bug_id
stringlengths 1
3
| task_id
stringlengths 64
64
| function_signature
stringlengths 15
364
| prompt_chat
stringlengths 471
20.2k
| code
stringlengths 44
19.8k
| defective
bool 2
classes | project
stringclasses 17
values | prompt_complete
stringlengths 3.07k
22.8k
|
---|---|---|---|---|---|---|---|
5 | a89d570882c955330f884dee0d819256d30d3377cf961bc2da9cc5606693e3d9 | public XYDataItem addOrUpdate(Number x, Number y) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Adds or updates an item in the series and sends a
* {@link SeriesChangeEvent} to all registered listeners.
*
* @param x the x-value (<code>null</code> not permitted).
* @param y the y-value (<code>null</code> permitted).
*
* @return A copy of the overwritten data item, or <code>null</code> if no
* item was overwritten.
*/
public XYDataItem addOrUpdate(Number x, Number y) {
if (x == null) {
throw new IllegalArgumentException("Null 'x' argument.");
}
if (this.allowDuplicateXValues) {
add(x, y);
return null;
}
// if we get to here, we know that duplicate X values are not permitted
XYDataItem overwritten = null;
int index = indexOf(x);
if (index >= 0) {
XYDataItem existing = (XYDataItem) this.data.get(index);
try {
overwritten = (XYDataItem) existing.clone();
}
catch (CloneNotSupportedException e) {
throw new SeriesException("Couldn't clone XYDataItem!");
}
existing.setY(y);
}
else {
// if the series is sorted, the negative index is a result from
// Collections.binarySearch() and tells us where to insert the
// new item...otherwise it will be just -1 and we should just
// append the value to the list...
if (this.autoSort) {
this.data.add(-index - 1, new XYDataItem(x, y));
}
else {
this.data.add(new XYDataItem(x, y));
}
// check if this addition will exceed the maximum item count...
if (getItemCount() > this.maximumItemCount) {
this.data.remove(0);
}
}
fireSeriesChanged();
return overwritten;
}
```
| public XYDataItem addOrUpdate(Number x, Number y) {
if (x == null) {
throw new IllegalArgumentException("Null 'x' argument.");
}
if (this.allowDuplicateXValues) {
add(x, y);
return null;
}
// if we get to here, we know that duplicate X values are not permitted
XYDataItem overwritten = null;
int index = indexOf(x);
if (index >= 0) {
XYDataItem existing = (XYDataItem) this.data.get(index);
try {
overwritten = (XYDataItem) existing.clone();
}
catch (CloneNotSupportedException e) {
throw new SeriesException("Couldn't clone XYDataItem!");
}
existing.setY(y);
}
else {
// if the series is sorted, the negative index is a result from
// Collections.binarySearch() and tells us where to insert the
// new item...otherwise it will be just -1 and we should just
// append the value to the list...
if (this.autoSort) {
this.data.add(-index - 1, new XYDataItem(x, y));
}
else {
this.data.add(new XYDataItem(x, y));
}
// check if this addition will exceed the maximum item count...
if (getItemCount() > this.maximumItemCount) {
this.data.remove(0);
}
}
fireSeriesChanged();
return overwritten;
} | false | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Adds or updates an item in the series and sends a
* {@link SeriesChangeEvent} to all registered listeners.
*
* @param x the x-value (<code>null</code> not permitted).
* @param y the y-value (<code>null</code> permitted).
*
* @return A copy of the overwritten data item, or <code>null</code> if no
* item was overwritten.
*/
public XYDataItem addOrUpdate(Number x, Number y) {
if (x == null) {
throw new IllegalArgumentException("Null 'x' argument.");
}
if (this.allowDuplicateXValues) {
add(x, y);
return null;
}
// if we get to here, we know that duplicate X values are not permitted
XYDataItem overwritten = null;
int index = indexOf(x);
if (index >= 0) {
XYDataItem existing = (XYDataItem) this.data.get(index);
try {
overwritten = (XYDataItem) existing.clone();
}
catch (CloneNotSupportedException e) {
throw new SeriesException("Couldn't clone XYDataItem!");
}
existing.setY(y);
}
else {
// if the series is sorted, the negative index is a result from
// Collections.binarySearch() and tells us where to insert the
// new item...otherwise it will be just -1 and we should just
// append the value to the list...
if (this.autoSort) {
this.data.add(-index - 1, new XYDataItem(x, y));
}
else {
this.data.add(new XYDataItem(x, y));
}
// check if this addition will exceed the maximum item count...
if (getItemCount() > this.maximumItemCount) {
this.data.remove(0);
}
}
fireSeriesChanged();
return overwritten;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
27 | a8a1e0bd2fbf2e23431dd3a811e003cbad194069ac251780a0b0bf067bdfd6d9 | public static Number createNumber(String str) throws NumberFormatException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Turns a string value into a java.lang.Number.</p>
*
* <p>First, the value is examined for a type qualifier on the end
* (<code>'f','F','d','D','l','L'</code>). If it is found, it starts
* trying to create successively larger types from the type specified
* until one is found that can represent the value.</p>
*
* <p>If a type specifier is not found, it will check for a decimal point
* and then try successively larger types from <code>Integer</code> to
* <code>BigInteger</code> and from <code>Float</code> to
* <code>BigDecimal</code>.</p>
*
* <p>If the string starts with <code>0x</code> or <code>-0x</code>, it
* will be interpreted as a hexadecimal integer. Values with leading
* <code>0</code>'s will not be interpreted as octal.</p>
*
* <p>Returns <code>null</code> if the string is <code>null</code>.</p>
*
* <p>This method does not trim the input string, i.e., strings with leading
* or trailing spaces will generate NumberFormatExceptions.</p>
*
* @param str String containing a number, may be null
* @return Number created from the string
* @throws NumberFormatException if the value cannot be converted
*/
// plus minus everything. Prolly more. A lot are not separable.
// 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
// Possible inputs:
// new BigInteger(String,int radix)
// new BigInteger(String)
// new BigDecimal(String)
// Short.valueOf(String)
// Short.valueOf(String,int)
// Short.decode(String)
// new Short(String)
// Long.valueOf(String)
// Long.valueOf(String,int)
// Long.getLong(String,Integer)
// Long.getLong(String,int)
// Long.getLong(String)
// new Long(String)
// new Byte(String)
// new Double(String)
// new Integer(String)
// Integer.getInteger(String,Integer val)
// Integer.getInteger(String,int val)
// Integer.getInteger(String)
// Integer.decode(String)
// Integer.valueOf(String)
// Integer.valueOf(String,int radix)
// new Float(String)
// Float.valueOf(String)
// Double.valueOf(String)
// Byte.valueOf(String)
// Byte.valueOf(String,int radix)
// Byte.decode(String)
// useful methods:
// BigDecimal, BigInteger and Byte
// must handle Long, Float, Integer, Float, Short,
//-----------------------------------------------------------------------
public static Number createNumber(String str) throws NumberFormatException {
if (str == null) {
return null;
}
if (StringUtils.isBlank(str)) {
throw new NumberFormatException("A blank string is not a valid number");
}
if (str.startsWith("--")) {
// this is protection for poorness in java.lang.BigDecimal.
// it accepts this as a legal value, but it does not appear
// to be in specification of class. OS X Java parses it to
// a wrong value.
return null;
}
if (str.startsWith("0x") || str.startsWith("-0x")) {
return createInteger(str);
}
char lastChar = str.charAt(str.length() - 1);
String mant;
String dec;
String exp;
int decPos = str.indexOf('.');
int expPos = str.indexOf('e') + str.indexOf('E') + 1;
if (decPos > -1) {
if (expPos > -1) {
if (expPos < decPos || expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
dec = str.substring(decPos + 1, expPos);
} else {
dec = str.substring(decPos + 1);
}
mant = str.substring(0, decPos);
} else {
if (expPos > -1) {
if (expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
mant = str.substring(0, expPos);
} else {
mant = str;
}
dec = null;
}
if (!Character.isDigit(lastChar) && lastChar != '.') {
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length() - 1);
} else {
exp = null;
}
//Requesting a specific type..
String numeric = str.substring(0, str.length() - 1);
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
switch (lastChar) {
case 'l' :
case 'L' :
if (dec == null
&& exp == null
&& (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
try {
return createLong(numeric);
} catch (NumberFormatException nfe) {
//Too big for a long
}
return createBigInteger(numeric);
}
throw new NumberFormatException(str + " is not a valid number.");
case 'f' :
case 'F' :
try {
Float f = NumberUtils.createFloat(numeric);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
//If it's too big for a float or the float value = 0 and the string
//has non-zeros in it, then float does not have the precision we want
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
//$FALL-THROUGH$
case 'd' :
case 'D' :
try {
Double d = NumberUtils.createDouble(numeric);
if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createBigDecimal(numeric);
} catch (NumberFormatException e) {
// ignore the bad number
}
//$FALL-THROUGH$
default :
throw new NumberFormatException(str + " is not a valid number.");
}
} else {
//User doesn't have a preference on the return type, so let's start
//small and go from there...
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length());
} else {
exp = null;
}
if (dec == null && exp == null) {
//Must be an int,long,bigint
try {
return createInteger(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createLong(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigInteger(str);
} else {
//Must be a float,double,BigDec
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
try {
Float f = createFloat(str);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
Double d = createDouble(str);
if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigDecimal(str);
}
}
}
```
| public static Number createNumber(String str) throws NumberFormatException {
if (str == null) {
return null;
}
if (StringUtils.isBlank(str)) {
throw new NumberFormatException("A blank string is not a valid number");
}
if (str.startsWith("--")) {
// this is protection for poorness in java.lang.BigDecimal.
// it accepts this as a legal value, but it does not appear
// to be in specification of class. OS X Java parses it to
// a wrong value.
return null;
}
if (str.startsWith("0x") || str.startsWith("-0x")) {
return createInteger(str);
}
char lastChar = str.charAt(str.length() - 1);
String mant;
String dec;
String exp;
int decPos = str.indexOf('.');
int expPos = str.indexOf('e') + str.indexOf('E') + 1;
if (decPos > -1) {
if (expPos > -1) {
if (expPos < decPos || expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
dec = str.substring(decPos + 1, expPos);
} else {
dec = str.substring(decPos + 1);
}
mant = str.substring(0, decPos);
} else {
if (expPos > -1) {
if (expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
mant = str.substring(0, expPos);
} else {
mant = str;
}
dec = null;
}
if (!Character.isDigit(lastChar) && lastChar != '.') {
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length() - 1);
} else {
exp = null;
}
//Requesting a specific type..
String numeric = str.substring(0, str.length() - 1);
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
switch (lastChar) {
case 'l' :
case 'L' :
if (dec == null
&& exp == null
&& (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
try {
return createLong(numeric);
} catch (NumberFormatException nfe) {
//Too big for a long
}
return createBigInteger(numeric);
}
throw new NumberFormatException(str + " is not a valid number.");
case 'f' :
case 'F' :
try {
Float f = NumberUtils.createFloat(numeric);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
//If it's too big for a float or the float value = 0 and the string
//has non-zeros in it, then float does not have the precision we want
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
//$FALL-THROUGH$
case 'd' :
case 'D' :
try {
Double d = NumberUtils.createDouble(numeric);
if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createBigDecimal(numeric);
} catch (NumberFormatException e) {
// ignore the bad number
}
//$FALL-THROUGH$
default :
throw new NumberFormatException(str + " is not a valid number.");
}
} else {
//User doesn't have a preference on the return type, so let's start
//small and go from there...
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length());
} else {
exp = null;
}
if (dec == null && exp == null) {
//Must be an int,long,bigint
try {
return createInteger(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createLong(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigInteger(str);
} else {
//Must be a float,double,BigDec
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
try {
Float f = createFloat(str);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
Double d = createDouble(str);
if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigDecimal(str);
}
}
} | false | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Turns a string value into a java.lang.Number.</p>
*
* <p>First, the value is examined for a type qualifier on the end
* (<code>'f','F','d','D','l','L'</code>). If it is found, it starts
* trying to create successively larger types from the type specified
* until one is found that can represent the value.</p>
*
* <p>If a type specifier is not found, it will check for a decimal point
* and then try successively larger types from <code>Integer</code> to
* <code>BigInteger</code> and from <code>Float</code> to
* <code>BigDecimal</code>.</p>
*
* <p>If the string starts with <code>0x</code> or <code>-0x</code>, it
* will be interpreted as a hexadecimal integer. Values with leading
* <code>0</code>'s will not be interpreted as octal.</p>
*
* <p>Returns <code>null</code> if the string is <code>null</code>.</p>
*
* <p>This method does not trim the input string, i.e., strings with leading
* or trailing spaces will generate NumberFormatExceptions.</p>
*
* @param str String containing a number, may be null
* @return Number created from the string
* @throws NumberFormatException if the value cannot be converted
*/
// plus minus everything. Prolly more. A lot are not separable.
// 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
// Possible inputs:
// new BigInteger(String,int radix)
// new BigInteger(String)
// new BigDecimal(String)
// Short.valueOf(String)
// Short.valueOf(String,int)
// Short.decode(String)
// new Short(String)
// Long.valueOf(String)
// Long.valueOf(String,int)
// Long.getLong(String,Integer)
// Long.getLong(String,int)
// Long.getLong(String)
// new Long(String)
// new Byte(String)
// new Double(String)
// new Integer(String)
// Integer.getInteger(String,Integer val)
// Integer.getInteger(String,int val)
// Integer.getInteger(String)
// Integer.decode(String)
// Integer.valueOf(String)
// Integer.valueOf(String,int radix)
// new Float(String)
// Float.valueOf(String)
// Double.valueOf(String)
// Byte.valueOf(String)
// Byte.valueOf(String,int radix)
// Byte.decode(String)
// useful methods:
// BigDecimal, BigInteger and Byte
// must handle Long, Float, Integer, Float, Short,
//-----------------------------------------------------------------------
public static Number createNumber(String str) throws NumberFormatException {
if (str == null) {
return null;
}
if (StringUtils.isBlank(str)) {
throw new NumberFormatException("A blank string is not a valid number");
}
if (str.startsWith("--")) {
// this is protection for poorness in java.lang.BigDecimal.
// it accepts this as a legal value, but it does not appear
// to be in specification of class. OS X Java parses it to
// a wrong value.
return null;
}
if (str.startsWith("0x") || str.startsWith("-0x")) {
return createInteger(str);
}
char lastChar = str.charAt(str.length() - 1);
String mant;
String dec;
String exp;
int decPos = str.indexOf('.');
int expPos = str.indexOf('e') + str.indexOf('E') + 1;
if (decPos > -1) {
if (expPos > -1) {
if (expPos < decPos || expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
dec = str.substring(decPos + 1, expPos);
} else {
dec = str.substring(decPos + 1);
}
mant = str.substring(0, decPos);
} else {
if (expPos > -1) {
if (expPos > str.length()) {
throw new NumberFormatException(str + " is not a valid number.");
}
mant = str.substring(0, expPos);
} else {
mant = str;
}
dec = null;
}
if (!Character.isDigit(lastChar) && lastChar != '.') {
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length() - 1);
} else {
exp = null;
}
//Requesting a specific type..
String numeric = str.substring(0, str.length() - 1);
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
switch (lastChar) {
case 'l' :
case 'L' :
if (dec == null
&& exp == null
&& (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
try {
return createLong(numeric);
} catch (NumberFormatException nfe) {
//Too big for a long
}
return createBigInteger(numeric);
}
throw new NumberFormatException(str + " is not a valid number.");
case 'f' :
case 'F' :
try {
Float f = NumberUtils.createFloat(numeric);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
//If it's too big for a float or the float value = 0 and the string
//has non-zeros in it, then float does not have the precision we want
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
//$FALL-THROUGH$
case 'd' :
case 'D' :
try {
Double d = NumberUtils.createDouble(numeric);
if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createBigDecimal(numeric);
} catch (NumberFormatException e) {
// ignore the bad number
}
//$FALL-THROUGH$
default :
throw new NumberFormatException(str + " is not a valid number.");
}
} else {
//User doesn't have a preference on the return type, so let's start
//small and go from there...
if (expPos > -1 && expPos < str.length() - 1) {
exp = str.substring(expPos + 1, str.length());
} else {
exp = null;
}
if (dec == null && exp == null) {
//Must be an int,long,bigint
try {
return createInteger(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
return createLong(str);
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigInteger(str);
} else {
//Must be a float,double,BigDec
boolean allZeros = isAllZeros(mant) && isAllZeros(exp);
try {
Float f = createFloat(str);
if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) {
return f;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
try {
Double d = createDouble(str);
if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) {
return d;
}
} catch (NumberFormatException nfe) {
// ignore the bad number
}
return createBigDecimal(str);
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
29 | a95a7fe244e133dfe0cad30c6c696772839a15d1242e92aa5134f76bb758fd29 | private boolean isInlinableObject(List<Reference> refs) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Counts the number of direct (full) references to an object.
* Specifically we check for references of the following type:
* <pre>
* x;
* x.fn();
* </pre>
*/
private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore indirect references, like x.y (except x.y(), since
// the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target maybe using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-refential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
}
```
| private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore indirect references, like x.y (except x.y(), since
// the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target maybe using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-refential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of direct (full) references to an object.
* Specifically we check for references of the following type:
* <pre>
* x;
* x.fn();
* </pre>
*/
private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore indirect references, like x.y (except x.y(), since
// the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target maybe using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-refential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
35 | a96994d1dbb81e095590576dd6952c58906c88c0a9920e11f766090719573f43 | private void inferPropertyTypesToMatchConstraint(
JSType type, JSType constraint) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Suppose X is an object with inferred properties.
* Suppose also that X is used in a way where it would only type-check
* correctly if some of those properties are widened.
* Then we should be polite and automatically widen X's properties for him.
*
* For a concrete example, consider:
* param x {{prop: (number|undefined)}}
* function f(x) {}
* f({});
*
* If we give the anonymous object an inferred property of (number|undefined),
* then this code will type-check appropriately.
*/
private void inferPropertyTypesToMatchConstraint(
JSType type, JSType constraint) {
if (type == null || constraint == null) {
return;
}
ObjectType constraintObj =
ObjectType.cast(constraint.restrictByNotNullOrUndefined());
if (constraintObj != null && constraintObj.isRecordType()) {
ObjectType objType = ObjectType.cast(type.restrictByNotNullOrUndefined());
if (objType != null) {
for (String prop : constraintObj.getOwnPropertyNames()) {
JSType propType = constraintObj.getPropertyType(prop);
if (!objType.isPropertyTypeDeclared(prop)) {
JSType typeToInfer = propType;
if (!objType.hasProperty(prop)) {
typeToInfer =
getNativeType(VOID_TYPE).getLeastSupertype(propType);
}
objType.defineInferredProperty(prop, typeToInfer, null);
}
}
}
}
}
```
| private void inferPropertyTypesToMatchConstraint(
JSType type, JSType constraint) {
if (type == null || constraint == null) {
return;
}
ObjectType constraintObj =
ObjectType.cast(constraint.restrictByNotNullOrUndefined());
if (constraintObj != null && constraintObj.isRecordType()) {
ObjectType objType = ObjectType.cast(type.restrictByNotNullOrUndefined());
if (objType != null) {
for (String prop : constraintObj.getOwnPropertyNames()) {
JSType propType = constraintObj.getPropertyType(prop);
if (!objType.isPropertyTypeDeclared(prop)) {
JSType typeToInfer = propType;
if (!objType.hasProperty(prop)) {
typeToInfer =
getNativeType(VOID_TYPE).getLeastSupertype(propType);
}
objType.defineInferredProperty(prop, typeToInfer, null);
}
}
}
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Suppose X is an object with inferred properties.
* Suppose also that X is used in a way where it would only type-check
* correctly if some of those properties are widened.
* Then we should be polite and automatically widen X's properties for him.
*
* For a concrete example, consider:
* param x {{prop: (number|undefined)}}
* function f(x) {}
* f({});
*
* If we give the anonymous object an inferred property of (number|undefined),
* then this code will type-check appropriately.
*/
private void inferPropertyTypesToMatchConstraint(
JSType type, JSType constraint) {
if (type == null || constraint == null) {
return;
}
ObjectType constraintObj =
ObjectType.cast(constraint.restrictByNotNullOrUndefined());
if (constraintObj != null && constraintObj.isRecordType()) {
ObjectType objType = ObjectType.cast(type.restrictByNotNullOrUndefined());
if (objType != null) {
for (String prop : constraintObj.getOwnPropertyNames()) {
JSType propType = constraintObj.getPropertyType(prop);
if (!objType.isPropertyTypeDeclared(prop)) {
JSType typeToInfer = propType;
if (!objType.hasProperty(prop)) {
typeToInfer =
getNativeType(VOID_TYPE).getLeastSupertype(propType);
}
objType.defineInferredProperty(prop, typeToInfer, null);
}
}
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
14 | a9f680298a3664b7e408229ab225e1f6040688f51f91ca4e2fe5e8edcee00adf | private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len,
final Appendable out, final boolean newRecord) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
// the original object is needed so can check for Number
/*
* Note: must only be called if quoting is enabled, otherwise will generate NPE
*/
private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len,
final Appendable out, final boolean newRecord) throws IOException {
boolean quote = false;
int start = offset;
int pos = offset;
final int end = offset + len;
final char delimChar = getDelimiter();
final char quoteChar = getQuoteCharacter().charValue();
QuoteMode quoteModePolicy = getQuoteMode();
if (quoteModePolicy == null) {
quoteModePolicy = QuoteMode.MINIMAL;
}
switch (quoteModePolicy) {
case ALL:
quote = true;
break;
case NON_NUMERIC:
quote = !(object instanceof Number);
break;
case NONE:
// Use the existing escaping code
printAndEscape(value, offset, len, out);
return;
case MINIMAL:
if (len <= 0) {
// always quote an empty token that is the first
// on the line, as it may be the only thing on the
// line. If it were not quoted in that case,
// an empty line has no tokens.
if (newRecord) {
quote = true;
}
} else {
char c = value.charAt(pos);
// RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E
if (newRecord && (c < '0' || c > '9' && c < 'A' || c > 'Z' && c < 'a' || c > 'z')) {
quote = true;
} else if (c <= COMMENT) {
// Some other chars at the start of a value caused the parser to fail, so for now
// encapsulate if we start in anything less than '#'. We are being conservative
// by including the default comment char too.
quote = true;
} else {
while (pos < end) {
c = value.charAt(pos);
if (c == LF || c == CR || c == quoteChar || c == delimChar) {
quote = true;
break;
}
pos++;
}
if (!quote) {
pos = end - 1;
c = value.charAt(pos);
// Some other chars at the end caused the parser to fail, so for now
// encapsulate if we end in anything less than ' '
if (c <= SP) {
quote = true;
}
}
}
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
break;
default:
throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy);
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
// we hit something that needed encapsulation
out.append(quoteChar);
// Pick up where we left off: pos should be positioned on the first character that caused
// the need for encapsulation.
while (pos < end) {
final char c = value.charAt(pos);
if (c == quoteChar) {
// write out the chunk up until this point
// add 1 to the length to write out the encapsulator also
out.append(value, start, pos + 1);
// put the next starting position on the encapsulator so we will
// write it out again with the next string (effectively doubling it)
start = pos;
}
pos++;
}
// write the last segment
out.append(value, start, pos);
out.append(quoteChar);
}
```
| private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len,
final Appendable out, final boolean newRecord) throws IOException {
boolean quote = false;
int start = offset;
int pos = offset;
final int end = offset + len;
final char delimChar = getDelimiter();
final char quoteChar = getQuoteCharacter().charValue();
QuoteMode quoteModePolicy = getQuoteMode();
if (quoteModePolicy == null) {
quoteModePolicy = QuoteMode.MINIMAL;
}
switch (quoteModePolicy) {
case ALL:
quote = true;
break;
case NON_NUMERIC:
quote = !(object instanceof Number);
break;
case NONE:
// Use the existing escaping code
printAndEscape(value, offset, len, out);
return;
case MINIMAL:
if (len <= 0) {
// always quote an empty token that is the first
// on the line, as it may be the only thing on the
// line. If it were not quoted in that case,
// an empty line has no tokens.
if (newRecord) {
quote = true;
}
} else {
char c = value.charAt(pos);
// RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E
if (newRecord && (c < '0' || c > '9' && c < 'A' || c > 'Z' && c < 'a' || c > 'z')) {
quote = true;
} else if (c <= COMMENT) {
// Some other chars at the start of a value caused the parser to fail, so for now
// encapsulate if we start in anything less than '#'. We are being conservative
// by including the default comment char too.
quote = true;
} else {
while (pos < end) {
c = value.charAt(pos);
if (c == LF || c == CR || c == quoteChar || c == delimChar) {
quote = true;
break;
}
pos++;
}
if (!quote) {
pos = end - 1;
c = value.charAt(pos);
// Some other chars at the end caused the parser to fail, so for now
// encapsulate if we end in anything less than ' '
if (c <= SP) {
quote = true;
}
}
}
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
break;
default:
throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy);
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
// we hit something that needed encapsulation
out.append(quoteChar);
// Pick up where we left off: pos should be positioned on the first character that caused
// the need for encapsulation.
while (pos < end) {
final char c = value.charAt(pos);
if (c == quoteChar) {
// write out the chunk up until this point
// add 1 to the length to write out the encapsulator also
out.append(value, start, pos + 1);
// put the next starting position on the encapsulator so we will
// write it out again with the next string (effectively doubling it)
start = pos;
}
pos++;
}
// write the last segment
out.append(value, start, pos);
out.append(quoteChar);
} | true | Csv | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
// the original object is needed so can check for Number
/*
* Note: must only be called if quoting is enabled, otherwise will generate NPE
*/
private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len,
final Appendable out, final boolean newRecord) throws IOException {
boolean quote = false;
int start = offset;
int pos = offset;
final int end = offset + len;
final char delimChar = getDelimiter();
final char quoteChar = getQuoteCharacter().charValue();
QuoteMode quoteModePolicy = getQuoteMode();
if (quoteModePolicy == null) {
quoteModePolicy = QuoteMode.MINIMAL;
}
switch (quoteModePolicy) {
case ALL:
quote = true;
break;
case NON_NUMERIC:
quote = !(object instanceof Number);
break;
case NONE:
// Use the existing escaping code
printAndEscape(value, offset, len, out);
return;
case MINIMAL:
if (len <= 0) {
// always quote an empty token that is the first
// on the line, as it may be the only thing on the
// line. If it were not quoted in that case,
// an empty line has no tokens.
if (newRecord) {
quote = true;
}
} else {
char c = value.charAt(pos);
// RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E
if (newRecord && (c < '0' || c > '9' && c < 'A' || c > 'Z' && c < 'a' || c > 'z')) {
quote = true;
} else if (c <= COMMENT) {
// Some other chars at the start of a value caused the parser to fail, so for now
// encapsulate if we start in anything less than '#'. We are being conservative
// by including the default comment char too.
quote = true;
} else {
while (pos < end) {
c = value.charAt(pos);
if (c == LF || c == CR || c == quoteChar || c == delimChar) {
quote = true;
break;
}
pos++;
}
if (!quote) {
pos = end - 1;
c = value.charAt(pos);
// Some other chars at the end caused the parser to fail, so for now
// encapsulate if we end in anything less than ' '
if (c <= SP) {
quote = true;
}
}
}
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
break;
default:
throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy);
}
if (!quote) {
// no encapsulation needed - write out the original value
out.append(value, start, end);
return;
}
// we hit something that needed encapsulation
out.append(quoteChar);
// Pick up where we left off: pos should be positioned on the first character that caused
// the need for encapsulation.
while (pos < end) {
final char c = value.charAt(pos);
if (c == quoteChar) {
// write out the chunk up until this point
// add 1 to the length to write out the encapsulator also
out.append(value, start, pos + 1);
// put the next starting position on the encapsulator so we will
// write it out again with the next string (effectively doubling it)
start = pos;
}
pos++;
}
// write the last segment
out.append(value, start, pos);
out.append(quoteChar);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
48 | aa255227ba50fe74dfba98dadd0ee1827240529e9d9f0a966182205432629c9c | void maybeDeclareQualifiedName(NodeTraversal t, JSDocInfo info,
Node n, Node parent, Node rhsValue) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Declare the symbol for a qualified name in the global scope.
*
* @param info The doc info for this property.
* @param n A top-level GETPROP node (it should not be contained inside
* another GETPROP).
* @param parent The parent of {@code n}.
* @param rhsValue The node that {@code n} is being initialized to,
* or {@code null} if this is a stub declaration.
*/
void maybeDeclareQualifiedName(NodeTraversal t, JSDocInfo info,
Node n, Node parent, Node rhsValue) {
Node ownerNode = n.getFirstChild();
String ownerName = ownerNode.getQualifiedName();
String qName = n.getQualifiedName();
String propName = n.getLastChild().getString();
Preconditions.checkArgument(qName != null && ownerName != null);
// Precedence of type information on GETPROPs:
// 1) @type annnotation / @enum annotation
// 2) ASSIGN to FUNCTION literal
// 3) @param/@return annotation (with no function literal)
// 4) ASSIGN to something marked @const
// 5) ASSIGN to anything else
//
// 1, 3, and 4 are declarations, 5 is inferred, and 2 is a declaration iff
// the function has jsdoc or has not been declared before.
//
// FUNCTION literals are special because TypedScopeCreator is very smart
// about getting as much type information as possible for them.
// Determining type for #1 + #2 + #3 + #4
JSType valueType = getDeclaredType(t.getSourceName(), info, n, rhsValue);
if (valueType == null && rhsValue != null) {
// Determining type for #5
valueType = rhsValue.getJSType();
}
// Function prototypes are special.
// It's a common JS idiom to do:
// F.prototype = { ... };
// So if F does not have an explicitly declared super type,
// allow F.prototype to be redefined arbitrarily.
if ("prototype".equals(propName)) {
Var qVar = scope.getVar(qName);
if (qVar != null) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to an object literal,
// then they are responsible for making sure that the object literal's
// implicit prototype is set up appropriately. We just obey
// the @extends tag.
ObjectType qVarType = ObjectType.cast(qVar.getType());
if (qVarType != null &&
rhsValue != null &&
rhsValue.isObjectLit()) {
typeRegistry.resetImplicitPrototype(
rhsValue.getJSType(), qVarType.getImplicitPrototype());
} else if (!qVar.isTypeInferred()) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to some arbitrary expression,
// there's not much we can do. We just ignore the expression,
// and hope they've annotated their code in a way to tell us
// what props are going to be on that prototype.
return;
}
if (qVar.getScope() == scope) {
scope.undeclare(qVar);
}
}
}
if (valueType == null) {
if (parent.isExprResult()) {
stubDeclarations.add(new StubDeclaration(
n,
t.getInput() != null && t.getInput().isExtern(),
ownerName));
}
return;
}
// NOTE(nicksantos): Determining whether a property is declared or not
// is really really obnoxious.
//
// The problem is that there are two (equally valid) coding styles:
//
// (function() {
// /* The authoritative definition of goog.bar. */
// goog.bar = function() {};
// })();
//
// function f() {
// goog.bar();
// /* Reset goog.bar to a no-op. */
// goog.bar = function() {};
// }
//
// In a dynamic language with first-class functions, it's very difficult
// to know which one the user intended without looking at lots of
// contextual information (the second example demonstrates a small case
// of this, but there are some really pathological cases as well).
//
// The current algorithm checks if either the declaration has
// jsdoc type information, or @const with a known type,
// or a function literal with a name we haven't seen before.
boolean inferred = true;
if (info != null) {
// Determining declaration for #1 + #3 + #4
inferred = !(info.hasType()
|| info.hasEnumParameterType()
|| (info.isConstant() && valueType != null
&& !valueType.isUnknownType())
|| FunctionTypeBuilder.isFunctionTypeDeclaration(info));
}
if (inferred) {
// Determining declaration for #2
inferred = !(rhsValue != null &&
rhsValue.isFunction() &&
(info != null || !scope.isDeclared(qName, false)));
}
if (!inferred) {
ObjectType ownerType = getObjectSlot(ownerName);
if (ownerType != null) {
// Only declare this as an official property if it has not been
// declared yet.
boolean isExtern = t.getInput() != null && t.getInput().isExtern();
if ((!ownerType.hasOwnProperty(propName) ||
ownerType.isPropertyTypeInferred(propName)) &&
((isExtern && !ownerType.isNativeObjectType()) ||
!ownerType.isInstanceType())) {
// If the property is undeclared or inferred, declare it now.
ownerType.defineDeclaredProperty(propName, valueType, n);
}
}
// If the property is already declared, the error will be
// caught when we try to declare it in the current scope.
defineSlot(n, parent, valueType, inferred);
} else if (rhsValue != null && rhsValue.isTrue()) {
// We declare these for delegate proxy method properties.
FunctionType ownerType =
JSType.toMaybeFunctionType(getObjectSlot(ownerName));
if (ownerType != null) {
JSType ownerTypeOfThis = ownerType.getTypeOfThis();
String delegateName = codingConvention.getDelegateSuperclassName();
JSType delegateType = delegateName == null ?
null : typeRegistry.getType(delegateName);
if (delegateType != null &&
ownerTypeOfThis.isSubtype(delegateType)) {
defineSlot(n, parent, getNativeType(BOOLEAN_TYPE), true);
}
}
}
}
```
| void maybeDeclareQualifiedName(NodeTraversal t, JSDocInfo info,
Node n, Node parent, Node rhsValue) {
Node ownerNode = n.getFirstChild();
String ownerName = ownerNode.getQualifiedName();
String qName = n.getQualifiedName();
String propName = n.getLastChild().getString();
Preconditions.checkArgument(qName != null && ownerName != null);
// Precedence of type information on GETPROPs:
// 1) @type annnotation / @enum annotation
// 2) ASSIGN to FUNCTION literal
// 3) @param/@return annotation (with no function literal)
// 4) ASSIGN to something marked @const
// 5) ASSIGN to anything else
//
// 1, 3, and 4 are declarations, 5 is inferred, and 2 is a declaration iff
// the function has jsdoc or has not been declared before.
//
// FUNCTION literals are special because TypedScopeCreator is very smart
// about getting as much type information as possible for them.
// Determining type for #1 + #2 + #3 + #4
JSType valueType = getDeclaredType(t.getSourceName(), info, n, rhsValue);
if (valueType == null && rhsValue != null) {
// Determining type for #5
valueType = rhsValue.getJSType();
}
// Function prototypes are special.
// It's a common JS idiom to do:
// F.prototype = { ... };
// So if F does not have an explicitly declared super type,
// allow F.prototype to be redefined arbitrarily.
if ("prototype".equals(propName)) {
Var qVar = scope.getVar(qName);
if (qVar != null) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to an object literal,
// then they are responsible for making sure that the object literal's
// implicit prototype is set up appropriately. We just obey
// the @extends tag.
ObjectType qVarType = ObjectType.cast(qVar.getType());
if (qVarType != null &&
rhsValue != null &&
rhsValue.isObjectLit()) {
typeRegistry.resetImplicitPrototype(
rhsValue.getJSType(), qVarType.getImplicitPrototype());
} else if (!qVar.isTypeInferred()) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to some arbitrary expression,
// there's not much we can do. We just ignore the expression,
// and hope they've annotated their code in a way to tell us
// what props are going to be on that prototype.
return;
}
if (qVar.getScope() == scope) {
scope.undeclare(qVar);
}
}
}
if (valueType == null) {
if (parent.isExprResult()) {
stubDeclarations.add(new StubDeclaration(
n,
t.getInput() != null && t.getInput().isExtern(),
ownerName));
}
return;
}
// NOTE(nicksantos): Determining whether a property is declared or not
// is really really obnoxious.
//
// The problem is that there are two (equally valid) coding styles:
//
// (function() {
// /* The authoritative definition of goog.bar. */
// goog.bar = function() {};
// })();
//
// function f() {
// goog.bar();
// /* Reset goog.bar to a no-op. */
// goog.bar = function() {};
// }
//
// In a dynamic language with first-class functions, it's very difficult
// to know which one the user intended without looking at lots of
// contextual information (the second example demonstrates a small case
// of this, but there are some really pathological cases as well).
//
// The current algorithm checks if either the declaration has
// jsdoc type information, or @const with a known type,
// or a function literal with a name we haven't seen before.
boolean inferred = true;
if (info != null) {
// Determining declaration for #1 + #3 + #4
inferred = !(info.hasType()
|| info.hasEnumParameterType()
|| (info.isConstant() && valueType != null
&& !valueType.isUnknownType())
|| FunctionTypeBuilder.isFunctionTypeDeclaration(info));
}
if (inferred) {
// Determining declaration for #2
inferred = !(rhsValue != null &&
rhsValue.isFunction() &&
(info != null || !scope.isDeclared(qName, false)));
}
if (!inferred) {
ObjectType ownerType = getObjectSlot(ownerName);
if (ownerType != null) {
// Only declare this as an official property if it has not been
// declared yet.
boolean isExtern = t.getInput() != null && t.getInput().isExtern();
if ((!ownerType.hasOwnProperty(propName) ||
ownerType.isPropertyTypeInferred(propName)) &&
((isExtern && !ownerType.isNativeObjectType()) ||
!ownerType.isInstanceType())) {
// If the property is undeclared or inferred, declare it now.
ownerType.defineDeclaredProperty(propName, valueType, n);
}
}
// If the property is already declared, the error will be
// caught when we try to declare it in the current scope.
defineSlot(n, parent, valueType, inferred);
} else if (rhsValue != null && rhsValue.isTrue()) {
// We declare these for delegate proxy method properties.
FunctionType ownerType =
JSType.toMaybeFunctionType(getObjectSlot(ownerName));
if (ownerType != null) {
JSType ownerTypeOfThis = ownerType.getTypeOfThis();
String delegateName = codingConvention.getDelegateSuperclassName();
JSType delegateType = delegateName == null ?
null : typeRegistry.getType(delegateName);
if (delegateType != null &&
ownerTypeOfThis.isSubtype(delegateType)) {
defineSlot(n, parent, getNativeType(BOOLEAN_TYPE), true);
}
}
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Declare the symbol for a qualified name in the global scope.
*
* @param info The doc info for this property.
* @param n A top-level GETPROP node (it should not be contained inside
* another GETPROP).
* @param parent The parent of {@code n}.
* @param rhsValue The node that {@code n} is being initialized to,
* or {@code null} if this is a stub declaration.
*/
void maybeDeclareQualifiedName(NodeTraversal t, JSDocInfo info,
Node n, Node parent, Node rhsValue) {
Node ownerNode = n.getFirstChild();
String ownerName = ownerNode.getQualifiedName();
String qName = n.getQualifiedName();
String propName = n.getLastChild().getString();
Preconditions.checkArgument(qName != null && ownerName != null);
// Precedence of type information on GETPROPs:
// 1) @type annnotation / @enum annotation
// 2) ASSIGN to FUNCTION literal
// 3) @param/@return annotation (with no function literal)
// 4) ASSIGN to something marked @const
// 5) ASSIGN to anything else
//
// 1, 3, and 4 are declarations, 5 is inferred, and 2 is a declaration iff
// the function has jsdoc or has not been declared before.
//
// FUNCTION literals are special because TypedScopeCreator is very smart
// about getting as much type information as possible for them.
// Determining type for #1 + #2 + #3 + #4
JSType valueType = getDeclaredType(t.getSourceName(), info, n, rhsValue);
if (valueType == null && rhsValue != null) {
// Determining type for #5
valueType = rhsValue.getJSType();
}
// Function prototypes are special.
// It's a common JS idiom to do:
// F.prototype = { ... };
// So if F does not have an explicitly declared super type,
// allow F.prototype to be redefined arbitrarily.
if ("prototype".equals(propName)) {
Var qVar = scope.getVar(qName);
if (qVar != null) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to an object literal,
// then they are responsible for making sure that the object literal's
// implicit prototype is set up appropriately. We just obey
// the @extends tag.
ObjectType qVarType = ObjectType.cast(qVar.getType());
if (qVarType != null &&
rhsValue != null &&
rhsValue.isObjectLit()) {
typeRegistry.resetImplicitPrototype(
rhsValue.getJSType(), qVarType.getImplicitPrototype());
} else if (!qVar.isTypeInferred()) {
// If the programmer has declared that F inherits from Super,
// and they assign F.prototype to some arbitrary expression,
// there's not much we can do. We just ignore the expression,
// and hope they've annotated their code in a way to tell us
// what props are going to be on that prototype.
return;
}
if (qVar.getScope() == scope) {
scope.undeclare(qVar);
}
}
}
if (valueType == null) {
if (parent.isExprResult()) {
stubDeclarations.add(new StubDeclaration(
n,
t.getInput() != null && t.getInput().isExtern(),
ownerName));
}
return;
}
// NOTE(nicksantos): Determining whether a property is declared or not
// is really really obnoxious.
//
// The problem is that there are two (equally valid) coding styles:
//
// (function() {
// /* The authoritative definition of goog.bar. */
// goog.bar = function() {};
// })();
//
// function f() {
// goog.bar();
// /* Reset goog.bar to a no-op. */
// goog.bar = function() {};
// }
//
// In a dynamic language with first-class functions, it's very difficult
// to know which one the user intended without looking at lots of
// contextual information (the second example demonstrates a small case
// of this, but there are some really pathological cases as well).
//
// The current algorithm checks if either the declaration has
// jsdoc type information, or @const with a known type,
// or a function literal with a name we haven't seen before.
boolean inferred = true;
if (info != null) {
// Determining declaration for #1 + #3 + #4
inferred = !(info.hasType()
|| info.hasEnumParameterType()
|| (info.isConstant() && valueType != null
&& !valueType.isUnknownType())
|| FunctionTypeBuilder.isFunctionTypeDeclaration(info));
}
if (inferred) {
// Determining declaration for #2
inferred = !(rhsValue != null &&
rhsValue.isFunction() &&
(info != null || !scope.isDeclared(qName, false)));
}
if (!inferred) {
ObjectType ownerType = getObjectSlot(ownerName);
if (ownerType != null) {
// Only declare this as an official property if it has not been
// declared yet.
boolean isExtern = t.getInput() != null && t.getInput().isExtern();
if ((!ownerType.hasOwnProperty(propName) ||
ownerType.isPropertyTypeInferred(propName)) &&
((isExtern && !ownerType.isNativeObjectType()) ||
!ownerType.isInstanceType())) {
// If the property is undeclared or inferred, declare it now.
ownerType.defineDeclaredProperty(propName, valueType, n);
}
}
// If the property is already declared, the error will be
// caught when we try to declare it in the current scope.
defineSlot(n, parent, valueType, inferred);
} else if (rhsValue != null && rhsValue.isTrue()) {
// We declare these for delegate proxy method properties.
FunctionType ownerType =
JSType.toMaybeFunctionType(getObjectSlot(ownerName));
if (ownerType != null) {
JSType ownerTypeOfThis = ownerType.getTypeOfThis();
String delegateName = codingConvention.getDelegateSuperclassName();
JSType delegateType = delegateName == null ?
null : typeRegistry.getType(delegateName);
if (delegateType != null &&
ownerTypeOfThis.isSubtype(delegateType)) {
defineSlot(n, parent, getNativeType(BOOLEAN_TYPE), true);
}
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
49 | aa3085e6ff657a3126cd02778b4319cd8a0b919efca41d8ee78d1e5ff26090c3 | public Fraction reduce() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Reduce the fraction to the smallest values for the numerator and
* denominator, returning the result.</p>
*
* <p>For example, if this fraction represents 2/4, then the result
* will be 1/2.</p>
*
* @return a new reduced fraction instance, or this if no simplification possible
*/
//-------------------------------------------------------------------
// Calculations
public Fraction reduce() {
int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
if (gcd == 1) {
return this;
}
return Fraction.getFraction(numerator / gcd, denominator / gcd);
}
```
| public Fraction reduce() {
int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
if (gcd == 1) {
return this;
}
return Fraction.getFraction(numerator / gcd, denominator / gcd);
} | true | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Reduce the fraction to the smallest values for the numerator and
* denominator, returning the result.</p>
*
* <p>For example, if this fraction represents 2/4, then the result
* will be 1/2.</p>
*
* @return a new reduced fraction instance, or this if no simplification possible
*/
//-------------------------------------------------------------------
// Calculations
public Fraction reduce() {
int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
if (gcd == 1) {
return this;
}
return Fraction.getFraction(numerator / gcd, denominator / gcd);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
14 | aa477dd2e458c8e476d37d6c5029051e90cb7cf238685f0558493a6f32d91076 | public void validate(final WriteableCommandLine commandLine)
throws OptionException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public void validate(final WriteableCommandLine commandLine)
throws OptionException {
// number of options found
int present = 0;
// reference to first unexpected option
Option unexpected = null;
for (final Iterator i = options.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
// needs validation?
boolean validate = option.isRequired() || option instanceof Group;
if (validate) {
option.validate(commandLine);
}
// if the child option is present then validate it
if (commandLine.hasOption(option)) {
if (++present > maximum) {
unexpected = option;
break;
}
option.validate(commandLine);
}
}
// too many options
if (unexpected != null) {
throw new OptionException(this, ResourceConstants.UNEXPECTED_TOKEN,
unexpected.getPreferredName());
}
// too few option
if (present < minimum) {
throw new OptionException(this, ResourceConstants.MISSING_OPTION);
}
// validate each anonymous argument
for (final Iterator i = anonymous.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
option.validate(commandLine);
}
}
```
| public void validate(final WriteableCommandLine commandLine)
throws OptionException {
// number of options found
int present = 0;
// reference to first unexpected option
Option unexpected = null;
for (final Iterator i = options.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
// needs validation?
boolean validate = option.isRequired() || option instanceof Group;
if (validate) {
option.validate(commandLine);
}
// if the child option is present then validate it
if (commandLine.hasOption(option)) {
if (++present > maximum) {
unexpected = option;
break;
}
option.validate(commandLine);
}
}
// too many options
if (unexpected != null) {
throw new OptionException(this, ResourceConstants.UNEXPECTED_TOKEN,
unexpected.getPreferredName());
}
// too few option
if (present < minimum) {
throw new OptionException(this, ResourceConstants.MISSING_OPTION);
}
// validate each anonymous argument
for (final Iterator i = anonymous.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
option.validate(commandLine);
}
} | true | Cli | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public void validate(final WriteableCommandLine commandLine)
throws OptionException {
// number of options found
int present = 0;
// reference to first unexpected option
Option unexpected = null;
for (final Iterator i = options.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
// needs validation?
boolean validate = option.isRequired() || option instanceof Group;
if (validate) {
option.validate(commandLine);
}
// if the child option is present then validate it
if (commandLine.hasOption(option)) {
if (++present > maximum) {
unexpected = option;
break;
}
option.validate(commandLine);
}
}
// too many options
if (unexpected != null) {
throw new OptionException(this, ResourceConstants.UNEXPECTED_TOKEN,
unexpected.getPreferredName());
}
// too few option
if (present < minimum) {
throw new OptionException(this, ResourceConstants.MISSING_OPTION);
}
// validate each anonymous argument
for (final Iterator i = anonymous.iterator(); i.hasNext();) {
final Option option = (Option) i.next();
option.validate(commandLine);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
59 | aae2cf0bbe14273e16578edeb876f80ac8e7186547c61fe56cb169ab98a15a7c | public static float max(final float a, final float b) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Compute the maximum of two values
* @param a first value
* @param b second value
* @return b if a is lesser or equal to b, a otherwise
*/
public static float max(final float a, final float b) {
return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : b);
}
```
| public static float max(final float a, final float b) {
return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : b);
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Compute the maximum of two values
* @param a first value
* @param b second value
* @return b if a is lesser or equal to b, a otherwise
*/
public static float max(final float a, final float b) {
return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : b);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
9 | ab9fb341c0246780c3917d629d46b5b33178ce529b844826e094e9a26ad5a863 | public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks.
*
* @param binaryData
* Array containing binary data to encode.
* @param isChunked
* if <code>true</code> this encoder will chunk the base64 output into 76 character blocks
* @param urlSafe
* if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters.
* @param maxResultSize
* The maximum result size to accept.
* @return Base64-encoded data.
* @throws IllegalArgumentException
* Thrown when the input array needs an output array bigger than maxResultSize
* @since 1.4
*/
public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) {
if (binaryData == null || binaryData.length == 0) {
return binaryData;
}
long len = getEncodeLength(binaryData, MIME_CHUNK_SIZE, CHUNK_SEPARATOR);
if (len > maxResultSize) {
throw new IllegalArgumentException("Input array too big, the output array would be bigger (" +
len +
") than the specified maxium size of " +
maxResultSize);
}
Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe);
return b64.encode(binaryData);
}
```
| public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) {
if (binaryData == null || binaryData.length == 0) {
return binaryData;
}
long len = getEncodeLength(binaryData, MIME_CHUNK_SIZE, CHUNK_SEPARATOR);
if (len > maxResultSize) {
throw new IllegalArgumentException("Input array too big, the output array would be bigger (" +
len +
") than the specified maxium size of " +
maxResultSize);
}
Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe);
return b64.encode(binaryData);
} | true | Codec | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks.
*
* @param binaryData
* Array containing binary data to encode.
* @param isChunked
* if <code>true</code> this encoder will chunk the base64 output into 76 character blocks
* @param urlSafe
* if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters.
* @param maxResultSize
* The maximum result size to accept.
* @return Base64-encoded data.
* @throws IllegalArgumentException
* Thrown when the input array needs an output array bigger than maxResultSize
* @since 1.4
*/
public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) {
if (binaryData == null || binaryData.length == 0) {
return binaryData;
}
long len = getEncodeLength(binaryData, MIME_CHUNK_SIZE, CHUNK_SEPARATOR);
if (len > maxResultSize) {
throw new IllegalArgumentException("Input array too big, the output array would be bigger (" +
len +
") than the specified maxium size of " +
maxResultSize);
}
Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe);
return b64.encode(binaryData);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
32 | abf466a77808beda0f8c790bf84e15f17cb89e04f96d2cbafe384613ce7a8d3e | protected int findWrapPos(String text, int width, int startPos)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Finds the next text wrap position after <code>startPos</code> for the
* text in <code>text</code> with the column width <code>width</code>.
* The wrap point is the last position before startPos+width having a
* whitespace character (space, \n, \r). If there is no whitespace character
* before startPos+width, it will return startPos+width.
*
* @param text The text being searched for the wrap position
* @param width width of the wrapped text
* @param startPos position from which to start the lookup whitespace
* character
* @return postion on which the text must be wrapped or -1 if the wrap
* position is at the end of the text
*/
protected int findWrapPos(String text, int width, int startPos)
{
int pos;
// the line ends before the max wrap pos or a new line char found
if (((pos = text.indexOf('\n', startPos)) != -1 && pos <= width)
|| ((pos = text.indexOf('\t', startPos)) != -1 && pos <= width))
{
return pos + 1;
}
else if (startPos + width >= text.length())
{
return -1;
}
// look for the last whitespace character before startPos+width
pos = startPos + width;
char c;
while ((pos >= startPos) && ((c = text.charAt(pos)) != ' ')
&& (c != '\n') && (c != '\r'))
{
--pos;
}
// if we found it - just return
if (pos > startPos)
{
return pos;
}
// if we didn't find one, simply chop at startPos+width
pos = startPos + width;
return pos == text.length() ? -1 : pos;
}
```
| protected int findWrapPos(String text, int width, int startPos)
{
int pos;
// the line ends before the max wrap pos or a new line char found
if (((pos = text.indexOf('\n', startPos)) != -1 && pos <= width)
|| ((pos = text.indexOf('\t', startPos)) != -1 && pos <= width))
{
return pos + 1;
}
else if (startPos + width >= text.length())
{
return -1;
}
// look for the last whitespace character before startPos+width
pos = startPos + width;
char c;
while ((pos >= startPos) && ((c = text.charAt(pos)) != ' ')
&& (c != '\n') && (c != '\r'))
{
--pos;
}
// if we found it - just return
if (pos > startPos)
{
return pos;
}
// if we didn't find one, simply chop at startPos+width
pos = startPos + width;
return pos == text.length() ? -1 : pos;
} | false | Cli | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Finds the next text wrap position after <code>startPos</code> for the
* text in <code>text</code> with the column width <code>width</code>.
* The wrap point is the last position before startPos+width having a
* whitespace character (space, \n, \r). If there is no whitespace character
* before startPos+width, it will return startPos+width.
*
* @param text The text being searched for the wrap position
* @param width width of the wrapped text
* @param startPos position from which to start the lookup whitespace
* character
* @return postion on which the text must be wrapped or -1 if the wrap
* position is at the end of the text
*/
protected int findWrapPos(String text, int width, int startPos)
{
int pos;
// the line ends before the max wrap pos or a new line char found
if (((pos = text.indexOf('\n', startPos)) != -1 && pos <= width)
|| ((pos = text.indexOf('\t', startPos)) != -1 && pos <= width))
{
return pos + 1;
}
else if (startPos + width >= text.length())
{
return -1;
}
// look for the last whitespace character before startPos+width
pos = startPos + width;
char c;
while ((pos >= startPos) && ((c = text.charAt(pos)) != ' ')
&& (c != '\n') && (c != '\r'))
{
--pos;
}
// if we found it - just return
if (pos > startPos)
{
return pos;
}
// if we didn't find one, simply chop at startPos+width
pos = startPos + width;
return pos == text.length() ? -1 : pos;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
55 | ac0a7d34909c85c3cac009984c334bdf40b9cbf91ac7171262c6f9a02958129c | public static Vector3D crossProduct(final Vector3D v1, final Vector3D v2) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Compute the cross-product of two vectors.
* @param v1 first vector
* @param v2 second vector
* @return the cross product v1 ^ v2 as a new Vector
*/
public static Vector3D crossProduct(final Vector3D v1, final Vector3D v2) {
final double n1 = v1.getNormSq();
final double n2 = v2.getNormSq();
if ((n1 * n2) < MathUtils.SAFE_MIN) {
return ZERO;
}
// rescale both vectors without losing precision,
// to ensure their norm are the same order of magnitude
final int deltaExp = (FastMath.getExponent(n1) - FastMath.getExponent(n2)) / 4;
final double x1 = FastMath.scalb(v1.x, -deltaExp);
final double y1 = FastMath.scalb(v1.y, -deltaExp);
final double z1 = FastMath.scalb(v1.z, -deltaExp);
final double x2 = FastMath.scalb(v2.x, deltaExp);
final double y2 = FastMath.scalb(v2.y, deltaExp);
final double z2 = FastMath.scalb(v2.z, deltaExp);
// we reduce cancellation errors by preconditioning,
// we replace v1 by v3 = v1 - rho v2 with rho chosen in order to compute
// v3 without loss of precision. See Kahan lecture
// "Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces"
// available at http://www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf
// compute rho as an 8 bits approximation of v1.v2 / v2.v2
final double ratio = (x1 * x2 + y1 * y2 + z1 * z2) / FastMath.scalb(n2, 2 * deltaExp);
final double rho = FastMath.rint(256 * ratio) / 256;
final double x3 = x1 - rho * x2;
final double y3 = y1 - rho * y2;
final double z3 = z1 - rho * z2;
// compute cross product from v3 and v2 instead of v1 and v2
return new Vector3D(y3 * z2 - z3 * y2, z3 * x2 - x3 * z2, x3 * y2 - y3 * x2);
}
```
| public static Vector3D crossProduct(final Vector3D v1, final Vector3D v2) {
final double n1 = v1.getNormSq();
final double n2 = v2.getNormSq();
if ((n1 * n2) < MathUtils.SAFE_MIN) {
return ZERO;
}
// rescale both vectors without losing precision,
// to ensure their norm are the same order of magnitude
final int deltaExp = (FastMath.getExponent(n1) - FastMath.getExponent(n2)) / 4;
final double x1 = FastMath.scalb(v1.x, -deltaExp);
final double y1 = FastMath.scalb(v1.y, -deltaExp);
final double z1 = FastMath.scalb(v1.z, -deltaExp);
final double x2 = FastMath.scalb(v2.x, deltaExp);
final double y2 = FastMath.scalb(v2.y, deltaExp);
final double z2 = FastMath.scalb(v2.z, deltaExp);
// we reduce cancellation errors by preconditioning,
// we replace v1 by v3 = v1 - rho v2 with rho chosen in order to compute
// v3 without loss of precision. See Kahan lecture
// "Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces"
// available at http://www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf
// compute rho as an 8 bits approximation of v1.v2 / v2.v2
final double ratio = (x1 * x2 + y1 * y2 + z1 * z2) / FastMath.scalb(n2, 2 * deltaExp);
final double rho = FastMath.rint(256 * ratio) / 256;
final double x3 = x1 - rho * x2;
final double y3 = y1 - rho * y2;
final double z3 = z1 - rho * z2;
// compute cross product from v3 and v2 instead of v1 and v2
return new Vector3D(y3 * z2 - z3 * y2, z3 * x2 - x3 * z2, x3 * y2 - y3 * x2);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Compute the cross-product of two vectors.
* @param v1 first vector
* @param v2 second vector
* @return the cross product v1 ^ v2 as a new Vector
*/
public static Vector3D crossProduct(final Vector3D v1, final Vector3D v2) {
final double n1 = v1.getNormSq();
final double n2 = v2.getNormSq();
if ((n1 * n2) < MathUtils.SAFE_MIN) {
return ZERO;
}
// rescale both vectors without losing precision,
// to ensure their norm are the same order of magnitude
final int deltaExp = (FastMath.getExponent(n1) - FastMath.getExponent(n2)) / 4;
final double x1 = FastMath.scalb(v1.x, -deltaExp);
final double y1 = FastMath.scalb(v1.y, -deltaExp);
final double z1 = FastMath.scalb(v1.z, -deltaExp);
final double x2 = FastMath.scalb(v2.x, deltaExp);
final double y2 = FastMath.scalb(v2.y, deltaExp);
final double z2 = FastMath.scalb(v2.z, deltaExp);
// we reduce cancellation errors by preconditioning,
// we replace v1 by v3 = v1 - rho v2 with rho chosen in order to compute
// v3 without loss of precision. See Kahan lecture
// "Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces"
// available at http://www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf
// compute rho as an 8 bits approximation of v1.v2 / v2.v2
final double ratio = (x1 * x2 + y1 * y2 + z1 * z2) / FastMath.scalb(n2, 2 * deltaExp);
final double rho = FastMath.rint(256 * ratio) / 256;
final double x3 = x1 - rho * x2;
final double y3 = y1 - rho * y2;
final double z3 = z1 - rho * z2;
// compute cross product from v3 and v2 instead of v1 and v2
return new Vector3D(y3 * z2 - z3 * y2, z3 * x2 - x3 * z2, x3 * y2 - y3 * x2);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
64 | ac57d751a4606e5b6a0bdee26ed1be43ab7c39fca065c49d8f088e8c45db792b | @SuppressWarnings("deprecation")
protected BeanPropertyWriter buildWriter(SerializerProvider prov,
BeanPropertyDefinition propDef, JavaType declaredType, JsonSerializer<?> ser,
TypeSerializer typeSer, TypeSerializer contentTypeSer,
AnnotatedMember am, boolean defaultUseStaticTyping)
throws JsonMappingException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* @param contentTypeSer Optional explicit type information serializer
* to use for contained values (only used for properties that are
* of container type)
*/
@SuppressWarnings("deprecation")
protected BeanPropertyWriter buildWriter(SerializerProvider prov,
BeanPropertyDefinition propDef, JavaType declaredType, JsonSerializer<?> ser,
TypeSerializer typeSer, TypeSerializer contentTypeSer,
AnnotatedMember am, boolean defaultUseStaticTyping)
throws JsonMappingException
{
// do we have annotation that forces type to use (to declared type or its super type)?
JavaType serializationType;
try {
serializationType = findSerializationType(am, defaultUseStaticTyping, declaredType);
} catch (JsonMappingException e) {
return prov.reportBadPropertyDefinition(_beanDesc, propDef, e.getMessage());
}
// Container types can have separate type serializers for content (value / element) type
if (contentTypeSer != null) {
/* 04-Feb-2010, tatu: Let's force static typing for collection, if there is
* type information for contents. Should work well (for JAXB case); can be
* revisited if this causes problems.
*/
if (serializationType == null) {
// serializationType = TypeFactory.type(am.getGenericType(), _beanDesc.getType());
serializationType = declaredType;
}
JavaType ct = serializationType.getContentType();
// Not exactly sure why, but this used to occur; better check explicitly:
if (ct == null) {
prov.reportBadPropertyDefinition(_beanDesc, propDef,
"serialization type "+serializationType+" has no content");
}
serializationType = serializationType.withContentTypeHandler(contentTypeSer);
ct = serializationType.getContentType();
}
Object valueToSuppress = null;
boolean suppressNulls = false;
// 12-Jul-2016, tatu: [databind#1256] Need to make sure we consider type refinement
JavaType actualType = (serializationType == null) ? declaredType : serializationType;
// 17-Aug-2016, tatu: Default inclusion covers global default (for all types), as well
// as type-default for enclosing POJO. What we need, then, is per-type default (if any)
// for declared property type... and finally property annotation overrides
JsonInclude.Value inclV = _config.getDefaultPropertyInclusion(actualType.getRawClass(),
_defaultInclusion);
// property annotation override
inclV = inclV.withOverrides(propDef.findInclusion());
JsonInclude.Include inclusion = inclV.getValueInclusion();
if (inclusion == JsonInclude.Include.USE_DEFAULTS) { // should not occur but...
inclusion = JsonInclude.Include.ALWAYS;
}
switch (inclusion) {
case NON_DEFAULT:
// 11-Nov-2015, tatu: This is tricky because semantics differ between cases,
// so that if enclosing class has this, we may need to access values of property,
// whereas for global defaults OR per-property overrides, we have more
// static definition. Sigh.
// First: case of class/type specifying it; try to find POJO property defaults
Object defaultBean;
// 16-Oct-2016, tatu: Note: if we can not for some reason create "default instance",
// revert logic to the case of general/per-property handling, so both
// type-default AND null are to be excluded.
// (as per [databind#1417]
if (_useRealPropertyDefaults && (defaultBean = getDefaultBean()) != null) {
// 07-Sep-2016, tatu: may also need to front-load access forcing now
if (prov.isEnabled(MapperFeature.CAN_OVERRIDE_ACCESS_MODIFIERS)) {
am.fixAccess(_config.isEnabled(MapperFeature.OVERRIDE_PUBLIC_ACCESS_MODIFIERS));
}
try {
valueToSuppress = am.getValue(defaultBean);
} catch (Exception e) {
_throwWrapped(e, propDef.getName(), defaultBean);
}
} else {
valueToSuppress = getDefaultValue(actualType);
suppressNulls = true;
}
if (valueToSuppress == null) {
suppressNulls = true;
} else {
if (valueToSuppress.getClass().isArray()) {
valueToSuppress = ArrayBuilders.getArrayComparator(valueToSuppress);
}
}
break;
case NON_ABSENT: // new with 2.6, to support Guava/JDK8 Optionals
// always suppress nulls
suppressNulls = true;
// and for referential types, also "empty", which in their case means "absent"
if (actualType.isReferenceType()) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
case NON_EMPTY:
// always suppress nulls
suppressNulls = true;
// but possibly also 'empty' values:
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
break;
case NON_NULL:
suppressNulls = true;
// fall through
case ALWAYS: // default
default:
// we may still want to suppress empty collections, as per [JACKSON-254]:
if (actualType.isContainerType()
&& !_config.isEnabled(SerializationFeature.WRITE_EMPTY_JSON_ARRAYS)) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
}
BeanPropertyWriter bpw = new BeanPropertyWriter(propDef,
am, _beanDesc.getClassAnnotations(), declaredType,
ser, typeSer, serializationType, suppressNulls, valueToSuppress);
// How about custom null serializer?
Object serDef = _annotationIntrospector.findNullSerializer(am);
if (serDef != null) {
bpw.assignNullSerializer(prov.serializerInstance(am, serDef));
}
// And then, handling of unwrapping
NameTransformer unwrapper = _annotationIntrospector.findUnwrappingNameTransformer(am);
if (unwrapper != null) {
bpw = bpw.unwrappingWriter(unwrapper);
}
return bpw;
}
```
| @SuppressWarnings("deprecation")
protected BeanPropertyWriter buildWriter(SerializerProvider prov,
BeanPropertyDefinition propDef, JavaType declaredType, JsonSerializer<?> ser,
TypeSerializer typeSer, TypeSerializer contentTypeSer,
AnnotatedMember am, boolean defaultUseStaticTyping)
throws JsonMappingException
{
// do we have annotation that forces type to use (to declared type or its super type)?
JavaType serializationType;
try {
serializationType = findSerializationType(am, defaultUseStaticTyping, declaredType);
} catch (JsonMappingException e) {
return prov.reportBadPropertyDefinition(_beanDesc, propDef, e.getMessage());
}
// Container types can have separate type serializers for content (value / element) type
if (contentTypeSer != null) {
/* 04-Feb-2010, tatu: Let's force static typing for collection, if there is
* type information for contents. Should work well (for JAXB case); can be
* revisited if this causes problems.
*/
if (serializationType == null) {
// serializationType = TypeFactory.type(am.getGenericType(), _beanDesc.getType());
serializationType = declaredType;
}
JavaType ct = serializationType.getContentType();
// Not exactly sure why, but this used to occur; better check explicitly:
if (ct == null) {
prov.reportBadPropertyDefinition(_beanDesc, propDef,
"serialization type "+serializationType+" has no content");
}
serializationType = serializationType.withContentTypeHandler(contentTypeSer);
ct = serializationType.getContentType();
}
Object valueToSuppress = null;
boolean suppressNulls = false;
// 12-Jul-2016, tatu: [databind#1256] Need to make sure we consider type refinement
JavaType actualType = (serializationType == null) ? declaredType : serializationType;
// 17-Aug-2016, tatu: Default inclusion covers global default (for all types), as well
// as type-default for enclosing POJO. What we need, then, is per-type default (if any)
// for declared property type... and finally property annotation overrides
JsonInclude.Value inclV = _config.getDefaultPropertyInclusion(actualType.getRawClass(),
_defaultInclusion);
// property annotation override
inclV = inclV.withOverrides(propDef.findInclusion());
JsonInclude.Include inclusion = inclV.getValueInclusion();
if (inclusion == JsonInclude.Include.USE_DEFAULTS) { // should not occur but...
inclusion = JsonInclude.Include.ALWAYS;
}
switch (inclusion) {
case NON_DEFAULT:
// 11-Nov-2015, tatu: This is tricky because semantics differ between cases,
// so that if enclosing class has this, we may need to access values of property,
// whereas for global defaults OR per-property overrides, we have more
// static definition. Sigh.
// First: case of class/type specifying it; try to find POJO property defaults
Object defaultBean;
// 16-Oct-2016, tatu: Note: if we can not for some reason create "default instance",
// revert logic to the case of general/per-property handling, so both
// type-default AND null are to be excluded.
// (as per [databind#1417]
if (_useRealPropertyDefaults && (defaultBean = getDefaultBean()) != null) {
// 07-Sep-2016, tatu: may also need to front-load access forcing now
if (prov.isEnabled(MapperFeature.CAN_OVERRIDE_ACCESS_MODIFIERS)) {
am.fixAccess(_config.isEnabled(MapperFeature.OVERRIDE_PUBLIC_ACCESS_MODIFIERS));
}
try {
valueToSuppress = am.getValue(defaultBean);
} catch (Exception e) {
_throwWrapped(e, propDef.getName(), defaultBean);
}
} else {
valueToSuppress = getDefaultValue(actualType);
suppressNulls = true;
}
if (valueToSuppress == null) {
suppressNulls = true;
} else {
if (valueToSuppress.getClass().isArray()) {
valueToSuppress = ArrayBuilders.getArrayComparator(valueToSuppress);
}
}
break;
case NON_ABSENT: // new with 2.6, to support Guava/JDK8 Optionals
// always suppress nulls
suppressNulls = true;
// and for referential types, also "empty", which in their case means "absent"
if (actualType.isReferenceType()) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
case NON_EMPTY:
// always suppress nulls
suppressNulls = true;
// but possibly also 'empty' values:
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
break;
case NON_NULL:
suppressNulls = true;
// fall through
case ALWAYS: // default
default:
// we may still want to suppress empty collections, as per [JACKSON-254]:
if (actualType.isContainerType()
&& !_config.isEnabled(SerializationFeature.WRITE_EMPTY_JSON_ARRAYS)) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
}
BeanPropertyWriter bpw = new BeanPropertyWriter(propDef,
am, _beanDesc.getClassAnnotations(), declaredType,
ser, typeSer, serializationType, suppressNulls, valueToSuppress);
// How about custom null serializer?
Object serDef = _annotationIntrospector.findNullSerializer(am);
if (serDef != null) {
bpw.assignNullSerializer(prov.serializerInstance(am, serDef));
}
// And then, handling of unwrapping
NameTransformer unwrapper = _annotationIntrospector.findUnwrappingNameTransformer(am);
if (unwrapper != null) {
bpw = bpw.unwrappingWriter(unwrapper);
}
return bpw;
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* @param contentTypeSer Optional explicit type information serializer
* to use for contained values (only used for properties that are
* of container type)
*/
@SuppressWarnings("deprecation")
protected BeanPropertyWriter buildWriter(SerializerProvider prov,
BeanPropertyDefinition propDef, JavaType declaredType, JsonSerializer<?> ser,
TypeSerializer typeSer, TypeSerializer contentTypeSer,
AnnotatedMember am, boolean defaultUseStaticTyping)
throws JsonMappingException
{
// do we have annotation that forces type to use (to declared type or its super type)?
JavaType serializationType;
try {
serializationType = findSerializationType(am, defaultUseStaticTyping, declaredType);
} catch (JsonMappingException e) {
return prov.reportBadPropertyDefinition(_beanDesc, propDef, e.getMessage());
}
// Container types can have separate type serializers for content (value / element) type
if (contentTypeSer != null) {
/* 04-Feb-2010, tatu: Let's force static typing for collection, if there is
* type information for contents. Should work well (for JAXB case); can be
* revisited if this causes problems.
*/
if (serializationType == null) {
// serializationType = TypeFactory.type(am.getGenericType(), _beanDesc.getType());
serializationType = declaredType;
}
JavaType ct = serializationType.getContentType();
// Not exactly sure why, but this used to occur; better check explicitly:
if (ct == null) {
prov.reportBadPropertyDefinition(_beanDesc, propDef,
"serialization type "+serializationType+" has no content");
}
serializationType = serializationType.withContentTypeHandler(contentTypeSer);
ct = serializationType.getContentType();
}
Object valueToSuppress = null;
boolean suppressNulls = false;
// 12-Jul-2016, tatu: [databind#1256] Need to make sure we consider type refinement
JavaType actualType = (serializationType == null) ? declaredType : serializationType;
// 17-Aug-2016, tatu: Default inclusion covers global default (for all types), as well
// as type-default for enclosing POJO. What we need, then, is per-type default (if any)
// for declared property type... and finally property annotation overrides
JsonInclude.Value inclV = _config.getDefaultPropertyInclusion(actualType.getRawClass(),
_defaultInclusion);
// property annotation override
inclV = inclV.withOverrides(propDef.findInclusion());
JsonInclude.Include inclusion = inclV.getValueInclusion();
if (inclusion == JsonInclude.Include.USE_DEFAULTS) { // should not occur but...
inclusion = JsonInclude.Include.ALWAYS;
}
switch (inclusion) {
case NON_DEFAULT:
// 11-Nov-2015, tatu: This is tricky because semantics differ between cases,
// so that if enclosing class has this, we may need to access values of property,
// whereas for global defaults OR per-property overrides, we have more
// static definition. Sigh.
// First: case of class/type specifying it; try to find POJO property defaults
Object defaultBean;
// 16-Oct-2016, tatu: Note: if we can not for some reason create "default instance",
// revert logic to the case of general/per-property handling, so both
// type-default AND null are to be excluded.
// (as per [databind#1417]
if (_useRealPropertyDefaults && (defaultBean = getDefaultBean()) != null) {
// 07-Sep-2016, tatu: may also need to front-load access forcing now
if (prov.isEnabled(MapperFeature.CAN_OVERRIDE_ACCESS_MODIFIERS)) {
am.fixAccess(_config.isEnabled(MapperFeature.OVERRIDE_PUBLIC_ACCESS_MODIFIERS));
}
try {
valueToSuppress = am.getValue(defaultBean);
} catch (Exception e) {
_throwWrapped(e, propDef.getName(), defaultBean);
}
} else {
valueToSuppress = getDefaultValue(actualType);
suppressNulls = true;
}
if (valueToSuppress == null) {
suppressNulls = true;
} else {
if (valueToSuppress.getClass().isArray()) {
valueToSuppress = ArrayBuilders.getArrayComparator(valueToSuppress);
}
}
break;
case NON_ABSENT: // new with 2.6, to support Guava/JDK8 Optionals
// always suppress nulls
suppressNulls = true;
// and for referential types, also "empty", which in their case means "absent"
if (actualType.isReferenceType()) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
case NON_EMPTY:
// always suppress nulls
suppressNulls = true;
// but possibly also 'empty' values:
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
break;
case NON_NULL:
suppressNulls = true;
// fall through
case ALWAYS: // default
default:
// we may still want to suppress empty collections, as per [JACKSON-254]:
if (actualType.isContainerType()
&& !_config.isEnabled(SerializationFeature.WRITE_EMPTY_JSON_ARRAYS)) {
valueToSuppress = BeanPropertyWriter.MARKER_FOR_EMPTY;
}
break;
}
BeanPropertyWriter bpw = new BeanPropertyWriter(propDef,
am, _beanDesc.getClassAnnotations(), declaredType,
ser, typeSer, serializationType, suppressNulls, valueToSuppress);
// How about custom null serializer?
Object serDef = _annotationIntrospector.findNullSerializer(am);
if (serDef != null) {
bpw.assignNullSerializer(prov.serializerInstance(am, serDef));
}
// And then, handling of unwrapping
NameTransformer unwrapper = _annotationIntrospector.findUnwrappingNameTransformer(am);
if (unwrapper != null) {
bpw = bpw.unwrappingWriter(unwrapper);
}
return bpw;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
27 | ac7e875891d22955dfd230fd3f2e3133a23440e8b960665e24dfc1ce9a7a1206 | public double percentageValue() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>
* Gets the fraction percentage as a <tt>double</tt>. This calculates the
* fraction as the numerator divided by denominator multiplied by 100.
* </p>
*
* @return the fraction percentage as a <tt>double</tt>.
*/
public double percentageValue() {
return multiply(100).doubleValue();
}
```
| public double percentageValue() {
return multiply(100).doubleValue();
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>
* Gets the fraction percentage as a <tt>double</tt>. This calculates the
* fraction as the numerator divided by denominator multiplied by 100.
* </p>
*
* @return the fraction percentage as a <tt>double</tt>.
*/
public double percentageValue() {
return multiply(100).doubleValue();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
20 | acfa8d07703ae15cebfb1089684e1e52ef972d4a3b7ccdc0320bc2a2a89ba591 | public double[] repairAndDecode(final double[] x) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* @param x Normalized objective variables.
* @return the original objective variables, possibly repaired.
*/
public double[] repairAndDecode(final double[] x) {
return
decode(x);
}
```
| public double[] repairAndDecode(final double[] x) {
return
decode(x);
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* @param x Normalized objective variables.
* @return the original objective variables, possibly repaired.
*/
public double[] repairAndDecode(final double[] x) {
return
decode(x);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
75 | ad5302f1928ac9f4c63d9d37177650118b0f16fdefbf4b1a0421bfbb11f23b46 | @Deprecated
public double getPct(Object v) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Returns the percentage of values that are equal to v
* (as a proportion between 0 and 1).
* <p>
* Returns <code>Double.NaN</code> if no values have been added.</p>
*
* @param v the value to lookup
* @return the proportion of values equal to v
* @deprecated replaced by {@link #getPct(Comparable)} as of 2.0
*/
//-------------------------------------------------------------
@Deprecated
public double getPct(Object v) {
return getCumPct((Comparable<?>) v);
}
```
| @Deprecated
public double getPct(Object v) {
return getCumPct((Comparable<?>) v);
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Returns the percentage of values that are equal to v
* (as a proportion between 0 and 1).
* <p>
* Returns <code>Double.NaN</code> if no values have been added.</p>
*
* @param v the value to lookup
* @return the proportion of values equal to v
* @deprecated replaced by {@link #getPct(Comparable)} as of 2.0
*/
//-------------------------------------------------------------
@Deprecated
public double getPct(Object v) {
return getCumPct((Comparable<?>) v);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
35 | ad8ece4fce4b1f49139f946fc9d7ddde3b7244fbf792ed07f261d4fe242fa4c5 | @SuppressWarnings("resource")
private final Object _deserialize(JsonParser p, DeserializationContext ctxt) throws IOException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Method that handles type information wrapper, locates actual
* subtype deserializer to use, and calls it to do actual
* deserialization.
*/
/*
/***************************************************************
/* Internal methods
/***************************************************************
*/
@SuppressWarnings("resource")
private final Object _deserialize(JsonParser p, DeserializationContext ctxt) throws IOException
{
// 02-Aug-2013, tatu: May need to use native type ids
if (p.canReadTypeId()) {
Object typeId = p.getTypeId();
if (typeId != null) {
return _deserializeWithNativeTypeId(p, ctxt, typeId);
}
}
// first, sanity checks
if (p.getCurrentToken() != JsonToken.START_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.START_OBJECT,
"need JSON Object to contain As.WRAPPER_OBJECT type information for class "+baseTypeName());
}
// should always get field name, but just in case...
if (p.nextToken() != JsonToken.FIELD_NAME) {
throw ctxt.wrongTokenException(p, JsonToken.FIELD_NAME,
"need JSON String that contains type id (for subtype of "+baseTypeName()+")");
}
final String typeId = p.getText();
JsonDeserializer<Object> deser = _findDeserializer(ctxt, typeId);
p.nextToken();
// Minor complication: we may need to merge type id in?
if (_typeIdVisible && p.getCurrentToken() == JsonToken.START_OBJECT) {
// but what if there's nowhere to add it in? Error? Or skip? For now, skip.
TokenBuffer tb = new TokenBuffer(null, false);
tb.writeStartObject(); // recreate START_OBJECT
tb.writeFieldName(_typePropertyName);
tb.writeString(typeId);
p = JsonParserSequence.createFlattened(tb.asParser(p), p);
p.nextToken();
}
Object value = deser.deserialize(p, ctxt);
// And then need the closing END_OBJECT
if (p.nextToken() != JsonToken.END_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.END_OBJECT,
"expected closing END_OBJECT after type information and deserialized value");
}
return value;
}
```
| @SuppressWarnings("resource")
private final Object _deserialize(JsonParser p, DeserializationContext ctxt) throws IOException
{
// 02-Aug-2013, tatu: May need to use native type ids
if (p.canReadTypeId()) {
Object typeId = p.getTypeId();
if (typeId != null) {
return _deserializeWithNativeTypeId(p, ctxt, typeId);
}
}
// first, sanity checks
if (p.getCurrentToken() != JsonToken.START_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.START_OBJECT,
"need JSON Object to contain As.WRAPPER_OBJECT type information for class "+baseTypeName());
}
// should always get field name, but just in case...
if (p.nextToken() != JsonToken.FIELD_NAME) {
throw ctxt.wrongTokenException(p, JsonToken.FIELD_NAME,
"need JSON String that contains type id (for subtype of "+baseTypeName()+")");
}
final String typeId = p.getText();
JsonDeserializer<Object> deser = _findDeserializer(ctxt, typeId);
p.nextToken();
// Minor complication: we may need to merge type id in?
if (_typeIdVisible && p.getCurrentToken() == JsonToken.START_OBJECT) {
// but what if there's nowhere to add it in? Error? Or skip? For now, skip.
TokenBuffer tb = new TokenBuffer(null, false);
tb.writeStartObject(); // recreate START_OBJECT
tb.writeFieldName(_typePropertyName);
tb.writeString(typeId);
p = JsonParserSequence.createFlattened(tb.asParser(p), p);
p.nextToken();
}
Object value = deser.deserialize(p, ctxt);
// And then need the closing END_OBJECT
if (p.nextToken() != JsonToken.END_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.END_OBJECT,
"expected closing END_OBJECT after type information and deserialized value");
}
return value;
} | true | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Method that handles type information wrapper, locates actual
* subtype deserializer to use, and calls it to do actual
* deserialization.
*/
/*
/***************************************************************
/* Internal methods
/***************************************************************
*/
@SuppressWarnings("resource")
private final Object _deserialize(JsonParser p, DeserializationContext ctxt) throws IOException
{
// 02-Aug-2013, tatu: May need to use native type ids
if (p.canReadTypeId()) {
Object typeId = p.getTypeId();
if (typeId != null) {
return _deserializeWithNativeTypeId(p, ctxt, typeId);
}
}
// first, sanity checks
if (p.getCurrentToken() != JsonToken.START_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.START_OBJECT,
"need JSON Object to contain As.WRAPPER_OBJECT type information for class "+baseTypeName());
}
// should always get field name, but just in case...
if (p.nextToken() != JsonToken.FIELD_NAME) {
throw ctxt.wrongTokenException(p, JsonToken.FIELD_NAME,
"need JSON String that contains type id (for subtype of "+baseTypeName()+")");
}
final String typeId = p.getText();
JsonDeserializer<Object> deser = _findDeserializer(ctxt, typeId);
p.nextToken();
// Minor complication: we may need to merge type id in?
if (_typeIdVisible && p.getCurrentToken() == JsonToken.START_OBJECT) {
// but what if there's nowhere to add it in? Error? Or skip? For now, skip.
TokenBuffer tb = new TokenBuffer(null, false);
tb.writeStartObject(); // recreate START_OBJECT
tb.writeFieldName(_typePropertyName);
tb.writeString(typeId);
p = JsonParserSequence.createFlattened(tb.asParser(p), p);
p.nextToken();
}
Object value = deser.deserialize(p, ctxt);
// And then need the closing END_OBJECT
if (p.nextToken() != JsonToken.END_OBJECT) {
throw ctxt.wrongTokenException(p, JsonToken.END_OBJECT,
"expected closing END_OBJECT after type information and deserialized value");
}
return value;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
27 | ad92b10c7164f2553e9105ea7d94db28646d6505ed9861cb2e0667ccdd0547a2 | private static PeriodFormatter toFormatter(List<Object> elementPairs, boolean notPrinter, boolean notParser) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
//-----------------------------------------------------------------------
private static PeriodFormatter toFormatter(List<Object> elementPairs, boolean notPrinter, boolean notParser) {
if (notPrinter && notParser) {
throw new IllegalStateException("Builder has created neither a printer nor a parser");
}
int size = elementPairs.size();
if (size >= 2 && elementPairs.get(0) instanceof Separator) {
Separator sep = (Separator) elementPairs.get(0);
if (sep.iAfterParser == null && sep.iAfterPrinter == null) {
PeriodFormatter f = toFormatter(elementPairs.subList(2, size), notPrinter, notParser);
sep = sep.finish(f.getPrinter(), f.getParser());
return new PeriodFormatter(sep, sep);
}
}
Object[] comp = createComposite(elementPairs);
if (notPrinter) {
return new PeriodFormatter(null, (PeriodParser) comp[1]);
} else if (notParser) {
return new PeriodFormatter((PeriodPrinter) comp[0], null);
} else {
return new PeriodFormatter((PeriodPrinter) comp[0], (PeriodParser) comp[1]);
}
}
```
| private static PeriodFormatter toFormatter(List<Object> elementPairs, boolean notPrinter, boolean notParser) {
if (notPrinter && notParser) {
throw new IllegalStateException("Builder has created neither a printer nor a parser");
}
int size = elementPairs.size();
if (size >= 2 && elementPairs.get(0) instanceof Separator) {
Separator sep = (Separator) elementPairs.get(0);
if (sep.iAfterParser == null && sep.iAfterPrinter == null) {
PeriodFormatter f = toFormatter(elementPairs.subList(2, size), notPrinter, notParser);
sep = sep.finish(f.getPrinter(), f.getParser());
return new PeriodFormatter(sep, sep);
}
}
Object[] comp = createComposite(elementPairs);
if (notPrinter) {
return new PeriodFormatter(null, (PeriodParser) comp[1]);
} else if (notParser) {
return new PeriodFormatter((PeriodPrinter) comp[0], null);
} else {
return new PeriodFormatter((PeriodPrinter) comp[0], (PeriodParser) comp[1]);
}
} | false | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
//-----------------------------------------------------------------------
private static PeriodFormatter toFormatter(List<Object> elementPairs, boolean notPrinter, boolean notParser) {
if (notPrinter && notParser) {
throw new IllegalStateException("Builder has created neither a printer nor a parser");
}
int size = elementPairs.size();
if (size >= 2 && elementPairs.get(0) instanceof Separator) {
Separator sep = (Separator) elementPairs.get(0);
if (sep.iAfterParser == null && sep.iAfterPrinter == null) {
PeriodFormatter f = toFormatter(elementPairs.subList(2, size), notPrinter, notParser);
sep = sep.finish(f.getPrinter(), f.getParser());
return new PeriodFormatter(sep, sep);
}
}
Object[] comp = createComposite(elementPairs);
if (notPrinter) {
return new PeriodFormatter(null, (PeriodParser) comp[1]);
} else if (notParser) {
return new PeriodFormatter((PeriodPrinter) comp[0], null);
} else {
return new PeriodFormatter((PeriodPrinter) comp[0], (PeriodParser) comp[1]);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
71 | ada0d74cb162d97948bf6c3f82d5e47112c55e1c1502f250005a3f0adc910a70 | public static StdKeyDeserializer forType(Class<?> raw)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
}
```
| public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
} | true | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
17 | adb578e728342453379a3094e3541a79cb90c90d81c5e9eee2a79791c64c69ee | public boolean useForType(JavaType t)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Method called to check if the default type handler should be
* used for given type.
* Note: "natural types" (String, Boolean, Integer, Double) will never
* use typing; that is both due to them being concrete and final,
* and since actual serializers and deserializers will also ignore any
* attempts to enforce typing.
*/
public boolean useForType(JavaType t)
{
switch (_appliesFor) {
case NON_CONCRETE_AND_ARRAYS:
while (t.isArrayType()) {
t = t.getContentType();
}
// fall through
case OBJECT_AND_NON_CONCRETE:
// return t.isJavaLangObject() ||
return (t.getRawClass() == Object.class)
|| (!t.isConcrete()
// [databind#88] Should not apply to JSON tree models:
&& !TreeNode.class.isAssignableFrom(t.getRawClass()));
case NON_FINAL:
while (t.isArrayType()) {
t = t.getContentType();
}
// [Issue#88] Should not apply to JSON tree models:
return !t.isFinal() && !TreeNode.class.isAssignableFrom(t.getRawClass());
default:
//case JAVA_LANG_OBJECT:
// return t.isJavaLangObject();
return (t.getRawClass() == Object.class);
}
}
```
| public boolean useForType(JavaType t)
{
switch (_appliesFor) {
case NON_CONCRETE_AND_ARRAYS:
while (t.isArrayType()) {
t = t.getContentType();
}
// fall through
case OBJECT_AND_NON_CONCRETE:
// return t.isJavaLangObject() ||
return (t.getRawClass() == Object.class)
|| (!t.isConcrete()
// [databind#88] Should not apply to JSON tree models:
&& !TreeNode.class.isAssignableFrom(t.getRawClass()));
case NON_FINAL:
while (t.isArrayType()) {
t = t.getContentType();
}
// [Issue#88] Should not apply to JSON tree models:
return !t.isFinal() && !TreeNode.class.isAssignableFrom(t.getRawClass());
default:
//case JAVA_LANG_OBJECT:
// return t.isJavaLangObject();
return (t.getRawClass() == Object.class);
}
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Method called to check if the default type handler should be
* used for given type.
* Note: "natural types" (String, Boolean, Integer, Double) will never
* use typing; that is both due to them being concrete and final,
* and since actual serializers and deserializers will also ignore any
* attempts to enforce typing.
*/
public boolean useForType(JavaType t)
{
switch (_appliesFor) {
case NON_CONCRETE_AND_ARRAYS:
while (t.isArrayType()) {
t = t.getContentType();
}
// fall through
case OBJECT_AND_NON_CONCRETE:
// return t.isJavaLangObject() ||
return (t.getRawClass() == Object.class)
|| (!t.isConcrete()
// [databind#88] Should not apply to JSON tree models:
&& !TreeNode.class.isAssignableFrom(t.getRawClass()));
case NON_FINAL:
while (t.isArrayType()) {
t = t.getContentType();
}
// [Issue#88] Should not apply to JSON tree models:
return !t.isFinal() && !TreeNode.class.isAssignableFrom(t.getRawClass());
default:
//case JAVA_LANG_OBJECT:
// return t.isJavaLangObject();
return (t.getRawClass() == Object.class);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
33 | addd3e620e1e6ebc00766422cf64b7b35821dc49fc204c2eeabc711202f7d031 | Element insert(Token.StartTag startTag) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
}
```
| Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
} | true | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | addf43a38980ef7da8f1f6e25cf6801fe225dde66a162670c6719a16f280949c | public LegendItemCollection getLegendItems() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Returns a (possibly empty) collection of legend items for the series
* that this renderer is responsible for drawing.
*
* @return The legend item collection (never <code>null</code>).
*
* @see #getLegendItem(int, int)
*/
public LegendItemCollection getLegendItems() {
LegendItemCollection result = new LegendItemCollection();
if (this.plot == null) {
return result;
}
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);
if (dataset != null) {
return result;
}
int seriesCount = dataset.getRowCount();
if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
for (int i = 0; i < seriesCount; i++) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
else {
for (int i = seriesCount - 1; i >= 0; i--) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
return result;
}
```
| public LegendItemCollection getLegendItems() {
LegendItemCollection result = new LegendItemCollection();
if (this.plot == null) {
return result;
}
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);
if (dataset != null) {
return result;
}
int seriesCount = dataset.getRowCount();
if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
for (int i = 0; i < seriesCount; i++) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
else {
for (int i = seriesCount - 1; i >= 0; i--) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
return result;
} | true | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Returns a (possibly empty) collection of legend items for the series
* that this renderer is responsible for drawing.
*
* @return The legend item collection (never <code>null</code>).
*
* @see #getLegendItem(int, int)
*/
public LegendItemCollection getLegendItems() {
LegendItemCollection result = new LegendItemCollection();
if (this.plot == null) {
return result;
}
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);
if (dataset != null) {
return result;
}
int seriesCount = dataset.getRowCount();
if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
for (int i = 0; i < seriesCount; i++) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
else {
for (int i = seriesCount - 1; i >= 0; i--) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, i);
if (item != null) {
result.add(item);
}
}
}
}
return result;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
176 | ae7989e0687fcd49f00c8a15bf93f72bcc08c7a651fdff4ac7470d9691f57e70 | private void updateScopeForTypeChange(
FlowScope scope, Node left, JSType leftType, JSType resultType) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Updates the scope according to the result of a type change, like
* an assignment or a type cast.
*/
private void updateScopeForTypeChange(
FlowScope scope, Node left, JSType leftType, JSType resultType) {
Preconditions.checkNotNull(resultType);
switch (left.getType()) {
case Token.NAME:
String varName = left.getString();
Var var = syntacticScope.getVar(varName);
boolean isVarDeclaration = left.hasChildren();
// When looking at VAR initializers for declared VARs, we tend
// to use the declared type over the type it's being
// initialized to in the global scope.
//
// For example,
// /** @param {number} */ var f = goog.abstractMethod;
// it's obvious that the programmer wants you to use
// the declared function signature, not the inferred signature.
//
// Or,
// /** @type {Object.<string>} */ var x = {};
// the one-time anonymous object on the right side
// is as narrow as it can possibly be, but we need to make
// sure we back-infer the <string> element constraint on
// the left hand side, so we use the left hand side.
boolean isVarTypeBetter = !isVarDeclaration || var == null || var.isTypeInferred();
// Makes it easier to check for NPEs.
// TODO(nicksantos): This might be a better check once we have
// back-inference of object/array constraints. It will probably
// introduce more type warnings. It uses the result type iff it's
// strictly narrower than the declared var type.
//
//boolean isVarTypeBetter = isVarDeclaration &&
// (varType.restrictByNotNullOrUndefined().isSubtype(resultType)
// || !resultType.isSubtype(varType));
if (isVarTypeBetter) {
redeclareSimpleVar(scope, left, resultType);
}
left.setJSType(isVarDeclaration || leftType == null ?
resultType : null);
if (var != null && var.isTypeInferred()) {
JSType oldType = var.getType();
var.setType(oldType == null ?
resultType : oldType.getLeastSupertype(resultType));
}
break;
case Token.GETPROP:
String qualifiedName = left.getQualifiedName();
if (qualifiedName != null) {
scope.inferQualifiedSlot(left, qualifiedName,
leftType == null ? unknownType : leftType,
resultType);
}
left.setJSType(resultType);
ensurePropertyDefined(left, resultType);
break;
}
}
```
| private void updateScopeForTypeChange(
FlowScope scope, Node left, JSType leftType, JSType resultType) {
Preconditions.checkNotNull(resultType);
switch (left.getType()) {
case Token.NAME:
String varName = left.getString();
Var var = syntacticScope.getVar(varName);
boolean isVarDeclaration = left.hasChildren();
// When looking at VAR initializers for declared VARs, we tend
// to use the declared type over the type it's being
// initialized to in the global scope.
//
// For example,
// /** @param {number} */ var f = goog.abstractMethod;
// it's obvious that the programmer wants you to use
// the declared function signature, not the inferred signature.
//
// Or,
// /** @type {Object.<string>} */ var x = {};
// the one-time anonymous object on the right side
// is as narrow as it can possibly be, but we need to make
// sure we back-infer the <string> element constraint on
// the left hand side, so we use the left hand side.
boolean isVarTypeBetter = !isVarDeclaration || var == null || var.isTypeInferred();
// Makes it easier to check for NPEs.
// TODO(nicksantos): This might be a better check once we have
// back-inference of object/array constraints. It will probably
// introduce more type warnings. It uses the result type iff it's
// strictly narrower than the declared var type.
//
//boolean isVarTypeBetter = isVarDeclaration &&
// (varType.restrictByNotNullOrUndefined().isSubtype(resultType)
// || !resultType.isSubtype(varType));
if (isVarTypeBetter) {
redeclareSimpleVar(scope, left, resultType);
}
left.setJSType(isVarDeclaration || leftType == null ?
resultType : null);
if (var != null && var.isTypeInferred()) {
JSType oldType = var.getType();
var.setType(oldType == null ?
resultType : oldType.getLeastSupertype(resultType));
}
break;
case Token.GETPROP:
String qualifiedName = left.getQualifiedName();
if (qualifiedName != null) {
scope.inferQualifiedSlot(left, qualifiedName,
leftType == null ? unknownType : leftType,
resultType);
}
left.setJSType(resultType);
ensurePropertyDefined(left, resultType);
break;
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Updates the scope according to the result of a type change, like
* an assignment or a type cast.
*/
private void updateScopeForTypeChange(
FlowScope scope, Node left, JSType leftType, JSType resultType) {
Preconditions.checkNotNull(resultType);
switch (left.getType()) {
case Token.NAME:
String varName = left.getString();
Var var = syntacticScope.getVar(varName);
boolean isVarDeclaration = left.hasChildren();
// When looking at VAR initializers for declared VARs, we tend
// to use the declared type over the type it's being
// initialized to in the global scope.
//
// For example,
// /** @param {number} */ var f = goog.abstractMethod;
// it's obvious that the programmer wants you to use
// the declared function signature, not the inferred signature.
//
// Or,
// /** @type {Object.<string>} */ var x = {};
// the one-time anonymous object on the right side
// is as narrow as it can possibly be, but we need to make
// sure we back-infer the <string> element constraint on
// the left hand side, so we use the left hand side.
boolean isVarTypeBetter = !isVarDeclaration || var == null || var.isTypeInferred();
// Makes it easier to check for NPEs.
// TODO(nicksantos): This might be a better check once we have
// back-inference of object/array constraints. It will probably
// introduce more type warnings. It uses the result type iff it's
// strictly narrower than the declared var type.
//
//boolean isVarTypeBetter = isVarDeclaration &&
// (varType.restrictByNotNullOrUndefined().isSubtype(resultType)
// || !resultType.isSubtype(varType));
if (isVarTypeBetter) {
redeclareSimpleVar(scope, left, resultType);
}
left.setJSType(isVarDeclaration || leftType == null ?
resultType : null);
if (var != null && var.isTypeInferred()) {
JSType oldType = var.getType();
var.setType(oldType == null ?
resultType : oldType.getLeastSupertype(resultType));
}
break;
case Token.GETPROP:
String qualifiedName = left.getQualifiedName();
if (qualifiedName != null) {
scope.inferQualifiedSlot(left, qualifiedName,
leftType == null ? unknownType : leftType,
resultType);
}
left.setJSType(resultType);
ensurePropertyDefined(left, resultType);
break;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
27 | ae9245032ec5d14f5226245dada2631f7b7fb30d4604043d3270837d9bcfdb09 | @SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithExternalTypeId(JsonParser p, DeserializationContext ctxt)
throws IOException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithExternalTypeId(JsonParser p, DeserializationContext ctxt)
throws IOException
{
final ExternalTypeHandler ext = _externalTypeIdHandler.start();
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
// first: let's check to see if this might be part of value with external type id:
// 11-Sep-2015, tatu: Important; do NOT pass buffer as last arg, but null,
// since it is not the bean
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
;
} else {
// Last creator property to set?
if (buffer.assignParameter(creatorProp, _deserializeWithErrorWrapping(p, ctxt, creatorProp))) {
t = p.nextToken(); // to move to following FIELD_NAME/END_OBJECT
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue; // never gets here
}
// if so, need to copy all remaining tokens into buffer
while (t == JsonToken.FIELD_NAME) {
p.nextToken(); // to skip name
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
if (bean.getClass() != _beanType.getRawClass()) {
// !!! 08-Jul-2011, tatu: Could theoretically support; but for now
// it's too complicated, so bail out
throw ctxt.mappingException("Can not create polymorphic instances with unwrapped values");
}
return ext.complete(p, ctxt, bean);
}
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
// external type id (or property that depends on it)?
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
continue;
}
/* As per [JACKSON-313], things marked as ignorable should not be
* passed to any setter
*/
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT; resolve the pieces:
try {
return ext.complete(p, ctxt, buffer, creator);
} catch (Exception e) {
wrapInstantiationProblem(e, ctxt);
return null; // never gets here
}
}
```
| @SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithExternalTypeId(JsonParser p, DeserializationContext ctxt)
throws IOException
{
final ExternalTypeHandler ext = _externalTypeIdHandler.start();
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
// first: let's check to see if this might be part of value with external type id:
// 11-Sep-2015, tatu: Important; do NOT pass buffer as last arg, but null,
// since it is not the bean
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
;
} else {
// Last creator property to set?
if (buffer.assignParameter(creatorProp, _deserializeWithErrorWrapping(p, ctxt, creatorProp))) {
t = p.nextToken(); // to move to following FIELD_NAME/END_OBJECT
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue; // never gets here
}
// if so, need to copy all remaining tokens into buffer
while (t == JsonToken.FIELD_NAME) {
p.nextToken(); // to skip name
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
if (bean.getClass() != _beanType.getRawClass()) {
// !!! 08-Jul-2011, tatu: Could theoretically support; but for now
// it's too complicated, so bail out
throw ctxt.mappingException("Can not create polymorphic instances with unwrapped values");
}
return ext.complete(p, ctxt, bean);
}
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
// external type id (or property that depends on it)?
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
continue;
}
/* As per [JACKSON-313], things marked as ignorable should not be
* passed to any setter
*/
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT; resolve the pieces:
try {
return ext.complete(p, ctxt, buffer, creator);
} catch (Exception e) {
wrapInstantiationProblem(e, ctxt);
return null; // never gets here
}
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithExternalTypeId(JsonParser p, DeserializationContext ctxt)
throws IOException
{
final ExternalTypeHandler ext = _externalTypeIdHandler.start();
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
// first: let's check to see if this might be part of value with external type id:
// 11-Sep-2015, tatu: Important; do NOT pass buffer as last arg, but null,
// since it is not the bean
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
;
} else {
// Last creator property to set?
if (buffer.assignParameter(creatorProp, _deserializeWithErrorWrapping(p, ctxt, creatorProp))) {
t = p.nextToken(); // to move to following FIELD_NAME/END_OBJECT
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue; // never gets here
}
// if so, need to copy all remaining tokens into buffer
while (t == JsonToken.FIELD_NAME) {
p.nextToken(); // to skip name
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
if (bean.getClass() != _beanType.getRawClass()) {
// !!! 08-Jul-2011, tatu: Could theoretically support; but for now
// it's too complicated, so bail out
throw ctxt.mappingException("Can not create polymorphic instances with unwrapped values");
}
return ext.complete(p, ctxt, bean);
}
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
// external type id (or property that depends on it)?
if (ext.handlePropertyValue(p, ctxt, propName, null)) {
continue;
}
/* As per [JACKSON-313], things marked as ignorable should not be
* passed to any setter
*/
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT; resolve the pieces:
try {
return ext.complete(p, ctxt, buffer, creator);
} catch (Exception e) {
wrapInstantiationProblem(e, ctxt);
return null; // never gets here
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
96 | aed4b7948ff2716dd8208b39194017096dd1f50f07d38340d7088a24d62da3ac | public boolean equals(Object other) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Test for the equality of two Complex objects.
* <p>
* If both the real and imaginary parts of two Complex numbers
* are exactly the same, and neither is <code>Double.NaN</code>, the two
* Complex objects are considered to be equal.</p>
* <p>
* All <code>NaN</code> values are considered to be equal - i.e, if either
* (or both) real and imaginary parts of the complex number are equal
* to <code>Double.NaN</code>, the complex number is equal to
* <code>Complex.NaN</code>.</p>
*
* @param other Object to test for equality to this
* @return true if two Complex objects are equal, false if
* object is null, not an instance of Complex, or
* not equal to this Complex instance
*
*/
public boolean equals(Object other) {
boolean ret;
if (this == other) {
ret = true;
} else if (other == null) {
ret = false;
} else {
try {
Complex rhs = (Complex)other;
if (rhs.isNaN()) {
ret = this.isNaN();
} else {
ret = (real == rhs.real) && (imaginary == rhs.imaginary);
}
} catch (ClassCastException ex) {
// ignore exception
ret = false;
}
}
return ret;
}
```
| public boolean equals(Object other) {
boolean ret;
if (this == other) {
ret = true;
} else if (other == null) {
ret = false;
} else {
try {
Complex rhs = (Complex)other;
if (rhs.isNaN()) {
ret = this.isNaN();
} else {
ret = (real == rhs.real) && (imaginary == rhs.imaginary);
}
} catch (ClassCastException ex) {
// ignore exception
ret = false;
}
}
return ret;
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Test for the equality of two Complex objects.
* <p>
* If both the real and imaginary parts of two Complex numbers
* are exactly the same, and neither is <code>Double.NaN</code>, the two
* Complex objects are considered to be equal.</p>
* <p>
* All <code>NaN</code> values are considered to be equal - i.e, if either
* (or both) real and imaginary parts of the complex number are equal
* to <code>Double.NaN</code>, the complex number is equal to
* <code>Complex.NaN</code>.</p>
*
* @param other Object to test for equality to this
* @return true if two Complex objects are equal, false if
* object is null, not an instance of Complex, or
* not equal to this Complex instance
*
*/
public boolean equals(Object other) {
boolean ret;
if (this == other) {
ret = true;
} else if (other == null) {
ret = false;
} else {
try {
Complex rhs = (Complex)other;
if (rhs.isNaN()) {
ret = this.isNaN();
} else {
ret = (real == rhs.real) && (imaginary == rhs.imaginary);
}
} catch (ClassCastException ex) {
// ignore exception
ret = false;
}
}
return ret;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
17 | af141f4383ac9d332b73374f612a2a551e73722230afcfc478d1c0e092644115 | @Override
public Date read(JsonReader in) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
public Date read(JsonReader in) throws IOException {
if (in.peek() != JsonToken.STRING) {
throw new JsonParseException("The date should be a string value");
}
Date date = deserializeToDate(in.nextString());
if (dateType == Date.class) {
return date;
} else if (dateType == Timestamp.class) {
return new Timestamp(date.getTime());
} else if (dateType == java.sql.Date.class) {
return new java.sql.Date(date.getTime());
} else {
// This must never happen: dateType is guarded in the primary constructor
throw new AssertionError();
}
}
```
| @Override
public Date read(JsonReader in) throws IOException {
if (in.peek() != JsonToken.STRING) {
throw new JsonParseException("The date should be a string value");
}
Date date = deserializeToDate(in.nextString());
if (dateType == Date.class) {
return date;
} else if (dateType == Timestamp.class) {
return new Timestamp(date.getTime());
} else if (dateType == java.sql.Date.class) {
return new java.sql.Date(date.getTime());
} else {
// This must never happen: dateType is guarded in the primary constructor
throw new AssertionError();
}
} | true | Gson | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
public Date read(JsonReader in) throws IOException {
if (in.peek() != JsonToken.STRING) {
throw new JsonParseException("The date should be a string value");
}
Date date = deserializeToDate(in.nextString());
if (dateType == Date.class) {
return date;
} else if (dateType == Timestamp.class) {
return new Timestamp(date.getTime());
} else if (dateType == java.sql.Date.class) {
return new java.sql.Date(date.getTime());
} else {
// This must never happen: dateType is guarded in the primary constructor
throw new AssertionError();
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
71 | af91b78a9ca3c1f503382281d6056d75701f076bb4ddb7ba2a6c6adb5efc7732 | public static StdKeyDeserializer forType(Class<?> raw)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class || raw == CharSequence.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
}
```
| public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class || raw == CharSequence.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public static StdKeyDeserializer forType(Class<?> raw)
{
int kind;
// first common types:
if (raw == String.class || raw == Object.class || raw == CharSequence.class) {
return StringKD.forType(raw);
} else if (raw == UUID.class) {
kind = TYPE_UUID;
} else if (raw == Integer.class) {
kind = TYPE_INT;
} else if (raw == Long.class) {
kind = TYPE_LONG;
} else if (raw == Date.class) {
kind = TYPE_DATE;
} else if (raw == Calendar.class) {
kind = TYPE_CALENDAR;
// then less common ones...
} else if (raw == Boolean.class) {
kind = TYPE_BOOLEAN;
} else if (raw == Byte.class) {
kind = TYPE_BYTE;
} else if (raw == Character.class) {
kind = TYPE_CHAR;
} else if (raw == Short.class) {
kind = TYPE_SHORT;
} else if (raw == Float.class) {
kind = TYPE_FLOAT;
} else if (raw == Double.class) {
kind = TYPE_DOUBLE;
} else if (raw == URI.class) {
kind = TYPE_URI;
} else if (raw == URL.class) {
kind = TYPE_URL;
} else if (raw == Class.class) {
kind = TYPE_CLASS;
} else if (raw == Locale.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Locale.class);
return new StdKeyDeserializer(TYPE_LOCALE, raw, deser);
} else if (raw == Currency.class) {
FromStringDeserializer<?> deser = FromStringDeserializer.findDeserializer(Currency.class);
return new StdKeyDeserializer(TYPE_CURRENCY, raw, deser);
} else {
return null;
}
return new StdKeyDeserializer(kind, raw);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
11 | afab57d7b811192658dd59994d31bea9d60f64f7a47ec8ea580c32a6c28a56e0 | protected JavaType _fromVariable(TypeVariable<?> type, TypeBindings context)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
protected JavaType _fromVariable(TypeVariable<?> type, TypeBindings context)
{
final String name = type.getName();
// 19-Mar-2015: Without context, all we can check are bounds.
if (context == null) {
// And to prevent infinite loops, now need this:
context = new TypeBindings(this, (Class<?>) null);
} else {
// Ok: here's where context might come in handy!
/* 19-Mar-2015, tatu: As per [databind#609], may need to allow
* unresolved type variables to handle some cases where bounds
* are enough. Let's hope it does not hide real fail cases.
*/
JavaType actualType = context.findType(name, false);
if (actualType != null) {
return actualType;
}
}
/* 29-Jan-2010, tatu: We used to throw exception here, if type was
* bound: but the problem is that this can occur for generic "base"
* method, overridden by sub-class. If so, we will want to ignore
* current type (for method) since it will be masked.
*/
Type[] bounds = type.getBounds();
// With type variables we must use bound information.
// Theoretically this gets tricky, as there may be multiple
// bounds ("... extends A & B"); and optimally we might
// want to choose the best match. Also, bounds are optional;
// but here we are lucky in that implicit "Object" is
// added as bounds if so.
// Either way let's just use the first bound, for now, and
// worry about better match later on if there is need.
/* 29-Jan-2010, tatu: One more problem are recursive types
* (T extends Comparable<T>). Need to add "placeholder"
* for resolution to catch those.
*/
context._addPlaceholder(name);
return _constructType(bounds[0], context);
}
```
| protected JavaType _fromVariable(TypeVariable<?> type, TypeBindings context)
{
final String name = type.getName();
// 19-Mar-2015: Without context, all we can check are bounds.
if (context == null) {
// And to prevent infinite loops, now need this:
context = new TypeBindings(this, (Class<?>) null);
} else {
// Ok: here's where context might come in handy!
/* 19-Mar-2015, tatu: As per [databind#609], may need to allow
* unresolved type variables to handle some cases where bounds
* are enough. Let's hope it does not hide real fail cases.
*/
JavaType actualType = context.findType(name, false);
if (actualType != null) {
return actualType;
}
}
/* 29-Jan-2010, tatu: We used to throw exception here, if type was
* bound: but the problem is that this can occur for generic "base"
* method, overridden by sub-class. If so, we will want to ignore
* current type (for method) since it will be masked.
*/
Type[] bounds = type.getBounds();
// With type variables we must use bound information.
// Theoretically this gets tricky, as there may be multiple
// bounds ("... extends A & B"); and optimally we might
// want to choose the best match. Also, bounds are optional;
// but here we are lucky in that implicit "Object" is
// added as bounds if so.
// Either way let's just use the first bound, for now, and
// worry about better match later on if there is need.
/* 29-Jan-2010, tatu: One more problem are recursive types
* (T extends Comparable<T>). Need to add "placeholder"
* for resolution to catch those.
*/
context._addPlaceholder(name);
return _constructType(bounds[0], context);
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
protected JavaType _fromVariable(TypeVariable<?> type, TypeBindings context)
{
final String name = type.getName();
// 19-Mar-2015: Without context, all we can check are bounds.
if (context == null) {
// And to prevent infinite loops, now need this:
context = new TypeBindings(this, (Class<?>) null);
} else {
// Ok: here's where context might come in handy!
/* 19-Mar-2015, tatu: As per [databind#609], may need to allow
* unresolved type variables to handle some cases where bounds
* are enough. Let's hope it does not hide real fail cases.
*/
JavaType actualType = context.findType(name, false);
if (actualType != null) {
return actualType;
}
}
/* 29-Jan-2010, tatu: We used to throw exception here, if type was
* bound: but the problem is that this can occur for generic "base"
* method, overridden by sub-class. If so, we will want to ignore
* current type (for method) since it will be masked.
*/
Type[] bounds = type.getBounds();
// With type variables we must use bound information.
// Theoretically this gets tricky, as there may be multiple
// bounds ("... extends A & B"); and optimally we might
// want to choose the best match. Also, bounds are optional;
// but here we are lucky in that implicit "Object" is
// added as bounds if so.
// Either way let's just use the first bound, for now, and
// worry about better match later on if there is need.
/* 29-Jan-2010, tatu: One more problem are recursive types
* (T extends Comparable<T>). Need to add "placeholder"
* for resolution to catch those.
*/
context._addPlaceholder(name);
return _constructType(bounds[0], context);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
20 | afc2f03ad06bffd43cf79bdfb6dc7a431a3be6bcf56ff5cf44f4e47737609d49 | public int parseInto(DateTimeParserBucket bucket, String text, int position) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public int parseInto(DateTimeParserBucket bucket, String text, int position) {
String str = text.substring(position);
for (String id : ALL_IDS) {
if (str.startsWith(id)) {
bucket.setZone(DateTimeZone.forID(id));
return position + id.length();
}
}
return ~position;
}
```
| public int parseInto(DateTimeParserBucket bucket, String text, int position) {
String str = text.substring(position);
for (String id : ALL_IDS) {
if (str.startsWith(id)) {
bucket.setZone(DateTimeZone.forID(id));
return position + id.length();
}
}
return ~position;
} | true | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public int parseInto(DateTimeParserBucket bucket, String text, int position) {
String str = text.substring(position);
for (String id : ALL_IDS) {
if (str.startsWith(id)) {
bucket.setZone(DateTimeZone.forID(id));
return position + id.length();
}
}
return ~position;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
11 | b02e4bd043e1ce811bf1f3baa673c51b55a1b9c597691f0d57446815999c738a | private static void appendOption(final StringBuffer buff,
final Option option,
final boolean required)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Appends the usage clause for an Option to a StringBuffer.
*
* @param buff the StringBuffer to append to
* @param option the Option to append
* @param required whether the Option is required or not
*/
private static void appendOption(final StringBuffer buff,
final Option option,
final boolean required)
{
if (!required)
{
buff.append("[");
}
if (option.getOpt() != null)
{
buff.append("-").append(option.getOpt());
}
else
{
buff.append("--").append(option.getLongOpt());
}
// if the Option has a value
if (option.hasArg() && (option.getArgName() != null))
{
buff.append(" <").append(option.getArgName()).append(">");
}
// if the Option is not a required option
if (!required)
{
buff.append("]");
}
}
```
| private static void appendOption(final StringBuffer buff,
final Option option,
final boolean required)
{
if (!required)
{
buff.append("[");
}
if (option.getOpt() != null)
{
buff.append("-").append(option.getOpt());
}
else
{
buff.append("--").append(option.getLongOpt());
}
// if the Option has a value
if (option.hasArg() && (option.getArgName() != null))
{
buff.append(" <").append(option.getArgName()).append(">");
}
// if the Option is not a required option
if (!required)
{
buff.append("]");
}
} | true | Cli | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Appends the usage clause for an Option to a StringBuffer.
*
* @param buff the StringBuffer to append to
* @param option the Option to append
* @param required whether the Option is required or not
*/
private static void appendOption(final StringBuffer buff,
final Option option,
final boolean required)
{
if (!required)
{
buff.append("[");
}
if (option.getOpt() != null)
{
buff.append("-").append(option.getOpt());
}
else
{
buff.append("--").append(option.getLongOpt());
}
// if the Option has a value
if (option.hasArg() && (option.getArgName() != null))
{
buff.append(" <").append(option.getArgName()).append(">");
}
// if the Option is not a required option
if (!required)
{
buff.append("]");
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
18 | b0b68fcf07e5bea5331bc1ffeafeffd82d9aaf51be10865a9da4ffb7cc45ddfb | void writePaxHeaders(String entryName,
Map<String, String> headers) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Writes a PAX extended header with the given map as contents.
* @since 1.4
*/
void writePaxHeaders(String entryName,
Map<String, String> headers) throws IOException {
String name = "./PaxHeaders.X/" + stripTo7Bits(entryName);
// TarEntry's constructor would think this is a directory
// and not allow any data to be written
if (name.length() >= TarConstants.NAMELEN) {
name = name.substring(0, TarConstants.NAMELEN - 1);
}
TarArchiveEntry pex = new TarArchiveEntry(name,
TarConstants.LF_PAX_EXTENDED_HEADER_LC);
StringWriter w = new StringWriter();
for (Map.Entry<String, String> h : headers.entrySet()) {
String key = h.getKey();
String value = h.getValue();
int len = key.length() + value.length()
+ 3 /* blank, equals and newline */
+ 2 /* guess 9 < actual length < 100 */;
String line = len + " " + key + "=" + value + "\n";
int actualLength = line.getBytes(CharsetNames.UTF_8).length;
while (len != actualLength) {
// Adjust for cases where length < 10 or > 100
// or where UTF-8 encoding isn't a single octet
// per character.
// Must be in loop as size may go from 99 to 100 in
// first pass so we'd need a second.
len = actualLength;
line = len + " " + key + "=" + value + "\n";
actualLength = line.getBytes(CharsetNames.UTF_8).length;
}
w.write(line);
}
byte[] data = w.toString().getBytes(CharsetNames.UTF_8);
pex.setSize(data.length);
putArchiveEntry(pex);
write(data);
closeArchiveEntry();
}
```
| void writePaxHeaders(String entryName,
Map<String, String> headers) throws IOException {
String name = "./PaxHeaders.X/" + stripTo7Bits(entryName);
// TarEntry's constructor would think this is a directory
// and not allow any data to be written
if (name.length() >= TarConstants.NAMELEN) {
name = name.substring(0, TarConstants.NAMELEN - 1);
}
TarArchiveEntry pex = new TarArchiveEntry(name,
TarConstants.LF_PAX_EXTENDED_HEADER_LC);
StringWriter w = new StringWriter();
for (Map.Entry<String, String> h : headers.entrySet()) {
String key = h.getKey();
String value = h.getValue();
int len = key.length() + value.length()
+ 3 /* blank, equals and newline */
+ 2 /* guess 9 < actual length < 100 */;
String line = len + " " + key + "=" + value + "\n";
int actualLength = line.getBytes(CharsetNames.UTF_8).length;
while (len != actualLength) {
// Adjust for cases where length < 10 or > 100
// or where UTF-8 encoding isn't a single octet
// per character.
// Must be in loop as size may go from 99 to 100 in
// first pass so we'd need a second.
len = actualLength;
line = len + " " + key + "=" + value + "\n";
actualLength = line.getBytes(CharsetNames.UTF_8).length;
}
w.write(line);
}
byte[] data = w.toString().getBytes(CharsetNames.UTF_8);
pex.setSize(data.length);
putArchiveEntry(pex);
write(data);
closeArchiveEntry();
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Writes a PAX extended header with the given map as contents.
* @since 1.4
*/
void writePaxHeaders(String entryName,
Map<String, String> headers) throws IOException {
String name = "./PaxHeaders.X/" + stripTo7Bits(entryName);
// TarEntry's constructor would think this is a directory
// and not allow any data to be written
if (name.length() >= TarConstants.NAMELEN) {
name = name.substring(0, TarConstants.NAMELEN - 1);
}
TarArchiveEntry pex = new TarArchiveEntry(name,
TarConstants.LF_PAX_EXTENDED_HEADER_LC);
StringWriter w = new StringWriter();
for (Map.Entry<String, String> h : headers.entrySet()) {
String key = h.getKey();
String value = h.getValue();
int len = key.length() + value.length()
+ 3 /* blank, equals and newline */
+ 2 /* guess 9 < actual length < 100 */;
String line = len + " " + key + "=" + value + "\n";
int actualLength = line.getBytes(CharsetNames.UTF_8).length;
while (len != actualLength) {
// Adjust for cases where length < 10 or > 100
// or where UTF-8 encoding isn't a single octet
// per character.
// Must be in loop as size may go from 99 to 100 in
// first pass so we'd need a second.
len = actualLength;
line = len + " " + key + "=" + value + "\n";
actualLength = line.getBytes(CharsetNames.UTF_8).length;
}
w.write(line);
}
byte[] data = w.toString().getBytes(CharsetNames.UTF_8);
pex.setSize(data.length);
putArchiveEntry(pex);
write(data);
closeArchiveEntry();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
92 | b0de2cc9ca2d6bfcefe84bd904357c7a26d2296c0106c084841aa90e7380333a | void replace() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Replace the provide statement.
*
* If we're providing a name with no definition, then create one.
* If we're providing a name with a duplicate definition, then make sure
* that definition becomes a declaration.
*/
void replace() {
if (firstNode == null) {
// Don't touch the base case ('goog').
replacementNode = candidateDefinition;
return;
}
// Handle the case where there is a duplicate definition for an explicitly
// provided symbol.
if (candidateDefinition != null && explicitNode != null) {
explicitNode.detachFromParent();
compiler.reportCodeChange();
// Does this need a VAR keyword?
replacementNode = candidateDefinition;
if (NodeUtil.isExpressionNode(candidateDefinition)) {
candidateDefinition.putBooleanProp(Node.IS_NAMESPACE, true);
Node assignNode = candidateDefinition.getFirstChild();
Node nameNode = assignNode.getFirstChild();
if (nameNode.getType() == Token.NAME) {
// Need to convert this assign to a var declaration.
Node valueNode = nameNode.getNext();
assignNode.removeChild(nameNode);
assignNode.removeChild(valueNode);
nameNode.addChildToFront(valueNode);
Node varNode = new Node(Token.VAR, nameNode);
varNode.copyInformationFrom(candidateDefinition);
candidateDefinition.getParent().replaceChild(
candidateDefinition, varNode);
nameNode.setJSDocInfo(assignNode.getJSDocInfo());
compiler.reportCodeChange();
replacementNode = varNode;
}
}
} else {
// Handle the case where there's not a duplicate definition.
replacementNode = createDeclarationNode();
if (firstModule == minimumModule) {
firstNode.getParent().addChildBefore(replacementNode, firstNode);
} else {
// In this case, the name was implicitly provided by two independent
// modules. We need to move this code up to a common module.
int indexOfDot = namespace.lastIndexOf('.');
if (indexOfDot == -1) {
// Any old place is fine.
compiler.getNodeForCodeInsertion(minimumModule)
.addChildToBack(replacementNode);
} else {
// Add it after the parent namespace.
ProvidedName parentName =
providedNames.get(namespace.substring(0, indexOfDot));
Preconditions.checkNotNull(parentName);
Preconditions.checkNotNull(parentName.replacementNode);
parentName.replacementNode.getParent().addChildAfter(
replacementNode, parentName.replacementNode);
}
}
if (explicitNode != null) {
explicitNode.detachFromParent();
}
compiler.reportCodeChange();
}
}
```
| void replace() {
if (firstNode == null) {
// Don't touch the base case ('goog').
replacementNode = candidateDefinition;
return;
}
// Handle the case where there is a duplicate definition for an explicitly
// provided symbol.
if (candidateDefinition != null && explicitNode != null) {
explicitNode.detachFromParent();
compiler.reportCodeChange();
// Does this need a VAR keyword?
replacementNode = candidateDefinition;
if (NodeUtil.isExpressionNode(candidateDefinition)) {
candidateDefinition.putBooleanProp(Node.IS_NAMESPACE, true);
Node assignNode = candidateDefinition.getFirstChild();
Node nameNode = assignNode.getFirstChild();
if (nameNode.getType() == Token.NAME) {
// Need to convert this assign to a var declaration.
Node valueNode = nameNode.getNext();
assignNode.removeChild(nameNode);
assignNode.removeChild(valueNode);
nameNode.addChildToFront(valueNode);
Node varNode = new Node(Token.VAR, nameNode);
varNode.copyInformationFrom(candidateDefinition);
candidateDefinition.getParent().replaceChild(
candidateDefinition, varNode);
nameNode.setJSDocInfo(assignNode.getJSDocInfo());
compiler.reportCodeChange();
replacementNode = varNode;
}
}
} else {
// Handle the case where there's not a duplicate definition.
replacementNode = createDeclarationNode();
if (firstModule == minimumModule) {
firstNode.getParent().addChildBefore(replacementNode, firstNode);
} else {
// In this case, the name was implicitly provided by two independent
// modules. We need to move this code up to a common module.
int indexOfDot = namespace.lastIndexOf('.');
if (indexOfDot == -1) {
// Any old place is fine.
compiler.getNodeForCodeInsertion(minimumModule)
.addChildToBack(replacementNode);
} else {
// Add it after the parent namespace.
ProvidedName parentName =
providedNames.get(namespace.substring(0, indexOfDot));
Preconditions.checkNotNull(parentName);
Preconditions.checkNotNull(parentName.replacementNode);
parentName.replacementNode.getParent().addChildAfter(
replacementNode, parentName.replacementNode);
}
}
if (explicitNode != null) {
explicitNode.detachFromParent();
}
compiler.reportCodeChange();
}
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Replace the provide statement.
*
* If we're providing a name with no definition, then create one.
* If we're providing a name with a duplicate definition, then make sure
* that definition becomes a declaration.
*/
void replace() {
if (firstNode == null) {
// Don't touch the base case ('goog').
replacementNode = candidateDefinition;
return;
}
// Handle the case where there is a duplicate definition for an explicitly
// provided symbol.
if (candidateDefinition != null && explicitNode != null) {
explicitNode.detachFromParent();
compiler.reportCodeChange();
// Does this need a VAR keyword?
replacementNode = candidateDefinition;
if (NodeUtil.isExpressionNode(candidateDefinition)) {
candidateDefinition.putBooleanProp(Node.IS_NAMESPACE, true);
Node assignNode = candidateDefinition.getFirstChild();
Node nameNode = assignNode.getFirstChild();
if (nameNode.getType() == Token.NAME) {
// Need to convert this assign to a var declaration.
Node valueNode = nameNode.getNext();
assignNode.removeChild(nameNode);
assignNode.removeChild(valueNode);
nameNode.addChildToFront(valueNode);
Node varNode = new Node(Token.VAR, nameNode);
varNode.copyInformationFrom(candidateDefinition);
candidateDefinition.getParent().replaceChild(
candidateDefinition, varNode);
nameNode.setJSDocInfo(assignNode.getJSDocInfo());
compiler.reportCodeChange();
replacementNode = varNode;
}
}
} else {
// Handle the case where there's not a duplicate definition.
replacementNode = createDeclarationNode();
if (firstModule == minimumModule) {
firstNode.getParent().addChildBefore(replacementNode, firstNode);
} else {
// In this case, the name was implicitly provided by two independent
// modules. We need to move this code up to a common module.
int indexOfDot = namespace.lastIndexOf('.');
if (indexOfDot == -1) {
// Any old place is fine.
compiler.getNodeForCodeInsertion(minimumModule)
.addChildToBack(replacementNode);
} else {
// Add it after the parent namespace.
ProvidedName parentName =
providedNames.get(namespace.substring(0, indexOfDot));
Preconditions.checkNotNull(parentName);
Preconditions.checkNotNull(parentName.replacementNode);
parentName.replacementNode.getParent().addChildAfter(
replacementNode, parentName.replacementNode);
}
}
if (explicitNode != null) {
explicitNode.detachFromParent();
}
compiler.reportCodeChange();
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
68 | b12e9811b180f9b97c646a20d18423010ee818d200d698bd6d301cb40fd0fab5 | private boolean inSpecificScope(String[] targetNames, String[] baseTypes, String[] extraTypes) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private boolean inSpecificScope(String[] targetNames, String[] baseTypes, String[] extraTypes) {
// https://html.spec.whatwg.org/multipage/parsing.html#has-an-element-in-the-specific-scope
int bottom = stack.size() -1;
if (bottom > MaxScopeSearchDepth) {
bottom = MaxScopeSearchDepth;
}
final int top = bottom > MaxScopeSearchDepth ? bottom - MaxScopeSearchDepth : 0;
// don't walk too far up the tree
for (int pos = bottom; pos >= top; pos--) {
final String elName = stack.get(pos).nodeName();
if (inSorted(elName, targetNames))
return true;
if (inSorted(elName, baseTypes))
return false;
if (extraTypes != null && inSorted(elName, extraTypes))
return false;
}
//Validate.fail("Should not be reachable"); // would end up false because hitting 'html' at root (basetypes)
return false;
}
```
| private boolean inSpecificScope(String[] targetNames, String[] baseTypes, String[] extraTypes) {
// https://html.spec.whatwg.org/multipage/parsing.html#has-an-element-in-the-specific-scope
int bottom = stack.size() -1;
if (bottom > MaxScopeSearchDepth) {
bottom = MaxScopeSearchDepth;
}
final int top = bottom > MaxScopeSearchDepth ? bottom - MaxScopeSearchDepth : 0;
// don't walk too far up the tree
for (int pos = bottom; pos >= top; pos--) {
final String elName = stack.get(pos).nodeName();
if (inSorted(elName, targetNames))
return true;
if (inSorted(elName, baseTypes))
return false;
if (extraTypes != null && inSorted(elName, extraTypes))
return false;
}
//Validate.fail("Should not be reachable"); // would end up false because hitting 'html' at root (basetypes)
return false;
} | true | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private boolean inSpecificScope(String[] targetNames, String[] baseTypes, String[] extraTypes) {
// https://html.spec.whatwg.org/multipage/parsing.html#has-an-element-in-the-specific-scope
int bottom = stack.size() -1;
if (bottom > MaxScopeSearchDepth) {
bottom = MaxScopeSearchDepth;
}
final int top = bottom > MaxScopeSearchDepth ? bottom - MaxScopeSearchDepth : 0;
// don't walk too far up the tree
for (int pos = bottom; pos >= top; pos--) {
final String elName = stack.get(pos).nodeName();
if (inSorted(elName, targetNames))
return true;
if (inSorted(elName, baseTypes))
return false;
if (extraTypes != null && inSorted(elName, extraTypes))
return false;
}
//Validate.fail("Should not be reachable"); // would end up false because hitting 'html' at root (basetypes)
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
105 | b13d6444d12f0f7e899d543784b9877b86511b717039bc6bc7af43b594256873 | public double getSumSquaredErrors() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Returns the <a href="http://www.xycoon.com/SumOfSquares.htm">
* sum of squared errors</a> (SSE) associated with the regression
* model.
* <p>
* The sum is computed using the computational formula
* <p>
* <code>SSE = SYY - (SXY * SXY / SXX)</code>
* <p>
* where <code>SYY</code> is the sum of the squared deviations of the y
* values about their mean, <code>SXX</code> is similarly defined and
* <code>SXY</code> is the sum of the products of x and y mean deviations.
* <p>
* The sums are accumulated using the updating algorithm referenced in
* {@link #addData}.
* <p>
* The return value is constrained to be non-negative - i.e., if due to
* rounding errors the computational formula returns a negative result,
* 0 is returned.
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return sum of squared errors associated with the regression model
*/
public double getSumSquaredErrors() {
return Math.max(0d, sumYY - sumXY * sumXY / sumXX);
}
```
| public double getSumSquaredErrors() {
return Math.max(0d, sumYY - sumXY * sumXY / sumXX);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Returns the <a href="http://www.xycoon.com/SumOfSquares.htm">
* sum of squared errors</a> (SSE) associated with the regression
* model.
* <p>
* The sum is computed using the computational formula
* <p>
* <code>SSE = SYY - (SXY * SXY / SXX)</code>
* <p>
* where <code>SYY</code> is the sum of the squared deviations of the y
* values about their mean, <code>SXX</code> is similarly defined and
* <code>SXY</code> is the sum of the products of x and y mean deviations.
* <p>
* The sums are accumulated using the updating algorithm referenced in
* {@link #addData}.
* <p>
* The return value is constrained to be non-negative - i.e., if due to
* rounding errors the computational formula returns a negative result,
* 0 is returned.
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return sum of squared errors associated with the regression model
*/
public double getSumSquaredErrors() {
return Math.max(0d, sumYY - sumXY * sumXY / sumXX);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
32 | b14ad1bb954fe1a94f2b14106123b5ab3f93286289afebb1d05448740151713b | @SuppressWarnings("fallthrough")
private ExtractionInfo extractMultilineTextualBlock(JsDocToken token,
WhitespaceOption option) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Extracts the text found on the current line and all subsequent
* until either an annotation, end of comment or end of file is reached.
* Note that if this method detects an end of line as the first token, it
* will quit immediately (indicating that there is no text where it was
* expected). Note that token = info.token; should be called after this
* method is used to update the token properly in the parser.
*
* @param token The start token.
* @param option How to handle whitespace.
*
* @return The extraction information.
*/
@SuppressWarnings("fallthrough")
private ExtractionInfo extractMultilineTextualBlock(JsDocToken token,
WhitespaceOption option) {
if (token == JsDocToken.EOC || token == JsDocToken.EOL ||
token == JsDocToken.EOF) {
return new ExtractionInfo("", token);
}
stream.update();
int startLineno = stream.getLineno();
int startCharno = stream.getCharno() + 1;
// Read the content from the first line.
String line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = line.trim();
}
StringBuilder builder = new StringBuilder();
builder.append(line);
state = State.SEARCHING_ANNOTATION;
token = next();
boolean ignoreStar = false;
// Track the start of the line to count whitespace that
// the tokenizer skipped. Because this case is rare, it's easier
// to do this here than in the tokenizer.
do {
switch (token) {
case STAR:
if (ignoreStar) {
// Mark the position after the star as the new start of the line.
} else {
// The star is part of the comment.
if (builder.length() > 0) {
builder.append(' ');
}
builder.append('*');
}
token = next();
continue;
case EOL:
if (option != WhitespaceOption.SINGLE_LINE) {
builder.append("\n");
}
ignoreStar = true;
token = next();
continue;
default:
ignoreStar = false;
state = State.SEARCHING_ANNOTATION;
// All tokens must be separated by a space.
if (token == JsDocToken.EOC ||
token == JsDocToken.EOF ||
// When we're capturing a license block, annotations
// in the block are ok.
(token == JsDocToken.ANNOTATION &&
option != WhitespaceOption.PRESERVE)) {
String multilineText = builder.toString();
if (option != WhitespaceOption.PRESERVE) {
multilineText = multilineText.trim();
}
int endLineno = stream.getLineno();
int endCharno = stream.getCharno();
if (multilineText.length() > 0) {
jsdocBuilder.markText(multilineText, startLineno, startCharno,
endLineno, endCharno);
}
return new ExtractionInfo(multilineText, token);
}
if (builder.length() > 0) {
builder.append(' ');
}
builder.append(toString(token));
line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = trimEnd(line);
}
builder.append(line);
token = next();
}
} while (true);
}
```
| @SuppressWarnings("fallthrough")
private ExtractionInfo extractMultilineTextualBlock(JsDocToken token,
WhitespaceOption option) {
if (token == JsDocToken.EOC || token == JsDocToken.EOL ||
token == JsDocToken.EOF) {
return new ExtractionInfo("", token);
}
stream.update();
int startLineno = stream.getLineno();
int startCharno = stream.getCharno() + 1;
// Read the content from the first line.
String line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = line.trim();
}
StringBuilder builder = new StringBuilder();
builder.append(line);
state = State.SEARCHING_ANNOTATION;
token = next();
boolean ignoreStar = false;
// Track the start of the line to count whitespace that
// the tokenizer skipped. Because this case is rare, it's easier
// to do this here than in the tokenizer.
do {
switch (token) {
case STAR:
if (ignoreStar) {
// Mark the position after the star as the new start of the line.
} else {
// The star is part of the comment.
if (builder.length() > 0) {
builder.append(' ');
}
builder.append('*');
}
token = next();
continue;
case EOL:
if (option != WhitespaceOption.SINGLE_LINE) {
builder.append("\n");
}
ignoreStar = true;
token = next();
continue;
default:
ignoreStar = false;
state = State.SEARCHING_ANNOTATION;
// All tokens must be separated by a space.
if (token == JsDocToken.EOC ||
token == JsDocToken.EOF ||
// When we're capturing a license block, annotations
// in the block are ok.
(token == JsDocToken.ANNOTATION &&
option != WhitespaceOption.PRESERVE)) {
String multilineText = builder.toString();
if (option != WhitespaceOption.PRESERVE) {
multilineText = multilineText.trim();
}
int endLineno = stream.getLineno();
int endCharno = stream.getCharno();
if (multilineText.length() > 0) {
jsdocBuilder.markText(multilineText, startLineno, startCharno,
endLineno, endCharno);
}
return new ExtractionInfo(multilineText, token);
}
if (builder.length() > 0) {
builder.append(' ');
}
builder.append(toString(token));
line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = trimEnd(line);
}
builder.append(line);
token = next();
}
} while (true);
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Extracts the text found on the current line and all subsequent
* until either an annotation, end of comment or end of file is reached.
* Note that if this method detects an end of line as the first token, it
* will quit immediately (indicating that there is no text where it was
* expected). Note that token = info.token; should be called after this
* method is used to update the token properly in the parser.
*
* @param token The start token.
* @param option How to handle whitespace.
*
* @return The extraction information.
*/
@SuppressWarnings("fallthrough")
private ExtractionInfo extractMultilineTextualBlock(JsDocToken token,
WhitespaceOption option) {
if (token == JsDocToken.EOC || token == JsDocToken.EOL ||
token == JsDocToken.EOF) {
return new ExtractionInfo("", token);
}
stream.update();
int startLineno = stream.getLineno();
int startCharno = stream.getCharno() + 1;
// Read the content from the first line.
String line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = line.trim();
}
StringBuilder builder = new StringBuilder();
builder.append(line);
state = State.SEARCHING_ANNOTATION;
token = next();
boolean ignoreStar = false;
// Track the start of the line to count whitespace that
// the tokenizer skipped. Because this case is rare, it's easier
// to do this here than in the tokenizer.
do {
switch (token) {
case STAR:
if (ignoreStar) {
// Mark the position after the star as the new start of the line.
} else {
// The star is part of the comment.
if (builder.length() > 0) {
builder.append(' ');
}
builder.append('*');
}
token = next();
continue;
case EOL:
if (option != WhitespaceOption.SINGLE_LINE) {
builder.append("\n");
}
ignoreStar = true;
token = next();
continue;
default:
ignoreStar = false;
state = State.SEARCHING_ANNOTATION;
// All tokens must be separated by a space.
if (token == JsDocToken.EOC ||
token == JsDocToken.EOF ||
// When we're capturing a license block, annotations
// in the block are ok.
(token == JsDocToken.ANNOTATION &&
option != WhitespaceOption.PRESERVE)) {
String multilineText = builder.toString();
if (option != WhitespaceOption.PRESERVE) {
multilineText = multilineText.trim();
}
int endLineno = stream.getLineno();
int endCharno = stream.getCharno();
if (multilineText.length() > 0) {
jsdocBuilder.markText(multilineText, startLineno, startCharno,
endLineno, endCharno);
}
return new ExtractionInfo(multilineText, token);
}
if (builder.length() > 0) {
builder.append(' ');
}
builder.append(toString(token));
line = stream.getRemainingJSDocLine();
if (option != WhitespaceOption.PRESERVE) {
line = trimEnd(line);
}
builder.append(line);
token = next();
}
} while (true);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
37 | b16cf38b3fb8e48f267605e3c7b93f6237ab6364832ed604c3cefdefd54514b2 | @SuppressWarnings("unchecked")
public static <T> T[] addAll(T[] array1, T... array2) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Adds all the elements of the given arrays into a new array.</p>
* <p>The new array contains all of the element of <code>array1</code> followed
* by all of the elements <code>array2</code>. When an array is returned, it is always
* a new array.</p>
*
* <pre>
* ArrayUtils.addAll(null, null) = null
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
* ArrayUtils.addAll([null], [null]) = [null, null]
* ArrayUtils.addAll(["a", "b", "c"], ["1", "2", "3"]) = ["a", "b", "c", "1", "2", "3"]
* </pre>
*
* @param array1 the first array whose elements are added to the new array, may be <code>null</code>
* @param array2 the second array whose elements are added to the new array, may be <code>null</code>
* @return The new array, <code>null</code> if both arrays are <code>null</code>.
* The type of the new array is the type of the first array,
* unless the first array is null, in which case the type is the same as the second array.
* @since 2.1
*/
@SuppressWarnings("unchecked")
public static <T> T[] addAll(T[] array1, T... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final Class<?> type1 = array1.getClass().getComponentType();
T[] joinedArray = (T[]) Array.newInstance(type1, array1.length + array2.length);
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
// Check if problem is incompatible types
return joinedArray;
}
```
| @SuppressWarnings("unchecked")
public static <T> T[] addAll(T[] array1, T... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final Class<?> type1 = array1.getClass().getComponentType();
T[] joinedArray = (T[]) Array.newInstance(type1, array1.length + array2.length);
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
// Check if problem is incompatible types
return joinedArray;
} | true | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Adds all the elements of the given arrays into a new array.</p>
* <p>The new array contains all of the element of <code>array1</code> followed
* by all of the elements <code>array2</code>. When an array is returned, it is always
* a new array.</p>
*
* <pre>
* ArrayUtils.addAll(null, null) = null
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
* ArrayUtils.addAll([null], [null]) = [null, null]
* ArrayUtils.addAll(["a", "b", "c"], ["1", "2", "3"]) = ["a", "b", "c", "1", "2", "3"]
* </pre>
*
* @param array1 the first array whose elements are added to the new array, may be <code>null</code>
* @param array2 the second array whose elements are added to the new array, may be <code>null</code>
* @return The new array, <code>null</code> if both arrays are <code>null</code>.
* The type of the new array is the type of the first array,
* unless the first array is null, in which case the type is the same as the second array.
* @since 2.1
*/
@SuppressWarnings("unchecked")
public static <T> T[] addAll(T[] array1, T... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final Class<?> type1 = array1.getClass().getComponentType();
T[] joinedArray = (T[]) Array.newInstance(type1, array1.length + array2.length);
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
// Check if problem is incompatible types
return joinedArray;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
22 | b1b023fa594f76a32bdf96a69c332b658f271c55b0cc813c10d37a5b9bc359d1 | @Override
public void visit(NodeTraversal t, Node n, Node parent) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
// VOID nodes appear when there are extra semicolons at the BLOCK level.
// I've been unable to think of any cases where this indicates a bug,
// and apparently some people like keeping these semicolons around,
// so we'll allow it.
if (n.isEmpty() ||
n.isComma()) {
return;
}
if (parent == null) {
return;
}
// Do not try to remove a block or an expr result. We already handle
// these cases when we visit the child, and the peephole passes will
// fix up the tree in more clever ways when these are removed.
if (parent.getType() == Token.COMMA) {
Node gramps = parent.getParent();
if (gramps.isCall() && parent == gramps.getFirstChild()) {
if (n == parent.getFirstChild() && parent.getChildCount() == 2 && n.getNext().isName() && "eval".equals(n.getNext().getString())) {
return;
}
}
// This no-op statement was there so that JSDoc information could
// be attached to the name. This check should not complain about it.
if (n == parent.getLastChild()) {
for (Node an : parent.getAncestors()) {
int ancestorType = an.getType();
if (ancestorType == Token.COMMA)
continue;
if (ancestorType != Token.EXPR_RESULT && ancestorType != Token.BLOCK)
return;
else
break;
}
}
} else if (parent.getType() != Token.EXPR_RESULT && parent.getType() != Token.BLOCK) {
if (parent.getType() == Token.FOR && parent.getChildCount() == 4 && (n == parent.getFirstChild() ||
n == parent.getFirstChild().getNext().getNext())) {
} else {
return;
}
}
boolean isResultUsed = NodeUtil.isExpressionResultUsed(n);
boolean isSimpleOp = NodeUtil.isSimpleOperatorType(n.getType());
if (!isResultUsed &&
(isSimpleOp || !NodeUtil.mayHaveSideEffects(n, t.getCompiler()))) {
if (n.isQualifiedName() && n.getJSDocInfo() != null) {
return;
} else if (n.isExprResult()) {
return;
}
String msg = "This code lacks side-effects. Is there a bug?";
if (n.isString()) {
msg = "Is there a missing '+' on the previous line?";
} else if (isSimpleOp) {
msg = "The result of the '" + Token.name(n.getType()).toLowerCase() +
"' operator is not being used.";
}
t.getCompiler().report(
t.makeError(n, level, USELESS_CODE_ERROR, msg));
// TODO(johnlenz): determine if it is necessary to
// try to protect side-effect free statements as well.
if (!NodeUtil.isStatement(n)) {
problemNodes.add(n);
}
}
}
```
| @Override
public void visit(NodeTraversal t, Node n, Node parent) {
// VOID nodes appear when there are extra semicolons at the BLOCK level.
// I've been unable to think of any cases where this indicates a bug,
// and apparently some people like keeping these semicolons around,
// so we'll allow it.
if (n.isEmpty() ||
n.isComma()) {
return;
}
if (parent == null) {
return;
}
// Do not try to remove a block or an expr result. We already handle
// these cases when we visit the child, and the peephole passes will
// fix up the tree in more clever ways when these are removed.
if (parent.getType() == Token.COMMA) {
Node gramps = parent.getParent();
if (gramps.isCall() && parent == gramps.getFirstChild()) {
if (n == parent.getFirstChild() && parent.getChildCount() == 2 && n.getNext().isName() && "eval".equals(n.getNext().getString())) {
return;
}
}
// This no-op statement was there so that JSDoc information could
// be attached to the name. This check should not complain about it.
if (n == parent.getLastChild()) {
for (Node an : parent.getAncestors()) {
int ancestorType = an.getType();
if (ancestorType == Token.COMMA)
continue;
if (ancestorType != Token.EXPR_RESULT && ancestorType != Token.BLOCK)
return;
else
break;
}
}
} else if (parent.getType() != Token.EXPR_RESULT && parent.getType() != Token.BLOCK) {
if (parent.getType() == Token.FOR && parent.getChildCount() == 4 && (n == parent.getFirstChild() ||
n == parent.getFirstChild().getNext().getNext())) {
} else {
return;
}
}
boolean isResultUsed = NodeUtil.isExpressionResultUsed(n);
boolean isSimpleOp = NodeUtil.isSimpleOperatorType(n.getType());
if (!isResultUsed &&
(isSimpleOp || !NodeUtil.mayHaveSideEffects(n, t.getCompiler()))) {
if (n.isQualifiedName() && n.getJSDocInfo() != null) {
return;
} else if (n.isExprResult()) {
return;
}
String msg = "This code lacks side-effects. Is there a bug?";
if (n.isString()) {
msg = "Is there a missing '+' on the previous line?";
} else if (isSimpleOp) {
msg = "The result of the '" + Token.name(n.getType()).toLowerCase() +
"' operator is not being used.";
}
t.getCompiler().report(
t.makeError(n, level, USELESS_CODE_ERROR, msg));
// TODO(johnlenz): determine if it is necessary to
// try to protect side-effect free statements as well.
if (!NodeUtil.isStatement(n)) {
problemNodes.add(n);
}
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
// VOID nodes appear when there are extra semicolons at the BLOCK level.
// I've been unable to think of any cases where this indicates a bug,
// and apparently some people like keeping these semicolons around,
// so we'll allow it.
if (n.isEmpty() ||
n.isComma()) {
return;
}
if (parent == null) {
return;
}
// Do not try to remove a block or an expr result. We already handle
// these cases when we visit the child, and the peephole passes will
// fix up the tree in more clever ways when these are removed.
if (parent.getType() == Token.COMMA) {
Node gramps = parent.getParent();
if (gramps.isCall() && parent == gramps.getFirstChild()) {
if (n == parent.getFirstChild() && parent.getChildCount() == 2 && n.getNext().isName() && "eval".equals(n.getNext().getString())) {
return;
}
}
// This no-op statement was there so that JSDoc information could
// be attached to the name. This check should not complain about it.
if (n == parent.getLastChild()) {
for (Node an : parent.getAncestors()) {
int ancestorType = an.getType();
if (ancestorType == Token.COMMA)
continue;
if (ancestorType != Token.EXPR_RESULT && ancestorType != Token.BLOCK)
return;
else
break;
}
}
} else if (parent.getType() != Token.EXPR_RESULT && parent.getType() != Token.BLOCK) {
if (parent.getType() == Token.FOR && parent.getChildCount() == 4 && (n == parent.getFirstChild() ||
n == parent.getFirstChild().getNext().getNext())) {
} else {
return;
}
}
boolean isResultUsed = NodeUtil.isExpressionResultUsed(n);
boolean isSimpleOp = NodeUtil.isSimpleOperatorType(n.getType());
if (!isResultUsed &&
(isSimpleOp || !NodeUtil.mayHaveSideEffects(n, t.getCompiler()))) {
if (n.isQualifiedName() && n.getJSDocInfo() != null) {
return;
} else if (n.isExprResult()) {
return;
}
String msg = "This code lacks side-effects. Is there a bug?";
if (n.isString()) {
msg = "Is there a missing '+' on the previous line?";
} else if (isSimpleOp) {
msg = "The result of the '" + Token.name(n.getType()).toLowerCase() +
"' operator is not being used.";
}
t.getCompiler().report(
t.makeError(n, level, USELESS_CODE_ERROR, msg));
// TODO(johnlenz): determine if it is necessary to
// try to protect side-effect free statements as well.
if (!NodeUtil.isStatement(n)) {
problemNodes.add(n);
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
85 | b29075136e9436e7c05336eea2d1046ba277f43ca107f740621f598f83b28782 | public static double[] bracket(UnivariateRealFunction function,
double initial, double lowerBound, double upperBound,
int maximumIterations) throws ConvergenceException,
FunctionEvaluationException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* This method attempts to find two values a and b satisfying <ul>
* <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>
* <li> <code> f(a) * f(b) <= 0 </code> </li>
* </ul>
* If f is continuous on <code>[a,b],</code> this means that <code>a</code>
* and <code>b</code> bracket a root of f.
* <p>
* The algorithm starts by setting
* <code>a := initial -1; b := initial +1,</code> examines the value of the
* function at <code>a</code> and <code>b</code> and keeps moving
* the endpoints out by one unit each time through a loop that terminates
* when one of the following happens: <ul>
* <li> <code> f(a) * f(b) <= 0 </code> -- success!</li>
* <li> <code> a = lower </code> and <code> b = upper</code>
* -- ConvergenceException </li>
* <li> <code> maximumIterations</code> iterations elapse
* -- ConvergenceException </li></ul></p>
*
* @param function the function
* @param initial initial midpoint of interval being expanded to
* bracket a root
* @param lowerBound lower bound (a is never lower than this value)
* @param upperBound upper bound (b never is greater than this
* value)
* @param maximumIterations maximum number of iterations to perform
* @return a two element array holding {a, b}.
* @throws ConvergenceException if the algorithm fails to find a and b
* satisfying the desired conditions
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if function is null, maximumIterations
* is not positive, or initial is not between lowerBound and upperBound
*/
public static double[] bracket(UnivariateRealFunction function,
double initial, double lowerBound, double upperBound,
int maximumIterations) throws ConvergenceException,
FunctionEvaluationException {
if (function == null) {
throw MathRuntimeException.createIllegalArgumentException("function is null");
}
if (maximumIterations <= 0) {
throw MathRuntimeException.createIllegalArgumentException(
"bad value for maximum iterations number: {0}", maximumIterations);
}
if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) {
throw MathRuntimeException.createIllegalArgumentException(
"invalid bracketing parameters: lower bound={0}, initial={1}, upper bound={2}",
lowerBound, initial, upperBound);
}
double a = initial;
double b = initial;
double fa;
double fb;
int numIterations = 0 ;
do {
a = Math.max(a - 1.0, lowerBound);
b = Math.min(b + 1.0, upperBound);
fa = function.value(a);
fb = function.value(b);
numIterations++ ;
} while ((fa * fb > 0.0) && (numIterations < maximumIterations) &&
((a > lowerBound) || (b < upperBound)));
if (fa * fb >= 0.0 ) {
throw new ConvergenceException(
"number of iterations={0}, maximum iterations={1}, " +
"initial={2}, lower bound={3}, upper bound={4}, final a value={5}, " +
"final b value={6}, f(a)={7}, f(b)={8}",
numIterations, maximumIterations, initial,
lowerBound, upperBound, a, b, fa, fb);
}
return new double[]{a, b};
}
```
| public static double[] bracket(UnivariateRealFunction function,
double initial, double lowerBound, double upperBound,
int maximumIterations) throws ConvergenceException,
FunctionEvaluationException {
if (function == null) {
throw MathRuntimeException.createIllegalArgumentException("function is null");
}
if (maximumIterations <= 0) {
throw MathRuntimeException.createIllegalArgumentException(
"bad value for maximum iterations number: {0}", maximumIterations);
}
if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) {
throw MathRuntimeException.createIllegalArgumentException(
"invalid bracketing parameters: lower bound={0}, initial={1}, upper bound={2}",
lowerBound, initial, upperBound);
}
double a = initial;
double b = initial;
double fa;
double fb;
int numIterations = 0 ;
do {
a = Math.max(a - 1.0, lowerBound);
b = Math.min(b + 1.0, upperBound);
fa = function.value(a);
fb = function.value(b);
numIterations++ ;
} while ((fa * fb > 0.0) && (numIterations < maximumIterations) &&
((a > lowerBound) || (b < upperBound)));
if (fa * fb >= 0.0 ) {
throw new ConvergenceException(
"number of iterations={0}, maximum iterations={1}, " +
"initial={2}, lower bound={3}, upper bound={4}, final a value={5}, " +
"final b value={6}, f(a)={7}, f(b)={8}",
numIterations, maximumIterations, initial,
lowerBound, upperBound, a, b, fa, fb);
}
return new double[]{a, b};
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* This method attempts to find two values a and b satisfying <ul>
* <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li>
* <li> <code> f(a) * f(b) <= 0 </code> </li>
* </ul>
* If f is continuous on <code>[a,b],</code> this means that <code>a</code>
* and <code>b</code> bracket a root of f.
* <p>
* The algorithm starts by setting
* <code>a := initial -1; b := initial +1,</code> examines the value of the
* function at <code>a</code> and <code>b</code> and keeps moving
* the endpoints out by one unit each time through a loop that terminates
* when one of the following happens: <ul>
* <li> <code> f(a) * f(b) <= 0 </code> -- success!</li>
* <li> <code> a = lower </code> and <code> b = upper</code>
* -- ConvergenceException </li>
* <li> <code> maximumIterations</code> iterations elapse
* -- ConvergenceException </li></ul></p>
*
* @param function the function
* @param initial initial midpoint of interval being expanded to
* bracket a root
* @param lowerBound lower bound (a is never lower than this value)
* @param upperBound upper bound (b never is greater than this
* value)
* @param maximumIterations maximum number of iterations to perform
* @return a two element array holding {a, b}.
* @throws ConvergenceException if the algorithm fails to find a and b
* satisfying the desired conditions
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if function is null, maximumIterations
* is not positive, or initial is not between lowerBound and upperBound
*/
public static double[] bracket(UnivariateRealFunction function,
double initial, double lowerBound, double upperBound,
int maximumIterations) throws ConvergenceException,
FunctionEvaluationException {
if (function == null) {
throw MathRuntimeException.createIllegalArgumentException("function is null");
}
if (maximumIterations <= 0) {
throw MathRuntimeException.createIllegalArgumentException(
"bad value for maximum iterations number: {0}", maximumIterations);
}
if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) {
throw MathRuntimeException.createIllegalArgumentException(
"invalid bracketing parameters: lower bound={0}, initial={1}, upper bound={2}",
lowerBound, initial, upperBound);
}
double a = initial;
double b = initial;
double fa;
double fb;
int numIterations = 0 ;
do {
a = Math.max(a - 1.0, lowerBound);
b = Math.min(b + 1.0, upperBound);
fa = function.value(a);
fb = function.value(b);
numIterations++ ;
} while ((fa * fb > 0.0) && (numIterations < maximumIterations) &&
((a > lowerBound) || (b < upperBound)));
if (fa * fb >= 0.0 ) {
throw new ConvergenceException(
"number of iterations={0}, maximum iterations={1}, " +
"initial={2}, lower bound={3}, upper bound={4}, final a value={5}, " +
"final b value={6}, f(a)={7}, f(b)={8}",
numIterations, maximumIterations, initial,
lowerBound, upperBound, a, b, fa, fb);
}
return new double[]{a, b};
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
24 | b34a5631c1e135d8d8c93daab0e98c3977f6b0bef400f2ac5244a9dd0f816408 | public static boolean isNumber(String str) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Checks whether the String a valid Java number.</p>
*
* <p>Valid numbers include hexadecimal marked with the <code>0x</code>
* qualifier, scientific notation and numbers marked with a type
* qualifier (e.g. 123L).</p>
*
* <p><code>Null</code> and empty String will return
* <code>false</code>.</p>
*
* @param str the <code>String</code> to check
* @return <code>true</code> if the string is a correctly formatted number
*/
public static boolean isNumber(String str) {
if (StringUtils.isEmpty(str)) {
return false;
}
char[] chars = str.toCharArray();
int sz = chars.length;
boolean hasExp = false;
boolean hasDecPoint = false;
boolean allowSigns = false;
boolean foundDigit = false;
// deal with any possible sign up front
int start = (chars[0] == '-') ? 1 : 0;
if (sz > start + 1) {
if (chars[start] == '0' && chars[start + 1] == 'x') {
int i = start + 2;
if (i == sz) {
return false; // str == "0x"
}
// checking hex (it can't be anything else)
for (; i < chars.length; i++) {
if ((chars[i] < '0' || chars[i] > '9')
&& (chars[i] < 'a' || chars[i] > 'f')
&& (chars[i] < 'A' || chars[i] > 'F')) {
return false;
}
}
return true;
}
}
sz--; // don't want to loop to the last char, check it afterwords
// for type qualifiers
int i = start;
// loop to the next to last char or to the last char if we need another digit to
// make a valid number (e.g. chars[0..5] = "1234E")
while (i < sz || (i < sz + 1 && allowSigns && !foundDigit)) {
if (chars[i] >= '0' && chars[i] <= '9') {
foundDigit = true;
allowSigns = false;
} else if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
hasDecPoint = true;
} else if (chars[i] == 'e' || chars[i] == 'E') {
// we've already taken care of hex.
if (hasExp) {
// two E's
return false;
}
if (!foundDigit) {
return false;
}
hasExp = true;
allowSigns = true;
} else if (chars[i] == '+' || chars[i] == '-') {
if (!allowSigns) {
return false;
}
allowSigns = false;
foundDigit = false; // we need a digit after the E
} else {
return false;
}
i++;
}
if (i < chars.length) {
if (chars[i] >= '0' && chars[i] <= '9') {
// no type qualifier, OK
return true;
}
if (chars[i] == 'e' || chars[i] == 'E') {
// can't have an E at the last byte
return false;
}
if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
// single trailing decimal point after non-exponent is ok
return foundDigit;
}
if (!allowSigns
&& (chars[i] == 'd'
|| chars[i] == 'D'
|| chars[i] == 'f'
|| chars[i] == 'F')) {
return foundDigit;
}
if (chars[i] == 'l'
|| chars[i] == 'L') {
// not allowing L with an exponent or decimal point
return foundDigit && !hasExp && !hasDecPoint;
}
// last character is illegal
return false;
}
// allowSigns is true iff the val ends in 'E'
// found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
return !allowSigns && foundDigit;
}
```
| public static boolean isNumber(String str) {
if (StringUtils.isEmpty(str)) {
return false;
}
char[] chars = str.toCharArray();
int sz = chars.length;
boolean hasExp = false;
boolean hasDecPoint = false;
boolean allowSigns = false;
boolean foundDigit = false;
// deal with any possible sign up front
int start = (chars[0] == '-') ? 1 : 0;
if (sz > start + 1) {
if (chars[start] == '0' && chars[start + 1] == 'x') {
int i = start + 2;
if (i == sz) {
return false; // str == "0x"
}
// checking hex (it can't be anything else)
for (; i < chars.length; i++) {
if ((chars[i] < '0' || chars[i] > '9')
&& (chars[i] < 'a' || chars[i] > 'f')
&& (chars[i] < 'A' || chars[i] > 'F')) {
return false;
}
}
return true;
}
}
sz--; // don't want to loop to the last char, check it afterwords
// for type qualifiers
int i = start;
// loop to the next to last char or to the last char if we need another digit to
// make a valid number (e.g. chars[0..5] = "1234E")
while (i < sz || (i < sz + 1 && allowSigns && !foundDigit)) {
if (chars[i] >= '0' && chars[i] <= '9') {
foundDigit = true;
allowSigns = false;
} else if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
hasDecPoint = true;
} else if (chars[i] == 'e' || chars[i] == 'E') {
// we've already taken care of hex.
if (hasExp) {
// two E's
return false;
}
if (!foundDigit) {
return false;
}
hasExp = true;
allowSigns = true;
} else if (chars[i] == '+' || chars[i] == '-') {
if (!allowSigns) {
return false;
}
allowSigns = false;
foundDigit = false; // we need a digit after the E
} else {
return false;
}
i++;
}
if (i < chars.length) {
if (chars[i] >= '0' && chars[i] <= '9') {
// no type qualifier, OK
return true;
}
if (chars[i] == 'e' || chars[i] == 'E') {
// can't have an E at the last byte
return false;
}
if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
// single trailing decimal point after non-exponent is ok
return foundDigit;
}
if (!allowSigns
&& (chars[i] == 'd'
|| chars[i] == 'D'
|| chars[i] == 'f'
|| chars[i] == 'F')) {
return foundDigit;
}
if (chars[i] == 'l'
|| chars[i] == 'L') {
// not allowing L with an exponent or decimal point
return foundDigit && !hasExp && !hasDecPoint;
}
// last character is illegal
return false;
}
// allowSigns is true iff the val ends in 'E'
// found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
return !allowSigns && foundDigit;
} | false | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Checks whether the String a valid Java number.</p>
*
* <p>Valid numbers include hexadecimal marked with the <code>0x</code>
* qualifier, scientific notation and numbers marked with a type
* qualifier (e.g. 123L).</p>
*
* <p><code>Null</code> and empty String will return
* <code>false</code>.</p>
*
* @param str the <code>String</code> to check
* @return <code>true</code> if the string is a correctly formatted number
*/
public static boolean isNumber(String str) {
if (StringUtils.isEmpty(str)) {
return false;
}
char[] chars = str.toCharArray();
int sz = chars.length;
boolean hasExp = false;
boolean hasDecPoint = false;
boolean allowSigns = false;
boolean foundDigit = false;
// deal with any possible sign up front
int start = (chars[0] == '-') ? 1 : 0;
if (sz > start + 1) {
if (chars[start] == '0' && chars[start + 1] == 'x') {
int i = start + 2;
if (i == sz) {
return false; // str == "0x"
}
// checking hex (it can't be anything else)
for (; i < chars.length; i++) {
if ((chars[i] < '0' || chars[i] > '9')
&& (chars[i] < 'a' || chars[i] > 'f')
&& (chars[i] < 'A' || chars[i] > 'F')) {
return false;
}
}
return true;
}
}
sz--; // don't want to loop to the last char, check it afterwords
// for type qualifiers
int i = start;
// loop to the next to last char or to the last char if we need another digit to
// make a valid number (e.g. chars[0..5] = "1234E")
while (i < sz || (i < sz + 1 && allowSigns && !foundDigit)) {
if (chars[i] >= '0' && chars[i] <= '9') {
foundDigit = true;
allowSigns = false;
} else if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
hasDecPoint = true;
} else if (chars[i] == 'e' || chars[i] == 'E') {
// we've already taken care of hex.
if (hasExp) {
// two E's
return false;
}
if (!foundDigit) {
return false;
}
hasExp = true;
allowSigns = true;
} else if (chars[i] == '+' || chars[i] == '-') {
if (!allowSigns) {
return false;
}
allowSigns = false;
foundDigit = false; // we need a digit after the E
} else {
return false;
}
i++;
}
if (i < chars.length) {
if (chars[i] >= '0' && chars[i] <= '9') {
// no type qualifier, OK
return true;
}
if (chars[i] == 'e' || chars[i] == 'E') {
// can't have an E at the last byte
return false;
}
if (chars[i] == '.') {
if (hasDecPoint || hasExp) {
// two decimal points or dec in exponent
return false;
}
// single trailing decimal point after non-exponent is ok
return foundDigit;
}
if (!allowSigns
&& (chars[i] == 'd'
|| chars[i] == 'D'
|| chars[i] == 'f'
|| chars[i] == 'F')) {
return foundDigit;
}
if (chars[i] == 'l'
|| chars[i] == 'L') {
// not allowing L with an exponent or decimal point
return foundDigit && !hasExp && !hasDecPoint;
}
// last character is illegal
return false;
}
// allowSigns is true iff the val ends in 'E'
// found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
return !allowSigns && foundDigit;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
16 | b3669549cae8bfec79761d8872a39fd57ceb1371fbc196546ec5095a0e20b99d | public int parseInto(ReadWritableInstant instant, String text, int position) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Parses a datetime from the given text, at the given position, saving the
* result into the fields of the given ReadWritableInstant. If the parse
* succeeds, the return value is the new text position. Note that the parse
* may succeed without fully reading the text and in this case those fields
* that were read will be set.
* <p>
* Only those fields present in the string will be changed in the specified
* instant. All other fields will remain unaltered. Thus if the string only
* contains a year and a month, then the day and time will be retained from
* the input instant. If this is not the behaviour you want, then reset the
* fields before calling this method, or use {@link #parseDateTime(String)}
* or {@link #parseMutableDateTime(String)}.
* <p>
* If it fails, the return value is negative, but the instant may still be
* modified. To determine the position where the parse failed, apply the
* one's complement operator (~) on the return value.
* <p>
* This parse method ignores the {@link #getDefaultYear() default year} and
* parses using the year from the supplied instant as the default.
* <p>
* The parse will use the chronology of the instant.
*
* @param instant an instant that will be modified, not null
* @param text the text to parse
* @param position position to start parsing from
* @return new position, negative value means parse failed -
* apply complement operator (~) to get position of failure
* @throws UnsupportedOperationException if parsing is not supported
* @throws IllegalArgumentException if the instant is null
* @throws IllegalArgumentException if any field is out of range
*/
//-----------------------------------------------------------------------
public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, chrono.year().get(instantLocal));
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
}
```
| public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, chrono.year().get(instantLocal));
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
} | false | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Parses a datetime from the given text, at the given position, saving the
* result into the fields of the given ReadWritableInstant. If the parse
* succeeds, the return value is the new text position. Note that the parse
* may succeed without fully reading the text and in this case those fields
* that were read will be set.
* <p>
* Only those fields present in the string will be changed in the specified
* instant. All other fields will remain unaltered. Thus if the string only
* contains a year and a month, then the day and time will be retained from
* the input instant. If this is not the behaviour you want, then reset the
* fields before calling this method, or use {@link #parseDateTime(String)}
* or {@link #parseMutableDateTime(String)}.
* <p>
* If it fails, the return value is negative, but the instant may still be
* modified. To determine the position where the parse failed, apply the
* one's complement operator (~) on the return value.
* <p>
* This parse method ignores the {@link #getDefaultYear() default year} and
* parses using the year from the supplied instant as the default.
* <p>
* The parse will use the chronology of the instant.
*
* @param instant an instant that will be modified, not null
* @param text the text to parse
* @param position position to start parsing from
* @return new position, negative value means parse failed -
* apply complement operator (~) to get position of failure
* @throws UnsupportedOperationException if parsing is not supported
* @throws IllegalArgumentException if the instant is null
* @throws IllegalArgumentException if any field is out of range
*/
//-----------------------------------------------------------------------
public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, chrono.year().get(instantLocal));
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
20 | b36f53ffb3c44ce153628608d9b40a4f1e8888cf2366575a54cd792d3d904a5e | public <T> T createMock(MockCreationSettings<T> settings, MockHandler handler) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public <T> T createMock(MockCreationSettings<T> settings, MockHandler handler) {
if (settings.getSerializableMode() == SerializableMode.ACROSS_CLASSLOADERS) {
throw new MockitoException("Serialization across classloaders not yet supported with ByteBuddyMockMaker");
}
Class<? extends T> mockedProxyType = cachingMockBytecodeGenerator.get(
settings.getTypeToMock(),
settings.getExtraInterfaces()
);
Instantiator instantiator = new InstantiatorProvider().getInstantiator(settings);
T mockInstance = null;
try {
mockInstance = instantiator.newInstance(mockedProxyType);
MockMethodInterceptor.MockAccess mockAccess = (MockMethodInterceptor.MockAccess) mockInstance;
mockAccess.setMockitoInterceptor(new MockMethodInterceptor(asInternalMockHandler(handler), settings));
return ensureMockIsAssignableToMockedType(settings, mockInstance);
} catch (ClassCastException cce) {
throw new MockitoException(join(
"ClassCastException occurred while creating the mockito mock :",
" class to mock : " + describeClass(mockedProxyType),
" created class : " + describeClass(settings.getTypeToMock()),
" proxy instance class : " + describeClass(mockInstance),
" instance creation by : " + instantiator.getClass().getSimpleName(),
"",
"You might experience classloading issues, please ask the mockito mailing-list.",
""
),cce);
} catch (org.mockito.internal.creation.instance.InstantiationException e) {
throw new MockitoException("Unable to create mock instance of type '" + mockedProxyType.getSuperclass().getSimpleName() + "'", e);
}
}
```
| public <T> T createMock(MockCreationSettings<T> settings, MockHandler handler) {
if (settings.getSerializableMode() == SerializableMode.ACROSS_CLASSLOADERS) {
throw new MockitoException("Serialization across classloaders not yet supported with ByteBuddyMockMaker");
}
Class<? extends T> mockedProxyType = cachingMockBytecodeGenerator.get(
settings.getTypeToMock(),
settings.getExtraInterfaces()
);
Instantiator instantiator = new InstantiatorProvider().getInstantiator(settings);
T mockInstance = null;
try {
mockInstance = instantiator.newInstance(mockedProxyType);
MockMethodInterceptor.MockAccess mockAccess = (MockMethodInterceptor.MockAccess) mockInstance;
mockAccess.setMockitoInterceptor(new MockMethodInterceptor(asInternalMockHandler(handler), settings));
return ensureMockIsAssignableToMockedType(settings, mockInstance);
} catch (ClassCastException cce) {
throw new MockitoException(join(
"ClassCastException occurred while creating the mockito mock :",
" class to mock : " + describeClass(mockedProxyType),
" created class : " + describeClass(settings.getTypeToMock()),
" proxy instance class : " + describeClass(mockInstance),
" instance creation by : " + instantiator.getClass().getSimpleName(),
"",
"You might experience classloading issues, please ask the mockito mailing-list.",
""
),cce);
} catch (org.mockito.internal.creation.instance.InstantiationException e) {
throw new MockitoException("Unable to create mock instance of type '" + mockedProxyType.getSuperclass().getSimpleName() + "'", e);
}
} | false | Mockito | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public <T> T createMock(MockCreationSettings<T> settings, MockHandler handler) {
if (settings.getSerializableMode() == SerializableMode.ACROSS_CLASSLOADERS) {
throw new MockitoException("Serialization across classloaders not yet supported with ByteBuddyMockMaker");
}
Class<? extends T> mockedProxyType = cachingMockBytecodeGenerator.get(
settings.getTypeToMock(),
settings.getExtraInterfaces()
);
Instantiator instantiator = new InstantiatorProvider().getInstantiator(settings);
T mockInstance = null;
try {
mockInstance = instantiator.newInstance(mockedProxyType);
MockMethodInterceptor.MockAccess mockAccess = (MockMethodInterceptor.MockAccess) mockInstance;
mockAccess.setMockitoInterceptor(new MockMethodInterceptor(asInternalMockHandler(handler), settings));
return ensureMockIsAssignableToMockedType(settings, mockInstance);
} catch (ClassCastException cce) {
throw new MockitoException(join(
"ClassCastException occurred while creating the mockito mock :",
" class to mock : " + describeClass(mockedProxyType),
" created class : " + describeClass(settings.getTypeToMock()),
" proxy instance class : " + describeClass(mockInstance),
" instance creation by : " + instantiator.getClass().getSimpleName(),
"",
"You might experience classloading issues, please ask the mockito mailing-list.",
""
),cce);
} catch (org.mockito.internal.creation.instance.InstantiationException e) {
throw new MockitoException("Unable to create mock instance of type '" + mockedProxyType.getSuperclass().getSimpleName() + "'", e);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
88 | b38fe6592ff65daaba1c13a51aad07f2012c48d25b753f724c1d70e64300a484 | protected JavaType _typeFromId(String id, DatabindContext ctxt) throws IOException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
protected JavaType _typeFromId(String id, DatabindContext ctxt) throws IOException
{
/* 30-Jan-2010, tatu: Most ids are basic class names; so let's first
* check if any generics info is added; and only then ask factory
* to do translation when necessary
*/
TypeFactory tf = ctxt.getTypeFactory();
if (id.indexOf('<') > 0) {
// note: may want to try combining with specialization (esp for EnumMap)?
// 17-Aug-2017, tatu: As per [databind#1735] need to ensure assignment
// compatibility -- needed later anyway, and not doing so may open
// security issues.
JavaType t = tf.constructFromCanonical(id);
if (!t.isTypeOrSubTypeOf(_baseType.getRawClass())) {
// Probably cleaner to have a method in `TypeFactory` but can't add in patch
throw new IllegalArgumentException(String.format(
"Class %s not subtype of %s", t.getRawClass().getName(), _baseType));
}
return t;
}
Class<?> cls;
try {
cls = tf.findClass(id);
} catch (ClassNotFoundException e) {
// 24-May-2016, tatu: Ok, this is pretty ugly, but we should always get
// DeserializationContext, just playing it safe
if (ctxt instanceof DeserializationContext) {
DeserializationContext dctxt = (DeserializationContext) ctxt;
// First: we may have problem handlers that can deal with it?
return dctxt.handleUnknownTypeId(_baseType, id, this, "no such class found");
}
// ... meaning that we really should never get here.
return null;
} catch (Exception e) {
throw new IllegalArgumentException("Invalid type id '"+id+"' (for id type 'Id.class'): "+e.getMessage(), e);
}
return tf.constructSpecializedType(_baseType, cls);
}
```
| protected JavaType _typeFromId(String id, DatabindContext ctxt) throws IOException
{
/* 30-Jan-2010, tatu: Most ids are basic class names; so let's first
* check if any generics info is added; and only then ask factory
* to do translation when necessary
*/
TypeFactory tf = ctxt.getTypeFactory();
if (id.indexOf('<') > 0) {
// note: may want to try combining with specialization (esp for EnumMap)?
// 17-Aug-2017, tatu: As per [databind#1735] need to ensure assignment
// compatibility -- needed later anyway, and not doing so may open
// security issues.
JavaType t = tf.constructFromCanonical(id);
if (!t.isTypeOrSubTypeOf(_baseType.getRawClass())) {
// Probably cleaner to have a method in `TypeFactory` but can't add in patch
throw new IllegalArgumentException(String.format(
"Class %s not subtype of %s", t.getRawClass().getName(), _baseType));
}
return t;
}
Class<?> cls;
try {
cls = tf.findClass(id);
} catch (ClassNotFoundException e) {
// 24-May-2016, tatu: Ok, this is pretty ugly, but we should always get
// DeserializationContext, just playing it safe
if (ctxt instanceof DeserializationContext) {
DeserializationContext dctxt = (DeserializationContext) ctxt;
// First: we may have problem handlers that can deal with it?
return dctxt.handleUnknownTypeId(_baseType, id, this, "no such class found");
}
// ... meaning that we really should never get here.
return null;
} catch (Exception e) {
throw new IllegalArgumentException("Invalid type id '"+id+"' (for id type 'Id.class'): "+e.getMessage(), e);
}
return tf.constructSpecializedType(_baseType, cls);
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
protected JavaType _typeFromId(String id, DatabindContext ctxt) throws IOException
{
/* 30-Jan-2010, tatu: Most ids are basic class names; so let's first
* check if any generics info is added; and only then ask factory
* to do translation when necessary
*/
TypeFactory tf = ctxt.getTypeFactory();
if (id.indexOf('<') > 0) {
// note: may want to try combining with specialization (esp for EnumMap)?
// 17-Aug-2017, tatu: As per [databind#1735] need to ensure assignment
// compatibility -- needed later anyway, and not doing so may open
// security issues.
JavaType t = tf.constructFromCanonical(id);
if (!t.isTypeOrSubTypeOf(_baseType.getRawClass())) {
// Probably cleaner to have a method in `TypeFactory` but can't add in patch
throw new IllegalArgumentException(String.format(
"Class %s not subtype of %s", t.getRawClass().getName(), _baseType));
}
return t;
}
Class<?> cls;
try {
cls = tf.findClass(id);
} catch (ClassNotFoundException e) {
// 24-May-2016, tatu: Ok, this is pretty ugly, but we should always get
// DeserializationContext, just playing it safe
if (ctxt instanceof DeserializationContext) {
DeserializationContext dctxt = (DeserializationContext) ctxt;
// First: we may have problem handlers that can deal with it?
return dctxt.handleUnknownTypeId(_baseType, id, this, "no such class found");
}
// ... meaning that we really should never get here.
return null;
} catch (Exception e) {
throw new IllegalArgumentException("Invalid type id '"+id+"' (for id type 'Id.class'): "+e.getMessage(), e);
}
return tf.constructSpecializedType(_baseType, cls);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
10 | b4100fafcbfa19e16c3b27632079223470b7b8122657332627b8d1d00595cb96 | static boolean mayBeString(Node n, boolean recurse) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
static boolean mayBeString(Node n, boolean recurse) {
if (recurse) {
return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
} else {
return mayBeStringHelper(n);
}
}
```
| static boolean mayBeString(Node n, boolean recurse) {
if (recurse) {
return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
} else {
return mayBeStringHelper(n);
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
static boolean mayBeString(Node n, boolean recurse) {
if (recurse) {
return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
} else {
return mayBeStringHelper(n);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
39 | b453e132bc88d276864f7f4d7f8fab82fac18be0cc806738c64a75d679995d0a | static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
// todo - this is getting gnarly. needs a rewrite.
// switching the chartset midstream when a meta http-equiv tag defines the charset.
// reads bytes first into a buffer, then decodes with the appropriate charset. done this way to support
static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
} else {
foundCharset = meta.attr("charset");
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
// UTF-8 BOM indicator. takes precedence over everything else. rarely used. re-decodes incase above decoded incorrectly
if (docData.length() > 0 && docData.charAt(0) == 65279) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
}
```
| static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
} else {
foundCharset = meta.attr("charset");
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
// UTF-8 BOM indicator. takes precedence over everything else. rarely used. re-decodes incase above decoded incorrectly
if (docData.length() > 0 && docData.charAt(0) == 65279) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
// todo - this is getting gnarly. needs a rewrite.
// switching the chartset midstream when a meta http-equiv tag defines the charset.
// reads bytes first into a buffer, then decodes with the appropriate charset. done this way to support
static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
} else {
foundCharset = meta.attr("charset");
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
// UTF-8 BOM indicator. takes precedence over everything else. rarely used. re-decodes incase above decoded incorrectly
if (docData.length() > 0 && docData.charAt(0) == 65279) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
65 | b48950dbf6e1b923e3c767c9daddf88e40d1406a86999d8761d64874691a08d4 | private static void modify(Calendar val, int field, boolean round) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Internal calculation method.</p>
*
* @param val the calendar
* @param field the field constant
* @param round true to round, false to truncate
* @throws ArithmeticException if the year is over 280 million
*/
//-----------------------------------------------------------------------
private static void modify(Calendar val, int field, boolean round) {
if (val.get(Calendar.YEAR) > 280000000) {
throw new ArithmeticException("Calendar value too large for accurate calculations");
}
if (field == Calendar.MILLISECOND) {
return;
}
// ----------------- Fix for LANG-59 ---------------------- START ---------------
// see http://issues.apache.org/jira/browse/LANG-59
//
// Manually truncate milliseconds, seconds and minutes, rather than using
// Calendar methods.
Date date = val.getTime();
long time = date.getTime();
boolean done = false;
// truncate milliseconds
int millisecs = val.get(Calendar.MILLISECOND);
if (!round || millisecs < 500) {
time = time - millisecs;
if (field == Calendar.SECOND) {
done = true;
}
}
// truncate seconds
int seconds = val.get(Calendar.SECOND);
if (!done && (!round || seconds < 30)) {
time = time - (seconds * 1000L);
if (field == Calendar.MINUTE) {
done = true;
}
}
// truncate minutes
int minutes = val.get(Calendar.MINUTE);
if (!done && (!round || minutes < 30)) {
time = time - (minutes * 60000L);
}
// reset time
if (date.getTime() != time) {
date.setTime(time);
val.setTime(date);
}
// ----------------- Fix for LANG-59 ----------------------- END ----------------
boolean roundUp = false;
for (int i = 0; i < fields.length; i++) {
for (int j = 0; j < fields[i].length; j++) {
if (fields[i][j] == field) {
//This is our field... we stop looping
if (round && roundUp) {
if (field == DateUtils.SEMI_MONTH) {
//This is a special case that's hard to generalize
//If the date is 1, we round up to 16, otherwise
// we subtract 15 days and add 1 month
if (val.get(Calendar.DATE) == 1) {
val.add(Calendar.DATE, 15);
} else {
val.add(Calendar.DATE, -15);
val.add(Calendar.MONTH, 1);
}
} else {
//We need at add one to this field since the
// last number causes us to round up
val.add(fields[i][0], 1);
}
}
return;
}
}
//We have various fields that are not easy roundings
int offset = 0;
boolean offsetSet = false;
//These are special types of fields that require different rounding rules
switch (field) {
case DateUtils.SEMI_MONTH:
if (fields[i][0] == Calendar.DATE) {
//If we're going to drop the DATE field's value,
// we want to do this our own way.
//We need to subtrace 1 since the date has a minimum of 1
offset = val.get(Calendar.DATE) - 1;
//If we're above 15 days adjustment, that means we're in the
// bottom half of the month and should stay accordingly.
if (offset >= 15) {
offset -= 15;
}
//Record whether we're in the top or bottom half of that range
roundUp = offset > 7;
offsetSet = true;
}
break;
case Calendar.AM_PM:
if (fields[i][0] == Calendar.HOUR_OF_DAY) {
//If we're going to drop the HOUR field's value,
// we want to do this our own way.
offset = val.get(Calendar.HOUR_OF_DAY);
if (offset >= 12) {
offset -= 12;
}
roundUp = offset > 6;
offsetSet = true;
}
break;
}
if (!offsetSet) {
int min = val.getActualMinimum(fields[i][0]);
int max = val.getActualMaximum(fields[i][0]);
//Calculate the offset from the minimum allowed value
offset = val.get(fields[i][0]) - min;
//Set roundUp if this is more than half way between the minimum and maximum
roundUp = offset > ((max - min) / 2);
}
//We need to remove this field
if (offset != 0) {
val.set(fields[i][0], val.get(fields[i][0]) - offset);
}
}
throw new IllegalArgumentException("The field " + field + " is not supported");
}
```
| private static void modify(Calendar val, int field, boolean round) {
if (val.get(Calendar.YEAR) > 280000000) {
throw new ArithmeticException("Calendar value too large for accurate calculations");
}
if (field == Calendar.MILLISECOND) {
return;
}
// ----------------- Fix for LANG-59 ---------------------- START ---------------
// see http://issues.apache.org/jira/browse/LANG-59
//
// Manually truncate milliseconds, seconds and minutes, rather than using
// Calendar methods.
Date date = val.getTime();
long time = date.getTime();
boolean done = false;
// truncate milliseconds
int millisecs = val.get(Calendar.MILLISECOND);
if (!round || millisecs < 500) {
time = time - millisecs;
if (field == Calendar.SECOND) {
done = true;
}
}
// truncate seconds
int seconds = val.get(Calendar.SECOND);
if (!done && (!round || seconds < 30)) {
time = time - (seconds * 1000L);
if (field == Calendar.MINUTE) {
done = true;
}
}
// truncate minutes
int minutes = val.get(Calendar.MINUTE);
if (!done && (!round || minutes < 30)) {
time = time - (minutes * 60000L);
}
// reset time
if (date.getTime() != time) {
date.setTime(time);
val.setTime(date);
}
// ----------------- Fix for LANG-59 ----------------------- END ----------------
boolean roundUp = false;
for (int i = 0; i < fields.length; i++) {
for (int j = 0; j < fields[i].length; j++) {
if (fields[i][j] == field) {
//This is our field... we stop looping
if (round && roundUp) {
if (field == DateUtils.SEMI_MONTH) {
//This is a special case that's hard to generalize
//If the date is 1, we round up to 16, otherwise
// we subtract 15 days and add 1 month
if (val.get(Calendar.DATE) == 1) {
val.add(Calendar.DATE, 15);
} else {
val.add(Calendar.DATE, -15);
val.add(Calendar.MONTH, 1);
}
} else {
//We need at add one to this field since the
// last number causes us to round up
val.add(fields[i][0], 1);
}
}
return;
}
}
//We have various fields that are not easy roundings
int offset = 0;
boolean offsetSet = false;
//These are special types of fields that require different rounding rules
switch (field) {
case DateUtils.SEMI_MONTH:
if (fields[i][0] == Calendar.DATE) {
//If we're going to drop the DATE field's value,
// we want to do this our own way.
//We need to subtrace 1 since the date has a minimum of 1
offset = val.get(Calendar.DATE) - 1;
//If we're above 15 days adjustment, that means we're in the
// bottom half of the month and should stay accordingly.
if (offset >= 15) {
offset -= 15;
}
//Record whether we're in the top or bottom half of that range
roundUp = offset > 7;
offsetSet = true;
}
break;
case Calendar.AM_PM:
if (fields[i][0] == Calendar.HOUR_OF_DAY) {
//If we're going to drop the HOUR field's value,
// we want to do this our own way.
offset = val.get(Calendar.HOUR_OF_DAY);
if (offset >= 12) {
offset -= 12;
}
roundUp = offset > 6;
offsetSet = true;
}
break;
}
if (!offsetSet) {
int min = val.getActualMinimum(fields[i][0]);
int max = val.getActualMaximum(fields[i][0]);
//Calculate the offset from the minimum allowed value
offset = val.get(fields[i][0]) - min;
//Set roundUp if this is more than half way between the minimum and maximum
roundUp = offset > ((max - min) / 2);
}
//We need to remove this field
if (offset != 0) {
val.set(fields[i][0], val.get(fields[i][0]) - offset);
}
}
throw new IllegalArgumentException("The field " + field + " is not supported");
} | false | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Internal calculation method.</p>
*
* @param val the calendar
* @param field the field constant
* @param round true to round, false to truncate
* @throws ArithmeticException if the year is over 280 million
*/
//-----------------------------------------------------------------------
private static void modify(Calendar val, int field, boolean round) {
if (val.get(Calendar.YEAR) > 280000000) {
throw new ArithmeticException("Calendar value too large for accurate calculations");
}
if (field == Calendar.MILLISECOND) {
return;
}
// ----------------- Fix for LANG-59 ---------------------- START ---------------
// see http://issues.apache.org/jira/browse/LANG-59
//
// Manually truncate milliseconds, seconds and minutes, rather than using
// Calendar methods.
Date date = val.getTime();
long time = date.getTime();
boolean done = false;
// truncate milliseconds
int millisecs = val.get(Calendar.MILLISECOND);
if (!round || millisecs < 500) {
time = time - millisecs;
if (field == Calendar.SECOND) {
done = true;
}
}
// truncate seconds
int seconds = val.get(Calendar.SECOND);
if (!done && (!round || seconds < 30)) {
time = time - (seconds * 1000L);
if (field == Calendar.MINUTE) {
done = true;
}
}
// truncate minutes
int minutes = val.get(Calendar.MINUTE);
if (!done && (!round || minutes < 30)) {
time = time - (minutes * 60000L);
}
// reset time
if (date.getTime() != time) {
date.setTime(time);
val.setTime(date);
}
// ----------------- Fix for LANG-59 ----------------------- END ----------------
boolean roundUp = false;
for (int i = 0; i < fields.length; i++) {
for (int j = 0; j < fields[i].length; j++) {
if (fields[i][j] == field) {
//This is our field... we stop looping
if (round && roundUp) {
if (field == DateUtils.SEMI_MONTH) {
//This is a special case that's hard to generalize
//If the date is 1, we round up to 16, otherwise
// we subtract 15 days and add 1 month
if (val.get(Calendar.DATE) == 1) {
val.add(Calendar.DATE, 15);
} else {
val.add(Calendar.DATE, -15);
val.add(Calendar.MONTH, 1);
}
} else {
//We need at add one to this field since the
// last number causes us to round up
val.add(fields[i][0], 1);
}
}
return;
}
}
//We have various fields that are not easy roundings
int offset = 0;
boolean offsetSet = false;
//These are special types of fields that require different rounding rules
switch (field) {
case DateUtils.SEMI_MONTH:
if (fields[i][0] == Calendar.DATE) {
//If we're going to drop the DATE field's value,
// we want to do this our own way.
//We need to subtrace 1 since the date has a minimum of 1
offset = val.get(Calendar.DATE) - 1;
//If we're above 15 days adjustment, that means we're in the
// bottom half of the month and should stay accordingly.
if (offset >= 15) {
offset -= 15;
}
//Record whether we're in the top or bottom half of that range
roundUp = offset > 7;
offsetSet = true;
}
break;
case Calendar.AM_PM:
if (fields[i][0] == Calendar.HOUR_OF_DAY) {
//If we're going to drop the HOUR field's value,
// we want to do this our own way.
offset = val.get(Calendar.HOUR_OF_DAY);
if (offset >= 12) {
offset -= 12;
}
roundUp = offset > 6;
offsetSet = true;
}
break;
}
if (!offsetSet) {
int min = val.getActualMinimum(fields[i][0]);
int max = val.getActualMaximum(fields[i][0]);
//Calculate the offset from the minimum allowed value
offset = val.get(fields[i][0]) - min;
//Set roundUp if this is more than half way between the minimum and maximum
roundUp = offset > ((max - min) / 2);
}
//We need to remove this field
if (offset != 0) {
val.set(fields[i][0], val.get(fields[i][0]) - offset);
}
}
throw new IllegalArgumentException("The field " + field + " is not supported");
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
100 | b4c132b6144b026bcc3eee20c5e7445e24e370dda2fa28870248652e8689e272 | @Override
public byte[] getBinaryValue(Base64Variant b64variant)
throws IOException, JsonParseException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/*
/**********************************************************
/* Public API, typed binary (base64) access
/**********************************************************
*/
@Override
public byte[] getBinaryValue(Base64Variant b64variant)
throws IOException, JsonParseException
{
// Multiple possibilities...
JsonNode n = currentNode();
if (n != null) {
// [databind#2096]: although `binaryValue()` works for real binary node
// and embedded "POJO" node, coercion from TextNode may require variant, so:
if (n instanceof TextNode) {
return ((TextNode) n).getBinaryValue(b64variant);
}
return n.binaryValue();
}
// otherwise return null to mark we have no binary content
return null;
}
```
| @Override
public byte[] getBinaryValue(Base64Variant b64variant)
throws IOException, JsonParseException
{
// Multiple possibilities...
JsonNode n = currentNode();
if (n != null) {
// [databind#2096]: although `binaryValue()` works for real binary node
// and embedded "POJO" node, coercion from TextNode may require variant, so:
if (n instanceof TextNode) {
return ((TextNode) n).getBinaryValue(b64variant);
}
return n.binaryValue();
}
// otherwise return null to mark we have no binary content
return null;
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/*
/**********************************************************
/* Public API, typed binary (base64) access
/**********************************************************
*/
@Override
public byte[] getBinaryValue(Base64Variant b64variant)
throws IOException, JsonParseException
{
// Multiple possibilities...
JsonNode n = currentNode();
if (n != null) {
// [databind#2096]: although `binaryValue()` works for real binary node
// and embedded "POJO" node, coercion from TextNode may require variant, so:
if (n instanceof TextNode) {
return ((TextNode) n).getBinaryValue(b64variant);
}
return n.binaryValue();
}
// otherwise return null to mark we have no binary content
return null;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
8 | b4f43eef9274af7b38cdc20f5f7a2e739583b752533d060eddccf0783cb0ac5a | public char[] getTextBuffer()
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments && _currentSegment != null) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
}
```
| public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments && _currentSegment != null) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
} | false | JacksonCore | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments && _currentSegment != null) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
161 | b54103b69e3123a250845f0358a8217567ea2805aaed6a332246a8c69f3a12f8 | private Node tryFoldArrayAccess(Node n, Node left, Node right) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private Node tryFoldArrayAccess(Node n, Node left, Node right) {
Node parent = n.getParent();
// If GETPROP/GETELEM is used as assignment target the array literal is
// acting as a temporary we can't fold it here:
// "[][0] += 1"
if (isAssignmentTarget(n)) {
return n;
}
if (right.getType() != Token.NUMBER) {
// Sometimes people like to use complex expressions to index into
// arrays, or strings to index into array methods.
return n;
}
double index = right.getDouble();
int intIndex = (int) index;
if (intIndex != index) {
error(INVALID_GETELEM_INDEX_ERROR, right);
return n;
}
if (intIndex < 0) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
Node elem = left.getFirstChild();
for (int i = 0; elem != null && i < intIndex; i++) {
elem = elem.getNext();
}
if (elem == null) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
if (elem.getType() == Token.EMPTY) {
elem = NodeUtil.newUndefinedNode(elem);
} else {
left.removeChild(elem);
}
// Replace the entire GETELEM with the value
n.getParent().replaceChild(n, elem);
reportCodeChange();
return elem;
}
```
| private Node tryFoldArrayAccess(Node n, Node left, Node right) {
Node parent = n.getParent();
// If GETPROP/GETELEM is used as assignment target the array literal is
// acting as a temporary we can't fold it here:
// "[][0] += 1"
if (isAssignmentTarget(n)) {
return n;
}
if (right.getType() != Token.NUMBER) {
// Sometimes people like to use complex expressions to index into
// arrays, or strings to index into array methods.
return n;
}
double index = right.getDouble();
int intIndex = (int) index;
if (intIndex != index) {
error(INVALID_GETELEM_INDEX_ERROR, right);
return n;
}
if (intIndex < 0) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
Node elem = left.getFirstChild();
for (int i = 0; elem != null && i < intIndex; i++) {
elem = elem.getNext();
}
if (elem == null) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
if (elem.getType() == Token.EMPTY) {
elem = NodeUtil.newUndefinedNode(elem);
} else {
left.removeChild(elem);
}
// Replace the entire GETELEM with the value
n.getParent().replaceChild(n, elem);
reportCodeChange();
return elem;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private Node tryFoldArrayAccess(Node n, Node left, Node right) {
Node parent = n.getParent();
// If GETPROP/GETELEM is used as assignment target the array literal is
// acting as a temporary we can't fold it here:
// "[][0] += 1"
if (isAssignmentTarget(n)) {
return n;
}
if (right.getType() != Token.NUMBER) {
// Sometimes people like to use complex expressions to index into
// arrays, or strings to index into array methods.
return n;
}
double index = right.getDouble();
int intIndex = (int) index;
if (intIndex != index) {
error(INVALID_GETELEM_INDEX_ERROR, right);
return n;
}
if (intIndex < 0) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
Node elem = left.getFirstChild();
for (int i = 0; elem != null && i < intIndex; i++) {
elem = elem.getNext();
}
if (elem == null) {
error(INDEX_OUT_OF_BOUNDS_ERROR, right);
return n;
}
if (elem.getType() == Token.EMPTY) {
elem = NodeUtil.newUndefinedNode(elem);
} else {
left.removeChild(elem);
}
// Replace the entire GETELEM with the value
n.getParent().replaceChild(n, elem);
reportCodeChange();
return elem;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
57 | b58d0414d84f9f0104a048233294ce6d30e2e0457e199baff114ea249b99c091 | public <T> MappingIterator<T> readValues(byte[] src, int offset, int length)
throws IOException, JsonProcessingException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Overloaded version of {@link #readValue(InputStream)}.
*/
public <T> MappingIterator<T> readValues(byte[] src, int offset, int length)
throws IOException, JsonProcessingException
{
if (_dataFormatReaders != null) {
return _detectBindAndReadValues(_dataFormatReaders.findFormat(src, offset, length), false);
}
return _bindAndReadValues(_considerFilter(_parserFactory.createParser(src, offset, length),
true));
}
```
| public <T> MappingIterator<T> readValues(byte[] src, int offset, int length)
throws IOException, JsonProcessingException
{
if (_dataFormatReaders != null) {
return _detectBindAndReadValues(_dataFormatReaders.findFormat(src, offset, length), false);
}
return _bindAndReadValues(_considerFilter(_parserFactory.createParser(src, offset, length),
true));
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Overloaded version of {@link #readValue(InputStream)}.
*/
public <T> MappingIterator<T> readValues(byte[] src, int offset, int length)
throws IOException, JsonProcessingException
{
if (_dataFormatReaders != null) {
return _detectBindAndReadValues(_dataFormatReaders.findFormat(src, offset, length), false);
}
return _bindAndReadValues(_considerFilter(_parserFactory.createParser(src, offset, length),
true));
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
40 | b5d3beb16b8dfad6fff331e85409ec7583ef37325dcda730d7f9fae01b11af1b | public long readBits(final int count) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Returns at most 63 bits read from the underlying stream.
*
* @param count the number of bits to read, must be a positive
* number not bigger than 63.
* @return the bits concatenated as a long using the stream's byte order.
* -1 if the end of the underlying stream has been reached before reading
* the requested number of bits
* @throws IOException on error
*/
public long readBits(final int count) throws IOException {
if (count < 0 || count > MAXIMUM_CACHE_SIZE) {
throw new IllegalArgumentException("count must not be negative or greater than " + MAXIMUM_CACHE_SIZE);
}
while (bitsCachedSize < count) {
final long nextByte = in.read();
if (nextByte < 0) {
return nextByte;
}
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsCached |= (nextByte << bitsCachedSize);
} else {
bitsCached <<= 8;
bitsCached |= nextByte;
}
bitsCachedSize += 8;
}
// bitsCachedSize >= 57 and left-shifting it 8 bits would cause an overflow
final long bitsOut;
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsOut = (bitsCached & MASKS[count]);
bitsCached >>>= count;
} else {
bitsOut = (bitsCached >> (bitsCachedSize - count)) & MASKS[count];
}
bitsCachedSize -= count;
return bitsOut;
}
```
| public long readBits(final int count) throws IOException {
if (count < 0 || count > MAXIMUM_CACHE_SIZE) {
throw new IllegalArgumentException("count must not be negative or greater than " + MAXIMUM_CACHE_SIZE);
}
while (bitsCachedSize < count) {
final long nextByte = in.read();
if (nextByte < 0) {
return nextByte;
}
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsCached |= (nextByte << bitsCachedSize);
} else {
bitsCached <<= 8;
bitsCached |= nextByte;
}
bitsCachedSize += 8;
}
// bitsCachedSize >= 57 and left-shifting it 8 bits would cause an overflow
final long bitsOut;
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsOut = (bitsCached & MASKS[count]);
bitsCached >>>= count;
} else {
bitsOut = (bitsCached >> (bitsCachedSize - count)) & MASKS[count];
}
bitsCachedSize -= count;
return bitsOut;
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Returns at most 63 bits read from the underlying stream.
*
* @param count the number of bits to read, must be a positive
* number not bigger than 63.
* @return the bits concatenated as a long using the stream's byte order.
* -1 if the end of the underlying stream has been reached before reading
* the requested number of bits
* @throws IOException on error
*/
public long readBits(final int count) throws IOException {
if (count < 0 || count > MAXIMUM_CACHE_SIZE) {
throw new IllegalArgumentException("count must not be negative or greater than " + MAXIMUM_CACHE_SIZE);
}
while (bitsCachedSize < count) {
final long nextByte = in.read();
if (nextByte < 0) {
return nextByte;
}
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsCached |= (nextByte << bitsCachedSize);
} else {
bitsCached <<= 8;
bitsCached |= nextByte;
}
bitsCachedSize += 8;
}
// bitsCachedSize >= 57 and left-shifting it 8 bits would cause an overflow
final long bitsOut;
if (byteOrder == ByteOrder.LITTLE_ENDIAN) {
bitsOut = (bitsCached & MASKS[count]);
bitsCached >>>= count;
} else {
bitsOut = (bitsCached >> (bitsCachedSize - count)) & MASKS[count];
}
bitsCachedSize -= count;
return bitsOut;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
8 | b5f35353e9b7cbf22964f68a0f65cc92f6b505caa1dc39303f8727a49e151324 | public char[] getTextBuffer()
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
}
```
| public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
} | true | JacksonCore | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public char[] getTextBuffer()
{
// Are we just using shared input buffer?
if (_inputStart >= 0) return _inputBuffer;
if (_resultArray != null) return _resultArray;
if (_resultString != null) {
return (_resultArray = _resultString.toCharArray());
}
// Nope; but does it fit in just one segment?
if (!_hasSegments) return _currentSegment;
// Nope, need to have/create a non-segmented array and return it
return contentsAsArray();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
7 | b63933f8910550830d6efdcbdabf75d495757e86962533a79c4ced5e838a6497 | public int writeValue() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public int writeValue() {
// Most likely, object:
if (_type == TYPE_OBJECT) {
_gotName = false;
++_index;
return STATUS_OK_AFTER_COLON;
}
// Ok, array?
if (_type == TYPE_ARRAY) {
int ix = _index;
++_index;
return (ix < 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_COMMA;
}
// Nope, root context
// No commas within root context, but need space
++_index;
return (_index == 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_SPACE;
}
```
| public int writeValue() {
// Most likely, object:
if (_type == TYPE_OBJECT) {
_gotName = false;
++_index;
return STATUS_OK_AFTER_COLON;
}
// Ok, array?
if (_type == TYPE_ARRAY) {
int ix = _index;
++_index;
return (ix < 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_COMMA;
}
// Nope, root context
// No commas within root context, but need space
++_index;
return (_index == 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_SPACE;
} | true | JacksonCore | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public int writeValue() {
// Most likely, object:
if (_type == TYPE_OBJECT) {
_gotName = false;
++_index;
return STATUS_OK_AFTER_COLON;
}
// Ok, array?
if (_type == TYPE_ARRAY) {
int ix = _index;
++_index;
return (ix < 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_COMMA;
}
// Nope, root context
// No commas within root context, but need space
++_index;
return (_index == 0) ? STATUS_OK_AS_IS : STATUS_OK_AFTER_SPACE;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
26 | b664251796c27b57b6ed3c01b8313b970193945493607ea0997d411304824fe3 | private Object readResolve() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Recalculate the hash code after deserialization. The hash code of some
* keys might have change (hash codes based on the system hash code are
* only stable for the same process).
* @return the instance with recalculated hash code
*/
private Object readResolve() {
calculateHashCode(keys);
return this;
}
```
| private Object readResolve() {
calculateHashCode(keys);
return this;
} | true | Collections | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Recalculate the hash code after deserialization. The hash code of some
* keys might have change (hash codes based on the system hash code are
* only stable for the same process).
* @return the instance with recalculated hash code
*/
private Object readResolve() {
calculateHashCode(keys);
return this;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | b6761ec42a233b0448db51daae66d0494f2d07492c0abc31790e24683d9ac885 | private void normalise(Element element) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
// does not recurse.
private void normalise(Element element) {
List<Node> toMove = new ArrayList<Node>();
for (Node node: element.childNodes) {
if (node instanceof TextNode) {
TextNode tn = (TextNode) node;
if (!tn.isBlank())
toMove.add(tn);
}
}
for (Node node: toMove) {
element.removeChild(node);
body().prependChild(node);
body().prependChild(new TextNode(" ", ""));
}
}
```
| private void normalise(Element element) {
List<Node> toMove = new ArrayList<Node>();
for (Node node: element.childNodes) {
if (node instanceof TextNode) {
TextNode tn = (TextNode) node;
if (!tn.isBlank())
toMove.add(tn);
}
}
for (Node node: toMove) {
element.removeChild(node);
body().prependChild(node);
body().prependChild(new TextNode(" ", ""));
}
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
// does not recurse.
private void normalise(Element element) {
List<Node> toMove = new ArrayList<Node>();
for (Node node: element.childNodes) {
if (node instanceof TextNode) {
TextNode tn = (TextNode) node;
if (!tn.isBlank())
toMove.add(tn);
}
}
for (Node node: toMove) {
element.removeChild(node);
body().prependChild(node);
body().prependChild(new TextNode(" ", ""));
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
44 | b676960bdde40904bec94ecb41a2c7da7ad83f2f2fa3df3094bdaccd7100b15f | void add(String newcode) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
void add(String newcode) {
maybeEndStatement();
if (newcode.length() == 0) {
return;
}
char c = newcode.charAt(0);
if ((isWordChar(c) || c == '\\') &&
isWordChar(getLastChar())) {
// need space to separate. This is not pretty printing.
// For example: "return foo;"
append(" ");
} else if (c == '/' && getLastChar() == '/') {
// Do not allow a forward slash to appear after a DIV.
// For example,
// REGEXP DIV REGEXP
// is valid and should print like
// / // / /
append(" ");
}
append(newcode);
}
```
| void add(String newcode) {
maybeEndStatement();
if (newcode.length() == 0) {
return;
}
char c = newcode.charAt(0);
if ((isWordChar(c) || c == '\\') &&
isWordChar(getLastChar())) {
// need space to separate. This is not pretty printing.
// For example: "return foo;"
append(" ");
} else if (c == '/' && getLastChar() == '/') {
// Do not allow a forward slash to appear after a DIV.
// For example,
// REGEXP DIV REGEXP
// is valid and should print like
// / // / /
append(" ");
}
append(newcode);
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
void add(String newcode) {
maybeEndStatement();
if (newcode.length() == 0) {
return;
}
char c = newcode.charAt(0);
if ((isWordChar(c) || c == '\\') &&
isWordChar(getLastChar())) {
// need space to separate. This is not pretty printing.
// For example: "return foo;"
append(" ");
} else if (c == '/' && getLastChar() == '/') {
// Do not allow a forward slash to appear after a DIV.
// For example,
// REGEXP DIV REGEXP
// is valid and should print like
// / // / /
append(" ");
}
append(newcode);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
20 | b6d2e2a28ca14e5d4b44f8a62ebb1daf2d503e6e92d37eccb99256826cf13429 | public ValueMarker(double value, Paint paint, Stroke stroke,
Paint outlinePaint, Stroke outlineStroke, float alpha) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Creates a new value marker.
*
* @param value the value.
* @param paint the paint (<code>null</code> not permitted).
* @param stroke the stroke (<code>null</code> not permitted).
* @param outlinePaint the outline paint (<code>null</code> permitted).
* @param outlineStroke the outline stroke (<code>null</code> permitted).
* @param alpha the alpha transparency (in the range 0.0f to 1.0f).
*/
public ValueMarker(double value, Paint paint, Stroke stroke,
Paint outlinePaint, Stroke outlineStroke, float alpha) {
super(paint, stroke, paint, stroke, alpha);
this.value = value;
}
```
| public ValueMarker(double value, Paint paint, Stroke stroke,
Paint outlinePaint, Stroke outlineStroke, float alpha) {
super(paint, stroke, paint, stroke, alpha);
this.value = value;
} | true | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Creates a new value marker.
*
* @param value the value.
* @param paint the paint (<code>null</code> not permitted).
* @param stroke the stroke (<code>null</code> not permitted).
* @param outlinePaint the outline paint (<code>null</code> permitted).
* @param outlineStroke the outline stroke (<code>null</code> permitted).
* @param alpha the alpha transparency (in the range 0.0f to 1.0f).
*/
public ValueMarker(double value, Paint paint, Stroke stroke,
Paint outlinePaint, Stroke outlineStroke, float alpha) {
super(paint, stroke, paint, stroke, alpha);
this.value = value;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
2 | b7769d151dfc37bee0b1b0cb1c01b4f01a69a00ee2bdd7233050f8100757002e | private void parseStartTag() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private void parseStartTag() {
tq.consume("<");
String tagName = tq.consumeWord();
if (tagName.length() == 0) { // doesn't look like a start tag after all; put < back on stack and handle as text
tq.addFirst("<");
parseTextNode();
return;
}
Attributes attributes = new Attributes();
while (!tq.matchesAny("<", "/>", ">") && !tq.isEmpty()) {
Attribute attribute = parseAttribute();
if (attribute != null)
attributes.put(attribute);
}
Tag tag = Tag.valueOf(tagName);
Element child = new Element(tag, baseUri, attributes);
boolean isEmptyElement = tag.isEmpty(); // empty element if empty tag (e.g. img) or self-closed el (<div/>
if (tq.matchChomp("/>")) { // close empty element or tag
isEmptyElement = true;
} else {
tq.matchChomp(">");
}
addChildToParent(child, isEmptyElement);
// pc data only tags (textarea, script): chomp to end tag, add content as text node
if (tag.isData()) {
String data = tq.chompTo("</" + tagName);
tq.chompTo(">");
popStackToClose(tag);
Node dataNode;
if (tag.equals(titleTag) || tag.equals(textareaTag)) // want to show as text, but not contain inside tags (so not a data tag?)
dataNode = TextNode.createFromEncoded(data, baseUri);
else
dataNode = new DataNode(data, baseUri); // data not encoded but raw (for " in script)
child.appendChild(dataNode);
}
// <base href>: update the base uri
if (child.tagName().equals("base")) {
String href = child.absUrl("href");
if (href.length() != 0) { // ignore <base target> etc
baseUri = href;
doc.setBaseUri(href); // set on the doc so doc.createElement(Tag) will get updated base
}
}
}
```
| private void parseStartTag() {
tq.consume("<");
String tagName = tq.consumeWord();
if (tagName.length() == 0) { // doesn't look like a start tag after all; put < back on stack and handle as text
tq.addFirst("<");
parseTextNode();
return;
}
Attributes attributes = new Attributes();
while (!tq.matchesAny("<", "/>", ">") && !tq.isEmpty()) {
Attribute attribute = parseAttribute();
if (attribute != null)
attributes.put(attribute);
}
Tag tag = Tag.valueOf(tagName);
Element child = new Element(tag, baseUri, attributes);
boolean isEmptyElement = tag.isEmpty(); // empty element if empty tag (e.g. img) or self-closed el (<div/>
if (tq.matchChomp("/>")) { // close empty element or tag
isEmptyElement = true;
} else {
tq.matchChomp(">");
}
addChildToParent(child, isEmptyElement);
// pc data only tags (textarea, script): chomp to end tag, add content as text node
if (tag.isData()) {
String data = tq.chompTo("</" + tagName);
tq.chompTo(">");
popStackToClose(tag);
Node dataNode;
if (tag.equals(titleTag) || tag.equals(textareaTag)) // want to show as text, but not contain inside tags (so not a data tag?)
dataNode = TextNode.createFromEncoded(data, baseUri);
else
dataNode = new DataNode(data, baseUri); // data not encoded but raw (for " in script)
child.appendChild(dataNode);
}
// <base href>: update the base uri
if (child.tagName().equals("base")) {
String href = child.absUrl("href");
if (href.length() != 0) { // ignore <base target> etc
baseUri = href;
doc.setBaseUri(href); // set on the doc so doc.createElement(Tag) will get updated base
}
}
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private void parseStartTag() {
tq.consume("<");
String tagName = tq.consumeWord();
if (tagName.length() == 0) { // doesn't look like a start tag after all; put < back on stack and handle as text
tq.addFirst("<");
parseTextNode();
return;
}
Attributes attributes = new Attributes();
while (!tq.matchesAny("<", "/>", ">") && !tq.isEmpty()) {
Attribute attribute = parseAttribute();
if (attribute != null)
attributes.put(attribute);
}
Tag tag = Tag.valueOf(tagName);
Element child = new Element(tag, baseUri, attributes);
boolean isEmptyElement = tag.isEmpty(); // empty element if empty tag (e.g. img) or self-closed el (<div/>
if (tq.matchChomp("/>")) { // close empty element or tag
isEmptyElement = true;
} else {
tq.matchChomp(">");
}
addChildToParent(child, isEmptyElement);
// pc data only tags (textarea, script): chomp to end tag, add content as text node
if (tag.isData()) {
String data = tq.chompTo("</" + tagName);
tq.chompTo(">");
popStackToClose(tag);
Node dataNode;
if (tag.equals(titleTag) || tag.equals(textareaTag)) // want to show as text, but not contain inside tags (so not a data tag?)
dataNode = TextNode.createFromEncoded(data, baseUri);
else
dataNode = new DataNode(data, baseUri); // data not encoded but raw (for " in script)
child.appendChild(dataNode);
}
// <base href>: update the base uri
if (child.tagName().equals("base")) {
String href = child.absUrl("href");
if (href.length() != 0) { // ignore <base target> etc
baseUri = href;
doc.setBaseUri(href); // set on the doc so doc.createElement(Tag) will get updated base
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
10 | b81062a7377e1a1d2d74ad3f0c270c612e0e9b3fb9967584c8bf10bda529156f | private void resolveLocalFileHeaderData(Map<ZipArchiveEntry, NameAndComment>
entriesWithoutUTF8Flag)
throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Walks through all recorded entries and adds the data available
* from the local file header.
*
* <p>Also records the offsets for the data to read from the
* entries.</p>
*/
private void resolveLocalFileHeaderData(Map<ZipArchiveEntry, NameAndComment>
entriesWithoutUTF8Flag)
throws IOException {
// changing the name of a ZipArchiveEntry is going to change
// the hashcode - see COMPRESS-164
// Map needs to be reconstructed in order to keep central
// directory order
for (ZipArchiveEntry ze : entries.keySet()) {
OffsetEntry offsetEntry = entries.get(ze);
long offset = offsetEntry.headerOffset;
archive.seek(offset + LFH_OFFSET_FOR_FILENAME_LENGTH);
byte[] b = new byte[SHORT];
archive.readFully(b);
int fileNameLen = ZipShort.getValue(b);
archive.readFully(b);
int extraFieldLen = ZipShort.getValue(b);
int lenToSkip = fileNameLen;
while (lenToSkip > 0) {
int skipped = archive.skipBytes(lenToSkip);
if (skipped <= 0) {
throw new RuntimeException("failed to skip file name in"
+ " local file header");
}
lenToSkip -= skipped;
}
byte[] localExtraData = new byte[extraFieldLen];
archive.readFully(localExtraData);
ze.setExtra(localExtraData);
offsetEntry.dataOffset = offset + LFH_OFFSET_FOR_FILENAME_LENGTH
+ SHORT + SHORT + fileNameLen + extraFieldLen;
if (entriesWithoutUTF8Flag.containsKey(ze)) {
String orig = ze.getName();
NameAndComment nc = entriesWithoutUTF8Flag.get(ze);
ZipUtil.setNameAndCommentFromExtraFields(ze, nc.name,
nc.comment);
if (!orig.equals(ze.getName())) {
nameMap.remove(orig);
nameMap.put(ze.getName(), ze);
}
}
}
}
```
| private void resolveLocalFileHeaderData(Map<ZipArchiveEntry, NameAndComment>
entriesWithoutUTF8Flag)
throws IOException {
// changing the name of a ZipArchiveEntry is going to change
// the hashcode - see COMPRESS-164
// Map needs to be reconstructed in order to keep central
// directory order
for (ZipArchiveEntry ze : entries.keySet()) {
OffsetEntry offsetEntry = entries.get(ze);
long offset = offsetEntry.headerOffset;
archive.seek(offset + LFH_OFFSET_FOR_FILENAME_LENGTH);
byte[] b = new byte[SHORT];
archive.readFully(b);
int fileNameLen = ZipShort.getValue(b);
archive.readFully(b);
int extraFieldLen = ZipShort.getValue(b);
int lenToSkip = fileNameLen;
while (lenToSkip > 0) {
int skipped = archive.skipBytes(lenToSkip);
if (skipped <= 0) {
throw new RuntimeException("failed to skip file name in"
+ " local file header");
}
lenToSkip -= skipped;
}
byte[] localExtraData = new byte[extraFieldLen];
archive.readFully(localExtraData);
ze.setExtra(localExtraData);
offsetEntry.dataOffset = offset + LFH_OFFSET_FOR_FILENAME_LENGTH
+ SHORT + SHORT + fileNameLen + extraFieldLen;
if (entriesWithoutUTF8Flag.containsKey(ze)) {
String orig = ze.getName();
NameAndComment nc = entriesWithoutUTF8Flag.get(ze);
ZipUtil.setNameAndCommentFromExtraFields(ze, nc.name,
nc.comment);
if (!orig.equals(ze.getName())) {
nameMap.remove(orig);
nameMap.put(ze.getName(), ze);
}
}
}
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Walks through all recorded entries and adds the data available
* from the local file header.
*
* <p>Also records the offsets for the data to read from the
* entries.</p>
*/
private void resolveLocalFileHeaderData(Map<ZipArchiveEntry, NameAndComment>
entriesWithoutUTF8Flag)
throws IOException {
// changing the name of a ZipArchiveEntry is going to change
// the hashcode - see COMPRESS-164
// Map needs to be reconstructed in order to keep central
// directory order
for (ZipArchiveEntry ze : entries.keySet()) {
OffsetEntry offsetEntry = entries.get(ze);
long offset = offsetEntry.headerOffset;
archive.seek(offset + LFH_OFFSET_FOR_FILENAME_LENGTH);
byte[] b = new byte[SHORT];
archive.readFully(b);
int fileNameLen = ZipShort.getValue(b);
archive.readFully(b);
int extraFieldLen = ZipShort.getValue(b);
int lenToSkip = fileNameLen;
while (lenToSkip > 0) {
int skipped = archive.skipBytes(lenToSkip);
if (skipped <= 0) {
throw new RuntimeException("failed to skip file name in"
+ " local file header");
}
lenToSkip -= skipped;
}
byte[] localExtraData = new byte[extraFieldLen];
archive.readFully(localExtraData);
ze.setExtra(localExtraData);
offsetEntry.dataOffset = offset + LFH_OFFSET_FOR_FILENAME_LENGTH
+ SHORT + SHORT + fileNameLen + extraFieldLen;
if (entriesWithoutUTF8Flag.containsKey(ze)) {
String orig = ze.getName();
NameAndComment nc = entriesWithoutUTF8Flag.get(ze);
ZipUtil.setNameAndCommentFromExtraFields(ze, nc.name,
nc.comment);
if (!orig.equals(ze.getName())) {
nameMap.remove(orig);
nameMap.put(ze.getName(), ze);
}
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
88 | b8403f9791b83abd5101f39c5a6674e2bc90f19ab06930ef525af31d872cba48 | protected RealPointValuePair getSolution() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Get the current solution.
* <p>
* {@link #solve} should be called first for this to be the optimal solution.
* </p>
* @return current solution
*/
protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
if (basicRow != null) {
for (int j = getNumObjectiveFunctions(); j < getNumObjectiveFunctions() + i; j++) {
if (tableau.getEntry(basicRow, j) == 1) {
coefficients[i] = 0;
}
}
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
}
```
| protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
if (basicRow != null) {
for (int j = getNumObjectiveFunctions(); j < getNumObjectiveFunctions() + i; j++) {
if (tableau.getEntry(basicRow, j) == 1) {
coefficients[i] = 0;
}
}
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Get the current solution.
* <p>
* {@link #solve} should be called first for this to be the optimal solution.
* </p>
* @return current solution
*/
protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
if (basicRow != null) {
for (int j = getNumObjectiveFunctions(); j < getNumObjectiveFunctions() + i; j++) {
if (tableau.getEntry(basicRow, j) == 1) {
coefficients[i] = 0;
}
}
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
22 | b8b2576911dc8b4feb2f1fc06d90f5f9a45079b8359d9795d84f973d78950a6a | public static boolean areEqual(Object o1, Object o2) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public static boolean areEqual(Object o1, Object o2) {
if (o1 == o2 ) {
return true;
} else if (o1 == null || o2 == null) {
return o1 == null && o2 == null;
} else if (isArray(o1)) {
return isArray(o2) && areArraysEqual(o1, o2);
} else {
return o1.equals(o2);
}
}
```
| public static boolean areEqual(Object o1, Object o2) {
if (o1 == o2 ) {
return true;
} else if (o1 == null || o2 == null) {
return o1 == null && o2 == null;
} else if (isArray(o1)) {
return isArray(o2) && areArraysEqual(o1, o2);
} else {
return o1.equals(o2);
}
} | false | Mockito | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public static boolean areEqual(Object o1, Object o2) {
if (o1 == o2 ) {
return true;
} else if (o1 == null || o2 == null) {
return o1 == null && o2 == null;
} else if (isArray(o1)) {
return isArray(o2) && areArraysEqual(o1, o2);
} else {
return o1.equals(o2);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
160 | b8bfc84bc07402f464a5bb1a92df5efd46f4690e1a4b6c825bd71facfaccec96 | public void initOptions(CompilerOptions options) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Initialize the compiler options. Only necessary if you're not doing
* a normal compile() job.
*/
public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
(warningsGuard == null || !warningsGuard.disables(
DiagnosticGroups.CHECK_VARIABLES))) {
guards.add(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = new ComposeWarningsGuard(guards);
}
```
| public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
(warningsGuard == null || !warningsGuard.disables(
DiagnosticGroups.CHECK_VARIABLES))) {
guards.add(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = new ComposeWarningsGuard(guards);
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Initialize the compiler options. Only necessary if you're not doing
* a normal compile() job.
*/
public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
(warningsGuard == null || !warningsGuard.disables(
DiagnosticGroups.CHECK_VARIABLES))) {
guards.add(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = new ComposeWarningsGuard(guards);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
50 | b8ef64ab79b9ed48894302a1876b06e03dd8766affb45772d36f685215bfed1d | static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
// todo - this is getting gnarly. needs a rewrite.
// switching the chartset midstream when a meta http-equiv tag defines the charset.
// reads bytes first into a buffer, then decodes with the appropriate charset. done this way to support
static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
// look for BOM - overrides any other header or input
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset = null;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
}
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
if (docData.length() > 0 && docData.charAt(0) == UNICODE_BOM) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
}
```
| static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
// look for BOM - overrides any other header or input
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset = null;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
}
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
if (docData.length() > 0 && docData.charAt(0) == UNICODE_BOM) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
} | true | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
// todo - this is getting gnarly. needs a rewrite.
// switching the chartset midstream when a meta http-equiv tag defines the charset.
// reads bytes first into a buffer, then decodes with the appropriate charset. done this way to support
static Document parseByteData(ByteBuffer byteData, String charsetName, String baseUri, Parser parser) {
String docData;
Document doc = null;
// look for BOM - overrides any other header or input
if (charsetName == null) { // determine from meta. safe parse as UTF-8
// look for <meta http-equiv="Content-Type" content="text/html;charset=gb2312"> or HTML5 <meta charset="gb2312">
docData = Charset.forName(defaultCharset).decode(byteData).toString();
doc = parser.parseInput(docData, baseUri);
Element meta = doc.select("meta[http-equiv=content-type], meta[charset]").first();
if (meta != null) { // if not found, will keep utf-8 as best attempt
String foundCharset = null;
if (meta.hasAttr("http-equiv")) {
foundCharset = getCharsetFromContentType(meta.attr("content"));
}
if (foundCharset == null && meta.hasAttr("charset")) {
try {
if (Charset.isSupported(meta.attr("charset"))) {
foundCharset = meta.attr("charset");
}
} catch (IllegalCharsetNameException e) {
foundCharset = null;
}
}
if (foundCharset != null && foundCharset.length() != 0 && !foundCharset.equals(defaultCharset)) { // need to re-decode
foundCharset = foundCharset.trim().replaceAll("[\"']", "");
charsetName = foundCharset;
byteData.rewind();
docData = Charset.forName(foundCharset).decode(byteData).toString();
doc = null;
}
}
} else { // specified by content type header (or by user on file load)
Validate.notEmpty(charsetName, "Must set charset arg to character set of file to parse. Set to null to attempt to detect from HTML");
docData = Charset.forName(charsetName).decode(byteData).toString();
}
if (docData.length() > 0 && docData.charAt(0) == UNICODE_BOM) {
byteData.rewind();
docData = Charset.forName(defaultCharset).decode(byteData).toString();
docData = docData.substring(1);
charsetName = defaultCharset;
doc = null;
}
if (doc == null) {
doc = parser.parseInput(docData, baseUri);
doc.outputSettings().charset(charsetName);
}
return doc;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
43 | b9b5b8e30cf3938c7c7962dd5f9d3fc7702f31c586f63fb0d7c34302c91c9310 | public void addValue(double value) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Add a value to the data
* @param value the value to add
*/
public void addValue(double value) {
sumImpl.increment(value);
sumsqImpl.increment(value);
minImpl.increment(value);
maxImpl.increment(value);
sumLogImpl.increment(value);
secondMoment.increment(value);
// If mean, variance or geomean have been overridden,
// need to increment these
if (!(meanImpl instanceof Mean)) {
meanImpl.increment(value);
}
if (!(varianceImpl instanceof Variance)) {
varianceImpl.increment(value);
}
if (!(geoMeanImpl instanceof GeometricMean)) {
geoMeanImpl.increment(value);
}
n++;
}
```
| public void addValue(double value) {
sumImpl.increment(value);
sumsqImpl.increment(value);
minImpl.increment(value);
maxImpl.increment(value);
sumLogImpl.increment(value);
secondMoment.increment(value);
// If mean, variance or geomean have been overridden,
// need to increment these
if (!(meanImpl instanceof Mean)) {
meanImpl.increment(value);
}
if (!(varianceImpl instanceof Variance)) {
varianceImpl.increment(value);
}
if (!(geoMeanImpl instanceof GeometricMean)) {
geoMeanImpl.increment(value);
}
n++;
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Add a value to the data
* @param value the value to add
*/
public void addValue(double value) {
sumImpl.increment(value);
sumsqImpl.increment(value);
minImpl.increment(value);
maxImpl.increment(value);
sumLogImpl.increment(value);
secondMoment.increment(value);
// If mean, variance or geomean have been overridden,
// need to increment these
if (!(meanImpl instanceof Mean)) {
meanImpl.increment(value);
}
if (!(varianceImpl instanceof Variance)) {
varianceImpl.increment(value);
}
if (!(geoMeanImpl instanceof GeometricMean)) {
geoMeanImpl.increment(value);
}
n++;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
7 | b9ebd320daf7648c99e4d47c07b5d065a944e53217a7e867c1391ec18f633423 | private void updateBounds(TimePeriod period, int index) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Update the index values for the maximum and minimum bounds.
*
* @param period the time period.
* @param index the index of the time period.
*/
private void updateBounds(TimePeriod period, int index) {
long start = period.getStart().getTime();
long end = period.getEnd().getTime();
long middle = start + ((end - start) / 2);
if (this.minStartIndex >= 0) {
long minStart = getDataItem(this.minStartIndex).getPeriod()
.getStart().getTime();
if (start < minStart) {
this.minStartIndex = index;
}
}
else {
this.minStartIndex = index;
}
if (this.maxStartIndex >= 0) {
long maxStart = getDataItem(this.maxStartIndex).getPeriod()
.getStart().getTime();
if (start > maxStart) {
this.maxStartIndex = index;
}
}
else {
this.maxStartIndex = index;
}
if (this.minMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long minMiddle = s + (e - s) / 2;
if (middle < minMiddle) {
this.minMiddleIndex = index;
}
}
else {
this.minMiddleIndex = index;
}
if (this.maxMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long maxMiddle = s + (e - s) / 2;
if (middle > maxMiddle) {
this.maxMiddleIndex = index;
}
}
else {
this.maxMiddleIndex = index;
}
if (this.minEndIndex >= 0) {
long minEnd = getDataItem(this.minEndIndex).getPeriod().getEnd()
.getTime();
if (end < minEnd) {
this.minEndIndex = index;
}
}
else {
this.minEndIndex = index;
}
if (this.maxEndIndex >= 0) {
long maxEnd = getDataItem(this.maxEndIndex).getPeriod().getEnd()
.getTime();
if (end > maxEnd) {
this.maxEndIndex = index;
}
}
else {
this.maxEndIndex = index;
}
}
```
| private void updateBounds(TimePeriod period, int index) {
long start = period.getStart().getTime();
long end = period.getEnd().getTime();
long middle = start + ((end - start) / 2);
if (this.minStartIndex >= 0) {
long minStart = getDataItem(this.minStartIndex).getPeriod()
.getStart().getTime();
if (start < minStart) {
this.minStartIndex = index;
}
}
else {
this.minStartIndex = index;
}
if (this.maxStartIndex >= 0) {
long maxStart = getDataItem(this.maxStartIndex).getPeriod()
.getStart().getTime();
if (start > maxStart) {
this.maxStartIndex = index;
}
}
else {
this.maxStartIndex = index;
}
if (this.minMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long minMiddle = s + (e - s) / 2;
if (middle < minMiddle) {
this.minMiddleIndex = index;
}
}
else {
this.minMiddleIndex = index;
}
if (this.maxMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long maxMiddle = s + (e - s) / 2;
if (middle > maxMiddle) {
this.maxMiddleIndex = index;
}
}
else {
this.maxMiddleIndex = index;
}
if (this.minEndIndex >= 0) {
long minEnd = getDataItem(this.minEndIndex).getPeriod().getEnd()
.getTime();
if (end < minEnd) {
this.minEndIndex = index;
}
}
else {
this.minEndIndex = index;
}
if (this.maxEndIndex >= 0) {
long maxEnd = getDataItem(this.maxEndIndex).getPeriod().getEnd()
.getTime();
if (end > maxEnd) {
this.maxEndIndex = index;
}
}
else {
this.maxEndIndex = index;
}
} | true | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Update the index values for the maximum and minimum bounds.
*
* @param period the time period.
* @param index the index of the time period.
*/
private void updateBounds(TimePeriod period, int index) {
long start = period.getStart().getTime();
long end = period.getEnd().getTime();
long middle = start + ((end - start) / 2);
if (this.minStartIndex >= 0) {
long minStart = getDataItem(this.minStartIndex).getPeriod()
.getStart().getTime();
if (start < minStart) {
this.minStartIndex = index;
}
}
else {
this.minStartIndex = index;
}
if (this.maxStartIndex >= 0) {
long maxStart = getDataItem(this.maxStartIndex).getPeriod()
.getStart().getTime();
if (start > maxStart) {
this.maxStartIndex = index;
}
}
else {
this.maxStartIndex = index;
}
if (this.minMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long minMiddle = s + (e - s) / 2;
if (middle < minMiddle) {
this.minMiddleIndex = index;
}
}
else {
this.minMiddleIndex = index;
}
if (this.maxMiddleIndex >= 0) {
long s = getDataItem(this.minMiddleIndex).getPeriod().getStart()
.getTime();
long e = getDataItem(this.minMiddleIndex).getPeriod().getEnd()
.getTime();
long maxMiddle = s + (e - s) / 2;
if (middle > maxMiddle) {
this.maxMiddleIndex = index;
}
}
else {
this.maxMiddleIndex = index;
}
if (this.minEndIndex >= 0) {
long minEnd = getDataItem(this.minEndIndex).getPeriod().getEnd()
.getTime();
if (end < minEnd) {
this.minEndIndex = index;
}
}
else {
this.minEndIndex = index;
}
if (this.maxEndIndex >= 0) {
long maxEnd = getDataItem(this.maxEndIndex).getPeriod().getEnd()
.getTime();
if (end > maxEnd) {
this.maxEndIndex = index;
}
}
else {
this.maxEndIndex = index;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
70 | ba207c99c12735163a48837dfa94ef2bb10e43908d885f1a82057654765d2333 | public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** {@inheritDoc} */
public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(f, min, max);
}
```
| public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(f, min, max);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** {@inheritDoc} */
public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(f, min, max);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
10 | ba34083646ebf240b232ff813ef7fe4b4d2762d88067a94a4908e0a129aa47b2 | public String caverphone(String txt) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Encodes the given String into a Caverphone value.
*
* @param txt String the source string
* @return A caverphone code for the given String
*/
public String caverphone(String txt) {
// NOTE: Version 1.0 of Caverphone is easily derivable from this code
// by commenting out the 2.0 lines and adding in the 1.0 lines
if( txt == null || txt.length() == 0 ) {
return "1111111111";
}
// 1. Convert to lowercase
txt = txt.toLowerCase(java.util.Locale.ENGLISH);
// 2. Remove anything not A-Z
txt = txt.replaceAll("[^a-z]", "");
// 2.5. Remove final e
txt = txt.replaceAll("e$", ""); // 2.0 only
// 3. Handle various start options
txt = txt.replaceAll("^cough", "cou2f");
txt = txt.replaceAll("^rough", "rou2f");
txt = txt.replaceAll("^tough", "tou2f");
txt = txt.replaceAll("^enough", "enou2f"); // 2.0 only
txt = txt.replaceAll("^trough", "trou2f"); // 2.0 only - note the spec says ^enough here again, c+p error I assume
txt = txt.replaceAll("^gn", "2n");
// End
txt = txt.replaceAll("mb$", "m2");
// 4. Handle replacements
txt = txt.replaceAll("cq", "2q");
txt = txt.replaceAll("ci", "si");
txt = txt.replaceAll("ce", "se");
txt = txt.replaceAll("cy", "sy");
txt = txt.replaceAll("tch", "2ch");
txt = txt.replaceAll("c", "k");
txt = txt.replaceAll("q", "k");
txt = txt.replaceAll("x", "k");
txt = txt.replaceAll("v", "f");
txt = txt.replaceAll("dg", "2g");
txt = txt.replaceAll("tio", "sio");
txt = txt.replaceAll("tia", "sia");
txt = txt.replaceAll("d", "t");
txt = txt.replaceAll("ph", "fh");
txt = txt.replaceAll("b", "p");
txt = txt.replaceAll("sh", "s2");
txt = txt.replaceAll("z", "s");
txt = txt.replaceAll("^[aeiou]", "A");
txt = txt.replaceAll("[aeiou]", "3");
txt = txt.replaceAll("j", "y"); // 2.0 only
txt = txt.replaceAll("^y3", "Y3"); // 2.0 only
txt = txt.replaceAll("^y", "A"); // 2.0 only
txt = txt.replaceAll("y", "3"); // 2.0 only
txt = txt.replaceAll("3gh3", "3kh3");
txt = txt.replaceAll("gh", "22");
txt = txt.replaceAll("g", "k");
txt = txt.replaceAll("s+", "S");
txt = txt.replaceAll("t+", "T");
txt = txt.replaceAll("p+", "P");
txt = txt.replaceAll("k+", "K");
txt = txt.replaceAll("f+", "F");
txt = txt.replaceAll("m+", "M");
txt = txt.replaceAll("n+", "N");
txt = txt.replaceAll("w3", "W3");
//txt = txt.replaceAll("wy", "Wy"); // 1.0 only
txt = txt.replaceAll("wh3", "Wh3");
txt = txt.replaceAll("w$", "3"); // 2.0 only
//txt = txt.replaceAll("why", "Why"); // 1.0 only
txt = txt.replaceAll("w", "2");
txt = txt.replaceAll("^h", "A");
txt = txt.replaceAll("h", "2");
txt = txt.replaceAll("r3", "R3");
txt = txt.replaceAll("r$", "3"); // 2.0 only
//txt = txt.replaceAll("ry", "Ry"); // 1.0 only
txt = txt.replaceAll("r", "2");
txt = txt.replaceAll("l3", "L3");
txt = txt.replaceAll("l$", "3"); // 2.0 only
//txt = txt.replaceAll("ly", "Ly"); // 1.0 only
txt = txt.replaceAll("l", "2");
//txt = txt.replaceAll("j", "y"); // 1.0 only
//txt = txt.replaceAll("y3", "Y3"); // 1.0 only
//txt = txt.replaceAll("y", "2"); // 1.0 only
// 5. Handle removals
txt = txt.replaceAll("2", "");
txt = txt.replaceAll("3$", "A"); // 2.0 only
txt = txt.replaceAll("3", "");
// 6. put ten 1s on the end
txt = txt + "111111" + "1111"; // 1.0 only has 6 1s
// 7. take the first six characters as the code
return txt.substring(0, 10); // 1.0 truncates to 6
}
```
| public String caverphone(String txt) {
// NOTE: Version 1.0 of Caverphone is easily derivable from this code
// by commenting out the 2.0 lines and adding in the 1.0 lines
if( txt == null || txt.length() == 0 ) {
return "1111111111";
}
// 1. Convert to lowercase
txt = txt.toLowerCase(java.util.Locale.ENGLISH);
// 2. Remove anything not A-Z
txt = txt.replaceAll("[^a-z]", "");
// 2.5. Remove final e
txt = txt.replaceAll("e$", ""); // 2.0 only
// 3. Handle various start options
txt = txt.replaceAll("^cough", "cou2f");
txt = txt.replaceAll("^rough", "rou2f");
txt = txt.replaceAll("^tough", "tou2f");
txt = txt.replaceAll("^enough", "enou2f"); // 2.0 only
txt = txt.replaceAll("^trough", "trou2f"); // 2.0 only - note the spec says ^enough here again, c+p error I assume
txt = txt.replaceAll("^gn", "2n");
// End
txt = txt.replaceAll("mb$", "m2");
// 4. Handle replacements
txt = txt.replaceAll("cq", "2q");
txt = txt.replaceAll("ci", "si");
txt = txt.replaceAll("ce", "se");
txt = txt.replaceAll("cy", "sy");
txt = txt.replaceAll("tch", "2ch");
txt = txt.replaceAll("c", "k");
txt = txt.replaceAll("q", "k");
txt = txt.replaceAll("x", "k");
txt = txt.replaceAll("v", "f");
txt = txt.replaceAll("dg", "2g");
txt = txt.replaceAll("tio", "sio");
txt = txt.replaceAll("tia", "sia");
txt = txt.replaceAll("d", "t");
txt = txt.replaceAll("ph", "fh");
txt = txt.replaceAll("b", "p");
txt = txt.replaceAll("sh", "s2");
txt = txt.replaceAll("z", "s");
txt = txt.replaceAll("^[aeiou]", "A");
txt = txt.replaceAll("[aeiou]", "3");
txt = txt.replaceAll("j", "y"); // 2.0 only
txt = txt.replaceAll("^y3", "Y3"); // 2.0 only
txt = txt.replaceAll("^y", "A"); // 2.0 only
txt = txt.replaceAll("y", "3"); // 2.0 only
txt = txt.replaceAll("3gh3", "3kh3");
txt = txt.replaceAll("gh", "22");
txt = txt.replaceAll("g", "k");
txt = txt.replaceAll("s+", "S");
txt = txt.replaceAll("t+", "T");
txt = txt.replaceAll("p+", "P");
txt = txt.replaceAll("k+", "K");
txt = txt.replaceAll("f+", "F");
txt = txt.replaceAll("m+", "M");
txt = txt.replaceAll("n+", "N");
txt = txt.replaceAll("w3", "W3");
//txt = txt.replaceAll("wy", "Wy"); // 1.0 only
txt = txt.replaceAll("wh3", "Wh3");
txt = txt.replaceAll("w$", "3"); // 2.0 only
//txt = txt.replaceAll("why", "Why"); // 1.0 only
txt = txt.replaceAll("w", "2");
txt = txt.replaceAll("^h", "A");
txt = txt.replaceAll("h", "2");
txt = txt.replaceAll("r3", "R3");
txt = txt.replaceAll("r$", "3"); // 2.0 only
//txt = txt.replaceAll("ry", "Ry"); // 1.0 only
txt = txt.replaceAll("r", "2");
txt = txt.replaceAll("l3", "L3");
txt = txt.replaceAll("l$", "3"); // 2.0 only
//txt = txt.replaceAll("ly", "Ly"); // 1.0 only
txt = txt.replaceAll("l", "2");
//txt = txt.replaceAll("j", "y"); // 1.0 only
//txt = txt.replaceAll("y3", "Y3"); // 1.0 only
//txt = txt.replaceAll("y", "2"); // 1.0 only
// 5. Handle removals
txt = txt.replaceAll("2", "");
txt = txt.replaceAll("3$", "A"); // 2.0 only
txt = txt.replaceAll("3", "");
// 6. put ten 1s on the end
txt = txt + "111111" + "1111"; // 1.0 only has 6 1s
// 7. take the first six characters as the code
return txt.substring(0, 10); // 1.0 truncates to 6
} | false | Codec | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Encodes the given String into a Caverphone value.
*
* @param txt String the source string
* @return A caverphone code for the given String
*/
public String caverphone(String txt) {
// NOTE: Version 1.0 of Caverphone is easily derivable from this code
// by commenting out the 2.0 lines and adding in the 1.0 lines
if( txt == null || txt.length() == 0 ) {
return "1111111111";
}
// 1. Convert to lowercase
txt = txt.toLowerCase(java.util.Locale.ENGLISH);
// 2. Remove anything not A-Z
txt = txt.replaceAll("[^a-z]", "");
// 2.5. Remove final e
txt = txt.replaceAll("e$", ""); // 2.0 only
// 3. Handle various start options
txt = txt.replaceAll("^cough", "cou2f");
txt = txt.replaceAll("^rough", "rou2f");
txt = txt.replaceAll("^tough", "tou2f");
txt = txt.replaceAll("^enough", "enou2f"); // 2.0 only
txt = txt.replaceAll("^trough", "trou2f"); // 2.0 only - note the spec says ^enough here again, c+p error I assume
txt = txt.replaceAll("^gn", "2n");
// End
txt = txt.replaceAll("mb$", "m2");
// 4. Handle replacements
txt = txt.replaceAll("cq", "2q");
txt = txt.replaceAll("ci", "si");
txt = txt.replaceAll("ce", "se");
txt = txt.replaceAll("cy", "sy");
txt = txt.replaceAll("tch", "2ch");
txt = txt.replaceAll("c", "k");
txt = txt.replaceAll("q", "k");
txt = txt.replaceAll("x", "k");
txt = txt.replaceAll("v", "f");
txt = txt.replaceAll("dg", "2g");
txt = txt.replaceAll("tio", "sio");
txt = txt.replaceAll("tia", "sia");
txt = txt.replaceAll("d", "t");
txt = txt.replaceAll("ph", "fh");
txt = txt.replaceAll("b", "p");
txt = txt.replaceAll("sh", "s2");
txt = txt.replaceAll("z", "s");
txt = txt.replaceAll("^[aeiou]", "A");
txt = txt.replaceAll("[aeiou]", "3");
txt = txt.replaceAll("j", "y"); // 2.0 only
txt = txt.replaceAll("^y3", "Y3"); // 2.0 only
txt = txt.replaceAll("^y", "A"); // 2.0 only
txt = txt.replaceAll("y", "3"); // 2.0 only
txt = txt.replaceAll("3gh3", "3kh3");
txt = txt.replaceAll("gh", "22");
txt = txt.replaceAll("g", "k");
txt = txt.replaceAll("s+", "S");
txt = txt.replaceAll("t+", "T");
txt = txt.replaceAll("p+", "P");
txt = txt.replaceAll("k+", "K");
txt = txt.replaceAll("f+", "F");
txt = txt.replaceAll("m+", "M");
txt = txt.replaceAll("n+", "N");
txt = txt.replaceAll("w3", "W3");
//txt = txt.replaceAll("wy", "Wy"); // 1.0 only
txt = txt.replaceAll("wh3", "Wh3");
txt = txt.replaceAll("w$", "3"); // 2.0 only
//txt = txt.replaceAll("why", "Why"); // 1.0 only
txt = txt.replaceAll("w", "2");
txt = txt.replaceAll("^h", "A");
txt = txt.replaceAll("h", "2");
txt = txt.replaceAll("r3", "R3");
txt = txt.replaceAll("r$", "3"); // 2.0 only
//txt = txt.replaceAll("ry", "Ry"); // 1.0 only
txt = txt.replaceAll("r", "2");
txt = txt.replaceAll("l3", "L3");
txt = txt.replaceAll("l$", "3"); // 2.0 only
//txt = txt.replaceAll("ly", "Ly"); // 1.0 only
txt = txt.replaceAll("l", "2");
//txt = txt.replaceAll("j", "y"); // 1.0 only
//txt = txt.replaceAll("y3", "Y3"); // 1.0 only
//txt = txt.replaceAll("y", "2"); // 1.0 only
// 5. Handle removals
txt = txt.replaceAll("2", "");
txt = txt.replaceAll("3$", "A"); // 2.0 only
txt = txt.replaceAll("3", "");
// 6. put ten 1s on the end
txt = txt + "111111" + "1111"; // 1.0 only has 6 1s
// 7. take the first six characters as the code
return txt.substring(0, 10); // 1.0 truncates to 6
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
104 | ba3e4cbff9611b68604caab910c15ac77fd585f06012eca30a1355ab137fe685 | JSType meet(JSType that) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
JSType meet(JSType that) {
UnionTypeBuilder builder = new UnionTypeBuilder(registry);
for (JSType alternate : alternates) {
if (alternate.isSubtype(that)) {
builder.addAlternate(alternate);
}
}
if (that instanceof UnionType) {
for (JSType otherAlternate : ((UnionType) that).alternates) {
if (otherAlternate.isSubtype(this)) {
builder.addAlternate(otherAlternate);
}
}
} else if (that.isSubtype(this)) {
builder.addAlternate(that);
}
JSType result = builder.build();
if (result != null) {
return result;
} else if (this.isObject() && that.isObject()) {
return getNativeType(JSTypeNative.NO_OBJECT_TYPE);
} else {
return getNativeType(JSTypeNative.NO_TYPE);
}
}
```
| JSType meet(JSType that) {
UnionTypeBuilder builder = new UnionTypeBuilder(registry);
for (JSType alternate : alternates) {
if (alternate.isSubtype(that)) {
builder.addAlternate(alternate);
}
}
if (that instanceof UnionType) {
for (JSType otherAlternate : ((UnionType) that).alternates) {
if (otherAlternate.isSubtype(this)) {
builder.addAlternate(otherAlternate);
}
}
} else if (that.isSubtype(this)) {
builder.addAlternate(that);
}
JSType result = builder.build();
if (result != null) {
return result;
} else if (this.isObject() && that.isObject()) {
return getNativeType(JSTypeNative.NO_OBJECT_TYPE);
} else {
return getNativeType(JSTypeNative.NO_TYPE);
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
JSType meet(JSType that) {
UnionTypeBuilder builder = new UnionTypeBuilder(registry);
for (JSType alternate : alternates) {
if (alternate.isSubtype(that)) {
builder.addAlternate(alternate);
}
}
if (that instanceof UnionType) {
for (JSType otherAlternate : ((UnionType) that).alternates) {
if (otherAlternate.isSubtype(this)) {
builder.addAlternate(otherAlternate);
}
}
} else if (that.isSubtype(this)) {
builder.addAlternate(that);
}
JSType result = builder.build();
if (result != null) {
return result;
} else if (this.isObject() && that.isObject()) {
return getNativeType(JSTypeNative.NO_OBJECT_TYPE);
} else {
return getNativeType(JSTypeNative.NO_TYPE);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
47 | ba6a44f0297e86bd1898fa66b58f13395c2c3e5f0be24bf9fff02177549e7cd8 | static void escape(StringBuilder accum, String string, Document.OutputSettings out,
boolean inAttribute, boolean normaliseWhite, boolean stripLeadingWhite) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
// this method is ugly, and does a lot. but other breakups cause rescanning and stringbuilder generations
static void escape(StringBuilder accum, String string, Document.OutputSettings out,
boolean inAttribute, boolean normaliseWhite, boolean stripLeadingWhite) {
boolean lastWasWhite = false;
boolean reachedNonWhite = false;
final EscapeMode escapeMode = out.escapeMode();
final CharsetEncoder encoder = out.encoder();
final CoreCharset coreCharset = CoreCharset.byName(encoder.charset().name());
final Map<Character, String> map = escapeMode.getMap();
final int length = string.length();
int codePoint;
for (int offset = 0; offset < length; offset += Character.charCount(codePoint)) {
codePoint = string.codePointAt(offset);
if (normaliseWhite) {
if (StringUtil.isWhitespace(codePoint)) {
if ((stripLeadingWhite && !reachedNonWhite) || lastWasWhite)
continue;
accum.append(' ');
lastWasWhite = true;
continue;
} else {
lastWasWhite = false;
reachedNonWhite = true;
}
}
// surrogate pairs, split implementation for efficiency on single char common case (saves creating strings, char[]):
if (codePoint < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
final char c = (char) codePoint;
// html specific and required escapes:
switch (c) {
case '&':
accum.append("&");
break;
case 0xA0:
if (escapeMode != EscapeMode.xhtml)
accum.append(" ");
else
accum.append(" ");
break;
case '<':
// escape when in character data or when in a xml attribue val; not needed in html attr val
if (!inAttribute || escapeMode == EscapeMode.xhtml)
accum.append("<");
else
accum.append(c);
break;
case '>':
if (!inAttribute)
accum.append(">");
else
accum.append(c);
break;
case '"':
if (inAttribute)
accum.append(""");
else
accum.append(c);
break;
default:
if (canEncode(coreCharset, c, encoder))
accum.append(c);
else if (map.containsKey(c))
accum.append('&').append(map.get(c)).append(';');
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
} else {
final String c = new String(Character.toChars(codePoint));
if (encoder.canEncode(c)) // uses fallback encoder for simplicity
accum.append(c);
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
}
}
```
| static void escape(StringBuilder accum, String string, Document.OutputSettings out,
boolean inAttribute, boolean normaliseWhite, boolean stripLeadingWhite) {
boolean lastWasWhite = false;
boolean reachedNonWhite = false;
final EscapeMode escapeMode = out.escapeMode();
final CharsetEncoder encoder = out.encoder();
final CoreCharset coreCharset = CoreCharset.byName(encoder.charset().name());
final Map<Character, String> map = escapeMode.getMap();
final int length = string.length();
int codePoint;
for (int offset = 0; offset < length; offset += Character.charCount(codePoint)) {
codePoint = string.codePointAt(offset);
if (normaliseWhite) {
if (StringUtil.isWhitespace(codePoint)) {
if ((stripLeadingWhite && !reachedNonWhite) || lastWasWhite)
continue;
accum.append(' ');
lastWasWhite = true;
continue;
} else {
lastWasWhite = false;
reachedNonWhite = true;
}
}
// surrogate pairs, split implementation for efficiency on single char common case (saves creating strings, char[]):
if (codePoint < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
final char c = (char) codePoint;
// html specific and required escapes:
switch (c) {
case '&':
accum.append("&");
break;
case 0xA0:
if (escapeMode != EscapeMode.xhtml)
accum.append(" ");
else
accum.append(" ");
break;
case '<':
// escape when in character data or when in a xml attribue val; not needed in html attr val
if (!inAttribute || escapeMode == EscapeMode.xhtml)
accum.append("<");
else
accum.append(c);
break;
case '>':
if (!inAttribute)
accum.append(">");
else
accum.append(c);
break;
case '"':
if (inAttribute)
accum.append(""");
else
accum.append(c);
break;
default:
if (canEncode(coreCharset, c, encoder))
accum.append(c);
else if (map.containsKey(c))
accum.append('&').append(map.get(c)).append(';');
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
} else {
final String c = new String(Character.toChars(codePoint));
if (encoder.canEncode(c)) // uses fallback encoder for simplicity
accum.append(c);
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
}
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
// this method is ugly, and does a lot. but other breakups cause rescanning and stringbuilder generations
static void escape(StringBuilder accum, String string, Document.OutputSettings out,
boolean inAttribute, boolean normaliseWhite, boolean stripLeadingWhite) {
boolean lastWasWhite = false;
boolean reachedNonWhite = false;
final EscapeMode escapeMode = out.escapeMode();
final CharsetEncoder encoder = out.encoder();
final CoreCharset coreCharset = CoreCharset.byName(encoder.charset().name());
final Map<Character, String> map = escapeMode.getMap();
final int length = string.length();
int codePoint;
for (int offset = 0; offset < length; offset += Character.charCount(codePoint)) {
codePoint = string.codePointAt(offset);
if (normaliseWhite) {
if (StringUtil.isWhitespace(codePoint)) {
if ((stripLeadingWhite && !reachedNonWhite) || lastWasWhite)
continue;
accum.append(' ');
lastWasWhite = true;
continue;
} else {
lastWasWhite = false;
reachedNonWhite = true;
}
}
// surrogate pairs, split implementation for efficiency on single char common case (saves creating strings, char[]):
if (codePoint < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
final char c = (char) codePoint;
// html specific and required escapes:
switch (c) {
case '&':
accum.append("&");
break;
case 0xA0:
if (escapeMode != EscapeMode.xhtml)
accum.append(" ");
else
accum.append(" ");
break;
case '<':
// escape when in character data or when in a xml attribue val; not needed in html attr val
if (!inAttribute || escapeMode == EscapeMode.xhtml)
accum.append("<");
else
accum.append(c);
break;
case '>':
if (!inAttribute)
accum.append(">");
else
accum.append(c);
break;
case '"':
if (inAttribute)
accum.append(""");
else
accum.append(c);
break;
default:
if (canEncode(coreCharset, c, encoder))
accum.append(c);
else if (map.containsKey(c))
accum.append('&').append(map.get(c)).append(';');
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
} else {
final String c = new String(Character.toChars(codePoint));
if (encoder.canEncode(c)) // uses fallback encoder for simplicity
accum.append(c);
else
accum.append("&#x").append(Integer.toHexString(codePoint)).append(';');
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
62 | ba87a78d5f0f6d09e391659ce9024ce6020d88fae00d9d7b49a20dd7cbc9e900 | private String format(JSError error, boolean warning) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private String format(JSError error, boolean warning) {
// extract source excerpt
SourceExcerptProvider source = getSource();
String sourceExcerpt = source == null ? null :
excerpt.get(
source, error.sourceName, error.lineNumber, excerptFormatter);
// formatting the message
StringBuilder b = new StringBuilder();
if (error.sourceName != null) {
b.append(error.sourceName);
if (error.lineNumber > 0) {
b.append(':');
b.append(error.lineNumber);
}
b.append(": ");
}
b.append(getLevelName(warning ? CheckLevel.WARNING : CheckLevel.ERROR));
b.append(" - ");
b.append(error.description);
b.append('\n');
if (sourceExcerpt != null) {
b.append(sourceExcerpt);
b.append('\n');
int charno = error.getCharno();
// padding equal to the excerpt and arrow at the end
// charno == sourceExpert.length() means something is missing
// at the end of the line
if (excerpt.equals(LINE)
&& 0 <= charno && charno <= sourceExcerpt.length()) {
for (int i = 0; i < charno; i++) {
char c = sourceExcerpt.charAt(i);
if (Character.isWhitespace(c)) {
b.append(c);
} else {
b.append(' ');
}
}
b.append("^\n");
}
}
return b.toString();
}
```
| private String format(JSError error, boolean warning) {
// extract source excerpt
SourceExcerptProvider source = getSource();
String sourceExcerpt = source == null ? null :
excerpt.get(
source, error.sourceName, error.lineNumber, excerptFormatter);
// formatting the message
StringBuilder b = new StringBuilder();
if (error.sourceName != null) {
b.append(error.sourceName);
if (error.lineNumber > 0) {
b.append(':');
b.append(error.lineNumber);
}
b.append(": ");
}
b.append(getLevelName(warning ? CheckLevel.WARNING : CheckLevel.ERROR));
b.append(" - ");
b.append(error.description);
b.append('\n');
if (sourceExcerpt != null) {
b.append(sourceExcerpt);
b.append('\n');
int charno = error.getCharno();
// padding equal to the excerpt and arrow at the end
// charno == sourceExpert.length() means something is missing
// at the end of the line
if (excerpt.equals(LINE)
&& 0 <= charno && charno <= sourceExcerpt.length()) {
for (int i = 0; i < charno; i++) {
char c = sourceExcerpt.charAt(i);
if (Character.isWhitespace(c)) {
b.append(c);
} else {
b.append(' ');
}
}
b.append("^\n");
}
}
return b.toString();
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private String format(JSError error, boolean warning) {
// extract source excerpt
SourceExcerptProvider source = getSource();
String sourceExcerpt = source == null ? null :
excerpt.get(
source, error.sourceName, error.lineNumber, excerptFormatter);
// formatting the message
StringBuilder b = new StringBuilder();
if (error.sourceName != null) {
b.append(error.sourceName);
if (error.lineNumber > 0) {
b.append(':');
b.append(error.lineNumber);
}
b.append(": ");
}
b.append(getLevelName(warning ? CheckLevel.WARNING : CheckLevel.ERROR));
b.append(" - ");
b.append(error.description);
b.append('\n');
if (sourceExcerpt != null) {
b.append(sourceExcerpt);
b.append('\n');
int charno = error.getCharno();
// padding equal to the excerpt and arrow at the end
// charno == sourceExpert.length() means something is missing
// at the end of the line
if (excerpt.equals(LINE)
&& 0 <= charno && charno <= sourceExcerpt.length()) {
for (int i = 0; i < charno; i++) {
char c = sourceExcerpt.charAt(i);
if (Character.isWhitespace(c)) {
b.append(c);
} else {
b.append(' ');
}
}
b.append("^\n");
}
}
return b.toString();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
24 | bb76c72388a72d22f2738a5044f71f132ff090b66708db8aa8b8f9e380b8a690 | public BaseSettings withDateFormat(DateFormat df) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public BaseSettings withDateFormat(DateFormat df) {
if (_dateFormat == df) {
return this;
}
TimeZone tz = (df == null) ? _timeZone : df.getTimeZone();
return new BaseSettings(_classIntrospector, _annotationIntrospector, _visibilityChecker, _propertyNamingStrategy, _typeFactory,
_typeResolverBuilder, df, _handlerInstantiator, _locale,
tz, _defaultBase64);
}
```
| public BaseSettings withDateFormat(DateFormat df) {
if (_dateFormat == df) {
return this;
}
TimeZone tz = (df == null) ? _timeZone : df.getTimeZone();
return new BaseSettings(_classIntrospector, _annotationIntrospector, _visibilityChecker, _propertyNamingStrategy, _typeFactory,
_typeResolverBuilder, df, _handlerInstantiator, _locale,
tz, _defaultBase64);
} | true | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public BaseSettings withDateFormat(DateFormat df) {
if (_dateFormat == df) {
return this;
}
TimeZone tz = (df == null) ? _timeZone : df.getTimeZone();
return new BaseSettings(_classIntrospector, _annotationIntrospector, _visibilityChecker, _propertyNamingStrategy, _typeFactory,
_typeResolverBuilder, df, _handlerInstantiator, _locale,
tz, _defaultBase64);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
28 | bba1f34a952c00e8cdbc832588d80c7166a51f03aa23635338f937fe3c184437 | private Integer getPivotRow(SimplexTableau tableau, final int col) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
* @param tableau simple tableau for the problem
* @param col the column to test the ratio of. See {@link #getPivotColumn(SimplexTableau)}
* @return row with the minimum ratio
*/
private Integer getPivotRow(SimplexTableau tableau, final int col) {
// create a list of all the rows that tie for the lowest score in the minimum ratio test
List<Integer> minRatioPositions = new ArrayList<Integer>();
double minRatio = Double.MAX_VALUE;
for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
final double entry = tableau.getEntry(i, col);
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
final double ratio = rhs / entry;
// check if the entry is strictly equal to the current min ratio
// do not use a ulp/epsilon check
final int cmp = Double.compare(ratio, minRatio);
if (cmp == 0) {
minRatioPositions.add(i);
} else if (cmp < 0) {
minRatio = ratio;
minRatioPositions = new ArrayList<Integer>();
minRatioPositions.add(i);
}
}
}
if (minRatioPositions.size() == 0) {
return null;
} else if (minRatioPositions.size() > 1) {
// there's a degeneracy as indicated by a tie in the minimum ratio test
// 1. check if there's an artificial variable that can be forced out of the basis
if (tableau.getNumArtificialVariables() > 0) {
for (Integer row : minRatioPositions) {
for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
int column = i + tableau.getArtificialVariableOffset();
final double entry = tableau.getEntry(row, column);
if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
return row;
}
}
}
}
// 2. apply Bland's rule to prevent cycling:
// take the row for which the corresponding basic variable has the smallest index
//
// see http://www.stanford.edu/class/msande310/blandrule.pdf
// see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
//
// Additional heuristic: if we did not get a solution after half of maxIterations
// revert to the simple case of just returning the top-most row
// This heuristic is based on empirical data gathered while investigating MATH-828.
if (getIterations() < getMaxIterations() / 2) {
Integer minRow = null;
int minIndex = tableau.getWidth();
for (Integer row : minRatioPositions) {
int i = tableau.getNumObjectiveFunctions();
for (; i < tableau.getWidth() - 1 && minRow != row; i++) {
if (row == tableau.getBasicRow(i)) {
if (i < minIndex) {
minIndex = i;
minRow = row;
}
}
}
}
return minRow;
}
}
return minRatioPositions.get(0);
}
```
| private Integer getPivotRow(SimplexTableau tableau, final int col) {
// create a list of all the rows that tie for the lowest score in the minimum ratio test
List<Integer> minRatioPositions = new ArrayList<Integer>();
double minRatio = Double.MAX_VALUE;
for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
final double entry = tableau.getEntry(i, col);
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
final double ratio = rhs / entry;
// check if the entry is strictly equal to the current min ratio
// do not use a ulp/epsilon check
final int cmp = Double.compare(ratio, minRatio);
if (cmp == 0) {
minRatioPositions.add(i);
} else if (cmp < 0) {
minRatio = ratio;
minRatioPositions = new ArrayList<Integer>();
minRatioPositions.add(i);
}
}
}
if (minRatioPositions.size() == 0) {
return null;
} else if (minRatioPositions.size() > 1) {
// there's a degeneracy as indicated by a tie in the minimum ratio test
// 1. check if there's an artificial variable that can be forced out of the basis
if (tableau.getNumArtificialVariables() > 0) {
for (Integer row : minRatioPositions) {
for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
int column = i + tableau.getArtificialVariableOffset();
final double entry = tableau.getEntry(row, column);
if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
return row;
}
}
}
}
// 2. apply Bland's rule to prevent cycling:
// take the row for which the corresponding basic variable has the smallest index
//
// see http://www.stanford.edu/class/msande310/blandrule.pdf
// see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
//
// Additional heuristic: if we did not get a solution after half of maxIterations
// revert to the simple case of just returning the top-most row
// This heuristic is based on empirical data gathered while investigating MATH-828.
if (getIterations() < getMaxIterations() / 2) {
Integer minRow = null;
int minIndex = tableau.getWidth();
for (Integer row : minRatioPositions) {
int i = tableau.getNumObjectiveFunctions();
for (; i < tableau.getWidth() - 1 && minRow != row; i++) {
if (row == tableau.getBasicRow(i)) {
if (i < minIndex) {
minIndex = i;
minRow = row;
}
}
}
}
return minRow;
}
}
return minRatioPositions.get(0);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
* @param tableau simple tableau for the problem
* @param col the column to test the ratio of. See {@link #getPivotColumn(SimplexTableau)}
* @return row with the minimum ratio
*/
private Integer getPivotRow(SimplexTableau tableau, final int col) {
// create a list of all the rows that tie for the lowest score in the minimum ratio test
List<Integer> minRatioPositions = new ArrayList<Integer>();
double minRatio = Double.MAX_VALUE;
for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
final double entry = tableau.getEntry(i, col);
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
final double ratio = rhs / entry;
// check if the entry is strictly equal to the current min ratio
// do not use a ulp/epsilon check
final int cmp = Double.compare(ratio, minRatio);
if (cmp == 0) {
minRatioPositions.add(i);
} else if (cmp < 0) {
minRatio = ratio;
minRatioPositions = new ArrayList<Integer>();
minRatioPositions.add(i);
}
}
}
if (minRatioPositions.size() == 0) {
return null;
} else if (minRatioPositions.size() > 1) {
// there's a degeneracy as indicated by a tie in the minimum ratio test
// 1. check if there's an artificial variable that can be forced out of the basis
if (tableau.getNumArtificialVariables() > 0) {
for (Integer row : minRatioPositions) {
for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
int column = i + tableau.getArtificialVariableOffset();
final double entry = tableau.getEntry(row, column);
if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
return row;
}
}
}
}
// 2. apply Bland's rule to prevent cycling:
// take the row for which the corresponding basic variable has the smallest index
//
// see http://www.stanford.edu/class/msande310/blandrule.pdf
// see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
//
// Additional heuristic: if we did not get a solution after half of maxIterations
// revert to the simple case of just returning the top-most row
// This heuristic is based on empirical data gathered while investigating MATH-828.
if (getIterations() < getMaxIterations() / 2) {
Integer minRow = null;
int minIndex = tableau.getWidth();
for (Integer row : minRatioPositions) {
int i = tableau.getNumObjectiveFunctions();
for (; i < tableau.getWidth() - 1 && minRow != row; i++) {
if (row == tableau.getBasicRow(i)) {
if (i < minIndex) {
minIndex = i;
minRow = row;
}
}
}
}
return minRow;
}
}
return minRatioPositions.get(0);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
111 | bba504060b0cae8fd7056388de5113c8db085af1f94d8d529f3bdbd149992435 | @Override
protected JSType caseTopType(JSType topType) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
protected JSType caseTopType(JSType topType) {
return topType;
}
```
| @Override
protected JSType caseTopType(JSType topType) {
return topType;
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
protected JSType caseTopType(JSType topType) {
return topType;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
52 | bbaf7bba90a47bb0717f7c29dfa8be47359e3df695463ae84529b15d4641aefc | public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Build the rotation that transforms a pair of vector into another pair.
* <p>Except for possible scale factors, if the instance were applied to
* the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
* (v<sub>1</sub>, v<sub>2</sub>).</p>
* <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
* not the same as the angular separation between v<sub>1</sub> and
* v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
* v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
* v<sub>2</sub>) plane.</p>
* @param u1 first vector of the origin pair
* @param u2 second vector of the origin pair
* @param v1 desired image of u1 by the rotation
* @param v2 desired image of u2 by the rotation
* @exception IllegalArgumentException if the norm of one of the vectors is zero
*/
public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
// norms computation
double u1u1 = u1.getNormSq();
double u2u2 = u2.getNormSq();
double v1v1 = v1.getNormSq();
double v2v2 = v2.getNormSq();
if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
}
// normalize v1 in order to have (v1'|v1') = (u1|u1)
v1 = new Vector3D(FastMath.sqrt(u1u1 / v1v1), v1);
// adjust v2 in order to have (u1|u2) = (v1'|v2') and (v2'|v2') = (u2|u2)
double u1u2 = u1.dotProduct(u2);
double v1v2 = v1.dotProduct(v2);
double coeffU = u1u2 / u1u1;
double coeffV = v1v2 / u1u1;
double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
double alpha = coeffU - beta * coeffV;
v2 = new Vector3D(alpha, v1, beta, v2);
// preliminary computation
Vector3D uRef = u1;
Vector3D vRef = v1;
Vector3D v1Su1 = v1.subtract(u1);
Vector3D v2Su2 = v2.subtract(u2);
Vector3D k = v1Su1.crossProduct(v2Su2);
Vector3D u3 = u1.crossProduct(u2);
double c = k.dotProduct(u3);
final double inPlaneThreshold = 0.001;
if (c <= inPlaneThreshold * k.getNorm() * u3.getNorm()) {
// the (q1, q2, q3) vector is close to the (u1, u2) plane
// we try other vectors
Vector3D v3 = Vector3D.crossProduct(v1, v2);
Vector3D v3Su3 = v3.subtract(u3);
k = v1Su1.crossProduct(v3Su3);
Vector3D u2Prime = u1.crossProduct(u3);
c = k.dotProduct(u2Prime);
if (c <= inPlaneThreshold * k.getNorm() * u2Prime.getNorm()) {
// the (q1, q2, q3) vector is also close to the (u1, u3) plane,
// it is almost aligned with u1: we try (u2, u3) and (v2, v3)
k = v2Su2.crossProduct(v3Su3);;
c = k.dotProduct(u2.crossProduct(u3));;
if (c <= 0) {
// the (q1, q2, q3) vector is aligned with everything
// this is really the identity rotation
q0 = 1.0;
q1 = 0.0;
q2 = 0.0;
q3 = 0.0;
return;
}
// we will have to use u2 and v2 to compute the scalar part
uRef = u2;
vRef = v2;
}
}
// compute the vectorial part
c = FastMath.sqrt(c);
double inv = 1.0 / (c + c);
q1 = inv * k.getX();
q2 = inv * k.getY();
q3 = inv * k.getZ();
// compute the scalar part
k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
uRef.getZ() * q1 - uRef.getX() * q3,
uRef.getX() * q2 - uRef.getY() * q1);
q0 = vRef.dotProduct(k) / (2 * k.getNormSq());
}
```
| public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
// norms computation
double u1u1 = u1.getNormSq();
double u2u2 = u2.getNormSq();
double v1v1 = v1.getNormSq();
double v2v2 = v2.getNormSq();
if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
}
// normalize v1 in order to have (v1'|v1') = (u1|u1)
v1 = new Vector3D(FastMath.sqrt(u1u1 / v1v1), v1);
// adjust v2 in order to have (u1|u2) = (v1'|v2') and (v2'|v2') = (u2|u2)
double u1u2 = u1.dotProduct(u2);
double v1v2 = v1.dotProduct(v2);
double coeffU = u1u2 / u1u1;
double coeffV = v1v2 / u1u1;
double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
double alpha = coeffU - beta * coeffV;
v2 = new Vector3D(alpha, v1, beta, v2);
// preliminary computation
Vector3D uRef = u1;
Vector3D vRef = v1;
Vector3D v1Su1 = v1.subtract(u1);
Vector3D v2Su2 = v2.subtract(u2);
Vector3D k = v1Su1.crossProduct(v2Su2);
Vector3D u3 = u1.crossProduct(u2);
double c = k.dotProduct(u3);
final double inPlaneThreshold = 0.001;
if (c <= inPlaneThreshold * k.getNorm() * u3.getNorm()) {
// the (q1, q2, q3) vector is close to the (u1, u2) plane
// we try other vectors
Vector3D v3 = Vector3D.crossProduct(v1, v2);
Vector3D v3Su3 = v3.subtract(u3);
k = v1Su1.crossProduct(v3Su3);
Vector3D u2Prime = u1.crossProduct(u3);
c = k.dotProduct(u2Prime);
if (c <= inPlaneThreshold * k.getNorm() * u2Prime.getNorm()) {
// the (q1, q2, q3) vector is also close to the (u1, u3) plane,
// it is almost aligned with u1: we try (u2, u3) and (v2, v3)
k = v2Su2.crossProduct(v3Su3);;
c = k.dotProduct(u2.crossProduct(u3));;
if (c <= 0) {
// the (q1, q2, q3) vector is aligned with everything
// this is really the identity rotation
q0 = 1.0;
q1 = 0.0;
q2 = 0.0;
q3 = 0.0;
return;
}
// we will have to use u2 and v2 to compute the scalar part
uRef = u2;
vRef = v2;
}
}
// compute the vectorial part
c = FastMath.sqrt(c);
double inv = 1.0 / (c + c);
q1 = inv * k.getX();
q2 = inv * k.getY();
q3 = inv * k.getZ();
// compute the scalar part
k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
uRef.getZ() * q1 - uRef.getX() * q3,
uRef.getX() * q2 - uRef.getY() * q1);
q0 = vRef.dotProduct(k) / (2 * k.getNormSq());
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Build the rotation that transforms a pair of vector into another pair.
* <p>Except for possible scale factors, if the instance were applied to
* the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
* (v<sub>1</sub>, v<sub>2</sub>).</p>
* <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
* not the same as the angular separation between v<sub>1</sub> and
* v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
* v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
* v<sub>2</sub>) plane.</p>
* @param u1 first vector of the origin pair
* @param u2 second vector of the origin pair
* @param v1 desired image of u1 by the rotation
* @param v2 desired image of u2 by the rotation
* @exception IllegalArgumentException if the norm of one of the vectors is zero
*/
public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
// norms computation
double u1u1 = u1.getNormSq();
double u2u2 = u2.getNormSq();
double v1v1 = v1.getNormSq();
double v2v2 = v2.getNormSq();
if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
}
// normalize v1 in order to have (v1'|v1') = (u1|u1)
v1 = new Vector3D(FastMath.sqrt(u1u1 / v1v1), v1);
// adjust v2 in order to have (u1|u2) = (v1'|v2') and (v2'|v2') = (u2|u2)
double u1u2 = u1.dotProduct(u2);
double v1v2 = v1.dotProduct(v2);
double coeffU = u1u2 / u1u1;
double coeffV = v1v2 / u1u1;
double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
double alpha = coeffU - beta * coeffV;
v2 = new Vector3D(alpha, v1, beta, v2);
// preliminary computation
Vector3D uRef = u1;
Vector3D vRef = v1;
Vector3D v1Su1 = v1.subtract(u1);
Vector3D v2Su2 = v2.subtract(u2);
Vector3D k = v1Su1.crossProduct(v2Su2);
Vector3D u3 = u1.crossProduct(u2);
double c = k.dotProduct(u3);
final double inPlaneThreshold = 0.001;
if (c <= inPlaneThreshold * k.getNorm() * u3.getNorm()) {
// the (q1, q2, q3) vector is close to the (u1, u2) plane
// we try other vectors
Vector3D v3 = Vector3D.crossProduct(v1, v2);
Vector3D v3Su3 = v3.subtract(u3);
k = v1Su1.crossProduct(v3Su3);
Vector3D u2Prime = u1.crossProduct(u3);
c = k.dotProduct(u2Prime);
if (c <= inPlaneThreshold * k.getNorm() * u2Prime.getNorm()) {
// the (q1, q2, q3) vector is also close to the (u1, u3) plane,
// it is almost aligned with u1: we try (u2, u3) and (v2, v3)
k = v2Su2.crossProduct(v3Su3);;
c = k.dotProduct(u2.crossProduct(u3));;
if (c <= 0) {
// the (q1, q2, q3) vector is aligned with everything
// this is really the identity rotation
q0 = 1.0;
q1 = 0.0;
q2 = 0.0;
q3 = 0.0;
return;
}
// we will have to use u2 and v2 to compute the scalar part
uRef = u2;
vRef = v2;
}
}
// compute the vectorial part
c = FastMath.sqrt(c);
double inv = 1.0 / (c + c);
q1 = inv * k.getX();
q2 = inv * k.getY();
q3 = inv * k.getZ();
// compute the scalar part
k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
uRef.getZ() * q1 - uRef.getX() * q3,
uRef.getX() * q2 - uRef.getY() * q1);
q0 = vRef.dotProduct(k) / (2 * k.getNormSq());
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
146 | bbfc1deec838555f87d9d31f76a3bd144a7f39c8ab9c53c7db6dfa96c86aa68a | public TypePair getTypesUnderInequality(JSType that) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Computes the subset of {@code this} and {@code that} types if inequality
* is observed. If a value {@code v1} of type {@code number} is not equal to a
* value {@code v2} of type {@code (undefined,number)}, we can infer that the
* type of {@code v1} is {@code number} and the type of {@code v2} is
* {@code number} as well.
*
* @return a pair containing the restricted type of {@code this} as the first
* component and the restricted type of {@code that} as the second
* element. The returned pair is never {@code null} even though its
* components may be {@code null}
*/
public TypePair getTypesUnderInequality(JSType that) {
// unions types
if (that instanceof UnionType) {
TypePair p = that.getTypesUnderInequality(this);
return new TypePair(p.typeB, p.typeA);
}
// other types
switch (this.testForEquality(that)) {
case TRUE:
return new TypePair(null, null);
case FALSE:
case UNKNOWN:
return new TypePair(this, that);
}
// switch case is exhaustive
throw new IllegalStateException();
}
```
| public TypePair getTypesUnderInequality(JSType that) {
// unions types
if (that instanceof UnionType) {
TypePair p = that.getTypesUnderInequality(this);
return new TypePair(p.typeB, p.typeA);
}
// other types
switch (this.testForEquality(that)) {
case TRUE:
return new TypePair(null, null);
case FALSE:
case UNKNOWN:
return new TypePair(this, that);
}
// switch case is exhaustive
throw new IllegalStateException();
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Computes the subset of {@code this} and {@code that} types if inequality
* is observed. If a value {@code v1} of type {@code number} is not equal to a
* value {@code v2} of type {@code (undefined,number)}, we can infer that the
* type of {@code v1} is {@code number} and the type of {@code v2} is
* {@code number} as well.
*
* @return a pair containing the restricted type of {@code this} as the first
* component and the restricted type of {@code that} as the second
* element. The returned pair is never {@code null} even though its
* components may be {@code null}
*/
public TypePair getTypesUnderInequality(JSType that) {
// unions types
if (that instanceof UnionType) {
TypePair p = that.getTypesUnderInequality(this);
return new TypePair(p.typeB, p.typeA);
}
// other types
switch (this.testForEquality(that)) {
case TRUE:
return new TypePair(null, null);
case FALSE:
case UNKNOWN:
return new TypePair(this, that);
}
// switch case is exhaustive
throw new IllegalStateException();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
107 | bc18e584a4774c878ed9bb8d4d310af0874a3994bbc8c90aa1260a8e65efc73e | protected final JsonDeserializer<Object> _findDeserializer(DeserializationContext ctxt,
String typeId) throws IOException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/*
/**********************************************************
/* Helper methods for sub-classes
/**********************************************************
*/
protected final JsonDeserializer<Object> _findDeserializer(DeserializationContext ctxt,
String typeId) throws IOException
{
JsonDeserializer<Object> deser = _deserializers.get(typeId);
if (deser == null) {
/* As per [databind#305], need to provide contextual info. But for
* backwards compatibility, let's start by only supporting this
* for base class, not via interface. Later on we can add this
* to the interface, assuming deprecation at base class helps.
*/
JavaType type = _idResolver.typeFromId(ctxt, typeId);
if (type == null) {
// use the default impl if no type id available:
deser = _findDefaultImplDeserializer(ctxt);
if (deser == null) {
// 10-May-2016, tatu: We may get some help...
JavaType actual = _handleUnknownTypeId(ctxt, typeId);
if (actual == null) { // what should this be taken to mean?
// 17-Jan-2019, tatu: As per [databind#2221], better NOT return `null` but...
return NullifyingDeserializer.instance;
}
// ... would this actually work?
deser = ctxt.findContextualValueDeserializer(actual, _property);
}
} else {
/* 16-Dec-2010, tatu: Since nominal type we get here has no (generic) type parameters,
* we actually now need to explicitly narrow from base type (which may have parameterization)
* using raw type.
*
* One complication, though; cannot change 'type class' (simple type to container); otherwise
* we may try to narrow a SimpleType (Object.class) into MapType (Map.class), losing actual
* type in process (getting SimpleType of Map.class which will not work as expected)
*/
if ((_baseType != null)
&& _baseType.getClass() == type.getClass()) {
/* 09-Aug-2015, tatu: Not sure if the second part of the check makes sense;
* but it appears to check that JavaType impl class is the same which is
* important for some reason?
* Disabling the check will break 2 Enum-related tests.
*/
// 19-Jun-2016, tatu: As per [databind#1270] we may actually get full
// generic type with custom type resolvers. If so, should try to retain them.
// Whether this is sufficient to avoid problems remains to be seen, but for
// now it should improve things.
if (!type.hasGenericTypes()) {
type = ctxt.getTypeFactory().constructSpecializedType(_baseType, type.getRawClass());
}
}
deser = ctxt.findContextualValueDeserializer(type, _property);
}
_deserializers.put(typeId, deser);
}
return deser;
}
```
| protected final JsonDeserializer<Object> _findDeserializer(DeserializationContext ctxt,
String typeId) throws IOException
{
JsonDeserializer<Object> deser = _deserializers.get(typeId);
if (deser == null) {
/* As per [databind#305], need to provide contextual info. But for
* backwards compatibility, let's start by only supporting this
* for base class, not via interface. Later on we can add this
* to the interface, assuming deprecation at base class helps.
*/
JavaType type = _idResolver.typeFromId(ctxt, typeId);
if (type == null) {
// use the default impl if no type id available:
deser = _findDefaultImplDeserializer(ctxt);
if (deser == null) {
// 10-May-2016, tatu: We may get some help...
JavaType actual = _handleUnknownTypeId(ctxt, typeId);
if (actual == null) { // what should this be taken to mean?
// 17-Jan-2019, tatu: As per [databind#2221], better NOT return `null` but...
return NullifyingDeserializer.instance;
}
// ... would this actually work?
deser = ctxt.findContextualValueDeserializer(actual, _property);
}
} else {
/* 16-Dec-2010, tatu: Since nominal type we get here has no (generic) type parameters,
* we actually now need to explicitly narrow from base type (which may have parameterization)
* using raw type.
*
* One complication, though; cannot change 'type class' (simple type to container); otherwise
* we may try to narrow a SimpleType (Object.class) into MapType (Map.class), losing actual
* type in process (getting SimpleType of Map.class which will not work as expected)
*/
if ((_baseType != null)
&& _baseType.getClass() == type.getClass()) {
/* 09-Aug-2015, tatu: Not sure if the second part of the check makes sense;
* but it appears to check that JavaType impl class is the same which is
* important for some reason?
* Disabling the check will break 2 Enum-related tests.
*/
// 19-Jun-2016, tatu: As per [databind#1270] we may actually get full
// generic type with custom type resolvers. If so, should try to retain them.
// Whether this is sufficient to avoid problems remains to be seen, but for
// now it should improve things.
if (!type.hasGenericTypes()) {
type = ctxt.getTypeFactory().constructSpecializedType(_baseType, type.getRawClass());
}
}
deser = ctxt.findContextualValueDeserializer(type, _property);
}
_deserializers.put(typeId, deser);
}
return deser;
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/*
/**********************************************************
/* Helper methods for sub-classes
/**********************************************************
*/
protected final JsonDeserializer<Object> _findDeserializer(DeserializationContext ctxt,
String typeId) throws IOException
{
JsonDeserializer<Object> deser = _deserializers.get(typeId);
if (deser == null) {
/* As per [databind#305], need to provide contextual info. But for
* backwards compatibility, let's start by only supporting this
* for base class, not via interface. Later on we can add this
* to the interface, assuming deprecation at base class helps.
*/
JavaType type = _idResolver.typeFromId(ctxt, typeId);
if (type == null) {
// use the default impl if no type id available:
deser = _findDefaultImplDeserializer(ctxt);
if (deser == null) {
// 10-May-2016, tatu: We may get some help...
JavaType actual = _handleUnknownTypeId(ctxt, typeId);
if (actual == null) { // what should this be taken to mean?
// 17-Jan-2019, tatu: As per [databind#2221], better NOT return `null` but...
return NullifyingDeserializer.instance;
}
// ... would this actually work?
deser = ctxt.findContextualValueDeserializer(actual, _property);
}
} else {
/* 16-Dec-2010, tatu: Since nominal type we get here has no (generic) type parameters,
* we actually now need to explicitly narrow from base type (which may have parameterization)
* using raw type.
*
* One complication, though; cannot change 'type class' (simple type to container); otherwise
* we may try to narrow a SimpleType (Object.class) into MapType (Map.class), losing actual
* type in process (getting SimpleType of Map.class which will not work as expected)
*/
if ((_baseType != null)
&& _baseType.getClass() == type.getClass()) {
/* 09-Aug-2015, tatu: Not sure if the second part of the check makes sense;
* but it appears to check that JavaType impl class is the same which is
* important for some reason?
* Disabling the check will break 2 Enum-related tests.
*/
// 19-Jun-2016, tatu: As per [databind#1270] we may actually get full
// generic type with custom type resolvers. If so, should try to retain them.
// Whether this is sufficient to avoid problems remains to be seen, but for
// now it should improve things.
if (!type.hasGenericTypes()) {
type = ctxt.getTypeFactory().constructSpecializedType(_baseType, type.getRawClass());
}
}
deser = ctxt.findContextualValueDeserializer(type, _property);
}
_deserializers.put(typeId, deser);
}
return deser;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
21 | bc70e01a22fb504b0c5602a5f33d6ed6be4e3a3906fe8efac1f34375431e87eb | private void writeBits(final DataOutput header, final BitSet bits, final int length) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private void writeBits(final DataOutput header, final BitSet bits, final int length) throws IOException {
int cache = 0;
int shift = 7;
for (int i = 0; i < length; i++) {
cache |= ((bits.get(i) ? 1 : 0) << shift);
if (--shift < 0) {
header.write(cache);
shift = 7;
cache = 0;
}
}
if (shift != 7) {
header.write(cache);
}
}
```
| private void writeBits(final DataOutput header, final BitSet bits, final int length) throws IOException {
int cache = 0;
int shift = 7;
for (int i = 0; i < length; i++) {
cache |= ((bits.get(i) ? 1 : 0) << shift);
if (--shift < 0) {
header.write(cache);
shift = 7;
cache = 0;
}
}
if (shift != 7) {
header.write(cache);
}
} | false | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private void writeBits(final DataOutput header, final BitSet bits, final int length) throws IOException {
int cache = 0;
int shift = 7;
for (int i = 0; i < length; i++) {
cache |= ((bits.get(i) ? 1 : 0) << shift);
if (--shift < 0) {
header.write(cache);
shift = 7;
cache = 0;
}
}
if (shift != 7) {
header.write(cache);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
160 | bc85174c5abb80f9b8b3d8dd73610f6b5e0daba6f5f74d3f16f8f460110720f0 | public void initOptions(CompilerOptions options) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Initialize the compiler options. Only necessary if you're not doing
* a normal compile() job.
*/
public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
ComposeWarningsGuard composedGuards = new ComposeWarningsGuard(guards);
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
!composedGuards.enables(DiagnosticGroups.CHECK_VARIABLES)) {
composedGuards.addGuard(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = composedGuards;
}
```
| public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
ComposeWarningsGuard composedGuards = new ComposeWarningsGuard(guards);
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
!composedGuards.enables(DiagnosticGroups.CHECK_VARIABLES)) {
composedGuards.addGuard(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = composedGuards;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Initialize the compiler options. Only necessary if you're not doing
* a normal compile() job.
*/
public void initOptions(CompilerOptions options) {
this.options = options;
if (errorManager == null) {
if (outStream == null) {
setErrorManager(
new LoggerErrorManager(createMessageFormatter(), logger));
} else {
PrintStreamErrorManager printer =
new PrintStreamErrorManager(createMessageFormatter(), outStream);
printer.setSummaryDetailLevel(options.summaryDetailLevel);
setErrorManager(printer);
}
}
// DiagnosticGroups override the plain checkTypes option.
if (options.enables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = true;
} else if (options.disables(DiagnosticGroups.CHECK_TYPES)) {
options.checkTypes = false;
} else if (!options.checkTypes) {
// If DiagnosticGroups did not override the plain checkTypes
// option, and checkTypes is enabled, then turn off the
// parser type warnings.
options.setWarningLevel(
DiagnosticGroup.forType(
RhinoErrorReporter.TYPE_PARSE_ERROR),
CheckLevel.OFF);
}
if (options.checkGlobalThisLevel.isOn()) {
options.setWarningLevel(
DiagnosticGroups.GLOBAL_THIS,
options.checkGlobalThisLevel);
}
// Initialize the warnings guard.
List<WarningsGuard> guards = Lists.newArrayList();
guards.add(
new SuppressDocWarningsGuard(
getDiagnosticGroups().getRegisteredGroups()));
guards.add(options.getWarningsGuard());
ComposeWarningsGuard composedGuards = new ComposeWarningsGuard(guards);
// All passes must run the variable check. This synthesizes
// variables later so that the compiler doesn't crash. It also
// checks the externs file for validity. If you don't want to warn
// about missing variable declarations, we shut that specific
// error off.
if (!options.checkSymbols &&
!composedGuards.enables(DiagnosticGroups.CHECK_VARIABLES)) {
composedGuards.addGuard(new DiagnosticGroupWarningsGuard(
DiagnosticGroups.CHECK_VARIABLES, CheckLevel.OFF));
}
this.warningsGuard = composedGuards;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
45 | bcafecefb807e9247e0168ffc90538f325818b51f6a7650291efa38e18fdfd6d | public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Write an long integer into a buffer as an octal string if this
* will fit, or as a binary number otherwise.
*
* Uses {@link #formatUnsignedOctalString} to format
* the value as an octal string with leading zeros.
* The converted number is followed by a space.
*
* @param value The value to write into the buffer.
* @param buf The destination buffer.
* @param offset The starting offset into the buffer.
* @param length The length of the buffer.
* @return The updated offset.
* @throws IllegalArgumentException if the value (and trailer)
* will not fit in the buffer.
* @since 1.4
*/
public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
}
formatBigIntegerBinary(value, buf, offset, length, negative);
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
}
```
| public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
}
formatBigIntegerBinary(value, buf, offset, length, negative);
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Write an long integer into a buffer as an octal string if this
* will fit, or as a binary number otherwise.
*
* Uses {@link #formatUnsignedOctalString} to format
* the value as an octal string with leading zeros.
* The converted number is followed by a space.
*
* @param value The value to write into the buffer.
* @param buf The destination buffer.
* @param offset The starting offset into the buffer.
* @param length The length of the buffer.
* @return The updated offset.
* @throws IllegalArgumentException if the value (and trailer)
* will not fit in the buffer.
* @since 1.4
*/
public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
}
formatBigIntegerBinary(value, buf, offset, length, negative);
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
32 | bcb1fb1dfd64bbcc92bda5ebcbfab67614ea515dddae92e27d561adfb4354829 | @Override
public Element clone() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
public Element clone() {
Element clone = (Element) super.clone();
clone.classNames = null; // derived on first hit, otherwise gets a pointer to source classnames
return clone;
}
```
| @Override
public Element clone() {
Element clone = (Element) super.clone();
clone.classNames = null; // derived on first hit, otherwise gets a pointer to source classnames
return clone;
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
public Element clone() {
Element clone = (Element) super.clone();
clone.classNames = null; // derived on first hit, otherwise gets a pointer to source classnames
return clone;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
38 | bcc4cc2897291048b661eaa2331702cced12f4cb2989a4cced36db3b80ea74a7 | private void prelim(double[] lowerBound,
double[] upperBound) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
* BMAT and ZMAT for the first iteration, and it maintains the values of
* NF and KOPT. The vector X is also changed by PRELIM.
*
* The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
* same as the corresponding arguments in SUBROUTINE BOBYQA.
* The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
* are the same as the corresponding arguments in BOBYQB, the elements
* of SL and SU being set in BOBYQA.
* GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
* it is set by PRELIM to the gradient of the quadratic model at XBASE.
* If XOPT is nonzero, BOBYQB will change it to its usual value later.
* NF is maintaned as the number of calls of CALFUN so far.
* KOPT will be such that the least calculated value of F so far is at
* the point XPT(KOPT,.)+XBASE in the space of the variables.
*
* @param lowerBound Lower bounds.
* @param upperBound Upper bounds.
*/
// ----------------------------------------------------------------------------------------
} // altmov
private void prelim(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int ndim = bMatrix.getRowDimension();
final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
final double recip = 1d / rhosq;
final int np = n + 1;
// Set XBASE to the initial vector of variables, and set the initial
// elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
for (int j = 0; j < n; j++) {
originShift.setEntry(j, currentBest.getEntry(j));
for (int k = 0; k < npt; k++) {
interpolationPoints.setEntry(k, j, ZERO);
}
for (int i = 0; i < ndim; i++) {
bMatrix.setEntry(i, j, ZERO);
}
}
for (int i = 0, max = n * np / 2; i < max; i++) {
modelSecondDerivativesValues.setEntry(i, ZERO);
}
for (int k = 0; k < npt; k++) {
modelSecondDerivativesParameters.setEntry(k, ZERO);
for (int j = 0, max = npt - np; j < max; j++) {
zMatrix.setEntry(k, j, ZERO);
}
}
// Begin the initialization procedure. NF becomes one more than the number
// of function values so far. The coordinates of the displacement of the
// next initial interpolation point from XBASE are set in XPT(NF+1,.).
int ipt = 0;
int jpt = 0;
double fbeg = Double.NaN;
do {
final int nfm = getEvaluations();
final int nfx = nfm - n;
final int nfmm = nfm - 1;
final int nfxm = nfx - 1;
double stepa = 0;
double stepb = 0;
if (nfm <= 2 * n) {
if (nfm >= 1 &&
nfm <= n) {
stepa = initialTrustRegionRadius;
if (upperDifference.getEntry(nfmm) == ZERO) {
stepa = -stepa;
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfmm, stepa);
} else if (nfm > n) {
stepa = interpolationPoints.getEntry(nfx, nfxm);
stepb = -initialTrustRegionRadius;
if (lowerDifference.getEntry(nfxm) == ZERO) {
stepb = Math.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
if (upperDifference.getEntry(nfxm) == ZERO) {
stepb = Math.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfxm, stepb);
}
} else {
final int tmp1 = (nfm - np) / n;
jpt = nfm - tmp1 * n - n;
ipt = jpt + tmp1;
if (ipt > n) {
final int tmp2 = jpt;
jpt = ipt - n;
ipt = tmp2;
throw new PathIsExploredException(); // XXX
}
final int iptMinus1 = ipt;
final int jptMinus1 = jpt;
interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
}
// Calculate the next value of F. The least function value so far and
// its index are required.
for (int j = 0; j < n; j++) {
currentBest.setEntry(j, Math.min(Math.max(lowerBound[j],
originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
upperBound[j]));
if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
currentBest.setEntry(j, lowerBound[j]);
}
if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
currentBest.setEntry(j, upperBound[j]);
}
}
final double objectiveValue = computeObjectiveValue(currentBest.toArray());
final double f = isMinimize ? objectiveValue : -objectiveValue;
final int numEval = getEvaluations(); // nfm + 1
fAtInterpolationPoints.setEntry(nfm, f);
if (numEval == 1) {
fbeg = f;
trustRegionCenterInterpolationPointIndex = 0;
} else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
trustRegionCenterInterpolationPointIndex = nfm;
}
// Set the nonzero initial elements of BMAT and the quadratic model in the
// cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
// of the NF-th and (NF-N)-th interpolation points may be switched, in
// order that the function value at the first of them contributes to the
// off-diagonal second derivative terms of the initial quadratic model.
if (numEval <= 2 * n + 1) {
if (numEval >= 2 &&
numEval <= n + 1) {
gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
if (npt < numEval + n) {
final double oneOverStepA = ONE / stepa;
bMatrix.setEntry(0, nfmm, -oneOverStepA);
bMatrix.setEntry(nfm, nfmm, oneOverStepA);
bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
throw new PathIsExploredException(); // XXX
}
} else if (numEval >= n + 2) {
final int ih = nfx * (nfx + 1) / 2 - 1;
final double tmp = (f - fbeg) / stepb;
final double diff = stepb - stepa;
modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
if (stepa * stepb < ZERO) {
if (f < fAtInterpolationPoints.getEntry(nfm - n)) {
fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
fAtInterpolationPoints.setEntry(nfm - n, f);
if (trustRegionCenterInterpolationPointIndex == nfm) {
trustRegionCenterInterpolationPointIndex = nfm - n;
}
interpolationPoints.setEntry(nfm - n, nfxm, stepb);
interpolationPoints.setEntry(nfm, nfxm, stepa);
}
}
bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
bMatrix.setEntry(nfm - n, nfxm,
-bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
zMatrix.setEntry(0, nfxm, Math.sqrt(TWO) / (stepa * stepb));
zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) / rhosq);
// zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
zMatrix.setEntry(nfm - n, nfxm,
-zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
}
// Set the off-diagonal second derivatives of the Lagrange functions and
// the initial quadratic model.
} else {
zMatrix.setEntry(0, nfxm, recip);
zMatrix.setEntry(nfm, nfxm, recip);
zMatrix.setEntry(ipt, nfxm, -recip);
zMatrix.setEntry(jpt, nfxm, -recip);
final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
throw new PathIsExploredException(); // XXX
}
} while (getEvaluations() < npt);
} // prelim
```
| private void prelim(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int ndim = bMatrix.getRowDimension();
final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
final double recip = 1d / rhosq;
final int np = n + 1;
// Set XBASE to the initial vector of variables, and set the initial
// elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
for (int j = 0; j < n; j++) {
originShift.setEntry(j, currentBest.getEntry(j));
for (int k = 0; k < npt; k++) {
interpolationPoints.setEntry(k, j, ZERO);
}
for (int i = 0; i < ndim; i++) {
bMatrix.setEntry(i, j, ZERO);
}
}
for (int i = 0, max = n * np / 2; i < max; i++) {
modelSecondDerivativesValues.setEntry(i, ZERO);
}
for (int k = 0; k < npt; k++) {
modelSecondDerivativesParameters.setEntry(k, ZERO);
for (int j = 0, max = npt - np; j < max; j++) {
zMatrix.setEntry(k, j, ZERO);
}
}
// Begin the initialization procedure. NF becomes one more than the number
// of function values so far. The coordinates of the displacement of the
// next initial interpolation point from XBASE are set in XPT(NF+1,.).
int ipt = 0;
int jpt = 0;
double fbeg = Double.NaN;
do {
final int nfm = getEvaluations();
final int nfx = nfm - n;
final int nfmm = nfm - 1;
final int nfxm = nfx - 1;
double stepa = 0;
double stepb = 0;
if (nfm <= 2 * n) {
if (nfm >= 1 &&
nfm <= n) {
stepa = initialTrustRegionRadius;
if (upperDifference.getEntry(nfmm) == ZERO) {
stepa = -stepa;
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfmm, stepa);
} else if (nfm > n) {
stepa = interpolationPoints.getEntry(nfx, nfxm);
stepb = -initialTrustRegionRadius;
if (lowerDifference.getEntry(nfxm) == ZERO) {
stepb = Math.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
if (upperDifference.getEntry(nfxm) == ZERO) {
stepb = Math.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfxm, stepb);
}
} else {
final int tmp1 = (nfm - np) / n;
jpt = nfm - tmp1 * n - n;
ipt = jpt + tmp1;
if (ipt > n) {
final int tmp2 = jpt;
jpt = ipt - n;
ipt = tmp2;
throw new PathIsExploredException(); // XXX
}
final int iptMinus1 = ipt;
final int jptMinus1 = jpt;
interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
}
// Calculate the next value of F. The least function value so far and
// its index are required.
for (int j = 0; j < n; j++) {
currentBest.setEntry(j, Math.min(Math.max(lowerBound[j],
originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
upperBound[j]));
if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
currentBest.setEntry(j, lowerBound[j]);
}
if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
currentBest.setEntry(j, upperBound[j]);
}
}
final double objectiveValue = computeObjectiveValue(currentBest.toArray());
final double f = isMinimize ? objectiveValue : -objectiveValue;
final int numEval = getEvaluations(); // nfm + 1
fAtInterpolationPoints.setEntry(nfm, f);
if (numEval == 1) {
fbeg = f;
trustRegionCenterInterpolationPointIndex = 0;
} else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
trustRegionCenterInterpolationPointIndex = nfm;
}
// Set the nonzero initial elements of BMAT and the quadratic model in the
// cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
// of the NF-th and (NF-N)-th interpolation points may be switched, in
// order that the function value at the first of them contributes to the
// off-diagonal second derivative terms of the initial quadratic model.
if (numEval <= 2 * n + 1) {
if (numEval >= 2 &&
numEval <= n + 1) {
gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
if (npt < numEval + n) {
final double oneOverStepA = ONE / stepa;
bMatrix.setEntry(0, nfmm, -oneOverStepA);
bMatrix.setEntry(nfm, nfmm, oneOverStepA);
bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
throw new PathIsExploredException(); // XXX
}
} else if (numEval >= n + 2) {
final int ih = nfx * (nfx + 1) / 2 - 1;
final double tmp = (f - fbeg) / stepb;
final double diff = stepb - stepa;
modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
if (stepa * stepb < ZERO) {
if (f < fAtInterpolationPoints.getEntry(nfm - n)) {
fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
fAtInterpolationPoints.setEntry(nfm - n, f);
if (trustRegionCenterInterpolationPointIndex == nfm) {
trustRegionCenterInterpolationPointIndex = nfm - n;
}
interpolationPoints.setEntry(nfm - n, nfxm, stepb);
interpolationPoints.setEntry(nfm, nfxm, stepa);
}
}
bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
bMatrix.setEntry(nfm - n, nfxm,
-bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
zMatrix.setEntry(0, nfxm, Math.sqrt(TWO) / (stepa * stepb));
zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) / rhosq);
// zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
zMatrix.setEntry(nfm - n, nfxm,
-zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
}
// Set the off-diagonal second derivatives of the Lagrange functions and
// the initial quadratic model.
} else {
zMatrix.setEntry(0, nfxm, recip);
zMatrix.setEntry(nfm, nfxm, recip);
zMatrix.setEntry(ipt, nfxm, -recip);
zMatrix.setEntry(jpt, nfxm, -recip);
final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
throw new PathIsExploredException(); // XXX
}
} while (getEvaluations() < npt);
} // prelim | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
* BMAT and ZMAT for the first iteration, and it maintains the values of
* NF and KOPT. The vector X is also changed by PRELIM.
*
* The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
* same as the corresponding arguments in SUBROUTINE BOBYQA.
* The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
* are the same as the corresponding arguments in BOBYQB, the elements
* of SL and SU being set in BOBYQA.
* GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
* it is set by PRELIM to the gradient of the quadratic model at XBASE.
* If XOPT is nonzero, BOBYQB will change it to its usual value later.
* NF is maintaned as the number of calls of CALFUN so far.
* KOPT will be such that the least calculated value of F so far is at
* the point XPT(KOPT,.)+XBASE in the space of the variables.
*
* @param lowerBound Lower bounds.
* @param upperBound Upper bounds.
*/
// ----------------------------------------------------------------------------------------
} // altmov
private void prelim(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int ndim = bMatrix.getRowDimension();
final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
final double recip = 1d / rhosq;
final int np = n + 1;
// Set XBASE to the initial vector of variables, and set the initial
// elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
for (int j = 0; j < n; j++) {
originShift.setEntry(j, currentBest.getEntry(j));
for (int k = 0; k < npt; k++) {
interpolationPoints.setEntry(k, j, ZERO);
}
for (int i = 0; i < ndim; i++) {
bMatrix.setEntry(i, j, ZERO);
}
}
for (int i = 0, max = n * np / 2; i < max; i++) {
modelSecondDerivativesValues.setEntry(i, ZERO);
}
for (int k = 0; k < npt; k++) {
modelSecondDerivativesParameters.setEntry(k, ZERO);
for (int j = 0, max = npt - np; j < max; j++) {
zMatrix.setEntry(k, j, ZERO);
}
}
// Begin the initialization procedure. NF becomes one more than the number
// of function values so far. The coordinates of the displacement of the
// next initial interpolation point from XBASE are set in XPT(NF+1,.).
int ipt = 0;
int jpt = 0;
double fbeg = Double.NaN;
do {
final int nfm = getEvaluations();
final int nfx = nfm - n;
final int nfmm = nfm - 1;
final int nfxm = nfx - 1;
double stepa = 0;
double stepb = 0;
if (nfm <= 2 * n) {
if (nfm >= 1 &&
nfm <= n) {
stepa = initialTrustRegionRadius;
if (upperDifference.getEntry(nfmm) == ZERO) {
stepa = -stepa;
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfmm, stepa);
} else if (nfm > n) {
stepa = interpolationPoints.getEntry(nfx, nfxm);
stepb = -initialTrustRegionRadius;
if (lowerDifference.getEntry(nfxm) == ZERO) {
stepb = Math.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
if (upperDifference.getEntry(nfxm) == ZERO) {
stepb = Math.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfxm, stepb);
}
} else {
final int tmp1 = (nfm - np) / n;
jpt = nfm - tmp1 * n - n;
ipt = jpt + tmp1;
if (ipt > n) {
final int tmp2 = jpt;
jpt = ipt - n;
ipt = tmp2;
throw new PathIsExploredException(); // XXX
}
final int iptMinus1 = ipt;
final int jptMinus1 = jpt;
interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
}
// Calculate the next value of F. The least function value so far and
// its index are required.
for (int j = 0; j < n; j++) {
currentBest.setEntry(j, Math.min(Math.max(lowerBound[j],
originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
upperBound[j]));
if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
currentBest.setEntry(j, lowerBound[j]);
}
if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
currentBest.setEntry(j, upperBound[j]);
}
}
final double objectiveValue = computeObjectiveValue(currentBest.toArray());
final double f = isMinimize ? objectiveValue : -objectiveValue;
final int numEval = getEvaluations(); // nfm + 1
fAtInterpolationPoints.setEntry(nfm, f);
if (numEval == 1) {
fbeg = f;
trustRegionCenterInterpolationPointIndex = 0;
} else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
trustRegionCenterInterpolationPointIndex = nfm;
}
// Set the nonzero initial elements of BMAT and the quadratic model in the
// cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
// of the NF-th and (NF-N)-th interpolation points may be switched, in
// order that the function value at the first of them contributes to the
// off-diagonal second derivative terms of the initial quadratic model.
if (numEval <= 2 * n + 1) {
if (numEval >= 2 &&
numEval <= n + 1) {
gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
if (npt < numEval + n) {
final double oneOverStepA = ONE / stepa;
bMatrix.setEntry(0, nfmm, -oneOverStepA);
bMatrix.setEntry(nfm, nfmm, oneOverStepA);
bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
throw new PathIsExploredException(); // XXX
}
} else if (numEval >= n + 2) {
final int ih = nfx * (nfx + 1) / 2 - 1;
final double tmp = (f - fbeg) / stepb;
final double diff = stepb - stepa;
modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
if (stepa * stepb < ZERO) {
if (f < fAtInterpolationPoints.getEntry(nfm - n)) {
fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
fAtInterpolationPoints.setEntry(nfm - n, f);
if (trustRegionCenterInterpolationPointIndex == nfm) {
trustRegionCenterInterpolationPointIndex = nfm - n;
}
interpolationPoints.setEntry(nfm - n, nfxm, stepb);
interpolationPoints.setEntry(nfm, nfxm, stepa);
}
}
bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
bMatrix.setEntry(nfm - n, nfxm,
-bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
zMatrix.setEntry(0, nfxm, Math.sqrt(TWO) / (stepa * stepb));
zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) / rhosq);
// zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
zMatrix.setEntry(nfm - n, nfxm,
-zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
}
// Set the off-diagonal second derivatives of the Lagrange functions and
// the initial quadratic model.
} else {
zMatrix.setEntry(0, nfxm, recip);
zMatrix.setEntry(nfm, nfxm, recip);
zMatrix.setEntry(ipt, nfxm, -recip);
zMatrix.setEntry(jpt, nfxm, -recip);
final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
throw new PathIsExploredException(); // XXX
}
} while (getEvaluations() < npt);
} // prelim
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
57 | bd26b6844ef3af555afc6b8f58440aa791163049981a9dcaaf6bcdcb348584f5 | public void removeIgnoreCase(String key) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
Remove an attribute by key. <b>Case insensitive.</b>
@param key attribute key to remove
*/
public void removeIgnoreCase(String key) {
Validate.notEmpty(key);
if (attributes == null)
return;
for (Iterator<String> it = attributes.keySet().iterator(); it.hasNext(); ) {
String attrKey = it.next();
if (attrKey.equalsIgnoreCase(key))
attributes.remove(attrKey);
}
}
```
| public void removeIgnoreCase(String key) {
Validate.notEmpty(key);
if (attributes == null)
return;
for (Iterator<String> it = attributes.keySet().iterator(); it.hasNext(); ) {
String attrKey = it.next();
if (attrKey.equalsIgnoreCase(key))
attributes.remove(attrKey);
}
} | true | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
Remove an attribute by key. <b>Case insensitive.</b>
@param key attribute key to remove
*/
public void removeIgnoreCase(String key) {
Validate.notEmpty(key);
if (attributes == null)
return;
for (Iterator<String> it = attributes.keySet().iterator(); it.hasNext(); ) {
String attrKey = it.next();
if (attrKey.equalsIgnoreCase(key))
attributes.remove(attrKey);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
54 | be5e0d34d9ace30533fef8c3517098772da2321288e1b82bd71dd08c48427027 | private void copyAttributes(org.jsoup.nodes.Node source, Element el) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private void copyAttributes(org.jsoup.nodes.Node source, Element el) {
for (Attribute attribute : source.attributes()) {
// valid xml attribute names are: ^[a-zA-Z_:][-a-zA-Z0-9_:.]
String key = attribute.getKey().replaceAll("[^-a-zA-Z0-9_:.]", "");
el.setAttribute(key, attribute.getValue());
}
}
```
| private void copyAttributes(org.jsoup.nodes.Node source, Element el) {
for (Attribute attribute : source.attributes()) {
// valid xml attribute names are: ^[a-zA-Z_:][-a-zA-Z0-9_:.]
String key = attribute.getKey().replaceAll("[^-a-zA-Z0-9_:.]", "");
el.setAttribute(key, attribute.getValue());
}
} | true | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private void copyAttributes(org.jsoup.nodes.Node source, Element el) {
for (Attribute attribute : source.attributes()) {
// valid xml attribute names are: ^[a-zA-Z_:][-a-zA-Z0-9_:.]
String key = attribute.getKey().replaceAll("[^-a-zA-Z0-9_:.]", "");
el.setAttribute(key, attribute.getValue());
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
30 | bea6122b986305a7a4a861ffc03eb6df1f75184a69eed6f699433d163610bdbc | private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* @param Umin smallest Mann-Whitney U value
* @param n1 number of subjects in first sample
* @param n2 number of subjects in second sample
* @return two-sided asymptotic p-value
* @throws ConvergenceException if the p-value can not be computed
* due to a convergence error
* @throws MaxCountExceededException if the maximum number of
* iterations is exceeded
*/
private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
final double n1n2prod = n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2 * standardNormal.cumulativeProbability(z);
}
```
| private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
final double n1n2prod = n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2 * standardNormal.cumulativeProbability(z);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* @param Umin smallest Mann-Whitney U value
* @param n1 number of subjects in first sample
* @param n2 number of subjects in second sample
* @return two-sided asymptotic p-value
* @throws ConvergenceException if the p-value can not be computed
* due to a convergence error
* @throws MaxCountExceededException if the maximum number of
* iterations is exceeded
*/
private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
final double n1n2prod = n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2 * standardNormal.cumulativeProbability(z);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
45 | bebf6f4a2c7f202eb5680c0aeede23e339a64c69ab3ccf4e6784eba9c4675e90 | public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Write an long integer into a buffer as an octal string if this
* will fit, or as a binary number otherwise.
*
* Uses {@link #formatUnsignedOctalString} to format
* the value as an octal string with leading zeros.
* The converted number is followed by a space.
*
* @param value The value to write into the buffer.
* @param buf The destination buffer.
* @param offset The starting offset into the buffer.
* @param length The length of the buffer.
* @return The updated offset.
* @throws IllegalArgumentException if the value (and trailer)
* will not fit in the buffer.
* @since 1.4
*/
public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
} else {
formatBigIntegerBinary(value, buf, offset, length, negative);
}
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
}
```
| public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
} else {
formatBigIntegerBinary(value, buf, offset, length, negative);
}
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
} | false | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Write an long integer into a buffer as an octal string if this
* will fit, or as a binary number otherwise.
*
* Uses {@link #formatUnsignedOctalString} to format
* the value as an octal string with leading zeros.
* The converted number is followed by a space.
*
* @param value The value to write into the buffer.
* @param buf The destination buffer.
* @param offset The starting offset into the buffer.
* @param length The length of the buffer.
* @return The updated offset.
* @throws IllegalArgumentException if the value (and trailer)
* will not fit in the buffer.
* @since 1.4
*/
public static int formatLongOctalOrBinaryBytes(
final long value, final byte[] buf, final int offset, final int length) {
// Check whether we are dealing with UID/GID or SIZE field
final long maxAsOctalChar = length == TarConstants.UIDLEN ? TarConstants.MAXID : TarConstants.MAXSIZE;
final boolean negative = value < 0;
if (!negative && value <= maxAsOctalChar) { // OK to store as octal chars
return formatLongOctalBytes(value, buf, offset, length);
}
if (length < 9) {
formatLongBinary(value, buf, offset, length, negative);
} else {
formatBigIntegerBinary(value, buf, offset, length, negative);
}
buf[offset] = (byte) (negative ? 0xff : 0x80);
return offset + length;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
15 | bef3c3ea2488c5ec09b8d7def6e98c069a0b798c1e2d82ee5d9dbf82c265357d | public List getValues(final Option option,
List defaultValues) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public List getValues(final Option option,
List defaultValues) {
// initialize the return list
List valueList = (List) values.get(option);
// grab the correct default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = defaultValues;
}
// augment the list with the default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = (List) this.defaultValues.get(option);
}
// if there are more default values as specified, add them to
// the list.
// copy the list first
return valueList == null ? Collections.EMPTY_LIST : valueList;
}
```
| public List getValues(final Option option,
List defaultValues) {
// initialize the return list
List valueList = (List) values.get(option);
// grab the correct default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = defaultValues;
}
// augment the list with the default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = (List) this.defaultValues.get(option);
}
// if there are more default values as specified, add them to
// the list.
// copy the list first
return valueList == null ? Collections.EMPTY_LIST : valueList;
} | true | Cli | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public List getValues(final Option option,
List defaultValues) {
// initialize the return list
List valueList = (List) values.get(option);
// grab the correct default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = defaultValues;
}
// augment the list with the default values
if ((valueList == null) || valueList.isEmpty()) {
valueList = (List) this.defaultValues.get(option);
}
// if there are more default values as specified, add them to
// the list.
// copy the list first
return valueList == null ? Collections.EMPTY_LIST : valueList;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
97 | bf1fc255c6abac68d068d5e188a6020a6744c470a498496410ccc084ee88ff32 | public double solve(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Find a zero in the given interval.
* <p>
* Requires that the values of the function at the endpoints have opposite
* signs. An <code>IllegalArgumentException</code> is thrown if this is not
* the case.</p>
*
* @param min the lower bound for the interval.
* @param max the upper bound for the interval.
* @return the value where the function is zero
* @throws MaxIterationsExceededException if the maximum iteration count is exceeded
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if min is not less than max or the
* signs of the values of the function at the endpoints are not opposites
*/
public double solve(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException {
clearResult();
verifyInterval(min, max);
double ret = Double.NaN;
double yMin = f.value(min);
double yMax = f.value(max);
// Verify bracketing
double sign = yMin * yMax;
if (sign > 0) {
// check if either value is close to a zero
if (Math.abs(yMin) <= functionValueAccuracy) {
setResult(min, 0);
ret = min;
} else if (Math.abs(yMax) <= functionValueAccuracy) {
setResult(max, 0);
ret = max;
} else {
// neither value is close to zero and min and max do not bracket root.
throw new IllegalArgumentException
("Function values at endpoints do not have different signs." +
" Endpoints: [" + min + "," + max + "]" +
" Values: [" + yMin + "," + yMax + "]");
}
} else if (sign < 0){
// solve using only the first endpoint as initial guess
ret = solve(min, yMin, max, yMax, min, yMin);
} else {
// either min or max is a root
if (yMin == 0.0) {
ret = min;
} else {
ret = max;
}
}
return ret;
}
```
| public double solve(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException {
clearResult();
verifyInterval(min, max);
double ret = Double.NaN;
double yMin = f.value(min);
double yMax = f.value(max);
// Verify bracketing
double sign = yMin * yMax;
if (sign > 0) {
// check if either value is close to a zero
if (Math.abs(yMin) <= functionValueAccuracy) {
setResult(min, 0);
ret = min;
} else if (Math.abs(yMax) <= functionValueAccuracy) {
setResult(max, 0);
ret = max;
} else {
// neither value is close to zero and min and max do not bracket root.
throw new IllegalArgumentException
("Function values at endpoints do not have different signs." +
" Endpoints: [" + min + "," + max + "]" +
" Values: [" + yMin + "," + yMax + "]");
}
} else if (sign < 0){
// solve using only the first endpoint as initial guess
ret = solve(min, yMin, max, yMax, min, yMin);
} else {
// either min or max is a root
if (yMin == 0.0) {
ret = min;
} else {
ret = max;
}
}
return ret;
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Find a zero in the given interval.
* <p>
* Requires that the values of the function at the endpoints have opposite
* signs. An <code>IllegalArgumentException</code> is thrown if this is not
* the case.</p>
*
* @param min the lower bound for the interval.
* @param max the upper bound for the interval.
* @return the value where the function is zero
* @throws MaxIterationsExceededException if the maximum iteration count is exceeded
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if min is not less than max or the
* signs of the values of the function at the endpoints are not opposites
*/
public double solve(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException {
clearResult();
verifyInterval(min, max);
double ret = Double.NaN;
double yMin = f.value(min);
double yMax = f.value(max);
// Verify bracketing
double sign = yMin * yMax;
if (sign > 0) {
// check if either value is close to a zero
if (Math.abs(yMin) <= functionValueAccuracy) {
setResult(min, 0);
ret = min;
} else if (Math.abs(yMax) <= functionValueAccuracy) {
setResult(max, 0);
ret = max;
} else {
// neither value is close to zero and min and max do not bracket root.
throw new IllegalArgumentException
("Function values at endpoints do not have different signs." +
" Endpoints: [" + min + "," + max + "]" +
" Values: [" + yMin + "," + yMax + "]");
}
} else if (sign < 0){
// solve using only the first endpoint as initial guess
ret = solve(min, yMin, max, yMax, min, yMin);
} else {
// either min or max is a root
if (yMin == 0.0) {
ret = min;
} else {
ret = max;
}
}
return ret;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | bf4e17473feda6483f13bb604ee1fa1e5c0bcf718f7c61fab9b492072859366c | public void captureArgumentsFrom(Invocation invocation) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public void captureArgumentsFrom(Invocation invocation) {
if (invocation.getMethod().isVarArgs()) {
int indexOfVararg = invocation.getRawArguments().length - 1;
for (int position = 0; position < indexOfVararg; position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
for (int position = indexOfVararg; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position - indexOfVararg]);
}
}
} else {
for (int position = 0; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
}
// for (int position = 0; position < matchers.size(); position++) {
// Matcher m = matchers.get(position);
// if (m instanceof CapturesArguments && invocation.getRawArguments().length > position) {
// //TODO SF - this whole lot can be moved captureFrom implementation
// if(isVariableArgument(invocation, position) && isVarargMatcher(m)) {
// Object array = invocation.getRawArguments()[position];
// for (int i = 0; i < Array.getLength(array); i++) {
// ((CapturesArguments) m).captureFrom(Array.get(array, i));
// }
// //since we've captured all varargs already, it does not make sense to process other matchers.
// return;
// } else {
// ((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position]);
// }
// }
// }
}
```
| public void captureArgumentsFrom(Invocation invocation) {
if (invocation.getMethod().isVarArgs()) {
int indexOfVararg = invocation.getRawArguments().length - 1;
for (int position = 0; position < indexOfVararg; position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
for (int position = indexOfVararg; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position - indexOfVararg]);
}
}
} else {
for (int position = 0; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
}
// for (int position = 0; position < matchers.size(); position++) {
// Matcher m = matchers.get(position);
// if (m instanceof CapturesArguments && invocation.getRawArguments().length > position) {
// //TODO SF - this whole lot can be moved captureFrom implementation
// if(isVariableArgument(invocation, position) && isVarargMatcher(m)) {
// Object array = invocation.getRawArguments()[position];
// for (int i = 0; i < Array.getLength(array); i++) {
// ((CapturesArguments) m).captureFrom(Array.get(array, i));
// }
// //since we've captured all varargs already, it does not make sense to process other matchers.
// return;
// } else {
// ((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position]);
// }
// }
// }
} | false | Mockito | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public void captureArgumentsFrom(Invocation invocation) {
if (invocation.getMethod().isVarArgs()) {
int indexOfVararg = invocation.getRawArguments().length - 1;
for (int position = 0; position < indexOfVararg; position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
for (int position = indexOfVararg; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position - indexOfVararg]);
}
}
} else {
for (int position = 0; position < matchers.size(); position++) {
Matcher m = matchers.get(position);
if (m instanceof CapturesArguments) {
((CapturesArguments) m).captureFrom(invocation.getArgumentAt(position, Object.class));
}
}
}
// for (int position = 0; position < matchers.size(); position++) {
// Matcher m = matchers.get(position);
// if (m instanceof CapturesArguments && invocation.getRawArguments().length > position) {
// //TODO SF - this whole lot can be moved captureFrom implementation
// if(isVariableArgument(invocation, position) && isVarargMatcher(m)) {
// Object array = invocation.getRawArguments()[position];
// for (int i = 0; i < Array.getLength(array); i++) {
// ((CapturesArguments) m).captureFrom(Array.get(array, i));
// }
// //since we've captured all varargs already, it does not make sense to process other matchers.
// return;
// } else {
// ((CapturesArguments) m).captureFrom(invocation.getRawArguments()[position]);
// }
// }
// }
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | c01c5f212dbc54135960f0da1fc7189d21a9cd75403b7342988aab2c902cd718 | private void removeUnreferencedFunctionArgs(Scope fnScope) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Removes unreferenced arguments from a function declaration and when
* possible the function's callSites.
*
* @param fnScope The scope inside the function
*/
private void removeUnreferencedFunctionArgs(Scope fnScope) {
// Notice that removing unreferenced function args breaks
// Function.prototype.length. In advanced mode, we don't really care
// about this: we consider "length" the equivalent of reflecting on
// the function's lexical source.
//
// Rather than create a new option for this, we assume that if the user
// is removing globals, then it's OK to remove unused function args.
//
// See http://code.google.com/p/closure-compiler/issues/detail?id=253
if (!removeGlobals) {
return;
}
Node function = fnScope.getRootNode();
Preconditions.checkState(function.isFunction());
if (NodeUtil.isGetOrSetKey(function.getParent())) {
// The parameters object literal setters can not be removed.
return;
}
Node argList = getFunctionArgList(function);
boolean modifyCallers = modifyCallSites
&& callSiteOptimizer.canModifyCallers(function);
if (!modifyCallers) {
// Strip unreferenced args off the end of the function declaration.
Node lastArg;
while ((lastArg = argList.getLastChild()) != null) {
Var var = fnScope.getVar(lastArg.getString());
if (!referenced.contains(var)) {
argList.removeChild(lastArg);
compiler.reportCodeChange();
} else {
break;
}
}
} else {
callSiteOptimizer.optimize(fnScope, referenced);
}
}
```
| private void removeUnreferencedFunctionArgs(Scope fnScope) {
// Notice that removing unreferenced function args breaks
// Function.prototype.length. In advanced mode, we don't really care
// about this: we consider "length" the equivalent of reflecting on
// the function's lexical source.
//
// Rather than create a new option for this, we assume that if the user
// is removing globals, then it's OK to remove unused function args.
//
// See http://code.google.com/p/closure-compiler/issues/detail?id=253
if (!removeGlobals) {
return;
}
Node function = fnScope.getRootNode();
Preconditions.checkState(function.isFunction());
if (NodeUtil.isGetOrSetKey(function.getParent())) {
// The parameters object literal setters can not be removed.
return;
}
Node argList = getFunctionArgList(function);
boolean modifyCallers = modifyCallSites
&& callSiteOptimizer.canModifyCallers(function);
if (!modifyCallers) {
// Strip unreferenced args off the end of the function declaration.
Node lastArg;
while ((lastArg = argList.getLastChild()) != null) {
Var var = fnScope.getVar(lastArg.getString());
if (!referenced.contains(var)) {
argList.removeChild(lastArg);
compiler.reportCodeChange();
} else {
break;
}
}
} else {
callSiteOptimizer.optimize(fnScope, referenced);
}
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Removes unreferenced arguments from a function declaration and when
* possible the function's callSites.
*
* @param fnScope The scope inside the function
*/
private void removeUnreferencedFunctionArgs(Scope fnScope) {
// Notice that removing unreferenced function args breaks
// Function.prototype.length. In advanced mode, we don't really care
// about this: we consider "length" the equivalent of reflecting on
// the function's lexical source.
//
// Rather than create a new option for this, we assume that if the user
// is removing globals, then it's OK to remove unused function args.
//
// See http://code.google.com/p/closure-compiler/issues/detail?id=253
if (!removeGlobals) {
return;
}
Node function = fnScope.getRootNode();
Preconditions.checkState(function.isFunction());
if (NodeUtil.isGetOrSetKey(function.getParent())) {
// The parameters object literal setters can not be removed.
return;
}
Node argList = getFunctionArgList(function);
boolean modifyCallers = modifyCallSites
&& callSiteOptimizer.canModifyCallers(function);
if (!modifyCallers) {
// Strip unreferenced args off the end of the function declaration.
Node lastArg;
while ((lastArg = argList.getLastChild()) != null) {
Var var = fnScope.getVar(lastArg.getString());
if (!referenced.contains(var)) {
argList.removeChild(lastArg);
compiler.reportCodeChange();
} else {
break;
}
}
} else {
callSiteOptimizer.optimize(fnScope, referenced);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
85 | c02c4046812edb37eddb7b6d77fae70144ef9040c362d1eaba9d53f3f78e58e0 | @Override
public JsonSerializer<?> createContextual(SerializerProvider serializers,
BeanProperty property) throws JsonMappingException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
public JsonSerializer<?> createContextual(SerializerProvider serializers,
BeanProperty property) throws JsonMappingException
{
if (property == null) {
return this;
}
JsonFormat.Value format = findFormatOverrides(serializers, property, handledType());
if (format == null) {
return this;
}
// Simple case first: serialize as numeric timestamp?
JsonFormat.Shape shape = format.getShape();
if (shape.isNumeric()) {
return withFormat(Boolean.TRUE, null);
}
// 08-Jun-2017, tatu: With [databind#1648], this gets bit tricky..
// First: custom pattern will override things
if (format.hasPattern()) {
final Locale loc = format.hasLocale()
? format.getLocale()
: serializers.getLocale();
SimpleDateFormat df = new SimpleDateFormat(format.getPattern(), loc);
TimeZone tz = format.hasTimeZone() ? format.getTimeZone()
: serializers.getTimeZone();
df.setTimeZone(tz);
return withFormat(Boolean.FALSE, df);
}
// Otherwise, need one of these changes:
final boolean hasLocale = format.hasLocale();
final boolean hasTZ = format.hasTimeZone();
final boolean asString = (shape == JsonFormat.Shape.STRING);
if (!hasLocale && !hasTZ && !asString) {
return this;
}
DateFormat df0 = serializers.getConfig().getDateFormat();
// Jackson's own `StdDateFormat` is quite easy to deal with...
if (df0 instanceof StdDateFormat) {
StdDateFormat std = (StdDateFormat) df0;
if (format.hasLocale()) {
std = std.withLocale(format.getLocale());
}
if (format.hasTimeZone()) {
std = std.withTimeZone(format.getTimeZone());
}
return withFormat(Boolean.FALSE, std);
}
// 08-Jun-2017, tatu: Unfortunately there's no generally usable
// mechanism for changing `DateFormat` instances (or even clone()ing)
// So: require it be `SimpleDateFormat`; can't config other types
if (!(df0 instanceof SimpleDateFormat)) {
// serializers.reportBadDefinition(handledType(), String.format(
serializers.reportMappingProblem(
"Configured `DateFormat` (%s) not a `SimpleDateFormat`; can not configure `Locale` or `TimeZone`",
df0.getClass().getName());
}
SimpleDateFormat df = (SimpleDateFormat) df0;
if (hasLocale) {
// Ugh. No way to change `Locale`, create copy; must re-crete completely:
df = new SimpleDateFormat(df.toPattern(), format.getLocale());
} else {
df = (SimpleDateFormat) df.clone();
}
TimeZone newTz = format.getTimeZone();
boolean changeTZ = (newTz != null) && !newTz.equals(df.getTimeZone());
if (changeTZ) {
df.setTimeZone(newTz);
}
return withFormat(Boolean.FALSE, df);
}
```
| @Override
public JsonSerializer<?> createContextual(SerializerProvider serializers,
BeanProperty property) throws JsonMappingException
{
if (property == null) {
return this;
}
JsonFormat.Value format = findFormatOverrides(serializers, property, handledType());
if (format == null) {
return this;
}
// Simple case first: serialize as numeric timestamp?
JsonFormat.Shape shape = format.getShape();
if (shape.isNumeric()) {
return withFormat(Boolean.TRUE, null);
}
// 08-Jun-2017, tatu: With [databind#1648], this gets bit tricky..
// First: custom pattern will override things
if (format.hasPattern()) {
final Locale loc = format.hasLocale()
? format.getLocale()
: serializers.getLocale();
SimpleDateFormat df = new SimpleDateFormat(format.getPattern(), loc);
TimeZone tz = format.hasTimeZone() ? format.getTimeZone()
: serializers.getTimeZone();
df.setTimeZone(tz);
return withFormat(Boolean.FALSE, df);
}
// Otherwise, need one of these changes:
final boolean hasLocale = format.hasLocale();
final boolean hasTZ = format.hasTimeZone();
final boolean asString = (shape == JsonFormat.Shape.STRING);
if (!hasLocale && !hasTZ && !asString) {
return this;
}
DateFormat df0 = serializers.getConfig().getDateFormat();
// Jackson's own `StdDateFormat` is quite easy to deal with...
if (df0 instanceof StdDateFormat) {
StdDateFormat std = (StdDateFormat) df0;
if (format.hasLocale()) {
std = std.withLocale(format.getLocale());
}
if (format.hasTimeZone()) {
std = std.withTimeZone(format.getTimeZone());
}
return withFormat(Boolean.FALSE, std);
}
// 08-Jun-2017, tatu: Unfortunately there's no generally usable
// mechanism for changing `DateFormat` instances (or even clone()ing)
// So: require it be `SimpleDateFormat`; can't config other types
if (!(df0 instanceof SimpleDateFormat)) {
// serializers.reportBadDefinition(handledType(), String.format(
serializers.reportMappingProblem(
"Configured `DateFormat` (%s) not a `SimpleDateFormat`; can not configure `Locale` or `TimeZone`",
df0.getClass().getName());
}
SimpleDateFormat df = (SimpleDateFormat) df0;
if (hasLocale) {
// Ugh. No way to change `Locale`, create copy; must re-crete completely:
df = new SimpleDateFormat(df.toPattern(), format.getLocale());
} else {
df = (SimpleDateFormat) df.clone();
}
TimeZone newTz = format.getTimeZone();
boolean changeTZ = (newTz != null) && !newTz.equals(df.getTimeZone());
if (changeTZ) {
df.setTimeZone(newTz);
}
return withFormat(Boolean.FALSE, df);
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
public JsonSerializer<?> createContextual(SerializerProvider serializers,
BeanProperty property) throws JsonMappingException
{
if (property == null) {
return this;
}
JsonFormat.Value format = findFormatOverrides(serializers, property, handledType());
if (format == null) {
return this;
}
// Simple case first: serialize as numeric timestamp?
JsonFormat.Shape shape = format.getShape();
if (shape.isNumeric()) {
return withFormat(Boolean.TRUE, null);
}
// 08-Jun-2017, tatu: With [databind#1648], this gets bit tricky..
// First: custom pattern will override things
if (format.hasPattern()) {
final Locale loc = format.hasLocale()
? format.getLocale()
: serializers.getLocale();
SimpleDateFormat df = new SimpleDateFormat(format.getPattern(), loc);
TimeZone tz = format.hasTimeZone() ? format.getTimeZone()
: serializers.getTimeZone();
df.setTimeZone(tz);
return withFormat(Boolean.FALSE, df);
}
// Otherwise, need one of these changes:
final boolean hasLocale = format.hasLocale();
final boolean hasTZ = format.hasTimeZone();
final boolean asString = (shape == JsonFormat.Shape.STRING);
if (!hasLocale && !hasTZ && !asString) {
return this;
}
DateFormat df0 = serializers.getConfig().getDateFormat();
// Jackson's own `StdDateFormat` is quite easy to deal with...
if (df0 instanceof StdDateFormat) {
StdDateFormat std = (StdDateFormat) df0;
if (format.hasLocale()) {
std = std.withLocale(format.getLocale());
}
if (format.hasTimeZone()) {
std = std.withTimeZone(format.getTimeZone());
}
return withFormat(Boolean.FALSE, std);
}
// 08-Jun-2017, tatu: Unfortunately there's no generally usable
// mechanism for changing `DateFormat` instances (or even clone()ing)
// So: require it be `SimpleDateFormat`; can't config other types
if (!(df0 instanceof SimpleDateFormat)) {
// serializers.reportBadDefinition(handledType(), String.format(
serializers.reportMappingProblem(
"Configured `DateFormat` (%s) not a `SimpleDateFormat`; can not configure `Locale` or `TimeZone`",
df0.getClass().getName());
}
SimpleDateFormat df = (SimpleDateFormat) df0;
if (hasLocale) {
// Ugh. No way to change `Locale`, create copy; must re-crete completely:
df = new SimpleDateFormat(df.toPattern(), format.getLocale());
} else {
df = (SimpleDateFormat) df.clone();
}
TimeZone newTz = format.getTimeZone();
boolean changeTZ = (newTz != null) && !newTz.equals(df.getTimeZone());
if (changeTZ) {
df.setTimeZone(newTz);
}
return withFormat(Boolean.FALSE, df);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
86 | c06f04400886b480218194d89d7a49b6075c208dce6cce0d23c0621e568acd35 | public XmlDeclaration asXmlDeclaration() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Attempt to cast this comment to an XML Declaration note.
* @return an XML declaration if it could be parsed as one, null otherwise.
*/
public XmlDeclaration asXmlDeclaration() {
String data = getData();
Document doc = Jsoup.parse("<" + data.substring(1, data.length() -1) + ">", baseUri(), Parser.xmlParser());
XmlDeclaration decl = null;
if (doc.children().size() > 0) {
Element el = doc.child(0);
decl = new XmlDeclaration(NodeUtils.parser(doc).settings().normalizeTag(el.tagName()), data.startsWith("!"));
decl.attributes().addAll(el.attributes());
}
return decl;
}
```
| public XmlDeclaration asXmlDeclaration() {
String data = getData();
Document doc = Jsoup.parse("<" + data.substring(1, data.length() -1) + ">", baseUri(), Parser.xmlParser());
XmlDeclaration decl = null;
if (doc.children().size() > 0) {
Element el = doc.child(0);
decl = new XmlDeclaration(NodeUtils.parser(doc).settings().normalizeTag(el.tagName()), data.startsWith("!"));
decl.attributes().addAll(el.attributes());
}
return decl;
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Attempt to cast this comment to an XML Declaration note.
* @return an XML declaration if it could be parsed as one, null otherwise.
*/
public XmlDeclaration asXmlDeclaration() {
String data = getData();
Document doc = Jsoup.parse("<" + data.substring(1, data.length() -1) + ">", baseUri(), Parser.xmlParser());
XmlDeclaration decl = null;
if (doc.children().size() > 0) {
Element el = doc.child(0);
decl = new XmlDeclaration(NodeUtils.parser(doc).settings().normalizeTag(el.tagName()), data.startsWith("!"));
decl.attributes().addAll(el.attributes());
}
return decl;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
3 | c100f23c520bc0b36d0499f4c3d16829da7d85906728292e95934f9cec690075 | int readEscape() throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Handle an escape sequence.
* The current character must be the escape character.
* On return, the next character is available by calling {@link ExtendedBufferedReader#getLastChar()}
* on the input stream.
*
* @return the unescaped character (as an int) or {@link END_OF_STREAM} if char following the escape is invalid.
* @throws IOException if there is a problem reading the stream or the end of stream is detected:
* the escape character is not allowed at end of strem
*/
// TODO escape handling needs more work
int readEscape() throws IOException {
// the escape char has just been read (normally a backslash)
final int c = in.read();
switch (c) {
case 'r':
return CR;
case 'n':
return LF;
case 't':
return TAB;
case 'b':
return BACKSPACE;
case 'f':
return FF;
case CR:
case LF:
case FF: // TODO is this correct?
case TAB: // TODO is this correct? Do tabs need to be escaped?
case BACKSPACE: // TODO is this correct?
return c;
case END_OF_STREAM:
throw new IOException("EOF whilst processing escape sequence");
default:
// Now check for meta-characters
return c;
// indicate unexpected char - available from in.getLastChar()
}
}
```
| int readEscape() throws IOException {
// the escape char has just been read (normally a backslash)
final int c = in.read();
switch (c) {
case 'r':
return CR;
case 'n':
return LF;
case 't':
return TAB;
case 'b':
return BACKSPACE;
case 'f':
return FF;
case CR:
case LF:
case FF: // TODO is this correct?
case TAB: // TODO is this correct? Do tabs need to be escaped?
case BACKSPACE: // TODO is this correct?
return c;
case END_OF_STREAM:
throw new IOException("EOF whilst processing escape sequence");
default:
// Now check for meta-characters
return c;
// indicate unexpected char - available from in.getLastChar()
}
} | true | Csv | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Handle an escape sequence.
* The current character must be the escape character.
* On return, the next character is available by calling {@link ExtendedBufferedReader#getLastChar()}
* on the input stream.
*
* @return the unescaped character (as an int) or {@link END_OF_STREAM} if char following the escape is invalid.
* @throws IOException if there is a problem reading the stream or the end of stream is detected:
* the escape character is not allowed at end of strem
*/
// TODO escape handling needs more work
int readEscape() throws IOException {
// the escape char has just been read (normally a backslash)
final int c = in.read();
switch (c) {
case 'r':
return CR;
case 'n':
return LF;
case 't':
return TAB;
case 'b':
return BACKSPACE;
case 'f':
return FF;
case CR:
case LF:
case FF: // TODO is this correct?
case TAB: // TODO is this correct? Do tabs need to be escaped?
case BACKSPACE: // TODO is this correct?
return c;
case END_OF_STREAM:
throw new IOException("EOF whilst processing escape sequence");
default:
// Now check for meta-characters
return c;
// indicate unexpected char - available from in.getLastChar()
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
12 | c1025f367b61b4260bdeeebecd05f71321fca9a36a3e0f5b91c3aed9e6f66478 | private boolean hasExceptionHandler(Node cfgNode) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private boolean hasExceptionHandler(Node cfgNode) {
return false;
}
```
| private boolean hasExceptionHandler(Node cfgNode) {
return false;
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private boolean hasExceptionHandler(Node cfgNode) {
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
113 | c109abd4594c29452401b6cd88a53c3c92653ca13eacaea13c52054f5b919b22 | private void processRequireCall(NodeTraversal t, Node n, Node parent) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Handles a goog.require call.
*/
private void processRequireCall(NodeTraversal t, Node n, Node parent) {
Node left = n.getFirstChild();
Node arg = left.getNext();
if (verifyLastArgumentIsString(t, left, arg)) {
String ns = arg.getString();
ProvidedName provided = providedNames.get(ns);
if (provided == null || !provided.isExplicitlyProvided()) {
unrecognizedRequires.add(
new UnrecognizedRequire(n, ns, t.getSourceName()));
} else {
JSModule providedModule = provided.explicitModule;
// This must be non-null, because there was an explicit provide.
Preconditions.checkNotNull(providedModule);
JSModule module = t.getModule();
if (moduleGraph != null &&
module != providedModule &&
!moduleGraph.dependsOn(module, providedModule)) {
compiler.report(
t.makeError(n, XMODULE_REQUIRE_ERROR, ns,
providedModule.getName(),
module.getName()));
}
}
maybeAddToSymbolTable(left);
maybeAddStringNodeToSymbolTable(arg);
// Requires should be removed before further processing.
// Some clients run closure pass multiple times, first with
// the checks for broken requires turned off. In these cases, we
// allow broken requires to be preserved by the first run to
// let them be caught in the subsequent run.
if (provided != null || requiresLevel.isOn()) {
parent.detachFromParent();
compiler.reportCodeChange();
}
}
}
```
| private void processRequireCall(NodeTraversal t, Node n, Node parent) {
Node left = n.getFirstChild();
Node arg = left.getNext();
if (verifyLastArgumentIsString(t, left, arg)) {
String ns = arg.getString();
ProvidedName provided = providedNames.get(ns);
if (provided == null || !provided.isExplicitlyProvided()) {
unrecognizedRequires.add(
new UnrecognizedRequire(n, ns, t.getSourceName()));
} else {
JSModule providedModule = provided.explicitModule;
// This must be non-null, because there was an explicit provide.
Preconditions.checkNotNull(providedModule);
JSModule module = t.getModule();
if (moduleGraph != null &&
module != providedModule &&
!moduleGraph.dependsOn(module, providedModule)) {
compiler.report(
t.makeError(n, XMODULE_REQUIRE_ERROR, ns,
providedModule.getName(),
module.getName()));
}
}
maybeAddToSymbolTable(left);
maybeAddStringNodeToSymbolTable(arg);
// Requires should be removed before further processing.
// Some clients run closure pass multiple times, first with
// the checks for broken requires turned off. In these cases, we
// allow broken requires to be preserved by the first run to
// let them be caught in the subsequent run.
if (provided != null || requiresLevel.isOn()) {
parent.detachFromParent();
compiler.reportCodeChange();
}
}
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Handles a goog.require call.
*/
private void processRequireCall(NodeTraversal t, Node n, Node parent) {
Node left = n.getFirstChild();
Node arg = left.getNext();
if (verifyLastArgumentIsString(t, left, arg)) {
String ns = arg.getString();
ProvidedName provided = providedNames.get(ns);
if (provided == null || !provided.isExplicitlyProvided()) {
unrecognizedRequires.add(
new UnrecognizedRequire(n, ns, t.getSourceName()));
} else {
JSModule providedModule = provided.explicitModule;
// This must be non-null, because there was an explicit provide.
Preconditions.checkNotNull(providedModule);
JSModule module = t.getModule();
if (moduleGraph != null &&
module != providedModule &&
!moduleGraph.dependsOn(module, providedModule)) {
compiler.report(
t.makeError(n, XMODULE_REQUIRE_ERROR, ns,
providedModule.getName(),
module.getName()));
}
}
maybeAddToSymbolTable(left);
maybeAddStringNodeToSymbolTable(arg);
// Requires should be removed before further processing.
// Some clients run closure pass multiple times, first with
// the checks for broken requires turned off. In these cases, we
// allow broken requires to be preserved by the first run to
// let them be caught in the subsequent run.
if (provided != null || requiresLevel.isOn()) {
parent.detachFromParent();
compiler.reportCodeChange();
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
16 | c1204802fbee23853a77775d09d779a9b376a957d6f4233961b1e846caf54ef2 | public int parseInto(ReadWritableInstant instant, String text, int position) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Parses a datetime from the given text, at the given position, saving the
* result into the fields of the given ReadWritableInstant. If the parse
* succeeds, the return value is the new text position. Note that the parse
* may succeed without fully reading the text and in this case those fields
* that were read will be set.
* <p>
* Only those fields present in the string will be changed in the specified
* instant. All other fields will remain unaltered. Thus if the string only
* contains a year and a month, then the day and time will be retained from
* the input instant. If this is not the behaviour you want, then reset the
* fields before calling this method, or use {@link #parseDateTime(String)}
* or {@link #parseMutableDateTime(String)}.
* <p>
* If it fails, the return value is negative, but the instant may still be
* modified. To determine the position where the parse failed, apply the
* one's complement operator (~) on the return value.
* <p>
* This parse method ignores the {@link #getDefaultYear() default year} and
* parses using the year from the supplied instant as the default.
* <p>
* The parse will use the chronology of the instant.
*
* @param instant an instant that will be modified, not null
* @param text the text to parse
* @param position position to start parsing from
* @return new position, negative value means parse failed -
* apply complement operator (~) to get position of failure
* @throws UnsupportedOperationException if parsing is not supported
* @throws IllegalArgumentException if the instant is null
* @throws IllegalArgumentException if any field is out of range
*/
//-----------------------------------------------------------------------
public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, iDefaultYear);
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
}
```
| public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, iDefaultYear);
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
} | true | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Parses a datetime from the given text, at the given position, saving the
* result into the fields of the given ReadWritableInstant. If the parse
* succeeds, the return value is the new text position. Note that the parse
* may succeed without fully reading the text and in this case those fields
* that were read will be set.
* <p>
* Only those fields present in the string will be changed in the specified
* instant. All other fields will remain unaltered. Thus if the string only
* contains a year and a month, then the day and time will be retained from
* the input instant. If this is not the behaviour you want, then reset the
* fields before calling this method, or use {@link #parseDateTime(String)}
* or {@link #parseMutableDateTime(String)}.
* <p>
* If it fails, the return value is negative, but the instant may still be
* modified. To determine the position where the parse failed, apply the
* one's complement operator (~) on the return value.
* <p>
* This parse method ignores the {@link #getDefaultYear() default year} and
* parses using the year from the supplied instant as the default.
* <p>
* The parse will use the chronology of the instant.
*
* @param instant an instant that will be modified, not null
* @param text the text to parse
* @param position position to start parsing from
* @return new position, negative value means parse failed -
* apply complement operator (~) to get position of failure
* @throws UnsupportedOperationException if parsing is not supported
* @throws IllegalArgumentException if the instant is null
* @throws IllegalArgumentException if any field is out of range
*/
//-----------------------------------------------------------------------
public int parseInto(ReadWritableInstant instant, String text, int position) {
DateTimeParser parser = requireParser();
if (instant == null) {
throw new IllegalArgumentException("Instant must not be null");
}
long instantMillis = instant.getMillis();
Chronology chrono = instant.getChronology();
long instantLocal = instantMillis + chrono.getZone().getOffset(instantMillis);
chrono = selectChronology(chrono);
DateTimeParserBucket bucket = new DateTimeParserBucket(
instantLocal, chrono, iLocale, iPivotYear, iDefaultYear);
int newPos = parser.parseInto(bucket, text, position);
instant.setMillis(bucket.computeMillis(false, text));
if (iOffsetParsed && bucket.getOffsetInteger() != null) {
int parsedOffset = bucket.getOffsetInteger();
DateTimeZone parsedZone = DateTimeZone.forOffsetMillis(parsedOffset);
chrono = chrono.withZone(parsedZone);
} else if (bucket.getZone() != null) {
chrono = chrono.withZone(bucket.getZone());
}
instant.setChronology(chrono);
if (iZone != null) {
instant.setZone(iZone);
}
return newPos;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | c218410c1aacd645149e095edfcdcb82f20cf31905d9f8ce84f210b41182c438 | public void close() throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Closes the CPIO output stream as well as the stream being filtered.
*
* @throws IOException
* if an I/O error has occurred or if a CPIO file error has
* occurred
*/
public void close() throws IOException {
if (!this.closed) {
super.close();
this.closed = true;
}
}
```
| public void close() throws IOException {
if (!this.closed) {
super.close();
this.closed = true;
}
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Closes the CPIO output stream as well as the stream being filtered.
*
* @throws IOException
* if an I/O error has occurred or if a CPIO file error has
* occurred
*/
public void close() throws IOException {
if (!this.closed) {
super.close();
this.closed = true;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
27 | c21e5b1b98483b4fe41c87a0fe9d9d14560360c8c62e8218c8d27008b5bb6128 | public void setSelected(Option option) throws AlreadySelectedException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Set the selected option of this group to <code>name</code>.
*
* @param option the option that is selected
* @throws AlreadySelectedException if an option from this group has
* already been selected.
*/
public void setSelected(Option option) throws AlreadySelectedException
{
if (option == null)
{
// reset the option previously selected
selected = null;
return;
}
// if no option has already been selected or the
// same option is being reselected then set the
// selected member variable
if (selected == null || selected.equals(option.getOpt()))
{
selected = option.getOpt();
}
else
{
throw new AlreadySelectedException(this, option);
}
}
```
| public void setSelected(Option option) throws AlreadySelectedException
{
if (option == null)
{
// reset the option previously selected
selected = null;
return;
}
// if no option has already been selected or the
// same option is being reselected then set the
// selected member variable
if (selected == null || selected.equals(option.getOpt()))
{
selected = option.getOpt();
}
else
{
throw new AlreadySelectedException(this, option);
}
} | true | Cli | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Set the selected option of this group to <code>name</code>.
*
* @param option the option that is selected
* @throws AlreadySelectedException if an option from this group has
* already been selected.
*/
public void setSelected(Option option) throws AlreadySelectedException
{
if (option == null)
{
// reset the option previously selected
selected = null;
return;
}
// if no option has already been selected or the
// same option is being reselected then set the
// selected member variable
if (selected == null || selected.equals(option.getOpt()))
{
selected = option.getOpt();
}
else
{
throw new AlreadySelectedException(this, option);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
145 | c22523695b042072c543f8dda3f680a45d31c8a6ad48fa1b5e56602861df8d51 | private boolean isOneExactlyFunctionOrDo(Node n) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* @return Whether the Node is a DO or FUNCTION (with or without
* labels).
*/
private boolean isOneExactlyFunctionOrDo(Node n) {
// For labels with block children, we need to ensure that a
// labeled FUNCTION or DO isn't generated when extraneous BLOCKs
// are skipped.
// Either a empty statement or an block with more than one child,
// way it isn't a FUNCTION or DO.
return (n.getType() == Token.FUNCTION || n.getType() == Token.DO);
}
```
| private boolean isOneExactlyFunctionOrDo(Node n) {
// For labels with block children, we need to ensure that a
// labeled FUNCTION or DO isn't generated when extraneous BLOCKs
// are skipped.
// Either a empty statement or an block with more than one child,
// way it isn't a FUNCTION or DO.
return (n.getType() == Token.FUNCTION || n.getType() == Token.DO);
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* @return Whether the Node is a DO or FUNCTION (with or without
* labels).
*/
private boolean isOneExactlyFunctionOrDo(Node n) {
// For labels with block children, we need to ensure that a
// labeled FUNCTION or DO isn't generated when extraneous BLOCKs
// are skipped.
// Either a empty statement or an block with more than one child,
// way it isn't a FUNCTION or DO.
return (n.getType() == Token.FUNCTION || n.getType() == Token.DO);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
122 | c246df0b0a61f6d2e041144467cafae13e39c8186aec4654121b60f7c0fe2778 | private void handleBlockComment(Comment comment) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Check to see if the given block comment looks like it should be JSDoc.
*/
private void handleBlockComment(Comment comment) {
Pattern p = Pattern.compile("(/|(\n[ \t]*))\\*[ \t]*@[a-zA-Z]");
if (p.matcher(comment.getValue()).find()) {
errorReporter.warning(
SUSPICIOUS_COMMENT_WARNING,
sourceName,
comment.getLineno(), "", 0);
}
}
```
| private void handleBlockComment(Comment comment) {
Pattern p = Pattern.compile("(/|(\n[ \t]*))\\*[ \t]*@[a-zA-Z]");
if (p.matcher(comment.getValue()).find()) {
errorReporter.warning(
SUSPICIOUS_COMMENT_WARNING,
sourceName,
comment.getLineno(), "", 0);
}
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Check to see if the given block comment looks like it should be JSDoc.
*/
private void handleBlockComment(Comment comment) {
Pattern p = Pattern.compile("(/|(\n[ \t]*))\\*[ \t]*@[a-zA-Z]");
if (p.matcher(comment.getValue()).find()) {
errorReporter.warning(
SUSPICIOUS_COMMENT_WARNING,
sourceName,
comment.getLineno(), "", 0);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
86 | c26495064bccc4cfa8015e5a0ab13358d43346070948069657c4a336d188f71a | static boolean evaluatesToLocalValue(Node value, Predicate<Node> locals) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* @param locals A predicate to apply to unknown local values.
* @return Whether the node is known to be a value that is not a reference
* outside the expression scope.
*/
static boolean evaluatesToLocalValue(Node value, Predicate<Node> locals) {
switch (value.getType()) {
case Token.ASSIGN:
// A result that is aliased by a non-local name, is the effectively the
// same as returning a non-local name, but this doesn't matter if the
// value is immutable.
return NodeUtil.isImmutableValue(value.getLastChild())
|| (locals.apply(value)
&& evaluatesToLocalValue(value.getLastChild(), locals));
case Token.COMMA:
return evaluatesToLocalValue(value.getLastChild(), locals);
case Token.AND:
case Token.OR:
return evaluatesToLocalValue(value.getFirstChild(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.HOOK:
return evaluatesToLocalValue(value.getFirstChild().getNext(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.INC:
case Token.DEC:
if (value.getBooleanProp(Node.INCRDECR_PROP)) {
return evaluatesToLocalValue(value.getFirstChild(), locals);
} else {
return true;
}
case Token.THIS:
return locals.apply(value);
case Token.NAME:
return isImmutableValue(value) || locals.apply(value);
case Token.GETELEM:
case Token.GETPROP:
// There is no information about the locality of object properties.
return locals.apply(value);
case Token.CALL:
return callHasLocalResult(value)
|| isToStringMethodCall(value)
|| locals.apply(value);
case Token.NEW:
// TODO(nicksantos): This needs to be changed so that it
// returns true iff we're sure the value was never aliased from inside
// the constructor (similar to callHasLocalResult)
return true;
case Token.FUNCTION:
case Token.REGEXP:
case Token.ARRAYLIT:
case Token.OBJECTLIT:
// Literals objects with non-literal children are allowed.
return true;
case Token.IN:
// TODO(johnlenz): should IN operator be included in #isSimpleOperator?
return true;
default:
// Other op force a local value:
// x = '' + g (x is now an local string)
// x -= g (x is now an local number)
if (isAssignmentOp(value)
|| isSimpleOperator(value)
|| isImmutableValue(value)) {
return true;
}
throw new IllegalStateException(
"Unexpected expression node" + value +
"\n parent:" + value.getParent());
}
}
```
| static boolean evaluatesToLocalValue(Node value, Predicate<Node> locals) {
switch (value.getType()) {
case Token.ASSIGN:
// A result that is aliased by a non-local name, is the effectively the
// same as returning a non-local name, but this doesn't matter if the
// value is immutable.
return NodeUtil.isImmutableValue(value.getLastChild())
|| (locals.apply(value)
&& evaluatesToLocalValue(value.getLastChild(), locals));
case Token.COMMA:
return evaluatesToLocalValue(value.getLastChild(), locals);
case Token.AND:
case Token.OR:
return evaluatesToLocalValue(value.getFirstChild(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.HOOK:
return evaluatesToLocalValue(value.getFirstChild().getNext(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.INC:
case Token.DEC:
if (value.getBooleanProp(Node.INCRDECR_PROP)) {
return evaluatesToLocalValue(value.getFirstChild(), locals);
} else {
return true;
}
case Token.THIS:
return locals.apply(value);
case Token.NAME:
return isImmutableValue(value) || locals.apply(value);
case Token.GETELEM:
case Token.GETPROP:
// There is no information about the locality of object properties.
return locals.apply(value);
case Token.CALL:
return callHasLocalResult(value)
|| isToStringMethodCall(value)
|| locals.apply(value);
case Token.NEW:
// TODO(nicksantos): This needs to be changed so that it
// returns true iff we're sure the value was never aliased from inside
// the constructor (similar to callHasLocalResult)
return true;
case Token.FUNCTION:
case Token.REGEXP:
case Token.ARRAYLIT:
case Token.OBJECTLIT:
// Literals objects with non-literal children are allowed.
return true;
case Token.IN:
// TODO(johnlenz): should IN operator be included in #isSimpleOperator?
return true;
default:
// Other op force a local value:
// x = '' + g (x is now an local string)
// x -= g (x is now an local number)
if (isAssignmentOp(value)
|| isSimpleOperator(value)
|| isImmutableValue(value)) {
return true;
}
throw new IllegalStateException(
"Unexpected expression node" + value +
"\n parent:" + value.getParent());
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* @param locals A predicate to apply to unknown local values.
* @return Whether the node is known to be a value that is not a reference
* outside the expression scope.
*/
static boolean evaluatesToLocalValue(Node value, Predicate<Node> locals) {
switch (value.getType()) {
case Token.ASSIGN:
// A result that is aliased by a non-local name, is the effectively the
// same as returning a non-local name, but this doesn't matter if the
// value is immutable.
return NodeUtil.isImmutableValue(value.getLastChild())
|| (locals.apply(value)
&& evaluatesToLocalValue(value.getLastChild(), locals));
case Token.COMMA:
return evaluatesToLocalValue(value.getLastChild(), locals);
case Token.AND:
case Token.OR:
return evaluatesToLocalValue(value.getFirstChild(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.HOOK:
return evaluatesToLocalValue(value.getFirstChild().getNext(), locals)
&& evaluatesToLocalValue(value.getLastChild(), locals);
case Token.INC:
case Token.DEC:
if (value.getBooleanProp(Node.INCRDECR_PROP)) {
return evaluatesToLocalValue(value.getFirstChild(), locals);
} else {
return true;
}
case Token.THIS:
return locals.apply(value);
case Token.NAME:
return isImmutableValue(value) || locals.apply(value);
case Token.GETELEM:
case Token.GETPROP:
// There is no information about the locality of object properties.
return locals.apply(value);
case Token.CALL:
return callHasLocalResult(value)
|| isToStringMethodCall(value)
|| locals.apply(value);
case Token.NEW:
// TODO(nicksantos): This needs to be changed so that it
// returns true iff we're sure the value was never aliased from inside
// the constructor (similar to callHasLocalResult)
return true;
case Token.FUNCTION:
case Token.REGEXP:
case Token.ARRAYLIT:
case Token.OBJECTLIT:
// Literals objects with non-literal children are allowed.
return true;
case Token.IN:
// TODO(johnlenz): should IN operator be included in #isSimpleOperator?
return true;
default:
// Other op force a local value:
// x = '' + g (x is now an local string)
// x -= g (x is now an local number)
if (isAssignmentOp(value)
|| isSimpleOperator(value)
|| isImmutableValue(value)) {
return true;
}
throw new IllegalStateException(
"Unexpected expression node" + value +
"\n parent:" + value.getParent());
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
37 | c273ee78400461dcbb045830b489912c5cd1214856dfcaf1697d0e0253436fdc | @Override
protected JavaType _narrow(Class<?> subclass)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
protected JavaType _narrow(Class<?> subclass)
{
if (_class == subclass) {
return this;
}
// Should we check that there is a sub-class relationship?
// 15-Jan-2016, tatu: Almost yes, but there are some complications with
// placeholder values, so no.
/*
if (!_class.isAssignableFrom(subclass)) {
throw new IllegalArgumentException("Class "+subclass.getName()+" not sub-type of "
+_class.getName());
}
*/
// 15-Jan-2015, tatu: Not correct; should really re-resolve...
return new SimpleType(subclass, _bindings, _superClass, _superInterfaces,
_valueHandler, _typeHandler, _asStatic);
}
```
| @Override
protected JavaType _narrow(Class<?> subclass)
{
if (_class == subclass) {
return this;
}
// Should we check that there is a sub-class relationship?
// 15-Jan-2016, tatu: Almost yes, but there are some complications with
// placeholder values, so no.
/*
if (!_class.isAssignableFrom(subclass)) {
throw new IllegalArgumentException("Class "+subclass.getName()+" not sub-type of "
+_class.getName());
}
*/
// 15-Jan-2015, tatu: Not correct; should really re-resolve...
return new SimpleType(subclass, _bindings, _superClass, _superInterfaces,
_valueHandler, _typeHandler, _asStatic);
} | true | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
protected JavaType _narrow(Class<?> subclass)
{
if (_class == subclass) {
return this;
}
// Should we check that there is a sub-class relationship?
// 15-Jan-2016, tatu: Almost yes, but there are some complications with
// placeholder values, so no.
/*
if (!_class.isAssignableFrom(subclass)) {
throw new IllegalArgumentException("Class "+subclass.getName()+" not sub-type of "
+_class.getName());
}
*/
// 15-Jan-2015, tatu: Not correct; should really re-resolve...
return new SimpleType(subclass, _bindings, _superClass, _superInterfaces,
_valueHandler, _typeHandler, _asStatic);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
Subsets and Splits