Pralekha / README.md
sanjay73's picture
Update README.md
e837b0e verified
---
language:
- bn
- en
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
- ur
license: cc-by-4.0
size_categories:
- 1M<n<10M
pretty_name: Pralekha
dataset_info:
- config_name: alignable
features:
- name: n_id
dtype: string
- name: doc_id
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
splits:
- name: ben
num_bytes: 651961117
num_examples: 95813
- name: eng
num_bytes: 1048149692
num_examples: 298111
- name: guj
num_bytes: 549286108
num_examples: 67847
- name: hin
num_bytes: 1754308559
num_examples: 204809
- name: kan
num_bytes: 567860764
num_examples: 61998
- name: mal
num_bytes: 498894372
num_examples: 67760
- name: mar
num_bytes: 961277740
num_examples: 135301
- name: ori
num_bytes: 397642857
num_examples: 46167
- name: pan
num_bytes: 872586190
num_examples: 108459
- name: tam
num_bytes: 858335433
num_examples: 149637
- name: tel
num_bytes: 914832899
num_examples: 110077
- name: urd
num_bytes: 1199225480
num_examples: 220425
download_size: 3954199760
dataset_size: 10274361211
- config_name: dev
features:
- name: src_text
dtype: string
- name: tgt_text
dtype: string
splits:
- name: eng_ben
num_bytes: 11878032
num_examples: 1000
- name: eng_guj
num_bytes: 12114408
num_examples: 1000
- name: eng_hin
num_bytes: 11866493
num_examples: 1000
- name: eng_kan
num_bytes: 12737616
num_examples: 1000
- name: eng_mal
num_bytes: 13282361
num_examples: 1000
- name: eng_mar
num_bytes: 12562695
num_examples: 1000
- name: eng_ori
num_bytes: 12440443
num_examples: 1000
- name: eng_pan
num_bytes: 11887954
num_examples: 1000
- name: eng_tam
num_bytes: 10889623
num_examples: 1000
- name: eng_tel
num_bytes: 12862241
num_examples: 1000
- name: eng_urd
num_bytes: 9313209
num_examples: 1000
download_size: 49754255
dataset_size: 131835075
- config_name: test
features:
- name: src_text
dtype: string
- name: tgt_text
dtype: string
splits:
- name: eng_ben
num_bytes: 11326293
num_examples: 1000
- name: eng_guj
num_bytes: 11754732
num_examples: 1000
- name: eng_hin
num_bytes: 11572603
num_examples: 1000
- name: eng_kan
num_bytes: 12210417
num_examples: 1000
- name: eng_mal
num_bytes: 12750095
num_examples: 1000
- name: eng_mar
num_bytes: 12260214
num_examples: 1000
- name: eng_ori
num_bytes: 11926414
num_examples: 1000
- name: eng_pan
num_bytes: 11534797
num_examples: 1000
- name: eng_tam
num_bytes: 11072385
num_examples: 1000
- name: eng_tel
num_bytes: 12530011
num_examples: 1000
- name: eng_urd
num_bytes: 9196555
num_examples: 1000
download_size: 49449543
dataset_size: 128134516
- config_name: unalignable
features:
- name: n_id
dtype: string
- name: doc_id
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
splits:
- name: ben
num_bytes: 273391595
num_examples: 47906
- name: eng
num_bytes: 420307531
num_examples: 149055
- name: guj
num_bytes: 214351582
num_examples: 33923
- name: hin
num_bytes: 683869386
num_examples: 102404
- name: kan
num_bytes: 189633814
num_examples: 30999
- name: mal
num_bytes: 192394324
num_examples: 33880
- name: mar
num_bytes: 428715921
num_examples: 67650
- name: ori
num_bytes: 111986274
num_examples: 23083
- name: pan
num_bytes: 328564948
num_examples: 54229
- name: tam
num_bytes: 614171222
num_examples: 74818
- name: tel
num_bytes: 372531108
num_examples: 55038
- name: urd
num_bytes: 644995094
num_examples: 110212
download_size: 1855179179
dataset_size: 4474912799
configs:
- config_name: alignable
data_files:
- split: ben
path: alignable/ben-*
- split: eng
path: alignable/eng-*
- split: guj
path: alignable/guj-*
- split: hin
path: alignable/hin-*
- split: kan
path: alignable/kan-*
- split: mal
path: alignable/mal-*
- split: mar
path: alignable/mar-*
- split: ori
path: alignable/ori-*
- split: pan
path: alignable/pan-*
- split: tam
path: alignable/tam-*
- split: tel
path: alignable/tel-*
- split: urd
path: alignable/urd-*
- config_name: dev
data_files:
- split: eng_ben
path: dev/eng_ben-*
- split: eng_guj
path: dev/eng_guj-*
- split: eng_hin
path: dev/eng_hin-*
- split: eng_kan
path: dev/eng_kan-*
- split: eng_mal
path: dev/eng_mal-*
- split: eng_mar
path: dev/eng_mar-*
- split: eng_ori
path: dev/eng_ori-*
- split: eng_pan
path: dev/eng_pan-*
- split: eng_tam
path: dev/eng_tam-*
- split: eng_tel
path: dev/eng_tel-*
- split: eng_urd
path: dev/eng_urd-*
- config_name: test
data_files:
- split: eng_ben
path: test/eng_ben-*
- split: eng_guj
path: test/eng_guj-*
- split: eng_hin
path: test/eng_hin-*
- split: eng_kan
path: test/eng_kan-*
- split: eng_mal
path: test/eng_mal-*
- split: eng_mar
path: test/eng_mar-*
- split: eng_ori
path: test/eng_ori-*
- split: eng_pan
path: test/eng_pan-*
- split: eng_tam
path: test/eng_tam-*
- split: eng_tel
path: test/eng_tel-*
- split: eng_urd
path: test/eng_urd-*
- config_name: unalignable
data_files:
- split: ben
path: unalignable/ben-*
- split: eng
path: unalignable/eng-*
- split: guj
path: unalignable/guj-*
- split: hin
path: unalignable/hin-*
- split: kan
path: unalignable/kan-*
- split: mal
path: unalignable/mal-*
- split: mar
path: unalignable/mar-*
- split: ori
path: unalignable/ori-*
- split: pan
path: unalignable/pan-*
- split: tam
path: unalignable/tam-*
- split: tel
path: unalignable/tel-*
- split: urd
path: unalignable/urd-*
tags:
- parallel-corpus
- document-alignment
- machine-translation
task_categories:
- translation
---
# Pralekha: Cross-Lingual Document Alignment for Indic Languages
<div style="display: flex; gap: 10px;">
<a href="https://arxiv.org/abs/2411.19096">
<img src="https://img.shields.io/badge/arXiv-2411.19096-B31B1B" alt="arXiv">
</a>
<a href="https://huggingface.co/datasets/ai4bharat/Pralekha">
<img src="https://img.shields.io/badge/huggingface-Pralekha-yellow" alt="HuggingFace">
</a>
<a href="https://github.com/AI4Bharat/Pralekha">
<img src="https://img.shields.io/badge/github-Pralekha-blue" alt="GitHub">
</a>
<a href="https://creativecommons.org/licenses/by/4.0/">
<img src="https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey" alt="License: CC BY 4.0">
</a>
</div>
**Pralekha** is a large-scale parallel document dataset spanning across **11 Indic languages** and **English**. It comprises over **3 million** document pairs, with **1.5 million** being English-centric. This dataset serves both as a benchmark for evaluating **Cross-Lingual Document Alignment (CLDA)** techniques and as a domain-specific parallel corpus for training document-level **Machine Translation (MT)** models in Indic Languages.
---
## Dataset Description
**Pralekha** covers 12 languages—Bengali (`ben`), Gujarati (`guj`), Hindi (`hin`), Kannada (`kan`), Malayalam (`mal`), Marathi (`mar`), Odia (`ori`), Punjabi (`pan`), Tamil (`tam`), Telugu (`tel`), Urdu (`urd`), and English (`eng`). It includes a mixture of high- and medium-resource languages, covering 11 different scripts. The dataset spans two broad domains: **News Bulletins** ([Indian Press Information Bureau (PIB)](https://pib.gov.in)) and **Podcast Scripts** ([Mann Ki Baat (MKB)](https://www.pmindia.gov.in/en/mann-ki-baat)), offering both written and spoken forms of data. All the data is human-written or human-verified, ensuring high quality.
While this accounts for `alignable` (parallel) documents, In real-world scenarios, multilingual corpora often include `unalignable` documents. To simulate this for CLDA evaluation, we sample `unalignable` documents from [Sangraha Unverified](https://huggingface.co/datasets/ai4bharat/sangraha/viewer/unverified), selecting 50% of Pralekha’s size to maintain a 1:2 ratio of `unalignable` to `alignable` documents.
For Machine Translation (MT) tasks, we first randomly sample 1,000 documents from the `alignable` subset per English-Indic language pair for each development (dev) and test set, ensuring a good distribution of varying document lengths. After excluding these sampled documents, we use the remaining documents as the training set for training document-level machine translation models.
---
## Data Fields
### Alignable & Unalignable Set:
- **`n_id`:** Unique identifier for `alignable` document pairs (Random `n_id`'s are assigned for the `unalignable` set.)
- **`doc_id`:** Unique identifier for individual documents.
- **`lang`:** Language of the document (ISO 639-3 code).
- **`text`:** The textual content of the document.
### Train, Dev & Test Set:
- **`src_lang`:** Source Language (eng)
- **`src_text`:** Source Language Text
- **`tgt_lang`:** Target Language (ISO 639-3 code)
- **`tgt_text`:** Target Language Text
---
## Usage
You can load specific **subsets** and **splits** from this dataset using the `datasets` library.
### Load an entire subset
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>")
# <subset> = alignable, unalignable, train, dev & test.
```
### Load a specific split within a subset
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/<lang>")
# <subset> = alignable, unalignable ; <lang> = ben, eng, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/eng_<lang>")
# <subset> = train, dev & test ; <lang> = ben, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```
---
## Data Size Statistics
| Split | Number of Documents | Size (bytes) |
|---------------|---------------------|--------------------|
| **Alignable** | 1,566,404 | 10,274,361,211 |
| **Unalignable** | 783,197 | 4,466,506,637 |
| **Total** | 2,349,601 | 14,740,867,848 |
## Language-wise Statistics
| Language (`ISO-3`) | Alignable Documents | Unalignable Documents | Total Documents |
|---------------------|-------------------|---------------------|-----------------|
| Bengali (`ben`) | 95,813 | 47,906 | 143,719 |
| English (`eng`) | 298,111 | 149,055 | 447,166 |
| Gujarati (`guj`) | 67,847 | 33,923 | 101,770 |
| Hindi (`hin`) | 204,809 | 102,404 | 307,213 |
| Kannada (`kan`) | 61,998 | 30,999 | 92,997 |
| Malayalam (`mal`) | 67,760 | 33,880 | 101,640 |
| Marathi (`mar`) | 135,301 | 67,650 | 202,951 |
| Odia (`ori`) | 46,167 | 23,083 | 69,250 |
| Punjabi (`pan`) | 108,459 | 54,229 | 162,688 |
| Tamil (`tam`) | 149,637 | 74,818 | 224,455 |
| Telugu (`tel`) | 110,077 | 55,038 | 165,115 |
| Urdu (`urd`) | 220,425 | 110,212 | 330,637 |
---
# Citation
If you use Pralekha in your work, please cite us:
```
@article{suryanarayanan2024pralekha,
title={Pralekha: An Indic Document Alignment Evaluation Benchmark},
author={Suryanarayanan, Sanjay and Song, Haiyue and Khan, Mohammed Safi Ur Rahman and Kunchukuttan, Anoop and Khapra, Mitesh M and Dabre, Raj},
journal={arXiv preprint arXiv:2411.19096},
year={2024}
}
```
## License
This dataset is released under the [**CC BY 4.0**](https://creativecommons.org/licenses/by/4.0/) license.
## Contact
For any questions or feedback, please contact:
- Raj Dabre ([[email protected]](mailto:[email protected]))
- Sanjay Suryanarayanan ([[email protected]](mailto:[email protected]))
- Haiyue Song ([[email protected]](mailto:[email protected]))
- Mohammed Safi Ur Rahman Khan ([[email protected]](mailto:[email protected]))
Please get in touch with us for any copyright concerns.