bug_id
stringlengths 1
3
| task_id
stringlengths 64
64
| function_signature
stringlengths 15
364
| prompt_chat
stringlengths 471
20.2k
| code
stringlengths 44
19.8k
| defective
bool 2
classes | project
stringclasses 17
values | prompt_complete
stringlengths 3.07k
22.8k
|
---|---|---|---|---|---|---|---|
18 | f2123a6117a46a2141ee74e74eb5b7bc0acc5daa6a0745791020aed72f4d7836 | protected List<Rule> parsePattern() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Returns a list of Rules given a pattern.</p>
*
* @return a {@code List} of Rule objects
* @throws IllegalArgumentException if pattern is invalid
*/
//-----------------------------------------------------------------------
// Parse the pattern
protected List<Rule> parsePattern() {
DateFormatSymbols symbols = new DateFormatSymbols(mLocale);
List<Rule> rules = new ArrayList<Rule>();
String[] ERAs = symbols.getEras();
String[] months = symbols.getMonths();
String[] shortMonths = symbols.getShortMonths();
String[] weekdays = symbols.getWeekdays();
String[] shortWeekdays = symbols.getShortWeekdays();
String[] AmPmStrings = symbols.getAmPmStrings();
int length = mPattern.length();
int[] indexRef = new int[1];
for (int i = 0; i < length; i++) {
indexRef[0] = i;
String token = parseToken(mPattern, indexRef);
i = indexRef[0];
int tokenLen = token.length();
if (tokenLen == 0) {
break;
}
Rule rule;
char c = token.charAt(0);
switch (c) {
case 'G': // era designator (text)
rule = new TextField(Calendar.ERA, ERAs);
break;
case 'y': // year (number)
if (tokenLen >= 4) {
rule = selectNumberRule(Calendar.YEAR, tokenLen);
} else {
rule = TwoDigitYearField.INSTANCE;
}
break;
case 'M': // month in year (text and number)
if (tokenLen >= 4) {
rule = new TextField(Calendar.MONTH, months);
} else if (tokenLen == 3) {
rule = new TextField(Calendar.MONTH, shortMonths);
} else if (tokenLen == 2) {
rule = TwoDigitMonthField.INSTANCE;
} else {
rule = UnpaddedMonthField.INSTANCE;
}
break;
case 'd': // day in month (number)
rule = selectNumberRule(Calendar.DAY_OF_MONTH, tokenLen);
break;
case 'h': // hour in am/pm (number, 1..12)
rule = new TwelveHourField(selectNumberRule(Calendar.HOUR, tokenLen));
break;
case 'H': // hour in day (number, 0..23)
rule = selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen);
break;
case 'm': // minute in hour (number)
rule = selectNumberRule(Calendar.MINUTE, tokenLen);
break;
case 's': // second in minute (number)
rule = selectNumberRule(Calendar.SECOND, tokenLen);
break;
case 'S': // millisecond (number)
rule = selectNumberRule(Calendar.MILLISECOND, tokenLen);
break;
case 'E': // day in week (text)
rule = new TextField(Calendar.DAY_OF_WEEK, tokenLen < 4 ? shortWeekdays : weekdays);
break;
case 'D': // day in year (number)
rule = selectNumberRule(Calendar.DAY_OF_YEAR, tokenLen);
break;
case 'F': // day of week in month (number)
rule = selectNumberRule(Calendar.DAY_OF_WEEK_IN_MONTH, tokenLen);
break;
case 'w': // week in year (number)
rule = selectNumberRule(Calendar.WEEK_OF_YEAR, tokenLen);
break;
case 'W': // week in month (number)
rule = selectNumberRule(Calendar.WEEK_OF_MONTH, tokenLen);
break;
case 'a': // am/pm marker (text)
rule = new TextField(Calendar.AM_PM, AmPmStrings);
break;
case 'k': // hour in day (1..24)
rule = new TwentyFourHourField(selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen));
break;
case 'K': // hour in am/pm (0..11)
rule = selectNumberRule(Calendar.HOUR, tokenLen);
break;
case 'z': // time zone (text)
if (tokenLen >= 4) {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.LONG);
} else {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.SHORT);
}
break;
case 'Z': // time zone (value)
if (tokenLen == 1) {
rule = TimeZoneNumberRule.INSTANCE_NO_COLON;
} else {
rule = TimeZoneNumberRule.INSTANCE_COLON;
}
break;
case '\'': // literal text
String sub = token.substring(1);
if (sub.length() == 1) {
rule = new CharacterLiteral(sub.charAt(0));
} else {
rule = new StringLiteral(sub);
}
break;
default:
throw new IllegalArgumentException("Illegal pattern component: " + token);
}
rules.add(rule);
}
return rules;
}
```
| protected List<Rule> parsePattern() {
DateFormatSymbols symbols = new DateFormatSymbols(mLocale);
List<Rule> rules = new ArrayList<Rule>();
String[] ERAs = symbols.getEras();
String[] months = symbols.getMonths();
String[] shortMonths = symbols.getShortMonths();
String[] weekdays = symbols.getWeekdays();
String[] shortWeekdays = symbols.getShortWeekdays();
String[] AmPmStrings = symbols.getAmPmStrings();
int length = mPattern.length();
int[] indexRef = new int[1];
for (int i = 0; i < length; i++) {
indexRef[0] = i;
String token = parseToken(mPattern, indexRef);
i = indexRef[0];
int tokenLen = token.length();
if (tokenLen == 0) {
break;
}
Rule rule;
char c = token.charAt(0);
switch (c) {
case 'G': // era designator (text)
rule = new TextField(Calendar.ERA, ERAs);
break;
case 'y': // year (number)
if (tokenLen >= 4) {
rule = selectNumberRule(Calendar.YEAR, tokenLen);
} else {
rule = TwoDigitYearField.INSTANCE;
}
break;
case 'M': // month in year (text and number)
if (tokenLen >= 4) {
rule = new TextField(Calendar.MONTH, months);
} else if (tokenLen == 3) {
rule = new TextField(Calendar.MONTH, shortMonths);
} else if (tokenLen == 2) {
rule = TwoDigitMonthField.INSTANCE;
} else {
rule = UnpaddedMonthField.INSTANCE;
}
break;
case 'd': // day in month (number)
rule = selectNumberRule(Calendar.DAY_OF_MONTH, tokenLen);
break;
case 'h': // hour in am/pm (number, 1..12)
rule = new TwelveHourField(selectNumberRule(Calendar.HOUR, tokenLen));
break;
case 'H': // hour in day (number, 0..23)
rule = selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen);
break;
case 'm': // minute in hour (number)
rule = selectNumberRule(Calendar.MINUTE, tokenLen);
break;
case 's': // second in minute (number)
rule = selectNumberRule(Calendar.SECOND, tokenLen);
break;
case 'S': // millisecond (number)
rule = selectNumberRule(Calendar.MILLISECOND, tokenLen);
break;
case 'E': // day in week (text)
rule = new TextField(Calendar.DAY_OF_WEEK, tokenLen < 4 ? shortWeekdays : weekdays);
break;
case 'D': // day in year (number)
rule = selectNumberRule(Calendar.DAY_OF_YEAR, tokenLen);
break;
case 'F': // day of week in month (number)
rule = selectNumberRule(Calendar.DAY_OF_WEEK_IN_MONTH, tokenLen);
break;
case 'w': // week in year (number)
rule = selectNumberRule(Calendar.WEEK_OF_YEAR, tokenLen);
break;
case 'W': // week in month (number)
rule = selectNumberRule(Calendar.WEEK_OF_MONTH, tokenLen);
break;
case 'a': // am/pm marker (text)
rule = new TextField(Calendar.AM_PM, AmPmStrings);
break;
case 'k': // hour in day (1..24)
rule = new TwentyFourHourField(selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen));
break;
case 'K': // hour in am/pm (0..11)
rule = selectNumberRule(Calendar.HOUR, tokenLen);
break;
case 'z': // time zone (text)
if (tokenLen >= 4) {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.LONG);
} else {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.SHORT);
}
break;
case 'Z': // time zone (value)
if (tokenLen == 1) {
rule = TimeZoneNumberRule.INSTANCE_NO_COLON;
} else {
rule = TimeZoneNumberRule.INSTANCE_COLON;
}
break;
case '\'': // literal text
String sub = token.substring(1);
if (sub.length() == 1) {
rule = new CharacterLiteral(sub.charAt(0));
} else {
rule = new StringLiteral(sub);
}
break;
default:
throw new IllegalArgumentException("Illegal pattern component: " + token);
}
rules.add(rule);
}
return rules;
} | true | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Returns a list of Rules given a pattern.</p>
*
* @return a {@code List} of Rule objects
* @throws IllegalArgumentException if pattern is invalid
*/
//-----------------------------------------------------------------------
// Parse the pattern
protected List<Rule> parsePattern() {
DateFormatSymbols symbols = new DateFormatSymbols(mLocale);
List<Rule> rules = new ArrayList<Rule>();
String[] ERAs = symbols.getEras();
String[] months = symbols.getMonths();
String[] shortMonths = symbols.getShortMonths();
String[] weekdays = symbols.getWeekdays();
String[] shortWeekdays = symbols.getShortWeekdays();
String[] AmPmStrings = symbols.getAmPmStrings();
int length = mPattern.length();
int[] indexRef = new int[1];
for (int i = 0; i < length; i++) {
indexRef[0] = i;
String token = parseToken(mPattern, indexRef);
i = indexRef[0];
int tokenLen = token.length();
if (tokenLen == 0) {
break;
}
Rule rule;
char c = token.charAt(0);
switch (c) {
case 'G': // era designator (text)
rule = new TextField(Calendar.ERA, ERAs);
break;
case 'y': // year (number)
if (tokenLen >= 4) {
rule = selectNumberRule(Calendar.YEAR, tokenLen);
} else {
rule = TwoDigitYearField.INSTANCE;
}
break;
case 'M': // month in year (text and number)
if (tokenLen >= 4) {
rule = new TextField(Calendar.MONTH, months);
} else if (tokenLen == 3) {
rule = new TextField(Calendar.MONTH, shortMonths);
} else if (tokenLen == 2) {
rule = TwoDigitMonthField.INSTANCE;
} else {
rule = UnpaddedMonthField.INSTANCE;
}
break;
case 'd': // day in month (number)
rule = selectNumberRule(Calendar.DAY_OF_MONTH, tokenLen);
break;
case 'h': // hour in am/pm (number, 1..12)
rule = new TwelveHourField(selectNumberRule(Calendar.HOUR, tokenLen));
break;
case 'H': // hour in day (number, 0..23)
rule = selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen);
break;
case 'm': // minute in hour (number)
rule = selectNumberRule(Calendar.MINUTE, tokenLen);
break;
case 's': // second in minute (number)
rule = selectNumberRule(Calendar.SECOND, tokenLen);
break;
case 'S': // millisecond (number)
rule = selectNumberRule(Calendar.MILLISECOND, tokenLen);
break;
case 'E': // day in week (text)
rule = new TextField(Calendar.DAY_OF_WEEK, tokenLen < 4 ? shortWeekdays : weekdays);
break;
case 'D': // day in year (number)
rule = selectNumberRule(Calendar.DAY_OF_YEAR, tokenLen);
break;
case 'F': // day of week in month (number)
rule = selectNumberRule(Calendar.DAY_OF_WEEK_IN_MONTH, tokenLen);
break;
case 'w': // week in year (number)
rule = selectNumberRule(Calendar.WEEK_OF_YEAR, tokenLen);
break;
case 'W': // week in month (number)
rule = selectNumberRule(Calendar.WEEK_OF_MONTH, tokenLen);
break;
case 'a': // am/pm marker (text)
rule = new TextField(Calendar.AM_PM, AmPmStrings);
break;
case 'k': // hour in day (1..24)
rule = new TwentyFourHourField(selectNumberRule(Calendar.HOUR_OF_DAY, tokenLen));
break;
case 'K': // hour in am/pm (0..11)
rule = selectNumberRule(Calendar.HOUR, tokenLen);
break;
case 'z': // time zone (text)
if (tokenLen >= 4) {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.LONG);
} else {
rule = new TimeZoneNameRule(mTimeZone, mLocale, TimeZone.SHORT);
}
break;
case 'Z': // time zone (value)
if (tokenLen == 1) {
rule = TimeZoneNumberRule.INSTANCE_NO_COLON;
} else {
rule = TimeZoneNumberRule.INSTANCE_COLON;
}
break;
case '\'': // literal text
String sub = token.substring(1);
if (sub.length() == 1) {
rule = new CharacterLiteral(sub.charAt(0));
} else {
rule = new StringLiteral(sub);
}
break;
default:
throw new IllegalArgumentException("Illegal pattern component: " + token);
}
rules.add(rule);
}
return rules;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
12 | f232264f7b3a7411d37b97ae0566af2d215048ce259874943dbf1b6381095b41 | public static boolean testNode(Node node, NodeTest test) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
public static boolean testNode(Node node, NodeTest test) {
if (test == null) {
return true;
}
if (test instanceof NodeNameTest) {
if (node.getNodeType() != Node.ELEMENT_NODE) {
return false;
}
NodeNameTest nodeNameTest = (NodeNameTest) test;
QName testName = nodeNameTest.getNodeName();
String namespaceURI = nodeNameTest.getNamespaceURI();
boolean wildcard = nodeNameTest.isWildcard();
String testPrefix = testName.getPrefix();
if (wildcard && testPrefix == null) {
return true;
}
if (wildcard
|| testName.getName()
.equals(DOMNodePointer.getLocalName(node))) {
String nodeNS = DOMNodePointer.getNamespaceURI(node);
return equalStrings(namespaceURI, nodeNS);
}
return false;
}
if (test instanceof NodeTypeTest) {
int nodeType = node.getNodeType();
switch (((NodeTypeTest) test).getNodeType()) {
case Compiler.NODE_TYPE_NODE :
return nodeType == Node.ELEMENT_NODE
|| nodeType == Node.DOCUMENT_NODE;
case Compiler.NODE_TYPE_TEXT :
return nodeType == Node.CDATA_SECTION_NODE
|| nodeType == Node.TEXT_NODE;
case Compiler.NODE_TYPE_COMMENT :
return nodeType == Node.COMMENT_NODE;
case Compiler.NODE_TYPE_PI :
return nodeType == Node.PROCESSING_INSTRUCTION_NODE;
}
return false;
}
if (test instanceof ProcessingInstructionTest) {
if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) {
String testPI = ((ProcessingInstructionTest) test).getTarget();
String nodePI = ((ProcessingInstruction) node).getTarget();
return testPI.equals(nodePI);
}
}
return false;
}
```
| public static boolean testNode(Node node, NodeTest test) {
if (test == null) {
return true;
}
if (test instanceof NodeNameTest) {
if (node.getNodeType() != Node.ELEMENT_NODE) {
return false;
}
NodeNameTest nodeNameTest = (NodeNameTest) test;
QName testName = nodeNameTest.getNodeName();
String namespaceURI = nodeNameTest.getNamespaceURI();
boolean wildcard = nodeNameTest.isWildcard();
String testPrefix = testName.getPrefix();
if (wildcard && testPrefix == null) {
return true;
}
if (wildcard
|| testName.getName()
.equals(DOMNodePointer.getLocalName(node))) {
String nodeNS = DOMNodePointer.getNamespaceURI(node);
return equalStrings(namespaceURI, nodeNS);
}
return false;
}
if (test instanceof NodeTypeTest) {
int nodeType = node.getNodeType();
switch (((NodeTypeTest) test).getNodeType()) {
case Compiler.NODE_TYPE_NODE :
return nodeType == Node.ELEMENT_NODE
|| nodeType == Node.DOCUMENT_NODE;
case Compiler.NODE_TYPE_TEXT :
return nodeType == Node.CDATA_SECTION_NODE
|| nodeType == Node.TEXT_NODE;
case Compiler.NODE_TYPE_COMMENT :
return nodeType == Node.COMMENT_NODE;
case Compiler.NODE_TYPE_PI :
return nodeType == Node.PROCESSING_INSTRUCTION_NODE;
}
return false;
}
if (test instanceof ProcessingInstructionTest) {
if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) {
String testPI = ((ProcessingInstructionTest) test).getTarget();
String nodePI = ((ProcessingInstruction) node).getTarget();
return testPI.equals(nodePI);
}
}
return false;
} | true | JxPath | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
public static boolean testNode(Node node, NodeTest test) {
if (test == null) {
return true;
}
if (test instanceof NodeNameTest) {
if (node.getNodeType() != Node.ELEMENT_NODE) {
return false;
}
NodeNameTest nodeNameTest = (NodeNameTest) test;
QName testName = nodeNameTest.getNodeName();
String namespaceURI = nodeNameTest.getNamespaceURI();
boolean wildcard = nodeNameTest.isWildcard();
String testPrefix = testName.getPrefix();
if (wildcard && testPrefix == null) {
return true;
}
if (wildcard
|| testName.getName()
.equals(DOMNodePointer.getLocalName(node))) {
String nodeNS = DOMNodePointer.getNamespaceURI(node);
return equalStrings(namespaceURI, nodeNS);
}
return false;
}
if (test instanceof NodeTypeTest) {
int nodeType = node.getNodeType();
switch (((NodeTypeTest) test).getNodeType()) {
case Compiler.NODE_TYPE_NODE :
return nodeType == Node.ELEMENT_NODE
|| nodeType == Node.DOCUMENT_NODE;
case Compiler.NODE_TYPE_TEXT :
return nodeType == Node.CDATA_SECTION_NODE
|| nodeType == Node.TEXT_NODE;
case Compiler.NODE_TYPE_COMMENT :
return nodeType == Node.COMMENT_NODE;
case Compiler.NODE_TYPE_PI :
return nodeType == Node.PROCESSING_INSTRUCTION_NODE;
}
return false;
}
if (test instanceof ProcessingInstructionTest) {
if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) {
String testPI = ((ProcessingInstructionTest) test).getTarget();
String nodePI = ((ProcessingInstruction) node).getTarget();
return testPI.equals(nodePI);
}
}
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
25 | f2db0b441f0dda7e3998d1152bd8a3100daa14f73b465e6642719f664b464bff | private FlowScope traverseNew(Node n, FlowScope scope) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private FlowScope traverseNew(Node n, FlowScope scope) {
scope = traverseChildren(n, scope);
Node constructor = n.getFirstChild();
JSType constructorType = constructor.getJSType();
JSType type = null;
if (constructorType != null) {
constructorType = constructorType.restrictByNotNullOrUndefined();
if (constructorType.isUnknownType()) {
type = getNativeType(UNKNOWN_TYPE);
} else {
FunctionType ct = constructorType.toMaybeFunctionType();
if (ct == null && constructorType instanceof FunctionType) {
// If constructorType is a NoObjectType, then toMaybeFunctionType will
// return null. But NoObjectType implements the FunctionType
// interface, precisely because it can validly construct objects.
ct = (FunctionType) constructorType;
}
if (ct != null && ct.isConstructor()) {
type = ct.getInstanceType();
backwardsInferenceFromCallSite(n, ct);
}
}
}
n.setJSType(type);
return scope;
}
```
| private FlowScope traverseNew(Node n, FlowScope scope) {
scope = traverseChildren(n, scope);
Node constructor = n.getFirstChild();
JSType constructorType = constructor.getJSType();
JSType type = null;
if (constructorType != null) {
constructorType = constructorType.restrictByNotNullOrUndefined();
if (constructorType.isUnknownType()) {
type = getNativeType(UNKNOWN_TYPE);
} else {
FunctionType ct = constructorType.toMaybeFunctionType();
if (ct == null && constructorType instanceof FunctionType) {
// If constructorType is a NoObjectType, then toMaybeFunctionType will
// return null. But NoObjectType implements the FunctionType
// interface, precisely because it can validly construct objects.
ct = (FunctionType) constructorType;
}
if (ct != null && ct.isConstructor()) {
type = ct.getInstanceType();
backwardsInferenceFromCallSite(n, ct);
}
}
}
n.setJSType(type);
return scope;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private FlowScope traverseNew(Node n, FlowScope scope) {
scope = traverseChildren(n, scope);
Node constructor = n.getFirstChild();
JSType constructorType = constructor.getJSType();
JSType type = null;
if (constructorType != null) {
constructorType = constructorType.restrictByNotNullOrUndefined();
if (constructorType.isUnknownType()) {
type = getNativeType(UNKNOWN_TYPE);
} else {
FunctionType ct = constructorType.toMaybeFunctionType();
if (ct == null && constructorType instanceof FunctionType) {
// If constructorType is a NoObjectType, then toMaybeFunctionType will
// return null. But NoObjectType implements the FunctionType
// interface, precisely because it can validly construct objects.
ct = (FunctionType) constructorType;
}
if (ct != null && ct.isConstructor()) {
type = ct.getInstanceType();
backwardsInferenceFromCallSite(n, ct);
}
}
}
n.setJSType(type);
return scope;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
6 | f2db3ccd55cc060c8679e927bdc398cd4b5e5430eebd688a1d55545b110aae76 | public boolean equals(Object obj) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Tests the list for equality with another object (typically also a list).
*
* @param obj the other object (<code>null</code> permitted).
*
* @return A boolean.
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof ShapeList)) {
return false;
}
ShapeList that = (ShapeList) obj;
int listSize = size();
for (int i = 0; i < listSize; i++) {
if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.get(i))) {
return false;
}
}
return true;
}
```
| public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof ShapeList)) {
return false;
}
ShapeList that = (ShapeList) obj;
int listSize = size();
for (int i = 0; i < listSize; i++) {
if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.get(i))) {
return false;
}
}
return true;
} | false | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Tests the list for equality with another object (typically also a list).
*
* @param obj the other object (<code>null</code> permitted).
*
* @return A boolean.
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof ShapeList)) {
return false;
}
ShapeList that = (ShapeList) obj;
int listSize = size();
for (int i = 0; i < listSize; i++) {
if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.get(i))) {
return false;
}
}
return true;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
24 | f30c2bf880b0d5aeee3c4b294d81f31bb57f23c37ee9eebed7a3a0ef46ca73b1 | public long computeMillis(boolean resetFields, String text) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Computes the parsed datetime by setting the saved fields.
* This method is idempotent, but it is not thread-safe.
*
* @param resetFields false by default, but when true, unsaved field values are cleared
* @param text optional text being parsed, to be included in any error message
* @return milliseconds since 1970-01-01T00:00:00Z
* @throws IllegalArgumentException if any field is out of range
* @since 1.3
*/
public long computeMillis(boolean resetFields, String text) {
SavedField[] savedFields = iSavedFields;
int count = iSavedFieldsCount;
if (iSavedFieldsShared) {
iSavedFields = savedFields = (SavedField[])iSavedFields.clone();
iSavedFieldsShared = false;
}
sort(savedFields, count);
if (count > 0) {
// alter base year for parsing if first field is month or day
DurationField months = DurationFieldType.months().getField(iChrono);
DurationField days = DurationFieldType.days().getField(iChrono);
DurationField first = savedFields[0].iField.getDurationField();
if (compareReverse(first, months) >= 0 && compareReverse(first, days) <= 0) {
saveField(DateTimeFieldType.year(), iDefaultYear);
return computeMillis(resetFields, text);
}
}
long millis = iMillis;
try {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, resetFields);
}
if (resetFields) {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, i == (count - 1));
}
}
} catch (IllegalFieldValueException e) {
if (text != null) {
e.prependMessage("Cannot parse \"" + text + '"');
}
throw e;
}
if (iZone == null) {
millis -= iOffset;
} else {
int offset = iZone.getOffsetFromLocal(millis);
millis -= offset;
if (offset != iZone.getOffset(millis)) {
String message =
"Illegal instant due to time zone offset transition (" + iZone + ')';
if (text != null) {
message = "Cannot parse \"" + text + "\": " + message;
}
throw new IllegalArgumentException(message);
}
}
return millis;
}
```
| public long computeMillis(boolean resetFields, String text) {
SavedField[] savedFields = iSavedFields;
int count = iSavedFieldsCount;
if (iSavedFieldsShared) {
iSavedFields = savedFields = (SavedField[])iSavedFields.clone();
iSavedFieldsShared = false;
}
sort(savedFields, count);
if (count > 0) {
// alter base year for parsing if first field is month or day
DurationField months = DurationFieldType.months().getField(iChrono);
DurationField days = DurationFieldType.days().getField(iChrono);
DurationField first = savedFields[0].iField.getDurationField();
if (compareReverse(first, months) >= 0 && compareReverse(first, days) <= 0) {
saveField(DateTimeFieldType.year(), iDefaultYear);
return computeMillis(resetFields, text);
}
}
long millis = iMillis;
try {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, resetFields);
}
if (resetFields) {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, i == (count - 1));
}
}
} catch (IllegalFieldValueException e) {
if (text != null) {
e.prependMessage("Cannot parse \"" + text + '"');
}
throw e;
}
if (iZone == null) {
millis -= iOffset;
} else {
int offset = iZone.getOffsetFromLocal(millis);
millis -= offset;
if (offset != iZone.getOffset(millis)) {
String message =
"Illegal instant due to time zone offset transition (" + iZone + ')';
if (text != null) {
message = "Cannot parse \"" + text + "\": " + message;
}
throw new IllegalArgumentException(message);
}
}
return millis;
} | false | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Computes the parsed datetime by setting the saved fields.
* This method is idempotent, but it is not thread-safe.
*
* @param resetFields false by default, but when true, unsaved field values are cleared
* @param text optional text being parsed, to be included in any error message
* @return milliseconds since 1970-01-01T00:00:00Z
* @throws IllegalArgumentException if any field is out of range
* @since 1.3
*/
public long computeMillis(boolean resetFields, String text) {
SavedField[] savedFields = iSavedFields;
int count = iSavedFieldsCount;
if (iSavedFieldsShared) {
iSavedFields = savedFields = (SavedField[])iSavedFields.clone();
iSavedFieldsShared = false;
}
sort(savedFields, count);
if (count > 0) {
// alter base year for parsing if first field is month or day
DurationField months = DurationFieldType.months().getField(iChrono);
DurationField days = DurationFieldType.days().getField(iChrono);
DurationField first = savedFields[0].iField.getDurationField();
if (compareReverse(first, months) >= 0 && compareReverse(first, days) <= 0) {
saveField(DateTimeFieldType.year(), iDefaultYear);
return computeMillis(resetFields, text);
}
}
long millis = iMillis;
try {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, resetFields);
}
if (resetFields) {
for (int i = 0; i < count; i++) {
millis = savedFields[i].set(millis, i == (count - 1));
}
}
} catch (IllegalFieldValueException e) {
if (text != null) {
e.prependMessage("Cannot parse \"" + text + '"');
}
throw e;
}
if (iZone == null) {
millis -= iOffset;
} else {
int offset = iZone.getOffsetFromLocal(millis);
millis -= offset;
if (offset != iZone.getOffset(millis)) {
String message =
"Illegal instant due to time zone offset transition (" + iZone + ')';
if (text != null) {
message = "Cannot parse \"" + text + "\": " + message;
}
throw new IllegalArgumentException(message);
}
}
return millis;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
5 | f42b166badd265bafa4581e4bd5d62544149247db09616dffe00ffbe680bebc9 | private int compareNodePointers(
NodePointer p1,
int depth1,
NodePointer p2,
int depth2)
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private int compareNodePointers(
NodePointer p1,
int depth1,
NodePointer p2,
int depth2)
{
if (depth1 < depth2) {
int r = compareNodePointers(p1, depth1, p2.parent, depth2 - 1);
return r == 0 ? -1 : r;
}
if (depth1 > depth2) {
int r = compareNodePointers(p1.parent, depth1 - 1, p2, depth2);
return r == 0 ? 1 : r;
}
if (p1 == null && p2 == null) {
return 0;
}
if (p1 != null && p1.equals(p2)) {
return 0;
}
if (depth1 == 1) {
return 0;
}
int r = compareNodePointers(p1.parent, depth1 - 1, p2.parent, depth2 - 1);
if (r != 0) {
return r;
}
return p1.parent.compareChildNodePointers(p1, p2);
}
```
| private int compareNodePointers(
NodePointer p1,
int depth1,
NodePointer p2,
int depth2)
{
if (depth1 < depth2) {
int r = compareNodePointers(p1, depth1, p2.parent, depth2 - 1);
return r == 0 ? -1 : r;
}
if (depth1 > depth2) {
int r = compareNodePointers(p1.parent, depth1 - 1, p2, depth2);
return r == 0 ? 1 : r;
}
if (p1 == null && p2 == null) {
return 0;
}
if (p1 != null && p1.equals(p2)) {
return 0;
}
if (depth1 == 1) {
return 0;
}
int r = compareNodePointers(p1.parent, depth1 - 1, p2.parent, depth2 - 1);
if (r != 0) {
return r;
}
return p1.parent.compareChildNodePointers(p1, p2);
} | false | JxPath | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private int compareNodePointers(
NodePointer p1,
int depth1,
NodePointer p2,
int depth2)
{
if (depth1 < depth2) {
int r = compareNodePointers(p1, depth1, p2.parent, depth2 - 1);
return r == 0 ? -1 : r;
}
if (depth1 > depth2) {
int r = compareNodePointers(p1.parent, depth1 - 1, p2, depth2);
return r == 0 ? 1 : r;
}
if (p1 == null && p2 == null) {
return 0;
}
if (p1 != null && p1.equals(p2)) {
return 0;
}
if (depth1 == 1) {
return 0;
}
int r = compareNodePointers(p1.parent, depth1 - 1, p2.parent, depth2 - 1);
if (r != 0) {
return r;
}
return p1.parent.compareChildNodePointers(p1, p2);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
4 | f431b0bef82062a8db91fdd3ae2cc4dd4efe6a68ccdf0cd20c829d6751b2210f | public char[] expandCurrentSegment()
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Method called to expand size of the current segment, to
* accommodate for more contiguous content. Usually only
* used when parsing tokens like names if even then.
*/
public char[] expandCurrentSegment()
{
final char[] curr = _currentSegment;
// Let's grow by 50% by default
final int len = curr.length;
// but above intended maximum, slow to increase by 25%
int newLen = (len == MAX_SEGMENT_LEN) ? (MAX_SEGMENT_LEN+1) : Math.min(MAX_SEGMENT_LEN, len + (len >> 1));
return (_currentSegment = Arrays.copyOf(curr, newLen));
}
```
| public char[] expandCurrentSegment()
{
final char[] curr = _currentSegment;
// Let's grow by 50% by default
final int len = curr.length;
// but above intended maximum, slow to increase by 25%
int newLen = (len == MAX_SEGMENT_LEN) ? (MAX_SEGMENT_LEN+1) : Math.min(MAX_SEGMENT_LEN, len + (len >> 1));
return (_currentSegment = Arrays.copyOf(curr, newLen));
} | true | JacksonCore | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Method called to expand size of the current segment, to
* accommodate for more contiguous content. Usually only
* used when parsing tokens like names if even then.
*/
public char[] expandCurrentSegment()
{
final char[] curr = _currentSegment;
// Let's grow by 50% by default
final int len = curr.length;
// but above intended maximum, slow to increase by 25%
int newLen = (len == MAX_SEGMENT_LEN) ? (MAX_SEGMENT_LEN+1) : Math.min(MAX_SEGMENT_LEN, len + (len >> 1));
return (_currentSegment = Arrays.copyOf(curr, newLen));
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
13 | f47adbf7cc05f92d0074047b86374068b4fd4feca9c3c4dba24c2522c7986747 | private int peekNumber() throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private int peekNumber() throws IOException {
// Like nextNonWhitespace, this uses locals 'p' and 'l' to save inner-loop field access.
char[] buffer = this.buffer;
int p = pos;
int l = limit;
long value = 0; // Negative to accommodate Long.MIN_VALUE more easily.
boolean negative = false;
boolean fitsInLong = true;
int last = NUMBER_CHAR_NONE;
int i = 0;
charactersOfNumber:
for (; true; i++) {
if (p + i == l) {
if (i == buffer.length) {
// Though this looks like a well-formed number, it's too long to continue reading. Give up
// and let the application handle this as an unquoted literal.
return PEEKED_NONE;
}
if (!fillBuffer(i + 1)) {
break;
}
p = pos;
l = limit;
}
char c = buffer[p + i];
switch (c) {
case '-':
if (last == NUMBER_CHAR_NONE) {
negative = true;
last = NUMBER_CHAR_SIGN;
continue;
} else if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case '+':
if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case 'e':
case 'E':
if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT) {
last = NUMBER_CHAR_EXP_E;
continue;
}
return PEEKED_NONE;
case '.':
if (last == NUMBER_CHAR_DIGIT) {
last = NUMBER_CHAR_DECIMAL;
continue;
}
return PEEKED_NONE;
default:
if (c < '0' || c > '9') {
if (!isLiteral(c)) {
break charactersOfNumber;
}
return PEEKED_NONE;
}
if (last == NUMBER_CHAR_SIGN || last == NUMBER_CHAR_NONE) {
value = -(c - '0');
last = NUMBER_CHAR_DIGIT;
} else if (last == NUMBER_CHAR_DIGIT) {
if (value == 0) {
return PEEKED_NONE; // Leading '0' prefix is not allowed (since it could be octal).
}
long newValue = value * 10 - (c - '0');
fitsInLong &= value > MIN_INCOMPLETE_INTEGER
|| (value == MIN_INCOMPLETE_INTEGER && newValue < value);
value = newValue;
} else if (last == NUMBER_CHAR_DECIMAL) {
last = NUMBER_CHAR_FRACTION_DIGIT;
} else if (last == NUMBER_CHAR_EXP_E || last == NUMBER_CHAR_EXP_SIGN) {
last = NUMBER_CHAR_EXP_DIGIT;
}
}
}
// We've read a complete number. Decide if it's a PEEKED_LONG or a PEEKED_NUMBER.
if (last == NUMBER_CHAR_DIGIT && fitsInLong && (value != Long.MIN_VALUE || negative)) {
peekedLong = negative ? value : -value;
pos += i;
return peeked = PEEKED_LONG;
} else if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT
|| last == NUMBER_CHAR_EXP_DIGIT) {
peekedNumberLength = i;
return peeked = PEEKED_NUMBER;
} else {
return PEEKED_NONE;
}
}
```
| private int peekNumber() throws IOException {
// Like nextNonWhitespace, this uses locals 'p' and 'l' to save inner-loop field access.
char[] buffer = this.buffer;
int p = pos;
int l = limit;
long value = 0; // Negative to accommodate Long.MIN_VALUE more easily.
boolean negative = false;
boolean fitsInLong = true;
int last = NUMBER_CHAR_NONE;
int i = 0;
charactersOfNumber:
for (; true; i++) {
if (p + i == l) {
if (i == buffer.length) {
// Though this looks like a well-formed number, it's too long to continue reading. Give up
// and let the application handle this as an unquoted literal.
return PEEKED_NONE;
}
if (!fillBuffer(i + 1)) {
break;
}
p = pos;
l = limit;
}
char c = buffer[p + i];
switch (c) {
case '-':
if (last == NUMBER_CHAR_NONE) {
negative = true;
last = NUMBER_CHAR_SIGN;
continue;
} else if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case '+':
if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case 'e':
case 'E':
if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT) {
last = NUMBER_CHAR_EXP_E;
continue;
}
return PEEKED_NONE;
case '.':
if (last == NUMBER_CHAR_DIGIT) {
last = NUMBER_CHAR_DECIMAL;
continue;
}
return PEEKED_NONE;
default:
if (c < '0' || c > '9') {
if (!isLiteral(c)) {
break charactersOfNumber;
}
return PEEKED_NONE;
}
if (last == NUMBER_CHAR_SIGN || last == NUMBER_CHAR_NONE) {
value = -(c - '0');
last = NUMBER_CHAR_DIGIT;
} else if (last == NUMBER_CHAR_DIGIT) {
if (value == 0) {
return PEEKED_NONE; // Leading '0' prefix is not allowed (since it could be octal).
}
long newValue = value * 10 - (c - '0');
fitsInLong &= value > MIN_INCOMPLETE_INTEGER
|| (value == MIN_INCOMPLETE_INTEGER && newValue < value);
value = newValue;
} else if (last == NUMBER_CHAR_DECIMAL) {
last = NUMBER_CHAR_FRACTION_DIGIT;
} else if (last == NUMBER_CHAR_EXP_E || last == NUMBER_CHAR_EXP_SIGN) {
last = NUMBER_CHAR_EXP_DIGIT;
}
}
}
// We've read a complete number. Decide if it's a PEEKED_LONG or a PEEKED_NUMBER.
if (last == NUMBER_CHAR_DIGIT && fitsInLong && (value != Long.MIN_VALUE || negative)) {
peekedLong = negative ? value : -value;
pos += i;
return peeked = PEEKED_LONG;
} else if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT
|| last == NUMBER_CHAR_EXP_DIGIT) {
peekedNumberLength = i;
return peeked = PEEKED_NUMBER;
} else {
return PEEKED_NONE;
}
} | true | Gson | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private int peekNumber() throws IOException {
// Like nextNonWhitespace, this uses locals 'p' and 'l' to save inner-loop field access.
char[] buffer = this.buffer;
int p = pos;
int l = limit;
long value = 0; // Negative to accommodate Long.MIN_VALUE more easily.
boolean negative = false;
boolean fitsInLong = true;
int last = NUMBER_CHAR_NONE;
int i = 0;
charactersOfNumber:
for (; true; i++) {
if (p + i == l) {
if (i == buffer.length) {
// Though this looks like a well-formed number, it's too long to continue reading. Give up
// and let the application handle this as an unquoted literal.
return PEEKED_NONE;
}
if (!fillBuffer(i + 1)) {
break;
}
p = pos;
l = limit;
}
char c = buffer[p + i];
switch (c) {
case '-':
if (last == NUMBER_CHAR_NONE) {
negative = true;
last = NUMBER_CHAR_SIGN;
continue;
} else if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case '+':
if (last == NUMBER_CHAR_EXP_E) {
last = NUMBER_CHAR_EXP_SIGN;
continue;
}
return PEEKED_NONE;
case 'e':
case 'E':
if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT) {
last = NUMBER_CHAR_EXP_E;
continue;
}
return PEEKED_NONE;
case '.':
if (last == NUMBER_CHAR_DIGIT) {
last = NUMBER_CHAR_DECIMAL;
continue;
}
return PEEKED_NONE;
default:
if (c < '0' || c > '9') {
if (!isLiteral(c)) {
break charactersOfNumber;
}
return PEEKED_NONE;
}
if (last == NUMBER_CHAR_SIGN || last == NUMBER_CHAR_NONE) {
value = -(c - '0');
last = NUMBER_CHAR_DIGIT;
} else if (last == NUMBER_CHAR_DIGIT) {
if (value == 0) {
return PEEKED_NONE; // Leading '0' prefix is not allowed (since it could be octal).
}
long newValue = value * 10 - (c - '0');
fitsInLong &= value > MIN_INCOMPLETE_INTEGER
|| (value == MIN_INCOMPLETE_INTEGER && newValue < value);
value = newValue;
} else if (last == NUMBER_CHAR_DECIMAL) {
last = NUMBER_CHAR_FRACTION_DIGIT;
} else if (last == NUMBER_CHAR_EXP_E || last == NUMBER_CHAR_EXP_SIGN) {
last = NUMBER_CHAR_EXP_DIGIT;
}
}
}
// We've read a complete number. Decide if it's a PEEKED_LONG or a PEEKED_NUMBER.
if (last == NUMBER_CHAR_DIGIT && fitsInLong && (value != Long.MIN_VALUE || negative)) {
peekedLong = negative ? value : -value;
pos += i;
return peeked = PEEKED_LONG;
} else if (last == NUMBER_CHAR_DIGIT || last == NUMBER_CHAR_FRACTION_DIGIT
|| last == NUMBER_CHAR_EXP_DIGIT) {
peekedNumberLength = i;
return peeked = PEEKED_NUMBER;
} else {
return PEEKED_NONE;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
31 | f4ae23e9f11b8c9d51385c33405ff4a009c30ed644b7b763f57c1a5815041412 | public static boolean containsAny(CharSequence cs, char[] searchChars) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Checks if the CharSequence contains any character in the given
* set of characters.</p>
*
* <p>A <code>null</code> CharSequence will return <code>false</code>.
* A <code>null</code> or zero length search array will return <code>false</code>.</p>
*
* <pre>
* StringUtils.containsAny(null, *) = false
* StringUtils.containsAny("", *) = false
* StringUtils.containsAny(*, null) = false
* StringUtils.containsAny(*, []) = false
* StringUtils.containsAny("zzabyycdxx",['z','a']) = true
* StringUtils.containsAny("zzabyycdxx",['b','y']) = true
* StringUtils.containsAny("aba", ['z']) = false
* </pre>
*
* @param cs the CharSequence to check, may be null
* @param searchChars the chars to search for, may be null
* @return the <code>true</code> if any of the chars are found,
* <code>false</code> if no match or null input
* @since 2.4
*/
//-----------------------------------------------------------------------
// ContainsAny
public static boolean containsAny(CharSequence cs, char[] searchChars) {
if (isEmpty(cs) || ArrayUtils.isEmpty(searchChars)) {
return false;
}
int csLength = cs.length();
int searchLength = searchChars.length;
int csLastIndex = csLength - 1;
int searchLastIndex = searchLength - 1;
for (int i = 0; i < csLength; i++) {
char ch = cs.charAt(i);
for (int j = 0; j < searchLength; j++) {
if (searchChars[j] == ch) {
if (i < csLastIndex && j < searchLastIndex && ch >= Character.MIN_HIGH_SURROGATE && ch <= Character.MAX_HIGH_SURROGATE) {
// ch is a supplementary character
if (searchChars[j + 1] == cs.charAt(i + 1)) {
return true;
}
} else {
// ch is in the Basic Multilingual Plane
return true;
}
}
}
}
return false;
}
```
| public static boolean containsAny(CharSequence cs, char[] searchChars) {
if (isEmpty(cs) || ArrayUtils.isEmpty(searchChars)) {
return false;
}
int csLength = cs.length();
int searchLength = searchChars.length;
int csLastIndex = csLength - 1;
int searchLastIndex = searchLength - 1;
for (int i = 0; i < csLength; i++) {
char ch = cs.charAt(i);
for (int j = 0; j < searchLength; j++) {
if (searchChars[j] == ch) {
if (i < csLastIndex && j < searchLastIndex && ch >= Character.MIN_HIGH_SURROGATE && ch <= Character.MAX_HIGH_SURROGATE) {
// ch is a supplementary character
if (searchChars[j + 1] == cs.charAt(i + 1)) {
return true;
}
} else {
// ch is in the Basic Multilingual Plane
return true;
}
}
}
}
return false;
} | false | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Checks if the CharSequence contains any character in the given
* set of characters.</p>
*
* <p>A <code>null</code> CharSequence will return <code>false</code>.
* A <code>null</code> or zero length search array will return <code>false</code>.</p>
*
* <pre>
* StringUtils.containsAny(null, *) = false
* StringUtils.containsAny("", *) = false
* StringUtils.containsAny(*, null) = false
* StringUtils.containsAny(*, []) = false
* StringUtils.containsAny("zzabyycdxx",['z','a']) = true
* StringUtils.containsAny("zzabyycdxx",['b','y']) = true
* StringUtils.containsAny("aba", ['z']) = false
* </pre>
*
* @param cs the CharSequence to check, may be null
* @param searchChars the chars to search for, may be null
* @return the <code>true</code> if any of the chars are found,
* <code>false</code> if no match or null input
* @since 2.4
*/
//-----------------------------------------------------------------------
// ContainsAny
public static boolean containsAny(CharSequence cs, char[] searchChars) {
if (isEmpty(cs) || ArrayUtils.isEmpty(searchChars)) {
return false;
}
int csLength = cs.length();
int searchLength = searchChars.length;
int csLastIndex = csLength - 1;
int searchLastIndex = searchLength - 1;
for (int i = 0; i < csLength; i++) {
char ch = cs.charAt(i);
for (int j = 0; j < searchLength; j++) {
if (searchChars[j] == ch) {
if (i < csLastIndex && j < searchLastIndex && ch >= Character.MIN_HIGH_SURROGATE && ch <= Character.MAX_HIGH_SURROGATE) {
// ch is a supplementary character
if (searchChars[j + 1] == cs.charAt(i + 1)) {
return true;
}
} else {
// ch is in the Basic Multilingual Plane
return true;
}
}
}
}
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
97 | f4b14450725ca473890015cfced42cf0a7ee97350d49a7f283e44fab7e77779f | @Override
public final void serialize(JsonGenerator gen, SerializerProvider ctxt) throws IOException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/*
/**********************************************************
/* Public API, serialization
/**********************************************************
*/
@Override
public final void serialize(JsonGenerator gen, SerializerProvider ctxt) throws IOException
{
if (_value == null) {
ctxt.defaultSerializeNull(gen);
} else if (_value instanceof JsonSerializable) {
((JsonSerializable) _value).serialize(gen, ctxt);
} else {
// 25-May-2018, tatu: [databind#1991] do not call via generator but through context;
// this to preserve contextual information
ctxt.defaultSerializeValue(_value, gen);
}
}
```
| @Override
public final void serialize(JsonGenerator gen, SerializerProvider ctxt) throws IOException
{
if (_value == null) {
ctxt.defaultSerializeNull(gen);
} else if (_value instanceof JsonSerializable) {
((JsonSerializable) _value).serialize(gen, ctxt);
} else {
// 25-May-2018, tatu: [databind#1991] do not call via generator but through context;
// this to preserve contextual information
ctxt.defaultSerializeValue(_value, gen);
}
} | false | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/*
/**********************************************************
/* Public API, serialization
/**********************************************************
*/
@Override
public final void serialize(JsonGenerator gen, SerializerProvider ctxt) throws IOException
{
if (_value == null) {
ctxt.defaultSerializeNull(gen);
} else if (_value instanceof JsonSerializable) {
((JsonSerializable) _value).serialize(gen, ctxt);
} else {
// 25-May-2018, tatu: [databind#1991] do not call via generator but through context;
// this to preserve contextual information
ctxt.defaultSerializeValue(_value, gen);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
73 | f56bf9dd98fb55e9838cb625ab203dfafd618230ed388dd0791869c148cfe301 | static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Helper to escape javascript string as well as regular expression */
static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
}
```
| static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Helper to escape javascript string as well as regular expression */
static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
77 | f56bf9dd98fb55e9838cb625ab203dfafd618230ed388dd0791869c148cfe301 | static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Helper to escape javascript string as well as regular expression */
static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
}
```
| static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Helper to escape javascript string as well as regular expression */
static String strEscape(String s, char quote,
String doublequoteEscape,
String singlequoteEscape,
String backslashEscape,
CharsetEncoder outputCharsetEncoder) {
StringBuilder sb = new StringBuilder(s.length() + 2);
sb.append(quote);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {
case '\0': sb.append("\\0"); break;
case '\n': sb.append("\\n"); break;
case '\r': sb.append("\\r"); break;
case '\t': sb.append("\\t"); break;
case '\\': sb.append(backslashEscape); break;
case '\"': sb.append(doublequoteEscape); break;
case '\'': sb.append(singlequoteEscape); break;
case '>': // Break --> into --\> or ]]> into ]]\>
if (i >= 2 &&
((s.charAt(i - 1) == '-' && s.charAt(i - 2) == '-') ||
(s.charAt(i - 1) == ']' && s.charAt(i - 2) == ']'))) {
sb.append("\\>");
} else {
sb.append(c);
}
break;
case '<':
// Break </script into <\/script
final String END_SCRIPT = "/script";
// Break <!-- into <\!--
final String START_COMMENT = "!--";
if (s.regionMatches(true, i + 1, END_SCRIPT, 0,
END_SCRIPT.length())) {
sb.append("<\\");
} else if (s.regionMatches(false, i + 1, START_COMMENT, 0,
START_COMMENT.length())) {
sb.append("<\\");
} else {
sb.append(c);
}
break;
default:
// If we're given an outputCharsetEncoder, then check if the
// character can be represented in this character set.
if (outputCharsetEncoder != null) {
if (outputCharsetEncoder.canEncode(c)) {
sb.append(c);
} else {
// Unicode-escape the character.
appendHexJavaScriptRepresentation(sb, c);
}
} else {
// No charsetEncoder provided - pass straight latin characters
// through, and escape the rest. Doing the explicit character
// check is measurably faster than using the CharsetEncoder.
if (c > 0x1f && c <= 0x7f) {
sb.append(c);
} else {
// Other characters can be misinterpreted by some js parsers,
// or perhaps mangled by proxies along the way,
// so we play it safe and unicode escape them.
appendHexJavaScriptRepresentation(sb, c);
}
}
}
}
sb.append(quote);
return sb.toString();
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
4 | f68a359a5452e27fc82679316219a1877231ab343bbd20a45191deda61944ce7 | public Partial with(DateTimeFieldType fieldType, int value) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Gets a copy of this date with the specified field set to a new value.
* <p>
* If this partial did not previously support the field, the new one will.
* Contrast this behaviour with {@link #withField(DateTimeFieldType, int)}.
* <p>
* For example, if the field type is <code>dayOfMonth</code> then the day
* would be changed/added in the returned instance.
*
* @param fieldType the field type to set, not null
* @param value the value to set
* @return a copy of this instance with the field set
* @throws IllegalArgumentException if the value is null or invalid
*/
//-----------------------------------------------------------------------
public Partial with(DateTimeFieldType fieldType, int value) {
if (fieldType == null) {
throw new IllegalArgumentException("The field type must not be null");
}
int index = indexOf(fieldType);
if (index == -1) {
DateTimeFieldType[] newTypes = new DateTimeFieldType[iTypes.length + 1];
int[] newValues = new int[newTypes.length];
// find correct insertion point to keep largest-smallest order
int i = 0;
DurationField unitField = fieldType.getDurationType().getField(iChronology);
if (unitField.isSupported()) {
for (; i < iTypes.length; i++) {
DateTimeFieldType loopType = iTypes[i];
DurationField loopUnitField = loopType.getDurationType().getField(iChronology);
if (loopUnitField.isSupported()) {
int compare = unitField.compareTo(loopUnitField);
if (compare > 0) {
break;
} else if (compare == 0) {
DurationField rangeField = fieldType.getRangeDurationType().getField(iChronology);
DurationField loopRangeField = loopType.getRangeDurationType().getField(iChronology);
if (rangeField.compareTo(loopRangeField) > 0) {
break;
}
}
}
}
}
System.arraycopy(iTypes, 0, newTypes, 0, i);
System.arraycopy(iValues, 0, newValues, 0, i);
newTypes[i] = fieldType;
newValues[i] = value;
System.arraycopy(iTypes, i, newTypes, i + 1, newTypes.length - i - 1);
System.arraycopy(iValues, i, newValues, i + 1, newValues.length - i - 1);
// use public constructor to ensure full validation
// this isn't overly efficient, but is safe
Partial newPartial = new Partial(iChronology, newTypes, newValues);
iChronology.validate(newPartial, newValues);
return newPartial;
}
if (value == getValue(index)) {
return this;
}
int[] newValues = getValues();
newValues = getField(index).set(this, index, newValues, value);
return new Partial(this, newValues);
}
```
| public Partial with(DateTimeFieldType fieldType, int value) {
if (fieldType == null) {
throw new IllegalArgumentException("The field type must not be null");
}
int index = indexOf(fieldType);
if (index == -1) {
DateTimeFieldType[] newTypes = new DateTimeFieldType[iTypes.length + 1];
int[] newValues = new int[newTypes.length];
// find correct insertion point to keep largest-smallest order
int i = 0;
DurationField unitField = fieldType.getDurationType().getField(iChronology);
if (unitField.isSupported()) {
for (; i < iTypes.length; i++) {
DateTimeFieldType loopType = iTypes[i];
DurationField loopUnitField = loopType.getDurationType().getField(iChronology);
if (loopUnitField.isSupported()) {
int compare = unitField.compareTo(loopUnitField);
if (compare > 0) {
break;
} else if (compare == 0) {
DurationField rangeField = fieldType.getRangeDurationType().getField(iChronology);
DurationField loopRangeField = loopType.getRangeDurationType().getField(iChronology);
if (rangeField.compareTo(loopRangeField) > 0) {
break;
}
}
}
}
}
System.arraycopy(iTypes, 0, newTypes, 0, i);
System.arraycopy(iValues, 0, newValues, 0, i);
newTypes[i] = fieldType;
newValues[i] = value;
System.arraycopy(iTypes, i, newTypes, i + 1, newTypes.length - i - 1);
System.arraycopy(iValues, i, newValues, i + 1, newValues.length - i - 1);
// use public constructor to ensure full validation
// this isn't overly efficient, but is safe
Partial newPartial = new Partial(iChronology, newTypes, newValues);
iChronology.validate(newPartial, newValues);
return newPartial;
}
if (value == getValue(index)) {
return this;
}
int[] newValues = getValues();
newValues = getField(index).set(this, index, newValues, value);
return new Partial(this, newValues);
} | true | Time | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Gets a copy of this date with the specified field set to a new value.
* <p>
* If this partial did not previously support the field, the new one will.
* Contrast this behaviour with {@link #withField(DateTimeFieldType, int)}.
* <p>
* For example, if the field type is <code>dayOfMonth</code> then the day
* would be changed/added in the returned instance.
*
* @param fieldType the field type to set, not null
* @param value the value to set
* @return a copy of this instance with the field set
* @throws IllegalArgumentException if the value is null or invalid
*/
//-----------------------------------------------------------------------
public Partial with(DateTimeFieldType fieldType, int value) {
if (fieldType == null) {
throw new IllegalArgumentException("The field type must not be null");
}
int index = indexOf(fieldType);
if (index == -1) {
DateTimeFieldType[] newTypes = new DateTimeFieldType[iTypes.length + 1];
int[] newValues = new int[newTypes.length];
// find correct insertion point to keep largest-smallest order
int i = 0;
DurationField unitField = fieldType.getDurationType().getField(iChronology);
if (unitField.isSupported()) {
for (; i < iTypes.length; i++) {
DateTimeFieldType loopType = iTypes[i];
DurationField loopUnitField = loopType.getDurationType().getField(iChronology);
if (loopUnitField.isSupported()) {
int compare = unitField.compareTo(loopUnitField);
if (compare > 0) {
break;
} else if (compare == 0) {
DurationField rangeField = fieldType.getRangeDurationType().getField(iChronology);
DurationField loopRangeField = loopType.getRangeDurationType().getField(iChronology);
if (rangeField.compareTo(loopRangeField) > 0) {
break;
}
}
}
}
}
System.arraycopy(iTypes, 0, newTypes, 0, i);
System.arraycopy(iValues, 0, newValues, 0, i);
newTypes[i] = fieldType;
newValues[i] = value;
System.arraycopy(iTypes, i, newTypes, i + 1, newTypes.length - i - 1);
System.arraycopy(iValues, i, newValues, i + 1, newValues.length - i - 1);
// use public constructor to ensure full validation
// this isn't overly efficient, but is safe
Partial newPartial = new Partial(iChronology, newTypes, newValues);
iChronology.validate(newPartial, newValues);
return newPartial;
}
if (value == getValue(index)) {
return this;
}
int[] newValues = getValues();
newValues = getField(index).set(this, index, newValues, value);
return new Partial(this, newValues);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
88 | f6abb2e95d6c5bde6044b5eb3951dcee48a231cf827a337c20fb618638fb7999 | protected RealPointValuePair getSolution() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Get the current solution.
* <p>
* {@link #solve} should be called first for this to be the optimal solution.
* </p>
* @return current solution
*/
protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
Set<Integer> basicRows = new HashSet<Integer>();
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
if (basicRows.contains(basicRow)) {
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] = 0;
} else {
basicRows.add(basicRow);
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
}
```
| protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
Set<Integer> basicRows = new HashSet<Integer>();
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
if (basicRows.contains(basicRow)) {
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] = 0;
} else {
basicRows.add(basicRow);
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Get the current solution.
* <p>
* {@link #solve} should be called first for this to be the optimal solution.
* </p>
* @return current solution
*/
protected RealPointValuePair getSolution() {
double[] coefficients = new double[getOriginalNumDecisionVariables()];
Integer basicRow =
getBasicRow(getNumObjectiveFunctions() + getOriginalNumDecisionVariables());
double mostNegative = basicRow == null ? 0 : getEntry(basicRow, getRhsOffset());
Set<Integer> basicRows = new HashSet<Integer>();
for (int i = 0; i < coefficients.length; i++) {
basicRow = getBasicRow(getNumObjectiveFunctions() + i);
if (basicRows.contains(basicRow)) {
// if multiple variables can take a given value
// then we choose the first and set the rest equal to 0
coefficients[i] = 0;
} else {
basicRows.add(basicRow);
coefficients[i] =
(basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
(restrictToNonNegative ? 0 : mostNegative);
}
}
return new RealPointValuePair(coefficients, f.getValue(coefficients));
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
116 | f775487c5c83ef5c31f221b3f96f4d4809676213da3bd712700633b9acb7ef45 | private CanInlineResult canInlineReferenceDirectly(
Node callNode, Node fnNode) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Determines whether a function can be inlined at a particular call site.
* There are several criteria that the function and reference must hold in
* order for the functions to be inlined:
* 1) If a call's arguments have side effects,
* the corresponding argument in the function must only be referenced once.
* For instance, this will not be inlined:
* <pre>
* function foo(a) { return a + a }
* x = foo(i++);
* </pre>
*/
private CanInlineResult canInlineReferenceDirectly(
Node callNode, Node fnNode) {
if (!isDirectCallNodeReplacementPossible(fnNode)) {
return CanInlineResult.NO;
}
Node block = fnNode.getLastChild();
// CALL NODE: [ NAME, ARG1, ARG2, ... ]
Node cArg = callNode.getFirstChild().getNext();
// Functions called via 'call' and 'apply' have a this-object as
// the first parameter, but this is not part of the called function's
// parameter list.
if (!callNode.getFirstChild().isName()) {
if (NodeUtil.isFunctionObjectCall(callNode)) {
// TODO(johnlenz): Support replace this with a value.
if (cArg == null || !cArg.isThis()) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
} else {
// ".apply" call should be filtered before this.
Preconditions.checkState(!NodeUtil.isFunctionObjectApply(callNode));
}
}
// FUNCTION NODE -> LP NODE: [ ARG1, ARG2, ... ]
Node fnParam = NodeUtil.getFunctionParameters(fnNode).getFirstChild();
while (cArg != null || fnParam != null) {
// For each named parameter check if a mutable argument use more than one.
if (fnParam != null) {
if (cArg != null) {
// Check for arguments that are evaluated more than once.
// Note: Unlike block inlining, there it is not possible that a
// parameter reference will be in a loop.
if (NodeUtil.mayEffectMutableState(cArg, compiler)
&& NodeUtil.getNameReferenceCount(
block, fnParam.getString()) > 1) {
return CanInlineResult.NO;
}
}
// Move to the next name.
fnParam = fnParam.getNext();
}
// For every call argument check for side-effects, even if there
// isn't a named parameter to match.
if (cArg != null) {
if (NodeUtil.mayHaveSideEffects(cArg, compiler)) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
}
}
return CanInlineResult.YES;
}
```
| private CanInlineResult canInlineReferenceDirectly(
Node callNode, Node fnNode) {
if (!isDirectCallNodeReplacementPossible(fnNode)) {
return CanInlineResult.NO;
}
Node block = fnNode.getLastChild();
// CALL NODE: [ NAME, ARG1, ARG2, ... ]
Node cArg = callNode.getFirstChild().getNext();
// Functions called via 'call' and 'apply' have a this-object as
// the first parameter, but this is not part of the called function's
// parameter list.
if (!callNode.getFirstChild().isName()) {
if (NodeUtil.isFunctionObjectCall(callNode)) {
// TODO(johnlenz): Support replace this with a value.
if (cArg == null || !cArg.isThis()) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
} else {
// ".apply" call should be filtered before this.
Preconditions.checkState(!NodeUtil.isFunctionObjectApply(callNode));
}
}
// FUNCTION NODE -> LP NODE: [ ARG1, ARG2, ... ]
Node fnParam = NodeUtil.getFunctionParameters(fnNode).getFirstChild();
while (cArg != null || fnParam != null) {
// For each named parameter check if a mutable argument use more than one.
if (fnParam != null) {
if (cArg != null) {
// Check for arguments that are evaluated more than once.
// Note: Unlike block inlining, there it is not possible that a
// parameter reference will be in a loop.
if (NodeUtil.mayEffectMutableState(cArg, compiler)
&& NodeUtil.getNameReferenceCount(
block, fnParam.getString()) > 1) {
return CanInlineResult.NO;
}
}
// Move to the next name.
fnParam = fnParam.getNext();
}
// For every call argument check for side-effects, even if there
// isn't a named parameter to match.
if (cArg != null) {
if (NodeUtil.mayHaveSideEffects(cArg, compiler)) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
}
}
return CanInlineResult.YES;
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Determines whether a function can be inlined at a particular call site.
* There are several criteria that the function and reference must hold in
* order for the functions to be inlined:
* 1) If a call's arguments have side effects,
* the corresponding argument in the function must only be referenced once.
* For instance, this will not be inlined:
* <pre>
* function foo(a) { return a + a }
* x = foo(i++);
* </pre>
*/
private CanInlineResult canInlineReferenceDirectly(
Node callNode, Node fnNode) {
if (!isDirectCallNodeReplacementPossible(fnNode)) {
return CanInlineResult.NO;
}
Node block = fnNode.getLastChild();
// CALL NODE: [ NAME, ARG1, ARG2, ... ]
Node cArg = callNode.getFirstChild().getNext();
// Functions called via 'call' and 'apply' have a this-object as
// the first parameter, but this is not part of the called function's
// parameter list.
if (!callNode.getFirstChild().isName()) {
if (NodeUtil.isFunctionObjectCall(callNode)) {
// TODO(johnlenz): Support replace this with a value.
if (cArg == null || !cArg.isThis()) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
} else {
// ".apply" call should be filtered before this.
Preconditions.checkState(!NodeUtil.isFunctionObjectApply(callNode));
}
}
// FUNCTION NODE -> LP NODE: [ ARG1, ARG2, ... ]
Node fnParam = NodeUtil.getFunctionParameters(fnNode).getFirstChild();
while (cArg != null || fnParam != null) {
// For each named parameter check if a mutable argument use more than one.
if (fnParam != null) {
if (cArg != null) {
// Check for arguments that are evaluated more than once.
// Note: Unlike block inlining, there it is not possible that a
// parameter reference will be in a loop.
if (NodeUtil.mayEffectMutableState(cArg, compiler)
&& NodeUtil.getNameReferenceCount(
block, fnParam.getString()) > 1) {
return CanInlineResult.NO;
}
}
// Move to the next name.
fnParam = fnParam.getNext();
}
// For every call argument check for side-effects, even if there
// isn't a named parameter to match.
if (cArg != null) {
if (NodeUtil.mayHaveSideEffects(cArg, compiler)) {
return CanInlineResult.NO;
}
cArg = cArg.getNext();
}
}
return CanInlineResult.YES;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
80 | f7e72c578463d0ae3872dc73120fdef3e39ea13d191dea8fd8e8594d4880a1d4 | private boolean flipIfWarranted(final int n, final int step) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Flip qd array if warranted.
* @param n number of rows in the block
* @param step within the array (1 for flipping all elements, 2 for flipping
* only every other element)
* @return true if qd array was flipped
*/
private boolean flipIfWarranted(final int n, final int step) {
if (1.5 * work[pingPong] < work[4 * (n - 1) + pingPong]) {
// flip array
int j = 4 * n - 1;
for (int i = 0; i < j; i += 4) {
for (int k = 0; k < 4; k += step) {
final double tmp = work[i + k];
work[i + k] = work[j - k];
work[j - k] = tmp;
}
j -= 4;
}
return true;
}
return false;
}
```
| private boolean flipIfWarranted(final int n, final int step) {
if (1.5 * work[pingPong] < work[4 * (n - 1) + pingPong]) {
// flip array
int j = 4 * n - 1;
for (int i = 0; i < j; i += 4) {
for (int k = 0; k < 4; k += step) {
final double tmp = work[i + k];
work[i + k] = work[j - k];
work[j - k] = tmp;
}
j -= 4;
}
return true;
}
return false;
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Flip qd array if warranted.
* @param n number of rows in the block
* @param step within the array (1 for flipping all elements, 2 for flipping
* only every other element)
* @return true if qd array was flipped
*/
private boolean flipIfWarranted(final int n, final int step) {
if (1.5 * work[pingPong] < work[4 * (n - 1) + pingPong]) {
// flip array
int j = 4 * n - 1;
for (int i = 0; i < j; i += 4) {
for (int k = 0; k < 4; k += step) {
final double tmp = work[i + k];
work[i + k] = work[j - k];
work[j - k] = tmp;
}
j -= 4;
}
return true;
}
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
15 | f7f8005e9c05bcb5fb98677e933934662bdef441fb166c9ffd0168d3a43397a9 | @Override
public boolean equals(Object obj) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/* (non-Javadoc)
* @see java.lang.Object#equals(java.lang.Object)
*/
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null || getClass() != obj.getClass()) {
return false;
}
ZipArchiveEntry other = (ZipArchiveEntry) obj;
String myName = getName();
String otherName = other.getName();
if (myName == null) {
if (otherName != null) {
return false;
}
} else if (!myName.equals(otherName)) {
return false;
}
String myComment = getComment();
String otherComment = other.getComment();
if (myComment == null) {
if (otherComment != null) {
return false;
}
} else if (!myComment.equals(otherComment)) {
return false;
}
return getTime() == other.getTime()
&& getInternalAttributes() == other.getInternalAttributes()
&& getPlatform() == other.getPlatform()
&& getExternalAttributes() == other.getExternalAttributes()
&& getMethod() == other.getMethod()
&& getSize() == other.getSize()
&& getCrc() == other.getCrc()
&& getCompressedSize() == other.getCompressedSize()
&& Arrays.equals(getCentralDirectoryExtra(),
other.getCentralDirectoryExtra())
&& Arrays.equals(getLocalFileDataExtra(),
other.getLocalFileDataExtra())
&& gpb.equals(other.gpb);
}
```
| @Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null || getClass() != obj.getClass()) {
return false;
}
ZipArchiveEntry other = (ZipArchiveEntry) obj;
String myName = getName();
String otherName = other.getName();
if (myName == null) {
if (otherName != null) {
return false;
}
} else if (!myName.equals(otherName)) {
return false;
}
String myComment = getComment();
String otherComment = other.getComment();
if (myComment == null) {
if (otherComment != null) {
return false;
}
} else if (!myComment.equals(otherComment)) {
return false;
}
return getTime() == other.getTime()
&& getInternalAttributes() == other.getInternalAttributes()
&& getPlatform() == other.getPlatform()
&& getExternalAttributes() == other.getExternalAttributes()
&& getMethod() == other.getMethod()
&& getSize() == other.getSize()
&& getCrc() == other.getCrc()
&& getCompressedSize() == other.getCompressedSize()
&& Arrays.equals(getCentralDirectoryExtra(),
other.getCentralDirectoryExtra())
&& Arrays.equals(getLocalFileDataExtra(),
other.getLocalFileDataExtra())
&& gpb.equals(other.gpb);
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/* (non-Javadoc)
* @see java.lang.Object#equals(java.lang.Object)
*/
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null || getClass() != obj.getClass()) {
return false;
}
ZipArchiveEntry other = (ZipArchiveEntry) obj;
String myName = getName();
String otherName = other.getName();
if (myName == null) {
if (otherName != null) {
return false;
}
} else if (!myName.equals(otherName)) {
return false;
}
String myComment = getComment();
String otherComment = other.getComment();
if (myComment == null) {
if (otherComment != null) {
return false;
}
} else if (!myComment.equals(otherComment)) {
return false;
}
return getTime() == other.getTime()
&& getInternalAttributes() == other.getInternalAttributes()
&& getPlatform() == other.getPlatform()
&& getExternalAttributes() == other.getExternalAttributes()
&& getMethod() == other.getMethod()
&& getSize() == other.getSize()
&& getCrc() == other.getCrc()
&& getCompressedSize() == other.getCompressedSize()
&& Arrays.equals(getCentralDirectoryExtra(),
other.getCentralDirectoryExtra())
&& Arrays.equals(getLocalFileDataExtra(),
other.getLocalFileDataExtra())
&& gpb.equals(other.gpb);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
1 | f828e4d2aacfafd5e8adb11b69878181d61008fb0e1e0a40846d36e793cfad88 | @Override
public int read() throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
public int read() throws IOException {
int current = super.read();
if (current == '\r' || (current == '\n' && lastChar != '\r')) {
lineCounter++;
}
lastChar = current;
return lastChar;
}
```
| @Override
public int read() throws IOException {
int current = super.read();
if (current == '\r' || (current == '\n' && lastChar != '\r')) {
lineCounter++;
}
lastChar = current;
return lastChar;
} | false | Csv | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
public int read() throws IOException {
int current = super.read();
if (current == '\r' || (current == '\n' && lastChar != '\r')) {
lineCounter++;
}
lastChar = current;
return lastChar;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
57 | f84587e1e083505ff8cced40b1130403c6cdcb4fe99d2073bfb5a471a5dbd4b8 | private static String extractClassNameIfGoog(Node node, Node parent,
String functionName) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
private static String extractClassNameIfGoog(Node node, Node parent,
String functionName){
String className = null;
if (NodeUtil.isExprCall(parent)) {
Node callee = node.getFirstChild();
if (callee != null && callee.getType() == Token.GETPROP) {
String qualifiedName = callee.getQualifiedName();
if (functionName.equals(qualifiedName)) {
Node target = callee.getNext();
if (target != null && target.getType() == Token.STRING) {
className = target.getString();
}
}
}
}
return className;
}
```
| private static String extractClassNameIfGoog(Node node, Node parent,
String functionName){
String className = null;
if (NodeUtil.isExprCall(parent)) {
Node callee = node.getFirstChild();
if (callee != null && callee.getType() == Token.GETPROP) {
String qualifiedName = callee.getQualifiedName();
if (functionName.equals(qualifiedName)) {
Node target = callee.getNext();
if (target != null && target.getType() == Token.STRING) {
className = target.getString();
}
}
}
}
return className;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
private static String extractClassNameIfGoog(Node node, Node parent,
String functionName){
String className = null;
if (NodeUtil.isExprCall(parent)) {
Node callee = node.getFirstChild();
if (callee != null && callee.getType() == Token.GETPROP) {
String qualifiedName = callee.getQualifiedName();
if (functionName.equals(qualifiedName)) {
Node target = callee.getNext();
if (target != null && target.getType() == Token.STRING) {
className = target.getString();
}
}
}
}
return className;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
5 | f91e9f2a4909a44a4dac416fcc63d91a3cd376d7fabae6c6e5c23b2dd15cbd11 | private boolean isInlinableObject(List<Reference> refs) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Counts the number of direct (full) references to an object.
* Specifically, we check for references of the following type:
* <pre>
* x;
* x.fn();
* </pre>
*/
private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
Set<String> validProperties = Sets.newHashSet();
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore most indirect references, like x.y (but not x.y(),
// since the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target may be using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// Deleting a property has different semantics from deleting
// a variable, so deleted properties should not be inlined.
if (gramps.isDelProp()) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
String propName = parent.getLastChild().getString();
if (!validProperties.contains(propName)) {
if (NodeUtil.isVarOrSimpleAssignLhs(parent, gramps)) {
validProperties.add(propName);
} else {
return false;
}
}
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-referential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
validProperties.add(child.getString());
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
}
```
| private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
Set<String> validProperties = Sets.newHashSet();
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore most indirect references, like x.y (but not x.y(),
// since the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target may be using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// Deleting a property has different semantics from deleting
// a variable, so deleted properties should not be inlined.
if (gramps.isDelProp()) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
String propName = parent.getLastChild().getString();
if (!validProperties.contains(propName)) {
if (NodeUtil.isVarOrSimpleAssignLhs(parent, gramps)) {
validProperties.add(propName);
} else {
return false;
}
}
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-referential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
validProperties.add(child.getString());
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of direct (full) references to an object.
* Specifically, we check for references of the following type:
* <pre>
* x;
* x.fn();
* </pre>
*/
private boolean isInlinableObject(List<Reference> refs) {
boolean ret = false;
Set<String> validProperties = Sets.newHashSet();
for (Reference ref : refs) {
Node name = ref.getNode();
Node parent = ref.getParent();
Node gramps = ref.getGrandparent();
// Ignore most indirect references, like x.y (but not x.y(),
// since the function referenced by y might reference 'this').
//
if (parent.isGetProp()) {
Preconditions.checkState(parent.getFirstChild() == name);
// A call target may be using the object as a 'this' value.
if (gramps.isCall()
&& gramps.getFirstChild() == parent) {
return false;
}
// Deleting a property has different semantics from deleting
// a variable, so deleted properties should not be inlined.
if (gramps.isDelProp()) {
return false;
}
// NOTE(nicksantos): This pass's object-splitting algorithm has
// a blind spot. It assumes that if a property isn't defined on an
// object, then the value is undefined. This is not true, because
// Object.prototype can have arbitrary properties on it.
//
// We short-circuit this problem by bailing out if we see a reference
// to a property that isn't defined on the object literal. This
// isn't a perfect algorithm, but it should catch most cases.
String propName = parent.getLastChild().getString();
if (!validProperties.contains(propName)) {
if (NodeUtil.isVarOrSimpleAssignLhs(parent, gramps)) {
validProperties.add(propName);
} else {
return false;
}
}
continue;
}
// Only rewrite VAR declarations or simple assignment statements
if (!isVarOrAssignExprLhs(name)) {
return false;
}
Node val = ref.getAssignedValue();
if (val == null) {
// A var with no assignment.
continue;
}
// We're looking for object literal assignments only.
if (!val.isObjectLit()) {
return false;
}
// Make sure that the value is not self-referential. IOW,
// disallow things like x = {b: x.a}.
//
// TODO: Only exclude unorderable self-referential
// assignments. i.e. x = {a: x.b, b: x.a} is not orderable,
// but x = {a: 1, b: x.a} is.
//
// Also, ES5 getters/setters aren't handled by this pass.
for (Node child = val.getFirstChild(); child != null;
child = child.getNext()) {
if (child.isGetterDef() ||
child.isSetterDef()) {
// ES5 get/set not supported.
return false;
}
validProperties.add(child.getString());
Node childVal = child.getFirstChild();
// Check if childVal is the parent of any of the passed in
// references, as that is how self-referential assignments
// will happen.
for (Reference t : refs) {
Node refNode = t.getParent();
while (!NodeUtil.isStatementBlock(refNode)) {
if (refNode == childVal) {
// There's a self-referential assignment
return false;
}
refNode = refNode.getParent();
}
}
}
// We have found an acceptable object literal assignment. As
// long as there are no other assignments that mess things up,
// we can inline.
ret = true;
}
return ret;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
76 | f993b4a67717bf4a2526d9dfff99f3009d3c50831801e5b875826de686ebb221 | @SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithUnwrapped(JsonParser p,
DeserializationContext ctxt)
throws IOException, JsonProcessingException
| I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithUnwrapped(JsonParser p,
DeserializationContext ctxt)
throws IOException, JsonProcessingException
{
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p, ctxt);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
if (buffer.assignParameter(creatorProp, creatorProp.deserialize(p, ctxt))) {
t = p.nextToken();
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue;
}
while (t == JsonToken.FIELD_NAME) {
p.nextToken();
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
tokens.writeEndObject();
if (bean.getClass() != _beanType.getRawClass()) {
ctxt.reportMappingException("Can not create polymorphic instances with unwrapped values");
return null;
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
tokens.writeFieldName(propName);
tokens.copyCurrentStructure(p);
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT, so:
Object bean;
// !!! 15-Feb-2012, tatu: Need to modify creator to use Builder!
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
return wrapInstantiationProblem(e, ctxt);
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
}
```
| @SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithUnwrapped(JsonParser p,
DeserializationContext ctxt)
throws IOException, JsonProcessingException
{
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p, ctxt);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
if (buffer.assignParameter(creatorProp, creatorProp.deserialize(p, ctxt))) {
t = p.nextToken();
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue;
}
while (t == JsonToken.FIELD_NAME) {
p.nextToken();
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
tokens.writeEndObject();
if (bean.getClass() != _beanType.getRawClass()) {
ctxt.reportMappingException("Can not create polymorphic instances with unwrapped values");
return null;
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
tokens.writeFieldName(propName);
tokens.copyCurrentStructure(p);
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT, so:
Object bean;
// !!! 15-Feb-2012, tatu: Need to modify creator to use Builder!
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
return wrapInstantiationProblem(e, ctxt);
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
} | true | JacksonDatabind | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@SuppressWarnings("resource")
protected Object deserializeUsingPropertyBasedWithUnwrapped(JsonParser p,
DeserializationContext ctxt)
throws IOException, JsonProcessingException
{
final PropertyBasedCreator creator = _propertyBasedCreator;
PropertyValueBuffer buffer = creator.startBuilding(p, ctxt, _objectIdReader);
TokenBuffer tokens = new TokenBuffer(p, ctxt);
tokens.writeStartObject();
JsonToken t = p.getCurrentToken();
for (; t == JsonToken.FIELD_NAME; t = p.nextToken()) {
String propName = p.getCurrentName();
p.nextToken(); // to point to value
// creator property?
SettableBeanProperty creatorProp = creator.findCreatorProperty(propName);
if (creatorProp != null) {
if (buffer.assignParameter(creatorProp, creatorProp.deserialize(p, ctxt))) {
t = p.nextToken();
Object bean;
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
wrapAndThrow(e, _beanType.getRawClass(), propName, ctxt);
continue;
}
while (t == JsonToken.FIELD_NAME) {
p.nextToken();
tokens.copyCurrentStructure(p);
t = p.nextToken();
}
tokens.writeEndObject();
if (bean.getClass() != _beanType.getRawClass()) {
ctxt.reportMappingException("Can not create polymorphic instances with unwrapped values");
return null;
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
}
continue;
}
// Object Id property?
if (buffer.readIdProperty(propName)) {
continue;
}
// regular property? needs buffering
SettableBeanProperty prop = _beanProperties.find(propName);
if (prop != null) {
buffer.bufferProperty(prop, prop.deserialize(p, ctxt));
continue;
}
if (_ignorableProps != null && _ignorableProps.contains(propName)) {
handleIgnoredProperty(p, ctxt, handledType(), propName);
continue;
}
tokens.writeFieldName(propName);
tokens.copyCurrentStructure(p);
// "any property"?
if (_anySetter != null) {
buffer.bufferAnyProperty(_anySetter, propName, _anySetter.deserialize(p, ctxt));
}
}
// We hit END_OBJECT, so:
Object bean;
// !!! 15-Feb-2012, tatu: Need to modify creator to use Builder!
try {
bean = creator.build(ctxt, buffer);
} catch (Exception e) {
return wrapInstantiationProblem(e, ctxt);
}
return _unwrappedPropertyHandler.processUnwrapped(p, ctxt, bean, tokens);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
33 | fa4083551c4f5a9046d6af8bb873cc9b5fceb8d7797dec7e34a398e14e20b9b1 | public static Class<?>[] toClass(Object[] array) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Converts an array of <code>Object</code> in to an array of <code>Class</code> objects.
* If any of these objects is null, a null element will be inserted into the array.</p>
*
* <p>This method returns <code>null</code> for a <code>null</code> input array.</p>
*
* @param array an <code>Object</code> array
* @return a <code>Class</code> array, <code>null</code> if null array input
* @since 2.4
*/
public static Class<?>[] toClass(Object[] array) {
if (array == null) {
return null;
} else if (array.length == 0) {
return ArrayUtils.EMPTY_CLASS_ARRAY;
}
Class<?>[] classes = new Class[array.length];
for (int i = 0; i < array.length; i++) {
classes[i] = array[i] == null ? null : array[i].getClass();
}
return classes;
}
```
| public static Class<?>[] toClass(Object[] array) {
if (array == null) {
return null;
} else if (array.length == 0) {
return ArrayUtils.EMPTY_CLASS_ARRAY;
}
Class<?>[] classes = new Class[array.length];
for (int i = 0; i < array.length; i++) {
classes[i] = array[i] == null ? null : array[i].getClass();
}
return classes;
} | false | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Converts an array of <code>Object</code> in to an array of <code>Class</code> objects.
* If any of these objects is null, a null element will be inserted into the array.</p>
*
* <p>This method returns <code>null</code> for a <code>null</code> input array.</p>
*
* @param array an <code>Object</code> array
* @return a <code>Class</code> array, <code>null</code> if null array input
* @since 2.4
*/
public static Class<?>[] toClass(Object[] array) {
if (array == null) {
return null;
} else if (array.length == 0) {
return ArrayUtils.EMPTY_CLASS_ARRAY;
}
Class<?>[] classes = new Class[array.length];
for (int i = 0; i < array.length; i++) {
classes[i] = array[i] == null ? null : array[i].getClass();
}
return classes;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
152 | face2418453ed30fef233ca32ffd214db5b64c3ea131d077cb94d7b8a2e436ed | @Override
JSType resolveInternal(ErrorReporter t, StaticScope<JSType> scope) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
@Override
JSType resolveInternal(ErrorReporter t, StaticScope<JSType> scope) {
setResolvedTypeInternal(this);
call = (ArrowType) safeResolve(call, t, scope);
prototype = (FunctionPrototypeType) safeResolve(prototype, t, scope);
// Warning about typeOfThis if it doesn't resolve to an ObjectType
// is handled further upstream.
// TODO(nicksantos): Handle this correctly if we have a UnionType.
JSType maybeTypeOfThis = safeResolve(typeOfThis, t, scope);
if (maybeTypeOfThis instanceof ObjectType) {
typeOfThis = (ObjectType) maybeTypeOfThis;
}
boolean changed = false;
ImmutableList.Builder<ObjectType> resolvedInterfaces =
ImmutableList.builder();
for (ObjectType iface : implementedInterfaces) {
ObjectType resolvedIface = (ObjectType) iface.resolve(t, scope);
resolvedInterfaces.add(resolvedIface);
changed |= (resolvedIface != iface);
}
if (changed) {
implementedInterfaces = resolvedInterfaces.build();
}
if (subTypes != null) {
for (int i = 0; i < subTypes.size(); i++) {
subTypes.set(i, (FunctionType) subTypes.get(i).resolve(t, scope));
}
}
return super.resolveInternal(t, scope);
}
```
| @Override
JSType resolveInternal(ErrorReporter t, StaticScope<JSType> scope) {
setResolvedTypeInternal(this);
call = (ArrowType) safeResolve(call, t, scope);
prototype = (FunctionPrototypeType) safeResolve(prototype, t, scope);
// Warning about typeOfThis if it doesn't resolve to an ObjectType
// is handled further upstream.
// TODO(nicksantos): Handle this correctly if we have a UnionType.
JSType maybeTypeOfThis = safeResolve(typeOfThis, t, scope);
if (maybeTypeOfThis instanceof ObjectType) {
typeOfThis = (ObjectType) maybeTypeOfThis;
}
boolean changed = false;
ImmutableList.Builder<ObjectType> resolvedInterfaces =
ImmutableList.builder();
for (ObjectType iface : implementedInterfaces) {
ObjectType resolvedIface = (ObjectType) iface.resolve(t, scope);
resolvedInterfaces.add(resolvedIface);
changed |= (resolvedIface != iface);
}
if (changed) {
implementedInterfaces = resolvedInterfaces.build();
}
if (subTypes != null) {
for (int i = 0; i < subTypes.size(); i++) {
subTypes.set(i, (FunctionType) subTypes.get(i).resolve(t, scope));
}
}
return super.resolveInternal(t, scope);
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
@Override
JSType resolveInternal(ErrorReporter t, StaticScope<JSType> scope) {
setResolvedTypeInternal(this);
call = (ArrowType) safeResolve(call, t, scope);
prototype = (FunctionPrototypeType) safeResolve(prototype, t, scope);
// Warning about typeOfThis if it doesn't resolve to an ObjectType
// is handled further upstream.
// TODO(nicksantos): Handle this correctly if we have a UnionType.
JSType maybeTypeOfThis = safeResolve(typeOfThis, t, scope);
if (maybeTypeOfThis instanceof ObjectType) {
typeOfThis = (ObjectType) maybeTypeOfThis;
}
boolean changed = false;
ImmutableList.Builder<ObjectType> resolvedInterfaces =
ImmutableList.builder();
for (ObjectType iface : implementedInterfaces) {
ObjectType resolvedIface = (ObjectType) iface.resolve(t, scope);
resolvedInterfaces.add(resolvedIface);
changed |= (resolvedIface != iface);
}
if (changed) {
implementedInterfaces = resolvedInterfaces.build();
}
if (subTypes != null) {
for (int i = 0; i < subTypes.size(); i++) {
subTypes.set(i, (FunctionType) subTypes.get(i).resolve(t, scope));
}
}
return super.resolveInternal(t, scope);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
94 | fb2983b0989c7b25838d5500de9e0a9059af9672a50e877a962f6867647ff70e | static boolean isValidDefineValue(Node val, Set<String> defines) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Determines whether the given value may be assigned to a define.
*
* @param val The value being assigned.
* @param defines The list of names of existing defines.
*/
static boolean isValidDefineValue(Node val, Set<String> defines) {
switch (val.getType()) {
case Token.STRING:
case Token.NUMBER:
case Token.TRUE:
case Token.FALSE:
return true;
// Binary operators are only valid if both children are valid.
case Token.ADD:
case Token.BITAND:
case Token.BITNOT:
case Token.BITOR:
case Token.BITXOR:
case Token.DIV:
case Token.EQ:
case Token.GE:
case Token.GT:
case Token.LE:
case Token.LSH:
case Token.LT:
case Token.MOD:
case Token.MUL:
case Token.NE:
case Token.RSH:
case Token.SHEQ:
case Token.SHNE:
case Token.SUB:
case Token.URSH:
return isValidDefineValue(val.getFirstChild(), defines)
&& isValidDefineValue(val.getLastChild(), defines);
// Uniary operators are valid if the child is valid.
case Token.NOT:
case Token.NEG:
case Token.POS:
return isValidDefineValue(val.getFirstChild(), defines);
// Names are valid if and only if they are defines themselves.
case Token.NAME:
case Token.GETPROP:
if (val.isQualifiedName()) {
return defines.contains(val.getQualifiedName());
}
}
return false;
}
```
| static boolean isValidDefineValue(Node val, Set<String> defines) {
switch (val.getType()) {
case Token.STRING:
case Token.NUMBER:
case Token.TRUE:
case Token.FALSE:
return true;
// Binary operators are only valid if both children are valid.
case Token.ADD:
case Token.BITAND:
case Token.BITNOT:
case Token.BITOR:
case Token.BITXOR:
case Token.DIV:
case Token.EQ:
case Token.GE:
case Token.GT:
case Token.LE:
case Token.LSH:
case Token.LT:
case Token.MOD:
case Token.MUL:
case Token.NE:
case Token.RSH:
case Token.SHEQ:
case Token.SHNE:
case Token.SUB:
case Token.URSH:
return isValidDefineValue(val.getFirstChild(), defines)
&& isValidDefineValue(val.getLastChild(), defines);
// Uniary operators are valid if the child is valid.
case Token.NOT:
case Token.NEG:
case Token.POS:
return isValidDefineValue(val.getFirstChild(), defines);
// Names are valid if and only if they are defines themselves.
case Token.NAME:
case Token.GETPROP:
if (val.isQualifiedName()) {
return defines.contains(val.getQualifiedName());
}
}
return false;
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Determines whether the given value may be assigned to a define.
*
* @param val The value being assigned.
* @param defines The list of names of existing defines.
*/
static boolean isValidDefineValue(Node val, Set<String> defines) {
switch (val.getType()) {
case Token.STRING:
case Token.NUMBER:
case Token.TRUE:
case Token.FALSE:
return true;
// Binary operators are only valid if both children are valid.
case Token.ADD:
case Token.BITAND:
case Token.BITNOT:
case Token.BITOR:
case Token.BITXOR:
case Token.DIV:
case Token.EQ:
case Token.GE:
case Token.GT:
case Token.LE:
case Token.LSH:
case Token.LT:
case Token.MOD:
case Token.MUL:
case Token.NE:
case Token.RSH:
case Token.SHEQ:
case Token.SHNE:
case Token.SUB:
case Token.URSH:
return isValidDefineValue(val.getFirstChild(), defines)
&& isValidDefineValue(val.getLastChild(), defines);
// Uniary operators are valid if the child is valid.
case Token.NOT:
case Token.NEG:
case Token.POS:
return isValidDefineValue(val.getFirstChild(), defines);
// Names are valid if and only if they are defines themselves.
case Token.NAME:
case Token.GETPROP:
if (val.isQualifiedName()) {
return defines.contains(val.getQualifiedName());
}
}
return false;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
70 | fb908250579ce6a6fa68e3c3a3b89545093621f07946eb0b5e8537a2f5c53f59 | public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** {@inheritDoc} */
public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(min, max);
}
```
| public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(min, max);
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** {@inheritDoc} */
public double solve(final UnivariateRealFunction f, double min, double max, double initial)
throws MaxIterationsExceededException, FunctionEvaluationException {
return solve(min, max);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
10 | fb920ed6db264851515792a6bc57756e5aced65e6e4b9842bbf6deb116eb4e2a | public String generateToolTipFragment(String toolTipText) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Generates a tooltip string to go in an HTML image map.
*
* @param toolTipText the tooltip.
*
* @return The formatted HTML area tag attribute(s).
*/
public String generateToolTipFragment(String toolTipText) {
return " title=\"" + toolTipText
+ "\" alt=\"\"";
}
```
| public String generateToolTipFragment(String toolTipText) {
return " title=\"" + toolTipText
+ "\" alt=\"\"";
} | true | Chart | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Generates a tooltip string to go in an HTML image map.
*
* @param toolTipText the tooltip.
*
* @return The formatted HTML area tag attribute(s).
*/
public String generateToolTipFragment(String toolTipText) {
return " title=\"" + toolTipText
+ "\" alt=\"\"";
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
9 | fbfb34469a17e1d30df38d4ac6ff6901a945ff3c05453e416d5ec0e1f9a0151a | public Line revert() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** Get a line with reversed direction.
* @return a new instance, with reversed direction
*/
public Line revert() {
final Line reverted = new Line(zero, zero.subtract(direction));
return reverted;
}
```
| public Line revert() {
final Line reverted = new Line(zero, zero.subtract(direction));
return reverted;
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** Get a line with reversed direction.
* @return a new instance, with reversed direction
*/
public Line revert() {
final Line reverted = new Line(zero, zero.subtract(direction));
return reverted;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
15 | fc1030e9c5ac41508cc08dccc2ad960488f0fad659aa25c6b5f7b42a6c86f584 | public JsonWriter value(double value) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Encodes {@code value}.
*
* @param value a finite value. May not be {@link Double#isNaN() NaNs} or
* {@link Double#isInfinite() infinities}.
* @return this writer.
*/
public JsonWriter value(double value) throws IOException {
writeDeferredName();
if (!lenient && (Double.isNaN(value) || Double.isInfinite(value))) {
throw new IllegalArgumentException("Numeric values must be finite, but was " + value);
}
beforeValue();
out.append(Double.toString(value));
return this;
}
```
| public JsonWriter value(double value) throws IOException {
writeDeferredName();
if (!lenient && (Double.isNaN(value) || Double.isInfinite(value))) {
throw new IllegalArgumentException("Numeric values must be finite, but was " + value);
}
beforeValue();
out.append(Double.toString(value));
return this;
} | false | Gson | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Encodes {@code value}.
*
* @param value a finite value. May not be {@link Double#isNaN() NaNs} or
* {@link Double#isInfinite() infinities}.
* @return this writer.
*/
public JsonWriter value(double value) throws IOException {
writeDeferredName();
if (!lenient && (Double.isNaN(value) || Double.isInfinite(value))) {
throw new IllegalArgumentException("Numeric values must be finite, but was " + value);
}
beforeValue();
out.append(Double.toString(value));
return this;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
84 | fca6144d8ecc6fb7691bdb054009d8e33c95224c3bea2ae62b6f0d06bcb275b1 | @Override
protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
throws FunctionEvaluationException, OptimizationException, IllegalArgumentException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/** {@inheritDoc} */
@Override
protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
throws FunctionEvaluationException, OptimizationException, IllegalArgumentException {
while (true) {
incrementIterationsCounter();
// save the original vertex
final RealPointValuePair[] original = simplex;
final RealPointValuePair best = original[0];
// perform a reflection step
final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator);
if (comparator.compare(reflected, best) < 0) {
// compute the expanded simplex
final RealPointValuePair[] reflectedSimplex = simplex;
final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator);
if (comparator.compare(reflected, expanded) <= 0) {
// accept the reflected simplex
simplex = reflectedSimplex;
}
return;
}
// compute the contracted simplex
final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator);
if (comparator.compare(contracted, best) < 0) {
// accept the contracted simplex
// check convergence
return;
}
}
}
```
| @Override
protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
throws FunctionEvaluationException, OptimizationException, IllegalArgumentException {
while (true) {
incrementIterationsCounter();
// save the original vertex
final RealPointValuePair[] original = simplex;
final RealPointValuePair best = original[0];
// perform a reflection step
final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator);
if (comparator.compare(reflected, best) < 0) {
// compute the expanded simplex
final RealPointValuePair[] reflectedSimplex = simplex;
final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator);
if (comparator.compare(reflected, expanded) <= 0) {
// accept the reflected simplex
simplex = reflectedSimplex;
}
return;
}
// compute the contracted simplex
final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator);
if (comparator.compare(contracted, best) < 0) {
// accept the contracted simplex
// check convergence
return;
}
}
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/** {@inheritDoc} */
@Override
protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
throws FunctionEvaluationException, OptimizationException, IllegalArgumentException {
while (true) {
incrementIterationsCounter();
// save the original vertex
final RealPointValuePair[] original = simplex;
final RealPointValuePair best = original[0];
// perform a reflection step
final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator);
if (comparator.compare(reflected, best) < 0) {
// compute the expanded simplex
final RealPointValuePair[] reflectedSimplex = simplex;
final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator);
if (comparator.compare(reflected, expanded) <= 0) {
// accept the reflected simplex
simplex = reflectedSimplex;
}
return;
}
// compute the contracted simplex
final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator);
if (comparator.compare(contracted, best) < 0) {
// accept the contracted simplex
// check convergence
return;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
21 | fdaecbb5176c14d071bc79e6b1c4a44df54982c1fbe185706a7aedc2d51c4b3c | public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
throws NonPositiveDefiniteMatrixException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Decompose a symmetric positive semidefinite matrix.
*
* @param matrix Symmetric positive semidefinite matrix.
* @param small Diagonal elements threshold under which column are
* considered to be dependent on previous ones and are discarded.
* @exception NonPositiveDefiniteMatrixException if the matrix is not
* positive semidefinite.
*/
public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
throws NonPositiveDefiniteMatrixException {
final int order = matrix.getRowDimension();
final double[][] c = matrix.getData();
final double[][] b = new double[order][order];
int[] swap = new int[order];
int[] index = new int[order];
for (int i = 0; i < order; ++i) {
index[i] = i;
}
int r = 0;
for (boolean loop = true; loop;) {
// find maximal diagonal element
swap[r] = r;
for (int i = r + 1; i < order; ++i) {
int ii = index[i];
int isi = index[swap[i]];
if (c[ii][ii] > c[isi][isi]) {
swap[r] = i;
}
}
// swap elements
if (swap[r] != r) {
int tmp = index[r];
index[r] = index[swap[r]];
index[swap[r]] = tmp;
}
// check diagonal element
int ir = index[r];
if (c[ir][ir] < small) {
if (r == 0) {
throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small);
}
// check remaining diagonal elements
for (int i = r; i < order; ++i) {
if (c[index[i]][index[i]] < -small) {
// there is at least one sufficiently negative diagonal element,
// the symmetric positive semidefinite matrix is wrong
throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small);
}
}
// all remaining diagonal elements are close to zero, we consider we have
// found the rank of the symmetric positive semidefinite matrix
++r;
loop = false;
} else {
// transform the matrix
final double sqrt = FastMath.sqrt(c[ir][ir]);
b[r][r] = sqrt;
final double inverse = 1 / sqrt;
for (int i = r + 1; i < order; ++i) {
final int ii = index[i];
final double e = inverse * c[ii][ir];
b[i][r] = e;
c[ii][ii] -= e * e;
for (int j = r + 1; j < i; ++j) {
final int ij = index[j];
final double f = c[ii][ij] - e * b[j][r];
c[ii][ij] = f;
c[ij][ii] = f;
}
}
// prepare next iteration
loop = ++r < order;
}
}
// build the root matrix
rank = r;
root = MatrixUtils.createRealMatrix(order, r);
for (int i = 0; i < order; ++i) {
for (int j = 0; j < r; ++j) {
root.setEntry(index[i], j, b[i][j]);
}
}
}
```
| public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
throws NonPositiveDefiniteMatrixException {
final int order = matrix.getRowDimension();
final double[][] c = matrix.getData();
final double[][] b = new double[order][order];
int[] swap = new int[order];
int[] index = new int[order];
for (int i = 0; i < order; ++i) {
index[i] = i;
}
int r = 0;
for (boolean loop = true; loop;) {
// find maximal diagonal element
swap[r] = r;
for (int i = r + 1; i < order; ++i) {
int ii = index[i];
int isi = index[swap[i]];
if (c[ii][ii] > c[isi][isi]) {
swap[r] = i;
}
}
// swap elements
if (swap[r] != r) {
int tmp = index[r];
index[r] = index[swap[r]];
index[swap[r]] = tmp;
}
// check diagonal element
int ir = index[r];
if (c[ir][ir] < small) {
if (r == 0) {
throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small);
}
// check remaining diagonal elements
for (int i = r; i < order; ++i) {
if (c[index[i]][index[i]] < -small) {
// there is at least one sufficiently negative diagonal element,
// the symmetric positive semidefinite matrix is wrong
throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small);
}
}
// all remaining diagonal elements are close to zero, we consider we have
// found the rank of the symmetric positive semidefinite matrix
++r;
loop = false;
} else {
// transform the matrix
final double sqrt = FastMath.sqrt(c[ir][ir]);
b[r][r] = sqrt;
final double inverse = 1 / sqrt;
for (int i = r + 1; i < order; ++i) {
final int ii = index[i];
final double e = inverse * c[ii][ir];
b[i][r] = e;
c[ii][ii] -= e * e;
for (int j = r + 1; j < i; ++j) {
final int ij = index[j];
final double f = c[ii][ij] - e * b[j][r];
c[ii][ij] = f;
c[ij][ii] = f;
}
}
// prepare next iteration
loop = ++r < order;
}
}
// build the root matrix
rank = r;
root = MatrixUtils.createRealMatrix(order, r);
for (int i = 0; i < order; ++i) {
for (int j = 0; j < r; ++j) {
root.setEntry(index[i], j, b[i][j]);
}
}
} | true | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Decompose a symmetric positive semidefinite matrix.
*
* @param matrix Symmetric positive semidefinite matrix.
* @param small Diagonal elements threshold under which column are
* considered to be dependent on previous ones and are discarded.
* @exception NonPositiveDefiniteMatrixException if the matrix is not
* positive semidefinite.
*/
public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
throws NonPositiveDefiniteMatrixException {
final int order = matrix.getRowDimension();
final double[][] c = matrix.getData();
final double[][] b = new double[order][order];
int[] swap = new int[order];
int[] index = new int[order];
for (int i = 0; i < order; ++i) {
index[i] = i;
}
int r = 0;
for (boolean loop = true; loop;) {
// find maximal diagonal element
swap[r] = r;
for (int i = r + 1; i < order; ++i) {
int ii = index[i];
int isi = index[swap[i]];
if (c[ii][ii] > c[isi][isi]) {
swap[r] = i;
}
}
// swap elements
if (swap[r] != r) {
int tmp = index[r];
index[r] = index[swap[r]];
index[swap[r]] = tmp;
}
// check diagonal element
int ir = index[r];
if (c[ir][ir] < small) {
if (r == 0) {
throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small);
}
// check remaining diagonal elements
for (int i = r; i < order; ++i) {
if (c[index[i]][index[i]] < -small) {
// there is at least one sufficiently negative diagonal element,
// the symmetric positive semidefinite matrix is wrong
throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small);
}
}
// all remaining diagonal elements are close to zero, we consider we have
// found the rank of the symmetric positive semidefinite matrix
++r;
loop = false;
} else {
// transform the matrix
final double sqrt = FastMath.sqrt(c[ir][ir]);
b[r][r] = sqrt;
final double inverse = 1 / sqrt;
for (int i = r + 1; i < order; ++i) {
final int ii = index[i];
final double e = inverse * c[ii][ir];
b[i][r] = e;
c[ii][ii] -= e * e;
for (int j = r + 1; j < i; ++j) {
final int ij = index[j];
final double f = c[ii][ij] - e * b[j][r];
c[ii][ij] = f;
c[ij][ii] = f;
}
}
// prepare next iteration
loop = ++r < order;
}
}
// build the root matrix
rank = r;
root = MatrixUtils.createRealMatrix(order, r);
for (int i = 0; i < order; ++i) {
for (int j = 0; j < r; ++j) {
root.setEntry(index[i], j, b[i][j]);
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
71 | fe6c58f85afbb46ec71fa1e80536b099e404b877a1d913138de7e442de69dd35 | private void checkPropertyVisibility(NodeTraversal t,
Node getprop, Node parent) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Determines whether the given property is visible in the current context.
* @param t The current traversal.
* @param getprop The getprop node.
*/
private void checkPropertyVisibility(NodeTraversal t,
Node getprop, Node parent) {
ObjectType objectType =
ObjectType.cast(dereference(getprop.getFirstChild().getJSType()));
String propertyName = getprop.getLastChild().getString();
if (objectType != null) {
// Is this a normal property access, or are we trying to override
// an existing property?
boolean isOverride = t.inGlobalScope() &&
parent.getType() == Token.ASSIGN &&
parent.getFirstChild() == getprop;
// Find the lowest property defined on a class with visibility
// information.
if (isOverride) {
objectType = objectType.getImplicitPrototype();
}
JSDocInfo docInfo = null;
for (; objectType != null;
objectType = objectType.getImplicitPrototype()) {
docInfo = objectType.getOwnPropertyJSDocInfo(propertyName);
if (docInfo != null &&
docInfo.getVisibility() != Visibility.INHERITED) {
break;
}
}
if (objectType == null) {
// We couldn't find a visibility modifier; assume it's public.
return;
}
boolean sameInput =
t.getInput().getName().equals(docInfo.getSourceName());
Visibility visibility = docInfo.getVisibility();
JSType ownerType = normalizeClassType(objectType);
if (isOverride) {
// Check an ASSIGN statement that's trying to override a property
// on a superclass.
JSDocInfo overridingInfo = parent.getJSDocInfo();
Visibility overridingVisibility = overridingInfo == null ?
Visibility.INHERITED : overridingInfo.getVisibility();
// Check that (a) the property *can* be overridden, and
// (b) that the visibility of the override is the same as the
// visibility of the original property.
if (visibility == Visibility.PRIVATE && !sameInput) {
compiler.report(
t.makeError(getprop, PRIVATE_OVERRIDE,
objectType.toString()));
} else if (overridingVisibility != Visibility.INHERITED &&
overridingVisibility != visibility) {
compiler.report(
t.makeError(getprop, VISIBILITY_MISMATCH,
visibility.name(), objectType.toString(),
overridingVisibility.name()));
}
} else {
if (sameInput) {
// private access is always allowed in the same file.
return;
} else if (visibility == Visibility.PRIVATE &&
(currentClass == null || ownerType.differsFrom(currentClass))) {
if (docInfo.isConstructor() &&
isValidPrivateConstructorAccess(parent)) {
return;
}
// private access is not allowed outside the file from a different
// enclosing class.
compiler.report(
t.makeError(getprop,
BAD_PRIVATE_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
} else if (visibility == Visibility.PROTECTED) {
// There are 3 types of legal accesses of a protected property:
// 1) Accesses in the same file
// 2) Overriding the property in a subclass
// 3) Accessing the property from inside a subclass
// The first two have already been checked for.
if (currentClass == null || !currentClass.isSubtype(ownerType)) {
compiler.report(
t.makeError(getprop, BAD_PROTECTED_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
}
}
}
}
}
```
| private void checkPropertyVisibility(NodeTraversal t,
Node getprop, Node parent) {
ObjectType objectType =
ObjectType.cast(dereference(getprop.getFirstChild().getJSType()));
String propertyName = getprop.getLastChild().getString();
if (objectType != null) {
// Is this a normal property access, or are we trying to override
// an existing property?
boolean isOverride = t.inGlobalScope() &&
parent.getType() == Token.ASSIGN &&
parent.getFirstChild() == getprop;
// Find the lowest property defined on a class with visibility
// information.
if (isOverride) {
objectType = objectType.getImplicitPrototype();
}
JSDocInfo docInfo = null;
for (; objectType != null;
objectType = objectType.getImplicitPrototype()) {
docInfo = objectType.getOwnPropertyJSDocInfo(propertyName);
if (docInfo != null &&
docInfo.getVisibility() != Visibility.INHERITED) {
break;
}
}
if (objectType == null) {
// We couldn't find a visibility modifier; assume it's public.
return;
}
boolean sameInput =
t.getInput().getName().equals(docInfo.getSourceName());
Visibility visibility = docInfo.getVisibility();
JSType ownerType = normalizeClassType(objectType);
if (isOverride) {
// Check an ASSIGN statement that's trying to override a property
// on a superclass.
JSDocInfo overridingInfo = parent.getJSDocInfo();
Visibility overridingVisibility = overridingInfo == null ?
Visibility.INHERITED : overridingInfo.getVisibility();
// Check that (a) the property *can* be overridden, and
// (b) that the visibility of the override is the same as the
// visibility of the original property.
if (visibility == Visibility.PRIVATE && !sameInput) {
compiler.report(
t.makeError(getprop, PRIVATE_OVERRIDE,
objectType.toString()));
} else if (overridingVisibility != Visibility.INHERITED &&
overridingVisibility != visibility) {
compiler.report(
t.makeError(getprop, VISIBILITY_MISMATCH,
visibility.name(), objectType.toString(),
overridingVisibility.name()));
}
} else {
if (sameInput) {
// private access is always allowed in the same file.
return;
} else if (visibility == Visibility.PRIVATE &&
(currentClass == null || ownerType.differsFrom(currentClass))) {
if (docInfo.isConstructor() &&
isValidPrivateConstructorAccess(parent)) {
return;
}
// private access is not allowed outside the file from a different
// enclosing class.
compiler.report(
t.makeError(getprop,
BAD_PRIVATE_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
} else if (visibility == Visibility.PROTECTED) {
// There are 3 types of legal accesses of a protected property:
// 1) Accesses in the same file
// 2) Overriding the property in a subclass
// 3) Accessing the property from inside a subclass
// The first two have already been checked for.
if (currentClass == null || !currentClass.isSubtype(ownerType)) {
compiler.report(
t.makeError(getprop, BAD_PROTECTED_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
}
}
}
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Determines whether the given property is visible in the current context.
* @param t The current traversal.
* @param getprop The getprop node.
*/
private void checkPropertyVisibility(NodeTraversal t,
Node getprop, Node parent) {
ObjectType objectType =
ObjectType.cast(dereference(getprop.getFirstChild().getJSType()));
String propertyName = getprop.getLastChild().getString();
if (objectType != null) {
// Is this a normal property access, or are we trying to override
// an existing property?
boolean isOverride = t.inGlobalScope() &&
parent.getType() == Token.ASSIGN &&
parent.getFirstChild() == getprop;
// Find the lowest property defined on a class with visibility
// information.
if (isOverride) {
objectType = objectType.getImplicitPrototype();
}
JSDocInfo docInfo = null;
for (; objectType != null;
objectType = objectType.getImplicitPrototype()) {
docInfo = objectType.getOwnPropertyJSDocInfo(propertyName);
if (docInfo != null &&
docInfo.getVisibility() != Visibility.INHERITED) {
break;
}
}
if (objectType == null) {
// We couldn't find a visibility modifier; assume it's public.
return;
}
boolean sameInput =
t.getInput().getName().equals(docInfo.getSourceName());
Visibility visibility = docInfo.getVisibility();
JSType ownerType = normalizeClassType(objectType);
if (isOverride) {
// Check an ASSIGN statement that's trying to override a property
// on a superclass.
JSDocInfo overridingInfo = parent.getJSDocInfo();
Visibility overridingVisibility = overridingInfo == null ?
Visibility.INHERITED : overridingInfo.getVisibility();
// Check that (a) the property *can* be overridden, and
// (b) that the visibility of the override is the same as the
// visibility of the original property.
if (visibility == Visibility.PRIVATE && !sameInput) {
compiler.report(
t.makeError(getprop, PRIVATE_OVERRIDE,
objectType.toString()));
} else if (overridingVisibility != Visibility.INHERITED &&
overridingVisibility != visibility) {
compiler.report(
t.makeError(getprop, VISIBILITY_MISMATCH,
visibility.name(), objectType.toString(),
overridingVisibility.name()));
}
} else {
if (sameInput) {
// private access is always allowed in the same file.
return;
} else if (visibility == Visibility.PRIVATE &&
(currentClass == null || ownerType.differsFrom(currentClass))) {
if (docInfo.isConstructor() &&
isValidPrivateConstructorAccess(parent)) {
return;
}
// private access is not allowed outside the file from a different
// enclosing class.
compiler.report(
t.makeError(getprop,
BAD_PRIVATE_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
} else if (visibility == Visibility.PROTECTED) {
// There are 3 types of legal accesses of a protected property:
// 1) Accesses in the same file
// 2) Overriding the property in a subclass
// 3) Accessing the property from inside a subclass
// The first two have already been checked for.
if (currentClass == null || !currentClass.isSubtype(ownerType)) {
compiler.report(
t.makeError(getprop, BAD_PROTECTED_PROPERTY_ACCESS,
propertyName,
validator.getReadableJSTypeName(
getprop.getFirstChild(), true)));
}
}
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
13 | fe80bcb24d00239e781c0be16f70d607669fb5732f0da66e4f041de3c8ddec12 | private RealMatrix squareRoot(RealMatrix m) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Computes the square-root of the weight matrix.
*
* @param m Symmetric, positive-definite (weight) matrix.
* @return the square-root of the weight matrix.
*/
private RealMatrix squareRoot(RealMatrix m) {
if (m instanceof DiagonalMatrix) {
final int dim = m.getRowDimension();
final RealMatrix sqrtM = new DiagonalMatrix(dim);
for (int i = 0; i < dim; i++) {
sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
}
return sqrtM;
} else {
final EigenDecomposition dec = new EigenDecomposition(m);
return dec.getSquareRoot();
}
}
```
| private RealMatrix squareRoot(RealMatrix m) {
if (m instanceof DiagonalMatrix) {
final int dim = m.getRowDimension();
final RealMatrix sqrtM = new DiagonalMatrix(dim);
for (int i = 0; i < dim; i++) {
sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
}
return sqrtM;
} else {
final EigenDecomposition dec = new EigenDecomposition(m);
return dec.getSquareRoot();
}
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Computes the square-root of the weight matrix.
*
* @param m Symmetric, positive-definite (weight) matrix.
* @return the square-root of the weight matrix.
*/
private RealMatrix squareRoot(RealMatrix m) {
if (m instanceof DiagonalMatrix) {
final int dim = m.getRowDimension();
final RealMatrix sqrtM = new DiagonalMatrix(dim);
for (int i = 0; i < dim; i++) {
sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
}
return sqrtM;
} else {
final EigenDecomposition dec = new EigenDecomposition(m);
return dec.getSquareRoot();
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
22 | fe955bed1dbddbd274746c269b319d9b95848cdec5cff2934ec25bb3953cc76f | private static int greatestCommonDivisor(int u, int v) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>Gets the greatest common divisor of the absolute value of
* two numbers, using the "binary gcd" method which avoids
* division and modulo operations. See Knuth 4.5.2 algorithm B.
* This algorithm is due to Josef Stein (1961).</p>
*
* @param u a non-zero number
* @param v a non-zero number
* @return the greatest common divisor, never zero
*/
private static int greatestCommonDivisor(int u, int v) {
// From Commons Math:
//if either operand is abs 1, return 1:
if (Math.abs(u) <= 1 || Math.abs(v) <= 1) {
return 1;
}
// keep u and v negative, as negative integers range down to
// -2^31, while positive numbers can only be as large as 2^31-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
if (u>0) { u=-u; } // make u negative
if (v>0) { v=-v; } // make v negative
// B1. [Find power of 2]
int k=0;
while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even...
u/=2; v/=2; k++; // cast out twos.
}
if (k==31) {
throw new ArithmeticException("overflow: gcd is 2^31");
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
int t = ((u&1)==1) ? v : -(u/2)/*B3*/;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t&1)==0) { // while t is even..
t/=2; // cast out twos
}
// B5 [reset max(u,v)]
if (t>0) {
u = -t;
} else {
v = t;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u)/2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t!=0);
return -u*(1<<k); // gcd is u*2^k
}
```
| private static int greatestCommonDivisor(int u, int v) {
// From Commons Math:
//if either operand is abs 1, return 1:
if (Math.abs(u) <= 1 || Math.abs(v) <= 1) {
return 1;
}
// keep u and v negative, as negative integers range down to
// -2^31, while positive numbers can only be as large as 2^31-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
if (u>0) { u=-u; } // make u negative
if (v>0) { v=-v; } // make v negative
// B1. [Find power of 2]
int k=0;
while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even...
u/=2; v/=2; k++; // cast out twos.
}
if (k==31) {
throw new ArithmeticException("overflow: gcd is 2^31");
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
int t = ((u&1)==1) ? v : -(u/2)/*B3*/;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t&1)==0) { // while t is even..
t/=2; // cast out twos
}
// B5 [reset max(u,v)]
if (t>0) {
u = -t;
} else {
v = t;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u)/2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t!=0);
return -u*(1<<k); // gcd is u*2^k
} | true | Lang | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>Gets the greatest common divisor of the absolute value of
* two numbers, using the "binary gcd" method which avoids
* division and modulo operations. See Knuth 4.5.2 algorithm B.
* This algorithm is due to Josef Stein (1961).</p>
*
* @param u a non-zero number
* @param v a non-zero number
* @return the greatest common divisor, never zero
*/
private static int greatestCommonDivisor(int u, int v) {
// From Commons Math:
//if either operand is abs 1, return 1:
if (Math.abs(u) <= 1 || Math.abs(v) <= 1) {
return 1;
}
// keep u and v negative, as negative integers range down to
// -2^31, while positive numbers can only be as large as 2^31-1
// (i.e. we can't necessarily negate a negative number without
// overflow)
if (u>0) { u=-u; } // make u negative
if (v>0) { v=-v; } // make v negative
// B1. [Find power of 2]
int k=0;
while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even...
u/=2; v/=2; k++; // cast out twos.
}
if (k==31) {
throw new ArithmeticException("overflow: gcd is 2^31");
}
// B2. Initialize: u and v have been divided by 2^k and at least
// one is odd.
int t = ((u&1)==1) ? v : -(u/2)/*B3*/;
// t negative: u was odd, v may be even (t replaces v)
// t positive: u was even, v is odd (t replaces u)
do {
/* assert u<0 && v<0; */
// B4/B3: cast out twos from t.
while ((t&1)==0) { // while t is even..
t/=2; // cast out twos
}
// B5 [reset max(u,v)]
if (t>0) {
u = -t;
} else {
v = t;
}
// B6/B3. at this point both u and v should be odd.
t = (v - u)/2;
// |u| larger: t positive (replace u)
// |v| larger: t negative (replace v)
} while (t!=0);
return -u*(1<<k); // gcd is u*2^k
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
50 | fec99ab1ecacec4207e9add2b772f0ed1442a63086535943a1879aaa46d71fd7 | private Node tryFoldArrayJoin(Node n) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Try to fold an array join: ['a', 'b', 'c'].join('') -> 'abc';
*/
private Node tryFoldArrayJoin(Node n) {
Node callTarget = n.getFirstChild();
if (callTarget == null || !NodeUtil.isGetProp(callTarget)) {
return n;
}
Node right = callTarget.getNext();
if (right != null) {
if (!NodeUtil.isImmutableValue(right)) {
return n;
}
}
Node arrayNode = callTarget.getFirstChild();
Node functionName = arrayNode.getNext();
if ((arrayNode.getType() != Token.ARRAYLIT) ||
!functionName.getString().equals("join")) {
return n;
}
// "," is the default, it doesn't need to be explicit
String joinString = (right == null) ? "," : NodeUtil.getStringValue(right);
List<Node> arrayFoldedChildren = Lists.newLinkedList();
StringBuilder sb = null;
int foldedSize = 0;
Node prev = null;
Node elem = arrayNode.getFirstChild();
// Merges adjacent String nodes.
while (elem != null) {
if (NodeUtil.isImmutableValue(elem) || elem.getType() == Token.EMPTY) {
if (sb == null) {
sb = new StringBuilder();
} else {
sb.append(joinString);
}
sb.append(NodeUtil.getArrayElementStringValue(elem));
} else {
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
sb = null;
}
foldedSize += InlineCostEstimator.getCost(elem);
arrayFoldedChildren.add(elem);
}
prev = elem;
elem = elem.getNext();
}
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
}
// one for each comma.
foldedSize += arrayFoldedChildren.size() - 1;
int originalSize = InlineCostEstimator.getCost(n);
switch (arrayFoldedChildren.size()) {
case 0:
Node emptyStringNode = Node.newString("");
n.getParent().replaceChild(n, emptyStringNode);
reportCodeChange();
return emptyStringNode;
case 1:
Node foldedStringNode = arrayFoldedChildren.remove(0);
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
if (foldedStringNode.getType() != Token.STRING) {
// If the Node is not a string literal, ensure that
// it is coerced to a string.
Node replacement = new Node(Token.ADD,
Node.newString("").copyInformationFrom(n),
foldedStringNode);
foldedStringNode = replacement;
}
n.getParent().replaceChild(n, foldedStringNode);
reportCodeChange();
return foldedStringNode;
default:
// No folding could actually be performed.
if (arrayFoldedChildren.size() == arrayNode.getChildCount()) {
return n;
}
int kJoinOverhead = "[].join()".length();
foldedSize += kJoinOverhead;
foldedSize += (right != null) ? InlineCostEstimator.getCost(right) : 0;
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
for (Node node : arrayFoldedChildren) {
arrayNode.addChildToBack(node);
}
reportCodeChange();
break;
}
return n;
}
```
| private Node tryFoldArrayJoin(Node n) {
Node callTarget = n.getFirstChild();
if (callTarget == null || !NodeUtil.isGetProp(callTarget)) {
return n;
}
Node right = callTarget.getNext();
if (right != null) {
if (!NodeUtil.isImmutableValue(right)) {
return n;
}
}
Node arrayNode = callTarget.getFirstChild();
Node functionName = arrayNode.getNext();
if ((arrayNode.getType() != Token.ARRAYLIT) ||
!functionName.getString().equals("join")) {
return n;
}
// "," is the default, it doesn't need to be explicit
String joinString = (right == null) ? "," : NodeUtil.getStringValue(right);
List<Node> arrayFoldedChildren = Lists.newLinkedList();
StringBuilder sb = null;
int foldedSize = 0;
Node prev = null;
Node elem = arrayNode.getFirstChild();
// Merges adjacent String nodes.
while (elem != null) {
if (NodeUtil.isImmutableValue(elem) || elem.getType() == Token.EMPTY) {
if (sb == null) {
sb = new StringBuilder();
} else {
sb.append(joinString);
}
sb.append(NodeUtil.getArrayElementStringValue(elem));
} else {
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
sb = null;
}
foldedSize += InlineCostEstimator.getCost(elem);
arrayFoldedChildren.add(elem);
}
prev = elem;
elem = elem.getNext();
}
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
}
// one for each comma.
foldedSize += arrayFoldedChildren.size() - 1;
int originalSize = InlineCostEstimator.getCost(n);
switch (arrayFoldedChildren.size()) {
case 0:
Node emptyStringNode = Node.newString("");
n.getParent().replaceChild(n, emptyStringNode);
reportCodeChange();
return emptyStringNode;
case 1:
Node foldedStringNode = arrayFoldedChildren.remove(0);
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
if (foldedStringNode.getType() != Token.STRING) {
// If the Node is not a string literal, ensure that
// it is coerced to a string.
Node replacement = new Node(Token.ADD,
Node.newString("").copyInformationFrom(n),
foldedStringNode);
foldedStringNode = replacement;
}
n.getParent().replaceChild(n, foldedStringNode);
reportCodeChange();
return foldedStringNode;
default:
// No folding could actually be performed.
if (arrayFoldedChildren.size() == arrayNode.getChildCount()) {
return n;
}
int kJoinOverhead = "[].join()".length();
foldedSize += kJoinOverhead;
foldedSize += (right != null) ? InlineCostEstimator.getCost(right) : 0;
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
for (Node node : arrayFoldedChildren) {
arrayNode.addChildToBack(node);
}
reportCodeChange();
break;
}
return n;
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Try to fold an array join: ['a', 'b', 'c'].join('') -> 'abc';
*/
private Node tryFoldArrayJoin(Node n) {
Node callTarget = n.getFirstChild();
if (callTarget == null || !NodeUtil.isGetProp(callTarget)) {
return n;
}
Node right = callTarget.getNext();
if (right != null) {
if (!NodeUtil.isImmutableValue(right)) {
return n;
}
}
Node arrayNode = callTarget.getFirstChild();
Node functionName = arrayNode.getNext();
if ((arrayNode.getType() != Token.ARRAYLIT) ||
!functionName.getString().equals("join")) {
return n;
}
// "," is the default, it doesn't need to be explicit
String joinString = (right == null) ? "," : NodeUtil.getStringValue(right);
List<Node> arrayFoldedChildren = Lists.newLinkedList();
StringBuilder sb = null;
int foldedSize = 0;
Node prev = null;
Node elem = arrayNode.getFirstChild();
// Merges adjacent String nodes.
while (elem != null) {
if (NodeUtil.isImmutableValue(elem) || elem.getType() == Token.EMPTY) {
if (sb == null) {
sb = new StringBuilder();
} else {
sb.append(joinString);
}
sb.append(NodeUtil.getArrayElementStringValue(elem));
} else {
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
sb = null;
}
foldedSize += InlineCostEstimator.getCost(elem);
arrayFoldedChildren.add(elem);
}
prev = elem;
elem = elem.getNext();
}
if (sb != null) {
Preconditions.checkNotNull(prev);
// + 2 for the quotes.
foldedSize += sb.length() + 2;
arrayFoldedChildren.add(
Node.newString(sb.toString()).copyInformationFrom(prev));
}
// one for each comma.
foldedSize += arrayFoldedChildren.size() - 1;
int originalSize = InlineCostEstimator.getCost(n);
switch (arrayFoldedChildren.size()) {
case 0:
Node emptyStringNode = Node.newString("");
n.getParent().replaceChild(n, emptyStringNode);
reportCodeChange();
return emptyStringNode;
case 1:
Node foldedStringNode = arrayFoldedChildren.remove(0);
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
if (foldedStringNode.getType() != Token.STRING) {
// If the Node is not a string literal, ensure that
// it is coerced to a string.
Node replacement = new Node(Token.ADD,
Node.newString("").copyInformationFrom(n),
foldedStringNode);
foldedStringNode = replacement;
}
n.getParent().replaceChild(n, foldedStringNode);
reportCodeChange();
return foldedStringNode;
default:
// No folding could actually be performed.
if (arrayFoldedChildren.size() == arrayNode.getChildCount()) {
return n;
}
int kJoinOverhead = "[].join()".length();
foldedSize += kJoinOverhead;
foldedSize += (right != null) ? InlineCostEstimator.getCost(right) : 0;
if (foldedSize > originalSize) {
return n;
}
arrayNode.detachChildren();
for (Node node : arrayFoldedChildren) {
arrayNode.addChildToBack(node);
}
reportCodeChange();
break;
}
return n;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
33 | feca13955f71d4f1deeb9dc6a6ec18b84ee99e204871e042cc44bd0a036f21ce | Element insert(Token.StartTag startTag) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.transition(TokeniserState.Data); // handles <script />, otherwise needs breakout steps from script data
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
}
```
| Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.transition(TokeniserState.Data); // handles <script />, otherwise needs breakout steps from script data
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
} | false | Jsoup | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
Element insert(Token.StartTag startTag) {
// handle empty unknown tags
// when the spec expects an empty tag, will directly hit insertEmpty, so won't generate this fake end tag.
if (startTag.isSelfClosing()) {
Element el = insertEmpty(startTag);
stack.add(el);
tokeniser.transition(TokeniserState.Data); // handles <script />, otherwise needs breakout steps from script data
tokeniser.emit(new Token.EndTag(el.tagName())); // ensure we get out of whatever state we are in. emitted for yielded processing
return el;
}
Element el = new Element(Tag.valueOf(startTag.name()), baseUri, startTag.attributes);
insert(el);
return el;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
18 | fedd98c9f9ec53b0630c309697398d9fe19cdae07f890485e5c5f9b0b3d491cf | public static boolean equals(final CharSequence cs1, final CharSequence cs2) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* <p>
* Compares two CharSequences, returning <code>true</code> if they represent equal sequences of characters.
* </p>
*
* <p>
* <code>null</code>s are handled without exceptions. Two <code>null</code> references are considered to be equal.
* The comparison is case sensitive.
* </p>
*
* <pre>
* StringUtils.equals(null, null) = true
* StringUtils.equals(null, "abc") = false
* StringUtils.equals("abc", null) = false
* StringUtils.equals("abc", "abc") = true
* StringUtils.equals("abc", "ABC") = false
* </pre>
*
* <p>
* Copied from Apache Commons Lang r1583482 on April 10, 2014 (day of 3.3.2 release).
* </p>
*
* @see Object#equals(Object)
* @param cs1
* the first CharSequence, may be <code>null</code>
* @param cs2
* the second CharSequence, may be <code>null</code>
* @return <code>true</code> if the CharSequences are equal (case-sensitive), or both <code>null</code>
* @since 1.10
*/
public static boolean equals(final CharSequence cs1, final CharSequence cs2) {
if (cs1 == cs2) {
return true;
}
if (cs1 == null || cs2 == null) {
return false;
}
if (cs1 instanceof String && cs2 instanceof String) {
return cs1.equals(cs2);
}
return cs1.length() == cs2.length() && CharSequenceUtils.regionMatches(cs1, false, 0, cs2, 0, cs1.length());
}
```
| public static boolean equals(final CharSequence cs1, final CharSequence cs2) {
if (cs1 == cs2) {
return true;
}
if (cs1 == null || cs2 == null) {
return false;
}
if (cs1 instanceof String && cs2 instanceof String) {
return cs1.equals(cs2);
}
return cs1.length() == cs2.length() && CharSequenceUtils.regionMatches(cs1, false, 0, cs2, 0, cs1.length());
} | false | Codec | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* <p>
* Compares two CharSequences, returning <code>true</code> if they represent equal sequences of characters.
* </p>
*
* <p>
* <code>null</code>s are handled without exceptions. Two <code>null</code> references are considered to be equal.
* The comparison is case sensitive.
* </p>
*
* <pre>
* StringUtils.equals(null, null) = true
* StringUtils.equals(null, "abc") = false
* StringUtils.equals("abc", null) = false
* StringUtils.equals("abc", "abc") = true
* StringUtils.equals("abc", "ABC") = false
* </pre>
*
* <p>
* Copied from Apache Commons Lang r1583482 on April 10, 2014 (day of 3.3.2 release).
* </p>
*
* @see Object#equals(Object)
* @param cs1
* the first CharSequence, may be <code>null</code>
* @param cs2
* the second CharSequence, may be <code>null</code>
* @return <code>true</code> if the CharSequences are equal (case-sensitive), or both <code>null</code>
* @since 1.10
*/
public static boolean equals(final CharSequence cs1, final CharSequence cs2) {
if (cs1 == cs2) {
return true;
}
if (cs1 == null || cs2 == null) {
return false;
}
if (cs1 instanceof String && cs2 instanceof String) {
return cs1.equals(cs2);
}
return cs1.length() == cs2.length() && CharSequenceUtils.regionMatches(cs1, false, 0, cs2, 0, cs1.length());
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
19 | ff49f738aa6c499acd144e9d4ac7ed3a3437bcb5c3ec0e28da60e3ba5de48b43 | protected void declareNameInScope(FlowScope scope, Node node, JSType type) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Declares a refined type in {@code scope} for the name represented by
* {@code node}. It must be possible to refine the type of the given node in
* the given scope, as determined by {@link #getTypeIfRefinable}.
*/
protected void declareNameInScope(FlowScope scope, Node node, JSType type) {
switch (node.getType()) {
case Token.NAME:
scope.inferSlotType(node.getString(), type);
break;
case Token.GETPROP:
String qualifiedName = node.getQualifiedName();
Preconditions.checkNotNull(qualifiedName);
JSType origType = node.getJSType();
origType = origType == null ? getNativeType(UNKNOWN_TYPE) : origType;
scope.inferQualifiedSlot(node, qualifiedName, origType, type);
break;
// "this" references aren't currently modeled in the CFG.
default:
throw new IllegalArgumentException("Node cannot be refined. \n" +
node.toStringTree());
}
}
```
| protected void declareNameInScope(FlowScope scope, Node node, JSType type) {
switch (node.getType()) {
case Token.NAME:
scope.inferSlotType(node.getString(), type);
break;
case Token.GETPROP:
String qualifiedName = node.getQualifiedName();
Preconditions.checkNotNull(qualifiedName);
JSType origType = node.getJSType();
origType = origType == null ? getNativeType(UNKNOWN_TYPE) : origType;
scope.inferQualifiedSlot(node, qualifiedName, origType, type);
break;
// "this" references aren't currently modeled in the CFG.
default:
throw new IllegalArgumentException("Node cannot be refined. \n" +
node.toStringTree());
}
} | true | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Declares a refined type in {@code scope} for the name represented by
* {@code node}. It must be possible to refine the type of the given node in
* the given scope, as determined by {@link #getTypeIfRefinable}.
*/
protected void declareNameInScope(FlowScope scope, Node node, JSType type) {
switch (node.getType()) {
case Token.NAME:
scope.inferSlotType(node.getString(), type);
break;
case Token.GETPROP:
String qualifiedName = node.getQualifiedName();
Preconditions.checkNotNull(qualifiedName);
JSType origType = node.getJSType();
origType = origType == null ? getNativeType(UNKNOWN_TYPE) : origType;
scope.inferQualifiedSlot(node, qualifiedName, origType, type);
break;
// "this" references aren't currently modeled in the CFG.
default:
throw new IllegalArgumentException("Node cannot be refined. \n" +
node.toStringTree());
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
150 | ff7621e1d5e0173350c161c8f445d89b237c520780817a3d1eba3c3ad8eb82d7 | @Override public void visit(NodeTraversal t, Node n, Node parent) | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Visit a node in a local scope, and add any local variables or catch
* parameters into the local symbol table.
*
* @param t The node traversal.
* @param n The node being visited.
* @param parent The parent of n
*/
@Override public void visit(NodeTraversal t, Node n, Node parent) {
if (n == scope.getRootNode()) return;
if (n.getType() == Token.LP && parent == scope.getRootNode()) {
handleFunctionInputs(parent);
return;
}
super.visit(t, n, parent);
}
```
| @Override public void visit(NodeTraversal t, Node n, Node parent) {
if (n == scope.getRootNode()) return;
if (n.getType() == Token.LP && parent == scope.getRootNode()) {
handleFunctionInputs(parent);
return;
}
super.visit(t, n, parent);
} | false | Closure | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Visit a node in a local scope, and add any local variables or catch
* parameters into the local symbol table.
*
* @param t The node traversal.
* @param n The node being visited.
* @param parent The parent of n
*/
@Override public void visit(NodeTraversal t, Node n, Node parent) {
if (n == scope.getRootNode()) return;
if (n.getType() == Token.LP && parent == scope.getRootNode()) {
handleFunctionInputs(parent);
return;
}
super.visit(t, n, parent);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
28 | ffc56d6d0e85fece53cc9a906cf005e24bb173b22de901861b5b14c49dcbeaf5 | @Override
public int read(byte[] buf, int offset, int numToRead) throws IOException | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Reads bytes from the current tar archive entry.
*
* This method is aware of the boundaries of the current
* entry in the archive and will deal with them as if they
* were this stream's start and EOF.
*
* @param buf The buffer into which to place bytes read.
* @param offset The offset at which to place bytes read.
* @param numToRead The number of bytes to read.
* @return The number of bytes read, or -1 at EOF.
* @throws IOException on error
*/
@Override
public int read(byte[] buf, int offset, int numToRead) throws IOException {
int totalRead = 0;
if (hasHitEOF || entryOffset >= entrySize) {
return -1;
}
if (currEntry == null) {
throw new IllegalStateException("No current tar entry");
}
numToRead = Math.min(numToRead, available());
totalRead = is.read(buf, offset, numToRead);
count(totalRead);
if (totalRead == -1) {
hasHitEOF = true;
} else {
entryOffset += totalRead;
}
return totalRead;
}
```
| @Override
public int read(byte[] buf, int offset, int numToRead) throws IOException {
int totalRead = 0;
if (hasHitEOF || entryOffset >= entrySize) {
return -1;
}
if (currEntry == null) {
throw new IllegalStateException("No current tar entry");
}
numToRead = Math.min(numToRead, available());
totalRead = is.read(buf, offset, numToRead);
count(totalRead);
if (totalRead == -1) {
hasHitEOF = true;
} else {
entryOffset += totalRead;
}
return totalRead;
} | true | Compress | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Reads bytes from the current tar archive entry.
*
* This method is aware of the boundaries of the current
* entry in the archive and will deal with them as if they
* were this stream's start and EOF.
*
* @param buf The buffer into which to place bytes read.
* @param offset The offset at which to place bytes read.
* @param numToRead The number of bytes to read.
* @return The number of bytes read, or -1 at EOF.
* @throws IOException on error
*/
@Override
public int read(byte[] buf, int offset, int numToRead) throws IOException {
int totalRead = 0;
if (hasHitEOF || entryOffset >= entrySize) {
return -1;
}
if (currEntry == null) {
throw new IllegalStateException("No current tar entry");
}
numToRead = Math.min(numToRead, available());
totalRead = is.read(buf, offset, numToRead);
count(totalRead);
if (totalRead == -1) {
hasHitEOF = true;
} else {
entryOffset += totalRead;
}
return totalRead;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
58 | ffdd25bb75e53cde62de0a0301becb5f7e16a31da23b1943aabd5fcf31070da4 | public double[] fit() | I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function:
```java
/**
* Fits a Gaussian function to the observed points.
*
* @return the parameters of the Gaussian function that best fits the
* observed points (in the same order as above).
*/
public double[] fit() {
final double[] guess = (new ParameterGuesser(getObservations())).guess();
return fit(guess);
}
```
| public double[] fit() {
final double[] guess = (new ParameterGuesser(getObservations())).guess();
return fit(guess);
} | false | Math | /**
* Perform a binary search on a sorted array to find the position of a specified element.
*/
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r + l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Counts the number of set bits in the binary representation of a given integer.
*/
public class BITCOUNT {
public static int bitcount(int n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that finds and returns the kth smallest element in an unsorted array.
*/
public class KTH {
public static Integer kth(ArrayList<Integer> arr, int k) {
int pivot = arr.get(0);
ArrayList<Integer> below, above;
below = new ArrayList<Integer>(arr.size());
above = new ArrayList<Integer>(arr.size());
for (Integer x : arr) {
if (x < pivot) {
below.add(x);
} else if (x > pivot) {
above.add(x);
}
}
int num_less = below.size();
int num_lessoreq = arr.size() - above.size();
if (k < num_less) {
return kth(below, k);
} else if (k >= num_lessoreq) {
return kth(above, k-num_lessoreq);
} else {
return pivot;
}
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: B. No, it doesn't have defects
/**
* A method that sorts an ArrayList of integers using the Merge Sort algorithm.
*/
public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {
if (arr.size() <= 1) { // <= 1 in correct version
return arr;
} else {
int middle = arr.size() / 2;
ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0,middle));
left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);
return merge(left, left);
}
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: A. Yes, it has defects
/**
* Fits a Gaussian function to the observed points.
*
* @return the parameters of the Gaussian function that best fits the
* observed points (in the same order as above).
*/
public double[] fit() {
final double[] guess = (new ParameterGuesser(getObservations())).guess();
return fit(guess);
}
Question: Please determine whether the above-mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer: |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.