content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def shift_time(x, dt): """Shift time axis to the left by dt. Used to account for pump & lamp delay""" x -= dt return x
c93fdddea8e41221583139dcc7a2d81177ba7c17
8,800
from datetime import datetime import json def eps_xfer(request,client_slug=None,show_slug=None): """ Returns all the episodes for a show as json. Used to synk public url's with the main conference site. """ client=get_object_or_404(Client,slug=client_slug) show=get_object_or_404(Show,client=client,slug=show_slug) # eps = Episode.objects.filter(show=show) eps=eps_filters(request.GET).filter(show=show).order_by('start') if "id" in request.GET: eps = eps.filter( id=request.GET['id'] ) fields=['id', 'state', 'location', 'location_slug', 'sequence', 'name', 'slug', 'authors', 'description', 'start', 'duration', 'released', 'license', 'tags', 'conf_key', 'conf_url', 'host_url', 'public_url', 'rax_mp4_url', 'archive_url', 'archive_mp4_url', 'twitter_url', 'comment', ] if request.user.is_authenticated(): fields.extend(['emails', 'edit_key',]) if "fields" in request.GET: fields_whitelist = request.GET['fields'].split(',') print(fields_whitelist) fields = [f for f in fields if f in fields_whitelist] """ serializers.serialize("json", eps, fields=fields, use_natural_foreign_keys=True, stream=response) """ gold_list = ['location', 'location_slug'] ds=[] for ep in eps: d = {} for f in fields: if f == 'location': d[f] = ep.location.name elif f == 'location_slug': d[f] = ep.location.name = ep.location.slug else: d[f]=getattr(ep,f) # archive_mp4_url is really the url of the page # make a mp4 url too # the mp4 link is now: # https://archive.org/download/pyohio_2019-Changing_Lives_through_Open_Source_Passion_and_Mentoring/Changing_Lives_through_Open_Source_Passion_and_Mentoring.mp4 if 'archive_mp4_url' in d: d['archive_url'] = d['archive_mp4_url'] d['archive_mp4_url'] = "" if 'start' in d: d['start_at'] = (d['start'] - datetime.timedelta(minutes=5) ).strftime('%H:%M %d.%m.%Y') ds.append(d) response = HttpResponse(content_type="application/json") json.dump( ds, response, cls=serializers.json.DjangoJSONEncoder ) return response
9a6691e0ac750919b5915e45ace0c347aa83cbe3
8,801
def register(class_, option=None, get_funcs={}): """A decorator to register a function as the way to display an object of class_ """ if option: key = (class_, option) else: key = class_ def decorator(func): class_function_mapping[key] = (func, get_funcs) return func return decorator
c060691dd9e2760905e29a2c643dfa63d4ed029c
8,802
def startup(target: machine.Machine, workload: str, count: int = 5, port: int = 0, **kwargs): """Time the startup of some workload. Args: target: A machine object. workload: The workload to run. count: Number of containers to start. port: The port to check for liveness, if provided. **kwargs: Additional container options. Returns: The mean start-up time in seconds. """ # Load before timing. image = target.pull(workload) netcat = target.pull("netcat") count = int(count) port = int(port) with helpers.Timer() as timer: for _ in range(count): if not port: # Run the container synchronously. target.container(image, **kwargs).run() else: # Run a detached container until httpd available. with target.container(image, port=port, **kwargs).detach() as server: (server_host, server_port) = server.address() target.container(netcat).run(host=server_host, port=server_port) return timer.elapsed() / float(count)
c53b627d95270aa074f9178e1ebcd6ea49b8eeaa
8,803
def schema_handler(request): """ Handle schema request from UI. """ logger.debug("schema_handler: enter") req = request.GET.get('payload', '') action = request.GET.get('action', '') logger.debug('Received schema Request (%s)' % action) if not request.user.is_authenticated(): logger.error('User must be logged in !!') return HttpResponse(Response.error(action, 'Unauthorized')) if action == 'get-schema': return get_schema(request, req) elif action == 'get-all-schema': return get_schema(request, req, all=True) elif action == 'download-schema': return download_schema(request, req) elif action == 'add-schema': return add_schema(request, req)
0a7997e5ad946aebfbf915b1dd2dddcf46d5fe2e
8,804
def log2_fold_change(df, samp_grps): """ calculate fold change - fixed as samp_grps.mean_names[0] over samp_grps.mean_names[1], where the mean names are sorted alphabetically. The log has already been taken, so the L2FC is calculated as mean0 - mean1 :param df: expanded and/or filtered dataframe :param samp_grps: SampleGroups() object :return: dataframe with fold change column appended, with name as in samp_grps.fc_name """ mean1 = samp_grps.mean_names[0] mean2 = samp_grps.mean_names[1] df[samp_grps.fc_name] = df[mean1] - df[mean2] return df
07fcef6f5143095f4f8f77d0251bbd7ecd486fd9
8,805
def infer_wheel_units(pos): """ Given an array of wheel positions, infer the rotary encoder resolution, encoding type and units The encoding type varies across hardware (Bpod uses X1 while FPGA usually extracted as X4), and older data were extracted in linear cm rather than radians. :param pos: a 1D array of extracted wheel positions :return units: the position units, assumed to be either 'rad' or 'cm' :return resolution: the number of decoded fronts per 360 degree rotation :return encoding: one of {'X1', 'X2', 'X4'} """ if len(pos.shape) > 1: # Ensure 1D array of positions pos = pos.flatten() # Check the values and units of wheel position res = np.array([wh.ENC_RES, wh.ENC_RES / 2, wh.ENC_RES / 4]) # min change in rad and cm for each decoding type # [rad_X4, rad_X2, rad_X1, cm_X4, cm_X2, cm_X1] min_change = np.concatenate([2 * np.pi / res, wh.WHEEL_DIAMETER * np.pi / res]) pos_diff = np.median(np.abs(np.ediff1d(pos))) # find min change closest to min pos_diff idx = np.argmin(np.abs(min_change - pos_diff)) if idx < len(res): # Assume values are in radians units = 'rad' encoding = idx else: units = 'cm' encoding = idx - len(res) enc_names = {0: 'X4', 1: 'X2', 2: 'X1'} return units, int(res[encoding]), enc_names[int(encoding)]
82d1a63c11c31d4de83ba5360def223b85194ef9
8,806
def extract_tform(landmarks, plane_name): """Compute the transformation that maps the reference xy-plane at origin to the GT standard plane. Args: landmarks: [landmark_count, 3] where landmark_count=16 plane_name: 'tv' or 'tc' Returns: trans_vec: translation vector [3] quat: quaternions [4] mat: 4x4 transformation matrix [4, 4] """ if plane_name == 'tv': # Landmarks lying on the TV plane landmarks_plane = np.vstack((landmarks[1:8], landmarks[12:14])) # Compute transformation z_vec, p_plane = fit_plane(landmarks_plane) landmarks_plane_proj = project_on_plane(landmarks_plane, z_vec, p_plane) landmarks_line = landmarks_plane_proj[[0, 1, 2, 7, 8], :] x_vec, p_line = fit_line(landmarks_line) y_vec = geometry.unit_vector(np.cross(z_vec, x_vec)) # 4x4 transformation matrix mat = np.eye(4) mat[:3, :3] = np.vstack((x_vec, y_vec, z_vec)).transpose() mat[:3, 3] = landmarks_plane_proj[0] # Quaternions and translation vector quat = geometry.quaternion_from_matrix(mat[:3, :3]) trans_vec = mat[:3, 3] elif plane_name == 'tc': # Landmarks lying on the TC plane cr = landmarks[10] cl = landmarks[11] csp = landmarks[12] # Compute transformation csp_cl = cl - csp csp_cr = cr - csp z_vec = np.cross(csp_cl, csp_cr) z_vec = geometry.unit_vector(z_vec) cr_cl_mid = (cr + cl) / 2.0 x_vec = geometry.unit_vector(cr_cl_mid - csp) y_vec = geometry.unit_vector(np.cross(z_vec, x_vec)) # 4x4 transformation matrix mat = np.eye(4) mat[:3, :3] = np.vstack((x_vec, y_vec, z_vec)).transpose() mat[:3, 3] = (cr_cl_mid + csp) / 2.0 # Quaternions and translation vector quat = geometry.quaternion_from_matrix(mat[:3, :3]) trans_vec = mat[:3, 3] else: raise ValueError('Invalid plane name.') return trans_vec, quat, mat
d9d4ed43c9572cdd76b34235e380f22a6eb27d03
8,807
from typing import TextIO import csv def load_events(fhandle: TextIO) -> annotations.Events: """Load an URBAN-SED sound events annotation file Args: fhandle (str or file-like): File-like object or path to the sound events annotation file Raises: IOError: if txt_path doesn't exist Returns: Events: sound events annotation data """ times = [] labels = [] confidence = [] reader = csv.reader(fhandle, delimiter="\t") for line in reader: times.append([float(line[0]), float(line[1])]) labels.append(line[2]) confidence.append(1.0) events_data = annotations.Events( np.array(times), "seconds", labels, "open", np.array(confidence) ) return events_data
2c2017d754fe12ebd37349b359ba6a92ec115421
8,808
import os def loadandcleanRAPIDexport(rapidsubproductsexport): """ :param rapidsubproductsexport: an Excel file name with ".xlsx" extention :return: """ exportfile = os.path.realpath("gannt_data/"+ rapidsubproductsexport) df = pd.read_excel(exportfile,na_values=["-"]) df = convertFYQfieldstodates(df) df = merge_product_subproduct(df) df = splitnamefields(df) return df
0ff955267ec0baa3e67d0e65e945317b2ea57128
8,809
def set_nan(df, chrom_bed_file): """This function will take in a dataframe and chromosome length bed file and will replace 0's with np.nan according to each chromosome length. This will fix any issues when calculating Z-scores""" # Build dictionary of key=chromosome and value=chromosome_length chrom_length_dict = {} for v in chrom_bed_file.itertuples(): chrom_length_dict[v[1]] = v[2] continue # Iterate through each column for chrom in df.columns.to_list(): current_chrom_length = chrom_length_dict[str(chrom)] # Iterate through each value of a column in reverse for index, value in zip( reversed(df.index.to_list()), reversed(df[chrom].to_list()) ): # Check if index is greater than length of chromosome if index > current_chrom_length: df.at[index, chrom] = np.nan else: break return df
e90008c42db5a94c8676c941da5832438301a724
8,810
def configure_smoothing(new_d,smoothing_scans): """ # <batchstep method="net.sf.mzmine.modules.peaklistmethods.peakpicking.smoothing.SmoothingModule"> # <parameter name="Peak lists" type="BATCH_LAST_PEAKLISTS"/> # <parameter name="Filename suffix">smoothed</parameter> # <parameter name="Filter width">9</parameter> # <parameter name="Remove original peak list">false</parameter> # </batchstep> """ idx = [i for i,d in enumerate(new_d['batch']['batchstep']) if 'SmoothingModule' in d['@method']][0] idx2 = [i for i,d in enumerate(new_d['batch']['batchstep'][idx]['parameter']) if 'Filter width' in d['@name']][0] new_d['batch']['batchstep'][idx]['parameter'][idx2]['#text'] = '%.3f'%(smoothing_scans) return new_d
031586cf5dbb9fdf1fb6762a89a988367d172942
8,811
def contact_us(): """ Contact Us Route Route to lead to the contact page Args: None Returns: rendered template for contact_us.html """ return render_template('contact_us.html', title='CONP | Contact Us', user=current_user)
2597038074e8f60e14066f10390a161b15cf7071
8,812
def costFunc1(x, module, output, col, row, bbox, img, prfObj): """Debugging function. Does the same as costFunc, but col and row are constants, and only the brightness of the prf can be changed. """ model = prfObj.getPrfForBbox(module, output, col, row, bbox) model *= x[0] cost = img-model cost = np.sum(cost**2) return cost
1af21d844482d773e0bf279a49f12520ffb27aa8
8,813
import pandas def query_field(boresight, r1=None, r2=None, observatory='apo', mag_range=None, mag_column=None, database_params=None): """Selects Gaia DR2 stars for a field, from the database. Parameters ---------- boresight : tuple A tuple with the right ascension and declination of the boresight, in degrees. r1,r2 : float The internal and external radii along which the GFAs are located, in degrees. observatory : str The observatory, used to load the default configuration for the GFAs. mag_range : tuple The range of magnitudes used to select stars. mag_column : str The name of the magnitude column to query. database_params : dict A dictionary of database parameters to create the connection. Can include ``user``, ``host``, ``port``, and ``dbname``. Returns ------- `~pandas.Dataframe` A dataframe with the selected stars. """ obs_data = config[observatory] r1 = r1 or obs_data['r1'] r2 = r2 or obs_data['r2'] mag_range = mag_range or config['mag_range'] mag_column = mag_column or config['mag_column'] query = ('WITH x AS MATERIALIZED (SELECT source_id, ra, dec, ' '{mag_column}, pmra, pmdec ' 'FROM gaia_dr2_source WHERE ' 'q3c_radial_query(ra, dec, {ra}, {dec}, {r2}) AND ' 'NOT q3c_radial_query(ra, dec, {ra}, {dec}, {r1})) ' 'SELECT * FROM x WHERE {mag_column} > {g_min} AND ' '{mag_column} < {g_max};') query = query.format(ra=boresight[0], dec=boresight[1], r1=r1, r2=r2, g_min=mag_range[0], g_max=mag_range[1], mag_column=mag_column) if database_params is None: database_params = config['database'] conn_str = '' for key in database_params: conn_str += f'{key}={database_params[key]} ' connection = psycopg2.connect(conn_str) data = pandas.read_sql(query, connection) connection.close() return data
c05276ecfac3b33dcc5382cf54e220b416614656
8,814
def get_throttling_equilibria(simulation_config, input_params, priority_queue=True, dev_team_factor=1.0): """ Returns the equilibrium profiles for throttling configuration under analysis. :param simulation_config: :param input_params: :return: """ desc_inf003 = "THROTTLING_INF003" process_configuration_inf003 = dict(simulation_config) process_configuration_inf003["THROTTLING_ENABLED"] = True process_configuration_inf003["GATEKEEPER_CONFIG"] = None process_configuration_inf003["INFLATION_FACTOR"] = 0.03 process_configuration_inf003["SUCCESS_RATE"] = 0.95 if priority_queue and dev_team_factor == 0.5: filename_inf003 = "INF3.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" elif priority_queue and dev_team_factor == 1.0: filename_inf003 = "INF3.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" elif not priority_queue and dev_team_factor == 0.5: filename_inf003 = "INF3.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" elif not priority_queue and dev_team_factor == 1.0: filename_inf003 = "INF3.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" equilibrium_profiles_inf003 = get_profiles_from_file("csv/" + filename_inf003, scenario_desc=desc_inf003, input_params=input_params) desc_inf010 = "THROTTLING_INF010" process_configuration_inf010 = dict(process_configuration_inf003) process_configuration_inf010["INFLATION_FACTOR"] = 0.10 equilibrium_profiles_inf010 = get_profiles_from_file("csv/" + filename_inf010, scenario_desc=desc_inf010, input_params=input_params) desc_inf020 = "THROTTLING_INF020" process_configuration_inf020 = dict(process_configuration_inf003) process_configuration_inf020["INFLATION_FACTOR"] = 0.20 equilibrium_profiles_inf020 = get_profiles_from_file("csv/" + filename_inf020, scenario_desc=desc_inf020, input_params=input_params) return [{"desc": desc_inf003, "simulation_configuration": process_configuration_inf003, "equilibrium_profiles": equilibrium_profiles_inf003}, {"desc": desc_inf010, "simulation_configuration": process_configuration_inf010, "equilibrium_profiles": equilibrium_profiles_inf010}, {"desc": desc_inf020, "simulation_configuration": process_configuration_inf020, "equilibrium_profiles": equilibrium_profiles_inf020}]
4e0f6dd8fa3b0b36b713b33ab1a5aaf8394d4942
8,815
def signature(part): """ return the signature of a partial object """ return (part.func, part.args, part.keywords, part.__dict__)
522ae88538d6dd880492292c6f2ef169f3bbd06d
8,816
def clean_key(func): """Provides a clean, readable key from the funct name and module path. """ module = func.__module__.replace("formfactoryapp.", "") return "%s.%s" % (module, func.__name__)
946288cd231148eb39af5d1e7e0b957d9f2131e8
8,817
def rotY(M, alpha): """Rotates polygon M around Y axis by alpha degrees. M needs to be a Numpy Array with shape (4,N) with N>=1""" T = np.eye(4) alpha_radians = np.radians(alpha) sin = np.sin(alpha_radians) cos = np.cos(alpha_radians) T[0,0] = cos T[2,2] = cos T[0,2] = sin T[2,0] = -sin return np.dot(T,M)
49e850ff66b3c7877e6d8b4a450baaa6707d4f15
8,818
def is_image_file(filename): """ :param filename: :return: """ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
40125478c6440efc9a740d2df57ba2f7bb15a5d1
8,819
def invert_comp_specifier(comp_specifier): """ return the opposite (logical negation) of @p comp_specifier """ inverse_map = { Comparison.Equal: Comparison.NotEqual, Comparison.Less: Comparison.GreaterOrEqual, Comparison.LessOrEqual: Comparison.Greater, Comparison.NotEqual: Comparison.Equal, Comparison.Greater: Comparison.LessOrEqual, Comparison.GreaterOrEqual: Comparison.Less, } return inverse_map[comp_specifier]
187392dd1dc7f52c744536e8e372cab752ff8c85
8,820
import utm def latlong2utm(point): """ This function converts a point from lat long to utm Input : point : (lat,long) Output : utm point : (x,y,z, n) """ return utm.from_latlon(point[0],point[1])
3ee82f9df84b02aa35fa0f2a35ec0916edf30e42
8,821
def multiply(a,b): """ multiply values Args: a ([float/int]): any value b ([float/int]): any value """ return a*b
67a85b1675da48684e9de7e9834d3daa4357699b
8,822
from typing import Tuple from typing import Dict from typing import List import regex def merge_vocab(pair: Tuple[str, str], input_vocab: Dict[str, int]) -> Tuple[Dict[str, int], List]: """ >>> pair = ('w', 'o') >>> input_vocab = {'b i r d @': 3, 'w o r d @': 7, 'w o g @': 13} >>> new_vocab, new_pairs = merge_vocab(pair, input_vocab) >>> new_vocab {'b i r d @': 3, 'wo r d @': 7, 'wo g @': 13} >>> new_pairs [(('wo', 'r'), 7), (('o', 'r'), -7), (('wo', 'g'), 13), (('o', 'g'), -13)] """ output_vocab = {} concat_pair_with_space = ' '.join(pair) concat_pair_with_space_escaped = regex.escape(concat_pair_with_space) concat_pair = ''.join(pair) reg = regex.compile('(^|[^ ]+ )(' + concat_pair_with_space_escaped + ')( [^ ]+|$)') added_pairs = [] for word in input_vocab: word_occurences = input_vocab[word] match = reg.search(word) while match: # word changed if match.group(1) != '': subtoken_before = match.group(1)[:-1] added_pairs.append(((subtoken_before, concat_pair), word_occurences)) if pair != (subtoken_before, pair[0]): added_pairs.append(((subtoken_before, pair[0]), -word_occurences)) if match.group(3) != '': subtoken_after = match.group(3)[1:] added_pairs.append(((concat_pair, subtoken_after), word_occurences)) if pair != (pair[1], subtoken_after): added_pairs.append(((pair[1], subtoken_after), -word_occurences)) start, end = match.span(2) replacement = concat_pair word = word[:start] + replacement + word[end:] match = reg.search(word) output_vocab[word] = word_occurences return output_vocab, added_pairs
15226aa9ebd9cae73e5bd00b60cb1b3bbb5d8e07
8,823
def visualize_bbox_act(img, bboxes,labels, act_preds, classes=None,thickness=1, font_scale=0.4,show=False, wait_time=0,out_file=None): """Show the tracks with opencv.""" assert bboxes.ndim == 2 assert labels.ndim == 1 assert bboxes.shape[0] == labels.shape[0] assert bboxes.shape[1] == 5 if isinstance(img, str): img = mmcv.imread(img) img_shape = img.shape bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) text_width, text_height = 8, 15 for i, (bbox, label) in enumerate(zip(bboxes, labels), 0): x1, y1, x2, y2 = bbox[:4].astype(np.int32) score = float(bbox[-1]) # bbox bbox_color = random_color(label) bbox_color = [int(255 * _c) for _c in bbox_color][::-1] cv2.rectangle(img, (x1, y1), (x2, y2), bbox_color, thickness=thickness) # score text = '{:.02f}'.format(score) width = len(text) * text_width img[y1 - text_height:y1, x1:x1 + width, :] = bbox_color cv2.putText( img, text, (x1, y1 - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale, color=(0, 0, 0)) classes_color = random_color(label + 1) text = classes[label] width = len(text) * text_width img[y1:y1 + text_height, x1:x1 + width, :] = bbox_color cv2.putText(img,text, (x1, y1 + text_height - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale,color=classes_color) #background_color = random_color(label + 5) background_color = [255, 204, 153] if (act_preds is not None) and (len(bboxes)==len(labels)==len(act_preds)): for j, act_pred in enumerate(act_preds[i]): text = '{}: {:.02f}'.format(act_pred[0], act_pred[1]) width = len(text) * (text_width) img[y1+text_height*(j+2) :y1 + text_height*(j+3), x1:x1 + width, :] = background_color cv2.putText(img, text, (x1, y1 + text_height*(j+3) - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale, color=classes_color) if show: mmcv.imshow(img, wait_time=wait_time) if out_file is not None: mmcv.imwrite(img, out_file) return img
de67d5acba2b2994ec2b66ae4e7e0c58498ecebe
8,824
def calculate_similarity(subgraph_degrees): """ Given a list of subgraph degrees, this function calls the guidance function and calculates the similarity of a particular node with all it's non-connected nodes. :param subgraph_degrees: A list of lists containing the non connected node and degrees of common neighbours from the subgraph. :return: A dictionary of similarity of each non-connected node """ similarity_dict = [] for nc_node in subgraph_degrees: similarity = 0 for common_node in nc_node[1]: # Getting the degree of the common neighbour node from the original # graph original_degree = graph.degrees.filter("id = '{}'".format( common_node.id)).select("degree").collect() # Getting the degree of the common neighbour node from the subgraph sub_degree = common_node.degree # Calling the function to calculate guidance for the common # neighbour node guidance = get_guidance(sub_degree, original_degree[0].degree) # Adding the guidance to the similarity of the non-connected node similarity += guidance similarity_dict.append((nc_node[0], similarity)) return similarity_dict
cd4be7c405b2974f35db24dbd7d7db7bdf9a867e
8,825
def balance_thetas(theta_sets_types, theta_sets_values): """Repeats theta values such that all thetas lists have the same length """ n_sets = max([len(thetas) for thetas in theta_sets_types]) for i, (types, values) in enumerate(zip(theta_sets_types, theta_sets_values)): assert len(types) == len(values) n_sets_before = len(types) if n_sets_before != n_sets: theta_sets_types[i] = [types[j % n_sets_before] for j in range(n_sets)] theta_sets_values[i] = [values[j % n_sets_before] for j in range(n_sets)] return theta_sets_types, theta_sets_values
3ca7316a18d57c95adbfbdfec5f5be36f33dc0ea
8,826
def _format_weights(df, col, targets, regs): """ Reformat the edge table (target -> regulator) that's output by amusr into a pivoted table that the rest of the inferelator workflow can handle :param df: pd.DataFrame An edge table (regulator -> target) with columns containing model values :param col: Which column to pivot into values :param targets: list A list of target genes (the index of the output data) :param regs: list A list of regulators (the columns of the output data) :return out: pd.DataFrame [G x K] A [targets x regulators] dataframe pivoted from the edge dataframe """ # Make sure that the value column is all numeric df[col] = pd.to_numeric(df[col]) # Pivot an edge table into a matrix of values out = pd.pivot_table(df, index='target', columns='regulator', values=col, fill_value=0.) # Reindex to a [targets x regulators] dataframe and fill anything missing with 0s out = out.reindex(targets).reindex(regs, axis=1) out = out.fillna(value=0.) return out
b683846d9d059a39280077a714455718bd710670
8,827
def put_thread(req_thread: ReqThreadPut): """Put thread for video to DynamoDB""" try: input = thread_input.update_item(req_thread) res = table.update_item(**input) return res except ClientError as err: err_message = err.response["Error"]["Message"] raise HTTPException(status_code=404, detail=err_message) except BaseException as err: raise HTTPException(status_code=404, detail=str(err))
dba9fe080451a3cb68365824faf8dbccad03b1b6
8,828
def _get_or_create_campaign_team(name, owner, tasks, redudancy): """ Creates CampaignTeam instance, if it does not exist yet. Returns reference to CampaignTeam instance. """ # pylint: disable-msg=no-member _cteam = CampaignTeam.objects.get_or_create( teamName=name, owner=owner, requiredAnnotations=100, # (tasks * redudancy), # TODO: fix requiredHours=50, # (tasks * redudancy) / 2, createdBy=owner, ) _cteam[0].members.add(owner) _cteam[0].save() return _cteam[0]
4bb7980c621e48aa1eea3471004c627a8ea18e21
8,829
def check_method(adata): """Check that method output fits expected API.""" assert "labels_pred" in adata.obs return True
78c1a5181395f1675854333c30bf617c578cc1d4
8,830
def build_index_block(in_channels, out_channels, kernel_size, stride=2, padding=0, groups=1, norm_cfg=dict(type='BN'), use_nonlinear=False, expansion=1): """Build an conv block for IndexBlock. Args: in_channels (int): The input channels of the block. out_channels (int): The output channels of the block. kernel_size (int): The kernel size of the block. stride (int, optional): The stride of the block. Defaults to 2. padding (int, optional): The padding of the block. Defaults to 0. groups (int, optional): The groups of the block. Defaults to 1. norm_cfg (dict, optional): The norm config of the block. Defaults to dict(type='BN'). use_nonlinear (bool, optional): Whether use nonlinearty in the block. If true, a ConvModule with kernel size 1 will be appended and an ``ReLU6`` nonlinearty will be added to the origin ConvModule. Defaults to False. expansion (int, optional): Expandsion ratio of the middle channels. Effective when ``use_nonlinear`` is true. Defaults to 1. Returns: nn.Module: The built conv block. """ if use_nonlinear: return nn.Sequential( ConvModule( in_channels, in_channels * expansion, kernel_size, stride=stride, padding=padding, groups=groups, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU6')), ConvModule( in_channels * expansion, out_channels, 1, stride=1, padding=0, groups=groups, bias=False, norm_cfg=None, act_cfg=None)) else: return ConvModule( in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=False, norm_cfg=None, act_cfg=None)
03e15760146ce75f06de64ffd6886fe627afcf9b
8,831
def nodes(*paths, type=None): """Call node() on each given path and return the list of results. nodes('foo', 'bar', ...) is equivalent to [node('foo'), node('bar'), ...] """ return list(map(lambda p: node(p, type=type), paths))
d1ae50237a275c70b9b9e85684e898494fc6c954
8,832
def GetCodeBucket(app, project): """Gets a bucket reference for a Cloud Build. Args: app: App resource for this project project: str, The name of the current project. Returns: storage_util.BucketReference, The bucket to use. """ # Attempt to retrieve the default appspot bucket, if one can be created. log.debug('No bucket specified, retrieving default bucket.') if not app.codeBucket: raise exceptions.DefaultBucketAccessError(project) return storage_util.BucketReference.FromBucketUrl(app.codeBucket)
603126fc33dedb941407a66618748b1d58b91570
8,833
def parse_rule(parameter_string): """Parse a parameter string into its constituent name, type, and pattern For example: `parse_parameter_string('<param_one:[A-z]>')` -> ('param_one', str, '[A-z]') :param parameter_string: String to parse :return: tuple containing (parameter_name, parameter_type, parameter_pattern) """ # We could receive NAME or NAME:PATTERN if str(parameter_string).startswith('/'): parameter_string = parameter_string[1:] parameter_string = str(parameter_string).strip('<>') name = parameter_string pattern = 'string' if ':' in parameter_string: name, pattern = parameter_string.split(':', 1) default = (str, pattern) # Pull from pre-configured types _type, pattern = REGEX_TYPES.get(pattern, default) return name, _type, pattern
881e219ab59c801da078e91cf82ccb15caa7798d
8,834
def plan(): """ 改进方案 :return: """ return render_template('plan.htm')
135d8b003adbe8f6311f781f0d4ff7ed206a81d6
8,835
def extract_traceback(notebook): """ Extracts information about an error from the notebook. Parameters ---------- notebook: :class:`nbformat.notebooknode.NotebookNode` Executed notebook to find an error traceback. Returns ------- bool Whether the executed notebook has an error traceback. int or None Number of a cell with a traceback. If None, then the notebook doesn't contain an error traceback. str Error traceback if exists. """ for cell in notebook['cells']: # Find a cell output with a traceback and extract the traceback outputs = cell.get('outputs', []) for output in outputs: traceback = output.get('traceback', []) if traceback: traceback = '\n'.join(traceback) return True, cell['execution_count'], traceback return False, None, ""
9af26f973e6810936eaa68058efcdb7bc145803b
8,836
def get_log() -> str: """get_log() -> str (internal) """ return str()
3e2d7bf82128afc664eded15e6c11f1ed9da45e7
8,837
def start_server(self, parameters): # pragma: no cover """adds the server start to celery's queue Args: parameters(dict): The POST JSON parameters """ self.update_state(state=CeleryStates.started) session = ServerSession(parameters) return session()
c20e2233ee7c1e6b1718b0c4bfbb2b9b5f52e0e1
8,838
def generate_config(context): """ Entry point for the deployment resources. """ properties = context.properties name = properties.get('name', context.env['name']) project_id = properties.get('project', context.env['project']) bgp = properties.get('bgp', {'asn': properties.get('asn')}) router = { 'name': context.env['name'], # https://cloud.google.com/compute/docs/reference/rest/v1/routers 'type': 'gcp-types/compute-v1:routers', 'properties': { 'name': name, 'project': project_id, 'region': properties['region'], 'bgp': bgp, 'network': properties.get('networkURL', generate_network_uri( project_id, properties.get('network', ''))), } } optional_properties = [ 'description', 'bgpPeers', 'interfaces', 'nats', ] for prop in optional_properties: append_optional_property(router, properties, prop) return { 'resources': [router], 'outputs': [ { 'name': 'name', 'value': name }, { 'name': 'selfLink', 'value': '$(ref.' + context.env['name'] + '.selfLink)' }, { 'name': 'creationTimestamp', 'value': '$(ref.' + context.env['name'] + '.creationTimestamp)' } ] }
506c7ded703b8c00fb9a2a6d7645e9e5d0da6905
8,839
import time def cachedmethod(timeout): """ Function decorator to enable caching for instance methods. """ def _cached(func): if not(hasattr(func, 'expires')): func.expires = {} func.cache = {} def __cached(self, *args, **kwargs): if(timeout and func.expires.get(repr(self), 0) < time.time()): if(repr(self) in func.cache): del func.cache[repr(self)] if(repr(self) in func.cache): return func.cache[repr(self)] result = func(self, *args, **kwargs) if(result): func.cache[repr(self)] = result func.expires[repr(self)] = time.time() + timeout return result return __cached try: # see if it's an int int(timeout) except TypeError: func = timeout timeout = 0 return _cached(func) return _cached
dd8999a60aa6d92e6b442c7c0661d88cd0e8590e
8,840
def __build_pyramid(models, features): """Applies all submodels to each FPN level. Args: models (list): List of submodels to run on each pyramid level (by default only regression, classifcation). features (list): The FPN features. Returns: list: A list of tensors, one for each submodel. """ return [__build_model_pyramid(n, m, features) for n, m in models]
269be978f9aafbdc36b1c9d726171785a85f54a4
8,841
def get_ap_list(): """ Method to return list of aps present in the network """ return jsonify_params( CELLULAR_NETWORK.ap_list )
da0777219025499603425f3147b2897d2bce2da6
8,842
def _merge_url_rule(rule_before, rule_after): """ Merges two url rule parts. Parameters ---------- rule_before : `None` or `tuple` of `tuple` (`int`, `str`) First url part if any to join `rule_after` to. rule_after : `None` or `tuple` of `tuple` (`int`, `str`) Second url part what's start is extended by `rule_before`. Returns ------- merged_rule : `None` or `tuple` of `tuple` (`int`, `str`) The merged rule. """ if rule_before is None: return rule_after if rule_after is None: return rule_before if rule_after[0] == DUMMY_RULE_PART: rule_after = rule_after[1:] return (*rule_before, *rule_after)
0682734a82b227f746325363652d1c3f378f2e51
8,843
import argparse def parse_options(args): """ Parse commandline arguments into options for Monitor :param args: :return: """ parser = argparse.ArgumentParser() parser.add_argument( "--tcp", required=True, action="append", help="TCP/IP address to monitor, e.g. google.com:80. For best results" " use multiple addresses." ) parser.add_argument("--logfile", default="connection.log", help="Where to store the connection quality data") parser.add_argument("--interval", default=30.0, type=float, help="How many seconds between checks") parser.add_argument("--timeout", default=3.0, type=float, help="How many seconds to wait for connection") parser.add_argument("--quiet", default=False, action="store_true", help="Do not output log data to screen") return parser.parse_args(args)
adda9497c230b885887b8c21f8e1adfd8bdd2376
8,844
def create_graphic_model(nodes, edges, gtype): """ Create a graphic model given nodes and edges Parameters ---------- nodes : dict for each node {key, text, math} edges : dict for each edge {key, text, math} gtype : str [default="text"] "text" for a verbose version, "math" for a compact version """ mod = Digraph() if gtype == "math": tindx = 1 else: tindx = 0 for ckey in nodes.keys(): if ckey == "Like": cstyle = "filled" else: cstyle = None mod.node(ckey, nodes[ckey][tindx], style=cstyle) for ckey in edges.keys(): for cval in np.atleast_1d(edges[ckey]): mod.edge(ckey, cval) return mod
028c740cc7fa003642815a8ec0f27154fc6e0dab
8,845
def zero_cross_bounds(arr, dim, num_cross): """Find the values bounding an array's zero crossing.""" sign_switch = np.sign(arr).diff(dim) switch_val = arr[dim].where(sign_switch, drop=True)[num_cross] lower_bound = max(0.999*switch_val, np.min(arr[dim])) upper_bound = min(1.001*switch_val, np.max(arr[dim])) return arr.sel(**{dim: [lower_bound, upper_bound], "method": "backfill"})
52d3431c32f61f47223fdccf4c5a85a92589534f
8,846
def remove_tseqs(t: ST_Type) -> ST_Type: """ Get just the sseqs and the non-nested types, removing the tseqs """ if type(t) == ST_SSeq or type(t) == ST_SSeq_Tuple: inner_tseqs_removed = remove_tseqs(t.t) return replace(t, t=inner_tseqs_removed) elif is_nested(t): return remove_tseqs(t.t) else: return t
323f9cd3c007c1decf11653091f641dc453d32cb
8,847
def prod_cart(in_list_1: list, in_list_2: list) -> list: """ Compute the cartesian product of two list :param in_list_1: the first list to be evaluated :param in_list_2: the second list to be evaluated :return: the prodotto cartesiano result as [[x,y],..] """ _list = [] for element_1 in in_list_1: for element_2 in in_list_2: _list.append([element_1,element_2]) return _list
9fdbfc558f5ec3b11c78535b9125e0a1c293035e
8,848
from .esri_basemap import esrimap def classFactory(iface): # pylint: disable=invalid-name """Load esrimap class from file esrimap. :param iface: A QGIS interface instance. :type iface: QgsInterface """ # return esrimap(iface)
3e067a97cba21a07c818077e4207cd8e337143d9
8,849
def gpib_open(name): """ Start a device session. Returns a unique integer for the instrument at the specified GPIB address. For example:: >>> gpib_open(lan[158.154.1.110]:19) 4 @param name : LAN/GPIB address of the device @type name : str @return: int """ (devtype,devID) = name.split() address = eval(devtype)[devID]['addr'] return _open(address)
fa9e87a3873248866586758c0b0f370a3ad29e6e
8,850
def myjobs_view(request): """ Renderbox view :param request: :return: """ return render(request, 'renderbox/myjobs.html')
ac0ffbc92a33657a165beb5e12905e3dc495c943
8,851
import functools import sys def set_task_payload(func): """Set TASK_PAYLOAD and unset TASK_PAYLOAD.""" @functools.wraps(func) def wrapper(task): """Wrapper.""" environment.set_value('TASK_PAYLOAD', task.payload()) try: return func(task) except: # Truly catch *all* exceptions. e = sys.exc_info()[1] e.extras = {'task_payload': environment.get_value('TASK_PAYLOAD')} raise finally: environment.remove_key('TASK_PAYLOAD') return wrapper
a1ba88a6bf5df872eab712c6ffe52be2c2fd3283
8,852
def _match_contact(filter_criteria): """ This default matching strategy function will attempt to get a single result for the specified criteria. It will fail with an `unmatched` result if there are no matching contacts. It will fail with a `multiple_matches` result if there are multiple matches for this criteria. """ contact = None try: contact = get_queryset_object(Contact.objects.all(), **filter_criteria) contact_matching_status = ContactMatchingStatus.matched except Contact.DoesNotExist: contact_matching_status = ContactMatchingStatus.unmatched except Contact.MultipleObjectsReturned: contact_matching_status = ContactMatchingStatus.multiple_matches return contact, contact_matching_status
088199ac26dc226e1412b43ed0c9b380c669c64e
8,853
from typing import Generator def get_objects_dictionary(): """ creates a dictionary with the types and the circuit objects :return: Dictionary instance """ object_types = {'bus': Bus(), 'load': Load(), 'static_generator': StaticGenerator(), 'battery': Battery(), 'generator': Generator(), 'shunt': Shunt(), 'wires': Wire(), 'overhead_line_types': Tower(), 'underground_cable_types': UndergroundLineType(), 'sequence_line_types': SequenceLineType(), 'transformer_types': TransformerType(), 'branch': Branch(), 'transformer2w': Transformer2W(), 'line': Line(), 'dc_line': DcLine(None, None), 'hvdc': HvdcLine(), 'vsc': VSC(Bus(), Bus(is_dc=True)), } return object_types
bd82c2dc30877f841e4275aafbe054849b6f6ba2
8,854
def create_stripe_onboarding_link(request, stripe_id=None,): """Creates stripe connect onboarding link by calling Stripe API.""" account_links = stripe.AccountLink.create( account=stripe_id, return_url=request.build_absolute_uri( reverse("users:stripe_callback") ), refresh_url=request.build_absolute_uri( reverse("users:stripe_authorize") ), type="account_onboarding", ) return account_links
1dd1e7c50645fb5eaa36d7426abd5cff198e1610
8,855
def add_scheme_if_missing(url): """ >>> add_scheme_if_missing("example.org") 'http://example.org' >>> add_scheme_if_missing("https://example.org") 'https://example.org' """ if "//" not in url: url = "http://%s" % url return url
97a33ce1f60ab67e6a807ef1bd1d95250b5d18c6
8,856
from typing import Dict def _extract_assembly_information(job_context: Dict) -> Dict: """Determine the Ensembl assembly version and name used for this index. Ensembl will periodically release updated versions of the assemblies which are where the input files for this processor comes from. All divisions other than the main one have identical release versions, but we don't know which division these files came from so we can't just hit thier API again. Therefore, look at the URL we used to get the files because it contains the assembly version and name. I'll admit this isn't the most elegant solution, but since the transcriptome index's only database model is the OriginalFiles until processing is complete, there's no other way to pass this information through to this processor without modifying the OriginalFile model. The URL path we're attempting follows this pattern (defined in the surveyor) ftp://ftp.{url_root}/gtf/{species_sub_dir}/{filename_species}.{assembly_name}.{assembly_version}.gtf.gz and we are attempting to extract {assembly_version} and {assembly_name}. """ original_files = job_context["original_files"] for og_file in original_files: if ".gtf.gz" in og_file.source_filename: extensionless_url = og_file.source_url[:-7] version_start_index = extensionless_url.rfind(".") + 1 job_context["assembly_version"] = extensionless_url[version_start_index:] # Decrement the index to skip the period. versionless_url = extensionless_url[:version_start_index-1] assembly_name_start_index = versionless_url.rfind(".") + 1 job_context["assembly_name"] = versionless_url[assembly_name_start_index:] return job_context
b78513b826c0a12bf87563095e33320aee328b76
8,857
def fixture_circle_2() -> Circle: """Return an example circle.""" return Circle(Point(0.0, 0.0), 1.0)
4040cb356a1e09cfe83280711d93a43b9352ff66
8,858
from warnings import warn import logging from fparser import api from loopy.frontend.fortran.translator import F2LoopyTranslator from loopy.transform.callable import merge from loopy.frontend.fortran.translator import specialize_fortran_division def parse_fortran(source, filename="<floopy code>", free_form=None, strict=None, seq_dependencies=None, auto_dependencies=None, target=None): """ :returns: a :class:`loopy.TranslationUnit` """ parse_plog = ProcessLogger(logger, "parsing fortran file '%s'" % filename) if seq_dependencies is not None and auto_dependencies is not None: raise TypeError( "may not specify both seq_dependencies and auto_dependencies") if auto_dependencies is not None: warn("auto_dependencies is deprecated, use seq_dependencies instead", DeprecationWarning, stacklevel=2) seq_dependencies = auto_dependencies if seq_dependencies is None: seq_dependencies = True if free_form is None: free_form = True if strict is None: strict = True console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter("%(name)-12s: %(levelname)-8s %(message)s") console.setFormatter(formatter) logging.getLogger("fparser").addHandler(console) tree = api.parse(source, isfree=free_form, isstrict=strict, analyze=False, ignore_comments=False) if tree is None: raise LoopyError("Fortran parser was unhappy with source code " "and returned invalid data (Sorry!)") f2loopy = F2LoopyTranslator(filename, target=target) f2loopy(tree) kernels = f2loopy.make_kernels(seq_dependencies=seq_dependencies) prog = merge(kernels) all_kernels = [clbl.subkernel for clbl in prog.callables_table.values()] for knl in all_kernels: prog.with_kernel(_add_assignees_to_calls(knl, all_kernels)) if len(all_kernels) == 1: # guesssing in the case of only one function prog = prog.with_entrypoints(all_kernels[0].name) prog = specialize_fortran_division(prog) parse_plog.done() return prog
69d85ba20fd429598d3441297a89a12933f69925
8,859
def compute_sources(radius, evolved_vars): """ Computes source terms for the symmetry. """ mass_density = evolved_vars[0] momentum_density = evolved_vars[1] energy_density = evolved_vars[2] factor = -_symmetry_alpha / radius pressure = compute_pressure(mass_density, momentum_density, energy_density) return (factor * momentum_density, factor * momentum_density**2 / mass_density, factor * (energy_density + pressure) * momentum_density / mass_density)
f2c7c68f3d00a063f9a29b220f98f71c6bb02aef
8,860
def average_pq(ps, qs): """ average the multiple position and quaternion array Args: ps (np.array): multiple position array of shape Nx3 qs (np.array): multiple quaternion array of shape Nx4 Returns: p_mean (np.array): averaged position array q_mean (np.array): averaged quaternion array """ p_average = np.mean(np.asarray(ps), axis=0) q_average = average_q(np.asarray(qs)) return p_average, q_average
b7064d75f07361d60375de1dad91e0139533b042
8,861
def logobase(**kwargs): """Create a PyGraphviz graph for a logo.""" ag = pygraphviz.AGraph(bgcolor='#D0D0D0', strict=False, directed=True, ranksep=0.3, **kwargs) ag.edge_attr['penwidth'] = 1.4 ag.edge_attr['arrowsize'] = 0.8 return ag
60772de3f3b33f58559ecfd3293cffc26cfe8e70
8,862
import torch def integral_raycasting( pixels: Tensor, mu: Tensor, rho: Tensor, lambd: Tensor, appearance: Tensor, background_appearance: Tensor, K: Tensor, dist_coef: Tensor = None, alpha: float = 2.5e-2, beta: float = 2e0, eps: float = 1e-8, ) -> Tensor: """ :param pixels: [H, W, 3, 1] :param mu: [*, N, 3, 1] :param rho: [*, N, 3, 3] :param lambd: [*, N, 3, 1] :param appearance: [*, N, 3] :param background_appearance: [*, 1, 3] :param K: [*, 3, 3] :param dist_coef: [*, D] :param alpha: :param beta: :param function: :param eps: :return: """ rays = pixel_grid_to_ray_grid( xyz=pixels, K=K, dist_coef=dist_coef, ) lambd, alpha = invert_lambd( lambd=lambd, alpha=alpha, eps=eps, ) rays_sigma_rays, mu_sigma_mu, rays_sigma_mu = compute_quantities( rays=rays, mu=mu, rho=rho, lambd=lambd, ) z = optimal_z(rays_sigma_mu=rays_sigma_mu, rays_sigma_rays=rays_sigma_rays, eps=eps) z_background = beta * max_z(z=z) weights = density(x=z) * integral( rays_sigma_rays=rays_sigma_rays, mu_sigma_mu=mu_sigma_mu, rays_sigma_mu=rays_sigma_mu, alpha=alpha, eps=eps, ) weight_background = density(x=z_background) * background_integral( z=z_background, alpha=alpha, ) shape = weights.shape[:-1] + weight_background.shape[-1:] weight_background = weight_background.expand(shape) weights = torch.cat([weights, weight_background], dim=-1) weights = normalize_weights(weights=weights, eps=eps) appearance = torch.cat([appearance, background_appearance], dim=-2) image = splat_image(weights=weights, appearance=appearance) return image
fc5165c04732ea021d105df5d5f997524b037abd
8,863
async def cors_handler(request, handler): """Middleware to add CORS response headers """ response = await handler(request) response.headers['Access-Control-Allow-Origin'] = '*' return response
c9f33261b1fb2e6dc3ab3139e657106a94c5bfd1
8,864
def validate_image(task: ExternalTask): """ To simulate BPMN/Failure/Success, this handler uses image name variable (to be passed when launching the process) """ log_context = {"WORKER_ID": task.get_worker_id(), "TASK_ID": task.get_task_id(), "TOPIC": task.get_topic_name()} log_with_context("executing validate_image", log_context) img_name = task.get_variable('imgName') if "poor" in img_name: return task.bpmn_error("POOR_QUALITY_IMAGE", "Image quality is bad", {"img_rejection_code": "POOR_QUALITY_CODE_XX", "img_rejection_reason": f"Image quality must be at least GOOD"}) elif "jpg" in img_name: return task.complete({"img_approved": True}) elif "corrupt" in img_name: return task.failure("Cannot validate image", "image is corrupted", 0, default_config.get("retryTimeout")) else: return task.bpmn_error("INVALID_IMAGE", "Image extension must be jpg", {"img_rejection_code": "INVALID_IMG_NAME", "img_rejection_reason": f"Image name {img_name} is invalid"})
97413656181bfc4480dc7b2a195713e8124d44f2
8,865
def simulate_patch(app, path, **kwargs): """Simulates a PATCH request to a WSGI application. Equivalent to:: simulate_request(app, 'PATCH', path, **kwargs) Args: app (callable): The WSGI application to call path (str): The URL path to request Keyword Args: params (dict): A dictionary of query string parameters, where each key is a parameter name, and each value is either a ``str`` or something that can be converted into a ``str``, or a list of such values. If a ``list``, the value will be converted to a comma-delimited string of values (e.g., 'thing=1,2,3'). params_csv (bool): Set to ``False`` to encode list values in query string params by specifying multiple instances of the parameter (e.g., 'thing=1&thing=2&thing=3'). Otherwise, parameters will be encoded as comma-separated values (e.g., 'thing=1,2,3'). Defaults to ``True``. headers (dict): Additional headers to include in the request (default: ``None``) body (str): A string to send as the body of the request. Accepts both byte strings and Unicode strings (default: ``None``). If a Unicode string is provided, it will be encoded as UTF-8 in the request. json(JSON serializable): A JSON document to serialize as the body of the request (default: ``None``). If specified, overrides `body` and the Content-Type header in `headers`. protocol: The protocol to use for the URL scheme (default: 'http') host(str): A string to use for the hostname part of the fully qualified request URL (default: 'falconframework.org') remote_addr (str): A string to use as the remote IP address for the request (default: '127.0.0.1') extras (dict): Additional CGI variables to add to the WSGI ``environ`` dictionary for the request (default: ``None``) """ return simulate_request(app, 'PATCH', path, **kwargs)
48fda74dc2765e3a281a71c7ba6f4144e9a258cd
8,866
def minimum_image_box(sizes): """Creates a distance wrapper using the minimum image convention Arguments: sizes (array-like of float): box sizes """ def _box(sizes, distance_vectors): """A minimum image wrapper for distances""" shift = sizes[None, None, :] * np.round(distance_vectors / sizes[None, None, :]) distance_vectors -= shift return distance_vectors return partial(_box, np.array(sizes))
5d26092a988a011e9fb1967a74c3ceec935f5b1b
8,867
def mlrPredict(W, data): """ mlrObjFunction predicts the label of data given the data and parameter W of Logistic Regression Input: W: the matrix of weight of size (D + 1) x 10. Each column is the weight vector of a Logistic Regression classifier. X: the data matrix of size N x D Output: label: vector of size N x 1 representing the predicted label of corresponding feature vector given in data matrix """ label = np.zeros((data.shape[0], 1)) ################## # YOUR CODE HERE # ################## # HINT: Do not forget to add the bias term to your input data x = np.hstack((np.ones((data.shape[0], 1)),data)) label = (np.argmax((np.exp(np.dot(x, W)) / np.sum(np.exp(np.dot(x, W)))), axis=1)).reshape((data.shape[0],1)) return label
57542e5b54ddd223f4cbcae7adf932e85c4ffeeb
8,868
def calc_mean_score(movies): """Helper method to calculate mean of list of Movie namedtuples, round the mean to 1 decimal place""" return round(sum([movie.score for movie in movies]) / len(movies), 1)
ccf52f813091d1c907470996c62dafa61303e245
8,869
import hmac import hashlib def get_proxy_signature(query_dict, secret): """ Calculate the signature of the given query dict as per Shopify's documentation for proxy requests. See: http://docs.shopify.com/api/tutorials/application-proxies#security """ # Sort and combine query parameters into a single string. sorted_params = '' for key in sorted(query_dict.keys()): sorted_params += "{0}={1}".format(key, ",".join(query_dict.getlist(key))) signature = hmac.new(secret.encode('utf-8'), sorted_params.encode('utf-8'), hashlib.sha256) return signature.hexdigest()
c234f18c1d44a936c4844ae2fe1b912a624eef61
8,870
def candlestick_echarts(data_frame: pd.DataFrame, time_field: str = 'time', open_field: str = "open", high_field: str = 'high', low_field: str = 'low', close_field: str = 'close', volume_field: str = 'volume', mas: list = [5, 10, 30], log_y: bool = True, title: str = "", width: str = "100%", height: str = "600px", left_padding: str = '5%', right_padding: str = '3%') -> Echarts: """ 绘制K线 :param data_frame: :param time_field: 时间列名, 如果指定的列不存在,使用index作为time :param open_field: open列名 :param high_field: high列名 :param low_field: low列名 :param close_field: close列名 :param volume_field: volume列名 :param mas: 均线组 :param log_y: y轴 log分布 底为1.1 一个格子对应10% :param title: 可选标题 :param width: 输出div的宽度 支持像素和百分比 比如800px/100% :param height: 输出div的高度 支持像素和百分比 比如800px/100% :param left_padding: 左侧padding宽度 :param right_padding: 右侧padding宽度 :return: """ df = data_frame.copy() if time_field not in data_frame.columns: # 使用index作为时间 df[time_field] = df.index df[close_field] = df[close_field].fillna(method="ffill") df[open_field] = df[open_field].fillna(df[close_field]) df[high_field] = df[high_field].fillna(df[close_field]) df[low_field] = df[low_field].fillna(df[close_field]) df[volume_field] = df[volume_field].fillna(0) volumes = (df[volume_field]).round(2).tolist() vol_filter = (df[volume_field]).quantile([0.05, 0.95]).values bar_items = [({"value": vol} if vol >= vol_filter[0] and vol <= vol_filter[1] else ( {"value": vol, "itemStyle": {"color": "red"}} if vol > vol_filter[1] else {"value": vol, "itemStyle": {"color": "green"}})) for vol in volumes] options = { 'animation': False, 'title': {'text': title}, 'legend': {'top': 10, 'left': 'center', 'data': [title]}, 'tooltip': { 'trigger': 'axis', 'axisPointer': {'type': 'cross'}, 'borderWidth': 1, 'borderColor': '#ccc', 'padding': 10, 'formatter': Js(""" function(params){ var dt = params[0]['axisValue']; var labels = []; labels.push('<b><span>时间:&nbsp;</span></b>' + dt + '<br/>'); params.sort(function(a, b) { if (a.seriesName < b.seriesName ) {return -1;} else if (a.seriesName > b.seriesName ) {return 1;} else{ return 0;} }); for (let i = 0; i < params.length; i++) { const param = params[i]; var label=["<b><span>"+param['seriesName']+"("+param['seriesType']+"):&nbsp;</span></b>"]; var dimensionNames=param["dimensionNames"]; if (typeof(param['value'])=='object' && dimensionNames.length==param['data'].length){ label.push("<br/>"); for (let j = 1; j <dimensionNames.length; j++) { var value= param['data'][j]; if (typeof(value)=='number'){ if (value%1==0 || value>100000){ label.push("<span>"+dimensionNames[j]+':&nbsp;'+value.toFixed(0)+"</span><br/>"); }else{ label.push("<span>"+dimensionNames[j]+':&nbsp;'+value.toFixed(2)+"</span><br/>"); } }else{ label.push("<div style='max-width:15em;word-break:break-all;white-space: normal;'>"+dimensionNames[j]+':&nbsp;'+value+"</div>"); } } }else if(param['seriesType']=="candlestick"){ label.push("<br/>"); label.push("<span>open:&nbsp;"+param['data'][1].toFixed(2)+"</span><br/>"); label.push("<span>close:&nbsp;"+param['data'][2].toFixed(2)+"</span><br/>"); label.push("<span>high:&nbsp;"+param['data'][4].toFixed(2)+"</span><br/>"); label.push("<span>low:&nbsp;"+param['data'][3].toFixed(2)+"</span><br/>"); }else if(typeof(param['value'])=='number'){ if (param['value']%1==0){ label.push("<span>"+param['value'].toFixed(0)+"</span><br/>"); }else{ label.push("<span>"+param['value'].toFixed(2)+"</span><br/>"); } }else if(param['value']){ label.push("<div style='max-width:15em;word-break:break-all;white-space: normal;'>"+value+"</div>"); }else{ label.push("<br/>"); } var cardStr= label.join(''); labels.push(cardStr); } return labels.join(''); }"""), 'textStyle': {'color': '#000'}, 'position': Js(""" function (pos, params, el, elRect, size){ var obj = {top: 10}; obj[['left', 'right'][+(pos[0] < size.viewSize[0] / 2)]] = 30; return obj; } """) }, 'axisPointer': { 'link': {'xAxisIndex': 'all'}, 'label': {'backgroundColor': '#777'} }, 'grid': [ {'left': left_padding, 'right': right_padding, 'height': '70%'}, {'left': left_padding, 'right': right_padding, 'top': '71%', 'height': '16%'} ], 'xAxis': [ { 'type': 'category', 'data': df[time_field].tolist(), 'scale': True, 'boundaryGap': False, 'axisLine': {'show': False}, 'axisLabel': {'show': False}, 'axisTick': {'show': False}, 'splitLine': {'show': True}, 'splitNumber': 20, 'min': 'dataMin', 'max': 'dataMax', 'axisPointer': { 'z': 100 } }, { 'type': 'category', 'gridIndex': 1, 'data': df[time_field].tolist(), 'scale': True, 'boundaryGap': False, 'axisLine': {'onZero': False, 'show': True}, 'axisLine': {'show': True}, 'axisLabel': {'show': True}, 'axisTick': {'show': True}, 'splitLine': {'show': True}, 'axisLabel': {'show': True}, 'splitNumber': 20, 'min': 'dataMin', 'max': 'dataMax' } ], 'yAxis': [ { 'scale': True, 'type': 'log' if log_y else 'value', 'logBase': 1.1, 'splitNumber': 10, 'axisLabel': {'show': True, 'formatter': Js(""" function(value,index){ return value.toFixed(2); } """)}, 'axisLine': {'show': False}, 'axisTick': {'show': True}, 'splitLine': {'show': True} }, { 'scale': True, 'gridIndex': 1, 'splitNumber': 2, 'axisLabel': {'show': True, 'formatter': Js(""" function(value,index){ var si = [ { value: 1, symbol: "" }, { value: 1E3, symbol: "K" }, { value: 1E6, symbol: "M" }, { value: 1E9, symbol: "G" }, { value: 1E12, symbol: "T" }, { value: 1E15, symbol: "P" }, { value: 1E18, symbol: "E" } ]; var rx = /\.0+$|(\.[0-9]*[1-9])0+$/; var i; for (i = si.length - 1; i > 0; i--) { if (value >= si[i].value) { break; } } return (value / si[i].value).toFixed(2).replace(rx, "$1") + si[i].symbol; } """) }, 'axisLine': {'show': False}, 'axisTick': {'show': False}, 'splitLine': {'show': False} } ], 'dataZoom': [ { 'type': 'inside', 'xAxisIndex': [0, 1], 'start': 0, 'end': 100 } ], 'series': [ { 'name': title, 'type': 'candlestick', 'data': df[[open_field, close_field, low_field, high_field]].values.tolist(), 'emphasis': { 'itemStyle': { 'borderColor': "#333", 'borderWidth': 1, 'shadowColor': 'rgba(0, 0, 0, 0.5)', 'shadowBlur': 15 } } }, { 'name': 'Volume', 'type': 'bar', 'xAxisIndex': 1, 'yAxisIndex': 1, 'data': bar_items, 'emphasis': { 'itemStyle': { 'borderColor': "#333", 'borderWidth': 1, 'shadowColor': 'rgba(0, 0, 0, 0.5)', 'shadowBlur': 15 } } } ] } for ma_len in mas: name = "MA" + str(ma_len) df[name] = df[close_field].rolling(ma_len).mean().round(2) series_ma = { 'name': name, 'type': 'line', 'data': df[name].tolist(), 'smooth': True, 'showSymbol': False, 'lineStyle': {'opacity': 0.5} } options['series'].append(series_ma) options['legend']['data'].append(name) return Echarts(options=options, width=width, height=height)
f8bc3d1ef876a5df0f2fdbdf7dbf97b039a54cc4
8,871
def select_sounder_hac(path_sounder, sounder): """ Donne les indices pour un sondeur (sounder) dans un hac (path sounder), et retourne les index de sondeur et de transducer correspondant inputs: path_sounder: path du hac à analyser sounder: nom du transducer outputs: index du sondeur et du transducer """ list_sounder = util.hac_sounder_descr(FileName=path_sounder) list_st = [ [ list_sounder.GetSounder(isdr).GetTransducer(itsd).m_transName for itsd in range(list_sounder.GetSounder(isdr).m_numberOfTransducer) ] for isdr in range(list_sounder.GetNbSounder()) ] for i in range(len(list_st)): for j in range(len(list_st[i])): if list_st[i][j] == sounder: return i, j return None
2f054ef6a8e3a64f0910e5eb4bce9407befc4b33
8,872
def upvote_checklist(request, checklist_id): # for "messages", refer https://stackoverflow.com/a/61603003/6543250 """if user cannot retract upvote, then this code be uncommented if Upvote.objects.filter(user=User.objects.filter(username=username).first(), checklist=Checklist.objects.get(id=checklist_id)): msg = 'You have already upvoted the checklist once!' messages.info(request, msg) """ """ Note: notifications recorded only when a user upvotes the checklist not downvote in order to promote healthy behaviour and not let the author inundate with downvote notifs in case some user decides to harass the author. """ if Checklist.objects.get(id=checklist_id).author == request.user: msg = "Action Denied! You cannot upvote your own checklist!" messages.error(request, msg) else: # remove user's upvote if he has already upvoted obj = Upvote.objects.filter( user=request.user, checklist=Checklist.objects.get(id=checklist_id) ) msg = "" if obj: obj.delete() msg = "Upvote retracted!" else: upvote_obj = Upvote( user=request.user, checklist=Checklist.objects.get(id=checklist_id), ) upvote_obj.save() msg = "Checklist upvoted!" # also update notifications table so relevant notif can be shown to author fromUser = request.user toUser = Checklist.objects.get(id=checklist_id).author Notification( fromUser=fromUser, toUser=toUser, notif_type=1, checklist=Checklist.objects.get(id=checklist_id), ).save() messages.success(request, msg) if request.META.get("HTTP_REFERER"): if "login" in request.META.get("HTTP_REFERER") and "next" in request.META.get( "HTTP_REFERER" ): return redirect("checklist-home") # redirect to home url; simply reload the page # return redirect('checklist-home') return redirect(request.META.get("HTTP_REFERER", "checklist-home"))
559f9e0341652391b824b215448f87fa3250baae
8,873
def index(request): """查询页面""" ctx = {} Advert_1 = Advert.objects.get(advert_num=1) # 广告1 Advert_2 = Advert.objects.get(advert_num=2) # 广告2 ctx['Adverturl1'] = Advert_1.advert_url ctx['Adverturl2'] = Advert_2.advert_url ctx['Advertimg1'] = '/advert/'+ str(Advert_1.img) ctx['Advertimg2'] = '/advert/'+ str(Advert_2.img) return render(request, 'srsys/index.html',ctx)
91e7a771273ed262e7025bc289defe7f6a52047e
8,874
def load_amazon(): """ """ df = pd.read_csv('data/amazon.txt', header=None, delimiter='\t') X_data = df[0].tolist() y_data = df[1].tolist() print 'Preprocessing...' vectorizer = TfidfVectorizer(strip_accents='unicode', lowercase=True, stop_words='english', ngram_range=(1, 2), max_df=0.5, min_df=5, max_features=20000, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False) vectorizer.fit(X_data) X_data = vectorizer.transform(X_data) X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.1, random_state=0) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=0) return X_train, y_train, X_val, y_val, X_test, y_test
8e11cf91d616f7dfe17e26da2fcf43d82ea26f80
8,875
def get_switch_filters( switch_id, exception_when_missing=True, user=None, session=None, **kwargs ): """get filters of a switch.""" return _get_switch( switch_id, session=session, exception_when_missing=exception_when_missing )
db270f761fcdfb40a9d2970923b4643ebecf7cc3
8,876
def generalized_zielonka_with_psolC(g): """ Zielonka's algorithm with psolC partial solver. :param g: the game to solve. :return: the solution in the following format : (W_0, W_1). """ return generalized_parity_solver_with_partial(g, psolC_gen.psolC_generalized)
1ac4a81df393970c16a5f303155c89cf74db34ab
8,877
import seaborn as sns import matplotlib.pyplot as plt def plot_matrix(mat, figsize=(7, 4), draw_cbar=True, vmin=0, vmax=1, cmap=None): """ wrapper for plotting a matrix of probabilities. attribues (optional) are used as xlabels """ if np.any(mat < 0): print('rescaling matrix to probabilities') mat = .5 * (mat + 1) try: if cmap is None: cmap = sns.cubehelix_palette( 8, start=2, dark=0, light=1, reverse=False, as_cmap=True) cmap = sns.cubehelix_palette( 4, start=2, dark=0, light=1, reverse=False, as_cmap=True) sns.set_style("whitegrid", {'axes.grid': False}) except: cmap = 'gray_r' fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) cax = ax.imshow(mat, aspect='auto', cmap=cmap, vmin=vmin, vmax=vmax, origin='upper') if draw_cbar is True: fig.colorbar(cax, orientation='vertical') return fig, ax # ax.set_yticks([])
a84948730816e5c59654fa6d0eeab773218fba61
8,878
from datetime import datetime def read_properties_core(xml_source): """Read assorted file properties.""" properties = DocumentProperties() root = fromstring(xml_source) creator_node = root.find(QName(NAMESPACES['dc'], 'creator').text) if creator_node is not None: properties.creator = creator_node.text else: properties.creator = '' last_modified_by_node = root.find( QName(NAMESPACES['cp'], 'lastModifiedBy').text) if last_modified_by_node is not None: properties.last_modified_by = last_modified_by_node.text else: properties.last_modified_by = '' created_node = root.find(QName(NAMESPACES['dcterms'], 'created').text) if created_node is not None: properties.created = W3CDTF_to_datetime(created_node.text) else: properties.created = datetime.datetime.now() modified_node = root.find(QName(NAMESPACES['dcterms'], 'modified').text) if modified_node is not None: properties.modified = W3CDTF_to_datetime(modified_node.text) else: properties.modified = properties.created return properties
357411103a52bbbfc6e621c47b734b9d11f04284
8,879
import torch def batch_decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2) boxes[:, :, :2] -= boxes[:, :, 2:] / 2 boxes[:, :, 2:] += boxes[:, :, :2] return boxes
7963b771e2c7bc560e5f9e5051abea43de2f46e3
8,880
def _step2_macs_seq (configs): """Step2 MACS if the raw data type is seq. So it will use the output from step1. """ # check the input t_rep_files = configs["samtools.treat_output_replicates"] t_comb_file = configs["samtools.treat_output"] c_comb_file = configs["samtools.control_output"] macs_genome_option = " -g "+ configs["sample.species"]+" " # run MACS, first for each replicate for i in range(1,configs["data.number_replicates"]+1): if configs["data.has_control"]: # run MACS w/ control command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_rep_files[i-1]+" -c "+ c_comb_file + " -n "+configs["sample.sample_id"]+"_rep"+str(i) run_cmd(command_line) # copy out and rename the wiggle file command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_rep"+str(i)+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig_replicates"][i-1] run_cmd(command_line) else: # run MACS w/o control command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_rep_files[i-1]+" -n "+configs["sample.sample_id"]+"_rep"+str(i) run_cmd(command_line) # copy out and rename the wiggle file command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_rep"+str(i)+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig_replicates"][i-1] run_cmd(command_line) # run MACS for the combined treatment if configs["data.number_replicates"] == 1: # no need to run MACS again, simply copy the previous results command_line = "cp "+configs["sample.sample_id"]+"_rep1_peaks.xls"+" "+configs["macs.output_xls"] run_cmd(command_line) command_line = "cp "+configs["sample.sample_id"]+"_rep1_peaks.bed"+" "+configs["macs.output_bed"] run_cmd(command_line) command_line = "cp "+configs["sample.sample_id"]+"_rep1_summits.bed"+" "+configs["macs.output_summits"] run_cmd(command_line) command_line = "cp "+configs["macs.output_treat_wig_replicates"][0]+" "+configs["macs.output_treat_wig"] run_cmd(command_line) if configs["data.has_control"]: command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/control/"+configs["sample.sample_id"]+"_rep1_control_afterfiting_all.wig.gz > "+configs["macs.output_control_wig"] run_cmd(command_line) else: # run MACS on combined alignment files if configs["data.has_control"]: command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_comb_file+" -c "+c_comb_file+" -n "+configs["sample.sample_id"] run_cmd(command_line) # copy out and rename the wiggle file command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig"] run_cmd(command_line) command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/control/"+configs["sample.sample_id"]+"_control_afterfiting_all.wig.gz > "+configs["macs.output_control_wig"] run_cmd(command_line) else: command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_comb_file+" -n "+configs["sample.sample_id"] run_cmd(command_line) # copy out and rename the wiggle file command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig"] run_cmd(command_line) return True
69deb8fafeb3f7054901d431d6e32c647504258f
8,881
def menu_entry_to_db(entry): """ Converts a MenuEntry into Meal, Menu, and MenuItem objects which are stored in the database. """ menu, _ = Menu.objects.get_or_create(date=entry.date) meal = Meal.objects.create(meal_type=entry.meal_type, vendor=entry.vendor) for item_name in entry.items: item, _ = MenuItem.objects.get_or_create(name=item_name) meal.items.add(item) if entry.meal_type == 'L': if menu.lunch: menu.lunch.delete() menu.lunch = meal if entry.meal_type == 'D': if menu.dinner: menu.dinner.delete() menu.dinner = meal menu.save() return menu
f35ddb4bb715a3a8bcee073fd863a5f4d8240651
8,882
import torch def get_device_of(tensor: torch.Tensor) -> int: """ Returns the device of the tensor. """ if not tensor.is_cuda: return -1 else: return tensor.get_device()
5532712bd812842fc462951e7c763b9753370174
8,883
def test_script_task(scheduler: Scheduler) -> None: """ Tasks should be definable as shell scripts. """ @task(script=True) def task1(message): return """echo Hello, {message}!""".format(message=message) assert scheduler.run(task1("World")) == b"Hello, World!\n"
c5f764b06f1245feb9ab0c1af5a13fd368fde362
8,884
import copy def __yaml_tag_test(*args, **kwargs): """YAML tag constructor for testing only""" return copy.deepcopy(args), copy.deepcopy(kwargs)
0abeb68caf32912c7b5a78dacbc89e537061a144
8,885
import os import json def _create_fake_bids_dataset(base_dir='', n_sub=10, n_ses=2, tasks=['localizer', 'main'], n_runs=[1, 3], with_derivatives=True, with_confounds=True, no_session=False): """Creates a fake bids dataset directory with dummy files. Returns fake dataset directory name. Parameters ---------- base_dir: string (Absolute path), optional Absolute directory path in which to create the fake BIDS dataset dir. Default: Current directory. n_sub: int, optional Number of subject to be simulated in the dataset. Default: 10 n_ses: int, optional Number of sessions to be simulated in the dataset. Ignored if no_session=True. Default: 2 n_runs: List[int], optional Default: [1, 3] with_derivatives: bool, optional In the case derivatives are included, they come with two spaces and descriptions. Spaces are 'MNI' and 'T1w'. Descriptions are 'preproc' and 'fmriprep'. Only space 'T1w' include both descriptions. Default: True with_confounds: bool, optional Default: True no_session: bool, optional Specifying no_sessions will only produce runs and files without the optional session field. In this case n_ses will be ignored. Default: False Returns ------- dataset directory name: string 'bids_dataset' Creates ------- Directory with dummy files """ bids_path = os.path.join(base_dir, 'bids_dataset') os.makedirs(bids_path) # Create surface bids dataset open(os.path.join(bids_path, 'README.txt'), 'w') vox = 4 created_sessions = ['ses-%02d' % label for label in range(1, n_ses + 1)] if no_session: created_sessions = [''] for subject in ['sub-%02d' % label for label in range(1, n_sub + 1)]: for session in created_sessions: subses_dir = os.path.join(bids_path, subject, session) if session == 'ses-01' or session == '': anat_path = os.path.join(subses_dir, 'anat') os.makedirs(anat_path) anat_file = os.path.join(anat_path, subject + '_T1w.nii.gz') open(anat_file, 'w') func_path = os.path.join(subses_dir, 'func') os.makedirs(func_path) for task, n_run in zip(tasks, n_runs): run_labels = [ 'run-%02d' % label for label in range(1, n_run + 1)] for run in run_labels: fields = [subject, session, 'task-' + task] if '' in fields: fields.remove('') file_id = '_'.join(fields) if n_run > 1: file_id += '_' + run bold_path = os.path.join(func_path, file_id + '_bold.nii.gz') _write_fake_bold_img(bold_path, [vox, vox, vox, 100]) events_path = os.path.join(func_path, file_id + '_events.tsv') _basic_paradigm().to_csv(events_path, sep='\t', index=None) param_path = os.path.join(func_path, file_id + '_bold.json') with open(param_path, 'w') as param_file: json.dump({'RepetitionTime': 1.5}, param_file) # Create derivatives files if with_derivatives: bids_path = os.path.join(base_dir, 'bids_dataset', 'derivatives') os.makedirs(bids_path) for subject in ['sub-%02d' % label for label in range(1, 11)]: for session in created_sessions: subses_dir = os.path.join(bids_path, subject, session) func_path = os.path.join(subses_dir, 'func') os.makedirs(func_path) for task, n_run in zip(tasks, n_runs): for run in ['run-%02d' % label for label in range(1, n_run + 1) ]: fields = [subject, session, 'task-' + task] if '' in fields: fields.remove('') file_id = '_'.join(fields) if n_run > 1: file_id += '_' + run preproc = (file_id + '_space-MNI_desc-preproc_bold.nii.gz' ) preproc_path = os.path.join(func_path, preproc) _write_fake_bold_img(preproc_path, [vox, vox, vox, 100] ) preproc = (file_id + '_space-T1w_desc-preproc_bold.nii.gz' ) preproc_path = os.path.join(func_path, preproc) _write_fake_bold_img(preproc_path, [vox, vox, vox, 100] ) preproc = (file_id + '_space-T1w_desc-fmriprep_bold.nii.gz' ) preproc_path = os.path.join(func_path, preproc) _write_fake_bold_img(preproc_path, [vox, vox, vox, 100] ) if with_confounds: confounds_path = os.path.join( func_path, file_id + '_desc-confounds_regressors.tsv', ) _basic_confounds(100).to_csv(confounds_path, sep='\t', index=None) return 'bids_dataset'
9e9c33d9d51dbcd67eda66c4a14799219982601b
8,886
def format_data_for_training(data): """ Create numpy array with planet features ready to feed to the neural net. :param data: parsed features :return: numpy array of shape (number of frames, PLANET_MAX_NUM, PER_PLANET_FEATURES) """ training_input = [] training_output = [] for d in data: features, expected_output = d if len(expected_output.values()) == 0: continue features_matrix = [] for planet_id in range(PLANET_MAX_NUM): if str(planet_id) in features: features_matrix.append(features[str(planet_id)]) else: features_matrix.append([0] * PER_PLANET_FEATURES) fm = np.array(features_matrix) output = [0] * PLANET_MAX_NUM for planet_id, p in expected_output.items(): output[int(planet_id)] = p result = np.array(output) training_input.append(fm) training_output.append(result) return np.array(training_input), np.array(training_output)
b241a932f7a5321ed28dccd8a583fbcf7529e482
8,887
import urllib import json def idcardcert(appcode, card_no): """ 身份证实名认证身份证二要素一致性验证 """ host = 'http://idquery.market.alicloudapi.com' path = '/idcard/query' # method = 'GET' appcode = appcode querys = 'number=%s' % card_no # bodys = {} url = host + path + '?' + querys try: request = urllib.request.Request(url) request.add_header('Authorization', 'APPCODE ' + appcode) response = urllib.request.urlopen(request) content = response.read() if content: return json.loads(content.decode("unicode-escape")) return content except BaseException: return None
a359edf15e7b8795fc80ceda1008f1809d9c52a0
8,888
def custom_error_exception(error=None, exception=None): """Define custom exceptions for MySQL server errors This function defines custom exceptions for MySQL server errors and returns the current set customizations. If error is a MySQL Server error number, then you have to pass also the exception class. The error argument can also be a dictionary in which case the key is the server error number, and value the exception to be raised. If none of the arguments are given, then custom_error_exception() will simply return the current set customizations. To reset the customizations, simply supply an empty dictionary. Examples: import mysql.connector from mysql.connector import errorcode # Server error 1028 should raise a DatabaseError mysql.connector.custom_error_exception( 1028, mysql.connector.DatabaseError) # Or using a dictionary: mysql.connector.custom_error_exception({ 1028: mysql.connector.DatabaseError, 1029: mysql.connector.OperationalError, }) # Reset mysql.connector.custom_error_exception({}) Returns a dictionary. """ global _CUSTOM_ERROR_EXCEPTIONS if isinstance(error, dict) and not len(error): _CUSTOM_ERROR_EXCEPTIONS = {} return _CUSTOM_ERROR_EXCEPTIONS if not error and not exception: return _CUSTOM_ERROR_EXCEPTIONS if not isinstance(error, (int, dict)): raise ValueError( "The error argument should be either an integer or dictionary") if isinstance(error, int): error = { error: exception } for errno, exception in error.items(): if not isinstance(errno, int): raise ValueError("error number should be an integer") try: if not issubclass(exception, Exception): raise TypeError except TypeError: raise ValueError("exception should be subclass of Exception") _CUSTOM_ERROR_EXCEPTIONS[errno] = exception return _CUSTOM_ERROR_EXCEPTIONS
eb24301d2511199e1ee1407152f27d00b72adba5
8,889
import hashlib def cal_md5(content): """ 计算content字符串的md5 :param content: :return: """ # 使用encode result = hashlib.md5(content.encode()) # 打印hash md5 = result.hexdigest() return md5
0cd26654c364e34ecc27b0a0b4d410a539e286c3
8,890
import os def get_arkouda_server_info_file(): """ Returns the name of a file to store connection information for the server. Defaults to ARKOUDA_HOME + ak-server-info, but can be overridden with ARKOUDA_SERVER_CONNECTION_INFO :return: server connection info file name as a string :rtype: str """ dflt = os.path.join(get_arkouda_home(), 'ak-server-info') return os.getenv('ARKOUDA_SERVER_CONNECTION_INFO', dflt)
c2ab568a02d6799f456bc0d96477353f3515c9fb
8,891
import re import os def _GenerateElementInfo(impl_path, names): """Generates the data a group needs to load sub elements. Args: impl_path: The file path to the command implementation for this group. names: [str], The names of the sub groups or commands found in the group. Raises: LayoutException: if there is a command or group with an illegal name. Returns: {str: [str], A mapping from name to a list of paths that implement that command or group. There can be multiple paths because a command or group could be implemented in both python and yaml (for different release tracks). """ elements = {} for name in names: if re.search('[A-Z]', name): raise LayoutException( 'Commands and groups cannot have capital letters: {0}.'.format(name)) cli_name = name[:-5] if name.endswith('.yaml') else name sub_path = os.path.join(impl_path, name) existing = elements.setdefault(cli_name, []) existing.append(sub_path) return elements
cbecd4d5ad9ab235d1597ee272db0d244314d0a9
8,892
import os def locate_dir(instrument, mode=None): """Locate the instrument specific directory for a reference file. The mode=None test case is disabled because it mysteriously causes these tests to fail when running the runtests script: ERROR: test_throughput_lookup_generation (crds.tests.test_synphot_lookup_generator.TestSynphotLookupGenerator) FAIL: Doctest: crds.tests.test_bad_files.dt_bad_references_fast_mode FAIL: Doctest: crds.tests.test_bad_files.dt_bad_rules_jwst_getreferences_warning FAIL: Doctest: crds.tests.test_certify.certify_recursive FAIL: Doctest: crds.tests.test_certify.certify_table_comparison_context FAIL: Doctest: crds.tests.test_heavy_client.dt_getreferences_ignore_cache FAIL: Doctest: crds.tests.test_list.dt_list_cached_references FAIL: Doctest: crds.tests.test_synphot_hst.dt_synphot_core_integration_test FAIL: Doctest: crds.tests.test_synphot_hst.dt_synphot_core_integration_test XXXX TODO: Enable the mode=None test case and resolve the ensuing test failures in other modules. >> locate_dir('wfi', None) # doctest: +ELLIPSIS '.../references/roman/wfi' >>> locate_dir('wfi', 'instrument') # doctest: +ELLIPSIS '.../references/roman/wfi' >>> locate_dir('wfi', 'flat') # doctest: +ELLIPSIS '.../references/roman' >>> locate_dir('wfi', 'other') # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: Invalid CRDS cache subdirectory mode = 'other' """ if mode is None: mode = config.get_crds_ref_subdir_mode(observatory="roman") else: config.check_crds_ref_subdir_mode(mode) crds_refpath = config.get_crds_refpath("roman") if mode == "instrument": # use simple names inside CRDS cache. rootdir = os.path.join(crds_refpath, instrument.lower()) if not os.path.exists(rootdir): if config.writable_cache_or_verbose("Skipping making instrument directory link for", repr(instrument)): utils.ensure_dir_exists(rootdir + "/locate_dir.fits") elif mode == "flat": # use original flat cache structure, all instruments in same directory. rootdir = crds_refpath else: raise ValueError("Unhandled reference file location mode " + repr(mode)) return rootdir
3d52a7b5cd70590c2edb78af5886ee0291476771
8,893
def pas(al, ap, bl,bp): """ Postion-angle from spherical coordinates. :param al: longitude of point A in radians. :type al: float :param ap: latitude of point A in radians. :type ap: float :param bl: longitude of point B in radians. :type bl: float :param bp: latitude of point B in radians. :type bp: float :returns: position angle of B with respect to A in radians (float). .. seealso:: |MANUAL| page 145 """ return _sofa.iauPas(float(al), float(ap), float(bl), float(bp))
9d8321c908c793df84e5ff28c51e4a79f6db99c6
8,894
def get_messy_items_for_training(mod_factor=5): """ Fetch a subset of `FacilityListItem` objects that have been parsed and are not in an error state. Arguments: mod_factor -- Used to partition a subset of `FacilityListItem` records. The larger the value, the fewer records will be contained in the subset. Returns: A dictionary. The key is the `FacilityListItem` ID. The value is a dictionary of clean field values keyed by field name (country, name, address). A "clean" value is one which has been passed through the `clean` function. """ facility_list_item_set = FacilityListItem.objects.exclude( Q(status=FacilityListItem.UPLOADED) | Q(status=FacilityListItem.ERROR) | Q(status=FacilityListItem.ERROR_PARSING) | Q(status=FacilityListItem.ERROR_GEOCODING) | Q(status=FacilityListItem.ERROR_MATCHING) ).extra( select={'country': 'country_code'}).values( 'id', 'country', 'name', 'address') records = [record for (i, record) in enumerate(facility_list_item_set) if i % mod_factor == 0] return {str(i['id']): {k: clean(i[k]) for k in i if k != 'id'} for i in records}
d04f5471266c33cfea122adac72835043ed6c34a
8,895
def tanh_squared(x: np.ndarray, margin: float, loss_at_margin: float = 0.95): """Returns a sigmoidal shaping loss based on Hafner & Reidmiller (2011). Args: x: A numpy array representing the error. margin: Margin parameter, a positive `float`. loss_at_margin: The loss when `l2_norm(x) == margin`. A `float` between 0 and 1. Returns: Shaping loss, a `float` bounded in the half-open interval [0, 1). Raises: ValueError: If the value of `margin` or `loss_at_margin` is invalid. """ if not margin > 0: raise ValueError("`margin` must be positive.") if not 0.0 < loss_at_margin < 1.0: raise ValueError("`loss_at_margin` must be between 0 and 1.") error = np.linalg.norm(x) # Compute weight such that at the margin tanh(w * error) = loss_at_margin w = np.arctanh(np.sqrt(loss_at_margin)) / margin s = np.tanh(w * error) return s * s
4c8dbb826dad5b047682fe030362f4fe71021f06
8,896
def _inv_Jacobian_2D(J, detJ): """ manually invert 2x2 jacobians J in place """ tmp = J[:, 1, 1, :] / detJ J[:, 0, 1, :] = -J[:, 0, 1, :] / detJ J[:, 1, 0, :] = -J[:, 1, 0, :] / detJ J[:, 1, 1, :] = J[:, 0, 0, :] / detJ J[:, 0, 0, :] = tmp return J
23b1ff231e32f09f09dbae781f7e97354f3ca811
8,897
def ratio_error_acc(y_true, y_pred, epsilon, threshold): """ Calculate the ratio error accuracy with the threshold. :param y_true: :param y_pred: :param epsilon: :param threshold: :return: """ ratio_1 = keras.layers.Lambda(lambda x: (x[0] + x[2]) / (x[1] + x[2]))([y_true, y_pred, epsilon]) ratio_2 = keras.layers.Lambda(lambda x: (x[0] + x[2]) / (x[1] + x[2]))([y_pred, y_true, epsilon]) ratio = K.maximum(ratio_1, ratio_2) mask = K.cast(K.less(ratio, threshold), dtype="float32") return K.mean(mask)
9ae487e056800ac9fb5cc6e92301b74c00d65c21
8,898
def error_embed(ctx: context.ApplicationContext, title: str, description: str, author: bool = True) -> discord.Embed: """Make a basic error message embed.""" return make_embed( ctx=ctx, title=title if title else "Error:", description=description, color=discord.Color.red(), author=author, )
aca18ec2d25c4f0a2dec7f4c083716ab9bf4dbae
8,899