://datasets/bigscience/xP3/ur/*\")` now, closing"
] | ### Describe the bug
I'm trying to download https://huggingface.co/datasets/bigscience/xP3/resolve/main/ur/xp3_facebook_flores_spa_Latn-urd_Arab_devtest_ab-spa_Latn-urd_Arab.jsonl which works fine in my webbrowser, but somehow not with datasets. Am I doing sth wrong?
```
Downloading builder script: 100%
2.82k/2.82k [00:00<00:00, 64.2kB/s]
Downloading readme: 100%
12.6k/12.6k [00:00<00:00, 585kB/s]
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
[<ipython-input-2-4b45446a91d5>](https://localhost:8080/#) in <cell line: 4>()
2 lang = "ur"
3 fname = "xp3_facebook_flores_spa_Latn-urd_Arab_devtest_ab-spa_Latn-urd_Arab.jsonl"
----> 4 dataset = load_dataset("bigscience/xP3", data_files=f"{lang}/{fname}")
6 frames
[/usr/local/lib/python3.10/dist-packages/datasets/data_files.py](https://localhost:8080/#) in _resolve_single_pattern_locally(base_path, pattern, allowed_extensions)
291 if allowed_extensions is not None:
292 error_msg += f" with any supported extension {list(allowed_extensions)}"
--> 293 raise FileNotFoundError(error_msg)
294 return sorted(out)
295
FileNotFoundError: Unable to find 'https://huggingface.co/datasets/bigscience/xP3/resolve/main/ur/xp3_facebook_flores_spa_Latn-urd_Arab_devtest_ab-spa_Latn-urd_Arab.jsonl' at /content/https:/huggingface.co/datasets/bigscience/xP3/resolve/main
```
### Steps to reproduce the bug
```
!pip install -q datasets
from datasets import load_dataset
lang = "ur"
fname = "xp3_facebook_flores_spa_Latn-urd_Arab_devtest_ab-spa_Latn-urd_Arab.jsonl"
dataset = load_dataset("bigscience/xP3", data_files=f"{lang}/{fname}")
```
### Expected behavior
Correctly downloads
### Environment info
latest versions | 5,825 |
https://github.com/huggingface/datasets/issues/5823 | [2.12.0] DatasetDict.save_to_disk not saving to S3 | [
"Hi ! Can you try adding the `s3://` prefix ?\r\n```python\r\nf\"s3://{s3_bucket}/{s3_dir}/{dataset_name}\"\r\n```",
"Ugh, yeah that was it. Thank you!",
"Hi @thejamesmarq, by any chance, did you use multiprocessing `num_proc > 1` when saving your dataset on the s3 bucket ? I'm struggling making it work in a multiprocessing setting while everything works fine with one processor."
] | ### Describe the bug
When trying to save a `DatasetDict` to a private S3 bucket using `save_to_disk`, the artifacts are instead saved locally, and not in the S3 bucket.
I have tried using the deprecated `fs` as well as the `storage_options` arguments and I get the same results.
### Steps to reproduce the bug
1. Create a DatsetDict `dataset`
2. Create a S3FileSystem object
`s3 = datasets.filesystems.S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key)`
3. Save using `dataset_dict.save_to_disk(f"{s3_bucket}/{s3_dir}/{dataset_name}", storage_options=s3.storage_options)` or `dataset_dict.save_to_disk(f"{s3_bucket}/{s3_dir}/{dataset_name}", fs=s3)`
4. Check the corresponding S3 bucket and verify nothing has been uploaded
5. Check the path at f"{s3_bucket}/{s3_dir}/{dataset_name}" and verify that files have been saved there
### Expected behavior
Artifacts are uploaded at the f"{s3_bucket}/{s3_dir}/{dataset_name}" S3 location.
### Environment info
- `datasets` version: 2.12.0
- Platform: macOS-13.3.1-x86_64-i386-64bit
- Python version: 3.11.2
- Huggingface_hub version: 0.14.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.1 | 5,823 |
https://github.com/huggingface/datasets/issues/5822 | Audio Dataset with_format torch problem | [
"Hi ! Can you try with a more recent version of `datasets` ?",
"Ok, yes it worked with the most recent version. Thanks"
] | ### Describe the bug
Common Voice v10 Delta (German) Dataset from here https://commonvoice.mozilla.org/de/datasets
```
audio_dataset = \
(Dataset
.from_dict({"audio": ('/tmp/cv-corpus-10.0-delta-2022-07-04/de/clips/' + df.path).to_list()})
.cast_column("audio", Audio(sampling_rate=16_000))
.with_format('numpy'))
audio_dataset[0]["audio"]
```
works, but
```
audio_dataset = \
(Dataset
.from_dict({"audio": ('/tmp/cv-corpus-10.0-delta-2022-07-04/de/clips/' + df.path).to_list()})
.cast_column("audio", Audio(sampling_rate=16_000))
.with_format('torch'))
audio_dataset[0]["audio"]
```
does not instead I get
```
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[54], line 1
----> 1 audio_dataset[0]["audio"]
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/arrow_dataset.py:2154, in Dataset.__getitem__(self, key)
2152 def __getitem__(self, key): # noqa: F811
2153 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 2154 return self._getitem(
2155 key,
2156 )
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/arrow_dataset.py:2139, in Dataset._getitem(self, key, decoded, **kwargs)
2137 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs)
2138 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
-> 2139 formatted_output = format_table(
2140 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
2141 )
2142 return formatted_output
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns)
530 python_formatter = PythonFormatter(features=None)
531 if format_columns is None:
--> 532 return formatter(pa_table, query_type=query_type)
533 elif query_type == "column":
534 if key in format_columns:
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type)
279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
280 if query_type == "row":
--> 281 return self.format_row(pa_table)
282 elif query_type == "column":
283 return self.format_column(pa_table)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:58, in TorchFormatter.format_row(self, pa_table)
56 def format_row(self, pa_table: pa.Table) -> dict:
57 row = self.numpy_arrow_extractor().extract_row(pa_table)
---> 58 return self.recursive_tensorize(row)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:54, in TorchFormatter.recursive_tensorize(self, data_struct)
53 def recursive_tensorize(self, data_struct: dict):
---> 54 return map_nested(self._recursive_tensorize, data_struct, map_list=False)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:356, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm, desc)
354 num_proc = 1
355 if num_proc <= 1 or len(iterable) <= num_proc:
--> 356 mapped = [
357 _single_map_nested((function, obj, types, None, True, None))
358 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
359 ]
360 else:
361 split_kwds = [] # We organize the splits ourselve (contiguous splits)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:357, in <listcomp>(.0)
354 num_proc = 1
355 if num_proc <= 1 or len(iterable) <= num_proc:
356 mapped = [
--> 357 _single_map_nested((function, obj, types, None, True, None))
358 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
359 ]
360 else:
361 split_kwds = [] # We organize the splits ourselve (contiguous splits)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:309, in _single_map_nested(args)
306 pbar = logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc)
308 if isinstance(data_struct, dict):
--> 309 return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar}
310 else:
311 mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:309, in <dictcomp>(.0)
306 pbar = logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc)
308 if isinstance(data_struct, dict):
--> 309 return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar}
310 else:
311 mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:293, in _single_map_nested(args)
291 # Singleton first to spare some computation
292 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
--> 293 return function(data_struct)
295 # Reduce logging to keep things readable in multiprocessing with tqdm
296 if rank is not None and logging.get_verbosity() < logging.WARNING:
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:51, in TorchFormatter._recursive_tensorize(self, data_struct)
49 if data_struct.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects
50 return [self.recursive_tensorize(substruct) for substruct in data_struct]
---> 51 return self._tensorize(data_struct)
File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:38, in TorchFormatter._tensorize(self, value)
35 import torch
37 default_dtype = {}
---> 38 if np.issubdtype(value.dtype, np.integer):
39 default_dtype = {"dtype": torch.int64}
40 elif np.issubdtype(value.dtype, np.floating):
AttributeError: 'NoneType' object has no attribute 'dtype'
```
### Steps to reproduce the bug
1. Download some audio dataset in this case I used Common Voice v10 Delta (German) Dataset from here https://commonvoice.mozilla.org/de/datasets
2. Try the Code from above
### Expected behavior
It should work for torch
### Environment info
pytorch: 2.0.0
datasets: 2.3.2
numpy: 1.21.6
Python: 3.8
Linux | 5,822 |
https://github.com/huggingface/datasets/issues/5820 | Incomplete docstring for `BuilderConfig` | [
"Thanks for reporting! You are more than welcome to improve `BuilderConfig`'s docstring.\r\n\r\nThis class serves an identical purpose as `tensorflow_datasets`'s `BuilderConfig`, and its docstring is [here](https://github.com/tensorflow/datasets/blob/a95e38b5bb018312c3d3720619c2a8ef83ebf57f/tensorflow_datasets/core/dataset_builder.py#L81), so feel free to re-use parts of it."
] | Hi guys !
I stumbled upon this docstring while working on a project.
Some of the attributes have missing descriptions.
https://github.com/huggingface/datasets/blob/bc5fef5b6d91f009e4101684adcb374df2c170f6/src/datasets/builder.py#L104-L117 | 5,820 |
https://github.com/huggingface/datasets/issues/5819 | Cannot pickle error in Dataset.from_generator() | [
"Hi! It should work if you put `model = torch.compile(model)` inside the `generate_data` function. If a referenced object is outside, it needs to be pickable, and that's not the case for the compiled models (or functions). ",
"> Hi! It should work if you put `model = torch.compile(model)` inside the `generate_data` function. If a referenced object is outside, it needs to be pickable, and that's not the case for the compiled models (or functions).\r\n\r\nHi! Thank you for your reply! Everything works perfectly with your suggestion!\r\n\r\nClosing the issue.\r\n"
] | ### Describe the bug
I'm trying to use Dataset.from_generator() to generate a large dataset.
### Steps to reproduce the bug
Code to reproduce:
```
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
import torch
from tqdm import tqdm
from datasets import load_dataset
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto")
model = torch.compile(model)
def generate_data(data_loader):
model.eval()
for batch in tqdm(data_loader):
input_ids = tokenizer(batch['instruction'], return_tensors='pt', padding=True, truncation=True).input_ids.to("cuda:0")
with torch.no_grad():
outputs = model.generate(input_ids, generation_config=generation_config)
decoder_hidden_states = outputs.decoder_hidden_states
for i, h in zip(batch['instruction'], decoder_hidden_states):
yield {"instruction": i, "decoder_hidden_states": h}
generation_config = GenerationConfig(
temperature=1,
max_new_tokens=1024,
do_sample=False,
num_return_sequences=1,
return_dict_in_generate=True,
output_scores=True,
output_hidden_states=True,
)
from datasets import Dataset, load_dataset
from torch.utils.data import DataLoader
dataset = load_dataset("HuggingFaceH4/databricks_dolly_15k")
train_loader = DataLoader(dataset['train'], batch_size=2, shuffle=True)
dataset = Dataset.from_generator(generator=generate_data, gen_kwargs={"data_loader": train_loader})
dataset.save_to_disk("data/flant5_small_generation")
```
### Expected behavior
The dataset should be generated and saved.
But the following error occurred:
```
Traceback (most recent call last):
File "/remote-home/xhwang/alpaca-lora/data_collection_t5.py", line 46, in <module>
dataset = Dataset.from_generator(generator=generate_data, gen_kwargs={"data_loader": train_loader})
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1035, in from_generator
return GeneratorDatasetInputStream(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/io/generator.py", line 28, in __init__
self.builder = Generator(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/builder.py", line 336, in __init__
self.config, self.config_id = self._create_builder_config(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/builder.py", line 505, in _create_builder_config
config_id = builder_config.create_config_id(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/builder.py", line 179, in create_config_id
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/fingerprint.py", line 236, in hash
return cls.hash_default(value)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/fingerprint.py", line 229, in hash_default
return cls.hash_bytes(dumps(value))
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 726, in dumps
dump(obj, file)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 701, in dump
Pickler(file, recurse=True).dump(obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 394, in dump
StockPickler.dump(self, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 487, in dump
self.save(obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1186, in save_module_dict
StockPickler.save_dict(pickler, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 972, in save_dict
self._batch_setitems(obj.items())
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1311, in save_function
dill._dill._save_with_postproc(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1084, in _save_with_postproc
pickler._batch_setitems(iter(source.items()))
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 603, in save
self.save_reduce(obj=obj, *rv)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 717, in save_reduce
save(state)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1186, in save_module_dict
StockPickler.save_dict(pickler, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 972, in save_dict
self._batch_setitems(obj.items())
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 603, in save
self.save_reduce(obj=obj, *rv)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 717, in save_reduce
save(state)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1186, in save_module_dict
StockPickler.save_dict(pickler, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 972, in save_dict
self._batch_setitems(obj.items())
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1311, in save_function
dill._dill._save_with_postproc(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1070, in _save_with_postproc
pickler.save_reduce(*reduction, obj=obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 717, in save_reduce
save(state)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 887, in save_tuple
save(element)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1186, in save_module_dict
StockPickler.save_dict(pickler, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 972, in save_dict
self._batch_setitems(obj.items())
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1311, in save_function
dill._dill._save_with_postproc(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1070, in _save_with_postproc
pickler.save_reduce(*reduction, obj=obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 717, in save_reduce
save(state)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 887, in save_tuple
save(element)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1186, in save_module_dict
StockPickler.save_dict(pickler, obj)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 972, in save_dict
self._batch_setitems(obj.items())
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 1003, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 560, in save
f(self, obj) # Call unbound method with explicit self
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1311, in save_function
dill._dill._save_with_postproc(
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 1084, in _save_with_postproc
pickler._batch_setitems(iter(source.items()))
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 998, in _batch_setitems
save(v)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 691, in save
dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/site-packages/dill/_dill.py", line 388, in save
StockPickler.save(self, obj, save_persistent_id)
File "/remote-home/xhwang/anaconda3/envs/alpaca-lora/lib/python3.10/pickle.py", line 578, in save
rv = reduce(self.proto)
TypeError: cannot pickle 'ConfigModuleInstance' object
```
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-4.15.0-156-generic-x86_64-with-glibc2.31
- Python version: 3.10.10
- Huggingface_hub version: 0.13.2
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,819 |
https://github.com/huggingface/datasets/issues/5818 | Ability to update a dataset | [
"This [reply](https://discuss.huggingface.co/t/how-do-i-add-things-rows-to-an-already-saved-dataset/27423) from @mariosasko on the forums may be useful :)",
"In this case, I think we can avoid the `PermissionError` by unpacking the underlying `ConcatenationTable` and saving only the newly added data blocks (in new files).",
"Thanks @stevhliu and @mariosasko , so saving to individual files then loading them later, concatenating again and saving again is the recommended way. Good to know.\r\n\r\nQuestion that I hope doesn't sound rude: is this sort of thing (processing a dataset that doesn't fit in memory) outside of `datasets`'s core area of focus? Are there other tools you would recommend to do this sort of thing that play nice with `datasets`? Or is it just that I've found myself in a niche situation that hasn't specifically been catered for?"
] | ### Feature request
The ability to load a dataset, add or change something, and save it back to disk.
Maybe it's possible, but I can't work out how to do it, e.g. this fails:
```py
import datasets
dataset = datasets.load_from_disk("data/test1")
dataset = dataset.add_item({"text": "A new item"})
dataset.save_to_disk("data/test1")
```
With the error:
```
PermissionError: Tried to overwrite /mnt/c/Users/david/py/learning/mini_projects/data_sorting_and_filtering/data/test1 but a dataset can't overwrite itself.
```
### Motivation
My use case is that I want to process a dataset in a particular way but it doesn't fit in memory if I do it in one go. So I want to perform a loop and at each step in the loop, process one shard and append it to an ever-growing dataset. The code in the loop will load a dataset, add some rows, then save it again.
Maybe I'm just thinking about things incorrectly and there's a better approach. FWIW I can't use `dataset.map()` to do the task because that doesn't work with `num_proc` when adding rows, so is confined to a single process which is too slow.
The only other way I can think of is to create a new file each time, but surely that's not how people do this sort of thing.
### Your contribution
na | 5,818 |
https://github.com/huggingface/datasets/issues/5817 | Setting `num_proc` errors when `.map` returns additional items. | [
"Hi ! Unfortunately I couldn't reproduce on my side locally and with datasets 2.11 and python 3.10.11 on colab.\r\nWhat version of `multiprocess` are you using ?",
"I've got `multiprocess` version `0.70.14`.\r\n\r\nI've done some more testing and the error only occurs in PyCharm's Python Console. It seems to be [this PyCharm bug](https://youtrack.jetbrains.com/issue/PY-51922/Multiprocessing-bug.-Can-only-run-in-debugger.), I'll close this.",
"For other users facing this, my workaround is to conditionally set `num_proc` so I can work interactively in the PyCharm Python Console while developing, then when I'm ready to run on the whole dataset, run it as a script and use multiprocessing.\r\n\r\n```py\r\nmapped_ds = ds.map(\r\n my_map_function,\r\n batched=True,\r\n remove_columns=ds.column_names,\r\n num_proc=1 if \"PYCHARM_HOSTED\" in os.environ else 8,\r\n)\r\n```"
] | ### Describe the bug
I'm using a map function that returns more rows than are passed in.
If I try to use `num_proc` I get:
```
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 563, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 528, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3097, in map
for rank, done, content in iflatmap_unordered(
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1372, in iflatmap_unordered
yield queue.get(timeout=0.05)
File "<string>", line 2, in get
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/multiprocess/managers.py", line 818, in _callmethod
kind, result = conn.recv()
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/multiprocess/connection.py", line 258, in recv
buf = self._recv_bytes()
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/multiprocess/connection.py", line 422, in _recv_bytes
buf = self._recv(4)
File "/home/davidg/.virtualenvs/learning/lib/python3.10/site-packages/multiprocess/connection.py", line 391, in _recv
raise EOFError
EOFError
```
### Steps to reproduce the bug
This is copied from the [Datasets docs](https://huggingface.co/docs/datasets/v2.12.0/en/process#batch-processing), with `num_proc` added, and will error.
```py
import datasets
dataset = ... # any old dataset
def chunk_examples(examples):
chunks = []
for sentence in examples["text"]:
chunks += [sentence[i : i + 50] for i in range(0, len(sentence), 50)]
return {"chunks": chunks}
chunked_dataset = dataset.map(
chunk_examples,
batched=True,
remove_columns=dataset.column_names,
num_proc=2, # Remove and it works
)
```
### Expected behavior
Should work fine. On a related note, multi-processing also fails if there is a Meta class anywhere in scope (and there are plenty in the standard library). This is the fault of `dill` and is a long standing issue.
Have you considered using Loky for multiprocessing? I've found that the built-in `datasets` multi-processing breaks more than it works so have written my own function using `loky`, for reference:
```py
import datasets
import loky
def fast_loop(dataset: datasets.Dataset, func, num_proc=None):
if num_proc is None:
import os
num_proc = len(os.sched_getaffinity(0))
shards = [
dataset.shard(num_shards=num_proc, index=i, contiguous=True)
for i in range(num_proc)
]
executor = loky.get_reusable_executor(max_workers=num_proc)
results = executor.map(func, shards)
return datasets.combine.concatenate_datasets(list(results))
```
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.31
- Python version: 3.10.8
- Huggingface_hub version: 0.12.1
- PyArrow version: 11.0.0
- Pandas version: 2.0.1 | 5,817 |
https://github.com/huggingface/datasets/issues/5815 | Easy way to create a Kaggle dataset from a Huggingface dataset? | [
"Hi @hrbigelow , I'm no expert for such a question so I'll ping @lhoestq from the `datasets` library (also this issue could be moved there if someone with permission can do it :) )",
"Hi ! Many datasets are made of several files, and how they are parsed often requires a python script. Because of that, datasets like wmt14 are not available as a single file on HF. Though you can create this file using `datasets`:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"wmt14\", \"de-en\", split=\"train\")\r\n\r\nds.to_json(\"wmt14-train.json\")\r\n# OR to parquet, which is compressed:\r\n# ds.to_parquet(\"wmt14-train.parquet\")\r\n```\r\n\r\nWe are also working on providing parquet exports for all datasets, but wmt14 is not supported yet (we're rolling it out for datasets <1GB first). They're usually available in the `refs/convert/parquet` branch (empty for wmt14):\r\n\r\n<img width=\"267\" alt=\"image\" src=\"https://user-images.githubusercontent.com/42851186/235878909-7339f5a4-be19-4ada-85d8-8a50d23acf35.png\">\r\n",
"also cc @nateraw for visibility on this (and cc @osanseviero too)",
"I've requested support for creating a Kaggle dataset from an imported HF dataset repo on their \"forum\" here: https://www.kaggle.com/discussions/product-feedback/427142 (upvotes appreciated 🙂)"
] | I'm not sure whether this is more appropriately addressed with HuggingFace or Kaggle. I would like to somehow directly create a Kaggle dataset from a HuggingFace Dataset.
While Kaggle does provide the option to create a dataset from a URI, that URI must point to a single file. For example:

Is there some mechanism from huggingface to represent a dataset (such as that from `load_dataset('wmt14', 'de-en', split='train')` as a single file? Or, some other way to get that into a Kaggle dataset so that I can use the huggingface `datasets` module to process and consume it inside of a Kaggle notebook?
Thanks in advance!
| 5,815 |
https://github.com/huggingface/datasets/issues/5812 | Cannot shuffle interleaved IterableDataset with "all_exhausted" stopping strategy | [] | ### Describe the bug
Shuffling interleaved `IterableDataset` with "all_exhausted" strategy yields non-exhaustive sampling.
### Steps to reproduce the bug
```py
from datasets import IterableDataset, interleave_datasets
def gen(bias, length):
for i in range(length):
yield dict(a=bias+i)
seed = 42
probabilities = [0.2, 0.6, 0.2]
d1 = IterableDataset.from_generator(lambda: gen(0, 3))
d2 = IterableDataset.from_generator(lambda: gen(10, 4))
d3 = IterableDataset.from_generator(lambda: gen(20, 3))
ds = interleave_datasets([d1, d2, d3], probabilities=probabilities, seed=seed, stopping_strategy='all_exhausted')
ds = ds.shuffle(buffer_size=1000)
for x in ds:
print(x)
```
This code produces
```
{'a': 0}
{'a': 22}
{'a': 20}
{'a': 21}
{'a': 10}
{'a': 1}
```
### Expected behavior
It should produce a longer list of examples to exhaust all the datasets.
If you comment out the shuffle line, it will exhaust all the datasets properly.
Here is the output if you comment out shuffling:
```
{'a': 10}
{'a': 11}
{'a': 20}
{'a': 12}
{'a': 0}
{'a': 21}
{'a': 13}
{'a': 10}
{'a': 1}
{'a': 11}
{'a': 12}
{'a': 22}
{'a': 13}
{'a': 20}
{'a': 10}
{'a': 11}
{'a': 12}
{'a': 2}
```
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.10.147+-x86_64-with-glibc2.31
- Python version: 3.10.11
- Huggingface_hub version: 0.14.1
- PyArrow version: 9.0.0
- Pandas version: 1.5.3
This was run on Google Colab. | 5,812 |
https://github.com/huggingface/datasets/issues/5811 | load_dataset: TypeError: 'NoneType' object is not callable, on local dataset filename changes | [
"This error means a `DatasetBuilder` subclass that generates the dataset could not be found inside the script, so make sure `dushowxa-characters/dushowxa-characters.py `is a valid dataset script (assuming `path_or_dataset` is `dushowxa-characters`)\r\n\r\nAlso, we should improve the error to make it more obvious what the problem is."
] | ### Describe the bug
I've adapted Databrick's [train_dolly.py](/databrickslabs/dolly/blob/master/train_dolly.py) to train using a local dataset, which has been working. Upon changing the filenames of the `.json` & `.py` files in my local dataset directory, `dataset = load_dataset(path_or_dataset)["train"]` throws the error:
```python
2023-04-30 09:10:52 INFO [training.trainer] Loading dataset from dushowxa-characters
Traceback (most recent call last):
File "/data/dushowxa-dolly/train_dushowxa.py", line 26, in <module>
load_training_dataset()
File "/data/dushowxa-dolly/training/trainer.py", line 89, in load_training_dataset
dataset = load_dataset(path_or_dataset)["train"]
File "/data/dushowxa-dolly/.venv/lib/python3.10/site-packages/datasets/load.py", line 1773, in load_dataset
builder_instance = load_dataset_builder(
File "/data/dushowxa-dolly/.venv/lib/python3.10/site-packages/datasets/load.py", line 1528, in load_dataset_builder
builder_instance: DatasetBuilder = builder_cls(
TypeError: 'NoneType' object is not callable
```
The local dataset filenames were of the form `dushowxa-characters/expanse-dushowxa-characters.json` and are now of the form `dushowxa-characters/dushowxa-characters.json` (the word `expanse-` was removed from the filenames). Is this perhaps a dataset caching issue?
I have attempted to manually clear caches, but to no effect:
```sh
rm -rfv ~/.cache/huggingface/datasets/*
rm -rfv ~/.cache/huggingface/modules/*
```
### Steps to reproduce the bug
Run `python3 train_dushowxa.py` (adapted from Databrick's [train_dolly.py](/databrickslabs/dolly/blob/master/train_dolly.py)).
### Expected behavior
Training succeeds as before local dataset filenames were changed.
### Environment info
Ubuntu 22.04, Python 3.10.6, venv
```python
accelerate>=0.16.0,<1
click>=8.0.4,<9
datasets>=2.10.0,<3
deepspeed>=0.9.0,<1
transformers[torch]>=4.28.1,<5
langchain>=0.0.139
``` | 5,811 |
https://github.com/huggingface/datasets/issues/5809 | wiki_dpr details for Open Domain Question Answering tasks | [
"Hi ! I don't remember exactly how it was done, but maybe you have to embed `f\"{title}<sep>{text}\"` ?\r\n\r\nUsing a HF tokenizer it corresponds to doing\r\n```python\r\ntokenized = tokenizer(titles, texts)\r\n```"
] | Hey guys!
Thanks for creating the wiki_dpr dataset!
I am currently trying to combine wiki_dpr and my own datasets. but I don't know how to make the embedding value the same way as wiki_dpr.
As an experiment, I embeds the text of id="7" of wiki_dpr, but this result was very different from wiki_dpr. | 5,809 |
https://github.com/huggingface/datasets/issues/5806 | Return the name of the currently loaded file in the load_dataset function. | [
"Implementing this makes sense (e.g., `tensorflow_datasets`' imagefolder returns image filenames). Also, in Datasets 3.0, we plan only to store the bytes of an image/audio, not its path, so this feature would be useful when the path info is still needed.",
"Hey @mariosasko, Can I work on this issue, this one seems interesting to implement. I have contributed to jupyterlab recently, and would love to contribute here as well. ",
"@tsabbir96 if you are planning to start working on this, you can take on this issue by writing a comment with only the keyword: #self-assign",
"#self-assign",
"@albertvillanova thank you for letting me contribute here. \r\n@albertvillanova @mariosasko As I am totally new to this repo, could you tell me something more about this issue or perhaps give me some idea on how I can proceed with it? Thanks!",
"Hello there, is this issue resolved? @tsabbir96 are you still working on it? Otherwise I would love to give it a try",
"@EduardoPach This issue is still relevant, so feel free to work on it.",
"Hey @mariosasko, I've taken the time to take a look at how we load the datasets usually. My main question now is about the final solution.\r\n\r\nSo the idea is that whenever we load the datasets we also add a new column in the _generate_tables() method from the builders called filename (or file_name) that should be related files contained in each split, right?\r\n\r\nDo you have any suggestions of where I could add that? ",
"Is this issue still open? If yes, I'd like to work upon on it. Thanks",
"> Is this issue still open? If yes, I'd like to work upon on it. Thanks\n\nDefinitely still open. I gave it a try, but then didn't get any feedback on my last question so I stopped . Feel free to work on it.",
"It's still open, so feel free to work on it. This can be implemented by adding a param to the packaged builders' configs that inserts a column with file names (in `_generate_tables`) when `True`. Naming this column `file_name` sounds good to me.",
"Hi is the issues still open, is see no activity since September but it shows that it is still assigned to tsabbir96. If \r\ntsabbir96 is not planning to continue, can i get it assigned to me.",
"Looking forward to your implementation. I also really need this feature. \r\nThanks"
] | ### Feature request
Add an optional parameter return_file_name in the load_dataset function. When it is set to True, the function will include the name of the file corresponding to the current line as a feature in the returned output.
### Motivation
When training large language models, machine problems may interrupt the training process. In such cases, it is common to load a previously saved checkpoint to resume training. I would like to be able to obtain the names of the previously trained data shards, so that I can skip these parts of the data during continued training to avoid overfitting and redundant training time.
### Your contribution
I currently use a dataset in jsonl format, so I am primarily interested in the json format. I suggest adding the file name to the returned table here https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/json/json.py#L92. | 5,806 |
https://github.com/huggingface/datasets/issues/5805 | Improve `Create a dataset` tutorial | [
"I can work on this. The link to the tutorial seems to be broken though @polinaeterna. ",
"@isunitha98selvan would be great, thank you! which link are you talking about? I think it should work: https://huggingface.co/docs/datasets/create_dataset",
"Hey I don't mind working on this issue. From my understanding, we want to let the reader know that they can build datasets from `csv`, `json/jsonl`, `parquet` and `txt` files in the **folder-based builders** section and include a link to the full guide. Then in the **from local files** section, we just want to list the methods from in-memory data section such as `.from_dict()`. ",
"Hey @polinaeterna, I have a pull request for this issue. Can you review and see if it needs any changes?"
] | Our [tutorial on how to create a dataset](https://huggingface.co/docs/datasets/create_dataset) is a bit misleading.
1. In **Folder-based builders** section it says that we have two folder-based builders as standard builders, but we also have similar builders (that can be created from directory with data of required format) for `csv`, `json/jsonl`, `parquet` and `txt` files. We have info about these loaders in separate [guide for loading](https://huggingface.co/docs/datasets/loading#local-and-remote-files) but it's worth briefly mentioning them in the beginning tutorial because they are more common and for consistency. Would be helpful to add the link to the full guide.
2. **From local files** section lists methods for creating a dataset from in-memory data which are also described in [loading guide](https://huggingface.co/docs/datasets/loading#inmemory-data).
Maybe we should actually rethink and restructure this tutorial somehow. | 5,805 |
https://github.com/huggingface/datasets/issues/5799 | Files downloaded to cache do not respect umask | [] | As reported by @stas00, files downloaded to the cache do not respect umask:
```bash
$ ls -l /path/to/cache/datasets/downloads/
-rw------- 1 uername username 150M Apr 25 16:41 5e646c1d600f065adaeb134e536f6f2f296a6d804bd1f0e1fdcd20ee28c185c6
```
Related to:
- #2065 | 5,799 |
https://github.com/huggingface/datasets/issues/5798 | Support parallelized downloading and processing in load_dataset with Spark | [
"Hi ! We're using process pools for parallelism right now. I was wondering if there's a package that implements the same API as a process pool but runs with Spark under the hood ? That or something similar would be cool because users could use whatever distributed framework they want this way.\r\n\r\nFeel free to ping us when you'd like to open PRs for this kind of things, so that we can discuss this before you start working on it ^^",
"Hi, thanks for taking a look and providing your input! I don't know of such packages, and even it exists, I don't think with the process pool API it's possible to run Spark as backend properly; otherwise I understand a unified API would be preferable.\r\n\r\nThe process pool API requires splitting the workload to a fixed number parts for multiprocessing; meanwhile distributed framework such as Spark has sophisticated scheduler to distribute the workload to the processes on multiple machines in a cluster, so the way of splitting things for `multiprocessing.pool` would not suit / be as flexible as directly calling the `sparkContext.parallelize` API.\r\n\r\nI think this could be a good addition to scale the `datasets` implementation to distributed workers, and from my benchmark results so far it looks promising compared with multiprocessing.",
"I see ! I think we only need an equivalent of `pool.map`. We use it to run download and conversion of data files on disk. That would require less changes in the internal code - and therefore less tests to write ;)\r\n\r\nWe also use `pool.apply_async` in some places with a `Queue` to get progress updates of the running jobs. I'm mentioning this in case there's a way to get a python generator from a running spark job ? This is less important though",
"For Spark, `rdd.map` (where `rdd` can be created by `sparkContext.parallelize`) is the most similar as `pool.map`, but it requires creating a Spark RDD first that is used for distributing the `iterable` and the actual parallelization is managed by the Spark framework; `pool.map` takes the splits of `iterable` that are split into `num_proc` parts by the Python code. You can also check my PR #5807 in the `src/datasets/utils/py_utils.py` file to compare the differences of the APIs, it might make more sense than the the above description.\r\n\r\nGiven the different inputs and mechanisms of calling the `map` functions, this is why I think it's not that feasible to reuse most of the `multiprocessing` code.\r\n\r\nProgress bar updating might be challenging with Spark, I'll consider it as a followup work.",
"Indeed I think the current use of multiprocessing.Pool in `map_nested` can be rewritten to work like `sparkContext.parallelize` - without splitting the iterable.\r\n\r\nMaybe from the user's perspective it's ok to let multiprocessing.Pool or spark distribute the load on their own, as long as it takes a list and runs jobs in parallel in the end :)\r\n",
"From your feedback, seems to me there are two paths to consider now for supporting spark's `map` function in `map_nested` now:\r\n1. Keep the current `pool.map` implementation, and add an if statement for the spark's `map` code (which is what I did in my current PR) -- the code change is just a few lines in the `map_nested` function, and it has been tested by unit tests + manual testing on real Spark clusters; if you have other concerns I'd also be happy to address them.\r\n2. Rewrite the current `pool.map` implementation to remove splitting the iterable, and we will still need to add an if statement to use either\r\n```python\r\nwith Pool(...) as pool:\r\n mapped = pool.map(_single_map_nested, iterable)\r\n```\r\nor\r\n```python\r\nrdd = spark.sparkContext.parallelize(iterable)\r\nmapped = rdd.map(lambda obj: _single_map_nested((function, obj, types, None, True, None))).collect()\r\n```\r\nbecause there is no unified API that supports both `pool.map` and `rdd.map`. This can be more unified and flexible in the long run, but might require more work, and it will change the existing multiprocessing behavior, which is why I'm not leaning towards this option.\r\n\r\nAm I understanding correctly?",
"Yup correct ! I think it's a nice path because it would be possible for users to define whatever parallel processing backend they want. I think we still need to discuss how that would look like in the `datasets` API : how to specify it has to use the \"spark\" parallel backend ? And how to specify the spark session parameters (number of executors etc.) ? Maybe there is something more practical than `use_spark=True`\r\n\r\nI'll check with the team internally if they have some ideas, but feel free to share your thoughts here !",
"Sure, please let me know if you have more updates regarding the API and implementation from the team.\r\n\r\nFor parameters we don't need to worry about setting them for Spark, because Spark will figure out the environment / number of worker nodes by itself, so it's preferable to just provide some parameter such as `use_spark` to use the RDD `map` function.",
"Hi! I wanted to check in to see if there is any update from the team.\r\n\r\nA potential change of API I can think of is change the argument to `distributed_backend=...`, which accepts `str`, such as `load_dataset(..., distributed_backend=\"spark\")`.\r\n\r\nImplementation wise, we can add a class / function to abstract away the details of using multiprocessing vs. spark vs. other parallel processing frameworks in `map_nested` and `_prepare_split`.",
"I found this quite interesting: https://github.com/joblib/joblib-spark with this syntax:\r\n\r\n```python\r\nwith parallel_backend('spark', n_jobs=3):\r\n ...\r\n```\r\n\r\ncc @lu-wang-dl who might know better",
"Joblib spark is providing Spark backend for joblib. We can implement a general parallel backend like\r\n```\r\nwith parallel_backend(\"<parallel-backedn>\", n_jobs=..):\r\n```\r\n\r\nIt can support multiprocessing , spark, ray, and etc. https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend",
"Thank you @lhoestq for finding this repo. I validated that it can distribute downloading jobs with Spark to arbitrary cluster worker nodes evenly with `n_jobs=-1`.\r\n\r\nFor the API, I think it makes sense to define it as\r\n```python\r\nload_dataset(..., parallel_backend=<str>)\r\n```\r\nwhere `parallel_backend` can be `spark`, `multiprocessing`, and potentially other supported joblib backends including `ray` and `dask`.\r\n\r\nImplementation-wise, do you think it is better to just use `joblib` for `spark` backend in `map_nested`, or also migrate the `multiprocessing.Pool` code to use `joblib`?",
"Hello @lhoestq, I wanted to follow up on my previous comment with some prototyping code that demonstrates how `map_nested` would be like if we unify `multiprocessing` and `spark` with `joblib`. The snippet hasn't hashed out the details such as dealing with `tqdm` yet.\r\n\r\nIn terms of API, the way of using multiprocessing is still the same; for Spark, the user sets `parallel_backend='spark'` can reuse the `num_proc` argument to pass in the number of executors, or preferably, just set `num_proc=-1` and joblib is able to decide it (I've validated it by running it on a Spark cluster).\r\n\r\n```python\r\ndef map_nested(\r\n # ... same args\r\n parallel_backend: Optional[str] = None, # proposed new argument\r\n):\r\n\r\n # ... same code\r\n\r\n # allow user to specify num_proc=-1, so that joblib will optimize it\r\n if (num_proc <= 1 and num_proc != -1) or len(iterable) < parallel_min_length:\r\n # same code\r\n mapped = [\r\n _single_map_nested((function, obj, types, None, True, None))\r\n for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n ]\r\n else:\r\n if not parallel_backend:\r\n parallel_backend = 'loky' # 'loky' is joblib's own implementation of robust multiprocessing\r\n \r\n n_jobs = min(num_proc, len(iterable))\r\n\r\n if parallel_backend == 'spark':\r\n n_jobs = -1 # 'loky' is joblib's own implementation of robust multiprocessing\r\n from joblibspark import register_spark\r\n register_spark()\r\n\r\n # parallelized with the same API\r\n with joblib.parallel_backend(parallel_backend, n_jobs=n_jobs):\r\n mapped = joblib.Parallel()(\r\n joblib.delayed(\r\n _single_map_nested((function, obj, types, None, True, None))\r\n )(obj) for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n )\r\n \r\n # ... same code\r\n```\r\nWe can always `joblib` for Spark and other distributed backends such as Ray if people want to support them later. It's worth noting that some distributed backends do not currently have `joblib` implementations.\r\n\r\nI would appreciate your thoughts on this proposed new API. We can also discuss the pros and cons of migrating the `multiprocessing` code to `joblib` later.",
"Nice ! It should be quite easy to make the change then :)\r\n\r\nI think adding spark support can actually be less than 20 lines of code and would roughly require one line of code to change in map_nested:\r\n\r\nMaybe we can define a new `datasets.parallel` submodule that has the `parallel_backend()` context manager and a `parallel_map()` function that uses `Pool.map` by default and `joblib` otherwise.\r\n\r\n`joblib` would be an optional dependency, and `joblib-spark` as well.\r\n\r\nThen whenever someone wants to use Spark, they can do something like this (similar to scikit-learn parallel_backend):\r\n\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\"):\r\n ds = load_dataset(...)\r\n```\r\n\r\nWhat do you think ?",
"Although until we've switched to all the steps in `load_dataset` to use `datasets.parallel`, I would require the user to explicitly say which step should use Spark. Maybe something like this, but I'm not sure yet:\r\n\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\", steps=[\"download\"]):\r\n ds = load_dataset(...)\r\n```\r\nfor now some steps can be NotImplemented:\r\n```python\r\nfrom datasets.parallel import parallel_backend\r\n\r\nwith parallel_backend(\"spark\", steps=[\"download\", \"prepare\"]):\r\n# NotImplementedError: the \"prepare\" step that converts the raw data files to Arrow is not compatible with the \"spark\" backend yet\r\n```\r\n\r\nThis way we can progressively roll out Spark support for the other data loading/processing steps without breaking changes between `datasets` versions",
"Sounds good! I like the partial rollout idea.\r\nSo for example `map_nested` would call `parallel_map` under the hood if `num_proc != 1` or `parallel_backend` is specified right?\r\nI would be happy to start a PR next week to explore this path.",
"Awesome ! I think map_nested can call `parallel_map()` if num_proc > 1, and `parallel_map` can be responsible to use Pool.map by default or joblib."
] | ### Feature request
When calling `load_dataset` for datasets that have multiple files, support using Spark to distribute the downloading and processing job to worker nodes when `cache_dir` is a cloud file system shared among nodes.
```python
load_dataset(..., use_spark=True)
```
### Motivation
Further speed up `dl_manager.download` and `_prepare_split` by distributing the workloads to worker nodes.
### Your contribution
I can submit a PR to support this. | 5,798 |
https://github.com/huggingface/datasets/issues/5797 | load_dataset is case sentitive? | [
"Hi @haonan-li , thank you for the report! It seems to be a bug on the [`huggingface_hub`](https://github.com/huggingface/huggingface_hub) site, there is even no such dataset as `mbzuai/bactrian-x` on the Hub. I opened and [issue](https://github.com/huggingface/huggingface_hub/issues/1453) there.",
"I think `load_dataset(\"mbzuai/bactrian-x\")` shouldn't be loaded at all and raise an error but because of [this fallback](https://github.com/huggingface/datasets/blob/main/src/datasets/load.py#L1194) to packaged loaders when no other options are applicable, it loads the dataset with standard `json` loader instead of the custom loading script."
] | ### Describe the bug
load_dataset() function is case sensitive?
### Steps to reproduce the bug
The following two code, get totally different behavior.
1. load_dataset('mbzuai/bactrian-x','en')
2. load_dataset('MBZUAI/Bactrian-X','en')
### Expected behavior
Compare 1 and 2.
1 will download all 52 subsets, shell output:
```Downloading and preparing dataset json/MBZUAI--bactrian-X to xxx```
2 will only download single subset, shell output
```Downloading and preparing dataset bactrian-x/en to xxx```
### Environment info
Python 3.10.11
datasets Version: 2.11.0 | 5,797 |
https://github.com/huggingface/datasets/issues/5794 | CI ZeroDivisionError | [
"Hello!\r\nThis issue seems to have been fixed in https://github.com/huggingface/transformers/pull/24049 \r\nI was looking for my first issue to work on when I noticed this; not sure if there is a specific protocol for suggesting to close an issue.",
"Thanks for informing, @zeppdev. I am closing this issue.\r\n\r\nFixed by:\r\n- huggingface/transformers#24049"
] | Sometimes when running our CI on Windows, we get a ZeroDivisionError:
```
FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore - ZeroDivisionError: float division by zero
```
See for example:
- https://github.com/huggingface/datasets/actions/runs/4809358266/jobs/8560513110
- https://github.com/huggingface/datasets/actions/runs/4798359836/jobs/8536573688
```
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
split = 'test', start_time = 1682516718.8236516, num_samples = 2, num_steps = 1
def speed_metrics(split, start_time, num_samples=None, num_steps=None):
"""
Measure and return speed performance metrics.
This function requires a time snapshot `start_time` before the operation to be measured starts and this function
should be run immediately after the operation to be measured has completed.
Args:
- split: name to prefix metric (like train, eval, test...)
- start_time: operation start time
- num_samples: number of samples processed
"""
runtime = time.time() - start_time
result = {f"{split}_runtime": round(runtime, 4)}
if num_samples is not None:
> samples_per_second = num_samples / runtime
E ZeroDivisionError: float division by zero
C:\hostedtoolcache\windows\Python\3.7.9\x64\lib\site-packages\transformers\trainer_utils.py:354: ZeroDivisionError
``` | 5,794 |
https://github.com/huggingface/datasets/issues/5793 | IterableDataset.with_format("torch") not working | [
"Hi ! Thanks for reporting, I'm working on it ;)"
] | ### Describe the bug
After calling the with_format("torch") method on an IterableDataset instance, the data format is unchanged.
### Steps to reproduce the bug
```python
from datasets import IterableDataset
def gen():
for i in range(4):
yield {"a": [i] * 4}
dataset = IterableDataset.from_generator(gen).with_format("torch")
next(iter(dataset))
```
### Expected behavior
`{"a": torch.tensor([0, 0, 0, 0])}` is expected, but `{"a": [0, 0, 0, 0]}` is observed.
### Environment info
```bash
platform==ubuntu 22.04.01
python==3.10.9
datasets==2.11.0
``` | 5,793 |
https://github.com/huggingface/datasets/issues/5791 | TIFF/TIF support | [
"The issue with multichannel TIFF images has already been reported in Pillow (https://github.com/python-pillow/Pillow/issues/1888). We can't do much about it on our side.\r\n\r\nStill, to avoid the error, you can bypass the default Pillow decoding and define a custom one as follows:\r\n```python\r\nimport tifffile # pip install tifffile\r\n\r\ndset = dset.cast_column(\"image\", datasets.Image(decode=False))\r\n\r\ndef decode_mutlichannel_tiff(batch):\r\n batch[\"image\"] = [tifffile.imread(image[\"path\"]) for image in batch[\"image\"]]\r\n return batch\r\n\r\ndset.set_transform(decode_mutlichannel_tiff)\r\n```\r\n\r\nRegarding the annotations, in which format are they? In the COCO format? I think this is a bit too specific to have a built-in loader for it.",
"This snippet is awesome! I know I probably should have gotten deeper in to the docs to find cast_column and set_transform, but perhaps a link ushering folks to that documentation or even this thread somewhere in https://huggingface.co/docs/datasets/image_load would be helpful? Thanks again for the snippet",
"We have a section on custom decoding [here](https://huggingface.co/docs/datasets/process#format-transform) (for the audio case though)",
"Btw, we can close this issue as it should be addressed in Pillow rather than here. ",
"For sure, if image based stuff becomes a priority I think guiding folks to an image decoder section would be really helpful, but im just one dev :) and I know priorities gotta be balanced so no worries. Thanks again for the snippet, agreed we can close"
] | ### Feature request
I currently have a dataset (with tiff and json files) where I have to do this:
`wget path_to_data/images.zip && unzip images.zip`
`wget path_to_data/annotations.zip && unzip annotations.zip`
Would it make sense a contribution that supports these type of files?
### Motivation
instead of using `load_dataset` have to use wget as these files are not supported for annotations with JSON and images with TIFF files.
Additionally to this, the PIL formatting from datasets does not read correctly the image channels with TIFF format, besides multichannel adaptation might be necessary as well (as my data e.g has more than 3 channels)
### Your contribution
1. Support TIFF images over multi channel format
2. Support JSON annotations | 5,791 |
https://github.com/huggingface/datasets/issues/5789 | Support streaming datasets that use jsonlines | [] | Extend support for streaming datasets that use `jsonlines.open`.
Currently, if `jsonlines` is installed, `datasets` raises a `FileNotFoundError`:
```
FileNotFoundError: [Errno 2] No such file or directory: 'https://...'
```
See:
- https://huggingface.co/datasets/masakhane/afriqa/discussions/1 | 5,789 |
https://github.com/huggingface/datasets/issues/5786 | Multiprocessing in a `filter` or `map` function with a Pytorch model | [
"Hi ! PyTorch may hang when calling `load_state_dict()` in a subprocess. To fix that, set the multiprocessing start method to \"spawn\". Since `datasets` uses `multiprocess`, you should do:\r\n\r\n```python\r\n# Required to avoid issues with pytorch (otherwise hangs during load_state_dict in multiprocessing)\r\nimport multiprocess.context as ctx\r\nctx._force_start_method('spawn')\r\n```\r\n\r\nAlso make sure to run your main code in `if __name__ == \"__main__\":` to avoid issues with python multiprocesing",
"Thanks!",
"@lhoestq Hello, I also encountered this problem but maybe with another reason. Here is my code:\r\n```python\r\ntokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir, model_max_length=training_args.model_max_length)\r\ndata = load_dataset(\"json\", data_files=data_args.train_file, cache_dir=data_args.data_cache_dir)\r\ndef func(samples):\r\n # main operation\r\n for sentence_value in samples:\r\n sentence_ids = tokenizer.encode(sentence_value, add_special_tokens=False, max_length=tokenizer.model_max_length, truncation=True)\r\n ... ...\r\ntrain_data = data[\"train\"].shuffle().map(func, num_proc=os.cpu_count())\r\n```\r\nIt hangs after the progress reaches 100%. Could you help me point out the reason?",
"@SkyAndCloud your issue doesn't seem related to the original post - could you open a new issue and provide more details ? (size of the dataset, number of cpus, how much time it took to run, `datasets` version)",
"@lhoestq Hi, I just solved this problem. Because the input is extremely long and the tokenizer requests a large amount of memory, which leads to a OOM error and may eventually causes the hang. I didn't filter those too-long sentences because I thought `tokenizer` would stop once the length exceeds the `max_length`. However, it actually firstly complete the tokenization of entire sentence and then truncate it."
] | ### Describe the bug
I am trying to use a Pytorch model loaded on CPUs with multiple processes with a `.map` or a `.filter` method.
Usually, when dealing with models that are non-pickable, creating a class such that the `map` function is the method `__call__`, and adding `reduce` helps to solve the problem.
However, here, the command hangs without throwing an error.
### Steps to reproduce the bug
```
from datasets import Dataset
import torch
from torch import nn
from torchvision import models
class FilterFunction:
#__slots__ = ("path_model", "model") # Doesn't change anything uncommented
def __init__(self, path_model):
self.path_model = path_model
model = models.resnet50()
model.fc = nn.Sequential(
nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 10),
nn.LogSoftmax(dim=1)
)
model.load_state_dict(torch.load(path_model, map_location=torch.device("cpu")))
model.eval()
self.model = model
def __call__(self, batch):
return [True] * len(batch["id"])
# Comment this to have an error
def __reduce__(self):
return (self.__class__, (self.path_model,))
dataset = Dataset.from_dict({"id": [0, 1, 2, 4]})
# Download (100 MB) at https://github.com/emiliantolo/pytorch_nsfw_model/raw/master/ResNet50_nsfw_model.pth
path_model = "/fsx/hugo/nsfw_image/ResNet50_nsfw_model.pth"
filter_function = FilterFunction(path_model=path_model)
# Works
filtered_dataset = dataset.filter(filter_function, num_proc=1, batched=True, batch_size=2)
# Doesn't work
filtered_dataset = dataset.filter(filter_function, num_proc=2, batched=True, batch_size=2)
```
### Expected behavior
The command `filtered_dataset = dataset.filter(filter_function, num_proc=2, batched=True, batch_size=2)` should work and not hang.
### Environment info
Datasets: 2.11.0
Pyarrow: 11.0.0
Ubuntu | 5,786 |
https://github.com/huggingface/datasets/issues/5785 | Unsupported data files raise TypeError: 'NoneType' object is not iterable | [] | Currently, we raise a TypeError for unsupported data files:
```
TypeError: 'NoneType' object is not iterable
```
See:
- https://github.com/huggingface/datasets-server/issues/1073
We should give a more informative error message. | 5,785 |
https://github.com/huggingface/datasets/issues/5783 | Offset overflow while doing regex on a text column | [
"Hi! This looks like an Arrow bug, but it can be avoided by reducing the `writer_batch_size`.\r\n\r\n(`ds = ds.map(get_text_caption, writer_batch_size=100)` in Colab runs without issues)\r\n",
"@mariosasko I ran into this problem with load_dataset. What should I do",
"@AisingioroHao0 You can also pass the `writer_batch_size` parameter to `load_dataset`, e.g., `load_dataset(\"mnist\", writer_batch_size=100)`",
"@mariosasko How do I determine the optimal size of write_batch_size? My training is sometimes fast and sometimes slow. Is it because write_batch_size is too small? Each batch of the current dataloader should be the same size. I preprocessed the dataset using map",
"@aihao2000 It's unlikely `writer_batch_size` is the problem. You can use the following code to profile the training loop (e.g., on a subset of data) and find slow parts:\r\n```python\r\nimport cProfile, pstats\r\n\r\nwith cProfile.Profile() as profiler:\r\n ... # training loop code\r\n\r\nstats = pstats.Stats(profiler).sort_stats(\"cumtime\")\r\nstats.print_stats()\r\n```\r\n",
"@nishanthcgit ok,thanks.Recently I found dataset.with_transform to be faster and more stable with multiple processes",
"@mariosasko Is the larger the num_proc of load_dataset within the number of cpu cores, the better? Then the num_proc of data_loader is the number of cpu cores/number of training processes"
] | ### Describe the bug
`ArrowInvalid: offset overflow while concatenating arrays`
Same error as [here](https://github.com/huggingface/datasets/issues/615)
### Steps to reproduce the bug
Steps to reproduce: (dataset is a few GB big so try in colab maybe)
```
import datasets
import re
ds = datasets.load_dataset('nishanthc/dnd_map_dataset_v0.1', split = 'train')
def get_text_caption(example):
regex_pattern = r'\s\d+x\d+|,\sLQ|,\sgrid|\.\w+$'
example['text_caption'] = re.sub(regex_pattern, '', example['picture_text'])
return example
ds = ds.map(get_text_caption)
```
I am trying to apply a regex to remove certain patterns from a text column. Not sure why this error is showing up.
### Expected behavior
Dataset should have a new column with processed text
### Environment info
Datasets version - 2.11.0 | 5,783 |
https://github.com/huggingface/datasets/issues/5782 | Support for various audio-loading backends instead of always relying on SoundFile | [
"Hi! \r\n\r\nYou can use `set_transform`/`with_transform` to define a custom decoding for audio formats not supported by `soundfile`:\r\n```python\r\naudio_dataset_amr = Dataset.from_dict({\"audio\": [\"audio_samples/audio.amr\"]})\r\n\r\ndef decode_audio(batch):\r\n batch[\"audio\"] = [read_ffmpeg(audio_path) for audio_path in batch[\"audio\"]]\r\n return batch\r\n\r\naudio_dataset_amr.set_transform(decode_amr) \r\n```\r\n\r\nSupporting multiple backends is more work to maintain, but we could consider this if we get more requests such as this one.",
"Could it be put somewhere as an example tip or something?",
"Considering the number of times a custom decoding transform has been suggested as a solution, an example in the [docs](https://huggingface.co/docs/datasets/process#format-transform) would be nice.\r\n\r\ncc @stevhliu "
] | ### Feature request
Introduce an option to select from a variety of audio-loading backends rather than solely relying on the SoundFile library. For instance, if the ffmpeg library is installed, it can serve as a fallback loading option.
### Motivation
- The SoundFile library, used in [features/audio.py](https://github.com/huggingface/datasets/blob/649d5a3315f9e7666713b6affe318ee00c7163a0/src/datasets/features/audio.py#L185), supports only a [limited number of audio formats](https://pysoundfile.readthedocs.io/en/latest/index.html?highlight=supported#soundfile.available_formats).
- However, current methods for creating audio datasets permit the inclusion of audio files in formats not supported by SoundFile.
- As a result, developers may potentially create a dataset they cannot read back.
In my most recent project, I dealt with phone call recordings in `.amr` or `.gsm` formats and was genuinely surprised when I couldn't read the dataset I had just packaged a minute prior. Nonetheless, I can still accurately read these files using the librosa library, which employs the audioread library that internally leverages ffmpeg to read such files.
Example:
```python
audio_dataset_amr = Dataset.from_dict({"audio": ["audio_samples/audio.amr"]}).cast_column("audio", Audio())
audio_dataset_amr.save_to_disk("audio_dataset_amr")
audio_dataset_amr = Dataset.load_from_disk("audio_dataset_amr")
print(audio_dataset_amr[0])
```
Results in:
```
Traceback (most recent call last):
...
raise LibsndfileError(err, prefix="Error opening {0!r}: ".format(self.name))
soundfile.LibsndfileError: Error opening <_io.BytesIO object at 0x7f316323e4d0>: Format not recognised.
```
While I acknowledge that support for these rare file types may not be a priority, I believe it's quite unfortunate that it's possible to create an unreadable dataset in this manner.
### Your contribution
I've created a [simple demo repository](https://github.com/BoringDonut/hf-datasets-ffmpeg-audio) that highlights the mentioned issue. It demonstrates how to create an .amr dataset that results in an error when attempting to read it just a few lines later.
Additionally, I've made a [fork with a rudimentary solution](https://github.com/BoringDonut/datasets/blob/fea73a8fbbc8876467c7e6422c9360546c6372d8/src/datasets/features/audio.py#L189) that utilizes ffmpeg to load files not supported by SoundFile.
Here you may see github actions fails to read `.amr` dataset using the version of the current dataset, but will work with the patched version:
- https://github.com/BoringDonut/hf-datasets-ffmpeg-audio/actions/runs/4773780420/jobs/8487063785
- https://github.com/BoringDonut/hf-datasets-ffmpeg-audio/actions/runs/4773780420/jobs/8487063829
As evident from the GitHub action above, this solution resolves the previously mentioned problem.
I'd be happy to create a proper pull request, provide runtime benchmarks and tests if you could offer some guidance on the following:
- Where should I incorporate the ffmpeg (or other backends) code? For example, should I create a new file or simply add a function within the Audio class?
- Is it feasible to pass the audio-loading function as an argument within the current architecture? This would be useful if I know in advance that I'll be reading files not supported by SoundFile.
A few more notes:
- In theory, it's possible to load audio using librosa/audioread since librosa is already expected to be installed. However, librosa [will soon discontinue audioread support](https://github.com/librosa/librosa/blob/aacb4c134002903ae56bbd4b4a330519a5abacc0/librosa/core/audio.py#L227). Moreover, using audioread on its own seems inconvenient because it requires a file [path as input](https://github.com/beetbox/audioread/blob/ff9535df934c48038af7be9617fdebb12078cc07/audioread/__init__.py#L108) and cannot work with bytes already loaded into memory or an open file descriptor (as mentioned in [librosa docs](https://librosa.org/doc/main/generated/librosa.load.html#librosa.load), only SoundFile backend supports an open file descriptor as an input). | 5,782 |
https://github.com/huggingface/datasets/issues/5781 | Error using `load_datasets` | [
"It looks like an issue with your installation of scipy, can you try reinstalling it ?",
"Sorry for the late reply, but that worked @lhoestq . Thanks for the assist."
] | ### Describe the bug
I tried to load a dataset using the `datasets` library in a conda jupyter notebook and got the below error.
```
ImportError: dlopen(/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/_iterative.cpython-38-darwin.so, 0x0002): Library not loaded: @rpath/liblapack.3.dylib
Referenced from: <65B094A2-59D7-31AC-A966-4DB9E11D2A15> /Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/_iterative.cpython-38-darwin.so
Reason: tried: '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/../../../../../../liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/../../../../../../liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/bin/../lib/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/bin/../lib/liblapack.3.dylib' (no such file), '/usr/local/lib/liblapack.3.dylib' (no such file), '/usr/lib/liblapack.3.dylib' (no such file, not in dyld cache)
```
### Steps to reproduce the bug
Run the `load_datasets` function
### Expected behavior
I expected the dataset to be loaded into my notebook.
### Environment info
name: review_sense
channels:
- apple
- conda-forge
dependencies:
- python=3.8
- pip>=19.0
- jupyter
- tensorflow-deps
#- scikit-learn
#- scipy
- pandas
- pandas-datareader
- matplotlib
- pillow
- tqdm
- requests
- h5py
- pyyaml
- flask
- boto3
- ipykernel
- seaborn
- pip:
- tensorflow-macos==2.9
- tensorflow-metal==0.5.0
- bayesian-optimization
- gym
- kaggle
- huggingface_hub
- datasets
- numpy
- huggingface
| 5,781 |
https://github.com/huggingface/datasets/issues/5780 | TypeError: 'NoneType' object does not support item assignment | [] | command:
```
def load_datasets(formats, data_dir=datadir, data_files=datafile):
dataset = load_dataset(formats, data_dir=datadir, data_files=datafile, split=split, streaming=True, **kwargs)
return dataset
raw_datasets = DatasetDict()
raw_datasets["train"] = load_datasets(“csv”, args.datadir, "train.csv", split=train_split)
raw_datasets["test"] = load_datasets(“csv”, args.datadir, "dev.csv", split=test_split)
raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000))
```
error:
```
main()
File "peft_adalora_whisper_large_training.py", line 502, in main
raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000))
File "/home/ybZhang/miniconda3/envs/whister/lib/python3.8/site-packages/datasets/dataset_dict.py", line 2015, in cast_column
info.features[column] = feature
TypeError: 'NoneType' object does not support item assignment
```
| 5,780 |
https://github.com/huggingface/datasets/issues/5778 | Schrödinger's dataset_dict | [
"Hi ! Passing `data_files=\"path/test.json\"` is equivalent to `data_files={\"train\": [\"path/test.json\"]}`, that's why you end up with a train split. If you don't pass `data_files=`, then split names are inferred from the data files names"
] | ### Describe the bug
If you use load_dataset('json', data_files="path/test.json"), it will return DatasetDict({train:...}).
And if you use load_dataset("path"), it will return DatasetDict({test:...}).
Why can't the output behavior be unified?
### Steps to reproduce the bug
as description above.
### Expected behavior
consistent predictable output.
### Environment info
'2.11.0' | 5,778 |
https://github.com/huggingface/datasets/issues/5777 | datasets.load_dataset("code_search_net", "python") : NotADirectoryError: [Errno 20] Not a directory | [
"Note:\r\nI listed the datasets and grepped around to find what appears to be an alternative source for this:\r\n\r\nraw_datasets = load_dataset(\"espejelomar/code_search_net_python_10000_examples\", \"python\")",
"Thanks for reporting, @jason-brian-anderson.\r\n\r\nYes, this is a known issue: the [CodeSearchNet](https://github.com/github/CodeSearchNet) repo has been archived (Apr 11, 2023) and their source data files are no longer accessible in their S3: e.g. https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2/python.zip gives 403 Forbidden error. See:\r\n- https://huggingface.co/datasets/code_search_net/discussions/3\r\n\r\nWe have contacted one of the authors of the dataset to find a solution. I'll keep you informed.\r\n\r\nCC: @hamelsmu",
"cc: @julianeagu",
"This issue is fixed because we are hosting the CodeSearchNet data files in the Hugging Face Hub. See: https://huggingface.co/datasets/code_search_net/discussions/7",
"I learned that @mallamanis has uploaded the dataset [here as well](https://zenodo.org/record/7908468) ",
"Thanks @hamelsmu for the Zenodo link. I am adding it to the dataset card on the Hugging Face Hub, so that the community knows about this \"official\" source data. I guess this link is not well known, because some community members already hosted an \"unofficial\" version of the data on Zenodo as well: https://zenodo.org/record/7857872\r\n\r\n"
] | ### Describe the bug
While checking out the [tokenizer tutorial](https://huggingface.co/course/chapter6/2?fw=pt), i noticed getting an error while initially downloading the python dataset used in the examples.
The [collab with the error is here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter6/section2.ipynb#scrollTo=hGb69Yo3eV8S)
```
from datasets import load_dataset
import os
os.environ["HF_DATASETS_CACHE"] = "/workspace"
# This can take a few minutes to load, so grab a coffee or tea while you wait!
raw_datasets = load_dataset("code_search_net", "python")
```
yeilds:
```
ile /opt/conda/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:524, in xlistdir(path, use_auth_token)
522 main_hop, *rest_hops = _as_str(path).split("::")
523 if is_local_path(main_hop):
--> 524 return os.listdir(path)
525 else:
526 # globbing inside a zip in a private repo requires authentication
527 if not rest_hops and (main_hop.startswith("http://") or main_hop.startswith("https://")):
NotADirectoryError: [Errno 20] Not a directory: '/workspace/downloads/25ceeb4c25ab737d688bd56ea92bfbb1f199fe572470456cf2d675479f342ac7/python/final/jsonl/train'
```
I was able to reproduce this erro both in the collab and on my own pytorch/pytorch container pulled from the dockerhub official pytorch image, so i think it may be a server side thing.
### Steps to reproduce the bug
Steps to reproduce the issue:
1. run `raw_datasets = load_dataset("code_search_net", "python")`
### Expected behavior
expect the code to not exception during dataset pull.
### Environment info
i tried both the default HF_DATASETS_CACHE on Collab, and on my local container. i then pointed to the HF_DATASETS_CACHE to a large capacity local storage and the problem was consisten across all 3 scenarios. | 5,777 |
https://github.com/huggingface/datasets/issues/5776 | Use Pandas' `read_json` in the JSON builder | [] | Instead of PyArrow's `read_json`, we should use `pd.read_json` in the JSON builder for consistency with the CSV and SQL builders (e.g., to address https://github.com/huggingface/datasets/issues/5725).
In Pandas2.0, to get the same performance, we can set the `engine` to "pyarrow". The issue is that Colab still doesn't install Pandas 2.0 by default, so I think it's best to wait for this to be resolved on their side to avoid downgrading decoding performance in scenarios when Pandas 2.0 is not installed. | 5,776 |
https://github.com/huggingface/datasets/issues/5775 | ArrowDataset.save_to_disk lost some logic of remote | [
"We just fixed this on `main` and will do a new release soon :)"
] | ### Describe the bug
https://github.com/huggingface/datasets/blob/e7ce0ac60c7efc10886471932854903a7c19f172/src/datasets/arrow_dataset.py#L1371
Here is the bug point, when I want to save from a `DatasetDict` class and the items of the instance is like `[('train', Dataset({features: ..., num_rows: ...}))]` , there is no guarantee that there exists a directory name `train` under `dataset_dict_path`.
### Steps to reproduce the bug
1. Mock a DatasetDict with items like what I said.
2. using save_to_disk with storage_options, u can use local sftp. code may like below
```python
from datasets import load_dataset
dataset = load_dataset(...)
dataset.save_to_disk('sftp:///tmp', storage_options={'host': 'localhost', 'username': 'admin'})
```
I suppose u can reproduce the bug by these steps.
### Expected behavior
Should create the folder if it does not exists, just like we do locally.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-6.2.10-arch1-1-x86_64-with-glibc2.35
- Python version: 3.10.9
- Huggingface_hub version: 0.13.2
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,775 |
https://github.com/huggingface/datasets/issues/5773 | train_dataset does not implement __len__ | [
"Thanks for reporting, @v-yunbin.\r\n\r\nCould you please give more details, the steps to reproduce the bug, the complete error back trace and the environment information (`datasets-cli env`)?",
"this is a detail error info from transformers:\r\n```\r\nTraceback (most recent call last):\r\n File \"finetune.py\", line 177, in <module>\r\n whisper_finetune(traindir,devdir,outdir)\r\n File \"finetune.py\", line 161, in whisper_finetune\r\n trainer = Seq2SeqTrainer(\r\n File \"/home/ybZhang/miniconda3/envs/whister/lib/python3.8/site-packages/transformers/trainer_seq2seq.py\", line 56, in __init__\r\n super().__init__(\r\n File \"/home/ybZhang/miniconda3/envs/whister/lib/python3.8/site-packages/transformers/trainer.py\", line 567, in __init__\r\n raise ValueError(\r\nValueError: The train_dataset does not implement __len__, max_steps has to be specified. The number of steps needs to be known in advance for the learning rate scheduler.\r\n```\r\n",
"How did you create `train_dataset`? The `datasets` library does not appear in your stack trace.\r\n\r\nWe need more information in order to reproduce the issue...",
"```\r\ndef asr_dataset(traindir,devdir):\r\n we_voice = IterableDatasetDict()\r\n #we_voice[\"train\"] = load_from_disk(traindir,streaming=True)\r\n #we_voice[\"test\"]= load_from_disk(devdir,streaming=True)\r\n we_voice[\"train\"] = load_dataset(\"csv\",data_files=os.path.join(traindir,\"train.csv\"),split=\"train\",streaming=True)\r\n #print(load_dataset(\"csv\",data_files=os.path.join(traindir,\"train.csv\"),split=\"train\"))\r\n we_voice[\"test\"] = load_dataset(\"csv\",data_files=os.path.join(devdir,\"dev.csv\"), split=\"train\",streaming=True)\r\n we_voice = we_voice.remove_columns([\"id\"])\r\n we_voice = we_voice.cast_column(\"audio\", Audio(sampling_rate=16000))\r\n return we_voice\r\n\r\n```",
"As you are using iterable datasets (`streaming=True`), their length is not defined.\r\n\r\nYou should:\r\n- Either use non-iterable datasets, which have a defined length: use `DatasetDict` and not passing `streaming=True`\r\n- Or pass `args.max_steps` to the `Trainer`",
"I don't know how to give a reasonable args.max_steps...........................",
"Then you should not use streaming.",
"@albertvillanova I think @v-yunbin, myself, and others might be slightly confused about max_steps and how it differs from num_train_epochs.",
"@lkurlandski A **step** is referring to optimizer's update after back propagation, and it's associated with a batch of data. For example, if a dataset contains 64 examples and you have an overall batch size of 4, then an epoch will have 64/4=16 batches. Therefore, in one epoch, you will have 16 optimizer **steps**."
] | when train using data precessored by the datasets, I get follow warning and it leads to that I can not set epoch numbers:
`ValueError: The train_dataset does not implement __len__, max_steps has to be specified. The number of steps needs to be known in advance for the learning rate scheduler.` | 5,773 |
https://github.com/huggingface/datasets/issues/5771 | Support cloud storage for loading datasets | [
"A duplicate of https://github.com/huggingface/datasets/issues/5281"
] | ### Feature request
It seems that the the current implementation supports cloud storage only for `load_from_disk`. It would be nice if a similar functionality existed in `load_dataset`.
### Motivation
Motivation is pretty clear -- let users work with datasets located in the cloud.
### Your contribution
I can help implementing this. | 5,771 |
https://github.com/huggingface/datasets/issues/5769 | Tiktoken tokenizers are not pickable | [
"Thanks for reporting, @markovalexander.\r\n\r\nUnfortunately, I'm not able to reproduce the issue: the `tiktoken` tokenizer can be used within `Dataset.map`, both in my local machine and in a Colab notebook: https://colab.research.google.com/drive/1DhJroZgk0sNFJ2Mrz-jYgrmh9jblXaCG?usp=sharing\r\n\r\nAre you sure you are using `datasets` version 2.11.0?"
] | ### Describe the bug
Since tiktoken tokenizer is not pickable, it is not possible to use it inside `dataset.map()` with multiprocessing enabled. However, you [made](https://github.com/huggingface/datasets/issues/5536) tiktoken's tokenizers pickable in `datasets==2.10.0` for caching. For some reason, this logic does not work in dataset processing and raises `TypeError: cannot pickle 'builtins.CoreBPE' object`
### Steps to reproduce the bug
```
from datasets import load_dataset
import tiktoken
dataset = load_dataset("stas/openwebtext-10k")
enc = tiktoken.get_encoding("gpt2")
tokenized = dataset.map(
process,
remove_columns=['text'],
desc="tokenizing the OWT splits",
num_proc=2,
)
def process(example):
ids = enc.encode(example['text'])
ids.append(enc.eot_token)
out = {'ids': ids, 'len': len(ids)}
return out
```
### Expected behavior
starts processing dataset
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.0-1021-oracle-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.13.4
- PyArrow version: 9.0.0
- Pandas version: 2.0.0 | 5,769 |
https://github.com/huggingface/datasets/issues/5768 | load_dataset("squad") doesn't work in 2.7.1 and 2.10.1 | [
"Thanks for reporting, @yaseen157.\r\n\r\nCould you please give the complete error stack trace?",
"I am not able to reproduce your issue: the dataset loads perfectly on my local machine and on a Colab notebook: https://colab.research.google.com/drive/1Fbdoa1JdNz8DOdX6gmIsOK1nCT8Abj4O?usp=sharing\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"squad\")\r\nDownloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.27k/5.27k [00:00<00:00, 3.22MB/s]\r\nDownloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.36k/2.36k [00:00<00:00, 1.60MB/s]\r\nDownloading readme: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.67k/7.67k [00:00<00:00, 4.58MB/s]\r\nDownloading and preparing dataset squad/plain_text to ...t/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453...\r\nDownloading data: 30.3MB [00:00, 91.8MB/s] | 0/2 [00:00<?, ?it/s]\r\nDownloading data: 4.85MB [00:00, 75.3MB/s] \r\nDownloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31it/s]\r\nExtracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2157.01it/s]\r\nDataset squad downloaded and prepared to .../.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453. Subsequent calls will reuse this data.\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 463.95it/s]\r\n\r\nIn [3]: ds\r\nOut[3]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 87599\r\n })\r\n validation: Dataset({\r\n features: ['id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 10570\r\n })\r\n})\r\n```",
"I am at a complete loss for what's happening here. A quick summary, I have 3 machines to try this with:\r\n1) My windows 10 laptop\r\n2) Linux machine1, super computer login node\r\n3) Linux machine2, super computer compute node\r\n\r\nLet's define the following as a test script for the machines:\r\n\r\n```\r\nimport traceback\r\nimport datasets\r\nprint(f\"{datasets.__version__=}\")\r\ntry:\r\n ds = datasets.load_dataset(\"squad\")\r\nexcept:\r\n traceback.print_exc()\r\nelse:\r\n print(\"Success!\")\r\n```\r\n\r\nThe Windows laptop enters some sort of traceback recursion loop:\r\n\r\n> datasets.__version__='2.7.1'\r\n> Downloading and preparing dataset squad/plain_text to C:/Users/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453...\r\n> Downloading data files: 100%|██████████| 2/2 [00:00<?, ?it/s]\r\n> Traceback (most recent call last):\r\n> File \"<string>\", line 1, in <module>\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 116, in spawn_main\r\n> exitcode = _main(fd, parent_sentinel)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 125, in _main\r\n> prepare(preparation_data)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 236, in prepare\r\n> _fixup_main_from_path(data['init_main_from_path'])\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 287, in _fixup_main_from_path\r\n> main_content = runpy.run_path(main_path,\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\runpy.py\", line 267, in run_path\r\n> code, fname = _get_code_from_file(run_name, path_name)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\runpy.py\", line 237, in _get_code_from_file\r\n> with io.open_code(decoded_path) as f:\r\n> OSError: [Errno 22] Invalid argument: 'C:\\\\Users\\\\yr3g17\\\\OneDrive - University of Southampton\\\\Documents\\\\PhD-repository\\\\<input>'\r\n> Traceback (most recent call last):\r\n> File \"<string>\", line 1, in <module>\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 116, in spawn_main\r\n> exitcode = _main(fd, parent_sentinel)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 125, in _main\r\n> prepare(preparation_data)\r\n**this error traceback is endlessly recursive**\r\n\r\nThis is a brand new issue that started today and I didn't even realise was a thing, as I had been using my windows machine to follow tracebacks for the other machines...\r\n\r\nI suspect this issue had something to do with my filepath naming, but I couldn't confirm this when I spent time trying to debug this myself weeks ago, something to do with files being locked and never released. I'm not too concerned about my laptop not working here because I've had so many issues with Microsoft OneDrive and my filesystem.\r\n\r\nLinux machines 1 and 2 were working fine for months, but have all of a sudden stopped working. Trying to run linux machine 1 (login node), I get:\r\n\r\n> datasets.__version__='2.10.1'\r\n> Downloading and preparing dataset json/squad to /home/yr3g17/.cache/hugg\r\ningface/datasets/json/squad-d733af945be1d2c2/0.0.0/0f7e3662623656454fcd2\r\nb650f34e886a7db4b9104504885bd462096cc7a9f51...\r\n> Downloading data files: 100%|███████████████████████████████████████████\r\n█████████████████████████████████████████████| 2/2 [00:00<00:00, 4042.70\r\nit/s]\r\n>Extracting data files: 100%|███████████████████████████████████████\r\n███████████████████████████████████████████████████| 2/2 [00:00<00:00, 1\r\n11.15it/s]\r\n> Generating train split: 0 examples [00:00, ? examples/s]\r\n\r\n and hangs here. This has not happened to me before on the Linux machine. If I forcefully keyboard interrupt, I get:\r\n \r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 2, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/load.py\", line 1782, in load_dataset\r\n> builder_instance.download_and_prepare(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/builder.py\", line 793, in download_and_prepare\r\n> with FileLock(lock_path) if is_local else contextlib.nullcontext():\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/utils/filelock.py\", line 320, in __enter__\r\n> self.acquire()\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/utils/filelock.py\", line 282, in acquire\r\n> time.sleep(poll_intervall)\r\n\r\nWhich also appears to be file lock related! I resolved this by navigating to my ~/.cache/huggingface/datasets directory and wiping out anything to do with the squad dataset in *.lock files. Now I get:\r\n\r\n```\r\nfrom datasets import load_dataset\r\ndataset_load(\"squad\")\r\n\r\n```\r\n> Downloading and preparing dataset squad/plain_text to /home/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb\r\n> 2511d223b9150cce08a837ef62ffea453...\r\n> Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 44.75it/s]\r\n> Extracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 8.54it/s]\r\n> Dataset squad downloaded and prepared to /home/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150\r\n> cce08a837ef62ffea453. Subsequent calls will reuse this data.\r\n> 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 19.77it/s]\r\n> DatasetDict({\r\n> train: Dataset({\r\n> features: ['id', 'title', 'context', 'question', 'answers'],\r\n> num_rows: 87599\r\n> })\r\n> validation: Dataset({\r\n> features: ['id', 'title', 'context', 'question', 'answers'],\r\n> num_rows: 10570\r\n> })\r\n> })\r\n> \r\n\r\nWhich all seems fine right, it's doing what it should be. But now, without ever leaving the IDE, I \"make a subsequent call\" to reuse the data by repeating the command. I encounter the following traceback\r\n\r\n`load_dataset(\"squad\")`\r\n\r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 1, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1496, in load_dataset_builder\r\n> dataset_module = dataset_module_factory(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1151, in dataset_module_factory\r\n> ).get_module()\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 631, in get_module\r\n> data_files = DataFilesDict.from_local_or_remote(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 796, in from_local_or_remote\r\n> DataFilesList.from_local_or_remote(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 764, in from_local_or_remote\r\n> data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 369, in resolve_patterns_locally_or_by_urls\r\n> raise FileNotFoundError(error_msg)\r\n> FileNotFoundError: Unable to resolve any data file that matches '['train[-._ 0-9/]**', '**[-._ 0-9/]train[-._ 0-9/]**', 'training[-._ 0-9/]**', '**[-\r\n> ._ 0-9/]training[-._ 0-9/]**']' at /mainfs/home/yr3g17/.cache/huggingface/datasets/squad with any supported extension ['csv', 'tsv', 'json', 'jsonl',\r\n> 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'gr\r\n> ib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', '\r\n> mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', '\r\n> emf', 'xbm', 'xpm', 'BLP', 'BMP', 'DIB', 'BUFR', 'CUR', 'PCX', 'DCX', 'DDS', 'PS', 'EPS', 'FIT', 'FITS', 'FLI', 'FLC', 'FTC', 'FTU', 'GBR', 'GIF', 'G\r\n> RIB', 'H5', 'HDF', 'PNG', 'APNG', 'JP2', 'J2K', 'JPC', 'JPF', 'JPX', 'J2C', 'ICNS', 'ICO', 'IM', 'IIM', 'TIF', 'TIFF', 'JFIF', 'JPE', 'JPG', 'JPEG',\r\n> 'MPG', 'MPEG', 'MSP', 'PCD', 'PXR', 'PBM', 'PGM', 'PPM', 'PNM', 'PSD', 'BW', 'RGB', 'RGBA', 'SGI', 'RAS', 'TGA', 'ICB', 'VDA', 'VST', 'WEBP', 'WMF',\r\n> 'EMF', 'XBM', 'XPM', 'aiff', 'au', 'avr', 'caf', 'flac', 'htk', 'svx', 'mat4', 'mat5', 'mpc2k', 'ogg', 'paf', 'pvf', 'raw', 'rf64', 'sd2', 'sds', 'ir\r\n> cam', 'voc', 'w64', 'wav', 'nist', 'wavex', 'wve', 'xi', 'mp3', 'opus', 'AIFF', 'AU', 'AVR', 'CAF', 'FLAC', 'HTK', 'SVX', 'MAT4', 'MAT5', 'MPC2K', 'O\r\n> GG', 'PAF', 'PVF', 'RAW', 'RF64', 'SD2', 'SDS', 'IRCAM', 'VOC', 'W64', 'WAV', 'NIST', 'WAVEX', 'WVE', 'XI', 'MP3', 'OPUS', 'zip']\r\n\r\nIt doesn't even appear like I can reliably repeat this process. I'll nuke squad files in my dataset cache and run the Python code again (which downloads a new copy of the dataset to cache). It will either fail (as it just did in the quote above), or it will successfully recall the dataset.\r\n\r\nI repeated this nuking process a few times until calling load_dataset was reliably giving me the correct result (no filelocking issues or tracebacks). I then sent the test script as a job to the supercomputer compute nodes (which do not have internet access and therefore depend on cached data from Linux machine 1 login nodes)\r\n\r\n> Using the latest cached version of the module from /home/yr3g17/.cache/huggingface/modules/datasets_modules/datasets/squad/8730650fed465361f38ac4d810\r\n> ccdd16e8fc87b56498e52fb7e2cadaefc1f177 (last modified on Tue Feb 14 10:12:56 2023) since it couldn't be found locally at squad., or remotely on the Hugging Face Hub.\r\n> Traceback (most recent call last):\r\n> File \"/mainfs/scratch/yr3g17/squad_qanswering/3054408/0/../../main.py\", line 5, in <module>\r\n> dataset = load_dataset(\"squad\")\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1522, in load_dataset_builder\r\n> builder_instance: DatasetBuilder = builder_cls(\r\n> TypeError: 'NoneType' object is not callable\r\n\r\nand I have absolutely no idea why the second and third machines are producing different tracebacks. I have previously run these exact scripts successfully on the login and compute nodes of the supercomputer, this issue I'm raising has appeared fairly recently for me. This, is where I encounter the TypeError that I opened this issue with, which I was able to traceback (using my laptop before it too started not working) to whatever was dynamically importing \"builder_cls\". That bit of code wasn't doing importing builder_cls correctly and would effectively make the assignment \"builder_cls=None\" resulting in the TypeError. Does any of this help?",
"I'm back on linux machine 1 (login node) now. After submitting that as a job to machine 2 and it failing with TypeError, linux machine 1 now produces identical traceback to machine 2:\r\n\r\n> (arkroyal) [yr3g17@cyan52 squad_qanswering]$ python\r\n> Python 3.10.8 (main, Nov 24 2022, 14:13:03) [GCC 11.2.0] on linux\r\n> Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>\r\n> from datasets import load_dataset\r\n> load_dataset(\"squad\")\r\n>\r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 1, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1522, in load_dataset_builder\r\n> builder_instance: DatasetBuilder = builder_cls(\r\n> TypeError: 'NoneType' object is not callable\r\n\r\nI thought it might be useful to provide you with my cache file structure:\r\n\r\n>_home_yr3g17_.cache_huggingface_datasets_casino_default_1.1.0_302c3b1ac78c48091deabe83a11f4003c7b472a4e11a8eb92799653785bd5da1.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_imdb_plain_text_1.0.0_2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_squad_plain_text_1.0.0_d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_yelp_review_full_yelp_review_full_1.0.0_e8e18e19d7be9e75642fc66b198abadb116f73599ec89a69ba5dd8d1e57ba0bf.lock\r\n> casino\r\n> downloads\r\n> imdb\r\n> json\r\n> squad\r\n> squad_v2\r\n> yelp_review_full\r\n\r\nThe inside of squad/plain_text/1.0.0/ looks like\r\n\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453.incomplete_info.lock\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453_builder.lock\r\n",
"I see this is quite a complex use case...\r\n\r\nLet's try multiple things:\r\n- First, update `datasets` and make sure you use the same version in all machines, so that we can easily compare different behaviors.\r\n ```\r\n pip install -U datasets\r\n ```\r\n- Second, wherever you run the `load_dataset(\"squad\")` command, make sure there is not a local directory named \"squad\". The datasets library gives priority to any local file/directory over the datasets on the Hugging Face Hub\r\n - I tell you this, because in one of your trace backs, it seems it refers to a local directory:\r\n ```\r\n Downloading and preparing dataset json/squad to /home/yr3g17/.cache/huggingface/datasets/json/squad-d733af945be1d2c2/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\r\n ```\r\n- Third, to use the \"squad\" dataset from the Hub, you need to have internet connection, so that you can download the \"squad\" Python loading script from the Hub. Do all your machines have internet connection?\r\n - I ask this because of this error message:\r\n ```\r\n Using the latest cached version of the module from /home/yr3g17/.cache/huggingface/modules/datasets_modules/datasets/squad/8730650fed465361f38ac4d810ccdd16e8fc87b56498e52fb7e2cadaefc1f177 (last modified on Tue Feb 14 10:12:56 2023) since it couldn't be found locally at squad., or remotely on the Hugging Face Hub.\r\n ```\r\n- Fourth, to be sure that we avoid any issues with the cache, it is a good idea to remove it and regenerate it. Remove `.cache/huggingface/datasets` and also `.cache/huggingface/modules`\r\n- Fifth, as an additional debugging tool, let's be sure we use the latest \"squad\" Python loading script by passing the revision parameter:\r\n ```\r\n ds = load_dataset(\"squad\", revision=\"5fe18c4c680f9922d794e3f4dd673a751c74ee37\")\r\n ```",
"Additionally, we just had an infrastructure issue on the Hugging Face Hub at around 11:30 today. That might have contributed to the connectivity issue... It is fixed now.\r\n\r\nhttps://status.huggingface.co/",
"Hi again, thanks for your help and insight Albert Villanova.\r\n\r\nIt's all working now, so thank you for that. For the benefit of anyone else who ends up in this thread, I solved the problem by addressing Albert's advice:\r\n\r\n(1) Both Windows and Linux machine 1 (have internet access) and can now access the SQuAD dataset. The supercomputer login node can only access version 2.7.1, but my Windows laptop is running on datasets 2.11.0 just fine. I suspect it was just a perfect storm alongside the aforementioned \"infrastructure issue\".\r\n\r\n(2) I did have a local directory called squad, because I was using a local copy of evaluate's \"SQuAD\" metric. The supercomputer compute nodes do not have internet access and treat `metric = evaluate.load('<x>')` as a way of loading a metric at the local path `./<x>/<x>.py`, which could've been a related issue as I was storing the metric under `squad/squad.py`. Don't be lazy like me and store the evaluation code under a path with a name that can be misinterpreted.\r\n\r\n(3) I can't give internet access to the supercomputer compute nodes, so local files do just fine here.\r\n\r\n(4) The windows and Linux machine 1 can both access the internet and were getting fresh copies of the dataset from the huggingface hub. Linux machine 2 was working after I cleared the contents of ~/.cache/huggingface/....\r\n\r\nI feel silly now, knowing it was all so simple! Sorry about that Albert, and thanks again for the help. I've not raised a Github issue like this before, so I'm not sure if I should be close my own issues or if this is something you guys do?",
"Thanks for your detailed feedback which for sure will be useful to other community members."
] | ### Describe the bug
There is an issue that seems to be unique to the "squad" dataset, in which it cannot be loaded using standard methods. This issue is most quickly reproduced from the command line, using the HF examples to verify a dataset is loaded properly.
This is not a problem with "squad_v2" dataset for example.
### Steps to reproduce the bug
cmd line
> $ python -c "from datasets import load_dataset; print(load_dataset('squad', split='train')[0])"
OR
Python IDE
> from datasets import load_dataset
> load_dataset("squad")
### Expected behavior
I expected to either see the output described here from running the very same command in command line ([https://huggingface.co/docs/datasets/installation]), or any output that does not raise Python's TypeError.
There is some funky behaviour in the dataset builder portion of the codebase that means it is trying to import the squad dataset with an incorrect path, or the squad dataset couldn't be downloaded. I'm not really sure what the problem is beyond that. Messing around with caching I did manage to get it to load the dataset once, and then couldn't repeat this.
### Environment info
datasets=2.7.1 **or** 2.10.1, python=3.10.8, Linux 3.10.0-1160.36.2.el7.x86_64 **or** Windows 10-64
| 5,768 |
https://github.com/huggingface/datasets/issues/5767 | How to use Distill-BERT with different datasets? | [
"Closing this one in favor of the same issue opened in the `transformers` repo."
] | ### Describe the bug
- `transformers` version: 4.11.3
- Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyTorch version (GPU?): 1.12.0+cu102 (True)
- Tensorflow version (GPU?): 2.10.0 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
### Steps to reproduce the bug
I recently read [this](https://huggingface.co/docs/transformers/quicktour#train-with-tensorflow:~:text=The%20most%20important%20thing%20to%20remember%20is%20you%20need%20to%20instantiate%20a%20tokenizer%20with%20the%20same%20model%20name%20to%20ensure%20you%E2%80%99re%20using%20the%20same%20tokenization%20rules%20a%20model%20was%20pretrained%20with.) and was wondering how to use distill-BERT (which is pre-trained with imdb dataset) with a different dataset (for eg. [this](https://huggingface.co/datasets/yhavinga/imdb_dutch) dataset)?
### Expected behavior
Distill-BERT should work with different datasets.
### Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 11.0.0 | 5,767 |
https://github.com/huggingface/datasets/issues/5766 | Support custom feature types | [
"Hi ! Interesting :) What kind of new types would you like to use ?\r\n\r\nNote that you can already implement your own decoding by using `set_transform` that can decode data on-the-fly when rows are accessed",
"An interesting proposal indeed. \r\n\r\nPandas and Polars have the \"extension API\", so doing something similar on our side could be useful, too. However, this requires defining a common interface for the existing feature types before discussing the API/workflow for defining/sharing custom feature types, and this could take some time.\r\n\r\nIt would also be nice if the datasets viewer could render these custom types.",
"Thank you for your replies! @lhoestq I have a use case involving whole-slide images in digital pathology. These are very large images (potentially gigapixel scale), so standard image tools are not suitable. Essentially, encoding/decoding can be done from/to [`OpenSlide`](https://openslide.org/api/python/) objects. Though there may be interest in this use case from the digital pathology community, it may not be sufficiently useful to suggest adding the feature type, but there will likely be many other use cases for a generic custom feature type.\r\n\r\nThank you for pointing out `set_transform`! I will make sure to keep this in mind in the future.\r\n\r\n@mariosasko An \"extension API\" sounds like a good idea, though I understand that this needs to be properly defined, and that you will need to discuss it internally. Support from the viewer would be awesome, too, though the generalization to arbitrary types sounds challenging.\r\n\r\nFor now, happy to know that you're considering the feature. Feel free to let me know if I can do anything to support the process.",
"Not a beautiful solution, but we use this for now\r\n\r\n\r\n```\r\nimport datasets.features.features\r\nold_decode_fn = datasets.features.features.decode_nested_example\r\ndef decode_ext_fn(schema, obj, token_per_repo_id = None):\r\n #Decode new type here\r\n\r\n return old_decode_fn(schema, obj, token_per_repo_id)\r\ndatasets.features.features.decode_nested_example = decode_ext_fn\r\n\r\n```\r\n"
] | ### Feature request
I think it would be nice to allow registering custom feature types with the 🤗 Datasets library. For example, allow to do something along the following lines:
```
from datasets.features import register_feature_type # this would be a new function
@register_feature_type
class CustomFeatureType:
def encode_example(self, value):
"""User-provided logic to encode an example of this feature."""
pass
def decode_example(self, value, token_per_repo_id=None):
"""User-provided logic to decode an example of this feature."""
pass
```
### Motivation
Users of 🤗 Datasets, such as myself, may want to use the library to load datasets with unsupported feature types (i.e., beyond `ClassLabel`, `Image`, or `Audio`). This would be useful for prototyping new feature types and for feature types that aren't used widely enough to warrant inclusion in 🤗 Datasets.
At the moment, this is only possible by monkey-patching 🤗 Datasets, which obfuscates the code and is prone to breaking with library updates. It also requires the user to write some custom code which could be easily avoided.
### Your contribution
I would be happy to contribute this feature. My proposed solution would involve changing the following call to `globals()` to an explicit feature type registry, which a user-facing `register_feature_type` decorator could update.
https://github.com/huggingface/datasets/blob/fd893098627230cc734f6009ad04cf885c979ac4/src/datasets/features/features.py#L1329
I would also provide an abstract base class for custom feature types which users could inherit. This would have at least an `encode_example` method and a `decode_example` method, similar to `Image` or `Audio`.
The existing `encode_nested_example` and `decode_nested_example` functions would also need to be updated to correctly call the corresponding functions for the new type. | 5,766 |
https://github.com/huggingface/datasets/issues/5765 | ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text'] | [
"You need to remove the `text` and `text_en` columns before passing the dataset to the `DataLoader` to avoid this error:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n```\r\n",
"Thanks @mariosasko. Now I am getting this error:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"client_2.py\", line 138, in <module>\r\n main()\r\n File \"client_2.py\", line 134, in main\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 208, in start_numpy_client\r\n start_client(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 142, in start_client\r\n client_message, sleep_duration, keep_going = handle(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 68, in handle\r\n return _fit(client, server_msg.fit_ins), 0, True\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 157, in _fit\r\n fit_res = client.fit(fit_ins)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 252, in _fit\r\n results = self.numpy_client.fit(parameters, ins.config) # type: ignore\r\n File \"client_2.py\", line 124, in fit\r\n train(net, trainloader, epochs=1)\r\n File \"client_2.py\", line 78, in train\r\n for batch in trainloader:\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 652, in __next__\r\n data = self._next_data()\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 692, in _next_data\r\n data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in fetch\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in <listcomp>\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1525, in __getitem__\r\n return self._getitem(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1517, in _getitem\r\n pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 373, in query_table\r\n pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 55, in _query_table_with_indices_mapping\r\n return _query_table(table, key)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 79, in _query_table\r\n return table.fast_slice(key % table.num_rows, 1)\r\nZeroDivisionError: integer division or modulo by zero\r\n```\r\n\r\nThis is my code:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n#from transformers import tokenized_datasets\r\n\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n# DEVICE = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nDEVICE = \"cpu\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"yhavinga/imdb_dutch\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n # random 100 samples\r\n population = random.sample(range(len(raw_datasets[\"train\"])), 100)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n tokenized_datasets[\"train\"] = tokenized_datasets[\"train\"].select(population)\r\n tokenized_datasets[\"test\"] = tokenized_datasets[\"test\"].select(population)\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n # tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text_en\")\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets[\"train\"].column_names)\r\n \r\n tokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n \r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-4)\r\n net.train()\r\n for _ in range(epochs):\r\n for batch in trainloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n return float(loss), len(testloader), {\"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```",
"Please also remove/comment these lines:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n```",
"Thanks @mariosasko .\r\n\r\nNow, I am trying out this [tutorial](https://flower.dev/docs/quickstart-huggingface.html) which basically trains distil-BERT with IMDB dataset (very similar to this [tutorial](https://huggingface.co/docs/transformers/main/tasks/sequence_classification)). But I don't know why my accuracy isn't increasing even after training for a significant amount of time and also by using the entire dataset. Below I have attached `client.py` file:\r\n\r\n`client.py`:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n\r\nDEVICE = \"cuda:1\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"imdb\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-5)\r\n net.train()\r\n for i in range(epochs):\r\n print(\"Epoch: \", i+1)\r\n j = 1\r\n print(\"####################### The length of the trainloader is: \", len(trainloader)) \r\n for batch in trainloader:\r\n print(\"####################### The batch number is: \", j)\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n j += 1\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n print({\"loss\": float(loss), \"accuracy\": float(accuracy)})\r\n return float(loss), len(testloader), {\"loss\": float(loss), \"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:5040\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nCan I get any help, please?"
] | ### Describe the bug
Following is my code that I am trying to run, but facing an error (have attached the whole error below):
My code:
```
from collections import OrderedDict
import warnings
import flwr as fl
import torch
import numpy as np
import random
from torch.utils.data import DataLoader
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer, DataCollatorWithPadding
from transformers import AutoModelForSequenceClassification
from transformers import AdamW
#from transformers import tokenized_datasets
warnings.filterwarnings("ignore", category=UserWarning)
# DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
DEVICE = "cpu"
CHECKPOINT = "distilbert-base-uncased" # transformer model checkpoint
def load_data():
"""Load IMDB data (training and eval)"""
raw_datasets = load_dataset("yhavinga/imdb_dutch")
raw_datasets = raw_datasets.shuffle(seed=42)
# remove unnecessary data split
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
# random 100 samples
population = random.sample(range(len(raw_datasets["train"])), 100)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets["train"] = tokenized_datasets["train"].select(population)
tokenized_datasets["test"] = tokenized_datasets["test"].select(population)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
tokenized_datasets = tokenized_datasets.remove_columns("attention_mask")
tokenized_datasets = tokenized_datasets.remove_columns("input_ids")
tokenized_datasets = tokenized_datasets.remove_columns("label")
tokenized_datasets = tokenized_datasets.remove_columns("text_en")
# tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets["train"].column_names)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainloader = DataLoader(
tokenized_datasets["train"],
shuffle=True,
batch_size=32,
collate_fn=data_collator,
)
testloader = DataLoader(
tokenized_datasets["test"], batch_size=32, collate_fn=data_collator
)
return trainloader, testloader
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-4)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
loss = 0
net.eval()
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader.dataset)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
def main():
net = AutoModelForSequenceClassification.from_pretrained(
CHECKPOINT, num_labels=2
).to(DEVICE)
trainloader, testloader = load_data()
# Flower client
class IMDBClient(fl.client.NumPyClient):
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in net.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
net.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
self.set_parameters(parameters)
print("Training Started...")
train(net, trainloader, epochs=1)
print("Training Finished.")
return self.get_parameters(config={}), len(trainloader), {}
def evaluate(self, parameters, config):
self.set_parameters(parameters)
loss, accuracy = test(net, testloader)
return float(loss), len(testloader), {"accuracy": float(accuracy)}
# Start client
fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient())
if __name__ == "__main__":
main()
```
Error:
```
Traceback (most recent call last):
File "client_2.py", line 136, in <module>
main()
File "client_2.py", line 132, in main
fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient())
File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 208, in start_numpy_client
start_client(
File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 142, in start_client
client_message, sleep_duration, keep_going = handle(
File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 68, in handle
return _fit(client, server_msg.fit_ins), 0, True
File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 157, in _fit
fit_res = client.fit(fit_ins)
File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 252, in _fit
results = self.numpy_client.fit(parameters, ins.config) # type: ignore
File "client_2.py", line 122, in fit
train(net, trainloader, epochs=1)
File "client_2.py", line 76, in train
for batch in trainloader:
File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 652, in __next__
data = self._next_data()
File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 692, in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch
return self.collate_fn(data)
File "/home/saurav/.local/lib/python3.8/site-packages/transformers/data/data_collator.py", line 221, in __call__
batch = self.tokenizer.pad(
File "/home/saurav/.local/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2713, in pad
raise ValueError(
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text']
```
### Steps to reproduce the bug
Run the above code.
### Expected behavior
Don't know, doing it for the first time.
### Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 11.0.0
| 5,765 |
https://github.com/huggingface/datasets/issues/5764 | ConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1 | [
"Thanks for reporting, @sauravtii.\r\n\r\nUnfortunately, I'm not able to reproduce the issue:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"josianem/imdb\")\r\n\r\nIn [2]: ds\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 25799\r\n })\r\n test: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 25000\r\n })\r\n unsupervised: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 50000\r\n })\r\n})\r\n```\r\n\r\nCould you please retry to load the dataset? Maybe there was a temporary connection issue to Dropbox.",
"Thanks @albertvillanova. I am facing another issue now\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"sample.py\", line 4, in <module>\r\n dataset = load_dataset(\"josianem/imdb\")\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py\", line 1112, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 636, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 738, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/info_utils.py\", line 74, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=34501348, num_examples=25799, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='imdb')}, {'expected': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}]\r\n```\r\n\r\nThis is my code\r\n\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\")\r\n```",
"Your connection didn't work and you got an empty dataset (`num_bytes=0, num_examples=0`):\r\n```\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: \r\n[\r\n {\r\n 'expected': SplitInfo(name='train', num_bytes=34501348, num_examples=25799, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }, \r\n {\r\n 'expected': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }, \r\n {\r\n 'expected': SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }\r\n]\r\n```\r\n\r\nCould you please try the link in your browser and see if it works? https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1\r\n- If it does not work, you should contact the author of the dataset in their Community tab (https://huggingface.co/datasets/josianem/imdb/discussions) and inform them, so that they can host their data elsewhere, for example on the Hugging Face Hub itself\r\n\r\nIf the link works, you should try to load the dataset but forcing the re-download of the data files (so that the cache is refreshed with the actual data file), by passing `download_mode=\"force_redownload\"`:\r\n```python\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n```",
"After pasting the link in the browser, it did start the download so it seems that the link is working. But even after including the `download_mode` in my code I am facing the same issue:\r\n\r\nError:\r\n```\r\nTraceback (most recent call last):\r\n File \"sample.py\", line 4, in <module>\r\n dataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py\", line 1112, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 636, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 704, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"/home/saurav/.cache/huggingface/modules/datasets_modules/datasets/imdb/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f/imdb.py\", line 79, in _split_generators\r\n archive = dl_manager.download(_DOWNLOAD_URL)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 196, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 197, in map_nested\r\n return function(data_struct)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 217, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 289, in cached_path\r\n output_path = get_from_cache(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 606, in get_from_cache\r\n raise ConnectionError(\"Couldn't reach {}\".format(url))\r\nConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1\r\n```\r\n\r\nMy code:\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n```",
"I have tried again to reproduce your issue without success: the dataset loads perfectly, both in my local machine and in a Colab notebook.\r\n- See: https://colab.research.google.com/drive/1dky3T0XGFuldggy22NNQQN-UqOFqvnuY?usp=sharing\r\n\r\nI think the cause maight be that you are using a very old version of `datasets`. Please, could you update it and retry?\r\n```\r\npip install -U datasets\r\n```",
"That worked!! Thanks @albertvillanova : )\r\n\r\n```\r\nDownloading builder script: 100%|███████| 4.20k/4.20k [00:00<00:00, 6.69MB/s]\r\nDownloading metadata: 100%|█████████████| 2.60k/2.60k [00:00<00:00, 3.41MB/s]\r\nDownloading readme: 100%|███████████████| 7.52k/7.52k [00:00<00:00, 12.6MB/s]\r\nDownloading and preparing dataset imdb/plain_text to /home/saurav/.cache/huggingface/datasets/josianem___imdb/plain_text/1.0.0/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f...\r\nDownloading data: 100%|███████████████████| 301M/301M [01:32<00:00, 3.25MB/s]\r\nDataset imdb downloaded and prepared to /home/saurav/.cache/huggingface/datasets/josianem___imdb/plain_text/1.0.0/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f. Subsequent calls will reuse this data.\r\n100%|█████████████████████████████████████████| 3/3 [00:00<00:00, 794.83it/s]\r\n```\r\n\r\nThe code I used:\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n\r\n```\r\n\r\nBut when I remove `download_mode=\"force_redownload\"` I get the same error. Any guess on that?",
"That is because the cache got the \"empty\" download file the first time you tried and got the connection error.\r\n\r\nThen, once you no longer get the connection error, you need to refresh the cache by passing `download_mode=\"force_redownload\"`."
] | ### Describe the bug
I want to use this (https://huggingface.co/datasets/josianem/imdb) dataset therefore I am trying to load it using the following code:
```
dataset = load_dataset("josianem/imdb")
```
The dataset is not getting loaded and gives the error message as the following:
```
Traceback (most recent call last):
File "sample.py", line 3, in <module>
dataset = load_dataset("josianem/imdb")
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py", line 1112, in load_dataset
builder_instance.download_and_prepare(
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py", line 636, in download_and_prepare
self._download_and_prepare(
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py", line 704, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/saurav/.cache/huggingface/modules/datasets_modules/datasets/imdb/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f/imdb.py", line 79, in _split_generators
archive = dl_manager.download(_DOWNLOAD_URL)
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 196, in download
downloaded_path_or_paths = map_nested(
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 197, in map_nested
return function(data_struct)
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 217, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 289, in cached_path
output_path = get_from_cache(
File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 606, in get_from_cache
raise ConnectionError("Couldn't reach {}".format(url))
ConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1
```
### Steps to reproduce the bug
You can reproduce the error by using the following code:
```
from datasets import load_dataset, load_metric
dataset = load_dataset("josianem/imdb")
```
### Expected behavior
The dataset should get loaded (I am using this dataset for the first time so not much aware of the exact behavior).
### Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 11.0.0 | 5,764 |
https://github.com/huggingface/datasets/issues/5762 | Not able to load the pile | [
"Thanks for reporting, @surya-narayanan.\r\n\r\nI see you already started a discussion about this on the Community tab of the corresponding dataset: https://huggingface.co/datasets/EleutherAI/the_pile/discussions/10\r\nLet's continue the discussion there!"
] | ### Describe the bug
Got this error when I am trying to load the pile dataset
```
TypeError: Couldn't cast array of type
struct<file: string, id: string>
to
{'id': Value(dtype='string', id=None)}
```
### Steps to reproduce the bug
Please visit the following sample notebook
https://colab.research.google.com/drive/1JHcjawcHL6QHhi5VcqYd07W2QCEj2nWK#scrollTo=ulJP3eJCI-tB
### Expected behavior
The pile should work
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.10.147+-x86_64-with-glibc2.31
- Python version: 3.9.16
- Huggingface_hub version: 0.13.4
- PyArrow version: 9.0.0
- Pandas version: 1.5.3 | 5,762 |
https://github.com/huggingface/datasets/issues/5761 | One or several metadata.jsonl were found, but not in the same directory or in a parent directory | [
"Also, when generated from a zip archive, the dataset contains only a few images. In my case, 20 versus 2000+ contained in the archive. The generation from folders works as expected.",
"Thanks for reporting, @blghtr.\r\n\r\nYou should include the `metadata.jsonl` in your ZIP archives, at the root level directory.\r\n\r\nI agree that our documentation is not clear enough. Maybe we could improve it.",
"You can find a dummy dataset example here: https://huggingface.co/datasets/albertvillanova/tmp-imagefolder-metadata\r\n\r\n```\r\ntmp-imagefolder-metadata/\r\n└── data/\r\n ├── train.zip\r\n └── valid.zip\r\n```\r\nwhere, the directory structure within the `train.zip` archive is:\r\n```\r\nmetadata.jsonl\r\ntrain/\r\n ├── bharatanatyam/\r\n └── bharatanatyam_original_113.jpg_70c297a2-e2f2-4ed8-b93c-0c03d0809fe2.jpg\r\n └── kathak/\r\n └── kathak_original_10.jpg_2c4a2c3d-47fc-4b33-9c09-38b542826632.jpg\r\n```\r\nand the metadata file contains:\r\n```\r\n{\"file_name\": \"train/bharatanatyam/bharatanatyam_original_113.jpg_70c297a2-e2f2-4ed8-b93c-0c03d0809fe2.jpg\", \"text\": \"first\"}\r\n{\"file_name\": \"train/kathak/kathak_original_10.jpg_2c4a2c3d-47fc-4b33-9c09-38b542826632.jpg\", \"text\": \"second\"}\r\n```"
] | ### Describe the bug
An attempt to generate a dataset from a zip archive using imagefolder and metadata.jsonl does not lead to the expected result. Tried all possible locations of the json file: the file in the archive is ignored (generated dataset contains only images), the file next to the archive like [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder) leads to an error:
```
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1610, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1609 _time = time.time()
-> 1610 for key, record in generator:
1611 if max_shard_size is not None and writer._num_bytes > max_shard_size:
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\packaged_modules\folder_based_builder\folder_based_builder.py:370, in FolderBasedBuilder._generate_examples(self, files, metadata_files, split_name, add_metadata, add_labels)
369 else:
--> 370 raise ValueError(
371 f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}."
372 )
373 if metadata_dir is not None and downloaded_metadata_file is not None:
ValueError: One or several metadata.jsonl were found, but not in the same directory or in a parent directory of C:\Users\User\.cache\huggingface\datasets\downloads\extracted\f7fb7de25fb28ae63089974524f2d271a39d83888bc456d04aa3b3d45f33e6a6\ff0745a0-a741-4d9e-b228-a93b851adf61.png.
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Cell In[3], line 1
----> 1 dataset = load_dataset("imagefolder", data_dir=r'C:\Users\User\data')
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1790 # Download and prepare data
-> 1791 builder_instance.download_and_prepare(
1792 download_config=download_config,
1793 download_mode=download_mode,
1794 verification_mode=verification_mode,
1795 try_from_hf_gcs=try_from_hf_gcs,
1796 num_proc=num_proc,
1797 storage_options=storage_options,
1798 )
1800 # Build dataset for splits
1801 keep_in_memory = (
1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1803 )
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
889 if num_proc is not None:
890 prepare_split_kwargs["num_proc"] = num_proc
--> 891 self._download_and_prepare(
892 dl_manager=dl_manager,
893 verification_mode=verification_mode,
894 **prepare_split_kwargs,
895 **download_and_prepare_kwargs,
896 )
897 # Sync info
898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs)
1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
-> 1651 super()._download_and_prepare(
1652 dl_manager,
1653 verification_mode,
1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
1655 or verification_mode == VerificationMode.ALL_CHECKS,
1656 **prepare_splits_kwargs,
1657 )
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:986, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
982 split_dict.add(split_generator.split_info)
984 try:
985 # Prepare split will record examples associated to the split
--> 986 self._prepare_split(split_generator, **prepare_split_kwargs)
987 except OSError as e:
988 raise OSError(
989 "Cannot find data file. "
990 + (self.manual_download_instructions or "")
991 + "\nOriginal error:\n"
992 + str(e)
993 ) from None
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1490, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)
1488 gen_kwargs = split_generator.gen_kwargs
1489 job_id = 0
-> 1490 for job_id, done, content in self._prepare_split_single(
1491 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
1492 ):
1493 if done:
1494 result = content
File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1646, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1644 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1645 e = e.__context__
-> 1646 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1648 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
### Steps to reproduce the bug
1. Organize directory structure like in the docs:
folder/metadata.jsonl
folder/train.zip
2. Run load_dataset("imagefolder", data_dir='folder/metadata.jsonl', split='train')
### Expected behavior
Dataset generated with all additional features from metadata.jsonl
### Environment info
- `datasets` version: 2.11.0
- Platform: Windows-10-10.0.22621-SP0
- Python version: 3.9.0
- Huggingface_hub version: 0.13.4
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| 5,761 |
https://github.com/huggingface/datasets/issues/5760 | Multi-image loading in Imagefolder dataset | [
"Supporting this could be useful (I remember a use-case for this on the Hub). Do you agree @polinaeterna? \r\n\r\nImplementing this should be possible if we iterate over metadata files and build image/audio file paths instead of iterating over image/audio files and looking for the corresponding entries in metadata files.",
"I've build a similar feature from scratch and would be interested to combine it with the datasets package.\r\n\r\nMy solution works something like this:\r\nInterpret the first element of each column as a file path. If the path exists and is a file, (try to) load the files for the entire column. Thereby, one isn't restricted to a particular column name, with comes in handy when dealing with multiple file columns.\r\n\r\nI've looked into the code to try to implement this, but didn't find the right places. I'm also open to contribute, but will need some guidance.",
"Required here: https://discuss.huggingface.co/t/dataset-repo-requires-arbitrary-python-code-execution/59346/14",
"+1\r\n\r\nIs the only way to do this right now to write a custom dataset loader script?",
"Also: be able to have input and output images for each row. Asked here: https://discuss.huggingface.co/t/how-to-structure-image-files-for-datasets-load-dataset-imagefolder-when-you-have-input-and-output-images-like-in-instruct-pix2pix/82467"
] | ### Feature request
Extend the `imagefolder` dataloading script to support loading multiple images per dataset entry.
This only really makes sense if a metadata file is present.
Currently you can use the following format (example `metadata.jsonl`:
```
{'file_name': 'path_to_image.png', 'metadata': ...}
...
```
which will return a batch with key `image` and any other metadata.
I would propose extending `file_name` to also accept a list of files, which would return a batch with key `images` and any other metadata.
### Motivation
This is useful for example in segmentation tasks in computer vision models, or in text-to-image models that also accept conditioning signals such as another image, feature map, or similar. Currently if I want to do this, I would need to write a custom dataset, rather than just use `imagefolder`.
### Your contribution
Would be open to doing a PR, but also happy for someone else to take it as I am not familiar with the datasets library. | 5,760 |
https://github.com/huggingface/datasets/issues/5759 | Can I load in list of list of dict format? | [
"Thanks for reporting, @LZY-the-boys.\r\n\r\nCould you please give more details about what is your intended dataset structure? What are the names of the columns and the value of each row?\r\n\r\nCurrently, the JSON-Lines format is supported:\r\n- Each line correspond to one row of the dataset\r\n- Each line is composed of one JSON object, where the names are the names of the columns, and the values are the values for the row-column pair."
] | ### Feature request
my jsonl dataset has following format:
```
[{'input':xxx, 'output':xxx},{'input:xxx,'output':xxx},...]
[{'input':xxx, 'output':xxx},{'input:xxx,'output':xxx},...]
```
I try to use `datasets.load_dataset('json', data_files=path)` or `datasets.Dataset.from_json`, it raises
```
File "site-packages/datasets/arrow_dataset.py", line 1078, in from_json
).read()
File "site-packages/datasets/io/json.py", line 59, in read
self.builder.download_and_prepare(
File "site-packages/datasets/builder.py", line 872, in download_and_prepare
self._download_and_prepare(
File "site-packages/datasets/builder.py", line 967, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "site-packages/datasets/builder.py", line 1749, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "site-packages/datasets/builder.py", line 1892, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Motivation
I wanna use features like `Datasets.map` or `Datasets.shuffle`, so i need the dataset in memory to be `arrow_dataset.Datasets` format
### Your contribution
PR | 5,759 |
https://github.com/huggingface/datasets/issues/5757 | Tilde (~) is not supported | [] | ### Describe the bug
It seems that `~` is not recognized correctly in local paths. Whenever I try to use it I get an exception
### Steps to reproduce the bug
```python
load_dataset("imagefolder", data_dir="~/data/my_dataset")
```
Will generate the following error:
```
EmptyDatasetError: The directory at /path/to/cwd/~/data/datasets/clementine_tagged_per_cam doesn't contain any data files
```
### Expected behavior
Load the dataset.
### Environment info
datasets==2.11.0 | 5,757 |
https://github.com/huggingface/datasets/issues/5756 | Calling shuffle on a IterableDataset with streaming=True, gives "ValueError: cannot reshape array" | [
"Hi! I've merged a PR on the Hub with a fix: https://huggingface.co/datasets/fashion_mnist/discussions/3",
"Thanks, this appears to have fixed the issue.\r\n\r\nI've created a PR for the same change in the mnist dataset: https://huggingface.co/datasets/mnist/discussions/3/files"
] | ### Describe the bug
When calling shuffle on a IterableDataset with streaming=True, I get the following error:
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 937, in __iter__
for key, example in ex_iterable:
File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 627, in __iter__
for x in self.ex_iterable:
File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 138, in __iter__
yield from self.generate_examples_fn(**kwargs_with_shuffled_shards)
File "/home/administrator/.cache/huggingface/modules/datasets_modules/datasets/mnist/fda16c03c4ecfb13f165ba7e29cf38129ce035011519968cdaf74894ce91c9d4/mnist.py", line 111, in _generate_examples
images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
ValueError: cannot reshape array of size 59992 into shape (60000,28,28)
```
Tested with the fashion_mnist and mnist datasets
### Steps to reproduce the bug
Code to reproduce
```python
from datasets import load_dataset
SHUFFLE_SEED = 42
SHUFFLE_BUFFER_SIZE = 10_000
dataset = load_dataset('fashion_mnist', streaming=True).shuffle(seed=SHUFFLE_SEED, buffer_size=SHUFFLE_BUFFER_SIZE)
next(iter(dataset['train']))
```
### Expected behavior
A random item from the dataset and no error
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.0-69-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.13.4
- PyArrow version: 11.0.0
- Pandas version: 2.0.0
| 5,756 |
https://github.com/huggingface/datasets/issues/5755 | ImportError: cannot import name 'DeprecatedEnum' from 'datasets.utils.deprecation_utils' | [
"update the version. fix"
] | ### Describe the bug
The module moved to new place?
### Steps to reproduce the bug
in the import step,
```python
from datasets.utils.deprecation_utils import DeprecatedEnum
```
error:
```
ImportError: cannot import name 'DeprecatedEnum' from 'datasets.utils.deprecation_utils'
```
### Expected behavior
import successfully
### Environment info
python==3.9.16
datasets==1.18.3 | 5,755 |
https://github.com/huggingface/datasets/issues/5753 | [IterableDatasets] Add column followed by interleave datasets gives bogus outputs | [
"Problem with the code snippet! Using global vars and functions was not a good idea with iterable datasets!\r\n\r\nIf we update to:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\n\r\n# now add a new column to our streaming dataset using our hack\r\nname = \"new_column\"\r\ncolumn_1 = [f\"new dataset 1, row {i}\" for i in range(50)]\r\n\r\nnew_features = original_dataset.features.copy()\r\nnew_features[name] = new_features[\"file\"] # I know that \"file\" has the right column type to match our new feature\r\n\r\ndef add_column_fn_1(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column_1[idx]}\r\n\r\nmodified_dataset_1 = original_dataset.map(add_column_fn_1, with_indices=True, features=new_features)\r\n\r\n# now create a second modified dataset using the same trick\r\ncolumn_2 = [f\"new dataset 2, row {i}\" for i in range(50)]\r\n\r\ndef add_column_fn_2(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column_2[idx]}\r\n\r\nmodified_dataset_2 = original_dataset.map(add_column_fn_2, with_indices=True, features=new_features)\r\n\r\ninterleaved_dataset = interleave_datasets([modified_dataset_1, modified_dataset_2])\r\n\r\nfor i, sample in enumerate(interleaved_dataset):\r\n print(sample[\"new_column\"])\r\n if i == 10:\r\n break\r\n```\r\nwe get the correct outputs:\r\n```python\r\nnew dataset 1, row 0\r\nnew dataset 2, row 0\r\nnew dataset 1, row 1\r\nnew dataset 2, row 1\r\nnew dataset 1, row 2\r\nnew dataset 2, row 2\r\nnew dataset 1, row 3\r\nnew dataset 2, row 3\r\nnew dataset 1, row 4\r\nnew dataset 2, row 4\r\nnew dataset 1, row 5\r\n```\r\n"
] | ### Describe the bug
If we add a new column to our iterable dataset using the hack described in #5752, when we then interleave datasets the new column is pinned to one value.
### Steps to reproduce the bug
What we're going to do here is:
1. Load an iterable dataset in streaming mode (`original_dataset`)
2. Add a new column to this dataset using the hack in #5752 (`modified_dataset_1`)
3. Create another new dataset by adding a column with the same key but different values (`modified_dataset_2`)
4. Interleave our new datasets (`modified_dataset_1` + `modified_dataset_2`)
5. Check the value of our newly added column (`new_column`)
```python
from datasets import load_dataset
# load an iterable dataset
original_dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# now add a new column to our streaming dataset using our hack from 5752
name = "new_column"
column = [f"new dataset 1, row {i}" for i in range(50)]
new_features = original_dataset.features.copy()
new_features[name] = new_features["file"] # I know that "file" has the right column type to match our new feature
def add_column_fn(example, idx):
if name in example:
raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
return {name: column[idx]}
modified_dataset_1 = original_dataset.map(add_column_fn, with_indices=True, features=new_features)
# now create a second modified dataset using the same trick
column = [f"new dataset 2, row {i}" for i in range(50)]
def add_column_fn(example, idx):
if name in example:
raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
return {name: column[idx]}
modified_dataset_2 = original_dataset.map(add_column_fn, with_indices=True, features=new_features)
# interleave these datasets
interleaved_dataset = interleave_datasets([modified_dataset_1, modified_dataset_2])
# now check what the value of the added column is
for i, sample in enumerate(interleaved_dataset):
print(sample["new_column"])
if i == 10:
break
```
**Print Output:**
```
new dataset 2, row 0
new dataset 2, row 0
new dataset 2, row 1
new dataset 2, row 1
new dataset 2, row 2
new dataset 2, row 2
new dataset 2, row 3
new dataset 2, row 3
new dataset 2, row 4
new dataset 2, row 4
new dataset 2, row 5
```
We see that we only get outputs from our second dataset.
### Expected behavior
We should interleave between dataset 1 and 2 and increase in row value:
```
new dataset 1, row 0
new dataset 2, row 0
new dataset 1, row 1
new dataset 2, row 1
new dataset 1, row 2
new dataset 2, row 2
...
```
### Environment info
- datasets version: 2.10.2.dev0
- Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-glibc2.28
- Python version: 3.9.16
- Huggingface_hub version: 0.13.3
- PyArrow version: 10.0.1
- Pandas version: 1.5.2 | 5,753 |
https://github.com/huggingface/datasets/issues/5752 | Streaming dataset looses `.feature` method after `.add_column` | [
"I believe the issue resides in this line:\r\nhttps://github.com/huggingface/datasets/blob/7c3a9b057c476c40d157bd7a5d57f49066239df0/src/datasets/iterable_dataset.py#L1415\r\n\r\nIf we pass the **new** features of the dataset to the `.map` method we can return the features after adding a column, e.g.:\r\n```python\r\nfrom datasets import load_dataset, Value\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\n# now add a new column to our streaming dataset using our hack\r\nname = \"new_column\"\r\ncolumn = [\"some random text\" for _ in range(50)]\r\n\r\nnew_features = original_dataset.features.copy()\r\nnew_features[name] = Value(dtype=\"string\", id=None) # I know the correct column type for this feature\r\n\r\ndef add_column_fn(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column[idx]}\r\n\r\nmodified_dataset = original_dataset.map(add_column_fn, with_indices=True, features=new_features)\r\n\r\nprint(modified_dataset.features.keys())\r\n```\r\n**Print Output:**\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column'])\r\n```\r\n",
"It seems that map will also cause this issue\r\n\r\n### Steps to reproduce the bug\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\ndef test(data):\r\n return data\r\n\r\nmodified_dataset = original_dataset.map(test)\r\nprint(modified_dataset.features.keys())\r\n```\r\n\r\n### Output\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\n---------------------------------------------------------------------------\r\nAttributeError Traceback (most recent call last)\r\nCell In[5], line 10\r\n 7 return data\r\n 9 modified_dataset = original_dataset.map(test)\r\n---> 10 print(modified_dataset.features.keys())\r\n\r\nAttributeError: 'NoneType' object has no attribute 'keys'\r\n```"
] | ### Describe the bug
After appending a new column to a streaming dataset using `.add_column`, we can no longer access the list of dataset features using the `.feature` method.
### Steps to reproduce the bug
```python
from datasets import load_dataset
original_dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
print(original_dataset.features.keys())
# now add a new column to our streaming dataset
modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)])
print(modified_dataset.features.keys())
```
**Print Output:**
```
dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 8
6 # now add a new column to our streaming dataset
7 modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)])
----> 8 print(modified_dataset.features.keys())
AttributeError: 'NoneType' object has no attribute 'keys'
```
We see that we get the features for the original dataset, but not the modified one with the added column.
### Expected behavior
Features should be persevered after adding a new column, i.e. calling:
```python
print(modified_dataset.features.keys())
```
Should return:
```
dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column'])
```
### Environment info
- `datasets` version: 2.10.2.dev0
- Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-glibc2.28
- Python version: 3.9.16
- Huggingface_hub version: 0.13.3
- PyArrow version: 10.0.1
- Pandas version: 1.5.2 | 5,752 |
https://github.com/huggingface/datasets/issues/5750 | Fail to create datasets from a generator when using Google Big Query | [
"`from_generator` expects a generator function, not a generator object, so this should work:\r\n```python\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\nclient = bigquery.Client()\r\n\r\ndef gen()\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(rows)\r\n\r\nfor r in ds:\r\n print(r)\r\n```",
"@mariosasko your code was incomplete, so I tried to fix it:\r\n\r\n```py\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\nclient = bigquery.Client()\r\n\r\ndef gen():\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(gen)\r\n\r\nfor r in ds:\r\n print(r)\r\n```\r\n\r\nThe error is also present in this case:\r\n\r\n```\r\n_pickle.PicklingError: Pickling client objects is explicitly not supported.\r\nClients have non-trivial state that is local and unpickleable.\r\n```\r\n\r\nI think it doesn't matter if the generator is an object or a function. The problem is that the generator is referencing an object that is not pickable (the client in this case). ",
"It does matter: this function expects a generator function, as stated in the docs.\r\n\r\nThis should work:\r\n```python\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\ndef gen():\r\n client = bigquery.Client()\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(gen)\r\n\r\nfor r in ds:\r\n print(r)\r\n```\r\n\r\nWe could allow passing non-picklable objects and use a random hash for the generated arrow file. In that case, the caching mechanism would not work, meaning repeated calls with the same set of arguments would generate new datasets instead of reusing the cached version, but this behavior is still better than raising an error.",
"Thank you @mariosasko . Your last code is working indeed. Curiously, the important detail here was to wrap the client instantiation within the generator itself. If the line `client = bigquery.Client()` is moved outside, then the error is back.\r\n\r\nI see now also your point in regard to the generator being a generator function. We can close the issue if you want."
] | ### Describe the bug
Creating a dataset from a generator using `Dataset.from_generator()` fails if the generator is the [Google Big Query Python client](https://cloud.google.com/python/docs/reference/bigquery/latest). The problem is that the Big Query client is not pickable. And the function `create_config_id` tries to get a hash of the generator by pickling it. So the following error is generated:
```
_pickle.PicklingError: Pickling client objects is explicitly not supported.
Clients have non-trivial state that is local and unpickleable.
```
### Steps to reproduce the bug
1. Install the big query client and datasets `pip install google-cloud-bigquery datasets`
2. Run the following code:
```py
from datasets import Dataset
from google.cloud import bigquery
client = bigquery.Client()
# Perform a query.
QUERY = (
'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '
'WHERE state = "TX" '
'LIMIT 100')
query_job = client.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
ds = Dataset.from_generator(rows)
for r in ds:
print(r)
```
### Expected behavior
Two options:
1. Ignore the pickle errors when computing the hash
2. Provide a scape hutch so that we can avoid calculating the hash for the generator. For example, allowing to provide a hash from the user.
### Environment info
python 3.9
google-cloud-bigquery 3.9.0
datasets 2.11.0
| 5,750 |
https://github.com/huggingface/datasets/issues/5749 | AttributeError: 'Version' object has no attribute 'match' | [
"I got the same error, and the official website for visual genome is down. Did you solve this problem? ",
"I am in the same situation now :( ",
"Thanks for reporting, @gulnaz-zh.\r\n\r\nI am investigating it.",
"The host server is down: https://visualgenome.org/\r\n\r\nWe are contacting the dataset authors.",
"Apart form data host server being down, there is an additional issue with the `datasets` library introduced by this PR:\r\n- #5238\r\n\r\nI am working to fix it.",
"PR that fixes the AttributeError: https://huggingface.co/datasets/visual_genome/discussions/2",
"For the issue with their data host server being down, I have opened a discussion in the \"Community\" tab of the Hub dataset: https://huggingface.co/datasets/visual_genome/discussions/3\r\nLet's continue the discussion there.",
"The authors just replied to us with their new URL: https://homes.cs.washington.edu/~ranjay/visualgenome/\r\n\r\nWe have fixed the datasets loading script, which is operative again."
] | ### Describe the bug
When I run
from datasets import load_dataset
data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
AttributeError: 'Version' object has no attribute 'match'
### Steps to reproduce the bug
from datasets import load_dataset
data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
### Expected behavior
This is error trace:
Downloading and preparing dataset visual_genome/region_descriptions_v1.2.0 to C:/Users/Acer/.cache/huggingface/datasets/visual_genome/region_descriptions_v1.2.0/1.2.0/136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3...
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
File ~\.conda\envs\aai\Lib\site-packages\datasets\load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1790 # Download and prepare data
-> 1791 builder_instance.download_and_prepare(
1792 download_config=download_config,
1793 download_mode=download_mode,
1794 verification_mode=verification_mode,
1795 try_from_hf_gcs=try_from_hf_gcs,
1796 num_proc=num_proc,
1797 storage_options=storage_options,
1798 )
1800 # Build dataset for splits
1801 keep_in_memory = (
1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1803 )
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
889 if num_proc is not None:
890 prepare_split_kwargs["num_proc"] = num_proc
--> 891 self._download_and_prepare(
892 dl_manager=dl_manager,
893 verification_mode=verification_mode,
894 **prepare_split_kwargs,
895 **download_and_prepare_kwargs,
896 )
897 # Sync info
898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs)
1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
-> 1651 super()._download_and_prepare(
1652 dl_manager,
1653 verification_mode,
1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
1655 or verification_mode == VerificationMode.ALL_CHECKS,
1656 **prepare_splits_kwargs,
1657 )
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:964, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
962 split_dict = SplitDict(dataset_name=self.name)
963 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 964 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
966 # Checksums verification
967 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:377, in VisualGenome._split_generators(self, dl_manager)
375 def _split_generators(self, dl_manager):
376 # Download image meta datas.
--> 377 image_metadatas_dir = dl_manager.download_and_extract(self.config.image_metadata_url)
378 image_metadatas_file = os.path.join(
379 image_metadatas_dir, _get_decompressed_filename_from_url(self.config.image_metadata_url)
380 )
382 # Download annotations
File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:328, in VisualGenomeConfig.image_metadata_url(self)
326 @property
327 def image_metadata_url(self):
--> 328 if not self.version.match(_LATEST_VERSIONS["image_metadata"]):
329 logger.warning(
330 f"Latest image metadata version is {_LATEST_VERSIONS['image_metadata']}. Trying to generate a dataset of version: {self.version}. Please double check that image data are unchanged between the two versions."
331 )
332 return f"{_BASE_ANNOTATION_URL}/image_data.json.zip"
### Environment info
datasets 2.11.0
python 3.11.3 | 5,749 |
https://github.com/huggingface/datasets/issues/5744 | [BUG] With Pandas 2.0.0, `load_dataset` raises `TypeError: read_csv() got an unexpected keyword argument 'mangle_dupe_cols'` | [
"Thanks for reporting, @keyboardAnt.\r\n\r\nWe haven't noticed any crash in our CI tests. Could you please indicate specifically the `load_dataset` command that crashes in your side, so that we can reproduce it?",
"This has been fixed in `datasets` 2.11",
"I am still getting this bug with the latest pandas and datasets lib installed. Anyone else?\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"csv\", data_files={\"train\":\"/kaggle/working/train.csv\", \"test\":\"/kaggle/working/test.csv\"})\r\nprint(dataset)\r\n\r\n\r\n\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\nCell In[5], line 3\r\n 1 from datasets import load_dataset\r\n----> 3 dataset = load_dataset(\"csv\", data_files={\"train\":\"/kaggle/working/train.csv\", \"test\":\"/kaggle/working/test.csv\"})\r\n 4 print(dataset)\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/load.py:1691, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)\r\n 1688 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n 1690 # Download and prepare data\r\n-> 1691 builder_instance.download_and_prepare(\r\n 1692 download_config=download_config,\r\n 1693 download_mode=download_mode,\r\n 1694 ignore_verifications=ignore_verifications,\r\n 1695 try_from_hf_gcs=try_from_hf_gcs,\r\n 1696 use_auth_token=use_auth_token,\r\n 1697 )\r\n 1699 # Build dataset for splits\r\n 1700 keep_in_memory = (\r\n 1701 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1702 )\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:605, in DatasetBuilder.download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)\r\n 603 logger.warning(\"HF google storage unreachable. Downloading and preparing it from source\")\r\n 604 if not downloaded_from_gcs:\r\n--> 605 self._download_and_prepare(\r\n 606 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 607 )\r\n 608 # Sync info\r\n 609 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:694, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 690 split_dict.add(split_generator.split_info)\r\n 692 try:\r\n 693 # Prepare split will record examples associated to the split\r\n--> 694 self._prepare_split(split_generator, **prepare_split_kwargs)\r\n 695 except OSError as e:\r\n 696 raise OSError(\r\n 697 \"Cannot find data file. \"\r\n 698 + (self.manual_download_instructions or \"\")\r\n 699 + \"\\nOriginal error:\\n\"\r\n 700 + str(e)\r\n 701 ) from None\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:1151, in ArrowBasedBuilder._prepare_split(self, split_generator)\r\n 1149 generator = self._generate_tables(**split_generator.gen_kwargs)\r\n 1150 with ArrowWriter(features=self.info.features, path=fpath) as writer:\r\n-> 1151 for key, table in logging.tqdm(\r\n 1152 generator, unit=\" tables\", leave=False, disable=True # not logging.is_progress_bar_enabled()\r\n 1153 ):\r\n 1154 writer.write_table(table)\r\n 1155 num_examples, num_bytes = writer.finalize()\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/tqdm/notebook.py:249, in tqdm_notebook.__iter__(self)\r\n 247 try:\r\n 248 it = super(tqdm_notebook, self).__iter__()\r\n--> 249 for obj in it:\r\n 250 # return super(tqdm...) will not catch exception\r\n 251 yield obj\r\n 252 # NB: except ... [ as ...] breaks IPython async KeyboardInterrupt\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/tqdm/std.py:1170, in tqdm.__iter__(self)\r\n 1167 # If the bar is disabled, then just walk the iterable\r\n 1168 # (note: keep this check outside the loop for performance)\r\n 1169 if self.disable:\r\n-> 1170 for obj in iterable:\r\n 1171 yield obj\r\n 1172 return\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:154, in Csv._generate_tables(self, files)\r\n 152 dtype = {name: dtype.to_pandas_dtype() for name, dtype in zip(schema.names, schema.types)} if schema else None\r\n 153 for file_idx, file in enumerate(files):\r\n--> 154 csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.read_csv_kwargs)\r\n 155 try:\r\n 156 for batch_idx, df in enumerate(csv_file_reader):\r\n\r\nTypeError: read_csv() got an unexpected keyword argument 'mangle_dupe_cols'```",
"Feel free to update `datasets` to fix this issue\r\n\r\n```\r\npip install -U datasets\r\n```",
"I am still having the same issue with the version >= 2.14",
"Edit: Sorry, I found that our version is 2.2.1. Please ignore the following comment. This issue was already solved by this line:\r\nhttps://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L18\r\n\r\n> This issue still exists as you can see in version 2.14:\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L35\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L84\r\n> that \"mangle_dupe_cols\" still exists in the arguments.\r\n> \r\n> And this error occurs at this line:\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L185\r\n> where\r\n> ```python\r\n> file == '~/llama/llama-recipes/recipes/finetuning/gtrain_10k.csv'\r\n> dtype == None\r\n> self.config.pd_read_csv_kwargs == {\r\n> \"sep\": \",\",\r\n> \"header\": \"infer\",\r\n> \"index_col\": None,\r\n> \"usecols\": None,\r\n> \"mangle_dupe_cols\": True,\r\n> \"engine\": None,\r\n> \"true_values\": None,\r\n> \"false_values\": None,\r\n> \"skipinitialspace\": False,\r\n> \"skiprows\": None,\r\n> \"nrows\": None,\r\n> \"na_values\": None,\r\n> \"keep_default_na\": True,\r\n> \"na_filter\": True,\r\n> \"verbose\": False,\r\n> \"skip_blank_lines\": True,\r\n> \"thousands\": None,\r\n> \"decimal\": \".\",\r\n> \"lineterminator\": None,\r\n> \"quotechar\": '\"',\r\n> \"quoting\": 0,\r\n> \"escapechar\": None,\r\n> \"comment\": None,\r\n> \"encoding\": None,\r\n> \"dialect\": None,\r\n> \"skipfooter\": 0,\r\n> \"doublequote\": True,\r\n> \"memory_map\": False,\r\n> \"float_precision\": None,\r\n> \"chunksize\": 10000,\r\n> }\r\n> ```\r\n> for me.\r\n> \r\n> Here is where we got the error: https://github.com/meta-llama/llama-recipes/issues/426"
] | The `load_dataset` function with Pandas `1.5.3` has no issue (just a FutureWarning) but crashes with Pandas `2.0.0`.
For your convenience, I opened a draft Pull Request to fix it quickly: https://github.com/huggingface/datasets/pull/5745
---
* The FutureWarning mentioned above:
```
FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'
``` | 5,744 |
https://github.com/huggingface/datasets/issues/5743 | dataclass.py in virtual environment is overriding the stdlib module "dataclasses" | [
"We no longer depend on `dataclasses` (for almost a year), so I don't think our package is the problematic one. \r\n\r\nI think it makes more sense to raise this issue in the `dataclasses` repo: https://github.com/ericvsmith/dataclasses."
] | ### Describe the bug
"e:\Krish_naik\FSDSRegression\venv\Lib\dataclasses.py" is overriding the stdlib module "dataclasses"
### Steps to reproduce the bug
module issue
### Expected behavior
overriding the stdlib module "dataclasses"
### Environment info
VS code | 5,743 |
https://github.com/huggingface/datasets/issues/5739 | weird result during dataset split when data path starts with `/data` | [
"Same problem.",
"hi! \r\nI think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. \r\n@ericxsun Do you want to open a PR to fix the regex? As you already found the solution :) ",
"> hi! I think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. @ericxsun Do you want to open a PR to fix the regex? As you already found the solution :)\r\n\r\nSure, please see https://github.com/huggingface/datasets/pull/5748 @polinaeterna ",
"I think `string_to_dict` is ok, and that the issue is that it gets `'/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'` as input instead of `'data/test-00000-of-00001-9c49eeff30aacaa8.parquet'`. The path should be relative to the directory being loaded by `load_dataset`"
] | ### Describe the bug
The regex defined here https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158
will cause a weird result during dataset split when data path starts with `/data`
### Steps to reproduce the bug
1. clone dataset into local path
```
cd /data/train/raw/
git lfs clone https://huggingface.co/datasets/deepmind/code_contests.git
ls /data/train/raw/code_contests
# README.md data dataset_infos.json
ls /data/train/raw/code_contests/data
# test-00000-of-00001-9c49eeff30aacaa8.parquet
# train-[0-9]+-of-[0-9]+-xx.parquet
# valid-00000-of-00001-5e672c5751f060d3.parquet
```
2. loading data from local
```
from datasets import load_dataset
dataset = load_dataset('/data/train/raw/code_contests')
FileNotFoundError: Unable to resolve any data file that matches '['data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']' at /data/train/raw/code_contests with any supported extension
```
weird path `data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*`
While dive deep into `LocalDatasetModuleFactoryWithoutScript` defined in [load.py](https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/load.py#L627) and _get_data_files_patterns https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/data_files.py#L228. I found the weird behavior caused by `string_to_dict`
3. check `string_to_dict`
```
p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'
split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'
string_to_dict(p, split_pattern)
# {'split': 'train/raw/code_contests/data/test'}
p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'
string_to_dict(p, split_pattern)
{'split': 'test'}
```
go deep into string_to_dict https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158.
4. test the regex:
<img width="680" alt="image" src="https://user-images.githubusercontent.com/1772912/231351129-75179f01-fb9f-4f12-8fa9-0dfcc3d5f3bd.png">
<img width="679" alt="image" src="https://user-images.githubusercontent.com/1772912/231351025-009f3d83-2cf3-4e15-9ed4-6b9663dcb2ee.png">
### Expected behavior
statement in `steps to reproduce the bug`
3. check `string_to_dict`
```
p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'
split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'
string_to_dict(p, split_pattern)
# {'split': 'train/raw/code_contests/data/test'}
p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'
string_to_dict(p, split_pattern)
{'split': 'test'}
```
### Environment info
- linux(debian)
- python 3.7
- datasets 2.8.0 | 5,739 |
https://github.com/huggingface/datasets/issues/5738 | load_dataset("text","dataset.txt") loads the wrong dataset! | [
"You need to provide a text file as `data_files`, not as a configuration:\r\n\r\n```python\r\nmy_dataset = load_dataset(\"text\", data_files=\"TextFile.txt\")\r\n```\r\n\r\nOtherwise, since `data_files` is `None`, it picks up Colab's sample datasets from the `content` dir."
] | ### Describe the bug
I am trying to load my own custom text dataset using the load_dataset function. My dataset is a bunch of ordered text, think along the lines of shakespeare plays. However, after I load the dataset and I inspect it, the dataset is a table with a bunch of latitude and longitude values! What in the world??
### Steps to reproduce the bug
my_dataset = load_dataset("text","TextFile.txt")
my_dataset
### Expected behavior
I expected the dataset to contain the actual data from the text document that I used.
### Environment info
Google Colab | 5,738 |
https://github.com/huggingface/datasets/issues/5737 | ClassLabel Error | [
"Hi, you can use the `cast_column` function to change the feature type from a `Value(int64)` to `ClassLabel`:\r\n\r\n```py\r\ndataset = dataset.cast_column(\"label\", ClassLabel(names=[\"label_1\", \"label_2\", \"label_3\"]))\r\nprint(dataset.features)\r\n{'text': Value(dtype='string', id=None),\r\n 'label': ClassLabel(names=['label_1', 'label_2', 'label_3'], id=None)}\r\n```",
"thank you @stevhliu, its worked. "
] | ### Describe the bug
I still getting the error "call() takes 1 positional argument but 2 were given" even after ensuring that the value being passed to the label object is a single value and that the ClassLabel object has been created with the correct number of label classes
### Steps to reproduce the bug
from datasets import ClassLabel, Dataset
1. Create the ClassLabel object with 3 label values and their corresponding names
label_test = ClassLabel(num_classes=3, names=["label_1", "label_2", "label_3"])
2. Define a dictionary with text and label fields
data = {
'text': ['text_1', 'text_2', 'text_3'],
'label': [1, 2, 3],
}
3. Create a Hugging Face dataset from the dictionary
dataset = Dataset.from_dict(data)
print(dataset.features)
4. Map the label values to their corresponding label names using the label object
dataset = dataset.map(lambda example: {'text': example['text'], 'label': label_test(example['label'])})
5. Print the resulting dataset
print(dataset)
### Expected behavior
I hope my label type is class label instead int.
### Environment info
python 3.9
google colab | 5,737 |
https://github.com/huggingface/datasets/issues/5736 | FORCE_REDOWNLOAD raises "Directory not empty" exception on second run | [
"Hi ! I couldn't reproduce your issue :/\r\n\r\nIt seems that `shutil.rmtree` failed. It is supposed to work even if the directory is not empty, but you still end up with `OSError: [Errno 39] Directory not empty:`. Can you make sure another process is not using this directory at the same time ?",
"I have the same error with `datasets==2.14.5` and `pyarrow==13.0.0`. Python 3.10.13",
"I have same error. Any workaround?"
] | ### Describe the bug
Running `load_dataset(..., download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD)` twice raises a `Directory not empty` exception on the second run.
### Steps to reproduce the bug
I cannot test this on datasets v2.11.0 due to #5711, but this happens in v2.10.1.
1. Set up a script `my_dataset.py` to generate and load an offline dataset.
2. Load it with
```python
ds = datasets.load_dataset(path=/path/to/my_dataset.py,
name='toy',
data_dir=/path/to/my_dataset.py,
cache_dir=cache_dir,
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
)
```
It loads fine
```
Dataset my_dataset downloaded and prepared to /path/to/cache/toy-..e05e/1.0.0/...5b4c. Subsequent calls will reuse this data.
```
3. Try to load it again with the same snippet and the splits are generated, but at the end of the loading process it raises the error
```
2023-04-11 12:10:19,965: DEBUG: open file: /path/to/cache/toy-..e05e/1.0.0/...5b4c.incomplete/dataset_info.json
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/load.py", line 1782, in load_dataset
builder_instance.download_and_prepare(
File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/builder.py", line 852, in download_and_prepare
with incomplete_dir(self._output_dir) as tmp_output_dir:
File "/path/to/conda/environment/lib/python3.10/contextlib.py", line 142, in __exit__
next(self.gen)
File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/builder.py", line 826, in incomplete_dir
shutil.rmtree(dirname)
File "/path/to/conda/environment/lib/python3.10/shutil.py", line 730, in rmtree
onerror(os.rmdir, path, sys.exc_info())
File "/path/to/conda/environment/lib/python3.10/shutil.py", line 728, in rmtree
os.rmdir(path)
OSError: [Errno 39] Directory not empty: '/path/to/cache/toy-..e05e/1.0.0/...5b4c'
```
### Expected behavior
Regenerate the dataset from scratch and reload it.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28
- Python version: 3.10.8
- PyArrow version: 11.0.0
- Pandas version: 1.5.2
| 5,736 |
https://github.com/huggingface/datasets/issues/5734 | Remove temporary pin of fsspec | [] | Once root cause is found and fixed, remove the temporary pin introduced by:
- #5731 | 5,734 |
https://github.com/huggingface/datasets/issues/5732 | Enwik8 should support the standard split | [
"#self-assign",
"The Enwik8 pipeline is not present in this codebase, and is hosted elsewhere. I have opened a PR [there](https://huggingface.co/datasets/enwik8/discussions/4) instead. "
] | ### Feature request
The HuggingFace Datasets library currently supports two BuilderConfigs for Enwik8. One config yields individual lines as examples, while the other config yields the entire dataset as a single example. Both support only a monolithic split: it is all grouped as "train".
The HuggingFace Datasets library should include a BuilderConfig for Enwik8 with train, validation, and test sets derived from the first 90 million bytes, next 5 million bytes, and last 5 million bytes, respectively. This Enwik8 split is standard practice in LM papers, as elaborated and motivated below.
### Motivation
Enwik8 is commonly split into 90M, 5M, 5M consecutive bytes. This is done in the Transformer-XL [codebase](https://github.com/kimiyoung/transformer-xl/blob/44781ed21dbaec88b280f74d9ae2877f52b492a5/getdata.sh#L34), and is additionally mentioned in the Sparse Transformers [paper](https://arxiv.org/abs/1904.10509) and the Compressive Transformers [paper](https://arxiv.org/abs/1911.05507). This split is pretty much universal among language modeling papers.
One may obtain the splits by manual wrangling, using the data yielded by the ```enwik8-raw``` BuilderConfig. However, this undermines the seamless functionality of the library: one must slice the single raw example, extract it into three tensors, and wrap each in a separate dataset.
This becomes even more of a nuisance if using the current Enwik8 HuggingFace dataset as a TfdsDataSource with [SeqIO](https://github.com/google/seqio), where a pipeline of preprocessors is typically included in a SeqIO Task definition, to be applied immediately after loading the data with TFDS.
### Your contribution
Supporting this functionality in HuggingFace Datasets will only require an additional BuilderConfig for Enwik8 and a few additional lines of code. I will submit a PR. | 5,732 |
https://github.com/huggingface/datasets/issues/5730 | CI is broken: ValueError: Name (mock) already in the registry and clobber is False | [] | CI is broken for `test_py310`.
See: https://github.com/huggingface/datasets/actions/runs/4665326892/jobs/8258580948
```
=========================== short test summary info ============================
ERROR tests/test_builder.py::test_builder_with_filesystem_download_and_prepare - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_builder.py::test_builder_with_filesystem_download_and_prepare_reload - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_dataset_dict.py::test_dummy_datasetdict_serialize_fs - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_file_utils.py::test_get_from_cache_fsspec - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_filesystem.py::test_is_remote_filesystem - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xexists[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xexists[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xexists[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xexists[mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xlistdir[tmp_path-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://top_level-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://top_level/second_level/date=2019-10-01-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisdir[tmp_path-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisdir[tmp_path/file.txt-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://top_level-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://dir_that_doesnt_exist-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisfile[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisfile[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisfile[mock://-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xisfile[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xgetsize[tmp_path/file.txt-100] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xgetsize[mock://-0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xgetsize[mock://top_level/second_level/date=2019-10-01/a.parquet-100] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xglob[tmp_path/*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xglob[mock://*-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_*-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_level/second_level/date=2019-10-0[1-4]-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_level/second_level/date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xwalk[tmp_path-expected_outputs0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::test_xwalk[mock://top_level/second_level-expected_outputs1] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet-False] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[tmp_path-*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://-*-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://-top_*-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://top_level/second_level-date=2019-10-0[1-4]-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://top_level/second_level-date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[tmp_path-*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://-date=2019-10-0[1-4]-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://-date=2019-10-0[1-4]/*-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False
ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False
===== 2105 passed, 18 skipped, 38 warnings, 46 errors in 236.22s (0:03:56) =====
``` | 5,730 |
https://github.com/huggingface/datasets/issues/5728 | The order of data split names is nondeterministic | [] | After this CI error: https://github.com/huggingface/datasets/actions/runs/4639528358/jobs/8210492953?pr=5718
```
FAILED tests/test_data_files.py::test_get_data_files_patterns[data_file_per_split4] - AssertionError: assert ['random', 'train'] == ['train', 'random']
At index 0 diff: 'random' != 'train'
Full diff:
- ['train', 'random']
+ ['random', 'train']
```
I have checked locally and found out that the data split order is nondeterministic.
This is caused by the use of `set` for sharded splits. | 5,728 |
https://github.com/huggingface/datasets/issues/5727 | load_dataset fails with FileNotFound error on Windows | [
"Hi! Can you please paste the entire error stack trace, not only the last few lines?",
"`----> 1 dataset = datasets.load_dataset(\"glue\", \"ax\")\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1767, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1762 verification_mode = VerificationMode(\r\n 1763 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS\r\n 1764 )\r\n 1766 # Create a dataset builder\r\n-> 1767 builder_instance = load_dataset_builder(\r\n 1768 path=path,\r\n 1769 name=name,\r\n 1770 data_dir=data_dir,\r\n 1771 data_files=data_files,\r\n 1772 cache_dir=cache_dir,\r\n 1773 features=features,\r\n 1774 download_config=download_config,\r\n 1775 download_mode=download_mode,\r\n 1776 revision=revision,\r\n 1777 use_auth_token=use_auth_token,\r\n 1778 storage_options=storage_options,\r\n 1779 **config_kwargs,\r\n 1780 )\r\n 1782 # Return iterable dataset in case of streaming\r\n 1783 if streaming:\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1498, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\r\n 1496 download_config = download_config.copy() if download_config else DownloadConfig()\r\n 1497 download_config.use_auth_token = use_auth_token\r\n-> 1498 dataset_module = dataset_module_factory(\r\n 1499 path,\r\n 1500 revision=revision,\r\n 1501 download_config=download_config,\r\n 1502 download_mode=download_mode,\r\n 1503 data_dir=data_dir,\r\n 1504 data_files=data_files,\r\n 1505 )\r\n 1507 # Get dataset builder class from the processing script\r\n 1508 builder_cls = import_main_class(dataset_module.module_path)\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1211, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\r\n 1209 raise e1 from None\r\n 1210 if isinstance(e1, FileNotFoundError):\r\n-> 1211 raise FileNotFoundError(\r\n 1212 f\"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. \"\r\n 1213 f\"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}\"\r\n 1214 ) from None\r\n 1215 raise e1 from None\r\n 1216 else:`",
"Okay, this is the issue:\r\n```\r\nFileNotFoundError: [WinError 3] The system cannot find the path specified: \r\n'C:\\\\Users\\\\...\\\\.cache\\\\huggingface'\r\n``` \r\n\r\nI don't remember seeing this error before.\r\n\r\nI guess it could happen in a multi-process environment if one of the processes deletes the `datasets` cache as the other one is loading a dataset (with `load_dataset`), so make sure that's not the case. Also, you can disable the Windows max path length limit (if enabled), but this is most likely not the problem.",
"Closing due to inactivity."
] | ### Describe the bug
Although I can import and run the datasets library in a Colab environment, I cannot successfully load any data on my own machine (Windows 10) despite following the install steps:
(1) create conda environment
(2) activate environment
(3) install with: ``conda` install -c huggingface -c conda-forge datasets`
Then
```
from datasets import load_dataset
# this or any other example from the website fails with the FileNotFoundError
glue = load_dataset("glue", "ax")
```
**Below I have pasted the error omitting the full path**:
```
raise FileNotFoundError(
FileNotFoundError: Couldn't find a dataset script at C:\Users\...\glue\glue.py or any data file in the same directory. Couldn't find 'glue' on the Hugging Face Hub either: FileNotFoundError: [WinError 3] The system cannot find the path specified:
'C:\\Users\\...\\.cache\\huggingface'
```
### Steps to reproduce the bug
On Windows 10
1) create a minimal conda environment (with just Python)
(2) activate environment
(3) install datasets with: ``conda` install -c huggingface -c conda-forge datasets`
(4) import load_dataset and follow example usage from any dataset card.
### Expected behavior
The expected behavior is to load the file into the Python session running on my machine without error.
### Environment info
```
# Name Version Build Channel
aiohttp 3.8.4 py311ha68e1ae_0 conda-forge
aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge
arrow-cpp 11.0.0 h57928b3_13_cpu conda-forge
async-timeout 4.0.2 pyhd8ed1ab_0 conda-forge
attrs 22.2.0 pyh71513ae_0 conda-forge
aws-c-auth 0.6.26 h1262f0c_1 conda-forge
aws-c-cal 0.5.21 h7cda486_2 conda-forge
aws-c-common 0.8.14 hcfcfb64_0 conda-forge
aws-c-compression 0.2.16 h8a79959_5 conda-forge
aws-c-event-stream 0.2.20 h5f78564_4 conda-forge
aws-c-http 0.7.6 h2545be9_0 conda-forge
aws-c-io 0.13.19 h0d2781e_3 conda-forge
aws-c-mqtt 0.8.6 hd211e0c_12 conda-forge
aws-c-s3 0.2.7 h8113e7b_1 conda-forge
aws-c-sdkutils 0.1.8 h8a79959_0 conda-forge
aws-checksums 0.1.14 h8a79959_5 conda-forge
aws-crt-cpp 0.19.8 he6d3b81_12 conda-forge
aws-sdk-cpp 1.10.57 h64004b3_8 conda-forge
brotlipy 0.7.0 py311ha68e1ae_1005 conda-forge
bzip2 1.0.8 h8ffe710_4 conda-forge
c-ares 1.19.0 h2bbff1b_0
ca-certificates 2023.01.10 haa95532_0
certifi 2022.12.7 pyhd8ed1ab_0 conda-forge
cffi 1.15.1 py311h7d9ee11_3 conda-forge
charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge
colorama 0.4.6 pyhd8ed1ab_0 conda-forge
cryptography 40.0.1 py311h28e9c30_0 conda-forge
dataclasses 0.8 pyhc8e2a94_3 conda-forge
datasets 2.11.0 py_0 huggingface
dill 0.3.6 pyhd8ed1ab_1 conda-forge
filelock 3.11.0 pyhd8ed1ab_0 conda-forge
frozenlist 1.3.3 py311ha68e1ae_0 conda-forge
fsspec 2023.4.0 pyh1a96a4e_0 conda-forge
gflags 2.2.2 ha925a31_1004 conda-forge
glog 0.6.0 h4797de2_0 conda-forge
huggingface_hub 0.13.4 py_0 huggingface
idna 3.4 pyhd8ed1ab_0 conda-forge
importlib-metadata 6.3.0 pyha770c72_0 conda-forge
importlib_metadata 6.3.0 hd8ed1ab_0 conda-forge
intel-openmp 2023.0.0 h57928b3_25922 conda-forge
krb5 1.20.1 heb0366b_0 conda-forge
libabseil 20230125.0 cxx17_h63175ca_1 conda-forge
libarrow 11.0.0 h04c43f8_13_cpu conda-forge
libblas 3.9.0 16_win64_mkl conda-forge
libbrotlicommon 1.0.9 hcfcfb64_8 conda-forge
libbrotlidec 1.0.9 hcfcfb64_8 conda-forge
libbrotlienc 1.0.9 hcfcfb64_8 conda-forge
libcblas 3.9.0 16_win64_mkl conda-forge
libcrc32c 1.1.2 h0e60522_0 conda-forge
libcurl 7.88.1 h68f0423_1 conda-forge
libexpat 2.5.0 h63175ca_1 conda-forge
libffi 3.4.2 h8ffe710_5 conda-forge
libgoogle-cloud 2.8.0 hf2ff781_1 conda-forge
libgrpc 1.52.1 h32da247_1 conda-forge
libhwloc 2.9.0 h51c2c0f_0 conda-forge
libiconv 1.17 h8ffe710_0 conda-forge
liblapack 3.9.0 16_win64_mkl conda-forge
libprotobuf 3.21.12 h12be248_0 conda-forge
libsqlite 3.40.0 hcfcfb64_0 conda-forge
libssh2 1.10.0 h9a1e1f7_3 conda-forge
libthrift 0.18.1 h9ce19ad_0 conda-forge
libutf8proc 2.8.0 h82a8f57_0 conda-forge
libxml2 2.10.3 hc3477c8_6 conda-forge
libzlib 1.2.13 hcfcfb64_4 conda-forge
lz4-c 1.9.4 hcfcfb64_0 conda-forge
mkl 2022.1.0 h6a75c08_874 conda-forge
multidict 6.0.4 py311ha68e1ae_0 conda-forge
multiprocess 0.70.14 py311ha68e1ae_3 conda-forge
numpy 1.24.2 py311h0b4df5a_0 conda-forge
openssl 3.1.0 hcfcfb64_0 conda-forge
orc 1.8.3 hada7b9e_0 conda-forge
packaging 23.0 pyhd8ed1ab_0 conda-forge
pandas 2.0.0 py311hf63dbb6_0 conda-forge
parquet-cpp 1.5.1 2 conda-forge
pip 23.0.1 pyhd8ed1ab_0 conda-forge
pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge
pyarrow 11.0.0 py311h6a6099b_13_cpu conda-forge
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge
pysocks 1.7.1 pyh0701188_6 conda-forge
python 3.11.3 h2628c8c_0_cpython conda-forge
python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge
python-tzdata 2023.3 pyhd8ed1ab_0 conda-forge
python-xxhash 3.2.0 py311ha68e1ae_0 conda-forge
python_abi 3.11 3_cp311 conda-forge
pytz 2023.3 pyhd8ed1ab_0 conda-forge
pyyaml 6.0 py311ha68e1ae_5 conda-forge
re2 2023.02.02 h63175ca_0 conda-forge
requests 2.28.2 pyhd8ed1ab_1 conda-forge
setuptools 67.6.1 pyhd8ed1ab_0 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
snappy 1.1.10 hfb803bf_0 conda-forge
tbb 2021.8.0 h91493d7_0 conda-forge
tk 8.6.12 h8ffe710_0 conda-forge
tqdm 4.65.0 pyhd8ed1ab_1 conda-forge
typing-extensions 4.5.0 hd8ed1ab_0 conda-forge
typing_extensions 4.5.0 pyha770c72_0 conda-forge
tzdata 2023c h71feb2d_0 conda-forge
ucrt 10.0.22621.0 h57928b3_0 conda-forge
urllib3 1.26.15 pyhd8ed1ab_0 conda-forge
vc 14.3 hb6edc58_10 conda-forge
vs2015_runtime 14.34.31931 h4c5c07a_10 conda-forge
wheel 0.40.0 pyhd8ed1ab_0 conda-forge
win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge
xxhash 0.8.1 hcfcfb64_0 conda-forge
xz 5.2.10 h8cc25b3_1
yaml 0.2.5 h8ffe710_2 conda-forge
yarl 1.8.2 py311ha68e1ae_0 conda-forge
zipp 3.15.0 pyhd8ed1ab_0 conda-forge
zlib 1.2.13 hcfcfb64_4 conda-forge
zstd 1.5.4 hd43e919_0
``` | 5,727 |
https://github.com/huggingface/datasets/issues/5726 | Fallback JSON Dataset loading does not load all values when features specified manually | [
"Thanks for reporting, @myluki2000.\r\n\r\nI am working on a fix."
] | ### Describe the bug
The fallback JSON dataset loader located here:
https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L130-L153
does not load the values of features correctly when features are specified manually and not all features have a value in the first entry of the dataset. I'm pretty sure this is not supposed to be expected bahavior?
To fix this you'd have to change this line:
https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L140
To pass a schema to pyarrow which has the same structure as the features argument passed to the load_dataset() method.
### Steps to reproduce the bug
Consider a dataset JSON like this:
```
[
{
"instruction": "Do stuff",
"output": "Answer stuff"
},
{
"instruction": "Do stuff2",
"input": "Additional Input2",
"output": "Answer stuff2"
}
]
```
Using this code to load the dataset:
```
from datasets import load_dataset, Features, Value
features = {
"instruction": Value("string"),
"input": Value("string"),
"output": Value("string")
}
features = Features(features)
ds = load_dataset("json", data_files="./ds.json", features=features)
for row in ds["train"]:
print(row)
```
we get a dataset that looks like this:
| **Instruction** | **Input** | **Output** |
|-----------------|--------------------|-----------------|
| "Do stuff" | None | "Answer Stuff" |
| "Do stuff2" | None | "Answer Stuff2" |
### Expected behavior
The input column should contain values other than None for dataset entries that have the "input" attribute set:
| **Instruction** | **Input** | **Output** |
|-----------------|--------------------|-----------------|
| "Do stuff" | None | "Answer Stuff" |
| "Do stuff2" | "Additional Input2" | "Answer Stuff2" |
### Environment info
Python 3.10.10
Datasets 2.11.0
Windows 10 | 5,726 |
https://github.com/huggingface/datasets/issues/5725 | How to limit the number of examples in dataset, for testing? | [
"Hi! You can use the `nrows` parameter for this:\r\n```python\r\ndata = load_dataset(\"json\", data_files=data_path, nrows=10)\r\n```",
"@mariosasko I get:\r\n\r\n`TypeError: __init__() got an unexpected keyword argument 'nrows'`",
"I misread the format in which the dataset is stored - the `nrows` parameter works for CSV, but not JSON.\r\n\r\nThis means the only option is first to create a DataFrame and then convert it to a Dataset object:\r\n```python\r\nimport pandas as pd\r\nfrom datasets import Dataset\r\n\r\ndf = pd.read_json(data_path, lines=True, nrows=10)\r\nds = Dataset.from_pandas(df)\r\n```"
] | ### Describe the bug
I am using this command:
`data = load_dataset("json", data_files=data_path)`
However, I want to add a parameter, to limit the number of loaded examples to be 10, for development purposes, but can't find this simple parameter.
### Steps to reproduce the bug
In the description.
### Expected behavior
To be able to limit the number of examples
### Environment info
Nothing special | 5,725 |
https://github.com/huggingface/datasets/issues/5724 | Error after shuffling streaming IterableDatasets with downloaded dataset | [
"Moving `\"en\"` to the end of the path instead of passing it as a config name should fix the error:\r\n```python\r\nimport datasets\r\ndataset = datasets.load_dataset('/path/to/your/data/dir/en', streaming=True, split='train')\r\ndataset = dataset.shuffle(buffer_size=10_000, seed=42)\r\nnext(iter(dataset))\r\n```\r\n\r\nPS: https://github.com/huggingface/datasets/pull/5331, once merged, will allow us to define C4's configs in its README, making downloading it much more user-friendly."
] | ### Describe the bug
I downloaded the C4 dataset, and used streaming IterableDatasets to read it. Everything went normal until I used `dataset = dataset.shuffle(seed=42, buffer_size=10_000)` to shuffle the dataset. Shuffled dataset will throw the following error when it is used by `next(iter(dataset))`:
```
File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 937, in __iter__
for key, example in ex_iterable:
File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 627, in __iter__
for x in self.ex_iterable:
File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 138, in __iter__
yield from self.generate_examples_fn(**kwargs_with_shuffled_shards)
File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 763, in wrapper
for key, table in generate_tables_fn(**kwargs):
File "/data/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 101, in _generate_tables
batch = f.read(self.config.chunksize)
File "/data/miniconda3/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 372, in read_with_retries
out = read(*args, **kwargs)
File "/data/miniconda3/lib/python3.9/gzip.py", line 300, in read
return self._buffer.read(size)
File "/data/miniconda3/lib/python3.9/_compression.py", line 68, in readinto
data = self.read(len(byte_view))
File "/data/miniconda3/lib/python3.9/gzip.py", line 487, in read
if not self._read_gzip_header():
File "/data/miniconda3/lib/python3.9/gzip.py", line 435, in _read_gzip_header
raise BadGzipFile('Not a gzipped file (%r)' % magic)
gzip.BadGzipFile: Not a gzipped file (b've')
```
I found that there is no problem to use the dataset in this way without shuffling. Also, use `dataset = datasets.load_dataset('c4', 'en', split='train', streaming=True)`, which will download the dataset on-the-fly instead of loading from the local file, will also not have problems even after shuffle.
### Steps to reproduce the bug
1. Download C4 dataset from https://huggingface.co/datasets/allenai/c4
2.
```
import datasets
dataset = datasets.load_dataset('/path/to/your/data/dir', 'en', streaming=True, split='train')
dataset = dataset.shuffle(buffer_size=10_000, seed=42)
next(iter(dataset))
```
### Expected behavior
`next(iter(dataset))` should give me a sample from the dataset
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.4.32-1-tlinux4-0001-x86_64-with-glibc2.28
- Python version: 3.9.16
- Huggingface_hub version: 0.13.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,724 |
https://github.com/huggingface/datasets/issues/5722 | Distributed Training Error on Customized Dataset | [
"Hmm the error doesn't seem related to data loading.\r\n\r\nRegarding `split_dataset_by_node`: it's generally used to split an iterable dataset (e.g. when streaming) in pytorch DDP. It's not needed if you use a regular dataset since the pytorch DataLoader already assigns a subset of the dataset indices to each node."
] | Hi guys, recently I tried to use `datasets` to train a dual encoder.
I finish my own datasets according to the nice [tutorial](https://huggingface.co/docs/datasets/v2.11.0/en/dataset_script)
Here are my code:
```python
class RetrivalDataset(datasets.GeneratorBasedBuilder):
"""CrossEncoder dataset."""
BUILDER_CONFIGS = [RetrivalConfig(name="DuReader")]
# DEFAULT_CONFIG_NAME = "DuReader"
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("string"),
"question": datasets.Value("string"),
"documents": Sequence(datasets.Value("string")),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
train_file = self.config.data_dir + self.config.train_file
valid_file = self.config.data_dir + self.config.valid_file
logger.info(f"Training on {self.config.train_file}")
logger.info(f"Evaluating on {self.config.valid_file}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"file_path": train_file}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"file_path": valid_file}
),
]
def _generate_examples(self, file_path):
with jsonlines.open(file_path, "r") as f:
for record in f:
label = record["label"]
question = record["question"]
# dual encoder
all_documents = record["all_documents"]
positive_paragraph = all_documents.pop(label)
all_documents = [positive_paragraph] + all_documents
u_id = "{}_#_{}".format(
md5_hash(question + "".join(all_documents)),
"".join(random.sample(string.ascii_letters + string.digits, 7)),
)
item = {
"question": question,
"documents": all_documents,
"id": u_id,
}
yield u_id, item
```
It works well on single GPU, but got errors as follows when used DDP:
```python
Detected mismatch between collectives on ranks. Rank 1 is running collective: CollectiveFingerPrint(OpType=BARRIER), but Rank 0 is running collective: CollectiveFingerPrint(OpType=ALLGATHER_COALESCED)
```
Here are my train script on a two A100 mechine:
```bash
export TORCH_DISTRIBUTED_DEBUG=DETAIL
export TORCH_SHOW_CPP_STACKTRACES=1
export NCCL_DEBUG=INFO
export NCCL_DEBUG_SUBSYS=INIT,COLL,ENV
nohup torchrun --nproc_per_node 2 train.py experiments/de-big.json >logs/de-big.log 2>&1&
```
I am not sure if this error below related to my dataset code when use DDP. And I notice the PR(#5369 ), but I don't know when and where should I used the function(`split_dataset_by_node`) .
@lhoestq hope you could help me?
| 5,722 |
https://github.com/huggingface/datasets/issues/5721 | Calling datasets.load_dataset("text" ...) results in a wrong split. | [] | ### Describe the bug
When creating a text dataset, the training split should have the bulk of the examples by default. Currently, testing does.
### Steps to reproduce the bug
I have a folder with 18K text files in it. Each text file essentially consists in a document or article scraped from online. Calling the following codeL
```
folder_path = "/home/cyril/Downloads/llama_dataset"
data = datasets.load_dataset("text", data_dir=folder_path)
data.save_to_disk("/home/cyril/Downloads/data.hf")
data = datasets.load_from_disk("/home/cyril/Downloads/data.hf")
print(data)
```
Results in the following split:
```
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 2114
})
test: Dataset({
features: ['text'],
num_rows: 200882
})
validation: Dataset({
features: ['text'],
num_rows: 152
})
})
```
It seems to me like the train/test/validation splits are in the wrong order since test split >>>> train_split
### Expected behavior
Train split should have the bulk of the training examples.
### Environment info
datasets 2.11.0, python 3.10.6 | 5,721 |
https://github.com/huggingface/datasets/issues/5720 | Streaming IterableDatasets do not work with torch DataLoaders | [
"Edit: This behavior is true even without `.take/.set`",
"I'm experiencing the same problem that @jlehrer1. I was able to reproduce it with a very small example:\r\n\r\n```py\r\nfrom datasets import Dataset, load_dataset, load_dataset_builder\r\nfrom torch.utils.data import DataLoader\r\n\r\n\r\ndef my_gen():\r\n for i in range(1, 4):\r\n yield {\"a\": i}\r\n\r\n# Saving the dataset as a parquet file\r\ndataset = Dataset.from_generator(my_gen)\r\ntrain_path = \"/tmp/test.parquet\"\r\ndataset.to_parquet(train_path)\r\n\r\n# Creating a local dataset from the parquet file\r\ndata_files = {\"train\": [str(train_path)]}\r\nbuilder = load_dataset_builder(\"parquet\", data_files=data_files)\r\nbuilder.download_and_prepare(\"/tmp/test_ds\", file_format=\"parquet\")\r\n\r\n# Loading the dataset from the local directory as streaming\r\ndataset = load_dataset(\"parquet\", data_dir=\"/tmp/test_ds\", split=\"train\", streaming=True)\r\ndataset.with_format(\"torch\")\r\n\r\ndl = DataLoader(dataset, batch_size=2, num_workers=1)\r\nfor row in dl:\r\n print(row)\r\n```\r\n\r\nMy env info:\r\n```\r\ndatasets 2.11.0\r\ntorch 2.0.0\r\ntorchvision 0.15.1\r\nPython 3.9.16\r\n```\r\n\r\nNote that the example above doesn't fail if the number of workers used is `0`",
"I cannot reproduce this error, not even with your MRE @ivanprado (your env appears to be the same as Colab's, and your code runs there without issues). ",
"@mariosasko you are right, it works on Colab. I digged deeper and found that the problem arises when the multiprocessing method is set to be `spawn`. This code reproduces the problem in Colab:\r\n\r\n```py\r\nfrom datasets import Dataset, load_dataset, load_dataset_builder\r\nfrom torch.utils.data import DataLoader\r\nimport multiprocessing as mp\r\n\r\nmp.set_start_method('spawn')\r\n\r\ndef my_gen():\r\n for i in range(1, 4):\r\n yield {\"a\": i}\r\n\r\n\r\ndef main():\r\n # Saving the dataset as a parquet file\r\n dataset = Dataset.from_generator(my_gen)\r\n train_path = \"/tmp/test.parquet\"\r\n dataset.to_parquet(train_path)\r\n\r\n # Creating a local dataset from the parquet file\r\n data_files = {\"train\": [str(train_path)]}\r\n builder = load_dataset_builder(\"parquet\", data_files=data_files)\r\n builder.download_and_prepare(\"/tmp/test_ds\", file_format=\"parquet\")\r\n\r\n # Loading the dataset from the local directory as streaming\r\n dataset = load_dataset(\"parquet\", data_dir=\"/tmp/test_ds\", split=\"train\", streaming=True)\r\n dataset.with_format(\"torch\")\r\n\r\n dl = DataLoader(dataset, batch_size=2, num_workers=1)\r\n for row in dl:\r\n print(row)\r\n\r\nmain()\r\n```",
"So is there a way to fix this by changing the `mp` method? This is blocking any usage of the `datasets` library for me",
"@jlehrer1 can you try adding `mp.set_start_method('fork')` at the beginning of your code? Maybe this helps you. Keep us posted. ",
"I have a similar issue: \r\n> mp.set_start_method('fork')\r\n\r\n\r\nDidnt work"
] | ### Describe the bug
When using streaming datasets set up with train/val split using `.skip()` and `.take()`, the following error occurs when iterating over a torch dataloader:
```
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 363, in __iter__
self._iterator = self._get_iterator()
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__
w.start()
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/context.py", line 284, in _Popen
return Popen(process_obj)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__
super().__init__(process_obj)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 47, in _launch
reduction.dump(process_obj, fp)
File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
AttributeError: Can't pickle local object '_generate_examples_from_tables_wrapper.<locals>.wrapper'
```
To reproduce, run the code
```
from datasets import load_dataset
data = load_dataset(args.dataset_name, split="train", streaming=True)
train_len = 5000
val_len = 100
train, val = data.take(train_len), data.skip(train_len).take(val_len)
traindata = IterableClipDataset(data, context_length=args.max_len, tokenizer=tokenizer, image_key="url", text_key="text")
traindata = DataLoader(traindata, batch_size=args.batch_size, num_workers=args.num_workers, persistent_workers=True)
```
Where the class IterableClipDataset is a simple wrapper to cast the dataset to a torch iterabledataset, defined via
```
from torch.utils.data import Dataset, IterableDataset
from torchvision.transforms import Compose, Resize, ToTensor
from transformers import AutoTokenizer
import requests
from PIL import Image
class IterableClipDataset(IterableDataset):
def __init__(self, dataset, context_length: int, image_transform=None, tokenizer=None, image_key="image", text_key="text"):
self.dataset = dataset
self.context_length = context_length
self.image_transform = Compose([Resize((224, 224)), ToTensor()]) if image_transform is None else image_transform
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") if tokenizer is None else tokenizer
self.image_key = image_key
self.text_key = text_key
def read_image(self, url: str):
try: # Try to read the image
image = Image.open(requests.get(url, stream=True).raw)
except:
image = Image.new("RGB", (224, 224), (0, 0, 0))
return image
def process_sample(self, image, text):
if isinstance(image, str):
image = self.read_image(image)
if self.image_transform is not None:
image = self.image_transform(image)
text = self.tokenizer.encode(
text, add_special_tokens=True, max_length=self.context_length, truncation=True, padding="max_length"
)
text = torch.tensor(text, dtype=torch.long)
return image, text
def __iter__(self):
for sample in self.dataset:
image, text = sample[self.image_key], sample[self.text_key]
yield self.process_sample(image, text)
```
### Steps to reproduce the bug
Steps to reproduce
1. Install `datasets`, `torch`, and `PIL` (if you want to reproduce exactly)
2. Run the code above
### Expected behavior
Batched data is produced from the dataloader
### Environment info
```
datasets == 2.9.0
python == 3.9.12
torch == 1.11.0
``` | 5,720 |
https://github.com/huggingface/datasets/issues/5719 | Array2D feature creates a list of list instead of a numpy array | [
"Hi! \r\n\r\nYou need to set the format to `np` before indexing the dataset to get NumPy arrays:\r\n```python\r\nfeatures = Features(dict(seq=Array2D((2,2), 'float32'))) \r\nds = Dataset.from_dict(dict(seq=[np.random.rand(2,2)]), features=features)\r\nds.set_format(\"np\")\r\na = ds[0]['seq']\r\n```\r\n\r\n> I think it should not be the expected behavior especially when I feed a numpy array as input to the data creation function. Why is it converting my array into a list?\r\n\r\nThe same dataset can have examples in different types (Numpy arrays, Torch tensors, Pandas series, etc.), so recovering them all would be slow and impractical. Instead, the design of our formatting API is similar to Arrow's (the lib we use internally to store data on disk/ in RAM), which allows converting a batch of data to Python/Numpy/Pandas in a single call (and uses C++ to do so to make it faster).\r\n\r\n> Also if I change the first dimension of the Array2D shape to None, it's returning array correctly.\r\n\r\nSetting the first dimension to `None` makes it variable-length (allows passing arrays with the first dimensions of differing lengths).\r\n",
"Current behavior when indexing the dataset:\r\n- Using `Array((2,2))` returns a list of lists.\r\n- Using `Array((None,2))` returns a numpy array.\r\n\r\nDon't you think this is kind of unexpected behavior from end-user perspective? \r\nAs a user, I expect that when I use `Array2D`, the behavior needs to be consistent even if I specify None or not. It should either return a list or an array. It needs to choose one. Let's say if it always return a list, then I will call `ds.set_format('np')` no problem.\r\n\r\nThe consistency can be in any of these aspects:\r\n1. preserves the type of the input data (in this case, a numpy array)\r\n2. ensure the output type is always the same (it can be either list or array, but it needs to be one of them)\r\n\r\nRight now the API doesn't conform to any of these aspects. But I think it needs to conform to one.",
"I thought we made this consistent by returning lists in both scenarios...",
"Fixed in #5751 "
] | ### Describe the bug
I'm not sure if this is expected behavior or not. When I create a 2D array using `Array2D`, the data has list type instead of numpy array. I think it should not be the expected behavior especially when I feed a numpy array as input to the data creation function. Why is it converting my array into a list?
Also if I change the first dimension of the `Array2D` shape to None, it's returning array correctly.
### Steps to reproduce the bug
Run this code:
```py
from datasets import Dataset, Features, Array2D
import numpy as np
# you have to change the first dimension of the shape to None to make it return an array
features = Features(dict(seq=Array2D((2,2), 'float32')))
ds = Dataset.from_dict(dict(seq=[np.random.rand(2,2)]), features=features)
a = ds[0]['seq']
print(a)
print(type(a))
```
The following will be printed in stdout:
```
[[0.8127174377441406, 0.3760348856449127], [0.7510159611701965, 0.4322739541530609]]
<class 'list'>
```
### Expected behavior
Each indexed item should be a list or numpy array. Currently, `Array((2,2))` yields a list but `Array((None,2))` yields an array.
### Environment info
- `datasets` version: 2.11.0
- Platform: Windows-10-10.0.19045-SP0
- Python version: 3.9.13
- Huggingface_hub version: 0.13.4
- PyArrow version: 11.0.0
- Pandas version: 1.4.4
| 5,719 |
https://github.com/huggingface/datasets/issues/5717 | Errror when saving to disk a dataset of images | [
"Looks like as long as the number of shards makes a batch lower than 1000 images it works. In my training set I have 40K images. If I use `num_shards=40` (batch of 1000 images) I get the error, but if I update it to `num_shards=50` (batch of 800 images) it works.\r\n\r\nI will be happy to share my dataset privately if it can help to better debug.",
"Hi! I didn't manage to reproduce this behavior, so sharing the dataset with us would help a lot. \r\n\r\n> My dataset is around 50K images, is this error might be due to a bad image?\r\n\r\nThis shouldn't be the case as we save raw data to disk without decoding it.",
"OK, thanks! The dataset is currently hosted on a gcs bucket. How would you like to proceed for sharing the link? ",
"You could follow [this](https://cloud.google.com/storage/docs/collaboration#browser) procedure or upload the dataset to Google Drive (50K images is not that much unless high-res) and send me an email with the link.",
"Thanks @mariosasko. I just sent you the GDrive link.",
"Thanks @jplu! I managed to reproduce the `TypeError` - it stems from [this](https://github.com/huggingface/datasets/blob/e3f4f124a1b118a5bfff5bae76b25a68aedbebbc/src/datasets/features/image.py#L258-L264) line, which can return a `ChunkedArray` (its mask is also chunked then, which Arrow does not allow) when the embedded data is too big to fit in a standard `Array`.\r\n\r\nI'm working on a fix.",
"@yairl-dn You should be able to bypass this issue by reducing `datasets.config.DEFAULT_MAX_BATCH_SIZE` (1000 by default)\r\n\r\nIn Datasets 3.0, the Image storage format will be simplified, so this should be easier to fix then.",
"The same error occurs with my save_to_disk() of Audio() items. I still get it with:\r\n```python\r\nimport datasets\r\ndatasets.config.DEFAULT_MAX_BATCH_SIZE=35\r\nfrom datasets import Features, Array2D, Value, Dataset, Sequence, Audio\r\n```\r\n\r\n```\r\nSaving the dataset (41/47 shards): 88%|██████████████████████████████████████████▉ | 297/339 [01:21<00:11, 3.65 examples/s]\r\nTraceback (most recent call last):\r\nFile \"/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py\", line 155, in <module>\r\ncreate_dataset(args)\r\nFile \"/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py\", line 137, in create_dataset\r\nhf_dataset.save_to_disk(args.outds)\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_dataset.py\", line 1532, in save_to_disk\r\nfor job_id, done, content in Dataset._save_to_disk_single(**kwargs):\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_dataset.py\", line 1563, in _save_to_disk_single\r\nwriter.write_table(pa_table)\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_writer.py\", line 574, in write_table\r\npa_table = embed_table_storage(pa_table)\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2307, in embed_table_storage\r\narrays = [\r\n^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2308, in <listcomp>\r\nembed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 1831, in wrapper\r\nreturn pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 1831, in <listcomp>\r\nreturn pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2177, in embed_array_storage\r\nreturn feature.embed_storage(array)\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/features/audio.py\", line 276, in embed_storage\r\nstorage = pa.StructArray.from_arrays([bytes_array, path_array], [\"bytes\", \"path\"], mask=bytes_array.is_null())\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"pyarrow/array.pxi\", line 2850, in pyarrow.lib.StructArray.from_arrays\r\nFile \"pyarrow/array.pxi\", line 3290, in pyarrow.lib.c_mask_inverted_from_obj\r\nTypeError: Mask must be a pyarrow.Array of type boolean\r\n```",
"Similar to @jaggzh, setting `datasets.config.DEFAULT_MAX_BATCH_SIZE` did not help in my case (same error here but for different dataset: https://github.com/Stanford-AIMI/RRG24/issues/2).\r\n\r\nThis is also reproducible with this open dataset: https://huggingface.co/datasets/nlphuji/winogavil/discussions/1\r\n\r\nHere's some code to do so:\r\n```python\r\nimport datasets\r\n\r\ndatasets.config.DEFAULT_MAX_BATCH_SIZE = 1\r\n\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"nlphuji/winogavil\")\r\n\r\nds.save_to_disk(\"temp\")\r\n```\r\n\r\nI've done some more debugging with `datasets==2.18.0` (which incorporates PR #6283 as suggested by @lhoestq in the above dataset discussion), and it seems like the culprit might now be these lines: https://github.com/huggingface/datasets/blob/ca8409a8bec4508255b9c3e808d0751eb1005260/src/datasets/table.py#L2111-L2115\r\n\r\nFrom what I understand (and apologies I'm new to pyarrow), for an Image or Audio feature, these lines recursively call `embed_array_storage` for a list of either feature, ending up in the feature's `embed_storage` function. For all values in the list, `embed_storage` reads the bytes if they're not already loaded. The issue is the list being passed to the first recursive call is `array.values` which are the underlying values of `array` regardless of `array`'s slicing (as influenced by parameters such as `datasets.config.DEFAULT_MAX_BATCH_SIZE`). This results in the same overflowing list of bytes that result in the ChunkedArray being returned in `embed_storage`. Even if the array weren't to overflow and this code ran without throwing an exception, it still seems incorrect to load all values if you ultimately only want some subset with `ListArray.from_arrays(offsets, values)`; it seems some wasted effort if those values thrown out will get loaded again in the next batch and vice versa for the current batch of values during later batches.\r\n\r\nMaybe there's a fix where you could pass a mask to `embed_storage` such that it only loads the values you ultimately want for the current batch? Curious to see if you agree with this diagnosis of the problem and if you think this fix is viable @mariosasko?",
"Would be nice if they have something similar to Dagshub's S3 sync; it worked like a charm for my bigger datasets.",
"I guess also the proposed masking solution simply enables `datasets.config.DEFAULT_MAX_BATCH_SIZE` by reducing the number of elements loaded, it does not address the underlying problem of trying to load all the images as bytes into a pyarrow array.\r\n\r\nI'm happy to turn this into an actual PR but here's what I've implemented locally at `tables.py:embed_array_storage` to fix the above test case (`nlphuji/winogavil`) and my own use case:\r\n```python\r\n elif pa.types.is_list(array.type):\r\n # feature must be either [subfeature] or Sequence(subfeature)\r\n # Merge offsets with the null bitmap to avoid the \"Null bitmap with offsets slice not supported\" ArrowNotImplementedError\r\n array_offsets = _combine_list_array_offsets_with_mask(array)\r\n\r\n # mask underlying struct array so array_values.to_pylist()\r\n # fills None (see feature.embed_storage)\r\n idxs = np.arange(len(array.values))\r\n idxs = pa.ListArray.from_arrays(array_offsets, idxs).flatten()\r\n mask = np.ones(len(array.values)).astype(bool)\r\n mask[idxs] = False\r\n mask = pa.array(mask)\r\n # indexing 0 might be problematic but not sure\r\n # how else to get arbitrary keys from a struct array\r\n array_keys = array.values[0].keys()\r\n # is array.values always a struct array?\r\n array_values = pa.StructArray.from_arrays(\r\n arrays=[array.values.field(k) for k in array_keys],\r\n names=array_keys,\r\n mask=mask,\r\n )\r\n if isinstance(feature, list):\r\n return pa.ListArray.from_arrays(array_offsets, _e(array_values, feature[0]))\r\n if isinstance(feature, Sequence) and feature.length == -1:\r\n return pa.ListArray.from_arrays(array_offsets, _e(array_values, feature.feature))\r\n```\r\n\r\nAgain though I'm new to pyarrow so this might not be the cleanest implementation, also I'm really not sure if there are other cases where this solution doesn't work. Would love to get some feedback from the hf folks!",
"I have the same issue, with an audio dataset where file sizes vary significantly (~0.2-200 mb). Reducing `datasets.config.DEFAULT_MAX_BATCH_SIZE` doesn't help.",
"Still the problem is occured.\r\nHuggingface is sucks 🤮🤮🤮🤮"
] | ### Describe the bug
Hello!
I have an issue when I try to save on disk my dataset of images. The error I get is:
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1442, in save_to_disk
for job_id, done, content in Dataset._save_to_disk_single(**kwargs):
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1473, in _save_to_disk_single
writer.write_table(pa_table)
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_writer.py", line 570, in write_table
pa_table = embed_table_storage(pa_table)
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2268, in embed_table_storage
arrays = [
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2269, in <listcomp>
embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 1817, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 1817, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2142, in embed_array_storage
return feature.embed_storage(array)
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/features/image.py", line 269, in embed_storage
storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
File "pyarrow/array.pxi", line 2766, in pyarrow.lib.StructArray.from_arrays
File "pyarrow/array.pxi", line 2961, in pyarrow.lib.c_mask_inverted_from_obj
TypeError: Mask must be a pyarrow.Array of type boolean
```
My dataset is around 50K images, is this error might be due to a bad image?
Thanks for the help.
### Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("imagefolder", data_dir="/path/to/dataset")
dataset["train"].save_to_disk("./myds", num_shards=40)
```
### Expected behavior
Having my dataset properly saved to disk.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
- Python version: 3.10.10
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 2.0.0 | 5,717 |
https://github.com/huggingface/datasets/issues/5716 | Handle empty audio | [
"Hi! Can you share one of the problematic audio files with us?\r\n\r\nI tried to reproduce the error with the following code: \r\n```python\r\nimport soundfile as sf\r\nimport numpy as np\r\nfrom datasets import Audio\r\n\r\nsf.write(\"empty.wav\", np.array([]), 16000)\r\nAudio(sampling_rate=24000).decode_example({\"path\": \"empty.wav\", \"bytes\": None})\r\n```\r\nBut without success.\r\n\r\nAlso, what version of `librosa` is installed in your env? (You can get this info with `python -c \"import librosa; print(librosa.__version__)`)\r\n\r\n",
"I'm closing this issue as the reproducer hasn't been provided."
] | Some audio paths exist, but they are empty, and an error will be reported when reading the audio path.How to use the filter function to avoid the empty audio path?
when a audio is empty, when do resample , it will break:
`array, sampling_rate = sf.read(f) array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate)` | 5,716 |
https://github.com/huggingface/datasets/issues/5715 | Return Numpy Array (fixed length) Mode, in __get_item__, Instead of List | [
"Hi! \r\n\r\nYou can use [`.set_format(\"np\")`](https://huggingface.co/docs/datasets/process#format) to get NumPy arrays (or Pytorch tensors with `.set_format(\"torch\")`) in `__getitem__`.\r\n\r\nAlso, have you been able to reproduce the linked PyTorch issue with a HF dataset?\r\n "
] | ### Feature request
There are old known issues, but they can be easily forgettable problems in multiprocessing with pytorch-dataloader:
Too high usage of RAM or shared-memory in pytorch when we set num workers > 1 and returning type of dataset or dataloader is "List" or "Dict".
https://github.com/pytorch/pytorch/issues/13246
With huggingface datasets, unfortunately, the default return type is the list, so the problem is raised too often if we do not set anything for the issue.
However, this issue can be released when the returning output is fixed in length.
Therefore, I request the mode, returning outputs with fixed length (e.g. numpy array) rather than list.
The design would be good when we load datasets as
```python
load_dataset(..., with_return_as_fixed_tensor=True)
```
### Motivation
The general solution for this issue is already in the comments: https://github.com/pytorch/pytorch/issues/13246#issuecomment-905703662
: Numpy or Pandas seems not to have problems, while both have the string type.
(I'm not sure that the sequence of huggingface datasets can solve this problem as well)
### Your contribution
I'll read it ! thanks | 5,715 |
https://github.com/huggingface/datasets/issues/5713 | ArrowNotImplementedError when loading dataset from the hub | [
"Hi Julien ! This sounds related to https://github.com/huggingface/datasets/issues/5695 - TL;DR: you need to have shards smaller than 2GB to avoid this issue\r\n\r\nThe number of rows per shard is computed using an estimated size of the full dataset, which can sometimes lead to shards bigger than `max_shard_size`. The estimation is currently done using the first samples of the dataset (which can surely be improved). We should probably open an issue to fix this once and for all.\r\n\r\nAnyway for your specific dataset I'd suggest you to pass `num_shards` instead of `max_shard_size` for now, and make sure to have enough shards to end up with shards smaller than 2GB",
"Hi Quentin! Thanks a lot! Using `num_shards` instead of `max_shard_size` works as expected.\r\n\r\nIndeed the way you describe how the size is computed cannot really work with the dataset I'm building as all the image doesn't have the same resolution and then size. Opening an issue on this might be a good idea."
] | ### Describe the bug
Hello,
I have created a dataset by using the image loader. Once the dataset is created I try to download it and I get the error:
```
Traceback (most recent call last):
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1860, in _prepare_split_single
for _, table in generator:
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables
for batch_idx, record_batch in enumerate(
File "pyarrow/_parquet.pyx", line 1323, in iter_batches
File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1893, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Steps to reproduce the bug
Create the dataset and push it to the hub:
```python
from datasets import load_dataset
dataset = load_dataset("imagefolder", data_dir="/path/to/dataset")
dataset.push_to_hub("org/dataset-name", private=True, max_shard_size="1GB")
```
Then use it:
```python
from datasets import load_dataset
dataset = load_dataset("org/dataset-name")
```
### Expected behavior
To properly download and use the pushed dataset.
Something else to note is that I specified to have shards of 1GB max, but at the end, for the train set, it is an almost 7GB single file that is pushed.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
- Python version: 3.10.10
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 2.0.0 | 5,713 |
https://github.com/huggingface/datasets/issues/5712 | load_dataset in v2.11.0 raises "ValueError: seek of closed file" in np.load() | [
"Closing since this is a duplicate of #5711",
"> Closing since this is a duplicate of #5711\r\n\r\nSorry @mariosasko , my internet went down went submitting the issue, and somehow it ended up creating a duplicate"
] | ### Describe the bug
Hi,
I have some `dataset_load()` code of a custom offline dataset that works with datasets v2.10.1.
```python
ds = datasets.load_dataset(path=dataset_dir,
name=configuration,
data_dir=dataset_dir,
cache_dir=cache_dir,
aux_dir=aux_dir,
# download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
num_proc=18)
```
When upgrading datasets to 2.11.0, it fails with error
```
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 1651, in _download_and_prepare
super()._download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 964, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 682, in _split_generators
self.some_function()
File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 1314, in some_function()
x_df = pd.DataFrame({'cell_type_descriptor': fp['x'].tolist()})
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/numpy/lib/npyio.py", line 248, in __getitem__
bytes = self.zip.open(key)
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 1530, in open
fheader = zef_file.read(sizeFileHeader)
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 744, in read
self._file.seek(self._pos)
ValueError: seek of closed file
```
### Steps to reproduce the bug
Sorry, I cannot share the data or code because they are not mine to share, but the point of failure is a call in `some_function()`
```python
with np.load(filename) as fp:
x_df = pd.DataFrame({'feature': fp['x'].tolist()})
```
I'll try to generate a short snippet that reproduces the error.
### Expected behavior
I would expect that `load_dataset` works on the custom datasets generation script for v2.11.0 the same way it works for 2.10.1, without making `np.load()` give a `ValueError: seek of closed file` error.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28
- Python version: 3.10.8
- Huggingface_hub version: 0.12.0
- PyArrow version: 11.0.0
- Pandas version: 1.5.2
- numpy: 1.24.2
- This is an offline dataset that uses `datasets.config.HF_DATASETS_OFFLINE = True` in the generation script.
| 5,712 |
https://github.com/huggingface/datasets/issues/5711 | load_dataset in v2.11.0 raises "ValueError: seek of closed file" in np.load() | [
"It seems like https://github.com/huggingface/datasets/pull/5626 has introduced this error. \r\n\r\ncc @albertvillanova \r\n\r\nI think replacing:\r\nhttps://github.com/huggingface/datasets/blob/0803a006db1c395ac715662cc6079651f77c11ea/src/datasets/download/streaming_download_manager.py#L777-L778\r\nwith:\r\n```python\r\nreturn np.load(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), *args, **kwargs)\r\n```\r\nshould fix the issue.\r\n\r\n(Maybe this is also worth doing a patch release afterward)",
"Thanks for reporting, @rcasero.\r\n\r\nI can have a look..."
] | ### Describe the bug
Hi,
I have some `dataset_load()` code of a custom offline dataset that works with datasets v2.10.1.
```python
ds = datasets.load_dataset(path=dataset_dir,
name=configuration,
data_dir=dataset_dir,
cache_dir=cache_dir,
aux_dir=aux_dir,
# download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
num_proc=18)
```
When upgrading datasets to 2.11.0, it fails with error
```
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 1651, in _download_and_prepare
super()._download_and_prepare(
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 964, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 682, in _split_generators
self.some_function()
File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 1314, in some_function()
x_df = pd.DataFrame({'cell_type_descriptor': fp['x'].tolist()})
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/numpy/lib/npyio.py", line 248, in __getitem__
bytes = self.zip.open(key)
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 1530, in open
fheader = zef_file.read(sizeFileHeader)
File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 744, in read
self._file.seek(self._pos)
ValueError: seek of closed file
```
### Steps to reproduce the bug
Sorry, I cannot share the data or code because they are not mine to share, but the point of failure is a call in `some_function()`
```python
with np.load(embedding_filename) as fp:
x_df = pd.DataFrame({'feature': fp['x'].tolist()})
```
I'll try to generate a short snippet that reproduces the error.
### Expected behavior
I would expect that `load_dataset` works on the custom datasets generation script for v2.11.0 the same way it works for 2.10.1, without making `np.load()` give a `ValueError: seek of closed file` error.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28
- Python version: 3.10.8
- Huggingface_hub version: 0.12.0
- PyArrow version: 11.0.0
- Pandas version: 1.5.2
- numpy: 1.24.2
- This is an offline dataset that uses `datasets.config.HF_DATASETS_OFFLINE = True` in the generation script.
| 5,711 |
https://github.com/huggingface/datasets/issues/5710 | OSError: Memory mapping file failed: Cannot allocate memory | [
"Hi! This error means that PyArrow's internal [`mmap`](https://man7.org/linux/man-pages/man2/mmap.2.html) call failed to allocate memory, which can be tricky to debug. Since this error is more related to PyArrow than us, I think it's best to report this issue in their [repo](https://github.com/apache/arrow) (they are more experienced on this matter). Also, googling \"mmap cannot allocate memory\" returns some approaches to solving this problem."
] | ### Describe the bug
Hello, I have a series of datasets each of 5 GB, 600 datasets in total. So together this makes 3TB.
When I trying to load all the 600 datasets into memory, I get the above error message.
Is this normal because I'm hitting the max size of memory mapping of the OS?
Thank you
```terminal
0_21/cache-e9c42499f65b1881.arrow
load_hf_datasets_from_disk: 82%|████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 494/600 [07:26<01:35, 1.11it/s]
Traceback (most recent call last):
File "example_load_genkalm_dataset.py", line 35, in <module>
multi_ds.post_process(max_node_num=args.max_node_num,max_seq_length=args.max_seq_length,delay=args.delay)
File "/home/geng/GenKaLM/src/dataloader/dataset.py", line 142, in post_process
genkalm_dataset = GenKaLM_Dataset.from_hf_dataset(path_or_name=ds_path, max_seq_length=self.max_seq_length,
File "/home/geng/GenKaLM/src/dataloader/dataset.py", line 47, in from_hf_dataset
hf_ds = load_from_disk(path_or_name)
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/load.py", line 1848, in load_from_disk
return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1549, in load_from_disk
arrow_table = concat_tables(
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 1805, in concat_tables
tables = list(tables)
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1550, in <genexpr>
table_cls.from_file(Path(dataset_path, data_file["filename"]).as_posix())
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 1065, in from_file
table = _memory_mapped_arrow_table_from_file(filename)
File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 50, in _memory_mapped_arrow_table_from_file
memory_mapped_stream = pa.memory_map(filename)
File "pyarrow/io.pxi", line 950, in pyarrow.lib.memory_map
File "pyarrow/io.pxi", line 911, in pyarrow.lib.MemoryMappedFile._open
File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 115, in pyarrow.lib.check_status
OSError: Memory mapping file failed: Cannot allocate memory
```
### Steps to reproduce the bug
Sorry I can not provide a reproducible code as the data is stored on my server and it's too large to share.
### Expected behavior
I expect the 3TB of data can be fully mapped to memory
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-4.15.0-204-generic-x86_64-with-debian-buster-sid
- Python version: 3.7.6
- PyArrow version: 11.0.0
- Pandas version: 1.0.1 | 5,710 |
https://github.com/huggingface/datasets/issues/5709 | Manually dataset info made not taken into account | [
"hi @jplu ! Did I understand you correctly that you create the dataset, push it to the Hub with `.push_to_hub` and you see a `dataset_infos.json` file there, then you edit this file, load the dataset with `load_dataset` and you don't see any changes in `.info` attribute of a dataset object? \r\n\r\nThis is actually weird that when you push your dataset to the Hub, a `dataset_infos.json` file is created, because this file is deprecated and it should create `README.md` with the `dataset_info` field instead. Some keys are also deprecated, like \"supervised_keys\" and \"task_templates\".\r\n\r\nCan you please provide a toy reproducible example of how you create and push the dataset? And also why do you want to change this file, especially the number of bytes and examples?",
"Hi @polinaeterna Yes I have created the dataset with `Dataset.from_dict` applied some updates afterward and when I pushed to the hub I had a `dataset_infos.json` file and there was a `README.md` file as well.\r\n\r\nI didn't know that the JSON file was deprecated. So I have built my dataset with `ImageBuilder` instead and now it works like a charm without having to touch anything.\r\n\r\nI haven't succeed to reproduce the creation of the JSON file with a toy example, hence, I certainly did some mistakes when I have manipulated my dataset manually at first. My bad."
] | ### Describe the bug
Hello,
I'm manually building an image dataset with the `from_dict` approach. I also build the features with the `cast_features` methods. Once the dataset is created I push it on the hub, and a default `dataset_infos.json` file seems to have been automatically added to the repo in same time. Hence I update it manually with all the missing info, but when I download the dataset the info are never updated.
Former `dataset_infos.json` file:
```
{"default": {
"description": "",
"citation": "",
"homepage": "",
"license": "",
"features": {
"image": {
"_type": "Image"
},
"labels": {
"names": [
"Fake",
"Real"
],
"_type": "ClassLabel"
}
},
"splits": {
"validation": {
"name": "validation",
"num_bytes": 901010094.0,
"num_examples": 3200,
"dataset_name": null
},
"train": {
"name": "train",
"num_bytes": 901010094.0,
"num_examples": 3200,
"dataset_name": null
}
},
"download_size": 1802008414,
"dataset_size": 1802020188.0,
"size_in_bytes": 3604028602.0
}}
```
After I update it manually it looks like:
```
{
"bstrai--deepfake-detection":{
"description":"",
"citation":"",
"homepage":"",
"license":"",
"features":{
"image":{
"decode":true,
"id":null,
"_type":"Image"
},
"labels":{
"num_classes":2,
"names":[
"Fake",
"Real"
],
"id":null,
"_type":"ClassLabel"
}
},
"supervised_keys":{
"input":"image",
"output":"labels"
},
"task_templates":[
{
"task":"image-classification",
"image_column":"image",
"label_column":"labels"
}
],
"config_name":null,
"splits":{
"validation":{
"name":"validation",
"num_bytes":36627822,
"num_examples":123,
"dataset_name":"deepfake-detection"
},
"train":{
"name":"train",
"num_bytes":901023694,
"num_examples":3200,
"dataset_name":"deepfake-detection"
}
},
"download_checksums":null,
"download_size":937562209,
"dataset_size":937651516,
"size_in_bytes":1875213725
}
}
```
Anything I should do to have the new infos in the `dataset_infos.json` to be taken into account? Or it is not possible yet?
Thanks!
### Steps to reproduce the bug
-
### Expected behavior
-
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
- Python version: 3.10.10
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 2.0.0 | 5,709 |
https://github.com/huggingface/datasets/issues/5708 | Dataset sizes are in MiB instead of MB in dataset cards | [
"Example of bulk edit: https://huggingface.co/datasets/aeslc/discussions/5",
"looks great! \r\n\r\nDo you encode the fact that you've already converted a dataset? (to not convert it twice) or do you base yourself on the info contained in `dataset_info`",
"I am only looping trough the dataset cards, assuming that all of them were created with MiB.\r\n\r\nI agree we should only run the bulk edit once for all canonical datasets: I'm using a for-loop over canonical datasets.",
"yes, worst case, we have this in structured data:\r\n\r\n<img width=\"337\" alt=\"image\" src=\"https://user-images.githubusercontent.com/326577/230037051-06caddcb-08c8-4953-a710-f3d122917db3.png\">\r\n",
"I have just included as well the conversion from MB to GB if necessary. See: \r\n- https://huggingface.co/datasets/bookcorpus/discussions/2/files\r\n- https://huggingface.co/datasets/asnq/discussions/2/files",
"Nice. Is it another loop? Because in https://huggingface.co/datasets/amazon_us_reviews/discussions/2/files we have `32377.29 MB` for example",
"First, I tested some batches to check the changes made. Then I incorporated the MB to GB conversion. Now I'm running the rest.",
"The bulk edit parsed 751 canonical datasets and updated 166.",
"Thanks a lot!\r\n\r\nThe sizes now match as expected!\r\n\r\n<img width=\"1446\" alt=\"Capture d’écran 2023-04-05 à 16 10 15\" src=\"https://user-images.githubusercontent.com/1676121/230107044-ac2a76ea-a4fe-4e81-a925-f464b85f5edd.png\">\r\n",
"I made another bulk edit of ancient canonical datasets that were moved to community organization. I have parsed 11 datasets and opened a PR on 3 of them:\r\n- [x] \"allenai/scicite\": https://huggingface.co/datasets/allenai/scicite/discussions/3\r\n- [x] \"allenai/scifact\": https://huggingface.co/datasets/allenai/scifact/discussions/2\r\n- [x] \"dair-ai/emotion\": https://huggingface.co/datasets/dair-ai/emotion/discussions/6",
"should we force merge the PR and close this issue?",
"I merged the PRs for \"scicite\" and \"scifact\"."
] | As @severo reported in an internal discussion (https://github.com/huggingface/moon-landing/issues/5929):
Now we show the dataset size:
- from the dataset card (in the side column)
- from the datasets-server (in the viewer)
But, even if the size is the same, we see a mismatch because the viewer shows MB, while the info from the README generally shows MiB (even if it's written MB -> https://huggingface.co/datasets/blimp/blob/main/README.md?code=true#L1932)
<img width="664" alt="Capture d’écran 2023-04-04 à 10 16 01" src="https://user-images.githubusercontent.com/1676121/229730887-0bd8fa6e-9462-46c6-bd4e-4d2c5784cabb.png">
TODO: Values to be fixed in: `Size of downloaded dataset files:`, `Size of the generated dataset:` and `Total amount of disk used:`
- [x] Bulk edit on the Hub to fix this in all canonical datasets
- [x] Bulk PR on the Hub to fix ancient canonical datasets that were moved to organizations | 5,708 |
https://github.com/huggingface/datasets/issues/5706 | Support categorical data types for Parquet | [
"Hi ! We could definitely a type that holds the categories and uses a DictionaryType storage. There's a ClassLabel type that is similar with a 'names' parameter (similar to a id2label in deep learning frameworks) that uses an integer array as storage.\r\n\r\nIt can be added in `features.py`. Here are some pointers:\r\n- the conversion from HF type to PyArrow type is done in `get_nested_type`\r\n- the conversion from Pyarrow type to HF type is done in `generate_from_arrow_type`\r\n- `encode_nested_example` and `decode_nested_example` are used to do user's value (what users see) <-> storage value (what is in the pyarrow.array) if there's any conversion to do",
"@kklemon did you implement this? Otherwise I would like to give it a try",
"@mhattingpete no, I hadn't time for this so far. Feel free to work on this.",
"#self-assign",
"This would be super useful, so +1. \r\n\r\nAlso, these prior issues/PRs seem relevant: \r\nhttps://github.com/huggingface/datasets/issues/1906\r\nhttps://github.com/huggingface/datasets/pull/1936",
"Hi, this is a really useful feature, has this been implemented yet? ",
"Hey folks -- I'm thinking about trying a PR for this. As far as I can tell the only sticky point is that auto-generation of features from a pyarrow schema will fail under the current `generate_from_arrow_type` function because there is no encoding of the categorical string label -> int map in the pa.dictionary type itself; that is stored with the full array. \r\n\r\nI see two ways to solve this. Option 1 is to require datasets with categorical types to use pyarrow schema metadata to encode the entire HF feature dictionary, that way categorical types don't ever need to be inferred from the pa type alone. The downside to this is that it means that these datasets will be a bit brittle, as if the feature encoding API ever changes, they will suddenly be unloadable. \r\n\r\nThe other option is to modify `generate_from_arrow_type` to take per-field metadata, and include just that metadata (the category labels) in the schema metadata. \r\n\r\nDoes anyone at HF have any preference on these two (or alternate) approaches?",
"Maybe we don't need to store the string label -> int map in the categorical for the corresponding `datasets` feature ?",
"I think that does need to be stored in the Feature object. Similar to how\r\n`ClassLabel` needs the class names for some of the provided default\r\nfunctionality (e.g., encoding or decoding values) here, a categorical\r\nfeature needs the same. Without storing that information, would you suggest\r\nthat categorical features just be stored internally as integer arrays?\r\n\r\nOn Fri, Sep 8, 2023, 5:37 AM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> Maybe we don't need to store the string label -> int map in the\r\n> categorical for the corresponding datasets feature ?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1711375652>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5XZV3RA4GBRVBLJN72LXZLROZANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n",
"Well IIRC you can concatenate two Arrow arrays with different dictionaries together. But for `datasets` would mean updating the `datasets` features when concatenating two arrays of the same type, which is not supported right now. That's why if there is a way to have it without storing the mapping in the feature object it would be nice.\r\n\r\nFor decoding we do have the string<->integer mapping from the array `dictionary` attribute so we're fine. For encoding I think it can work if we only encode when converting python objects to pyarrow in `TypedSequence.__arrow_array__` in `arow_writer.py`. It can work by converting the python objects to a pyarrow array and then use the `dictionary_encode` method.\r\n\r\nAnother concern about concatenation: I noticed **pyarrow creates the new dictionary and indices in memory** when concatenating two dictionary encoded arrays. This can be a problem for big datastets, and we should probably use ChunkedArray objects instead. This can surely be taken care of in `array_concat` in `table.py`\r\n\r\ncc @mariosasko in case you have other ideas\r\n\r\n",
"Hmm, that is a good point. What if we implemented this feature first in a\r\nmanner that didn't allow concatenation of arrays with different index to\r\ncategory maps? Then concatenation would be very straightforward, and I\r\nthink this is reasonable if the index to category map is stored in the\r\nschema as well. Obviously, this is limited in how folks could use the\r\nfeature, but they can always fall back to raw strings if needed, and as\r\nusage increases we'll have more data to see what the right solution here\r\nis.\r\n\r\nOn Fri, Sep 8, 2023, 6:49 AM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> Well IIRC you can concatenate two Arrow arrays with different dictionaries\r\n> together. But for datasets would mean updating the datasets features when\r\n> concatenating two arrays of the same type, which is not supported right\r\n> now. That's why if there is a way to have it without storing the mapping in\r\n> the feature object it would be nice.\r\n>\r\n> For decoding we do have the string<->integer mapping from the array\r\n> dictionary attribute so we're fine. For encoding I think it can work if\r\n> we only encode when converting python objects to pyarrow in\r\n> TypedSequence.__arrow_array__ in arow_writer.py. It can work by\r\n> converting the python objects to a pyarrow array and then use the\r\n> dictionary_encode method.\r\n>\r\n> Another concern about concatenation: I noticed *pyarrow creates the new\r\n> dictionary and indices in memory* when concatenating two dictionary\r\n> encoded arrays. This can be a problem for big datastets, and we should\r\n> probably use ChunkedArray objects instead. This can surely be taken care of\r\n> in array_concat in table.py\r\n>\r\n> cc @mariosasko <https://github.com/mariosasko> in case you have other\r\n> ideas\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1711468806>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5X4E2KC2IXLDPYR3XZLXZLZ2FANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n",
"@lhoestq @mariosasko just re-pinging on this so I can push forward further here. What are your thoughts on disallowing concatenation of categorical arrays for now such that the index to category map can be stored in the schema metadata? And/or other approaches that should be taken here?\r\n",
"I think the easiest for now would be to add a `dictionary_decode` argument to the parquet loaders that would convert the dictionary type back to strings when set to `True`, and make `dictionary_decode=False` raise `NotImplementedError` for now if there are dictionary type columns. Would that be ok as a first step ?",
"I mean, that would certainly be easiest but I don't think it really solves this issue in a meaningful way. This just changes the burden from string conversion from the user to HF Datasets, but doesn't actually enable HF Datasets to take advantage of the (very significant) storage and associated speed/memory savings offered by using categorical types. Given that those savings are what is of real interest here, I think keeping it explicit that it is not supported (and forcing the user to do the conversion) might actually be better that way this problem stays top of mind.\r\n\r\nIs there an objection with supporting categorical types explicitly through the medium I outlined above, where the error is raised if you try to concat two differently typed categorical columns?",
"> This just changes the burden from string conversion from the user to HF Datasets, but doesn't actually enable HF Datasets to take advantage of the (very significant) storage and associated speed/memory savings offered by using categorical types.\r\n\r\nThere's already a ClassLabel type that does pretty much the same thing (store as integer instead of string) if it can help\r\n\r\n> Is there an objection with supporting categorical types explicitly through the medium I outlined above, where the error is raised if you try to concat two differently typed categorical columns?\r\n\r\nYea we do concatenation quite often (e.g. in `map`) so I don't think this is a viable option",
"But how often in the cases where concatenation is done now would the\r\ncategorical label vocabulary actually change? I think it would be in\r\nbasically none of them. And in such cases, concatenation remains very easy,\r\nno?\r\n\r\nOn Fri, Sep 22, 2023, 12:02 PM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> This just changes the burden from string conversion from the user to HF\r\n> Datasets, but doesn't actually enable HF Datasets to take advantage of the\r\n> (very significant) storage and associated speed/memory savings offered by\r\n> using categorical types.\r\n>\r\n> There's already a ClassLabel type that does pretty much the same thing\r\n> (store as integer instead of string) if it can help\r\n>\r\n> Is there an objection with supporting categorical types explicitly through\r\n> the medium I outlined above, where the error is raised if you try to concat\r\n> two differently typed categorical columns?\r\n>\r\n> Yea we do concatenation quite often (e.g. in map) so I don't think this\r\n> is a viable option\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1731667012>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5X5CGWFXDCML6UKCWYLX3WZBXANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n",
"Arrow IPC seems to require unified dictionaries anyway so actually we could surely focus only on this use case indeed @mmcdermott \r\n\r\nSo defining a new Feature type in `datasets` that contains the dictionary mapping should be fine (and concatenation would work out of the box), and it should also take care of checking that the data it encodes/decodes has the right dictionary. Do you think it can be done without impacting iterating speed for the other types @mariosasko ?\r\n\r\nRight now we have little bandwidth to work in this kind of things though"
] | ### Feature request
Huggingface datasets does not seem to support categorical / dictionary data types for Parquet as of now. There seems to be a `TODO` in the code for this feature but no implementation yet. Below you can find sample code to reproduce the error that is currently thrown when attempting to read a Parquet file with categorical columns:
```python
import pandas as pd
import pyarrow.parquet as pq
from datasets import load_dataset
# Create categorical sample DataFrame
df = pd.DataFrame({'type': ['foo', 'bar']}).astype('category')
df.to_parquet('data.parquet')
# Read back as pyarrow table
table = pq.read_table('data.parquet')
print(table.schema)
# type: dictionary<values=string, indices=int32, ordered=0>
# Load with huggingface datasets
load_dataset('parquet', data_files='data.parquet')
```
Error:
```
Traceback (most recent call last):
File ".venv/lib/python3.10/site-packages/datasets/builder.py", line 1875, in _prepare_split_single
writer.write_table(table)
File ".venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 566, in write_table
self._build_writer(inferred_schema=pa_table.schema)
File ".venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 379, in _build_writer
inferred_features = Features.from_arrow_schema(inferred_schema)
File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1622, in from_arrow_schema
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1622, in <dictcomp>
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1361, in generate_from_arrow_type
raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table
NotImplementedError
```
### Motivation
Categorical data types, as offered by Pandas and implemented with the `DictionaryType` dtype in `pyarrow` can significantly reduce dataset size and are a handy way to turn textual features into numerical representations and back. Lack of support in Huggingface datasets greatly reduces compatibility with a common Pandas / Parquet feature.
### Your contribution
I could provide a PR. However, it would be nice to have an initial complexity estimate from one of the core developers first. | 5,706 |
https://github.com/huggingface/datasets/issues/5705 | Getting next item from IterableDataset took forever. | [
"Hi! It can take some time to iterate over Parquet files as big as yours, convert the samples to Python, and find the first one that matches a filter predicate before yielding it...",
"Thanks @mariosasko, I figured it was the filter operation. I'm closing this issue because it is not a bug, it is the expected beheaviour."
] | ### Describe the bug
I have a large dataset, about 500GB. The format of the dataset is parquet.
I then load the dataset and try to get the first item
```python
def get_one_item():
dataset = load_dataset("path/to/datafiles", split="train", cache_dir=".", streaming=True)
dataset = dataset.filter(lambda example: example['text'].startswith('Ar'))
print(next(iter(dataset)))
```
However, this function never finish. I waited ~10mins, the function was still running so I killed the process. I'm now using `line_profiler` to profile how long it would take to return one item. I'll be patient and wait for as long as it needs.
I suspect the filter operation is the reason why it took so long. Can I get some possible reasons behind this?
### Steps to reproduce the bug
Unfortunately without my data files, there is no way to reproduce this bug.
### Expected behavior
With `IteralbeDataset`, I expect the first item to be returned instantly.
### Environment info
- datasets version: 2.11.0
- python: 3.7.12 | 5,705 |
https://github.com/huggingface/datasets/issues/5702 | Is it possible or how to define a `datasets.Sequence` that could potentially be either a dict, a str, or None? | [
"Hi ! `datasets` uses Apache Arrow as backend to store the data, and it requires each column to have a fixed type. Therefore a column can't have a mix of dicts/lists/strings.\r\n\r\nThough it's possible to have one (nullable) field for each type:\r\n```python\r\nfeatures = Features({\r\n \"text_alone\": Value(\"string\"),\r\n \"text_with_idxes\": {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": Value(\"int64\")\r\n }\r\n})\r\n```\r\n\r\nbut you'd have to reformat your data fiels or define a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) to apply the appropriate parsing.\r\n\r\nAlternatively we could explore supporting the Arrow [Union](https://arrow.apache.org/docs/python/generated/pyarrow.UnionType.html) type which could solve this issue, but I don't know if it's well supported in python and with the rest of the ecosystem like Parquet",
"@lhoestq Thank you! I further wonder if it's possible to use list subscripts as keys of a feature? Like\r\n```python\r\nfeatures = Features({\r\n 0: Value(\"string\"),\r\n 1: {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": [Value(\"int64\")]\r\n },\r\n 2: Value(\"string\"),\r\n # ...\r\n})\r\n```",
"Column names need to be strings, so you could use \"1\", \"2\", etc. or give appropriate column names",
"@lhoestq Got it. Thank you!"
] | ### Feature request
Hello! Apologies if my question sounds naive:
I was wondering if it’s possible, or how one would go about defining a 'datasets.Sequence' element in datasets.Features that could potentially be either a dict, a str, or None?
Specifically, I’d like to define a feature for a list that contains 18 elements, each of which has been pre-defined as either a `dict or None` or `str or None` - as demonstrated in the slightly misaligned data provided below:
```json
[
[
{"text":"老妇人","idxes":[0,1,2]},null,{"text":"跪","idxes":[3]},null,null,null,null,{"text":"在那坑里","idxes":[4,5,6,7]},null,null,null,null,null,null,null,null,null,null],
[
{"text":"那些水","idxes":[13,14,15]},null,{"text":"舀","idxes":[11]},null,null,null,null,null,{"text":"在那坑里","idxes":[4,5,6,7]},null,{"text":"出","idxes":[12]},null,null,null,null,null,null,null],
[
{"text":"水","idxes":[38]},
null,
{"text":"舀","idxes":[40]},
"假", // note this is just a standalone string
null,null,null,{"text":"坑里","idxes":[35,36]},null,null,null,null,null,null,null,null,null,null]]
```
### Motivation
I'm currently working with a dataset of the following structure and I couldn't find a solution in the [documentation](https://huggingface.co/docs/datasets/v2.11.0/en/package_reference/main_classes#datasets.Features).
```json
{"qid":"3-train-1058","context":"桑桑害怕了。从玉米地里走到田埂上,他遥望着他家那幢草房子里的灯光,知道母亲没有让他回家的意思,很伤感,有点想哭。但没哭,转身朝阿恕家走去。","corefs":[[{"text":"桑桑","idxes":[0,1]},{"text":"他","idxes":[17]}]],"non_corefs":[],"outputs":[[{"text":"他","idxes":[17]},null,{"text":"走","idxes":[11]},null,null,null,null,null,{"text":"从玉米地里","idxes":[6,7,8,9,10]},{"text":"到田埂上","idxes":[12,13,14,15]},null,null,null,null,null,null,null,null],[{"text":"他","idxes":[17]},null,{"text":"走","idxes":[66]},null,null,null,null,null,null,null,{"text":"转身朝阿恕家去","idxes":[60,61,62,63,64,65,67]},null,null,null,null,null,null,null],[{"text":"灯光","idxes":[30,31]},null,null,null,null,null,null,{"text":"草房子里","idxes":[25,26,27,28]},null,null,null,null,null,null,null,null,null,null],[{"text":"他","idxes":[17]},{"text":"他家那幢草房子","idxes":[21,22,23,24,25,26,27]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"远"],[{"text":"他","idxes":[17]},{"text":"阿恕家","idxes":[63,64,65]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"变近"]]}
```
### Your contribution
I'm going to provide the dataset at https://huggingface.co/datasets/2030NLP/SpaCE2022 . | 5,702 |
https://github.com/huggingface/datasets/issues/5699 | Issue when wanting to split in memory a cached dataset | [
"Hi ! Good catch, this is wrong indeed and thanks for opening a PR :)",
"Facing the same issue. Kindly fix this bug."
] | ### Describe the bug
**In the 'train_test_split' method of the Dataset class** (defined datasets/arrow_dataset.py), **if 'self.cache_files' is not empty**, then, **regarding the input parameters 'train_indices_cache_file_name' and 'test_indices_cache_file_name', if they are None**, we modify them to make them not None, to see if we can just provide back / work from cached data. But if we can't provide cached data, we move on with the call to the method, except those two values are not None anymore, which will conflict with the use of the 'keep_in_memory' parameter down the line.
Indeed, at some point we end up calling the 'select' method, **and if 'keep_in_memory' is True**, since the value of this method's parameter 'indices_cache_file_name' is now not None anymore, **an exception is raised, whose message is "Please use either 'keep_in_memory' or 'indices_cache_file_name' but not both.".**
Because of that, it's impossible to perform a train / test split of a cached dataset while requesting that the result not be cached. Which is inconvenient when one is just performing experiments, with no intention of caching the result.
Aside from this being inconvenient, **the code which lead up to that situation seems simply wrong** to me: the input variable should not be modified so as to change the user's intention just to perform a test, if that test can fail and respecting the user's intention is necessary to proceed in that case.
To fix this, I suggest to use other variables / other variable names, in order to host the value(s) needed to perform the test, so as not to change the originally input values needed by the rest of the method's code.
Also, **I don't see why an exception should be raised when the 'select' method is called with both 'keep_in_memory'=True and 'indices_cache_file_name'!=None**: should the use of 'keep_in_memory' not prevail anyway, specifying that the user does not want to perform caching, and so making irrelevant the value of 'indices_cache_file_name'? This is indeed what happens when we look further in the code, in the '\_select_with_indices_mapping' method: when 'keep_in_memory' is True, then the value of indices_cache_file_name does not matter, the data will be written to a stream buffer anyway.
Hence I suggest to remove the raising of exception in those circumstances. Notably, to remove the raising of it in the 'select', '\_select_with_indices_mapping', 'shuffle' and 'map' methods.
### Steps to reproduce the bug
```python
import datasets
def generate_examples():
for i in range(10):
yield {"id": i}
dataset_ = datasets.Dataset.from_generator(
generate_examples,
keep_in_memory=False,
)
dataset_.train_test_split(
test_size=3,
shuffle=False,
keep_in_memory=True,
train_indices_cache_file_name=None,
test_indices_cache_file_name=None,
)
```
### Expected behavior
The result of the above code should be a DatasetDict instance.
Instead, we get the following exception stack:
```python
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[3], line 1
----> 1 dataset_.train_test_split(
2 test_size=3,
3 shuffle=False,
4 keep_in_memory=True,
5 train_indices_cache_file_name=None,
6 test_indices_cache_file_name=None,
7 )
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs)
521 self_format = {
522 "type": self._format_type,
523 "format_kwargs": self._format_kwargs,
524 "columns": self._format_columns,
525 "output_all_columns": self._output_all_columns,
526 }
527 # apply actual function
--> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
530 # re-apply format to the output
File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs)
507 validate_fingerprint(kwargs[fingerprint_name])
509 # Call actual function
--> 511 out = func(dataset, *args, **kwargs)
513 # Update fingerprint of in-place transforms + update in-place history of transforms
515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:4428, in Dataset.train_test_split(self, test_size, train_size, shuffle, stratify_by_column, seed, generator, keep_in_memory, load_from_cache_file, train_indices_cache_file_name, test_indices_cache_file_name, writer_batch_size, train_new_fingerprint, test_new_fingerprint)
4425 test_indices = permutation[:n_test]
4426 train_indices = permutation[n_test : (n_test + n_train)]
-> 4428 train_split = self.select(
4429 indices=train_indices,
4430 keep_in_memory=keep_in_memory,
4431 indices_cache_file_name=train_indices_cache_file_name,
4432 writer_batch_size=writer_batch_size,
4433 new_fingerprint=train_new_fingerprint,
4434 )
4435 test_split = self.select(
4436 indices=test_indices,
4437 keep_in_memory=keep_in_memory,
(...)
4440 new_fingerprint=test_new_fingerprint,
4441 )
4443 return DatasetDict({"train": train_split, "test": test_split})
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs)
521 self_format = {
522 "type": self._format_type,
523 "format_kwargs": self._format_kwargs,
524 "columns": self._format_columns,
525 "output_all_columns": self._output_all_columns,
526 }
527 # apply actual function
--> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
530 # re-apply format to the output
File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs)
507 validate_fingerprint(kwargs[fingerprint_name])
509 # Call actual function
--> 511 out = func(dataset, *args, **kwargs)
513 # Update fingerprint of in-place transforms + update in-place history of transforms
515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:3679, in Dataset.select(self, indices, keep_in_memory, indices_cache_file_name, writer_batch_size, new_fingerprint)
3645 """Create a new dataset with rows selected following the list/array of indices.
3646
3647 Args:
(...)
3676 ```
3677 """
3678 if keep_in_memory and indices_cache_file_name is not None:
-> 3679 raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.")
3681 if len(self.list_indexes()) > 0:
3682 raise DatasetTransformationNotAllowedError(
3683 "Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
3684 )
ValueError: Please use either `keep_in_memory` or `indices_cache_file_name` but not both.
```
### Environment info
- `datasets` version: 2.11.1.dev0
- Platform: Linux-5.4.236-1-MANJARO-x86_64-with-glibc2.2.5
- Python version: 3.8.12
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 2.0.0
***
***
EDIT:
Now with a pull request to fix this [here](https://github.com/huggingface/datasets/pull/5700) | 5,699 |
https://github.com/huggingface/datasets/issues/5698 | Add Qdrant as another search index | [
"@mariosasko I'd appreciate your feedback on this. "
] | ### Feature request
I'd suggest adding Qdrant (https://qdrant.tech) as another search index available, so users can directly build an index from a dataset. Currently, FAISS and ElasticSearch are only supported: https://huggingface.co/docs/datasets/faiss_es
### Motivation
ElasticSearch is a keyword-based search system, while FAISS is a vector search library. Vector database, such as Qdrant, is a different tool based on similarity (like FAISS) but is not limited to a single machine. It makes the vector database well-suited for bigger datasets and collaboration if several people want to access a particular dataset.
### Your contribution
I can provide a PR implementing that functionality on my own. | 5,698 |
https://github.com/huggingface/datasets/issues/5696 | Shuffle a sharded iterable dataset without seed can lead to duplicate data | [] | As reported in https://github.com/huggingface/datasets/issues/5360
If `seed=None` in `.shuffle()`, shuffled datasets don't use the same shuffling seed across nodes.
Because of that, the lists of shards is not shuffled the same way across nodes, and therefore some shards may be assigned to multiple nodes instead of exactly one.
This can happen only when you have a number of shards that is a factor of the number of nodes.
The current workaround is to always set a `seed` in `.shuffle()` | 5,696 |
https://github.com/huggingface/datasets/issues/5695 | Loading big dataset raises pyarrow.lib.ArrowNotImplementedError | [
"Hi ! It looks like an issue with PyArrow: https://issues.apache.org/jira/browse/ARROW-5030\r\n\r\nIt appears it can happen when you have parquet files with row groups larger than 2GB.\r\nI can see that your parquet files are around 10GB. It is usually advised to keep a value around the default value 500MB to avoid these issues.\r\n\r\nNote that currently the row group size is simply defined by the number of rows `datasets.config.DEFAULT_MAX_BATCH_SIZE`, so reducing this value could let you have parquet files bigger than 2GB and with row groups lower than 2GB.\r\n\r\nWould it be possible for you to re-upload the dataset with the default shard size 500MB ?",
"Hey, thanks for the reply! I've since switched to working with the locally-saved dataset (which works).\r\nMaybe it makes sense to show a warning for uploads with large shard sizes? Since the functionality completely breaks (due to the PyArrow bug).",
"Just tried uploading the same dataset with 500MB shards, I get an errors 4 hours in:\r\n\r\n```\r\nPushing dataset shards to the dataset hub: 25%|██▍ | 358/1453 [4:40:31<14:18:00, 47.01s/it]\r\nTraceback (most recent call last):\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 344, in _inner_upload_lfs_object\r\n return _upload_lfs_object(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _upload_lfs_object\r\n lfs_upload(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 254, in lfs_upload\r\n _upload_multi_part(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 374, in _upload_multi_part\r\n hf_raise_for_status(part_upload_res)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 301, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 46, in __init__\r\n server_data = response.json()\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/requests/models.py\", line 899, in json\r\n return complexjson.loads(\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/__init__.py\", line 357, in loads\r\n return _default_decoder.decode(s)\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 337, in decode\r\n obj, end = self.raw_decode(s, idx=_w(s, 0).end())\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 355, in raw_decode\r\n raise JSONDecodeError(\"Expecting value\", s, err.value) from None\r\njson.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"process_wit.py\", line 146, in <module>\r\n dataset.push_to_hub(FINAL_PATH, max_shard_size=\"500MB\", private=False)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1534, in push_to_hub\r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 4804, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 281, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2593, in upload_file\r\n commit_info = self.create_commit(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2411, in create_commit\r\n upload_lfs_files(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 351, in upload_lfs_files\r\n thread_map(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 69, in thread_map\r\n return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 51, in _executor_map\r\n return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/std.py\", line 1178, in __iter__\r\n for obj in iterable:\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 619, in result_iterator\r\n yield fs.pop().result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 444, in result\r\n return self.__get_result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 389, in __get_result\r\n raise self._exception\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/thread.py\", line 57, in run\r\n result = self.fn(*self.args, **self.kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 346, in _inner_upload_lfs_object\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'data/train-00358-of-01453-22a5cc8b3eb12be3.parquet' to the Hub.\r\n```\r\nLocal saves do work, however.",
"Hmmm that was probably an intermitent bug, you can resume the upload by re-running push_to_hub",
"Leaving this other error here for the record, which occurs when I load the +700GB dataset from the hub with shard sizes of 500MB:\r\n\r\n```\r\n Traceback (most recent call last): \r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py\", line 1860, in _prepare_split_single\r\n for _, table in generator:\r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py\", line 69, in _generate_tables\r\n for batch_idx, record_batch in enumerate(\r\n File \"pyarrow/_parquet.pyx\", line 1323, in iter_batches\r\n File \"pyarrow/error.pxi\", line 115, in pyarrow.lib.check_status\r\nOSError: Corrupt snappy compressed data.\r\n```\r\nI will probably switch back to the local big dataset or shrink it.",
"I am having this same issue trying to load my Audio dataset of about 520GB of audio files and about 1.8 million rows: https://github.com/huggingface/datasets/issues/5695#issuecomment-1500738729\r\n\r\n\r\nI also tried the default shard size of 500MB and still hit this issue after about 4 hours. When I re-run the code, it restarts the uploading from scratch. I don't know how to resume it as @lhoestq suggested [here] (https://github.com/huggingface/datasets/issues/5695#issuecomment-1500829320).",
"`push_to_hub` has a fast resuming, though for audio/image there is this PR to fix a speed issue: https://github.com/huggingface/datasets/pull/6056"
] | ### Describe the bug
Calling `datasets.load_dataset` to load the (publicly available) dataset `theodor1289/wit` fails with `pyarrow.lib.ArrowNotImplementedError`.
### Steps to reproduce the bug
Steps to reproduce this behavior:
1. `!pip install datasets`
2. `!huggingface-cli login`
3. This step will throw the error (it might take a while as the dataset has ~170GB):
```python
from datasets import load_dataset
dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True)
```
Stack trace:
```
(torch-multimodal) bash-4.2$ python test.py
Downloading and preparing dataset None/None to /cluster/work/cotterell/tamariucai/HuggingfaceDatasets/theodor1289___parquet/theodor1289--wit-7a3e984414a86a0f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 491.68it/s]
Extracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 16.93it/s]
Traceback (most recent call last):
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1860, in _prepare_split_single
for _, table in generator:
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables
for batch_idx, record_batch in enumerate(
File "pyarrow/_parquet.pyx", line 1323, in iter_batches
File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/cluster/work/cotterell/tamariucai/multimodal-mirror/examples/test.py", line 2, in <module>
dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True)
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1893, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
The dataset is loaded in variable `dataset`.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.4
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| 5,695 |
https://github.com/huggingface/datasets/issues/5694 | Dataset configuration | [
"Originally we also though about adding it to the YAML part of the README.md:\r\n\r\n```yaml\r\nbuilder_config:\r\n data_dir: data\r\n data_files:\r\n - split: train\r\n pattern: \"train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*\"\r\n```\r\n\r\nHaving it in the README.md could make it easier to modify it in the UI on HF, and for validation on commit",
"From internal discussions we agreed to go with the YAML approach, since it's the one that seems more appropriate to be modified by a human on the Hub or locally (while JSON e.g. for models are usually created programmatically).",
"Current format:\r\n```yaml\r\nbuilder_config:\r\n data_files:\r\n - split: train\r\n pattern: data/train-*\r\n```"
] | Following discussions from https://github.com/huggingface/datasets/pull/5331
We could have something like `config.json` to define the configuration of a dataset.
```json
{
"data_dir": "data"
"data_files": {
"train": "train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"
}
}
```
we could also support a list for several configs with a 'config_name' field.
The alternative was to use YAML in the README.md.
I think it could also support a `dataset_type` field to specify which dataset builder class to use, and the other parameters would be the builder's parameters. Some parameters exist for all builders like `data_files` and `data_dir`, but some parameters are builder specific like `sep` for csv.
This format would be used in `push_to_hub` to be able to push multiple configs.
cc @huggingface/datasets
EDIT: actually we're going for the YAML approach in README.md | 5,694 |
https://github.com/huggingface/datasets/issues/5692 | pyarrow.lib.ArrowInvalid: Unable to merge: Field <field> has incompatible types | [
"Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?",
"> Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?\r\n\r\nSorry about that, it's fixed now.\r\n",
"@cyanic-selkie could you explain how you fixed it? I met the same error in loading other datasets, is it due to the version of the library enviroment? ",
"@MingsYang I never fixed it. If you're referring to my comment above, I only meant I fixed the link to my code.\r\n\r\nAnyway, I managed to work around the issue by using `streaming` when loading the dataset.",
"@cyanic-selkie Emm, I get it. I just tried to use a new version python enviroment, and it show no errors anymore.",
"Upgrade pyarrow to the latest version solves this problem in my case."
] | ### Describe the bug
When loading the dataset [wikianc-en](https://huggingface.co/datasets/cyanic-selkie/wikianc-en) which I created using [this](https://github.com/cyanic-selkie/wikianc) code, I get the following error:
```
Traceback (most recent call last):
File "/home/sven/code/rector/answer-detection/train.py", line 106, in <module>
(dataset, weights) = get_dataset(args.dataset, tokenizer, labels, args.padding)
File "/home/sven/code/rector/answer-detection/dataset.py", line 106, in get_dataset
dataset = load_dataset("cyanic-selkie/wikianc-en")
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/load.py", line 1794, in load_dataset
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1106, in as_dataset
datasets = map_nested(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 443, in map_nested
mapped = [
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 444, in <listcomp>
_single_map_nested((function, obj, types, None, True, None))
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested
return function(data_struct)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1136, in _build_single_dataset
ds = self._as_dataset(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1207, in _as_dataset
dataset_kwargs = ArrowReader(cache_dir, self.info).read(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 239, in read
return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 260, in read_files
pa_table = self._read_files(files, in_memory=in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 203, in _read_files
pa_table = concat_tables(pa_tables) if len(pa_tables) != 1 else pa_tables[0]
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1808, in concat_tables
return ConcatenationTable.from_tables(tables, axis=axis)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1514, in from_tables
return cls.from_blocks(blocks)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1427, in from_blocks
table = cls._concat_blocks(blocks, axis=0)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1373, in _concat_blocks
return pa.concat_tables(pa_tables, promote=True)
File "pyarrow/table.pxi", line 5224, in pyarrow.lib.concat_tables
File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Unable to merge: Field paragraph_anchors has incompatible types: list<: struct<start: uint32 not null, end: uint32 not null, qid: uint32, pageid: uint32, title: string not null> not null> vs list<item: struct<start: uint32, end: uint32, qid: uint32, pageid: uint32, title: string>>
```
This only happens when I load the `train` split, indicating that the size of the dataset is the deciding factor.
### Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("cyanic-selkie/wikianc-en", split="train")
```
### Expected behavior
The dataset should load normally without any errors.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-6.2.8-arch1-1-x86_64-with-glibc2.37
- Python version: 3.10.10
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | 5,692 |
https://github.com/huggingface/datasets/issues/5690 | raise AttributeError(f"No {package_name} attribute {name}") AttributeError: No huggingface_hub attribute hf_api | [
"Hi @wccccp, thanks for reporting. \r\nThat's weird since `huggingface_hub` _has_ a module called `hf_api` and you are using a recent version of it. \r\n\r\nWhich version of `datasets` are you using? And is it a bug that you experienced only recently? (cc @lhoestq can it be somehow related to the recent release of `datasets`?)\r\n\r\n~@wccccp what I can suggest you is to uninstall and reinstall completely huggingface_hub and datasets? My first guess is that there is a discrepancy somewhere in your setup 😕~",
"@wccccp Actually I have also been able to reproduce the error so it's not an issue with your setup.\r\n\r\n@huggingface/datasets I found this issue quite weird. Is this a module that is not used very often?\r\nThe problematic line is [this one](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L476) where `huggingface_hub.hf_api.DatasetInfo` is used. `huggingface_hub` is imported [here](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L6) as `import huggingface_hub`. However since modules are lazy-loaded in `hfh` you need to explicitly import them (i.e. `import huggingface_hub.hf_api`).\r\n\r\nWhat's weird is that nothing has changed for months. Datasets code seems that it didn't change for 2 years when I git-blame this part. And lazy-loading was introduced 1 year ago in `huggingface_hub`. Could it be that `data_files.py` is a file almost never used?\r\n",
"For context, I tried to run `import huggingface_hub; huggingface_hub.hf_api.DatasetInfo` in the terminal with different versions of `hfh` and I need to go back to `huggingface_hub==0.7.0` to make it work (latest is 0.13.3).",
"Before the error happens at line 120 in `data_files.py`, `datasets.filesystems.hffilesystem` is imported at the top of `data_files.py` and this file does `from huggingface_hub.hf_api import DatasetInfo` - so `huggingface_hub.hf_api` is imported. Not sure how the error could happen, what version of `datasets` are you using @wccccp ?",
"Closing due to inactivity."
] | ### Describe the bug
rta.sh
Traceback (most recent call last):
File "run.py", line 7, in <module>
import datasets
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module>
from .data_files import DataFilesDict, _sanitize_patterns
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module>
dataset_info: huggingface_hub.hf_api.DatasetInfo,
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__
raise AttributeError(f"No {package_name} attribute {name}")
AttributeError: No huggingface_hub attribute hf_api
### Reproduction
_No response_
### Logs
```shell
Traceback (most recent call last):
File "run.py", line 7, in <module>
import datasets
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module>
from .data_files import DataFilesDict, _sanitize_patterns
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module>
dataset_info: huggingface_hub.hf_api.DatasetInfo,
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__
raise AttributeError(f"No {package_name} attribute {name}")
AttributeError: No huggingface_hub attribute hf_api
```
### System info
```shell
- huggingface_hub version: 0.13.2
- Platform: Linux-5.4.0-144-generic-x86_64-with-glibc2.10
- Python version: 3.8.5
- Running in iPython ?: No
- Running in notebook ?: No
- Running in Google Colab ?: No
- Token path ?: /home/appuser/.cache/huggingface/token
- Has saved token ?: False
- Configured git credential helpers:
- FastAI: N/A
- Tensorflow: N/A
- Torch: 1.7.1
- Jinja2: N/A
- Graphviz: N/A
- Pydot: N/A
- Pillow: 9.3.0
- hf_transfer: N/A
- ENDPOINT: https://huggingface.co
- HUGGINGFACE_HUB_CACHE: /home/appuser/.cache/huggingface/hub
- HUGGINGFACE_ASSETS_CACHE: /home/appuser/.cache/huggingface/assets
- HF_TOKEN_PATH: /home/appuser/.cache/huggingface/token
- HF_HUB_OFFLINE: False
- HF_HUB_DISABLE_TELEMETRY: False
- HF_HUB_DISABLE_PROGRESS_BARS: None
- HF_HUB_DISABLE_SYMLINKS_WARNING: False
- HF_HUB_DISABLE_IMPLICIT_TOKEN: False
```
| 5,690 |
https://github.com/huggingface/datasets/issues/5688 | Wikipedia download_and_prepare for GCS | [
"Hi @adrianfagerland, thanks for reporting.\r\n\r\nPlease note that \"wikipedia\" is a special dataset, with an Apache Beam builder: https://beam.apache.org/\r\nYou can find more info about Beam datasets in our docs: https://huggingface.co/docs/datasets/beam\r\n\r\nIt was implemented to be run in parallel processing, using one of the distributed back-ends supported by Apache Beam: https://beam.apache.org/get-started/beam-overview/#apache-beam-pipeline-runners\r\n\r\nThat is, you are trying to process the source wikipedia data on your machine (not distributed) when passing `beam_runner=\"DirectRunner\"`.\r\n\r\nAs documented in the wikipedia dataset page (https://huggingface.co/datasets/wikipedia):\r\n\r\n Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:\r\n \r\n from datasets import load_dataset\r\n \r\n load_dataset(\"wikipedia\", \"20220301.en\")\r\n\r\n The list of pre-processed subsets is:\r\n - \"20220301.de\"\r\n - \"20220301.en\"\r\n - \"20220301.fr\"\r\n - \"20220301.frr\"\r\n - \"20220301.it\"\r\n - \"20220301.simple\"\r\n\r\nTo download the available processed data (in Arrow format):\r\n```python\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(your_path)\r\n```",
"When running this using :\r\n```\r\nimport datasets\r\nfrom apache_beam.options.pipeline_options import PipelineOptions\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbeam_options = PipelineOptions(\r\n region=\"europe-west4\",\r\n project=\"tdt4310\",\r\n temp_location=output_dir+\"tmp/\")\r\n\r\n\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\", beam_runner=\"dataflow\", beam_options=beam_options)\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\nI now get this error:\r\n```\r\nraise FileNotFoundError(f\"Couldn't find file at {url}\")\r\nFileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json\r\nDownloading data files: 0%| | 0/1 [00:00<?, ?it/s]\r\n```\r\n\r\nI get the same error for this:\r\n```\r\nimport datasets\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\n\r\n\r\n\r\n",
"`wikipedia` is no longer a Beam dataset, so the above code should work now.\r\n\r\nPS: You can use [these files](https://huggingface.co/datasets/wikipedia/tree/main/data/20220301.en) (or a newer dump at https://huggingface.co/datasets/wikimedia/wikipedia/tree/main/20231101.en) instead of generating the Parquet version yourself"
] | ### Describe the bug
I am unable to download the wikipedia dataset onto GCS.
When I run the script provided the memory firstly gets eaten up, then it crashes.
I tried running this on a VM with 128GB RAM and all I got was a two empty files: _data_builder.lock_, _data.incomplete/beam-temp-wikipedia-train-1ab2039acf3611ed87a9893475de0093_
I have troubleshot this for two straight days now, but I am just unable to get the dataset into storage.
### Steps to reproduce the bug
Run this and insert a path:
```
import datasets
builder = datasets.load_dataset_builder(
"wikipedia", language="en", date="20230320", beam_runner="DirectRunner")
builder.download_and_prepare({path}, file_format="parquet")
```
This is where the problem of it eating RAM occurs.
I have also tried several versions of this, based on the docs:
```
import gcsfs
import datasets
storage_options = {"project": "tdt4310", "token": "cloud"}
fs = gcsfs.GCSFileSystem(**storage_options)
output_dir = "gcs://wikipediadata/"
builder = datasets.load_dataset_builder(
"wikipedia", date="20230320", language="en", beam_runner="DirectRunner")
builder.download_and_prepare(
output_dir, storage_options=storage_options, file_format="parquet")
```
The error message that is received here is:
> ValueError: Unable to get filesystem from specified path, please use the correct path or ensure the required dependency is installed, e.g., pip install apache-beam[gcp]. Path specified: gcs://wikipediadata/wikipedia-train [while running 'train/Save to parquet/Write/WriteImpl/InitializeWrite']
I have ran `pip install apache-beam[gcp]`
### Expected behavior
The wikipedia data loaded into GCS
Everything worked when testing with a smaller demo dataset found somewhere in the docs
### Environment info
Newest published version of datasets. Python 3.9. Also tested with Python 3.7. 128GB RAM Google Cloud VM instance. | 5,688 |
https://github.com/huggingface/datasets/issues/5687 | Document to compress data files before uploading | [
"Great idea!\r\n\r\nShould we also take this opportunity to include some audio/image file formats? Currently, it still reads very text heavy. Something like:\r\n\r\n> We support many text, audio, and image data extensions such as `.zip`, `.rar`, `.mp3`, and `.jpg` among many others. For data extensions like `.csv`, `.json`, `.jsonl`, and `txt`, we recommend compressing them before uploading to the Hub. These file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of supported file extensions.",
"Hi @stevhliu, thanks for your suggestion.\r\n\r\nI agree it is a good opportunity to mention that audio/image file formats are also supported.\r\n\r\nNit:\r\nI would not mention .zip, .rar after \"text, audio, and image data extensions\". Those are \"compression\" extensions and not \"text, audio, and image data extensions\".\r\n\r\nWhat about something similar to:\r\n> We support many text, audio, and image data extensions such as `.csv`, `.mp3`, and `.jpg` among many others. For text data extensions like `.csv`, `.json`, `.jsonl`, and `.txt`, we recommend compressing them before uploading to the Hub (to `.zip` or `.gz` file extension for example). \r\n>\r\n> Note that text file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of tracked file extensions by default.\r\n\r\nNote that for compressions I have mentioned:\r\n- gz, to compress individual files\r\n- zip, to compress and archive multiple files; zip is preferred rather than tar because it supports streaming out of the box",
"Perfect, thanks for making the distinction between compression and data extensions!"
] | In our docs to [Share a dataset to the Hub](https://huggingface.co/docs/datasets/upload_dataset), we tell users to upload directly their data files, like CSV, JSON, JSON-Lines, text,... However, these extensions are not tracked by Git LFS by default, as they are not in the `.giattributes` file. Therefore, if they are too large, Git will fail to commit/upload them.
I think for those file extensions (.csv, .json, .jsonl, .txt), we should better recommend to **compress** their data files (using ZIP for example) before uploading them to the Hub.
- Compressed files are tracked by Git LFS in our default `.gitattributes` file
What do you think?
CC: @stevhliu
See related issue:
- https://huggingface.co/datasets/tcor0005/langchain-docs-400-chunksize/discussions/1 | 5,687 |
https://github.com/huggingface/datasets/issues/5685 | Broken Image render on the hub website | [
"Hi! \r\n\r\nYou can fix the viewer by adding the `dataset_info` YAML field deleted in https://huggingface.co/datasets/Francesco/cell-towers/commit/b95b59ddd91ebe9c12920f0efe0ed415cd0d4298 back to the metadata section of the card. \r\n\r\nTo avoid this issue in the feature, you can use `huggingface_hub`'s [RepoCard](https://huggingface.co/docs/huggingface_hub/package_reference/cards) API to update the dataset card instead of `upload_file`:\r\n```python\r\nfrom huggingface_hub import DatasetCard\r\n# Load card\r\ncard = DatasetCard.load(\"<namespace>/<repo_id>\")\r\n# Modify card content\r\ncard.content = ...\r\n# Push card to the Hub\r\ncard.push_to_hub(\"<namespace>/<repo_id>\")\r\n```\r\n\r\nHowever, the best solution would be to use the features info stored in the header of the Parquet shards generated with `push_to_hub` on the viewer side to avoid unexpected issues such as this one. This shouldn't be too hard to address.",
"Thanks for reporting @FrancescoSaverioZuppichini.\r\n\r\nFor future issues with your specific dataset, you can use its \"Community\" tab to start a conversation: https://huggingface.co/datasets/Francesco/cell-towers/discussions/new",
"Thanks @albertvillanova , @mariosasko I was not aware of this requirement from the doc (must have skipped :sweat_smile: )\r\n\r\nConfirmed, adding back `dataset_info` fixed the issu"
] | ### Describe the bug
Hi :wave:
Not sure if this is the right place to ask, but I am trying to load a huge amount of datasets on the hub (:partying_face: ) but I am facing a little issue with the `image` type

See this [dataset](https://huggingface.co/datasets/Francesco/cell-towers), basically for some reason the first image has numerical bytes inside, not sure if that is okay, but the image render feature **doesn't work**
So the dataset is stored in the following way
```python
builder.download_and_prepare(output_dir=str(output_dir))
ds = builder.as_dataset(split="train")
# [NOTE] no idea how to push it from the builder folder
ds.push_to_hub(repo_id=repo_id)
builder.as_dataset(split="validation").push_to_hub(repo_id=repo_id)
ds = builder.as_dataset(split="test")
ds.push_to_hub(repo_id=repo_id)
```
The build is this class
```python
class COCOLikeDatasetBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"category": datasets.ClassLabel(names=categories),
}
),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
homepage=homepage,
license=license,
citation=citation,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_file_path": "train/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annotation_file_path": "test/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_file_path": "valid/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, annotation_file_path, files):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
# This loop relies on the ordering of the files in the archive:
# Annotation files come first, then the images.
for path, f in files:
file_name = os.path.basename(path)
if annotation_file_path in path:
annotations = json.load(f)
category_id_to_category = {
category["id"]: category["name"]
for category in annotations["categories"]
}
print(category_id_to_category)
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
image_id_to_image = {
annot["file_name"]: annot for annot in annotations["images"]
}
elif file_name in image_id_to_image:
image = image_id_to_image[file_name]
objects = [
process_annot(annot, category_id_to_category)
for annot in image_id_to_annotations[image["id"]]
]
print(file_name)
yield idx, {
"image_id": image["id"],
"image": {"path": path, "bytes": f.read()},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
```
Basically, I want to add to the hub every dataset I come across on coco format
Thanks
Fra
### Steps to reproduce the bug
In this case, you can just navigate on the [dataset](https://huggingface.co/datasets/Francesco/cell-towers)
### Expected behavior
I was expecting the image rendering feature to work
### Environment info
Not a lot to share, I am using `datasets` from a fresh venv | 5,685 |
https://github.com/huggingface/datasets/issues/5682 | ValueError when passing ignore_verifications | [] | When passing `ignore_verifications=True` to `load_dataset`, we get a ValueError:
```
ValueError: 'none' is not a valid VerificationMode
``` | 5,682 |
https://github.com/huggingface/datasets/issues/5681 | Add information about patterns search order to the doc about structuring repo | [
"Good idea, I think I've seen this a couple of times before too on the forums. I can work on this :)",
"Closed in #5693 "
] | Following [this](https://github.com/huggingface/datasets/issues/5650) issue I think we should add a note about the order of patterns that is used to find splits, see [my comment](https://github.com/huggingface/datasets/issues/5650#issuecomment-1488412527). Also we should reference this page in pages about packaged loaders.
I have a déjà vu that it had already been discussed as some point but I don't remember.... | 5,681 |
https://github.com/huggingface/datasets/issues/5679 | Allow load_dataset to take a working dir for intermediate data | [
"Hi ! AFAIK a dataset must be present on a local disk to be able to efficiently memory map the datasets Arrow files. What makes you think that it is possible to load from a cloud storage and have good performance ?\r\n\r\nAnyway it's already possible to download_and_prepare a dataset as Arrow files in a cloud storage with:\r\n```python\r\nbuilder = load_dataset_builder(..., cache_dir=\"/temp/dir\")\r\nbuilder.download_and_prepare(\"/cloud_dir\")\r\n```\r\n\r\nbut then \r\n```python\r\nds = builder.as_dataset()\r\n```\r\nwould fail if \"/cloud_dir\" is not a local directory.",
"In my use case, I am trying to mount the S3 bucket as local system with S3FS-FUSE / [goofys](https://github.com/kahing/goofys). I want to use S3 to save the download data and save checkpoint for training for persistent. Setting the s3 location as cache directory is not fast enough. That is why I want to set a work directory for temp data for memory map and only save the final result to s3 cache. ",
"You can try setting `HF_DATASETS_DOWNLOADED_DATASETS_PATH` and `HF_DATASETS_EXTRACTED_DATASETS_PATH` to S3, and `HF_DATASETS_CACHE` to your local disk.\r\n\r\nThis way all your downloaded and extracted data are on your mounted S3, but the datasets Arrow files are on your local disk",
"If we hope to also persist the Arrow files on the mounted S3 but work with the efficiency of local disk, is there any recommended way to do this, other than copying the Arrow files from local disk to S3?"
] | ### Feature request
As a user, I can set a working dir for intermediate data creation. The processed files will be moved to the cache dir, like
```
load_dataset(…, working_dir=”/temp/dir”, cache_dir=”/cloud_dir”).
```
### Motivation
This will help the use case for using datasets with cloud storage as cache. It will help boost the performance.
### Your contribution
I can provide a PR to fix this if the proposal seems reasonable. | 5,679 |
https://github.com/huggingface/datasets/issues/5678 | Add support to create a Dataset from spark dataframe | [
"if i read spark Dataframe , got an error on multi-node Spark cluster.\r\nDid the Api (Dataset.from_spark) support Spark cluster, read dataframe and save_to_disk?\r\n\r\nError: \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n\r\n",
"How to perform predictions on Dataset object in Spark with multi-node cluster parallelism?",
"Addressed in #5701"
] | ### Feature request
Add a new API `Dataset.from_spark` to create a Dataset from Spark DataFrame.
### Motivation
Spark is a distributed computing framework that can handle large datasets. By supporting loading Spark DataFrames directly into Hugging Face Datasets, we enable take the advantages of spark to processing the data in parallel.
By providing a seamless integration between these two frameworks, we make it easier for data scientists and developers to work with both Spark and Hugging Face in the same workflow.
### Your contribution
We can discuss about the ideas and I can help preparing a PR for this feature. | 5,678 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.