Datasets:
File size: 12,633 Bytes
8b0668c 647102b 8b0668c 647102b 8b0668c 068446f 5ca5837 068446f 5ca5837 068446f 5ca5837 068446f df317b3 fe55078 ab2ae17 99fd0c8 ab2ae17 3481af7 ab2ae17 3481af7 ab2ae17 3481af7 99fd0c8 ab2ae17 8b0668c 068446f 5ca5837 068446f 5ca5837 068446f 5ca5837 df317b3 fe55078 ab2ae17 3481af7 ab2ae17 3481af7 ab2ae17 3481af7 8b0668c e685761 e2540b1 945c663 647102b 3392950 e2540b1 26b2bba 76d648e 3f33424 76d648e 3392950 e837b0e 3392950 26b2bba 3392950 37fa267 26b2bba e837b0e e2540b1 e837b0e 26b2bba 798c3e8 26b2bba e2540b1 db1c443 e2540b1 db1c443 e2540b1 db1c443 e2540b1 db1c443 e2540b1 e837b0e e2540b1 798c3e8 e2540b1 26b2bba e2540b1 26b2bba 798c3e8 e2540b1 37fa267 e2540b1 37fa267 e2540b1 37fa267 e2540b1 e685761 37fa267 192186e e2540b1 e187a86 9fda193 e2540b1 9fda193 192186e 2c3bd59 192186e e2540b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
---
language:
- bn
- en
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
- ur
license: cc-by-4.0
size_categories:
- 1M<n<10M
pretty_name: Pralekha
dataset_info:
- config_name: alignable
features:
- name: n_id
dtype: string
- name: doc_id
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
splits:
- name: ben
num_bytes: 651961117
num_examples: 95813
- name: eng
num_bytes: 1048149692
num_examples: 298111
- name: guj
num_bytes: 549286108
num_examples: 67847
- name: hin
num_bytes: 1754308559
num_examples: 204809
- name: kan
num_bytes: 567860764
num_examples: 61998
- name: mal
num_bytes: 498894372
num_examples: 67760
- name: mar
num_bytes: 961277740
num_examples: 135301
- name: ori
num_bytes: 397642857
num_examples: 46167
- name: pan
num_bytes: 872586190
num_examples: 108459
- name: tam
num_bytes: 858335433
num_examples: 149637
- name: tel
num_bytes: 914832899
num_examples: 110077
- name: urd
num_bytes: 1199225480
num_examples: 220425
download_size: 3954199760
dataset_size: 10274361211
- config_name: dev
features:
- name: src_text
dtype: string
- name: tgt_text
dtype: string
splits:
- name: eng_ben
num_bytes: 11878032
num_examples: 1000
- name: eng_guj
num_bytes: 12114408
num_examples: 1000
- name: eng_hin
num_bytes: 11866493
num_examples: 1000
- name: eng_kan
num_bytes: 12737616
num_examples: 1000
- name: eng_mal
num_bytes: 13282361
num_examples: 1000
- name: eng_mar
num_bytes: 12562695
num_examples: 1000
- name: eng_ori
num_bytes: 12440443
num_examples: 1000
- name: eng_pan
num_bytes: 11887954
num_examples: 1000
- name: eng_tam
num_bytes: 10889623
num_examples: 1000
- name: eng_tel
num_bytes: 12862241
num_examples: 1000
- name: eng_urd
num_bytes: 9313209
num_examples: 1000
download_size: 49754255
dataset_size: 131835075
- config_name: test
features:
- name: src_text
dtype: string
- name: tgt_text
dtype: string
splits:
- name: eng_ben
num_bytes: 11326293
num_examples: 1000
- name: eng_guj
num_bytes: 11754732
num_examples: 1000
- name: eng_hin
num_bytes: 11572603
num_examples: 1000
- name: eng_kan
num_bytes: 12210417
num_examples: 1000
- name: eng_mal
num_bytes: 12750095
num_examples: 1000
- name: eng_mar
num_bytes: 12260214
num_examples: 1000
- name: eng_ori
num_bytes: 11926414
num_examples: 1000
- name: eng_pan
num_bytes: 11534797
num_examples: 1000
- name: eng_tam
num_bytes: 11072385
num_examples: 1000
- name: eng_tel
num_bytes: 12530011
num_examples: 1000
- name: eng_urd
num_bytes: 9196555
num_examples: 1000
download_size: 49449543
dataset_size: 128134516
- config_name: unalignable
features:
- name: n_id
dtype: string
- name: doc_id
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
splits:
- name: ben
num_bytes: 273391595
num_examples: 47906
- name: eng
num_bytes: 420307531
num_examples: 149055
- name: guj
num_bytes: 214351582
num_examples: 33923
- name: hin
num_bytes: 683869386
num_examples: 102404
- name: kan
num_bytes: 189633814
num_examples: 30999
- name: mal
num_bytes: 192394324
num_examples: 33880
- name: mar
num_bytes: 428715921
num_examples: 67650
- name: ori
num_bytes: 111986274
num_examples: 23083
- name: pan
num_bytes: 328564948
num_examples: 54229
- name: tam
num_bytes: 614171222
num_examples: 74818
- name: tel
num_bytes: 372531108
num_examples: 55038
- name: urd
num_bytes: 644995094
num_examples: 110212
download_size: 1855179179
dataset_size: 4474912799
configs:
- config_name: alignable
data_files:
- split: ben
path: alignable/ben-*
- split: eng
path: alignable/eng-*
- split: guj
path: alignable/guj-*
- split: hin
path: alignable/hin-*
- split: kan
path: alignable/kan-*
- split: mal
path: alignable/mal-*
- split: mar
path: alignable/mar-*
- split: ori
path: alignable/ori-*
- split: pan
path: alignable/pan-*
- split: tam
path: alignable/tam-*
- split: tel
path: alignable/tel-*
- split: urd
path: alignable/urd-*
- config_name: dev
data_files:
- split: eng_ben
path: dev/eng_ben-*
- split: eng_guj
path: dev/eng_guj-*
- split: eng_hin
path: dev/eng_hin-*
- split: eng_kan
path: dev/eng_kan-*
- split: eng_mal
path: dev/eng_mal-*
- split: eng_mar
path: dev/eng_mar-*
- split: eng_ori
path: dev/eng_ori-*
- split: eng_pan
path: dev/eng_pan-*
- split: eng_tam
path: dev/eng_tam-*
- split: eng_tel
path: dev/eng_tel-*
- split: eng_urd
path: dev/eng_urd-*
- config_name: test
data_files:
- split: eng_ben
path: test/eng_ben-*
- split: eng_guj
path: test/eng_guj-*
- split: eng_hin
path: test/eng_hin-*
- split: eng_kan
path: test/eng_kan-*
- split: eng_mal
path: test/eng_mal-*
- split: eng_mar
path: test/eng_mar-*
- split: eng_ori
path: test/eng_ori-*
- split: eng_pan
path: test/eng_pan-*
- split: eng_tam
path: test/eng_tam-*
- split: eng_tel
path: test/eng_tel-*
- split: eng_urd
path: test/eng_urd-*
- config_name: unalignable
data_files:
- split: ben
path: unalignable/ben-*
- split: eng
path: unalignable/eng-*
- split: guj
path: unalignable/guj-*
- split: hin
path: unalignable/hin-*
- split: kan
path: unalignable/kan-*
- split: mal
path: unalignable/mal-*
- split: mar
path: unalignable/mar-*
- split: ori
path: unalignable/ori-*
- split: pan
path: unalignable/pan-*
- split: tam
path: unalignable/tam-*
- split: tel
path: unalignable/tel-*
- split: urd
path: unalignable/urd-*
tags:
- parallel-corpus
- document-alignment
- machine-translation
task_categories:
- translation
---
# Pralekha: Cross-Lingual Document Alignment for Indic Languages
<div style="display: flex; gap: 10px;">
<a href="https://arxiv.org/abs/2411.19096">
<img src="https://img.shields.io/badge/arXiv-2411.19096-B31B1B" alt="arXiv">
</a>
<a href="https://huggingface.co/datasets/ai4bharat/Pralekha">
<img src="https://img.shields.io/badge/huggingface-Pralekha-yellow" alt="HuggingFace">
</a>
<a href="https://github.com/AI4Bharat/Pralekha">
<img src="https://img.shields.io/badge/github-Pralekha-blue" alt="GitHub">
</a>
<a href="https://creativecommons.org/licenses/by/4.0/">
<img src="https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey" alt="License: CC BY 4.0">
</a>
</div>
**Pralekha** is a large-scale parallel document dataset spanning across **11 Indic languages** and **English**. It comprises over **3 million** document pairs, with **1.5 million** being English-centric. This dataset serves both as a benchmark for evaluating **Cross-Lingual Document Alignment (CLDA)** techniques and as a domain-specific parallel corpus for training document-level **Machine Translation (MT)** models in Indic Languages.
---
## Dataset Description
**Pralekha** covers 12 languages—Bengali (`ben`), Gujarati (`guj`), Hindi (`hin`), Kannada (`kan`), Malayalam (`mal`), Marathi (`mar`), Odia (`ori`), Punjabi (`pan`), Tamil (`tam`), Telugu (`tel`), Urdu (`urd`), and English (`eng`). It includes a mixture of high- and medium-resource languages, covering 11 different scripts. The dataset spans two broad domains: **News Bulletins** ([Indian Press Information Bureau (PIB)](https://pib.gov.in)) and **Podcast Scripts** ([Mann Ki Baat (MKB)](https://www.pmindia.gov.in/en/mann-ki-baat)), offering both written and spoken forms of data. All the data is human-written or human-verified, ensuring high quality.
While this accounts for `alignable` (parallel) documents, In real-world scenarios, multilingual corpora often include `unalignable` documents. To simulate this for CLDA evaluation, we sample `unalignable` documents from [Sangraha Unverified](https://huggingface.co/datasets/ai4bharat/sangraha/viewer/unverified), selecting 50% of Pralekha’s size to maintain a 1:2 ratio of `unalignable` to `alignable` documents.
For Machine Translation (MT) tasks, we first randomly sample 1,000 documents from the `alignable` subset per English-Indic language pair for each development (dev) and test set, ensuring a good distribution of varying document lengths. After excluding these sampled documents, we use the remaining documents as the training set for training document-level machine translation models.
---
## Data Fields
### Alignable & Unalignable Set:
- **`n_id`:** Unique identifier for `alignable` document pairs (Random `n_id`'s are assigned for the `unalignable` set.)
- **`doc_id`:** Unique identifier for individual documents.
- **`lang`:** Language of the document (ISO 639-3 code).
- **`text`:** The textual content of the document.
### Train, Dev & Test Set:
- **`src_lang`:** Source Language (eng)
- **`src_text`:** Source Language Text
- **`tgt_lang`:** Target Language (ISO 639-3 code)
- **`tgt_text`:** Target Language Text
---
## Usage
You can load specific **subsets** and **splits** from this dataset using the `datasets` library.
### Load an entire subset
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>")
# <subset> = alignable, unalignable, train, dev & test.
```
### Load a specific split within a subset
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/<lang>")
# <subset> = alignable, unalignable ; <lang> = ben, eng, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```
```python
from datasets import load_dataset
dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/eng_<lang>")
# <subset> = train, dev & test ; <lang> = ben, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```
---
## Data Size Statistics
| Split | Number of Documents | Size (bytes) |
|---------------|---------------------|--------------------|
| **Alignable** | 1,566,404 | 10,274,361,211 |
| **Unalignable** | 783,197 | 4,466,506,637 |
| **Total** | 2,349,601 | 14,740,867,848 |
## Language-wise Statistics
| Language (`ISO-3`) | Alignable Documents | Unalignable Documents | Total Documents |
|---------------------|-------------------|---------------------|-----------------|
| Bengali (`ben`) | 95,813 | 47,906 | 143,719 |
| English (`eng`) | 298,111 | 149,055 | 447,166 |
| Gujarati (`guj`) | 67,847 | 33,923 | 101,770 |
| Hindi (`hin`) | 204,809 | 102,404 | 307,213 |
| Kannada (`kan`) | 61,998 | 30,999 | 92,997 |
| Malayalam (`mal`) | 67,760 | 33,880 | 101,640 |
| Marathi (`mar`) | 135,301 | 67,650 | 202,951 |
| Odia (`ori`) | 46,167 | 23,083 | 69,250 |
| Punjabi (`pan`) | 108,459 | 54,229 | 162,688 |
| Tamil (`tam`) | 149,637 | 74,818 | 224,455 |
| Telugu (`tel`) | 110,077 | 55,038 | 165,115 |
| Urdu (`urd`) | 220,425 | 110,212 | 330,637 |
---
# Citation
If you use Pralekha in your work, please cite us:
```
@article{suryanarayanan2024pralekha,
title={Pralekha: An Indic Document Alignment Evaluation Benchmark},
author={Suryanarayanan, Sanjay and Song, Haiyue and Khan, Mohammed Safi Ur Rahman and Kunchukuttan, Anoop and Khapra, Mitesh M and Dabre, Raj},
journal={arXiv preprint arXiv:2411.19096},
year={2024}
}
```
## License
This dataset is released under the [**CC BY 4.0**](https://creativecommons.org/licenses/by/4.0/) license.
## Contact
For any questions or feedback, please contact:
- Raj Dabre ([[email protected]](mailto:[email protected]))
- Sanjay Suryanarayanan ([[email protected]](mailto:[email protected]))
- Haiyue Song ([[email protected]](mailto:[email protected]))
- Mohammed Safi Ur Rahman Khan ([[email protected]](mailto:[email protected]))
Please get in touch with us for any copyright concerns. |