content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Dict from typing import Any import toml from pathlib import Path import textwrap def load_configuration() -> Dict[str, Any]: """ Return dict from TOML formatted string or file. Returns: The dict configuration. """ default_config = """ [key_bindings] AUTOCLEAR = "c" CANCEL = "esc" ENTER = "enter" FILTER = ["F4", "\\\\"] FOLLOW_ROW = "F" HELP = ["F1", "?"] MOVE_DOWN = ["down", "j"] MOVE_DOWN_STEP = "J" MOVE_END = "end" MOVE_HOME = "home" MOVE_LEFT = ["left", "h"] MOVE_RIGHT = ["right", "l"] MOVE_UP = ["up", "k"] MOVE_UP_STEP = "K" NEXT_SORT = ["p", ">"] PREVIOUS_SORT = "<" PRIORITY_DOWN = ["F8", "d", "]"] PRIORITY_UP = ["F7", "u", "["] QUIT = ["F10", "q"] REMOVE_ASK = ["del", "F9"] RETRY = "r" RETRY_ALL = "R" REVERSE_SORT = "I" SEARCH = ["F3", "/"] SELECT_SORT = "F6" SETUP = "F2" TOGGLE_EXPAND_COLLAPSE = "x" TOGGLE_EXPAND_COLLAPSE_ALL = "X" TOGGLE_RESUME_PAUSE = "space" TOGGLE_RESUME_PAUSE_ALL = "P" TOGGLE_SELECT = "s" UN_SELECT_ALL = "U" ADD_DOWNLOADS = "a" [colors] BRIGHT_HELP = "CYAN BOLD BLACK" FOCUSED_HEADER = "BLACK NORMAL CYAN" FOCUSED_ROW = "BLACK NORMAL CYAN" HEADER = "BLACK NORMAL GREEN" METADATA = "WHITE UNDERLINE BLACK" SIDE_COLUMN_FOCUSED_ROW = "BLACK NORMAL CYAN" SIDE_COLUMN_HEADER = "BLACK NORMAL GREEN" SIDE_COLUMN_ROW = "WHITE NORMAL BLACK" STATUS_ACTIVE = "CYAN NORMAL BLACK" STATUS_COMPLETE = "GREEN NORMAL BLACK" STATUS_ERROR = "RED BOLD BLACK" STATUS_PAUSED = "YELLOW NORMAL BLACK" STATUS_WAITING = "WHITE BOLD BLACK" """ config_dict = {} config_dict["DEFAULT"] = toml.loads(default_config) # Check for configuration file config_file_path = Path(user_config_dir("aria2p")) / "config.toml" if config_file_path.exists(): try: config_dict["USER"] = toml.load(config_file_path) except Exception as error: # noqa: W0703 (too broad exception) logger.error(f"Failed to load configuration file: {error}") else: # Write initial configuration file if it does not exist config_file_path.parent.mkdir(parents=True, exist_ok=True) with config_file_path.open("w") as fd: fd.write(textwrap.dedent(default_config).lstrip("\n")) return config_dict
a7a53382dd43023b74fbb88b9c2540499c9beb4f
8,900
def type_weapon(stage, bin, data=None): """Weapon""" if data == None: return 1 if stage == 1: return (str(data),'') try: v = int(data) if 0 > v or v > 255: raise except: raise PyMSError('Parameter',"Invalid Weapon value '%s', it must be 1 for ground attack or not 1 for air attack." % data) return v
51ad1c627b05b57ad67f5558bb76de3fe6e48f27
8,901
def to_square_feet(square_metres): """Convert metres^2 to ft^2""" return square_metres * 10.7639
50510aad230efcb47662936237a232662fef5596
8,902
def middle_name_handler(update: Update, context: CallbackContext) -> str: """Get and save patronymic of user. Send hello with full name.""" u = User.get_user(update, context) name = (f'{context.user_data[LAST_NAME]} {context.user_data[FIRST_NAME]} ' f'{context.user_data[MIDDLE_NAME]}') context.bot.send_message( chat_id=u.user_id, text=static_text.HELLO_FULL_NAME.format(name=name) ) update.message.reply_text( text=static_text.ASK_GENDER, parse_mode=ParseMode.HTML, reply_markup=keyboard_utils.get_keyboard_for_gender() ) return GENDER
dab2144282aeb63c2a3c4218236d04c3bb940ac8
8,903
def submit_barcodes(barcodes): """ Submits a set of {release1: barcode1, release2:barcode2} Must call auth(user, pass) first """ query = mbxml.make_barcode_request(barcodes) return _do_mb_post("release", query)
6e975e791196ed31ef6f52cdd0ca04d71a8d19eb
8,904
from typing import Counter def get_idf_dict(arr, tokenizer, nthreads=4): """ Returns mapping from word piece index to its inverse document frequency. Args: - :param: `arr` (list of str) : sentences to process. - :param: `tokenizer` : a BERT tokenizer corresponds to `model`. - :param: `nthreads` (int) : number of CPU threads to use """ idf_count = Counter() num_docs = len(arr) process_partial = partial(process, tokenizer=tokenizer) with Pool(nthreads) as p: idf_count.update(chain.from_iterable(p.map(process_partial, arr))) idf_dict = defaultdict(lambda: log((num_docs + 1) / (1))) idf_dict.update({idx: log((num_docs + 1) / (c + 1)) for (idx, c) in idf_count.items()}) return idf_dict
e98a9578695781e4965b36d713c4c0a4351e53da
8,905
import json def load_id_json_file(json_path): """ load the JSON file and get the data inside all this function does is to call json.load(f) inside a with statement Args: json_path (str): where the target JSON file is Return: ID list (list): all the data found in the file """ with open(json_path, 'r') as f: return json.load(f)
fd0f7fb73636cdf407b4de3e1aa3ae66dcc8f964
8,906
def check_github_scopes(exc: ResponseError) -> str: """ Parse github3 ResponseError headers for the correct scopes and return a warning if the user is missing. @param exc: The exception to process @returns: The formatted exception string """ user_warning = "" has_wrong_status_code = exc.response.status_code not in (403, 404) if has_wrong_status_code: return user_warning token_scopes = get_oauth_scopes(exc.response) # Gist resource won't return X-Accepted-OAuth-Scopes for some reason, so this # string might be `None`; we discard the empty string if so. accepted_scopes = exc.response.headers.get("X-Accepted-OAuth-Scopes") or "" accepted_scopes = set(accepted_scopes.split(", ")) accepted_scopes.discard("") request_url = urlparse(exc.response.url) if not accepted_scopes and request_url.path == "/gists": accepted_scopes = {"gist"} missing_scopes = accepted_scopes.difference(token_scopes) if missing_scopes: user_warning = f"Your token may be missing the following scopes: {', '.join(missing_scopes)}\n" # This assumes we're not on enterprise and 'api.github.com' == request_url.hostname user_warning += ( "Visit Settings > Developer settings > Personal access tokens to add them." ) return user_warning
ebb3fffcaddc792dac7c321d9029b5042a42be86
8,907
def user_login(): """ # 显示页面的设置 :return: 接收前端的session信息来显示不同的页面 """ # 获取参数 name = session.get("name") if name is not None: return jsonify(errno=RET.OK, errmsg="True", data={"name": name}) else: return jsonify(errno=RET.SESSIONERR, errmsg="用户未登入")
213ad2338260364186c0539a9e995b84ee889b42
8,908
def sample_conditional(node: gtsam.GaussianConditional, N: int, parents: list = [], sample: dict = {}): """Sample from conditional """ # every node ~ exp(0.5*|R x + S p - d|^2) # calculate mean as inv(R)*(d - S p) d = node.d() n = len(d) rhs = d.reshape(n, 1) if len(parents) > 0: rhs = rhs - node.S() @ np.vstack([sample[p] for p in parents]) # sample from conditional Gaussian invR = np.linalg.inv(node.R()) return invR @ (rhs + np.random.normal(size=(n, N)))
b9ab05ea50eea05a779c6d601db4643a86b343d5
8,909
def _liftover_data_path(data_type: str, version: str) -> str: """ Paths to liftover gnomAD Table. :param data_type: One of `exomes` or `genomes` :param version: One of the release versions of gnomAD on GRCh37 :return: Path to chosen Table """ return f"gs://gnomad-public-requester-pays/release/{version}/liftover_grch38/ht/{data_type}/gnomad.{data_type}.r{version}.sites.liftover_grch38.ht"
8da0f93c86568d56b3211bcb9e226b9cb495c8e2
8,910
def valueinfo_to_tensor(vi): """Creates an all-zeroes numpy tensor from a ValueInfoProto.""" dims = [x.dim_value for x in vi.type.tensor_type.shape.dim] return np.zeros( dims, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[vi.type.tensor_type.elem_type] )
b814373e7c9d4f1e43f9d1af0c6e48b82989602e
8,911
def signup_email(): """Create a new account using data encoded in the POST body. Expects the following form data: first_name: E.g. 'Taylor' last_name: E.g. 'Swift' email: E.g. '[email protected]' password: E.g. 'iknewyouweretrouble' Responds with the session cookie via the `set-cookie` header on success. Send the associated cookie for all subsequent API requests that accept user authentication. """ # Prevent a CSRF attack from replacing a logged-in user's account with # a new account with known credentials current_user = view_helpers.get_current_user() if current_user: return api_util.jsonify({'message': 'A user is already logged in.'}) params = flask.request.form.copy() # Don't log the password password = params.pop('password', None) rmclogger.log_event( rmclogger.LOG_CATEGORY_API, rmclogger.LOG_EVENT_SIGNUP, { 'params': params, 'type': rmclogger.LOGIN_TYPE_STRING_EMAIL, }, ) first_name = params.get('first_name') last_name = params.get('last_name') email = params.get('email') if not first_name: raise api_util.ApiBadRequestError('Must provide first name.') if not last_name: raise api_util.ApiBadRequestError('Must provide last name.') if not email: raise api_util.ApiBadRequestError('Must provide email.') if not password: raise api_util.ApiBadRequestError('Must provide password.') try: user = m.User.create_new_user_from_email( first_name, last_name, email, password) except m.User.UserCreationError as e: raise api_util.ApiBadRequestError(e.message) view_helpers.login_as_user(user) return api_util.jsonify({ 'message': 'Created and logged in user %s' % user.name })
e3ecca4bd244d1d20ad166a153a6c3f5c80f4876
8,912
def calculate_multi_rmse(regressor, n_task): """ Method which calculate root mean squared error value for trained model Using regressor attributes Return RMSE metrics as dict for train and test datasets :param regressor: trained regression model object :param n_task: :type regressor: TrainedModel, TrainedModelDNN, TrainedModelCV :return: rmse metrics :rtype: dict """ # calculate mse metric test_mse_tmp = mean_squared_error( regressor.y_test.values[:, n_task], regressor.predict_classes['test'][:, n_task] ) train_mse_tmp = mean_squared_error( regressor.y_train.values[:, n_task], regressor.predict_classes['train'][:, n_task] ) # convert mse to rmse return { (str(n_task), 'train', 'RMSE'): train_mse_tmp ** 0.5, (str(n_task), 'test', 'RMSE'): test_mse_tmp ** 0.5, }
53daee6abb97a96af44831df59767a447fd2786e
8,913
import torch from re import T def detr_predict(model, image, thresh=0.95): """ Function used to preprocess the image, feed it into the detr model, and prepare the output draw bounding boxes. Outputs are thresholded. Related functions: detr_load, draw_boxes in coco.py Args: model -- the detr model from detr_load() image -- Array the original image from openCV [width, height, channels] Returns: boxes -- Torch tensor of coordinates of the top left and bottom right of the bounding box ordered as [(x1, y1, x2, y2)] labels -- Torch tensor of index labels for each bounding box [<label indices>] scores -- Torch tensor of class confidence scores for each bounding box [<class scores>]. For COCO, expects 91 different classes """ def box_cxcywh_to_xyxy(x): # Converts bounding boxes to (x1, y1, x2, y2) coordinates of top left and bottom right corners # (center_x, center_y, h, w) x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): # Scale the bounding boxes to the image size img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b # Preprocess image transform = T.Compose([ T.ToPILImage(), T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) t_image = transform(image).unsqueeze(0) # output is a dict containing "pred_logits" of [batch_size x num_queries x (num_classes + 1)] # and "pred_boxes" of shape (center_x, center_y, height, width) normalized to be between [0, 1] output = model(t_image) # Scale the class probabilities to add up to 1 probas = output['pred_logits'].softmax(-1)[0,:,:-1] # Create outputs boxes = rescale_bboxes(output['pred_boxes'][0], (image.shape[1], image.shape[0])).detach() labels = probas.max(-1).indices conf = probas.max(-1).values.detach() ### Threshold scores conf = conf.detach() keep = conf > thresh # Filter out scores, boxes, and labels using threshold conf = conf[keep] boxes = boxes.detach()[keep] labels = labels.detach()[keep] return boxes, labels, conf
394824358138eb66b69569963b21ccc2d0f5a4d3
8,914
def comp_fill_factor(self): """Compute the fill factor of the winding""" if self.winding is None: return 0 else: (Nrad, Ntan) = self.winding.get_dim_wind() S_slot_wind = self.slot.comp_surface_wind() S_wind_act = ( self.winding.conductor.comp_surface_active() * self.winding.Ntcoil * Nrad * Ntan ) return S_wind_act / S_slot_wind
55be8ac7aa2961ad970cd16de961fdcf857016fd
8,915
def idewpt(vp): """ Calculate the dew point given the vapor pressure Args: vp - array of vapor pressure values in [Pa] Returns: dewpt - array same size as vp of the calculated dew point temperature [C] (see Dingman 2002). """ # ensure that vp is a numpy array vp = np.array(vp) # take the log and convert to kPa vp = np.log(vp/float(1000)) # calculate the vapor pressure Td = (vp + 0.4926) / (0.0708 - 0.00421*vp) return Td
68b58d7702a50472a4851e1a7ecdd6ba13fe540a
8,916
def _hexify(num): """ Converts and formats to hexadecimal """ num = "%x" % num if len(num) % 2: num = '0'+num return num.decode('hex')
71fabff1191f670ec503c76a3be916636e8045ce
8,917
def syn_ucbpe(num_workers, gp, acq_optimiser, anc_data): """ Returns a recommendation via UCB-PE in the synchronous setting. """ # Define some internal functions. beta_th = _get_ucb_beta_th(gp.input_dim, anc_data.t) # 1. An LCB for the function def _ucbpe_lcb(x): """ An LCB for GP-UCB-PE. """ mu, sigma = gp.eval(x, uncert_form='std') return mu - beta_th * sigma # 2. A modified UCB for the function using hallucinated observations def _ucbpe_2ucb(x): """ An LCB for GP-UCB-PE. """ mu, sigma = gp.eval(x, uncert_form='std') return mu + 2 * beta_th * sigma # 3. UCB-PE acquisition for the 2nd point in the batch and so on. def _ucbpe_acq(x, yt_dot, halluc_pts): """ Acquisition for GP-UCB-PE. """ _, halluc_stds = gp.eval_with_hallucinated_observations(x, halluc_pts, uncert_form='std') return (_ucbpe_2ucb(x) > yt_dot).astype(np.double) * halluc_stds # Now the algorithm yt_dot_arg = _optimise_acquisition(_ucbpe_lcb, acq_optimiser, anc_data) yt_dot = _ucbpe_lcb(yt_dot_arg.reshape((-1, gp.input_dim))) recommendations = [asy_ucb(gp, acq_optimiser, anc_data)] for _ in range(1, num_workers): curr_acq = lambda x: _ucbpe_acq(x, yt_dot, np.array(recommendations)) new_rec = _optimise_acquisition(curr_acq, acq_optimiser, anc_data) recommendations.append(new_rec) return recommendations
2c12a608c87d61f64b219aaf301189b6c8ee73a2
8,918
def get_reward(intervention, state, time): """Compute the reward based on the observed state and choosen intervention.""" A_1, A_2, A_3 = 60, 500, 60 C_1, C_2, C_3, C_4 = 25, 20, 30, 40 discount = 4.0 / 365 cost = ( A_1 * state.asymptomatic_humans + A_2 * state.symptomatic_humans + A_3 * state.mosquito_population ) cost += 0.5 * ( C_1 * intervention.updates["treated_bednet_use"] ** 2 + C_2 * intervention.updates["condom_use"] ** 2 + C_3 * intervention.updates["treatment_of_infected"] ** 2 + C_4 * intervention.updates["indoor_spray_use"] ** 2 ) return -cost * np.exp(-discount * time)
72803b1a5f09d0856d29601bc766b6787a8255e7
8,919
def array_of_floats(f): """Read an entire file of text as a list of floating-point numbers.""" words = f.read().split() return [builtin_float(x) for x in words]
8b357afb3f977761118f7df2632a4f1c198d721a
8,920
def change_currency(): """ Change user's currency """ form = CurrencyForm() if form.validate_on_submit(): currency = form.rate.data redirected = redirect(url_for('cashtrack.overview')) redirected.set_cookie('filter', currency) symbol = rates[currency]['symbol'] flash(f'Currency has been changed to {currency} ({symbol})', 'success') return redirected return rnd_tmp('currency.html', form=form, rates=rates)
08a23e47a603ee5d5e49cff0259a83f4a2ffc3e0
8,921
import subprocess def get_host_checks(): """ Returns lxc configuration checks. """ out = subprocess.check_output('lxc-checkconfig', shell=True) response = [] if out: for line in out.splitlines(): response.append(line.decode('utf-8')) info = { 'checks': response, } return jsonify(info)
d94b3b94ec6f32e2706eaf7b67f570de2fc34f14
8,922
def q2_1(df: pd.DataFrame) -> int: """ Finds # of entries in df """ return df.size[0]
d98a3d5592994e7dd3758dfab683cb96b532ce6d
8,923
def is_shell(command: str) -> bool: """Check if command is shell.""" return command.startswith(get_shell())
0cc1497dc17e1535fdfb23c1b160bfcd63141eb1
8,924
import argparse def parse_args(): """set and check parameters.""" parser = argparse.ArgumentParser(description="bert process") parser.add_argument("--pipeline_path", type=str, default="./config/fat_deepffm.pipeline", help="SDK infer pipeline") parser.add_argument("--data_dir", type=str, default="../data/input/Criteo_bin/", help="Dataset contain batch_spare batch_label batch_dense") args_opt = parser.parse_args() return args_opt
d93eca1a5c36d73944762967bf6557ee5e15d346
8,925
def board_init(): """ Initializes board with all available values 1-9 for each cell """ board = [[[i for i in range(1,n+1)] for j in range(n)] for k in range(n)] return board
e4b7192c02e298de915eb3024f32f194942a061b
8,926
def gen_int_lists(num): """ Generate num list strategies of integers """ return [ s.lists(s.integers(), max_size=100) for _ in range(num) ]
f1bd151a09f78b1eee9803ce2a077a4f01d34aaa
8,927
def is_blob(bucket: str, file:str): """ checking if it's a blob """ client = storage.Client() blob = client.get_bucket(bucket).get_blob(file) return hasattr(blob, 'exists') and callable(getattr(blob, 'exists'))
ba9bb07f1f15175a28027907634c37b402c6b292
8,928
def rotate(q, p): """ Rotation of vectors in p by quaternions in q Format: The last dimension contains the quaternion components which are ordered as (i,j,k,w), i.e. real component last. The other dimensions follow the default broadcasting rules. """ iw = 3 ii = 0 ij = 1 ik = 2 qi = q[...,ii] qj = q[...,ij] qk = q[...,ik] qw = q[...,iw] pi = p[...,ii] pj = p[...,ij] pk = p[...,ik] # FIXME: This part does not export to the onnx model, i.e. the shape # of the tensors will be hardcoded according to the input during # the export. Not a problem though. shape = tuple(np.maximum(pi.shape, qi.shape)) tmp = q.new_empty(shape + (4,)) out = q.new_empty(shape + (3,)) # Compute tmp = q*p, identifying p with a purly imaginary quaternion. tmp[...,iw] = - qi*pi - qj*pj - qk*pk tmp[...,ii] = qw*pi + qj*pk - qk*pj tmp[...,ij] = qw*pj - qi*pk + qk*pi tmp[...,ik] = qw*pk + qi*pj - qj*pi # Compute tmp*q^-1. out[...,ii] = -tmp[...,iw]*qi + tmp[...,ii]*qw - tmp[...,ij]*qk + tmp[...,ik]*qj out[...,ij] = -tmp[...,iw]*qj + tmp[...,ii]*qk + tmp[...,ij]*qw - tmp[...,ik]*qi out[...,ik] = -tmp[...,iw]*qk - tmp[...,ii]*qj + tmp[...,ij]*qi + tmp[...,ik]*qw return out
da8c715276d5bef0340ad3378aa127c9ddb75f96
8,929
from typing import Union def _is_whitelisted(name: str, doc_obj: Union['Module', 'Class']): """ Returns `True` if `name` (relative or absolute refname) is contained in some module's __pdoc__ with a truish value. """ refname = doc_obj.refname + '.' + name module = doc_obj.module while module: qualname = refname[len(module.refname) + 1:] if module.__pdoc__.get(qualname) or module.__pdoc__.get(refname): return True module = module.supermodule return False
c54c69ae0180c1764c8885d00e96640f1bfff0f8
8,930
import copy def permute_bond_indices(atomtype_vector): """ Permutes the set of bond indices of a molecule according to the complete set of valid molecular permutation cycles atomtype_vector: array-like A vector of the number of each atoms, the length is the total number of atoms. An A3B8C system would be [3, 8, 1] Returns many sets permuted bond indices, the number of which equal to the number of cycles """ natoms = sum(atomtype_vector) bond_indices = generate_bond_indices(natoms) cycles_by_atom = molecular_cycles(atomtype_vector) bond_indice_permutations = [] # interatomic distance matrix permutations for atom in cycles_by_atom: for cycle in atom: tmp_bond_indices = copy.deepcopy(bond_indices) # need a deep copy, list of lists for subcycle in cycle: for i, bond in enumerate(tmp_bond_indices): tmp_bond_indices[i] = permute_bond(bond, subcycle) bond_indice_permutations.append(tmp_bond_indices) return bond_indice_permutations
ebf398e55d8a80a2e4ce2cef4f48d957e47d68a3
8,931
def get_cell_integer_param(device_resources, cell_data, name, force_format=None): """ Retrieves definition and decodes value of an integer cell parameter. The function can optionally force a specific encoding format if needed. """ # Get the parameter definition to determine its type param = device_resources.get_parameter_definition(cell_data.cell_type, name) # Force the format if requested by substituting the paraameter # definition object. if not param.is_integer_like() and force_format is not None: if force_format != param.string_format: param = ParameterDefinition( name=name, string_format=force_format, default_value=cell_data.attributes[name]) # Decode return param.decode_integer(cell_data.attributes[name])
6ab281004f324e8c40e176d5676cd7e42f50eaa9
8,932
import hashlib def get_md5(filename): """ Calculates the MD5 sum of the passed file Args: filename (str): File to hash Returns: str: MD5 hash of file """ # Size of buffer in bytes BUF_SIZE = 65536 md5 = hashlib.md5() # Read the file in 64 kB blocks with open(filename, "rb") as f: while True: data = f.read(BUF_SIZE) if not data: break md5.update(data) return md5.hexdigest()
c43538aee954f670c671c2e26e18f4a17e298455
8,933
import os def get_py_path(pem_path): """Returns the .py filepath used to generate the given .pem path, which may or may not exist. Some test files (notably those in verify_certificate_chain_unittest/ have a "generate-XXX.py" script that builds the "XXX.pem" file. Build the path to the corresponding "generate-XXX.py" (which may or may not exist).""" file_name = os.path.basename(pem_path) file_name_no_extension = os.path.splitext(file_name)[0] py_file_name = 'generate-' + file_name_no_extension + '.py' return os.path.join(os.path.dirname(pem_path), py_file_name)
0bc97d23138c44e051282fdfa22517f1289ab65a
8,934
def is_recurrent(sequence): """ Returns true if the given sequence is recurrent (elements can exist more than once), otherwise returns false. Example --------- >>> sequence = [1,2,3,4,5] >>> ps.is_recurrent(sequence) False >>> sequence = [1,1,2,2,3] >>> ps.is_recurrent(sequence) True """ element_counts = get_element_counts(sequence) truths = [count > 1 for element, count in element_counts.items()] if True in truths: return True return False
e123ddd960b262651b20e54ccbd3d5b11fe3695e
8,935
import torch def flex_stack(items, dim=0): """ """ if len(items) < 1: raise ValueError("items is empty") if len(set([type(item) for item in items])) != 1: raise TypeError("items are not of the same type") if isinstance(items[0], list): return items elif isinstance(items[0], torch.Tensor): return torch.stack(items, dim=0) elif isinstance(items[0], np.ndarray): return np.stack(items, axis=0) else: raise TypeError(f"Unrecognized type f{type(items[0])}")
47ca0e47647ce86619f1cdc86eef560fbbb9304e
8,936
from pathlib import Path def download_image_data(gpx_file, padding, square, min_lat, min_long, max_lat, max_long, cache_dir): """ Download satellite imagery from USGS Args: gpx_file: (str) A file containing one of more tracks to use to determine the area of terrain to model padding: (float) Padding to add around the GPX track, in miles min_lat (float) Southern boundary of the region to model min_long (float) Eastern boundary of the region to model max_lat (float) Northern boundary of the region to model max_long (float) Western boundary of the region to model cache_dir (str) Directory to download the files to """ log = GetLogger() # Determine the bounds of the output if gpx_file: log.info("Parsing GPX file") gpx = GPXFile(gpx_file) try: min_lat, min_long, max_lat, max_long = gpx.GetBounds(padding, square) except ApplicationError as ex: log.error(ex) return False if None in (min_lat, min_long, max_lat, max_long): raise InvalidArgumentError("You must specify an area to download") log.info(f"Requested boundaries top(max_lat)={max_lat} left(min_long)={min_long} bottom(min_lat)={min_lat} right(max_long)={max_long}") # Get the image data cache_dir = Path(cache_dir) image_filename = Path(get_cropped_image_filename(max_lat, min_long, min_lat, max_long)) try: get_image_data(image_filename, min_lat, min_long, max_lat, max_long, cache_dir) except ApplicationError as ex: log.error(ex) return False log.passed("Successfully downloaded images") return True
4ceef45da21622ab716031e8f68ed4724e168062
8,937
def find_nearest_values(array, value): """Find indexes of the two nearest values of an array to a given value Parameters ---------- array (numpy.ndarray) : array value (float) : value Returns ------- idx1 (int) : index of nearest value in the array idx2 (int) : index of second nearest value in the array """ # index of nearest value in the array idx1 = (np.abs(array-value)).argmin() # check if value is bigger or smaller than nearest value if array[idx1] >= value: idx2 = idx1 - 1 else: idx2 = idx1 + 1 return idx1, idx2
9c873692878ef3e4de8762bb89306e7ef907f90a
8,938
def channel_info(channel_id): """ Get Slack channel info """ channel_info = slack_client.api_call("channels.info", channel=channel_id) if channel_info: return channel_info['channel'] return None
260eeaa2849350e2ede331ddecd68aead798f76c
8,939
from typing import Callable from typing import Any import logging def log(message: str) -> Callable: """Returns a decorator to log info a message before function call. Parameters ---------- message : str message to log before function call """ def decorator(function: Callable) -> Callable: @wraps(function) def wrapper(*args: Any, **kwargs: Any) -> None: logging.info(message) return function(*args, **kwargs) return wrapper return decorator
c8ed8f8119be8d6e80935d73034f752ad2cb1dd9
8,940
def client(identity: PrivateIdentity) -> Client: """Client for easy access to iov42 platform.""" return Client(PLATFORM_URL, identity)
a0ad172765b50a76485bd3ec630a2c3ffeae85ef
8,941
def init_weights(module, init='orthogonal'): """Initialize all the weights and biases of a model. :param module: any nn.Module or nn.Sequential :param init: type of initialize, see dict below. :returns: same module with initialized weights :rtype: type(module) """ if init is None: # Base case, no change to default. return module init_dict = { 'xavier_uniform': nn.init.xavier_uniform_, 'xavier_normal': nn.init.xavier_normal_, 'orthogonal': nn.init.orthogonal_, 'kaiming_normal': nn.init.kaiming_normal_, 'kaiming_uniform': nn.init.kaiming_uniform_, } for m in module.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): # print("initializing {} with {} init.".format(m, init)) init_dict[init](m.weight) if hasattr(m, 'bias') and m.bias is not None: # print("initial bias from ", m, " with zeros") nn.init.constant_(m.bias, 0.0) elif isinstance(m, (nn.Sequential, nn.ModuleList, nn.ModuleDict)): for mod in m: init_weights(mod, init) return module
e8cd95743b8a36dffdb53c7f7b9723e896d2071d
8,942
def getsoundchanges(reflex, root): # requires two ipastrings as input """ Takes a modern-day L1 word and its reconstructed form and returns \ a table of sound changes. :param reflex: a modern-day L1-word :type reflex: str :param root: a reconstructed proto-L1 word :type root: str :return: table of sound changes :rtype: pandas.core.frame.DataFrame :Example: >>> from loanpy import reconstructor as rc >>> rc.getsoundchanges("ɟɒloɡ", "jɑlkɑ") +---+--------+------+ | # | reflex | root | +---+--------+------+ | 0 | #0 | 0 | +---+--------+------+ | 1 | #ɟ | j | +---+--------+------+ | 2 | ɒ | ɑ | +---+--------+------+ | 3 | l | lk | +---+--------+------+ | 4 | o | ɑ | +---+--------+------+ | 5 | ɡ# | 0 | +---+--------+------+ """ reflex = ipa2clusters(reflex) root = ipa2clusters(root) reflex[0], reflex[-1] = "#" + reflex[0], reflex[-1] + "#" reflex, root = ["#0"] + reflex, ["0"] + root if reflex[1][1:] in vow and root[1] in cns: root = root[1:] elif reflex[1][1:] in cns and root[1] in vow: reflex = reflex[1:] diff = abs(len(root) - len(reflex)) # "a,b","c,d,e,f,g->"a,b,000","c,d,efg if len(reflex) < len(root): reflex += ["0#"] root = root[:-diff] + ["".join(root[-diff:])] elif len(reflex) > len(root): root += ["0"] reflex = reflex[:-diff] + ["".join(reflex[-diff:])] else: reflex, root = reflex + ["0#"], root + ["0"] return pd.DataFrame({"reflex": reflex, "root": root})
8230e836e109ed8453c6fdbc72e6a4f77833f69b
8,943
def compute_normals(filename, datatype='cell'): """ Given a file, this method computes the surface normals of the mesh stored in the file. It allows to compute the normals of the cells or of the points. The normal computed in a point is the interpolation of the cell normals of the cells adiacent to the point. :param str filename: the name of the file to parse in order to extract the geometry information. :param str datatype: indicate if the normals have to be computed for the points or the cells. The allowed values are: 'cell', 'point'. Default value is 'cell'. :return: the array that contains the normals. :rtype: numpy.ndarray """ points, cells = FileHandler(filename).get_geometry(get_cells=True) normals = np.array( [normalize(normal(*points[cell][0:3])) for cell in cells]) if datatype == 'point': normals_cell = np.empty((points.shape[0], 3)) for i_point in np.arange(points.shape[0]): cell_adiacent = [cells.index(c) for c in cells if i_point in c] normals_cell[i_point] = normalize( np.mean(normals[cell_adiacent], axis=0)) normals = normals_cell return normals
e0cfc90a299f6db52d9cec2f39eebfc96158265c
8,944
from typing import List from typing import Optional def build_layers_url( layers: List[str], *, size: Optional[LayerImageSize] = None ) -> str: """Convenience method to make the server-side-rendering URL of the provided layer URLs. Parameters ----------- layers: List[:class:`str`] The image urls, in ascending order of Zone ID's size: Optional[:class:`LayerImageSize`] The desired size for the render. If one is not supplied, it defaults to `LayerImageSize.SIZE_600`. """ size_str = str(size or LayerImageSize.SIZE_600)[-3:] joined = ",".join(quote(layer) for layer in layers) return f"https://impress-2020.openneo.net/api/outfitImage?size={size_str}&layerUrls={joined}"
2cc7ab58af2744a4c898903d9a035c77accbae2e
8,945
def SyncBatchNorm(*args, **kwargs): """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead""" if paddle.get_device() == 'cpu': return nn.BatchNorm2D(*args, **kwargs) else: return nn.SyncBatchNorm(*args, **kwargs)
f08a7141700b36286893bbbc82b28686d1ca88a9
8,946
def data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_capacity_bandwidth_profile_peak_burst_size_get(uuid, local_id): # noqa: E501 """data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_capacity_bandwidth_profile_peak_burst_size_get returns tapi.common.CapacityValue # noqa: E501 :param uuid: Id of connectivity-service :type uuid: str :param local_id: Id of end-point :type local_id: str :rtype: TapiCommonCapacityValue """ return 'do some magic!'
340189bc76bdbbc14666fe542aa05d467c7d4898
8,947
import re def parse_path_length(path): """ parse path length """ matched_tmp = re.findall(r"(S\d+)", path) return len(matched_tmp)
762e2b86fe59689800ed33aba0419f83b261305b
8,948
def check_permisions(request, allowed_groups): """ Return permissions.""" try: profile = request.user.id print('User', profile, allowed_groups) is_allowed = True except Exception: return False else: return is_allowed
4bdb54bd1edafd7a0cf6f50196d470e0d3425c66
8,949
def kanji2digit(s): """ 1から99までの漢数字をアラビア数字に変換する """ k2d = lambda m, i: _kanjitable[m.group(i)] s = _re_kanjijiu1.sub(lambda m: k2d(m,1) + k2d(m,2), s) s = _re_kanjijiu2.sub(lambda m: u'1' + k2d(m,1), s) s = _re_kanji.sub(lambda m: k2d(m,1), s) s = s.replace(u'十', u'10') return s
27589cee8a9b4f14ad7120061f05077b736b8632
8,950
def calc_rdm_segment(t, c, segment_id_beg, segment_id_end, segment_id, ph_index_beg, segment_ph_cnt, debug=0): """ Function to calculate radiometry (rdm) Input: t - time or delta_time of ATL03, for a given gt num c - classification of ATL03 for a given gt num ensure that no nans exist segment_id_beg - segment_id_beg from ATL08 segment_id_end - segment_id_end from ATL08 segment_id - segment_id from ATL03 geolocation/ ph_index_beg - ph_index_beg from ATL03 geolocation/ segment_ph_cnt - segment_ph_cnt from ATL03 geolocation/ debug - val != 0 enables print statements if segments do not match from 03 to 08 (see caveats) Output: n_shots_unique - total number of unique ttg per ATL08 100m bin rdm_ground - rdm of ground photons (c==1) rdm_veg - rdm of veg photons (c==2) rdm_canopy - rdm of canopy photons (c==3) Example: n_shots_unique, rdm_ground, rdm_veg, rdm_canopy = \ calc_rdm(t, c, segment_id_beg, segment_id_end, ph_index_beg, segment_ph_cnt, debug=0) Caveats: Ensure that no nans exist in classification c rdm_ground/veg/canopy and n_shots_unique are floating point b/c it's possible to have no overlap in 03 and 08 data, in which case the radiometry value is NaN; this is implemented by initializing rdm vectors are NaN. Thus, they are floating-point- valued. This functions can handle when 03/08 do not totally overlap, or when there is no overlap. That said, one should proceed with caution knowing 03 and 08 do not overlap at all. NaN values are initialized in rdm vectors based on these cases. """ if np.isnan(c).sum() > 0 and debug: print('warning: NaN values found in c') rdm_ground = np.full(segment_id_beg.shape, np.nan) rdm_veg = np.full(segment_id_beg.shape, np.nan) rdm_canopy = np.full(segment_id_beg.shape, np.nan) n_shots_unique = np.full(segment_id_beg.shape, np.nan) n_id = len(segment_id) for s in range(len(segment_id_beg)): # _, k0 = iu.getClosest(segment_id, [segment_id_beg[s]]) # _, k1 = iu.getClosest(segment_id, [segment_id_end[s]]) _, k0 = getClosest(segment_id, [segment_id_beg[s]]) _, k1 = getClosest(segment_id, [segment_id_end[s]]) k0, k1 = int(k0), int(k1) warn = False b_edge = False if segment_id[k0] < segment_id_beg[s]: # left side incomplete # cm.pause('beg') k = k0 while segment_id[k] < segment_id_beg[s]: k += 1 if k >= n_id: b_edge = True break elif segment_id[k0] > segment_id_beg[s]: # print('warning: 03 seg id beg %d > 08 seg id beg %d' % (segment_id[k0], segment_id_beg[s])) warn = True # else: # equal, totally fine # if segment_id[k1] != segment_id_end[s]: if segment_id[k1] > segment_id_end[s]: # right side incomplete # cm.pause('end') k = k1 while segment_id[k] > segment_id_end[s]: k -= 1 if k < 0: b_edge = True break elif segment_id[k1] < segment_id_end[s]: # print('warning: 03 seg id beg %d < 08 seg id beg %d' % (segment_id[k0], segment_id_beg[s])) warn = True # else: # equal, totally fine if b_edge and debug: # 08 segment is entirely outside of 03 segment data print('outside') print('03: [%d, %d]' % (segment_id[k0], segment_id[k1])) print('08: [%d, %d]' % (segment_id_beg[s], segment_id_end[s])) # cm.pause() input('enter to continue') continue if warn and debug: print('partial') print('03: [%d, %d]' % (segment_id[k0], segment_id[k1])) print('08: [%d, %d]' % (segment_id_beg[s], segment_id_end[s])) # cm.pause() input('enter to continue') i0, i1 = ph_index_beg[k0], ph_index_beg[k1] + segment_ph_cnt[k1] - 1 t_seg = t[i0:i1+1] # inclusive index c_seg = c[i0:i1+1] n_shots_total_uq = len(np.unique(t_seg)) n_shots_ground = (c_seg == 1).sum() n_shots_veg = (c_seg == 2).sum() n_shots_canopy = (c_seg == 3).sum() n_shots_unique[s] = n_shots_total_uq rdm_ground[s] = float(n_shots_ground / n_shots_total_uq) rdm_veg[s] = float(n_shots_veg / n_shots_total_uq) rdm_canopy[s] = float(n_shots_canopy / n_shots_total_uq) return n_shots_unique, rdm_ground, rdm_veg, rdm_canopy
47ac61f816a5f8e9c3f86c5b1e8ad2f9f660f8a2
8,951
def load_featurizer(pretrained_local_path): """Load pretrained model.""" return CNN_tf("vgg", pretrained_local_path)
1f39acdae01e484302d8f8051c2f55a178aa2301
8,952
import os import zipfile def create_zipfile(dir_to_zip, savepath=''): """Create a zip file from all the files under 'dir_to_zip'. The output zip file will be saved to savepath. If savepath ends with '.zip', then the output zip file will be saved AS 'savepath'. Necessary tree subdirectories are created automatically. Else, savepath is assumed to be a directory path, hence the output zip file will be saved TO 'savepath' directory. Necessary tree subdirectories are created automatically. :return absolute savepath """ save_cwd = os.getcwd() dir_to_zip = os.path.abspath(dir_to_zip) if dir_to_zip in os.path.split(savepath)[0]: raise ValueError( 'To avoid recursion), resultant "savepath" should not be located inside "dir_to_zip"', dict(dir_to_zip=dir_to_zip, savepath=savepath)) parent_dir, dir_name = os.path.split(dir_to_zip) os.chdir(parent_dir) if savepath: if savepath.endswith('.zip'): create_path(savepath, stop_depth=1) else: create_path(savepath, stop_depth=0) savepath = os.path.join(savepath, dir_name + '.zip') else: savepath = dir_to_zip + '.zip' pwd_length = len(os.getcwd()) with zipfile.ZipFile(savepath, "w", compression=zipfile.ZIP_DEFLATED) as zf: for dirpath, dirnames, filenames in os.walk(dir_to_zip): for name in sorted(dirnames): path = os.path.normpath(os.path.join(dirpath, name)) zf.write(path, path[pwd_length + 1:]) for name in filenames: path = os.path.normpath(os.path.join(dirpath, name)) if os.path.isfile(path): zf.write(path, path[pwd_length + 1:]) os.chdir(save_cwd) return os.path.abspath(savepath)
dd18a1272a25c3fb272345fc8b71a303c6cc4053
8,953
from templateflow.conf import setup_home def make_cmdclass(basecmd): """Decorate setuptools commands.""" base_run = basecmd.run def new_run(self): setup_home() base_run(self) basecmd.run = new_run return basecmd
dc66370f19e2d1b3dbc2da3942f8923a07d8d9a6
8,954
def rmse(predictions, targets): """Compute root mean squared error""" rmse = np.sqrt(((predictions - targets) ** 2).mean()) return rmse
1a5fe824c5ef768f3df34463724fdd057d37901a
8,955
import math def format_timedelta(value, time_format=None): """ formats a datetime.timedelta with the given format. Code copied from Django as explained in http://stackoverflow.com/a/30339105/932593 """ if time_format is None: time_format = "{days} days, {hours2}:{minutes2}:{seconds2}" if hasattr(value, 'seconds'): seconds = value.seconds + value.days * 24 * 3600 else: seconds = int(value) seconds_total = seconds minutes = int(math.floor(seconds / 60)) minutes_total = minutes seconds -= minutes * 60 hours = int(math.floor(minutes / 60)) hours_total = hours minutes -= hours * 60 days = int(math.floor(hours / 24)) days_total = days hours -= days * 24 years = int(math.floor(days / 365)) years_total = years days -= years * 365 return time_format.format(**{ 'seconds': seconds, 'seconds2': str(seconds).zfill(2), 'minutes': minutes, 'minutes2': str(minutes).zfill(2), 'hours': hours, 'hours2': str(hours).zfill(2), 'days': days, 'years': years, 'seconds_total': seconds_total, 'minutes_total': minutes_total, 'hours_total': hours_total, 'days_total': days_total, 'years_total': years_total, })
0ee6a48e0eee5e553e665d44173f0a4843b4007f
8,956
def categorical_log_likelihood(probs: chex.Array, labels: chex.Array): """Computes joint log likelihood based on probs and labels.""" num_data, unused_num_classes = probs.shape assert len(labels) == num_data assigned_probs = probs[jnp.arange(num_data), jnp.squeeze(labels)] return jnp.sum(jnp.log(assigned_probs))
6209fc59dc6a76f8afc49788b9e5c5a11f58354f
8,957
def ask_name(question: str = "What is your name?") -> str: """Ask for the users name.""" return input(question)
1cc9ec4d3bc48d7ae4be1b2cf8eb64a0b4f94b23
8,958
from typing import Sequence def _maxcut(g: Graph, values: Sequence[int]) -> float: """ cut by given values $$\pm 1$$ on each vertex as a list :param g: :param values: :return: """ cost = 0 for e in g.edges: cost += g[e[0]][e[1]].get("weight", 1.0) / 2 * (1 - values[e[0]] * values[e[1]]) return cost
1ca8d2cfce6a741fb4eab55f7fcd9d9db5e3578f
8,959
def cp_als(X, rank, random_state=None, init='randn', **options): """Fits CP Decomposition using Alternating Least Squares (ALS). Parameters ---------- X : (I_1, ..., I_N) array_like A tensor with ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. random_state : integer, ``RandomState``, or ``None``, optional (default ``None``) If integer, sets the seed of the random number generator; If RandomState instance, random_state is the random number generator; If None, use the RandomState instance used by ``numpy.random``. init : str, or KTensor, optional (default ``'randn'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- Alternating Least Squares (ALS) is a very old and reliable method for fitting CP decompositions. This is likely a good first algorithm to try. References ---------- Kolda, T. G. & Bader, B. W. "Tensor Decompositions and Applications." SIAM Rev. 51 (2009): 455-500 http://epubs.siam.org/doi/pdf/10.1137/07070111X Comon, Pierre & Xavier Luciani & Andre De Almeida. "Tensor decompositions, alternating least squares and other tales." Journal of chemometrics 23 (2009): 393-405. http://onlinelibrary.wiley.com/doi/10.1002/cem.1236/abstract Examples -------- ``` import tensortools as tt I, J, K, R = 20, 20, 20, 4 X = tt.randn_tensor(I, J, K, rank=R) tt.cp_als(X, rank=R) ``` """ # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'CP_ALS', **options) # Main optimization loop. while result.still_optimizing: # Iterate over each tensor mode. for n in range(X.ndim): # i) Normalize factors to prevent singularities. U.rebalance() # ii) Compute the N-1 gram matrices. components = [U[j] for j in range(X.ndim) if j != n] grams = sci.multiply.reduce([sci.dot(u.T, u) for u in components]) # iii) Compute Khatri-Rao product. kr = khatri_rao(components) # iv) Form normal equations and solve via Cholesky c = linalg.cho_factor(grams, overwrite_a=False) p = unfold(X, n).dot(kr) U[n] = linalg.cho_solve(c, p.T, overwrite_b=False).T # U[n] = linalg.solve(grams, unfold(X, n).dot(kr).T).T # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[-1].T.dot(U[-1]) # obj = np.sqrt(np.sum(grams) - 2*sci.sum(p*U[-1]) + normX**2) / normX obj = linalg.norm(U.full() - X) / normX # Update result result.update(obj) # Finalize and return the optimization result. return result.finalize()
b6402f03ba4e8be7d0abb2b13232d88b07a73be9
8,960
import os def load_station_enu( station_name, start_date=None, end_date=None, download_if_missing=True, force_download=False, zero_by="mean", to_cm=True, ): """Loads one gps station's ENU data since start_date until end_date as a dataframe Args: station_name (str): 4 Letter name of GPS station See http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html for map start_date (datetime or str): Optional. cutoff for beginning of GPS data end_date (datetime or str): Optional. cut off for end of GPS data download_if_missing (bool): default True force_download (bool): default False """ # start_date, end_date = _parse_dates(start_date, end_date) if zero_by not in ("start", "mean"): raise ValueError("'zero_by' must be either 'start' or 'mean'") station_name = station_name.upper() gps_data_file = os.path.join(GPS_DIR, GPS_FILE.format(station=station_name)) if force_download: try: os.remove(gps_data_file) logger.info(f"force removed {gps_data_file}") except FileNotFoundError: pass if not os.path.exists(gps_data_file): if download_if_missing: logger.info(f"Downloading {station_name} to {gps_data_file}") download_station_data(station_name) else: raise ValueError( "{gps_data_file} does not exist, download_if_missing = False" ) df = pd.read_csv(gps_data_file, header=0, sep=r"\s+", engine="c") clean_df = _clean_gps_df(df, start_date, end_date) if to_cm: # logger.info("Converting %s GPS to cm" % station_name) clean_df[["east", "north", "up"]] = 100 * clean_df[["east", "north", "up"]] if zero_by.lower() == "mean": mean_val = clean_df[["east", "north", "up"]].mean() # enu_zeroed = clean_df[["east", "north", "up"]] - mean_val clean_df[["east", "north", "up"]] -= mean_val elif zero_by.lower() == "start": start_val = clean_df[["east", "north", "up"]].iloc[:10].mean() # enu_zeroed = clean_df[["east", "north", "up"]] - start_val clean_df[["east", "north", "up"]] -= start_val # Finally, make the 'date' column a DateIndex return clean_df.set_index("date")
208b6b6776ad3eb0ef765a5b56d287e7ed06e63f
8,961
def decode_hint(hint: int) -> str: """Decodes integer hint as a string. The format is: ⬜ (GRAY) -> . 🟨 (YELLOW) -> ? 🟩 (GREEN) -> * Args: hint: An integer representing the hint. Returns: A string representing the hint. """ hint_str = [] for _ in range(_WORD_LENGTH): hint_chr = hint % 3 hint //= 3 if hint_chr == 0: hint_str.append(_HINT_NOT_IN_ANY_SPOT) elif hint_chr == 1: hint_str.append(_HINT_WRONG_SPOT) else: hint_str.append(_HINT_CORRECT_SPOT) return ''.join(hint_str[::-1])
4180b847cd252a1e3c762431327b1b6d359dac3d
8,962
import os import tempfile import subprocess def validate_notebook(nb_path, timeout=60): """ Executes the notebook via nbconvert and collects the output Args: nb_path (string): path to the notebook of interest timeout (int): max allowed time (in seconds) Returns: (parsed nbformat.NotebookNode object, list of execution errors) """ dirname, __ = os.path.split(nb_path) os.chdir(dirname) kname = find_kernel(nb_path) if kname is None: raise OSError("No kernel found") # Set delete=False as workaround for Windows OS with tempfile.NamedTemporaryFile(suffix=".ipynb", delete=False) as tf: args = [ "jupyter", "nbconvert", "--to", "notebook", "--execute", f"--ExecutePreprocessor.timeout={timeout}", f"--ExecutePreprocessor.kernel_name={kname}", "--ExecutePreprocessor.allow_errors=True", "--output", tf.name, nb_path, ] subprocess.check_call(args) tf.seek(0) nb = nbformat.read(tf, nbformat.current_nbformat) errors = list_errors(nb) # broken urls are currently counted as errors; consider including as # warnings broken_urls = find_broken_urls(nb) if any(broken_urls): broken_urls = ["broken url: " + u for u in broken_urls] errors += broken_urls return nb, errors
475a11036a5330df8f82d9876731d3d688749aa8
8,963
def is_symmetric(arr, i_sym=True, j_sym=True): """ Takes in an array of shape (n, m) and check if it is symmetric Parameters ---------- arr : 1D or 2D array i_sym : array symmetric with respect to the 1st axis j_sym : array symmetric with respect to the 2nd axis Returns ------- a binary array with the symmetry condition for the corresponding quadrants. The globa Notes ----- If both **i_sym** = ``True`` and **j_sym** = ``True``, the input array is checked for polar symmetry. See `issue #34 comment <https://github.com/PyAbel/PyAbel/issues/34#issuecomment-160344809>`_ for the defintion of a center of the image. """ Q0, Q1, Q2, Q3 = tools.symmetry.get_image_quadrants( arr, reorient=False) if i_sym and not j_sym: valid_flag = [np.allclose(np.fliplr(Q1), Q0), np.allclose(np.fliplr(Q2), Q3)] elif not i_sym and j_sym: valid_flag = [np.allclose(np.flipud(Q1), Q2), np.allclose(np.flipud(Q0), Q3)] elif i_sym and j_sym: valid_flag = [np.allclose(np.flipud(np.fliplr(Q1)), Q3), np.allclose(np.flipud(np.fliplr(Q0)), Q2)] else: raise ValueError('Checking for symmetry with both i_sym=False \ and j_sym=False does not make sense!') return np.array(valid_flag)
488744d34d851b690eb6114b06d754e46b04e36f
8,964
def linear_powspec(k, a): """linear power spectrum P(k) - linear_powspec(k in h/Mpc, scale factor)""" return _cosmocalc.linear_powspec(k, a)
9abe99ef5251b4b8ef04e7113a30dd26ed86d14a
8,965
def light_eff(Pmax, Iz, I0, Ik): """ Photosynthetic efficiency based on the light conditions. By definition, the efficiency has a value between 0 and 1. Parameters ---------- Pmax : numeric Maximum photosynthetic rate [-]. Iz : numeric Coral biomass-averaged light-intensity [mol photons m^-2 s^-1]. I0 : numeric Light-intensity at the surface water (but within the water column) [mol photons m^-2 s^-1]. Ik : numeric Saturation light-intensity [mol photons m^-2 s^-1]. Returns ------- PI : numeric Photo-efficiency [-]. """ # # calculations try: if Ik > 0: PI = Pmax * (np.tanh(Iz / Ik) - np.tanh(.01 * I0 / Ik)) else: PI = 0. except ValueError: PI = np.zeros(len(Ik)) PI[Ik > 0] = Pmax[Ik > 0] * (np.tanh(Iz[Ik > 0] / Ik[Ik > 0]) - np.tanh(.01 * I0 / Ik[Ik > 0])) # # Output return PI
a2e0de2cb0791d3afea15f4c78b7d673200504b3
8,966
import array import time def radial_kernel_evaluate(rmax, kernel, pos, wts, log=null_log, sort_data=False, many_ngb_approx=None): """ Perform evaluation of radial kernel over neighbours. Note you must set-up the linear-interpolation kernel before calling this function. rmax - radius to evaluate within kernel - kernel table pos - (N,3) array of positions wts - (N,) array of weights [many_ngb_approx - guess for number of neighbours. If this is included and large, i.e. >140, we will use combine the kernels due to particles in non-adjacent cells (=monopole approximation for the 1/r^2 force)] returns pairs, f where pairs - the number of pairs within rmax f - An (N,3) array s.t. f_i = Sum_j wts_j (pos_j - pos_i) * kernel(|pos_j - pos_i|) """ pos_arr = array(pos) num_pts = len(pos) if len(pos) != len(wts): raise Exception('Number of weights ({:,}) must be the same as number of points ({:,})'.format(len(wts),num_pts)) stencil = None # Choose a stencil based on number of neighbours if many_ngb_approx is not None: guess_ngb = int(many_ngb_approx) if guess_ngb>400: # 7x7x7 stencil (only inner 3x3x3 direct) stencil = 7 ngrid = int(3.0/rmax) elif guess_ngb>140: # 5x5x5 stencil (inner 3x3x3 direct) stencil = 5 ngrid = int(2.0/rmax) else: # 3x3x3, all direct ngrid = int(1.0/rmax) else: ngrid = int(1.0/rmax) # 3x3x3 by direct summation # Avoid nasty hashing problems, make sure ngrid&3 == 3 if ngrid&3!=3 and ngrid >=3: ngrid = (ngrid//4)*4 -1 print('Using hash grid of size {:,}^3 bins, binning particles.'.format(ngrid), file=log) cells = get_cells(pos_arr, ngrid, log) sort_idx, cellbin_data = _bin_id_data(cells, log) pos = pos_arr[sort_idx].copy() wts= array(wts)[sort_idx].copy() print(MU.OKBLUE+'Kernel evalations at {:,} positions'.format(num_pts)+MU.ENDC, file=log) t0 = time() lattice_setup_kernel(rmax, kernel, log) pairs, accel = lattice_kernel(pos, cellbin_data, ngrid, masses=wts, stencil=stencil) t1 = time() dt = t1-t0 if stencil is None: mean_num_ngb = pairs * 2.0 / num_pts print('Within r=%.4f, mean number of neighbours was'%rmax, MU.OKBLUE+'%.2f'%(mean_num_ngb)+MU.ENDC, file=log) print('{:,} pairs in'.format(pairs), '%.2f seconds'%dt, 'i.e. {:,} positions/sec, {:,} kernels/sec'.format(int(num_pts/dt), int(2*pairs/dt)), file=log) else: print('%dx%dx%d monopole approximation, so no exact count for neighbours\n'%((stencil,)*3), 'but {:,} force-pairs in'.format(pairs), '%.2f seconds'%dt, 'i.e. {:,} positions/sec, {:,} kernels/sec'.format(int(num_pts/dt), int(2*pairs/dt)), file=log) if sort_data: # return the sort index along with sorted positions and masses, and corresponding accelerations. # If you want to unsort you need to do it yourself return pairs, sort_idx, pos, wts, accel # indices for 'un'-sorting unsort = empty_like(sort_idx) unsort[sort_idx] = arange(num_pts) return pairs, accel[unsort]
41c4600be3a5684c97d69acb4ebe15846dcc4b0d
8,967
def get_referents(source, exclude=None): """ :return: dict storing lists of objects referring to source keyed by type. """ res = {} for obj_cls, ref_cls in [ (models.Language, models.LanguageSource), (models.ValueSet, models.ValueSetReference), (models.Sentence, models.SentenceReference), (models.Contribution, models.ContributionReference), ]: if obj_cls.mapper_name().lower() in (exclude or []): continue q = DBSession.query(obj_cls).join(ref_cls).filter(ref_cls.source_pk == source.pk) if obj_cls == models.ValueSet: q = q.options( joinedload_all(models.ValueSet.parameter), joinedload_all(models.ValueSet.language)) res[obj_cls.mapper_name().lower()] = q.all() return res
2aeccbbe61cdcb2b3183682a5cce8ed959fc14c9
8,968
import array def asarray(buffer=None, itemsize=None, shape=None, byteoffset=0, bytestride=None, padc=" ", kind=CharArray): """massages a sequence into a chararray. If buffer is *already* a chararray of the appropriate kind, it is returned unaltered. """ if isinstance(buffer, kind) and buffer.__class__ is kind: return buffer else: return array(buffer, itemsize, shape, byteoffset, bytestride, padc, kind)
346eaaa9ece9671f5b2fa0633552f72e40300adc
8,969
import zipfile import os import sys def _extract_symlink(zipinfo: zipfile.ZipInfo, pathto: str, zipfile: zipfile.ZipFile, nofixlinks: bool=False) -> str: """ Extract: read the link path string, and make a new symlink. 'zipinfo' is the link file's ZipInfo object stored in zipfile. 'pathto' is the extract's destination folder (relative or absolute) 'zipfile' is the ZipFile object, which reads and parses the zip file. """ assert zipinfo.external_attr >> 28 == SYMLINK_TYPE zippath = zipinfo.filename linkpath = zipfile.read(zippath) linkpath = linkpath.decode('utf8') # drop Win drive + unc, leading slashes, '.' and '..' zippath = os.path.splitdrive(zippath)[1] zippath = zippath.lstrip(os.sep) allparts = zippath.split(os.sep) okparts = [p for p in allparts if p not in ('.', '..')] zippath = os.sep.join(okparts) # where to store link now destpath = os.path.join(pathto, zippath) destpath = os.path.normpath(destpath) # make leading dirs if needed upperdirs = os.path.dirname(destpath) if upperdirs and not os.path.exists(upperdirs): os.makedirs(upperdirs) # adjust link separators for the local platform if not nofixlinks: linkpath = linkpath.replace('/', os.sep).replace('\\', os.sep) # test+remove link, not target if os.path.lexists(destpath): os.remove(destpath) # windows dir-link arg isdir = zipinfo.external_attr & SYMLINK_ISDIR if (isdir and sys.platform.startswith('win') and int(sys.version[0]) >= 3): dirarg = dict(target_is_directory=True) else: dirarg ={} # make the link in dest (mtime: caller) os.symlink(linkpath, destpath, **dirarg) return destpath
da3e470cb78474bf56b82f9deb2e1febdd53f668
8,970
import os def read_file(fname, ObsClass, verbose=False): """This method is used to read the file. """ if verbose: print('reading menyanthes file {}'.format(fname)) if ObsClass == observation.GroundwaterObs: _rename_dic = {'xcoord': 'x', 'ycoord': 'y', 'upfiltlev': 'bovenkant_filter', 'lowfiltlev': 'onderkant_filter', 'surflev': 'maaiveld', 'filtnr': 'filternr', 'meetpunt': 'measpointlev' } _keys_o = ['name', 'x', 'y', 'locatie', 'filternr', 'metadata_available', 'maaiveld', 'meetpunt', 'bovenkant_filter', 'onderkant_filter'] elif ObsClass == observation.WaterlvlObs: _rename_dic = {'xcoord': 'x', 'ycoord': 'y', 'meetpunt': 'measpointlev' } _keys_o = ['name', 'x', 'y', 'locatie'] # Check if file is present if not (os.path.isfile(fname)): print('Could not find file ', fname) mat = loadmat(fname, struct_as_record=False, squeeze_me=True, chars_as_strings=True) d_h = read_oseries(mat) locations = d_h.keys() obs_list = [] for location in locations: if verbose: print('reading location -> {}'.format(location)) metadata = d_h[location] metadata['projection'] = 'epsg:28992' metadata['metadata_available'] = True s = metadata.pop('values') df = DataFrame(s, columns=['stand_m_tov_nap']) for key in _rename_dic.keys(): if key in metadata.keys(): metadata[_rename_dic[key]] = metadata.pop(key) meta_o = {k: metadata[k] for k in _keys_o if k in metadata} o = ObsClass(df, meta=metadata, **meta_o) obs_list.append(o) return obs_list
c35b31048cd823fa1f0157cedd6ce88331be5bf0
8,971
def cumulative_gain_curve(df: pd.DataFrame, treatment: str, outcome: str, prediction: str, min_rows: int = 30, steps: int = 100, effect_fn: EffectFnType = linear_effect) -> np.ndarray: """ Orders the dataset by prediction and computes the cumulative gain (effect * proportional sample size) curve according to that ordering. Parameters ---------- df : Pandas' DataFrame A Pandas' DataFrame with target and prediction scores. treatment : Strings The name of the treatment column in `df`. outcome : Strings The name of the outcome column in `df`. prediction : Strings The name of the prediction column in `df`. min_rows : Integer Minimum number of observations needed to have a valid result. steps : Integer The number of cumulative steps to iterate when accumulating the effect effect_fn : function (df: pandas.DataFrame, treatment: str, outcome: str) -> int or Array of int A function that computes the treatment effect given a dataframe, the name of the treatment column and the name of the outcome column. Returns ---------- cumulative gain curve: float The cumulative gain according to the predictions ordering. """ size = df.shape[0] n_rows = list(range(min_rows, size, size // steps)) + [size] cum_effect = cumulative_effect_curve(df=df, treatment=treatment, outcome=outcome, prediction=prediction, min_rows=min_rows, steps=steps, effect_fn=effect_fn) return np.array([effect * (rows / size) for rows, effect in zip(n_rows, cum_effect)])
ca493a85d1aa7d74335b1ddb65f2f2a94fcaa152
8,972
def last(*args): """Return last value from any object type - list,tuple,int,string""" if len(args) == 1: return int(''.join(map(str,args))) if isinstance(args[0],int) else args[0][-1] return args[-1]
ad8d836597dd6a5dfe059756b7d8d728f6ea35fc
8,973
from matplotlib.patheffects import withStroke def load_ann_kwargs(): """emboss text""" myeffect = withStroke(foreground="w", linewidth=3) ann_kwargs = dict(path_effects=[myeffect]) return ann_kwargs
a4ff019fe234b44da20e3b8f686f852554018546
8,974
import sys def color_conversion(img_name, color_type="bgr2rgb"): """ 色空間の変換 Parameters ---------- img_name : numpy.ndarray 入力画像 color_type : str 変換のタイプ bgr2rgb, bgr2hsv, bgr2gray, rgb2bgr, rgb2hsv, rgb2gray, hsv2bgr, hsv2rgb Return ------- conversion_img : numpy.ndarray 処理後の画像 """ if color_type == "bgr2rgb": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB) elif color_type == "bgr2hsv": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_BGR2HSV) elif color_type == "bgr2gray": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_BGR2GRAY) elif color_type == "rgb2bgr": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_RGB2BGR) elif color_type == "rgb2hsv": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_RGB2HSV) elif color_type == "rgb2gray": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_RGB2GRAY) elif color_type == "hsv2bgr": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_HSV2BGR) elif color_type == "hsv2rgb": conversion_img = cv2.cvtColor(img_name, cv2.COLOR_HSV2RGB) else: sys.exit(1) return conversion_img
66abc2c44721e262a948b86221063fb57bf1e148
8,975
def predict(self, celldata): """ This is the method that's to perform prediction based on a model For now it just returns dummy data :return: """ ai_model = load_model_parameter() ret = predict_unseen_data(ai_model, celldata) print("celldata: ", celldata) print("Classification: ", ret) return ret
435be195c765aa3823a710982bdc6f7954a24178
8,976
from typing import List def statements_to_str(statements: List[ASTNode], indent: int) -> str: """Takes a list of statements and returns a string with their C representation""" stmt_str_list = list() for stmt in statements: stmt_str = stmt.to_str(indent + 1) if not is_compound_statement(stmt) and not isinstance(stmt, Label): stmt_str += ";" + NEW_LINE stmt_str_list.append(stmt_str) return "".join(stmt_str_list)
01bd0546be8b7a212dbb73fae3c505bbe0086b48
8,977
def _make_filter(class_name: str, title: str): """https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enumwindows""" def enum_windows(handle: int, h_list: list): if not (class_name or title): h_list.append(handle) if class_name and class_name not in win32gui.GetClassName(handle): return True # continue enumeration if title and title not in win32gui.GetWindowText(handle): return True # continue enumeration h_list.append(handle) return enum_windows
3b9d5f3fe4afd666cfa7ed43f8abe103b9575249
8,978
def is_float(s): """ Detertmine if a string can be converted to a floating point number. """ try: float(s) except: return False return True
2df52b4f8e0835d9f169404a6cb4f003ca661fff
8,979
def build_lm_model(config): """ """ if config["model"] == "transformer": model = build_transformer_lm_model(config) elif config["model"] == "rnn": model = build_rnn_lm_model(config) else: raise ValueError("model not correct!") return model
03a84f28ec4f4a7cd847575fcbcf278943b72b8a
8,980
def __virtual__(): """ Only load if boto3 libraries exist. """ has_boto_reqs = salt.utils.versions.check_boto_reqs() if has_boto_reqs is True: __utils__["boto3.assign_funcs"](__name__, "cloudfront") return has_boto_reqs
63d2f1102713b8da66e75b28c4c642427fe69e8a
8,981
import glob import os def extract_binaries(pbitmap, psamples): """ Extract sample binaries from subdirectories according to dataset defined in bitmap. """ bins = glob.glob(psamples+'/**/*.bin', recursive=True) bitmap = pd.read_csv(pbitmap) if '.tsv' not in pbitmap else pd.read_csv(pbitmap, sep='\t') hashes = bitmap['sha1sum'].tolist() if not os.path.exists('bins'): os.makedirs('bins') missed = [] for hash in hashes: found = False for bin in bins: if hash in bin: cmd = 'cp %s bins/%s.bin' % (bin, hash) os.system(cmd) found = True break if not found: missed += [hash] print('Sample not found: %s' % hash) res = os.listdir('bins') print('Total found =', len(res)) return res
e3086e1ec5dcda0b89f34fb917eb422c8cde285b
8,982
def search_range(nums, target): """ Find first and last position of target in given array by binary search :param nums: given array :type nums : list[int] :param target: target number :type target: int :return: first and last position of target :rtype: list[int] """ result = [-1, -1] left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 # note that we move right pointer when nums[mid] == target # to find the first occurrence of target if nums[mid] >= target: right = mid - 1 else: left = mid + 1 if 0 <= left < len(nums) and nums[left] == target: result[0] = left left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 # note that we move left pointer when nums[mid] == target # to find the last occurrence of target if nums[mid] > target: right = mid - 1 else: left = mid + 1 if 0 <= right < len(nums) and nums[right] == target: result[1] = right return result
8165e3a2f33741c15494d5d98a82a85c2fb610ff
8,983
def process_mean_results(data, capacity, constellation, scenario, parameters): """ Process results. """ output = [] adoption_rate = scenario[1] overbooking_factor = parameters[constellation.lower()]['overbooking_factor'] constellation_capacity = capacity[constellation] max_capacity = constellation_capacity['capacity_kmsq'] number_of_satellites = constellation_capacity['number_of_satellites'] satellite_coverage_area = constellation_capacity['satellite_coverage_area'] for idx, item in data.iterrows(): users_per_km2 = item['pop_density_km2'] * (adoption_rate / 100) active_users_km2 = users_per_km2 / overbooking_factor if active_users_km2 > 0: per_user_capacity = max_capacity / active_users_km2 else: per_user_capacity = 0 output.append({ 'scenario': scenario[0], 'constellation': constellation, 'number_of_satellites': number_of_satellites, 'satellite_coverage_area': satellite_coverage_area, 'iso3': item['iso3'], 'GID_id': item['regions'], 'population': item['population'], 'area_m': item['area_m'], 'pop_density_km2': item['pop_density_km2'], 'adoption_rate': adoption_rate, 'users_per_km2': users_per_km2, 'active_users_km2': active_users_km2, 'per_user_capacity': per_user_capacity, }) return output
0619c397a21d27440988c4b23284e44700ba69eb
8,984
def identify_ossim_kwl(ossim_kwl_file): """ parse geom file to identify if it is an ossim model :param ossim_kwl_file : ossim keyword list file :type ossim_kwl_file : str :return ossim kwl info : ossimmodel or None if not an ossim kwl file :rtype str """ try: with open(ossim_kwl_file, encoding="utf-8") as ossim_file: content = ossim_file.readlines() geom_dict = {} for line in content: (key, val) = line.split(": ") geom_dict[key] = val.rstrip() if "type" in geom_dict: if geom_dict["type"].strip().startswith("ossim"): return geom_dict["type"].strip() return None except Exception: # pylint: disable=broad-except return None
9a63a8b5e7ece79b11336e71a8afa5a703e3acbc
8,985
def conv_cond_concat(x, y): """ Concatenate conditioning vector on feature map axis. # Arguments x: 4D-Tensor y: 4D-Tensor # Return 4D-Tensor """ x_shapes = x.get_shape() y_shapes = y.get_shape() return tf.concat(3, [x, y * tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])])
c30a4328d3a6e8cf2b1e38cf012edca045e9de69
8,986
def get(args, syn): """TODO_Sphinx.""" entity = syn.get(args.id) ## TODO: Is this part even necessary? ## (Other than the print statements) if 'files' in entity: for file in entity['files']: src = os.path.join(entity['cacheDir'], file) dst = os.path.join('.', file.replace(".R_OBJECTS/","")) print 'creating %s' % dst if not os.path.exists(os.path.dirname(dst)): os.mkdir(dst) shutil.copyfile(src, dst) else: sys.stderr.write('WARNING: No files associated with entity %s\n' % (args.id,)) syn.printEntity(entity) return entity
61bb507faaa2821619e77972dc23158fdc3228ba
8,987
def swath_pyresample_gdaltrans(file: str, var: str, subarea: dict, epsilon: float, src_tif: str, dst_tif: str): """Reprojects swath data using pyresample and translates the image to EE ready tif using gdal Parameters ---------- file: str file to be resampled and uploaded to GC -> EE var: str input variable name subarea: dict string name of the projection to resample the data onto (pyproj supported) epsilon: float The distance to a found value is guaranteed to be no further than (1 + eps) times the distance to the correct neighbour. Allowing for uncertainty decreases execution time. src_tif: str temporary target geotif file dst_tif: str final geotif output, GDAL processed Returns ------- dict: global and var attributes """ # ----------- # get dataset # ----------- resample_dst = create_dataset(file=file, key=var, subarea=subarea) resample_dst['epsilon'] = epsilon # --------------- # resample swaths # --------------- if var in ('l2_flags', 'QA_flag'): meta = flags_band(dataset=resample_dst, key=var, src_tif=src_tif, dst_tif=dst_tif) else: attrs = resample_dst.pop(var) glob_attrs = resample_dst.pop('glob_attrs') proj = resample_dst.pop('proj') fill_value = attrs['_FillValue'] result = swath_resample(swath=resample_dst, trg_proj=proj) np.ma.set_fill_value(result, fill_value=fill_value) # --------------------- # write out the g-tif-f # --------------------- meta = write_tif(file=src_tif, dataset=result, data_type='Float32', metadata={var: attrs, 'glob_attrs': glob_attrs}, area_def=proj) gdal_translate(src_tif=src_tif, dst_tif=dst_tif, ot='Float32', nodata=fill_value) return meta
b716a6b45cf48457d0c6ca5849997b7c37c6c795
8,988
def run_drc(cell_name, gds_name, sp_name=None, extract=True, final_verification=False): """Run DRC check on a cell which is implemented in gds_name.""" global num_drc_runs num_drc_runs += 1 write_drc_script(cell_name, gds_name, extract, final_verification, OPTS.openram_temp, sp_name=sp_name) (outfile, errfile, resultsfile) = run_script(cell_name, "drc") # Check the result for these lines in the summary: # Total DRC errors found: 0 # The count is shown in this format: # Cell replica_cell_6t has 3 error tiles. # Cell tri_gate_array has 8 error tiles. # etc. try: f = open(resultsfile, "r") except FileNotFoundError: debug.error("Unable to load DRC results file from {}. Is klayout set up?".format(resultsfile), 1) results = f.readlines() f.close() errors=len([x for x in results if "<visited>" in x]) # always display this summary result_str = "DRC Errors {0}\t{1}".format(cell_name, errors) if errors > 0: debug.warning(result_str) else: debug.info(1, result_str) return errors
ac44030fc343b50d1035f5b584fc4f64f319aa27
8,989
def getKeyPairPrivateKey(keyPair): """Extracts the private key from a key pair. @type keyPair: string @param keyPair: public/private key pair @rtype: base string @return private key PEM text """ return crypto.dump_privatekey(crypto.FILETYPE_PEM, keyPair)
0decc2dbb77343a7a200ace2af9277ee7e5717a5
8,990
def playbook_input(request, playbook_id, config_file=None, template=None): """Playbook input view.""" # Get playbook playbook = Playbook.objects.get(pk=playbook_id) # Get username user = str(request.user) # Check user permissions if user not in playbook.permissions.users: return playbooks(request) # Get asset name if provided asset_name = request.POST.get('asset_name', None) # Get Assets if playbook.asset_filter != '*': inventory = netspot.NetSPOT() assets = inventory.search(playbook.asset_filter, key='asset') else: assets = None # Get config if confgi_file is provided config = None if config_file: with open(config_file, 'r') as file_handle: config = file_handle.read().strip() variables = PlaybookVariable.objects.filter(playbook=playbook) return render( request, 'playbook.htm', context={'playbook': playbook.name, 'playbook_id': playbook.id, 'assets': assets, 'asset_name': asset_name, 'asset_filter': playbook.asset_filter, 'user_auth': playbook.user_auth, 'inputs': variables, 'config_file': config_file, 'config': config, 'template': template, 'description': playbook.description}, )
4b01e08414f38bdaad45245043ec30adb876e40e
8,991
def _filter_gtf_df(GTF_df, col, selection, keep_columns, silent=False): """ Filter a GTF on a specific feature type (e.g., genes) Parameters: ----------- GTF_df pandas DataFrame of a GTF type: pd.DataFrame col colname on which df.loc will be performed type: str selection value in df[col] type: str, int, float, etc. (most likely str) keep_columns A list of strings of colnames to keep. If False (default behavior), all cols are kept. type: bool default: False silent default: False type: bool Returns: -------- GTF_filtered type: pandas.DataFrame """ msg = _Messages(silent) msg.filtering(col, selection) return GTF_df.loc[GTF_df[col] == selection][keep_columns]
5f41141d69c0c837e396ec95127500a826013500
8,992
def validation_generator_for_dir(data_dir, model_dict): """Create a Keras generator suitable for validation No data augmentation is performed. :param data_dir: folder with subfolders for the classes and images therein :param model_dict: dict as returned by `create_custom_model` :returns: a generator for batches suitable for validating the model :rtype: ?? """ return _generator_for_dir(test_datagen, data_dir, model_dict)
57b0a83e98438b8e397377a5626094f69ea21083
8,993
def convert_cbaois_to_kpsois(cbaois): """Convert coordinate-based augmentables to KeypointsOnImage instances. Parameters ---------- cbaois : list of imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.PolygonsOnImage or list of imgaug.augmentables.bbs.LineStringsOnImage or imgaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage or imgaug.augmentables.bbs.LineStringsOnImage Coordinate-based augmentables to convert, e.g. bounding boxes. Returns ------- list of imgaug.augmentables.kps.KeypointsOnImage or imgaug.augmentables.kps.KeypointsOnImage ``KeypointsOnImage`` instances containing the coordinates of input `cbaois`. """ if not isinstance(cbaois, list): return cbaois.to_keypoints_on_image() kpsois = [] for cbaoi in cbaois: kpsois.append(cbaoi.to_keypoints_on_image()) return kpsois
6eee2715de3bfc76fac9bd3c246b0d2352101be1
8,994
import zipfile import os import io import pickle def gen_stream_from_zip(zip_path, file_extension='wav', label_files=None, label_names=None, utt2spk=None, corpus_name=None, is_speech_corpus=True, is_rir=False, get_duration=False): """ Generate speech stream from zip file and utt2spk. The zip file contains wavfiles. Parameters ----------- zip_path: path of the zip file that contains the waveforms. label_files: list of label files. Each line of label_files contains label for one utterance and have following format: utt_id_1 label_1 utt_id_2 label_2 ... where utt_id_1 and utt_id_2 are utterance IDs of the sentences and can be any string as far as each utterance has an unique ID. The utt_ids must be compatible with the file_names (excluding extension) in the zip file. file_extension: define the extension of the files in the zip file. Used to filter out non-waveform files. label_names: list of strings specifying the name of the label_files, e.g. "frame_label', 'word_label', etc. utt2spk: a dictionary mapping from utterance ID to speaker ID. If not provided, corpus_name must be provided. is_speech_corpus: bool, whether the zip contains speech. is_rir: bool, whether the zip contains RIR. If True, expect a config file in the zip that contains the meta data info about the RIRs. get_duration: bool, whether to get duration of the waveforms Returned: An object of type SpeechDataStream, RIRDataStream, or DataStream. """ wav_reader = reader.ZipWaveIO(precision="float32") zip_file = zipfile.ZipFile(zip_path) all_list = zip_file.namelist() wav_list = [i for i in all_list if os.path.splitext(i)[1][1:].lower() == file_extension] utt_id_wav = wavlist2uttlist(wav_list) # sort wav_list by utterance ID tmp = sorted(zip(utt_id_wav, wav_list)) utt_id_wav = [i[0] for i in tmp] wav_list = [i[1] for i in tmp] def get_label(label_lines, selected_utt_id): selected_label_list = [] for line in label_lines: tmp = line.split(" ") utt_id = tmp[0] if utt_id in selected_utt_id: tmp_label = np.asarray([int(j) for j in tmp[1:] if len(j)>0])[np.newaxis,:] selected_label_list.append(tmp_label) return selected_label_list if label_files is not None: # Find the intersection of the utterance IDs selected_utt_id = set(utt_id_wav) utt_id_label = [] label_file_lines = [] for i in range(len(label_files)): lines = my_cat(label_files[i]) lines.sort() # each lines start with utterance ID, hence effectively sort the labels with utterance ID. curr_utt_id_label = [i.split(" ")[0] for i in lines] selected_utt_id = set(curr_utt_id_label) & selected_utt_id utt_id_label.append(curr_utt_id_label) label_file_lines.append(lines) # Build DataStream for each label types label_streams = dict() if label_names is None: label_names = ['label_'+str(i) for i in range(len(label_files))] for i in range(len(label_files)): selected_label_list = get_label(label_file_lines[i], selected_utt_id) # selected_label_list is sorted, as label_file_lines[i] is sorted. label_streams[label_names[i]] = DataStream(selected_label_list, is_file=False, reader=None) selected_wav_list = [wav_list[i] for i in range(len(wav_list)) if utt_id_wav[i] in selected_utt_id] selected_utt_id = list(selected_utt_id) selected_utt_id.sort() # note that selected_wav_list, selected_label_list, and selected_utt_id are all sorted by utterance ID. So they # are guaranteed to have one-to-one correspondence if the utterance IDs are unique. else: label_streams = None selected_utt_id = utt_id_wav selected_wav_list = wav_list root_dir = zip_path + '@/' if is_speech_corpus: assert utt2spk is not None or corpus_name is not None data_stream = DataStream(selected_wav_list, is_file=True, reader=wav_reader, root=root_dir) if corpus_name == 'LibriSpeech': corpus_stream = LibriDataStream(selected_utt_id, data_stream, label_streams=label_streams) elif corpus_name == 'WSJ': corpus_stream = WSJDataStream(selected_utt_id, data_stream, label_streams=label_streams) elif corpus_name == 'TIMIT': corpus_stream = TimitDataStream(selected_utt_id, data_stream, label_streams=label_streams) else: # for unknown corpus, you need to provide the utt2spk mapping. corpus_stream = SpeechDataStream(selected_utt_id, data_stream, utt2spk=utt2spk, label_streams=label_streams) elif is_rir: for i in all_list: if os.path.splitext(i)[1][1:] == 'pkl': config_file = i break byte_chunk = zip_file.read(config_file) byte_stream = io.BytesIO(byte_chunk) config = pickle.load(byte_stream) zip_base = os.path.splitext(os.path.basename(zip_path))[0] wav_list = [zip_base+'/'+i['file'] for i in config] data_stream = RIRStream(wav_list, config=config, is_file=True, reader=wav_reader, root=root_dir) corpus_stream = data_stream else: data_stream = DataStream(selected_wav_list, is_file=True, reader=wav_reader, root=root_dir) corpus_stream = data_stream if get_duration: if is_speech_corpus: corpus_stream.data_stream.set_data_len() corpus_stream.data_stream.reader = reader.ZipWaveIO(precision="float32") else: corpus_stream.set_data_len() corpus_stream.reader = reader.ZipWaveIO(precision="float32") return corpus_stream
93a81a8d102c0b76593bcd44b64675c1c1e1fce7
8,995
def get_query_dsl( query_string, global_filters=None, facets_query_size=20, default_operator='and'): """ returns an elasticsearch query dsl for a query string param: query_string : an expression of the form type: person title:foo AND description:bar where type corresponds to an elastic search document type which gets added as a filter param: global_filters : a dictionary of the form {user_id: 1234}. This gets added as a filter to the query so that the query can be narrowed down to fewer documents. It is translated into an elastic search term filter. """ global FACETS_QUERY_SIZE, DEFAULT_OPERATOR FACETS_QUERY_SIZE = facets_query_size DEFAULT_OPERATOR = default_operator global_filters = global_filters if global_filters else {} expression = tokenizer.tokenize(query_string) bool_lists = expression['query']['filtered']['filter']['bool'] [bool_lists['should'].append({"term": orele}) for orele in global_filters.get('or', [])] [bool_lists['must'].append({"term": andele}) for andele in global_filters.get('and', [])] [bool_lists['must_not'].append({"term": notele}) for notele in global_filters.get('not', [])] if global_filters.has_key('sort'): expression['sort'] = global_filters.get('sort') return expression
9f6c1371e0de1f28737415c0454f645748af054f
8,996
def prune_visualization_dict(visualization_dict): """ Get rid of empty entries in visualization dict :param visualization_dict: :return: """ new_visualization_dict = {} # when the form is left blank the entries of visualization_dict have # COLUMN_NAME key that points to an empty list for vis_key, vis_dict in visualization_dict.items(): if vis_dict.get(COLUMN_NAME): new_visualization_dict[vis_key] = vis_dict return new_visualization_dict
fae81eb69fc25d61282eb151d931d740c51b8bae
8,997
def _LocationListToGoTo( request_data, positions ): """Convert a LSP list of locations to a ycmd GoTo response.""" try: if len( positions ) > 1: return [ responses.BuildGoToResponseFromLocation( *_PositionToLocationAndDescription( request_data, position ) ) for position in positions ] return responses.BuildGoToResponseFromLocation( *_PositionToLocationAndDescription( request_data, positions[ 0 ] ) ) except ( IndexError, KeyError ): raise RuntimeError( 'Cannot jump to location' )
2ee39fdadd721920a3737561979308223a64b57a
8,998
def calculate_average_grades_and_deviation(course): """Determines the final average grade and deviation for a course.""" avg_generic_likert = [] avg_contribution_likert = [] dev_generic_likert = [] dev_contribution_likert = [] avg_generic_grade = [] avg_contribution_grade = [] dev_generic_grade = [] dev_contribution_grade = [] for __, contributor, __, results, __ in calculate_results(course): average_likert = avg([result.average for result in results if result.question.is_likert_question]) deviation_likert = avg([result.deviation for result in results if result.question.is_likert_question]) average_grade = avg([result.average for result in results if result.question.is_grade_question]) deviation_grade = avg([result.deviation for result in results if result.question.is_grade_question]) (avg_contribution_likert if contributor else avg_generic_likert).append(average_likert) (dev_contribution_likert if contributor else dev_generic_likert).append(deviation_likert) (avg_contribution_grade if contributor else avg_generic_grade).append(average_grade) (dev_contribution_grade if contributor else dev_generic_grade).append(deviation_grade) # the final total grade will be calculated by the following formula (GP = GRADE_PERCENTAGE, CP = CONTRIBUTION_PERCENTAGE): # final_likert = CP * likert_answers_about_persons + (1-CP) * likert_answers_about_courses # final_grade = CP * grade_answers_about_persons + (1-CP) * grade_answers_about_courses # final = GP * final_grade + (1-GP) * final_likert final_likert_avg = mix(avg(avg_contribution_likert), avg(avg_generic_likert), settings.CONTRIBUTION_PERCENTAGE) final_likert_dev = mix(avg(dev_contribution_likert), avg(dev_generic_likert), settings.CONTRIBUTION_PERCENTAGE) final_grade_avg = mix(avg(avg_contribution_grade), avg(avg_generic_grade), settings.CONTRIBUTION_PERCENTAGE) final_grade_dev = mix(avg(dev_contribution_grade), avg(dev_generic_grade), settings.CONTRIBUTION_PERCENTAGE) final_avg = mix(final_grade_avg, final_likert_avg, settings.GRADE_PERCENTAGE) final_dev = mix(final_grade_dev, final_likert_dev, settings.GRADE_PERCENTAGE) return final_avg, final_dev
95b26efedba076e0b9b54c565fe2e0787d5fbb0e
8,999