File size: 12,633 Bytes
8b0668c
647102b
 
 
 
 
 
 
 
 
 
 
 
 
8b0668c
647102b
 
 
8b0668c
068446f
 
 
 
 
 
 
 
 
 
 
5ca5837
 
 
068446f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca5837
 
 
 
 
 
068446f
 
 
5ca5837
 
 
 
 
 
 
 
 
068446f
 
df317b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe55078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2ae17
 
99fd0c8
 
ab2ae17
 
 
 
 
 
 
3481af7
 
 
ab2ae17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3481af7
 
 
 
 
 
ab2ae17
 
 
3481af7
 
 
 
 
 
 
 
 
99fd0c8
ab2ae17
8b0668c
068446f
 
5ca5837
 
068446f
 
 
 
 
 
 
 
 
 
5ca5837
 
 
 
068446f
 
5ca5837
 
 
 
 
 
df317b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe55078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2ae17
 
3481af7
 
ab2ae17
 
 
 
 
 
 
 
 
 
3481af7
 
 
 
ab2ae17
 
3481af7
 
 
 
 
 
8b0668c
e685761
e2540b1
 
945c663
 
647102b
3392950
e2540b1
26b2bba
76d648e
3f33424
 
 
 
 
 
 
 
 
 
 
 
76d648e
3392950
e837b0e
3392950
26b2bba
3392950
37fa267
26b2bba
e837b0e
e2540b1
 
 
e837b0e
26b2bba
798c3e8
26b2bba
e2540b1
db1c443
e2540b1
db1c443
e2540b1
db1c443
e2540b1
db1c443
 
e2540b1
 
 
 
e837b0e
e2540b1
 
798c3e8
e2540b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b2bba
e2540b1
 
 
 
 
 
 
 
 
 
 
 
26b2bba
798c3e8
 
e2540b1
37fa267
 
 
e2540b1
 
37fa267
 
e2540b1
37fa267
e2540b1
e685761
 
 
 
 
 
 
 
 
 
 
 
 
37fa267
192186e
 
e2540b1
 
e187a86
9fda193
e2540b1
 
 
 
 
 
9fda193
 
192186e
 
2c3bd59
192186e
 
 
 
 
 
 
 
 
 
 
e2540b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
---
language:
- bn
- en
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
- ur
license: cc-by-4.0
size_categories:
- 1M<n<10M
pretty_name: Pralekha
dataset_info:
- config_name: alignable
  features:
  - name: n_id
    dtype: string
  - name: doc_id
    dtype: string
  - name: lang
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: ben
    num_bytes: 651961117
    num_examples: 95813
  - name: eng
    num_bytes: 1048149692
    num_examples: 298111
  - name: guj
    num_bytes: 549286108
    num_examples: 67847
  - name: hin
    num_bytes: 1754308559
    num_examples: 204809
  - name: kan
    num_bytes: 567860764
    num_examples: 61998
  - name: mal
    num_bytes: 498894372
    num_examples: 67760
  - name: mar
    num_bytes: 961277740
    num_examples: 135301
  - name: ori
    num_bytes: 397642857
    num_examples: 46167
  - name: pan
    num_bytes: 872586190
    num_examples: 108459
  - name: tam
    num_bytes: 858335433
    num_examples: 149637
  - name: tel
    num_bytes: 914832899
    num_examples: 110077
  - name: urd
    num_bytes: 1199225480
    num_examples: 220425
  download_size: 3954199760
  dataset_size: 10274361211
- config_name: dev
  features:
  - name: src_text
    dtype: string
  - name: tgt_text
    dtype: string
  splits:
  - name: eng_ben
    num_bytes: 11878032
    num_examples: 1000
  - name: eng_guj
    num_bytes: 12114408
    num_examples: 1000
  - name: eng_hin
    num_bytes: 11866493
    num_examples: 1000
  - name: eng_kan
    num_bytes: 12737616
    num_examples: 1000
  - name: eng_mal
    num_bytes: 13282361
    num_examples: 1000
  - name: eng_mar
    num_bytes: 12562695
    num_examples: 1000
  - name: eng_ori
    num_bytes: 12440443
    num_examples: 1000
  - name: eng_pan
    num_bytes: 11887954
    num_examples: 1000
  - name: eng_tam
    num_bytes: 10889623
    num_examples: 1000
  - name: eng_tel
    num_bytes: 12862241
    num_examples: 1000
  - name: eng_urd
    num_bytes: 9313209
    num_examples: 1000
  download_size: 49754255
  dataset_size: 131835075
- config_name: test
  features:
  - name: src_text
    dtype: string
  - name: tgt_text
    dtype: string
  splits:
  - name: eng_ben
    num_bytes: 11326293
    num_examples: 1000
  - name: eng_guj
    num_bytes: 11754732
    num_examples: 1000
  - name: eng_hin
    num_bytes: 11572603
    num_examples: 1000
  - name: eng_kan
    num_bytes: 12210417
    num_examples: 1000
  - name: eng_mal
    num_bytes: 12750095
    num_examples: 1000
  - name: eng_mar
    num_bytes: 12260214
    num_examples: 1000
  - name: eng_ori
    num_bytes: 11926414
    num_examples: 1000
  - name: eng_pan
    num_bytes: 11534797
    num_examples: 1000
  - name: eng_tam
    num_bytes: 11072385
    num_examples: 1000
  - name: eng_tel
    num_bytes: 12530011
    num_examples: 1000
  - name: eng_urd
    num_bytes: 9196555
    num_examples: 1000
  download_size: 49449543
  dataset_size: 128134516
- config_name: unalignable
  features:
  - name: n_id
    dtype: string
  - name: doc_id
    dtype: string
  - name: lang
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: ben
    num_bytes: 273391595
    num_examples: 47906
  - name: eng
    num_bytes: 420307531
    num_examples: 149055
  - name: guj
    num_bytes: 214351582
    num_examples: 33923
  - name: hin
    num_bytes: 683869386
    num_examples: 102404
  - name: kan
    num_bytes: 189633814
    num_examples: 30999
  - name: mal
    num_bytes: 192394324
    num_examples: 33880
  - name: mar
    num_bytes: 428715921
    num_examples: 67650
  - name: ori
    num_bytes: 111986274
    num_examples: 23083
  - name: pan
    num_bytes: 328564948
    num_examples: 54229
  - name: tam
    num_bytes: 614171222
    num_examples: 74818
  - name: tel
    num_bytes: 372531108
    num_examples: 55038
  - name: urd
    num_bytes: 644995094
    num_examples: 110212
  download_size: 1855179179
  dataset_size: 4474912799
configs:
- config_name: alignable
  data_files:
  - split: ben
    path: alignable/ben-*
  - split: eng
    path: alignable/eng-*
  - split: guj
    path: alignable/guj-*
  - split: hin
    path: alignable/hin-*
  - split: kan
    path: alignable/kan-*
  - split: mal
    path: alignable/mal-*
  - split: mar
    path: alignable/mar-*
  - split: ori
    path: alignable/ori-*
  - split: pan
    path: alignable/pan-*
  - split: tam
    path: alignable/tam-*
  - split: tel
    path: alignable/tel-*
  - split: urd
    path: alignable/urd-*
- config_name: dev
  data_files:
  - split: eng_ben
    path: dev/eng_ben-*
  - split: eng_guj
    path: dev/eng_guj-*
  - split: eng_hin
    path: dev/eng_hin-*
  - split: eng_kan
    path: dev/eng_kan-*
  - split: eng_mal
    path: dev/eng_mal-*
  - split: eng_mar
    path: dev/eng_mar-*
  - split: eng_ori
    path: dev/eng_ori-*
  - split: eng_pan
    path: dev/eng_pan-*
  - split: eng_tam
    path: dev/eng_tam-*
  - split: eng_tel
    path: dev/eng_tel-*
  - split: eng_urd
    path: dev/eng_urd-*
- config_name: test
  data_files:
  - split: eng_ben
    path: test/eng_ben-*
  - split: eng_guj
    path: test/eng_guj-*
  - split: eng_hin
    path: test/eng_hin-*
  - split: eng_kan
    path: test/eng_kan-*
  - split: eng_mal
    path: test/eng_mal-*
  - split: eng_mar
    path: test/eng_mar-*
  - split: eng_ori
    path: test/eng_ori-*
  - split: eng_pan
    path: test/eng_pan-*
  - split: eng_tam
    path: test/eng_tam-*
  - split: eng_tel
    path: test/eng_tel-*
  - split: eng_urd
    path: test/eng_urd-*
- config_name: unalignable
  data_files:
  - split: ben
    path: unalignable/ben-*
  - split: eng
    path: unalignable/eng-*
  - split: guj
    path: unalignable/guj-*
  - split: hin
    path: unalignable/hin-*
  - split: kan
    path: unalignable/kan-*
  - split: mal
    path: unalignable/mal-*
  - split: mar
    path: unalignable/mar-*
  - split: ori
    path: unalignable/ori-*
  - split: pan
    path: unalignable/pan-*
  - split: tam
    path: unalignable/tam-*
  - split: tel
    path: unalignable/tel-*
  - split: urd
    path: unalignable/urd-*
tags:
- parallel-corpus
- document-alignment
- machine-translation
task_categories:
- translation
---

# Pralekha: Cross-Lingual Document Alignment for Indic Languages

<div style="display: flex; gap: 10px;">
  <a href="https://arxiv.org/abs/2411.19096">
    <img src="https://img.shields.io/badge/arXiv-2411.19096-B31B1B" alt="arXiv">
  </a>
  <a href="https://huggingface.co/datasets/ai4bharat/Pralekha">
    <img src="https://img.shields.io/badge/huggingface-Pralekha-yellow" alt="HuggingFace">
  </a>
  <a href="https://github.com/AI4Bharat/Pralekha">
    <img src="https://img.shields.io/badge/github-Pralekha-blue" alt="GitHub">
  </a>
  <a href="https://creativecommons.org/licenses/by/4.0/">
    <img src="https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey" alt="License: CC BY 4.0">
  </a>
</div>

**Pralekha** is a large-scale parallel document dataset spanning across **11 Indic languages** and **English**. It comprises over **3 million** document pairs, with **1.5 million** being English-centric. This dataset serves both as a benchmark for evaluating **Cross-Lingual Document Alignment (CLDA)** techniques and as a domain-specific parallel corpus for training document-level **Machine Translation (MT)** models in Indic Languages.

---

## Dataset Description

**Pralekha** covers 12 languages—Bengali (`ben`), Gujarati (`guj`), Hindi (`hin`), Kannada (`kan`), Malayalam (`mal`), Marathi (`mar`), Odia (`ori`), Punjabi (`pan`), Tamil (`tam`), Telugu (`tel`), Urdu (`urd`), and English (`eng`). It includes a mixture of high- and medium-resource languages, covering 11 different scripts. The dataset spans two broad domains: **News Bulletins** ([Indian Press Information Bureau (PIB)](https://pib.gov.in)) and **Podcast Scripts** ([Mann Ki Baat (MKB)](https://www.pmindia.gov.in/en/mann-ki-baat)), offering both written and spoken forms of data. All the data is human-written or human-verified, ensuring high quality.

While this accounts for `alignable` (parallel) documents, In real-world scenarios, multilingual corpora often include `unalignable` documents. To simulate this for CLDA evaluation, we sample `unalignable` documents from [Sangraha Unverified](https://huggingface.co/datasets/ai4bharat/sangraha/viewer/unverified), selecting 50% of Pralekha’s size to maintain a 1:2 ratio of `unalignable` to `alignable` documents. 

For Machine Translation (MT) tasks, we first randomly sample 1,000 documents from the `alignable` subset per English-Indic language pair for each development (dev) and test set, ensuring a good distribution of varying document lengths. After excluding these sampled documents, we use the remaining documents as the training set for training document-level machine translation models.

---

## Data Fields

### Alignable & Unalignable Set:

- **`n_id`:** Unique identifier for `alignable` document pairs (Random `n_id`'s are assigned for the `unalignable` set.)
- **`doc_id`:** Unique identifier for individual documents.
- **`lang`:** Language of the document (ISO 639-3 code).
- **`text`:** The textual content of the document.

### Train, Dev & Test Set:

- **`src_lang`:** Source Language (eng)
- **`src_text`:** Source Language Text
- **`tgt_lang`:** Target Language (ISO 639-3 code)
- **`tgt_text`:** Target Language Text

---

## Usage

You can load specific **subsets** and **splits** from this dataset using the `datasets` library.

### Load an entire subset

```python
from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>")
# <subset> = alignable, unalignable, train, dev & test.
```

### Load a specific split within a subset

```python
from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/<lang>")
# <subset> = alignable, unalignable ; <lang> = ben, eng, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```
```python
from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/eng_<lang>")
# <subset> = train, dev & test ; <lang> = ben, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
```

---

## Data Size Statistics

| Split         | Number of Documents | Size (bytes)       |
|---------------|---------------------|--------------------|
| **Alignable**   | 1,566,404           | 10,274,361,211     |
| **Unalignable** | 783,197             | 4,466,506,637      |
| **Total**     | 2,349,601           | 14,740,867,848     |

## Language-wise Statistics

| Language (`ISO-3`) | Alignable Documents | Unalignable Documents | Total Documents |
|---------------------|-------------------|---------------------|-----------------|
| Bengali (`ben`)     | 95,813            | 47,906              | 143,719         |
| English (`eng`)     | 298,111           | 149,055             | 447,166         |
| Gujarati (`guj`)    | 67,847            | 33,923              | 101,770         |
| Hindi (`hin`)       | 204,809           | 102,404             | 307,213         |
| Kannada (`kan`)     | 61,998            | 30,999              | 92,997          |
| Malayalam (`mal`)   | 67,760            | 33,880              | 101,640         |
| Marathi (`mar`)     | 135,301           | 67,650              | 202,951         |
| Odia (`ori`)        | 46,167            | 23,083              | 69,250          |
| Punjabi (`pan`)     | 108,459           | 54,229              | 162,688         |
| Tamil (`tam`)       | 149,637           | 74,818              | 224,455         |
| Telugu (`tel`)      | 110,077           | 55,038              | 165,115         |
| Urdu (`urd`)        | 220,425           | 110,212             | 330,637         |

---

# Citation
If you use Pralekha in your work, please cite us:

```
@article{suryanarayanan2024pralekha,
  title={Pralekha: An Indic Document Alignment Evaluation Benchmark},
  author={Suryanarayanan, Sanjay and Song, Haiyue and Khan, Mohammed Safi Ur Rahman and Kunchukuttan, Anoop and Khapra, Mitesh M and Dabre, Raj},
  journal={arXiv preprint arXiv:2411.19096},
  year={2024}
}
```

## License

This dataset is released under the [**CC BY 4.0**](https://creativecommons.org/licenses/by/4.0/) license.


## Contact

For any questions or feedback, please contact:

- Raj Dabre ([[email protected]](mailto:[email protected]))  
- Sanjay Suryanarayanan ([[email protected]](mailto:[email protected]))  
- Haiyue Song ([[email protected]](mailto:[email protected]))  
- Mohammed Safi Ur Rahman Khan ([[email protected]](mailto:[email protected]))  

Please get in touch with us for any copyright concerns.