content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def next(space, w_arr): """ Advance the internal array pointer of an array """ length = w_arr.arraylen() current_idx = w_arr.current_idx + 1 if current_idx >= length: w_arr.current_idx = length return space.w_False w_arr.current_idx = current_idx return w_arr._current(space)
668fec305ed6bbe05895f317e284c7d2e4f83189
8,700
def geocoordinatess_id_get(id, username=None): # noqa: E501 """Get a single GeoCoordinates by its id Gets the details of a given GeoCoordinates (more information in https://w3id.org/okn/o/sdm#GeoCoordinates) # noqa: E501 :param id: The ID of the GeoCoordinates to be retrieved :type id: str :param username: Name of the user graph to query :type username: str :rtype: GeoCoordinates """ return query_manager.get_resource(id=id, username=username, rdf_type_uri=GEOCOORDINATES_TYPE_URI, rdf_type_name=GEOCOORDINATES_TYPE_NAME, kls=GeoCoordinates)
3ac772eab95915ac0030187f22da74f9965f6dfc
8,701
def check_callable(target, label=None): """Checks target is callable and then returns it.""" if not callable(target): raise TypeError('Expected {} callable, found non-callable {}.'.format( '{} to be'.format(label) if label is not None else 'a', type_string(type(target)))) return target
a22006b72e04adb47eeef0ee418301cecdbfde0b
8,702
import re def convert_dictionary_values(d, map={}): """convert string values in a dictionary to numeric types. Arguments d : dict The dictionary to convert map : dict If map contains 'default', a default conversion is enforced. For example, to force int for every column but column ``id``, supply map = {'default' : "int", "id" : "str" } """ rx_int = re.compile(r"^\s*[+-]*[0-9]+\s*$") rx_float = re.compile(r"^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$") # pre-process with 'default' if "default" in map: k = "default" if map[k] == "int": default = int elif map[k] == "float": default = float elif map[k] == "string": default = str else: default = False for k, vv in list(d.items()): if vv is None: continue v = vv.strip() try: if k in map: if map[k] == "int": d[k] = int(v) elif map[k] == "float": d[k] = float(v) elif map[k] == "string": pass continue elif default: if v != "": d[k] = default(v) else: d[k] = v continue except TypeError as msg: raise TypeError("conversion in field: %s, %s" % (k, msg)) try: if rx_int.match(v): d[k] = int(v) elif rx_float.match(v): d[k] = float(v) except TypeError as msg: raise TypeError( "expected string or buffer: offending value = '%s' " % str(v)) except ValueError as msg: raise ValueError("conversion error: %s, %s" % (msg, str(d))) return d
4ecbd8ddd53324c3a83ce6b5bbe3ef0e5a86bc1e
8,703
def GetLimitPB(user, action_type): """Return the apporiate action limit PB part of the given User PB.""" if action_type == PROJECT_CREATION: if not user.project_creation_limit: user.project_creation_limit = user_pb2.ActionLimit() return user.project_creation_limit elif action_type == ISSUE_COMMENT: if not user.issue_comment_limit: user.issue_comment_limit = user_pb2.ActionLimit() return user.issue_comment_limit elif action_type == ISSUE_ATTACHMENT: if not user.issue_attachment_limit: user.issue_attachment_limit = user_pb2.ActionLimit() return user.issue_attachment_limit elif action_type == ISSUE_BULK_EDIT: if not user.issue_bulk_edit_limit: user.issue_bulk_edit_limit = user_pb2.ActionLimit() return user.issue_bulk_edit_limit elif action_type == FLAG_SPAM: if not user.flag_spam_limit: user.flag_spam_limit = user_pb2.ActionLimit() return user.flag_spam_limit elif action_type == API_REQUEST: if not user.api_request_limit: user.api_request_limit = user_pb2.ActionLimit() return user.api_request_limit raise Exception('unexpected action type %r' % action_type)
91f9289d3be149112d08409b1cf1e2c8e68a9668
8,704
def best_int_dtype(data): """get bit depth required to best represent float data as int""" d, r = divmod(np.log2(data.ptp()), 8) d = max(d, 1) i = (2 ** (int(np.log2(d)) + bool(r))) return np.dtype('i%d' % i)
c8d54b10ba67a83250312668f7cd09b99e47bf56
8,705
def gen_decorate_name(*args): """ gen_decorate_name(name, mangle, cc, type) -> bool Generic function for 'decorate_name()' (may be used in IDP modules) @param name (C++: const char *) @param mangle (C++: bool) @param cc (C++: cm_t) @param type (C++: const tinfo_t *) """ return _ida_typeinf.gen_decorate_name(*args)
963f6bfc5ca30a7552f881d8c9f030c0c1653fce
8,706
def main(self, count=10): """ kosmos -p 'j.servers.myjobs.test("start")' """ self.reset() def wait_1sec(): gevent.sleep(1) return "OK" ids = [] for x in range(count): job_sch = self.schedule(wait_1sec) ids.append(job_sch.id) self._workers_gipc_nr_max = 1 self.workers_subprocess_start() res = self.results(ids, timeout=120) print(res) self.stop(reset=True) print("TEST OK")
0634f76d33d6b32150f367d6c598f5c520991ef3
8,707
import requests def get_asc() -> pd.DataFrame: """Get Yahoo Finance small cap stocks with earnings growth rates better than 25%. [Source: Yahoo Finance] Returns ------- pd.DataFrame Most aggressive small cap stocks """ url = "https://finance.yahoo.com/screener/predefined/aggressive_small_caps" data = pd.read_html(requests.get(url).text)[0] return data
7d7d9810782950434a0752c97984f20df74a3366
8,708
def getEnabled(chat_id): """Gets the status of a conversation""" status = EnableStatus.get_by_id(str(chat_id)) if status: return status.enabled return False
24d7ca4f197f6e4dc4c9c54e59824ff4fc89114e
8,709
def create_app(config=DevelopConfig): """App factory.""" app = Flask( __name__.split('.')[0], static_url_path='/static', static_folder=f'{config.PROJECT_PATH}/src/static' ) app.url_map.strict_slashes = False app.config.from_object(config) register_extensions(app) register_blueprints(app) register_shellcontext(app) register_adminpanel(app) register_sessions(app) register_github_oauth(app) register_before_hooks(app) register_commands(app) register_mail_settings(app) register_secret(app) return app
0154d3ebb00ae869c2f1bb2a2392e2bde74e36b4
8,710
def merge_inputs_for_create(task_create_func): """Merge all inputs for start operation into one dict""" # Needed to wrap the wrapper because I was seeing issues with # "RuntimeError: No context set in current execution thread" def wrapper(**kwargs): # NOTE: ctx.node.properties is an ImmutableProperties instance which is # why it is passed into a mutable dict so that it can be deep copied return _wrapper_merge_inputs(task_create_func, dict(ctx.node.properties), **kwargs) return wrapper
119ab1b40ba84959b960295b35e668de7296929f
8,711
def embedding_lookup(params, ids): """Wrapper around ``tf.nn.embedding_lookup``. This converts gradients of the embedding variable to tensors which allows to use of optimizers that don't support sparse gradients (e.g. Adafactor). Args: params: The embedding tensor. ids: The ids to lookup in :obj:`params`. Returns: A ``tf.Tensor``, the embeddings that correspond to :obj:`ids`. """ params = convert_gradient_to_tensor(params) return tf.nn.embedding_lookup(params, ids)
774595aaf119ab93928095f397bc4ff7f5ebad53
8,712
from re import T def value_as_unit(value: T | None, unit: Unit = None) -> T | Quantity[T] | None: """Return value as specified unit or sensor fault if value is none.""" if value is None: return None if unit is None: return value return value * unit
3f96d837a40894d589fbae3f40ca6adf220a9d56
8,713
import numpy def get_static_spatial_noise_image(image) : """ The first step is to sum all of the odd-numbered images (sumODD image) and separately sum all of the even-numbered images (sumEVEN image). The difference between the sum of the odd images and the sum of the even images (DIFF = sumODD - sumEVEN) is taken as a raw measure of static spatial noise. (p. 828-829) """ image_odd = image[range(1, image.shape[0],2)].astype(numpy.single) sum_odd = numpy.sum(image_odd, 0) image_even = image[range(0, image.shape[0],2)].astype(numpy.single) sum_even = numpy.sum(image_even, 0) diff = sum_odd-sum_even return medipy.base.Image(data=diff, origin=image.origin[1:], spacing=image.spacing[1:], direction=image.direction[1:,1:])
511275fefc2368c6d3976ea420e11fcf1a913f8c
8,714
import os def get_gallery_dir() -> str: """ Return the path to the mephisto task gallery """ return os.path.join(get_root_dir(), "gallery")
d3bf9455b48429b1709f249ca5691237821e4566
8,715
import random def get_next_action(): """ gets the next action to perform, based on get_action_odds """ action_odds = get_action_odds() #print(f"DEBUG action_odds {action_odds}") # get the sum of all the action odds values total = 0 for action in action_odds: #print(f"DEBUG get_next_action total {total} adding action {action} odds {action_odds[action]}") total += action_odds[action] #print(f"DEBUG get_next_action total now {total}") # get a random number from 1..sum val = random.randint(1,total) #print(f"DEBUG get_next_action val {val} is 1..{total}") # now, check if the value is <= the first action. # If so, use that. If not, reduce the sum by that number, and check the next action. for action in action_odds: odds = action_odds[action] if val <= odds: return action val -= odds raise Exception("random action was greater than sum of odds, this shouldn't be possible")
372676573e69afe045c88742591555fcfe42766a
8,716
def get_movie_title(movie_id): """ Takes in an ID, returns a title """ movie_id = int(movie_id)-1 return items.iloc[movie_id]['TITLE']
e3e0694eb35923ce3a6f528a4b9ac622044b9159
8,717
import logging def get_logger(): """ Return a logger object """ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) return logger
a23531364d947a83ace175ba02212ff57ba7e0ea
8,718
def enough_gap_since_last_obs(df, current_state, obs_log): """ Determine if a sufficient time has passed since the last observation in this subprogram (in any filter): """ now = current_state['current_time'].mjd # don't mess up with the upstream data structure df = df.copy() grp = df.groupby(['program_id','subprogram_name']) df['ref_obs_mjd'] = np.nan for grpi, dfi in grp: ref_obs = obs_log.select_last_observed_time_by_field( field_ids = set(dfi['field_id'].tolist()), program_ids = [grpi[0]], subprogram_names = [grpi[1]]) if len(ref_obs) > 0: tmp = pd.merge(df, ref_obs, left_on='field_id', right_index=True, how='inner') df.loc[tmp.index, 'ref_obs_mjd'] = tmp.expMJD.values # give a fake value for fields unobserved df.loc[df['ref_obs_mjd'].isnull(), 'ref_obs_mjd'] = 58119.0 # calculate dt df['dt'] = now - df['ref_obs_mjd'] return df['dt'] >= (df['intranight_gap_min']*(1*u.minute).to(u.day).value)
3a58a7d03074eec6458b4a10addc40953d01da8b
8,719
def find_nearest_feature_to_attribute(sentence, features, attribute): """ Parameters ---------- sentence: str, One sentence from the info text of a mushroom species features: list of strs List of possible features as in dataset_categories.features_list attribute: str, Mushroom feature attribute that is in the sentence (e.g. 'red' for 'cap color'). Return ------ str, The feature in features that is closest to attribute in word steps. Example ------- sentences[2] = "The entire young fruitbody is enclosed in a white veil which leaves fragments (which may wash off) on the shiny red, marginally grooved cap." (for simplicity only one sentence is considered) features = dataset_categories.features_list (relevant here: 'cap', 'veil') attribute = 'white' return: 'veil' (since 'veil' is closer to 'white' than 'cap') """ min_distance = float('inf') min_distance_index = 0 for i in range(0, len(features)): if features[i] in sentence: word_distance = get_word_distance(sentence, features[i], attribute) if word_distance < min_distance: min_distance = word_distance min_distance_index = i return features[min_distance_index]
6877ec945870cce9a0873a713830fa5f830408fc
8,720
from datetime import datetime def lists(): """ 库存列表 :return: """ template_name = 'inventory/lists.html' # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('inventory lists') # 搜索条件 form = InventorySearchForm(request.form) form.warehouse_id.choices = get_warehouse_choices() form.rack_id.choices = get_rack_choices(form.warehouse_id.data) # app.logger.info('') inventory_brand_choices = [(brand, brand) for brand in get_distinct_inventory_brand(status_delete=STATUS_DEL_NO) if brand != ''] form.production_brand.choices = DEFAULT_SEARCH_CHOICES_STR + inventory_brand_choices search_condition = [ Inventory.status_delete == STATUS_DEL_NO, Inventory.stock_qty_current > 0, ] if request.method == 'POST': # 表单校验失败 if not form.validate_on_submit(): flash(_('Search Failure'), 'danger') # 单独处理csrf_token if hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors: map(lambda x: flash(x, 'danger'), form.csrf_token.errors) else: if form.warehouse_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION: search_condition.append(Inventory.warehouse_id == form.warehouse_id.data) if form.rack_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION: search_condition.append(Inventory.rack_id == form.rack_id.data) if form.production_brand.data != DEFAULT_SEARCH_CHOICES_STR_OPTION: search_condition.append(Inventory.production_brand == form.production_brand.data) if form.production_model.data: search_condition.append(Inventory.production_model.like('%%%s%%' % form.production_model.data)) # 处理导出 if form.op.data == OPERATION_EXPORT: # 检查导出权限 if not permission_inventory_section_export.can(): abort(403) column_names = Inventory.__table__.columns.keys() query_sets = get_inventory_rows(*search_condition) return excel.make_response_from_query_sets( query_sets=query_sets, column_names=column_names, file_type='csv', file_name='%s.csv' % _('inventory lists') ) # 批量删除 if form.op.data == OPERATION_DELETE: # 检查删除权限 if not permission_inventory_section_del.can(): abort(403) inventory_ids = request.form.getlist('inventory_id') result_total = True for inventory_id in inventory_ids: current_time = datetime.utcnow() inventory_data = { 'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time, } result = edit_inventory(inventory_id, inventory_data) result_total = result_total and result if result_total: flash(_('Del Success'), 'success') else: flash(_('Del Failure'), 'danger') # 翻页数据 pagination = get_inventory_pagination(form.page.data, PER_PAGE_BACKEND, *search_condition) # 渲染模板 return render_template( template_name, form=form, pagination=pagination, **document_info )
25c561167cc34eba5bd8bf8123007961d28165e3
8,721
def open_1d_txt(filename, xaxcol=0, datacol=1, errorcol=2, text_reader='simple', format=None, **kwargs): """ Attempt to read a 1D spectrum from a text file assuming wavelength as the first column, data as the second, and (optionally) error as the third. Reading can be done either with astropy.io.ascii or a 'simple' reader. If you have an IPAC, CDS, or formally formatted table, you'll want to use astropy.io.ascii and spceify a format. If you have a simply formatted file of the form, e.g. # name name # unit unit data data data data kwargs are passed to astropy.io.ascii.read """ if text_reader in ('simple','readcol'): if text_reader == 'simple': data, error, XAxis, T = simple_txt(filename, xaxcol=xaxcol, datacol=datacol, errorcol=errorcol, **kwargs) elif text_reader == 'readcol': Tlist = readcol.readcol(filename, twod=False, **kwargs) XAxis = units.SpectroscopicAxis(Tlist[xaxcol]) data = Tlist[datacol] error = Tlist[errorcol] T = dummy_class() T.data = dummy_class() T.data.dtype = dummy_class() T.columns = {} T.columns[T.data.dtype.names[xaxcol]] = dummy_class() T.columns[T.data.dtype.names[datacol]] = dummy_class() elif text_reader in ('ascii', 'astropy', 'asciitable'): T = ascii.read(filename, format=format, **kwargs) xarr = T.data[T.data.dtype.names[xaxcol]] data = T.data[T.data.dtype.names[datacol]] if len(T.columns) > errorcol: error = T.data[T.data.dtype.names[errorcol]] else: # assume uniform, zero error error = data*0 if 'xunits' in T.keywords: xunits = T.keywords['xunits'] else: xunits = 'unknown' XAxis = units.SpectroscopicAxis(xarr,xunits) # Need this in Spectrum class to correctly parse header T.xaxcol = xaxcol T.datacol = datacol return data, error, XAxis, T
133361ba2ba75a1f13f8768c6130601db3d870ec
8,722
def clean_record(raw_string: str) -> str: """ Removes all unnecessary signs from a raw_string and returns it :param raw_string: folder or file name to manage :return: clean value """ for sign in ("'", '(', ')', '"'): raw_string = raw_string.replace(sign, '') return raw_string.replace(' ', '-').replace('--', '-')
ea484934dc10da879ede883287fc1d650cda74b8
8,723
import pandas as pd import numpy as np def df_of_tables_for_dd_ids(dd_ids, sqlite_tables, sql_con): """ :param list dd_ids: list of Deep Dive IDs to retrieve :param list sqlite_tables: list of SQLite tables to join :param sqlalchemy.create_engine sql_con: Connection to SQLite (can be \ omitted) :returns: `pandas.DataFrame` -- dataframe of tables, joined using the Deep \ Dive IDs. """ dd_ids_str = ','.join(['"{}"'.format(x) for x in dd_ids]) query_fmt = 'select * from {} where dd_id in ({})'.format df = pd.read_sql(query_fmt(sqlite_tables[0], dd_ids_str), sql_con).drop_duplicates() df['dd_id'] = df.dd_id.astype(int) for s_t in sqlite_tables[1:]: df_2 = pd.read_sql(query_fmt(s_t, dd_ids_str), sql_con) df_2['dd_id'] = df_2.dd_id.astype(int) # We use outer joins because dd_ids in one table may be missing from the other. df = df.merge(df_2, on=['dd_id'], how='outer') if 'post_date' in df: df['post_date'] = df.post_date.apply(pd.to_datetime) if 'duration_in_mins' in df: df['duration_in_mins'] = df.duration_in_mins.apply(lambda x: float(x) if x != '' else np.nan) # I melted some rows when making this, and it's proven a mistake. Let's unmelt melted_cols = ['ethnicity', 'flag'] for m_c in melted_cols: if m_c in df.columns: df = aggregated_df(df, m_c, 'dd_id', '|') return df
282d3e9bda8e38687660c21323f8bb3ea40abbd2
8,724
from typing import Union def get_group_type(group: Union[hou.EdgeGroup, hou.PointGroup, hou.PrimGroup]) -> int: """Get an HDK compatible group type value. :param group: The group to get the group type for. :return: An HDK group type value. """ try: return _GROUP_TYPE_MAP[type(group)] except KeyError as exc: raise ValueError("Invalid group type") from exc
e8b708911760c99c6e3c23d39b4fc4d205380bac
8,725
def mp2d_driver(jobrec, verbose=1): """Drive the jobrec@i (input) -> mp2drec@i -> mp2drec@io -> jobrec@io (returned) process.""" return module_driver( jobrec=jobrec, module_label='mp2d', plant=mp2d_plant, harvest=mp2d_harvest, verbose=verbose)
efa3cf31714719f87c239dbd6cdd1aad80982647
8,726
def query_user_list(): """ Retrieve list of users on user watch list. """ conn = connect.connect() cur = conn.cursor() cur.execute("SELECT * FROM watched_users") watched_users = cur.fetchall() return watched_users
2de40bc963503e4c87d7bc15409bf4803c5c87a6
8,727
def service_stop_list(service_id, direction): """ Queries all patterns for a service and creates list of stops sorted topologically. :param service_id: Service ID. :param direction: Groups journey patterns by direction - False for outbound and True for inbound. """ graph, dict_stops = service_graph_stops(service_id, direction) if not dict_stops: raise ValueError(f"No stops exist for service ID {service_id}") return [dict_stops[v] for v in graph.sequence()]
c2eaf08853469597a83647a3e1ec5fc6a7b02ced
8,728
def convert_coord(value): """将GPS值转换为度分秒形式 Args: value(str): GPS读取的经度或纬度 Returns: list: 度分秒列表 """ v1, v2 = value.split('.') v2_dec = Decimal(f'0.{v2}') * 60 # + Decimal(random.random()) return [v1[:-2], v1[-2:], v2_dec.to_eng_string()]
4269e9d9b58e3d7ce42c82cd0299abac6c740499
8,729
import torch def _interpolate_zbuf( pix_to_face: torch.Tensor, barycentric_coords: torch.Tensor, meshes ) -> torch.Tensor: """ A helper function to calculate the z buffer for each pixel in the rasterized output. Args: pix_to_face: LongTensor of shape (N, H, W, K) specifying the indices of the faces (in the packed representation) which overlap each pixel in the image. barycentric_coords: FloatTensor of shape (N, H, W, K, 3) specifying the barycentric coordianates of each pixel relative to the faces (in the packed representation) which overlap the pixel. meshes: Meshes object representing a batch of meshes. Returns: zbuffer: (N, H, W, K) FloatTensor """ verts = meshes.verts_packed() faces = meshes.faces_packed() faces_verts_z = verts[faces][..., 2][..., None] # (F, 3, 1) zbuf = interpolate_face_attributes(pix_to_face, barycentric_coords, faces_verts_z)[ ..., 0 ] # (1, H, W, K) zbuf[pix_to_face == -1] = -1 return zbuf
b54d6c44fd23f842b13cb7ac1984f77c7a6a31a4
8,730
from typing import Sequence def pp_chain(chain: Sequence[Subtree]) -> str: """Pretty-print a chain """ return ' '.join( s.label if isinstance(s, ParentedTree) else str(s) for s in chain )
372488b64c86c2af459d67e5ddde0a77fa26fb5c
8,731
def ptr_ty(ty : 'LLVMType') -> 'LLVMPointerType': """``ty*``, i.e. a pointer to a value of type ``ty``.""" return LLVMPointerType(ty)
79c7d304c4cd20937abe982311b2ff6ff17a01f9
8,732
def series_spline(self): """Fill NaNs using a spline interpolation.""" inds, values = np.arange(len(self)), self.values invalid = isnull(values) valid = -invalid firstIndex = valid.argmax() valid = valid[firstIndex:] invalid = invalid[firstIndex:] inds = inds[firstIndex:] result = values.copy() s = InterpolatedUnivariateSpline(inds[valid], values[firstIndex:][valid]) result[firstIndex:][invalid] = s(inds[invalid]) return Series(result, index=self.index, name=self.name)
1fbbf66efc7e6c73bdcc3c63aab83237e434aa79
8,733
def label(job_name, p5_connection=None): """ Syntax: Job <name> label Description: Returns the (human readable) job label. The following labels are returned: Archive, Backup, Synchronize and System. A Job label can be used in conjunction with the Job describe command to better display the job record in various list displays. Return Values: -On Success: the job label """ method_name = "label" return exec_nsdchat([module_name, job_name, method_name], p5_connection)
ec58cbb085cb06f5ad8f2c2d04ee6cd9d3638984
8,734
import math def rating(pairing, previous): """The lower the rating value is the better""" current = set(chain.from_iterable(pair[1] for pair in pairing)) overlaps = current & set(previous) if overlaps: return sum(math.pow(0.97, previous[overlap] / 86400) for overlap in overlaps) return 0.0
af86bf1c1bbe036e20e3a1e7bcff0dec09d382cf
8,735
from typing import Optional from typing import Dict def copy_multipart_passthrough(src_blob: AnyBlob, dst_blob: CloudBlob, compute_checksums: bool=False) -> Optional[Dict[str, str]]: """ Copy from `src_blob` to `dst_blob`, passing data through the executing instance. Optionally compute checksums. """ checksums: Optional[dict] = None if compute_checksums: checksums = {SSDSObjectTag.SSDS_MD5: checksum.S3EtagUnordered(), SSDSObjectTag.SSDS_CRC32C: checksum.GScrc32cUnordered()} with dst_blob.multipart_writer() as writer: for part in src_blob.parts(): if checksums is not None: for cs in checksums.values(): cs.update(part.number, part.data) writer.put_part(part) if checksums is not None: return {key: cs.hexdigest() for key, cs in checksums.items()} else: return None
ba37598a55e00252f879e66c1438681f0033de34
8,736
import csv def read_manifest_from_csv(filename): """ Read the ballot manifest into a list in the format ['batch id : number of ballots'] from CSV file named filename """ manifest = [] with open(filename, newline='') as csvfile: reader = csv.reader(csvfile, delimiter = ",") for row in reader: # row.remove(row[1]) batch = " , ".join(row) manifest.append(batch) return manifest[1:]
b04b6a1b20512c27bb83a7631346bc6553fdc251
8,737
def siblings_list(): """ Shows child element iteration """ o = untangle.parse( """ <root> <child name="child1"/> <child name="child2"/> <child name="child3"/> </root> """ ) return ",".join([child["name"] for child in o.root.child])
06737cb187e18c9fa8b9dc9164720e68f5fd2c36
8,738
import sys def max_distance_from_home(traj, start_night='22:00', end_night='07:00', show_progress=True): """ Compute the maximum distance from home (in kilometers) traveled by an individual. :param traj: the trajectories of the individuals :type traj: TrajDataFrame :param str start_night: the starting time for the night (format HH:MM) :param str end_night: the ending time for the night (format HH:MM) :param show_progress: if True show a progress bar :type show_progress: boolean :return: the maximum distance from home of the individuals :rtype: pandas DataFrame Examples: Computing the maximum distance from home of each individual in a TrajDataFrame >>> import skmob >>> from skmob.measures.individual import max_distance_from_home >>> from skmob import TrajDataFrame >>> tdf = TrajDataFrame.from_file('../data_test/brightkite_data.csv'data, user_id='user', datetime='check-in time', latitude='latitude', longitude='longitude') >>> max_distance_from_home(tdf).head() uid max_distance_from_home 0 1 46.409510 1 2 68.499333 2 3 56.806038 3 4 78.949592 4 5 69.393777 date_time .. seealso:: :func:`maximum_distance`, :func:`home_location` References: .. [canzian2015trajectories] Luca Canzian and Mirco Musolesi. "Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobilhttps://www.gazzetta.it/?refresh_ceity traces analysis." In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '15), 1293--1304, 2015. """ # if 'uid' column in not present in the TrajDataFrame if constants.UID not in traj.columns: return pd.DataFrame([_max_distance_from_home_individual(traj, start_night=start_night, end_night=end_night)], columns=[sys._getframe().f_code.co_name]) if show_progress: df = traj.groupby(constants.UID).progress_apply(lambda x: _max_distance_from_home_individual(x, start_night=start_night, end_night=end_night)) else: df = traj.groupby(constants.UID).apply(lambda x: _max_distance_from_home_individual(x, start_night=start_night, end_night=end_night)) return pd.DataFrame(df).reset_index().rename(columns={0: sys._getframe().f_code.co_name})
9226ce6ab2929d4e36c9b7eabbb6377af315e0ab
8,739
def combine_histogram(old_hist, arr): """ Collect layer histogram for arr and combine it with old histogram. """ new_max = np.max(arr) new_min = np.min(arr) new_th = max(abs(new_min), abs(new_max)) (old_hist, old_hist_edges, old_min, old_max, old_th) = old_hist if new_th <= old_th: hist, _ = np.histogram(arr, bins=len(old_hist), range=(-old_th, old_th)) return (old_hist + hist, old_hist_edges, min(old_min, new_min), max(old_max, new_max), old_th) else: old_num_bins = len(old_hist) old_step = 2 * old_th / old_num_bins half_increased_bins = int((new_th - old_th) // old_step + 1) new_num_bins = half_increased_bins * 2 + old_num_bins new_th = half_increased_bins * old_step + old_th hist, hist_edges = np.histogram(arr, bins=new_num_bins, range=(-new_th, new_th)) hist[half_increased_bins:new_num_bins - half_increased_bins] += old_hist return (hist, hist_edges, min(old_min, new_min), max(old_max, new_max), new_th)
bc6e6edc9531b07ed347dc0083f86ee921d77c11
8,740
from typing import Mapping def unmunchify(x): """ Recursively converts a Munch into a dictionary. >>> b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!') >>> sorted(unmunchify(b).items()) [('foo', {'lol': True}), ('hello', 42), ('ponies', 'are pretty!')] unmunchify will handle intermediary dicts, lists and tuples (as well as their subclasses), but ymmv on custom datatypes. >>> b = Munch(foo=['bar', Munch(lol=True)], hello=42, ... ponies=('are pretty!', Munch(lies='are trouble!'))) >>> sorted(unmunchify(b).items()) #doctest: +NORMALIZE_WHITESPACE [('foo', ['bar', {'lol': True}]), ('hello', 42), ('ponies', ('are pretty!', {'lies': 'are trouble!'}))] nb. As dicts are not hashable, they cannot be nested in sets/frozensets. """ # Munchify x, using `seen` to track object cycles seen = dict() def unmunchify_cycles(obj): # If we've already begun unmunchifying obj, just return the already-created unmunchified obj try: return seen[id(obj)] except KeyError: pass # Otherwise, first partly unmunchify obj (but without descending into any lists or dicts) and save that seen[id(obj)] = partial = pre_unmunchify(obj) # Then finish unmunchifying lists and dicts inside obj (reusing unmunchified obj if cycles are encountered) return post_unmunchify(partial, obj) def pre_unmunchify(obj): # Here we return a skeleton of unmunchified obj, which is enough to save for later (in case # we need to break cycles) but it needs to filled out in post_unmunchify if isinstance(obj, Mapping): return dict() elif isinstance(obj, list): return type(obj)() elif isinstance(obj, tuple): type_factory = getattr(obj, "_make", type(obj)) return type_factory(unmunchify_cycles(item) for item in obj) else: return obj def post_unmunchify(partial, obj): # Here we finish unmunchifying the parts of obj that were deferred by pre_unmunchify because they # might be involved in a cycle if isinstance(obj, Mapping): partial.update((k, unmunchify_cycles(obj[k])) for k in iterkeys(obj)) elif isinstance(obj, list): partial.extend(unmunchify_cycles(v) for v in obj) elif isinstance(obj, tuple): for (value_partial, value) in zip(partial, obj): post_unmunchify(value_partial, value) return partial return unmunchify_cycles(x)
90ee373099d46ca80cf78c4d8cca885f2258bce2
8,741
def split_data(mapping, encoded_sequence): """ Function to split the prepared data in train and test Args: mapping (dict): dictionary mapping of all unique input charcters to integers encoded_sequence (list): number encoded charachter sequences Returns: numpy array : train and test split numpy arrays """ encoded_sequence_ = np.array(encoded_sequence) X, y = encoded_sequence_[:, :-1], encoded_sequence_[:, -1] y = to_categorical(y, num_classes=len(mapping)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.1, random_state=42) return X_train, X_test, y_train, y_test
b8044b3c1686b37d4908dd28db7cbe9bff2e899a
8,742
def fsp_loss(teacher_var1_name, teacher_var2_name, student_var1_name, student_var2_name, program=None): """Combine variables from student model and teacher model by fsp-loss. Args: teacher_var1_name(str): The name of teacher_var1. teacher_var2_name(str): The name of teacher_var2. Except for the second dimension, all other dimensions should be consistent with teacher_var1. student_var1_name(str): The name of student_var1. student_var2_name(str): The name of student_var2. Except for the second dimension, all other dimensions should be consistent with student_var1. program(Program): The input distiller program. If not specified, the default program will be used. Default: None Returns: Variable: fsp distiller loss. """ if program == None: program = paddle.static.default_main_program() teacher_var1 = program.global_block().var(teacher_var1_name) teacher_var2 = program.global_block().var(teacher_var2_name) student_var1 = program.global_block().var(student_var1_name) student_var2 = program.global_block().var(student_var2_name) teacher_fsp_matrix = paddle.fluid.layers.fsp_matrix(teacher_var1, teacher_var2) student_fsp_matrix = paddle.fluid.layers.fsp_matrix(student_var1, student_var2) fsp_loss = paddle.mean( paddle.nn.functional.square_error_cost(student_fsp_matrix, teacher_fsp_matrix)) return fsp_loss
b8937a64ec8f5e215128c61edee522c9b2cd83d7
8,743
def diff_numpy_array(A, B): """ Numpy Array A - B return items in A that are not in B By Divakar https://stackoverflow.com/a/52417967/1497443 """ return A[~np.in1d(A, B)]
72139ba49cf71abd5ea60772143c26f384e0e171
8,744
import sys def load_training_data(training_fns, trunc_min_scores, trunc_max_scores, debug=False): """ First parse group, read and position to find shared data points Then read in training scores, truncating as appropriate """ # Parse file twice. First time get all the loci, second time all the value data training_ids = [parse_training_loci(t_ids) for t_ids in training_fns] shared_ids = set.intersection(*training_ids) id_list = sorted(shared_ids) if debug: print('Number of shared ids in training sets:', len(shared_ids), file=sys.stderr) # value_array contents # 0 truth # 1 strand # 2:len(train)+2, tool score x train # 2+len(train):2+len(train)*2, tool prediction x train # 2+2*len(train) or -2, numeric order # 3+2*len(train) or -1, model predicted score groups = len(training_fns) value_array = np.zeros((len(shared_ids),4+(2*groups)), dtype=np.single) value_array[:,-2] = np.arange(0,len(shared_ids), dtype=np.single) for index, (training_fn, t_min, t_max) in \ enumerate(zip(training_fns, trunc_min_scores, trunc_max_scores)): # Read in values contents = parse_training_values(training_fn, shared_ids, t_min, t_max, debug=debug) for i, id in enumerate(id_list): strand, label, predicted, score = contents[id] if index == 0: value_array[i,0] = label value_array[i,1] = strand value_array[i,2+index] = score value_array[i,2+groups+index] = predicted return value_array, id_list
7107d0ebff84df09589db43004804c22ffa39abc
8,745
def _find_data_between_ranges(data, ranges, top_k): """Finds the rows of the data that fall between each range. Args: data (pd.Series): The predicted probability values for the postive class. ranges (list): The threshold ranges defining the bins. Should include 0 and 1 as the first and last value. top_k (int): The number of row indices per bin to include as samples. Returns: list(list): Each list corresponds to the row indices that fall in the range provided. """ results = [] for i in range(1, len(ranges)): mask = data[(data >= ranges[i - 1]) & (data < ranges[i])] if top_k != -1: results.append(mask.index.tolist()[: min(len(mask), top_k)]) else: results.append(mask.index.tolist()) return results
323986cba953a724f9cb3bad8b2522fc711529e5
8,746
def validar_entero_n(): """ """ try: n = int(input('n= ')) #si es un float también funciona el programa except: print ('Número no válido') return False else: return n
a1238025fd2747c597fc2adf34de441ae6b8055d
8,747
def Conv_Cifar10_32x64x64(): """A 3 hidden layer convnet designed for 32x32 cifar10.""" base_model_fn = _cross_entropy_pool_loss([32, 64, 64], jax.nn.relu, num_classes=10) datasets = image.cifar10_datasets(batch_size=128) return _ConvTask(base_model_fn, datasets)
e41e2f0da80f8822187a2ee82dcfe6f70e324213
8,748
from typing import List def rotate(angle_list: List, delta: float) -> List: """Rotates a list of angles (wraps around at 2 pi) Args: angle_list (List): list of angles in pi radians delta (float): amount to change in pi radians Returns: List: new angle list in pi radians """ new_angle_list = [] for angle in angle_list: new_angle = angle + delta if new_angle >= 2.0: new_angle -= 2.0 new_angle_list.append(new_angle) new_angle_list.sort() return new_angle_list
560c5138486bd3e67ad956fb2439236a3e3886cc
8,749
def global_average_pooling_3d(tensor: TorchTensorNCX) -> TorchTensorNCX: """ 3D Global average pooling. Calculate the average value per sample per channel of a tensor. Args: tensor: tensor with shape NCDHW Returns: a tensor of shape NC """ assert len(tensor.shape) == 5, 'must be a NCDHW tensor!' return F.avg_pool3d(tensor, tensor.shape[2:]).squeeze(2).squeeze(2).squeeze(2)
27a73d29fd9dd63b461f2275ed2941bf6bd83348
8,750
def get_LAB_L_SVD_s(image): """Returns s (Singular values) SVD from L of LAB Image information Args: image: PIL Image or Numpy array Returns: vector of singular values Example: >>> from PIL import Image >>> from ipfml.processing import transform >>> img = Image.open('./images/test_img.png') >>> s = transform.get_LAB_L_SVD_s(img) >>> len(s) 200 """ L = get_LAB_L(image) return compression.get_SVD_s(L)
50a4bd4e4a8b3834baa3aca1f5f1e635baa7a145
8,751
def path_inclusion_filter_fn(path, param, layer): """Returns whether or not layer name is contained in path.""" return layer in path
c93aa83e67c600cd83d053d50fbeaee4f7eebf94
8,752
from typing import Tuple def _parse_feature(line: PipelineRecord) -> Tuple[str, Coordinates, Feature]: """ Creates a Feature from a line of output from a CSVReader """ contig = line[0] coordinates = parse_coordinates(line[1]) feature = line[2] # Piler-cr and BLAST both use 1-based indices, but Opfi uses 0-based indices. # To make both coordinate systems consistent, we subtract 1 from the start # since feature coordinates come directly from those tools. # If features are on the reverse strand, the second coordinate will be larger # than the first, but operon_analyzer assumes the start is always less than the # end first_coord, second_coord = parse_coordinates(line[3]) feature_start = min(first_coord, second_coord) - 1 feature_end = max(first_coord, second_coord) query_orfid = line[4] strand = int(line[5]) if line[5] else (1 if feature_start < feature_end else -1) hit_accession = line[6] hit_eval = float(line[7]) if line[7] else None description = line[8] sequence = line[9] if len(line) > 10: bit_score = float(line[10]) if line[10] != '' else None raw_score = int(line[11]) if line[11] != '' else None aln_len = int(line[12]) if line[12] != '' else None pident = float(line[13]) if line[13] != '' else None nident = int(line[14]) if line[14] != '' else None mismatch = int(line[15]) if line[15] != '' else None positive = int(line[16]) if line[16] != '' else None gapopen = int(line[17]) if line[17] != '' else None gaps = int(line[18]) if line[18] != '' else None ppos = float(line[19]) if line[19] != '' else None qcovhsp = int(line[20]) if line[20] != '' else None contig_filename = line[21] if line[21] else '' else: bit_score = None raw_score = None aln_len = None pident = None nident = None mismatch = None positive = None gapopen = None gaps = None ppos = None qcovhsp = None contig_filename = None return contig, contig_filename, coordinates, Feature( feature, (feature_start, feature_end), query_orfid, strand, hit_accession, hit_eval, description, sequence, bit_score, raw_score, aln_len, pident, nident, mismatch, positive, gapopen, gaps, ppos, qcovhsp)
201f9c6ed5cd618fc63ec5e07a5b99977f4ef2b0
8,753
def average_summary_df_tasks(df, avg_columns): """ Create averages of the summary df across tasks.""" new_df = [] # Columns to have after averaging keep_cols = ["dataset", "method_name", "trial_number"] subsetted = df.groupby(keep_cols) for subset_indices, subset_df in subsetted: return_dict = {} return_dict.update(dict(zip(keep_cols, subset_indices))) for column in avg_columns: task_values = subset_df[column].values min_length = min([len(i) for i in task_values]) new_task_values = [] for j in task_values: j = np.array(j) if len(j) > min_length: percentiles = np.linspace(0, len(j) - 1, min_length).astype(int) new_task_values.append(j[percentiles]) else: new_task_values.append(j) avg_task = np.mean(np.array(new_task_values), axis=0).tolist() return_dict[column] = avg_task new_df.append(return_dict) return pd.DataFrame(new_df)
9c506132cc406a91979777255c092db20d786d12
8,754
def ml_variance(values, mean): """ Given a list of values assumed to come from a normal distribution and their maximum likelihood estimate of the mean, compute the maximum likelihood estimate of the distribution's variance of those values. There are many libraries that do something like this, but they likely don't do exactly what you want, so you should not use them directly. (And to be clear, you're not allowed to use them.) """ # Your code here return 1.0
440d8d2d2f0a5ed40e01e640aadafb83f16ee14b
8,755
def add_landmarks(particle, d, angle): """ Adds a set of landmarks to the particle. Only used on first SLAM cycle when no landmarks have been added. :param particle: The particle to be updated :param d: An array of distances to the landmarks :param angle: An array of observation angles for the landmarks :return: Returns the updated particle with landmarks added """ # Evaluate sine and cosine values for each observation in z s = np.sin(pi_2_pi(particle.x[2, 0] + angle)) c = np.cos(pi_2_pi(particle.x[2, 0] + angle)) # Add new landmark locations to mu particle.mu = np.vstack((particle.mu, np.array( [particle.x[0, 0] + d * c, particle.x[1, 0] + d * s]).T)) # Distance values dpos = np.zeros((len(d), 2)) dpos[:, 0] = d * c # dx dpos[:, 1] = d * s # dy d_sq = dpos[:, 0]**2 + dpos[:, 1]**2 d = np.sqrt(d_sq) H = calc_H(particle, dpos, d_sq, d) # Add covariance matrices for landmarks particle.sigma = np.vstack((particle.sigma, np.linalg.inv(H) @ Q @ np.linalg.inv(H.transpose((0, 2, 1))))) particle.i = np.append(particle.i, np.full(len(d), 1)) return particle
d1d168e48f62f60d58e57a79223793108d50dac9
8,756
def walk_forward_val_multiple(model, ts_list, history_size=HISTORY_SIZE, target_size=TARGET_SIZE) -> float: """ Conduct walk-forward validation for all states, average the results. Parameters ---------- model -- The model to be validated ts_list {list | np.ndarray} -- Array of time series vector history_size {int} -- The window to use for model input target_size {int} -- The target prediction window size Returns ------- 'mse' {float} -- The weighted average MSE across all the states (weighted by length of time series) """ total_error = 0. total_steps = 0 for ts in ts_list: mse_state, n_preds = walk_forward_val(model, ts, history_size=history_size, target_size=target_size, return_count=True) total_error += mse_state * n_preds total_steps += n_preds return total_error / total_steps
b3f73ceeddb720fdc7c7d9470a49bccc3c21f81b
8,757
import argparse def main(): """The 'real' entry point of this program""" # parse args parser = argparse.ArgumentParser( prog=hdtop.const.PROG_NAME, description=hdtop.const.DESCRIPTION ) parser.add_argument( "action", default="start", nargs="?", choices=_SUBPARSERS, help="Action for the program", ) args, remain = parser.parse_known_args() # parse sub args subparser: argparse.ArgumentParser = _SUBPARSERS[args.action]() args = subparser.parse_args(remain, args) # action return args.func(args)
926ebb9ecb2af7b6d0a3f0ed9c2eae035531973a
8,758
def inverse_project_lambert_equal_area(pt): """ Inverse Lambert projections Parameters: pt: point, as a numpy array """ X = pt[0] Y = pt[1] f = np.sqrt(1.0-(X**2.0+Y**2.0)/4) return tensors.Vector([f*X,f*Y,-1.0+(X**2.0+Y**2.0)/2])
f8ab5fb44d2d271a8da13623273d8d687d38b772
8,759
import dataclasses def _get_field_default(field: dataclasses.Field): """ Return a marshmallow default value given a dataclass default value >>> _get_field_default(dataclasses.field()) <marshmallow.missing> """ # Remove `type: ignore` when https://github.com/python/mypy/issues/6910 is fixed default_factory = field.default_factory # type: ignore if default_factory is not dataclasses.MISSING: return default_factory elif field.default is dataclasses.MISSING: return marshmallow.missing return field.default
0c45e55a1c14cb6b47365ef90cb68e517342dbbc
8,760
from typing import Optional from typing import Dict from typing import Union import os import tempfile def download_file_from_s3( s3_path: str, local_path: str, create_dirs: bool = True, silent: bool = False, raise_on_error: bool = True, boto3_kwargs: Optional[Dict[str, Union[str, float]]] = None, ) -> bool: """Download a file from s3 to local machine. Args: s3_path: Full path on s3 in format "s3://<bucket_name>/<obj_path>". local_path: Path on local machine. create_dirs: Whether the path directory should be created. (Defaults to True) silent: Whether to print debug information. raise_on_error: Whether to raise exception on any errors. (Defaults to True) boto3_kwargs: The parameters for s3.meta.client.download_fileobj() function. Returns: Boolean of whether the file was successfully downloaded. """ if boto3_kwargs is None: boto3_kwargs = {} bucket, key = decompose_s3_path(s3_path) s3_client = boto3.client("s3") try: if not silent: print(f"Downloading file from '{s3_path}' to '{local_path}'") dir_name = os.path.dirname(local_path) if create_dirs: ensure_dirs(dir_name, silent=silent) with tempfile.NamedTemporaryFile("wb", dir=dir_name, delete=False) as tf: s3_client.download_fileobj(bucket, key, tf, **boto3_kwargs) temp_path = tf.name os.rename(temp_path, local_path) except Exception as e: print(f"ERROR: failed to download from {s3_path} to {local_path}: {e}") if raise_on_error: raise e return False return True
7c1cf7cfee127e7583316fe9fef67f072c0441f9
8,761
from typing import List from typing import Tuple import select def get_all_votes(poll_id: int) -> List[Tuple[str, int]]: """ Get all votes for the current poll_id that are stored in the database Args: poll_id (int): Telegram's `message_id` for the poll Returns: List[Tuple[str, int]]: A list with the current votes in tuples (user, votes) """ postgres: Database = get_database() select_query = ( select([postgres.motos_counter.c.username, postgres.motos_counter.c.vote]) .where(postgres.motos_counter.c.poll_id == poll_id) .order_by(postgres.motos_counter.c.vote, postgres.motos_counter.c.date) ) results = postgres.engine.execute(select_query) return [(row["username"], row["vote"]) for row in results]
cf0ad8ee700a0da70bf29d53d08ab71e08c941ea
8,762
def getUnitConversion(): """ Get the unit conversion from kT to kJ/mol Returns factor: The conversion factor (float) """ temp = 298.15 factor = Python_kb/1000.0 * temp * Python_Na return factor
cb7b33231a53a68358713ce65137cbf13a397923
8,763
def find_where_and_nearest(array, value): """ Returns index and array[index] where value is closest to an array element. """ array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx, array[idx]
a34ac1d59c8093989978fbca7c2409b241cedd5b
8,764
import numpy def twoexpdisk(R,phi,z,glon=False, params=[1./3.,1./0.3,1./4.,1./0.5,logit(0.1)]): """ NAME: twoexpdisk PURPOSE: density of a sum of two exponential disks INPUT: R,phi,z - Galactocentric cylindrical coordinates or (l/rad,b/rad,D/kpc) glon= (False) if True, input coordinates above are (l,b,D) params= parameters [1/hR,1/hz,1/hR2,1/hz2,logit(amp2)] OUTPUT: density or log density HISTORY: 2015-03-24 - Written - Bovy (IAS) """ amp= ilogit(params[4]) return (1.-amp)/2.*numpy.fabs(params[1])\ *numpy.exp(-params[0]*(R-_R0)-params[1]*numpy.fabs(z))\ +amp/2.*params[3]*numpy.exp(-params[2]*(R-_R0)-params[3]*numpy.fabs(z))
bf8c5e0afa28e715846401274941e281a8731f24
8,765
def sc(X): """Silhouette Coefficient""" global best_k score_list = [] # 用来存储每个K下模型的平局轮廓系数 silhouette_int = -1 # 初始化的平均轮廓系数阀值 for n_clusters in range(3, 10): # 遍历从2到10几个有限组 model_kmeans = KMeans(n_clusters=n_clusters, random_state=0) # 建立聚类模型对象 cluster_labels_tmp = model_kmeans.fit_predict(X) # 训练聚类模型 silhouette_tmp = metrics.silhouette_score(X, cluster_labels_tmp) # 得到每个K下的平均轮廓系数 score_list.append([n_clusters, silhouette_tmp]) # 将每次K及其得分追加到列表 if silhouette_tmp > silhouette_int: # 如果平均轮廓系数更高 best_k = n_clusters # 将最好的K存储下来 silhouette_int = silhouette_tmp # 将最好的平均轮廓得分存储下来 # best_kmeans = model_kmeans # 将最好的模型存储下来 # cluster_labels_k = cluster_labels_tmp # 将最好的聚类标签存储下来 return best_k
c2898e115db04c1f1ac4d6a7f8c583ea0a8b238e
8,766
import socket import time def is_tcp_port_open(host: str, tcp_port: int) -> bool: """Checks if the TCP host port is open.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(2) # 2 Second Timeout try: sock.connect((host, tcp_port)) sock.shutdown(socket.SHUT_RDWR) except ConnectionRefusedError: return False except socket.timeout: return False finally: sock.close() # Other errors are propagated as odd exceptions. # We shutdown and closed the connection, but the server may need a second # to start listening again. If the following error is seen, this timeout # should be increased. 300ms seems to be the minimum. # # Connecting to J-Link via IP...FAILED: Can not connect to J-Link via \ # TCP/IP (127.0.0.1, port 19020) time.sleep(0.5) return True
cbe4d0ae58610b863c30b4e1867b47cb1dbdfc3d
8,767
from typing import Callable from typing import Any import itertools def recursive_apply_dict(node: dict, fn: Callable) -> Any: """ Applies `fn` to the node, if `fn` changes the node, the changes should be returned. If the `fn` does not change the node, it calls `recursive_apply` on the children of the node. In case the recursion on the children results in one or more `runtool.datatypes.Versions` objects, the cartesian product of these versions is calculated and a new `runtool.datatypes.Versions` object will be returned containing the different versions of this node. """ # else merge children of type Versions into a new Versions object expanded_children = [] new_node = {} for key, value in node.items(): child = recursive_apply(value, fn) # If the child is a Versions object, map the key to all its versions, # child = Versions([1,2]), # key = ['a'] # -> # (('a':1), ('a':2)) if isinstance(child, Versions): expanded_children.append(itertools.product([key], child)) else: new_node[key] = child if expanded_children: # example: # expanded_children = [(('a':1), ('a':2)), (('b':1), ('b':2))] # new_node = {"c": 3} # results in: # [ # {'a':1, 'b':1, 'c':3}, # {'a':1, 'b':2, 'c':3}, # {'a':2, 'b':1, 'c':3}, # {'a':3, 'b':2, 'c':3}, # ] new_node = [ fn( dict(version_of_node, **new_node) ) # apply fn to the new version of the node for version_of_node in itertools.product(*expanded_children) ] # if the current node generated Versions object, these # need to be flattened as well. For example: # new_node = [Versions([1,2]), Versions([3,4])] # results in # Versions([[1,3], [1,4], [2,3], [2,4]]) if all(isinstance(val, Versions) for val in new_node): return Versions(list(*itertools.product(*new_node))) return Versions(new_node) return fn(new_node)
c40daa68caaea02d16511fcc1cd3ee1949c73633
8,768
import six def encode_image_array_as_jpg_str(image): """Encodes a numpy array into a JPEG string. Args: image: a numpy array with shape [height, width, 3]. Returns: JPEG encoded image string. """ image_pil = Image.fromarray(np.uint8(image)) output = six.BytesIO() image_pil.save(output, format='JPEG') jpg_string = output.getvalue() output.close() return jpg_string
4c2d27c15c6979678a1c9619a347b7aea5718b2c
8,769
def minify_response(response): """Minify response to save bandwith.""" if response.mimetype == u'text/html': data = response.get_data(as_text=True) response.set_data(minify(data, remove_comments=True, remove_empty_space=True, reduce_boolean_attributes=True)) return response
29a942d870636337eaf0d125ba6b2ca9945d1d1c
8,770
def get_shorturlhash(myurl): """Returns a FNV1a hash of the UNquoted version of the passed URL.""" x = get_hash(unquote(myurl)) return x
f61ef1cfe14fc69a523982888a7b1082244b7bd5
8,771
def filter_privacy_level(qs, clearance_level, exact=False): """ Function to exclude objects from a queryset, which got a higher clearance level than the wanted maximum clearance level. :qs: Django queryset. :clearance_level: Minimum clearance level. :exact: Boolean to check for the exact clearance level. """ if not qs: return qs c_type = ContentType.objects.get_for_model(qs.model) kwargs = { 'content_type': c_type, 'object_id__in': qs.values_list('pk'), 'level__clearance_level{}'.format( '' if exact else '__gt'): clearance_level, } private_objects = PrivacySetting.objects.filter(**kwargs).values_list( 'object_id') if exact: return qs.filter(pk__in=private_objects) return qs.exclude(pk__in=private_objects)
a5fd864b3a9efd86bf40e0a3b966edb047979b2a
8,772
def get_configuration_store(name=None,resource_group_name=None,opts=None): """ Use this data source to access information about an existing App Configuration. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.appconfiguration.get_configuration_store(name="existing", resource_group_name="existing") pulumi.export("id", example.id) ``` :param str name: The Name of this App Configuration. :param str resource_group_name: The name of the Resource Group where the App Configuration exists. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:appconfiguration/getConfigurationStore:getConfigurationStore', __args__, opts=opts).value return AwaitableGetConfigurationStoreResult( endpoint=__ret__.get('endpoint'), id=__ret__.get('id'), location=__ret__.get('location'), name=__ret__.get('name'), primary_read_keys=__ret__.get('primaryReadKeys'), primary_write_keys=__ret__.get('primaryWriteKeys'), resource_group_name=__ret__.get('resourceGroupName'), secondary_read_keys=__ret__.get('secondaryReadKeys'), secondary_write_keys=__ret__.get('secondaryWriteKeys'), sku=__ret__.get('sku'), tags=__ret__.get('tags'))
4c0baa2cdd089439f1a53415ff9679568a097094
8,773
def _linear(args, output_size, bias, scope=None, use_fp16=False): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: VariableScope for the created subgraph; defaults to "Linear". Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError( "Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError( "Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] dtype = [a.dtype for a in args][0] # Now the computation. with vs.variable_scope(scope or "Linear"): matrix = _variable_on_cpu('Matrix', [total_arg_size, output_size], use_fp16=use_fp16) if use_fp16: dtype = tf.float16 else: dtype = tf.float32 args = [tf.cast(x, dtype) for x in args] if len(args) == 1: res = math_ops.matmul(args[0], matrix) else: res = math_ops.matmul(array_ops.concat(args, 1), matrix) if not bias: return res bias_term = _variable_on_cpu('Bias', [output_size], tf.constant_initializer(0), use_fp16=use_fp16) return res + bias_term
d8daafaf1dfab0bc6425aef704543833bfbf731a
8,774
def find_CI(method, samples, weights=None, coverage=0.683, logpost=None, logpost_sort_idx=None, return_point_estimate=False, return_coverage=False, return_extras=False, options=None): """Compute credible intervals and point estimates from samples. Arguments --------- method : str Method to compute CI. Options are "PJ-HPD", "tail CI", "std", and "HPD". PJ-HPD: Compute the CI from the joint posterior HPD region such that the projected range of the HPDR has coverage ``coverage``. See Joachimi et al. 2020. The point estimate is the joint posterior MAP. tail CI: This is the usual quantile CI. I.e., for CI (l,u) and coverage c, P(x<l) = (1-c)/2 and P(x>u) = 1-(1-c)/2. The point estimate is the median. std: Compute the CI as (mean - n_sigma*std, mean + n_sigma*std). ``n_sigma`` is the number of standard devations that cover ``coverage`` in a normal distribution. The point estimate is the mean. HPD: Compute the HPDI of the samples. The point estimate is the MAP. samples : array Samples to use. weights : array, optional Sample weights. coverage : float, optional Target coverage. This gets converted into sigmas. Default: 0.683. logpost : array, optional Array of the log posterior values of the samples. Required for method ``PJ-HPD``. logpost_sort_idx : array, optional Array of indices that sort the samples in descending posterior value. If method is ``PJ-HPD`` and it is not provided, this will be computed internally from logpost. return_point_estimate : bool, optional Whether to return the point_estimate. return_coverage : bool, optional Whether to return the actual coverage of the CI. options : dict, optional Additional options passed to the CI methods. Returns ------- (l, u) : tuple Credible interval of the samples. p : float Point estimate. Only returned if return_point_estimate is true. coverage : float The achieved coverage of the returned CI. """ options = options or {} extras = None if method.lower() == "pj-hpd" or method.lower() == "projected joint hpd": if logpost is None and logpost_sort_idx is None: raise ValueError("For method PJ-HPD, either logpost or " "logpost_sort_idx need to be specified.") CI, MAP, alpha, n_sample = find_projected_joint_HPDI( samples, weights, coverage_1d_threshold=coverage, sort_idx=logpost_sort_idx, log_posterior=logpost, return_map=True, return_coverage_1d=True, return_n_sample=True, **options) point_estimate = MAP extras = n_sample elif method.lower() == "hpd" or method.lower() == "m-hpd": CI, marg_MAP, alpha, no_constraints = find_marginal_HPDI( samples, weights, coverage=coverage, return_map=True, return_coverage=True, check_prior_edges=True, **options) point_estimate = marg_MAP extras = no_constraints elif method.lower() == "tail ci" or method.lower() == "quantile ci": CI, marg_median, alpha = find_quantile_CI( samples, weights, coverage=coverage, return_median=True, return_coverage=True) point_estimate = marg_median elif method.lower() == "std": CI, marg_mean, alpha = find_std_CI( samples, weights, coverage=coverage, return_mean=True, return_coverage=True) point_estimate = marg_mean else: raise NotImplementedError(f"Method {method} not supported.") result = [CI] if return_point_estimate: result += [point_estimate] if return_coverage: result += [alpha] if return_extras: result += [extras] if len(result) == 1: # Only CI return result[0] else: return tuple(result)
6b5ab3ac47f4f4a0251862946336948fd2ff66ed
8,775
def load_csv(filename, fields=None, y_column=None, sep=','): """ Read the csv file.""" input = pd.read_csv(filename, skipinitialspace=True, usecols=fields, sep=sep, low_memory=False) input = input.dropna(subset=fields) # dtype={"ss_list_price": float, "ss_wholesale_cost": float} input_data = input.values data = DataSource() if y_column == None: data.features = input_data[:, :-1] data.labels = input_data[:, -1] data.headers = input.keys() else: data.features = np.delete( input_data, [y_column], axis=1) # input_data[:, :-1] data.labels = input_data[:, y_column] headers = np.array(input.keys()) data.headers = list(np.delete(headers, [y_column])) data.headers.append(input.keys()[y_column]) # print(data.headers) try: data.file = filename.split("/")[-1] except Exception: data.file = filename return data
126b96e94f4a5ab201460b427828807cf31eb6ae
8,776
def Normalize(array): """Normalizes numpy arrays into scale 0.0 - 1.0""" array_min, array_max = array.min(), array.max() return ((array - array_min)/(array_max - array_min))
a8f3bae56f8e17aed80f8e41030d049a69ac8cae
8,777
def obtener_cantidad_anualmente(PaisDestino, AnioInicio, AnioFin): """ Obtener cantidad de vuelos entrantes anualmente dado un pais destino y un rango de años Obtiene la cantidad total de vuelos entrantes de cada año :param PaisDestino: Pais al que llegan los vuelos :type PaisDestino: str :param AnioInicio: Anio Inicio :type AnioInicio: int :param AnioFin: Anio Fin :type AnioFin: int :rtype: Dict[str, int] """ conversor = Conversor() repository = DBRepository() cursor, labels = repository.ObtenerDatosVuelosEntrantesAenaDadoPaisDestinoAnioMinMax(PaisDestino, AnioInicio, AnioFin) arrayTuplas = conversor.ConvertirCursorToTuplas(cursor) ##Mostrar JSON Extendido matriz, lista = conversor.ConvertirTuplasToMatriz(arrayTuplas, labels) retval = conversor.ObtenerDataJSONExtendido(matriz) return retval
8364a08f4b42124b70a7769dc6a9649cdd9841d7
8,778
def calculate_shap_for_test(training_data, y, pipeline, n_points_to_explain): """Helper function to compute the SHAP values for n_points_to_explain for a given pipeline.""" points_to_explain = training_data[:n_points_to_explain] pipeline.fit(training_data, y) return _compute_shap_values(pipeline, pd.DataFrame(points_to_explain), training_data)
d8a88b3c9af05a8274a0cca1a0e63c3a9faaa8d0
8,779
def read_num_write(input_string): """ read in the number of output files """ pattern = ('NumWrite' + one_or_more(SPACE) + capturing(INTEGER)) block = _get_training_data_section(input_string) keyword = first_capture(pattern, block) assert keyword is not None return keyword
0ee1a9ac178eb4c49a01a36208e4c59d6b9023bc
8,780
import requests import json def stock_zh_a_minute(symbol: str = 'sh600751', period: str = '5', adjust: str = "") -> pd.DataFrame: """ 股票及股票指数历史行情数据-分钟数据 http://finance.sina.com.cn/realstock/company/sh600519/nc.shtml :param symbol: sh000300 :type symbol: str :param period: 1, 5, 15, 30, 60 分钟的数据 :type period: str :param adjust: 默认为空: 返回不复权的数据; qfq: 返回前复权后的数据; hfq: 返回后复权后的数据; :type adjust: str :return: specific data :rtype: pandas.DataFrame """ url = "https://quotes.sina.cn/cn/api/jsonp_v2.php/=/CN_MarketDataService.getKLineData" params = { "symbol": symbol, "scale": period, "datalen": "1023", } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split('=(')[1].split(");")[0])).iloc[:, :6] try: stock_zh_a_daily(symbol=symbol, adjust="qfq") except: return temp_df if adjust == "": return temp_df if adjust == "qfq": temp_df[["date", "time"]] = temp_df["day"].str.split(" ", expand=True) need_df = temp_df[temp_df["time"] == "15:00:00"] need_df.index = need_df["date"] stock_zh_a_daily_qfq_df = stock_zh_a_daily(symbol=symbol, adjust="qfq") result_df = stock_zh_a_daily_qfq_df.iloc[-len(need_df):, :]["close"].astype(float) / need_df["close"].astype(float) temp_df.index = pd.to_datetime(temp_df["date"]) merged_df = pd.merge(temp_df, result_df, left_index=True, right_index=True) merged_df["open"] = merged_df["open"].astype(float) * merged_df["close_y"] merged_df["high"] = merged_df["high"].astype(float) * merged_df["close_y"] merged_df["low"] = merged_df["low"].astype(float) * merged_df["close_y"] merged_df["close"] = merged_df["close_x"].astype(float) * merged_df["close_y"] temp_df = merged_df[["day", "open", "high", "low", "close", "volume"]] temp_df.reset_index(drop=True, inplace=True) return temp_df if adjust == "hfq": temp_df[["date", "time"]] = temp_df["day"].str.split(" ", expand=True) need_df = temp_df[temp_df["time"] == "15:00:00"] need_df.index = need_df["date"] stock_zh_a_daily_qfq_df = stock_zh_a_daily(symbol=symbol, adjust="hfq") result_df = stock_zh_a_daily_qfq_df.iloc[-len(need_df):, :]["close"].astype(float) / need_df["close"].astype(float) temp_df.index = pd.to_datetime(temp_df["date"]) merged_df = pd.merge(temp_df, result_df, left_index=True, right_index=True) merged_df["open"] = merged_df["open"].astype(float) * merged_df["close_y"] merged_df["high"] = merged_df["high"].astype(float) * merged_df["close_y"] merged_df["low"] = merged_df["low"].astype(float) * merged_df["close_y"] merged_df["close"] = merged_df["close_x"].astype(float) * merged_df["close_y"] temp_df = merged_df[["day", "open", "high", "low", "close", "volume"]] temp_df.reset_index(drop=True, inplace=True) return temp_df
b54f7dce68e102ebfa6c1784de5ebd49fcb405cb
8,781
import random def randomize_case(s: str) -> str: """Randomize string casing. Parameters ---------- s : str Original string Returns ------- str String with it's letters in randomized casing. """ result = "".join( [c.upper() if random.randint(0, 1) == 1 else c.lower() for c in s] ) # If result contains letters and the result is same as original try again. if UNICODE_LETTERS_RE.search(s) is not None and result == s: return randomize_case(s) else: return result
5e00ce336e2886a0d3bd52bc033b02560f0fb9ae
8,782
def _get_results(): """Run speedtest with speedtest.py""" s = speedtest.Speedtest() print("Testing download..") s.download() print("Testing upload..") s.upload() return s.results.ping, s.results.download, s.results.upload
7092a5aa7200ebc93e266dbd6b7885095b0433bb
8,783
def findCursor(query, keyname, page_no, page_size): """Finds the cursor to use for fetching results from the given page. We store a mapping of page_no->cursor in memcache. If this result is missing, we look for page_no-1, if that's missing we look for page_no-2 and so on. Once we've found one (or we get back to page_no=0) then we need to fetch results from that page forward, storing the results back in memcache as we go. Args: query: A query used to fetch data from the data store keyname: A string that'll make the keys unique (e.g. all blog posts could have keyname='blog' page_no: The page number we're after page_size: The size of pages we're after""" cursor_page = page_no cursor = memcache.get('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size)) while not cursor: cursor_page -= 1 if cursor_page == 0: break cursor = memcache.get('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size)) while cursor_page < page_no: # if we have to fast-forward through pages then we'll store the pages in memcache as we go if cursor_page == 0: it = query.run() else: it = query.with_cursor(cursor) n = 0 for _ in it: n += 1 if n >= page_size: break cursor = query.cursor() cursor_page += 1 memcache.set('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size), cursor) return cursor
9af3368ef0011d7c6c9758f57bc2c956d540f675
8,784
def _get_seq(window,variants,ref,genotypeAware): """ Using the variation in @variants, construct two haplotypes, one which contains only homozygous variants, the other which contains both hom and het variants by placing those variants into the reference base string @param variants: A vcf_eval.ChromVariants object @param low: the starting position @param high: the ending position @param ref: a parsers.genome object @param loc: the location that we are trying to rescue @param genotype: whether to phase hets onto their own sequence to check for genotype accuracy (if there are multiple and they don't overlap, phasing doesn't matter) @return: a tuple of sequences of bases that comes from modifying the reference sequence with the variants """ low = window[0] high = window[1] hetChunks = [] homChunks = [] hetOffset = low homOffset = low # note: if genotypeAware is False, the het chunks/offset will not be used def get_ref_bases(start,end): """VCF parser is 1-based, but genome is 0-based.""" return ref.ref(window[2],start-1,end-1) def add_ref_bases_until(chunks,begin,end): chunks.append(get_ref_bases(begin,end)) def add_alt(chunk,start,var): add_ref_bases_until(chunk,start,var.pos) chunk.append(var.alt[0]) for variant in variants: loc = variant.pos #print((variant.ref, get_ref_bases(variant.pos,variant.pos+len(variant.ref)))) verifyRefBases = get_ref_bases(variant.pos,variant.pos+len(variant.ref)) if ( variant.ref != verifyRefBases ): raise RescueError("Variant ref does not match reference at " + window[2] + " " + str(loc) + ": " +variant.ref + " != " + verifyRefBases ) if not ( hetOffset <= loc and homOffset <= loc ): raise RescueError("Attempted to rescue sequence containing overlapping variants around " + window[2] + " " + str(loc)) assert variant.genotype_type != GENOTYPE_TYPE.HOM_REF assert variant.genotype_type != GENOTYPE_TYPE.NO_CALL if ( (not genotypeAware) or variant.genotype_type == GENOTYPE_TYPE.HOM_VAR): add_alt(homChunks,homOffset,variant) homOffset = len(variant.ref) + loc else: # ( variant.genotype_type == GENOTYPE_TYPE.HET ) add_alt(hetChunks,hetOffset,variant) hetOffset = len(variant.ref) + loc # NB: this check seems redundant with the assert after it if ( hetOffset > high or homOffset > high ): print("-----fail-----") print(window) print(map(str,variants)) print((homOffset,high)) assert hetOffset <= high and homOffset <= high if ( genotypeAware ): add_ref_bases_until(hetChunks,hetOffset,high) add_ref_bases_until(homChunks,homOffset,high) return (''.join(homChunks),''.join(hetChunks))
316c19f964c6ce29d52358070d994f0fdfbcc1b8
8,785
import scipy def interp_logpsd(data, rate, window, noverlap, freqs, interpolation='linear'): """Computes linear-frequency power spectral density, then uses interpolation (linear by default) to estimate the psd at the desired frequencies.""" stft, linfreqs, times = specgram(data, window, Fs=rate, noverlap=noverlap, window = np.hamming(window)) ntimes = len(times) logpsd = np.log10(np.abs(stft.T)**2) interps = [scipy.interpolate.interp1d(linfreqs, logpsd[t,:], kind=interpolation) for t in range(ntimes)] interped_logpsd = np.array([interps[t](freqs) for t in range(ntimes)]) return interped_logpsd, freqs, times
0822f776063da9f0797aa898b0305fb295d8c0f1
8,786
def load_replica_camera_traj(traj_file_path): """ the format: index """ camera_traj = [] traj_file_handle = open(traj_file_path, 'r') for line in traj_file_handle: split = line.split() #if blank line, skip if not len(split): continue camera_traj.append(split) traj_file_handle.close() return camera_traj
1879c97ed5ce24834689b156ffdc971b023e67f2
8,787
def test_model(sess, graph, x_, y_): """ :param sess: :param graph: :param x_: :param y_: :return: """ data_len = len(x_) batch_eval = batch_iter(x_, y_, 64) total_loss = 0.0 total_acc = 0.0 input_x = graph.get_operation_by_name('input_x').outputs[0] input_y = graph.get_operation_by_name('input_y').outputs[0] drop_prob = graph.get_operation_by_name('drop_prob').outputs[0] loss = graph.get_operation_by_name('loss/loss').outputs[0] acc = graph.get_operation_by_name('accuracy/acc').outputs[0] for x_batch, y_batch in batch_eval: batch_len = len(x_batch) feed_dict = {input_x: x_batch, input_y: y_batch, drop_prob: 0} test_loss, test_acc = sess.run([loss, acc], feed_dict=feed_dict) total_loss += test_loss * batch_len total_acc += test_acc * batch_len return total_loss / data_len, total_acc / data_len
7c310a7cf979004d9f14fbd1ec57228dbfc81cd2
8,788
def epanechnikov(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Epanechnikov kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 3 / 4 * (1 - u**2) * (np.abs(u) <= 1) assert out.shape == (Xi.shape[0], x.shape[1]) return out
45902e9396661a6c0f8faf9cfc2d017125f6a427
8,789
def punctuation(chars=r',.\"!@#\$%\^&*(){}\[\]?/;\'`~:<>+=-'): """Finds characters in text. Useful to preprocess text. Do not forget to escape special characters. """ return rf'[{chars}]'
b2fd23d8485c3b6d429723a02a95c981982559b5
8,790
import time import logging def log_http_request(f): """Decorator to enable logging on an HTTP request.""" level = get_log_level() def new_f(*args, **kwargs): request = args[1] # Second argument should be request. object_type = 'Request' object_id = time.time() log_name = object_type + '.' + str(object_id) setattr(request, 'LOG_ID', object_id) logger = logging.getLogger(log_name) logger.setLevel(level) handler = LogModelHandler(object_type, object_id) logger.addHandler(handler) return f(*args, **kwargs) new_f.func_name = f.func_name return new_f
ecb62d0501307330fc0a56d8eadfbee8e729adf6
8,791
def look_at(vertices, eye, at=[0, 0, 0], up=[0, 1, 0]): """ "Look at" transformation of vertices. """ if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') place = vertices.place # if list or tuple convert to numpy array if isinstance(at, list) or isinstance(at, tuple): at = paddle.to_tensor(at, dtype=paddle.float32, place=place) # if numpy array convert to tensor elif isinstance(at, np.ndarray): at = paddle.to_tensor(at).to(place) elif paddle.is_tensor(at): at = at.to(place) if isinstance(up, list) or isinstance(up, tuple): up = paddle.to_tensor(up, dtype=paddle.float32, place=place) elif isinstance(up, np.ndarray): up = paddle.to_tensor(up).to(place) elif paddle.is_tensor(up): up = up.to(place) if isinstance(eye, list) or isinstance(eye, tuple): eye = paddle.to_tensor(eye, dtype=paddle.float32, place=place) elif isinstance(eye, np.ndarray): eye = paddle.to_tensor(eye).to(place) elif paddle.is_tensor(eye): eye = eye.to(place) batch_size = vertices.shape[0] if eye.ndimension() == 1: eye = eye[None, :].tile([batch_size, 1]) if at.ndimension() == 1: at = at[None, :].tile([batch_size, 1]) if up.ndimension() == 1: up = up[None, :].tile([batch_size, 1]) # prevent paddle no grad error at.stop_gradient = False eye.stop_gradient = False up.stop_gradient = False # create new axes # eps is chosen as 0.5 to match the chainer version z_axis = F.normalize(at - eye, epsilon=1e-5) x_axis = F.normalize(paddle.cross(up, z_axis), epsilon=1e-5) y_axis = F.normalize(paddle.cross(z_axis, x_axis), epsilon=1e-5) # create rotation matrix: [bs, 3, 3] r = paddle.concat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), axis=1) # apply # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3] if vertices.shape != eye.shape: eye = eye[:, None, :] vertices = vertices - eye vertices = paddle.matmul(vertices, r.swapaxes(1,2)) return vertices
10a6b94ecba08fecd829758f9c94765c718a5add
8,792
import types def _count(expr, pat, flags=0): """ Count occurrences of pattern in each string of the sequence or scalar :param expr: sequence or scalar :param pat: valid regular expression :param flags: re module flags, e.g. re.IGNORECASE :return: """ return _string_op(expr, Count, output_type=types.int64, _pat=pat, _flags=flags)
c4c387f18ac75977a661662dae7606a066242b57
8,793
def simplex3_vertices(): """ Returns the vertices of the standard 3-simplex. Each column is a vertex. """ v = np.array([ [1, 0, 0], [-1/3, +np.sqrt(8)/3, 0], [-1/3, -np.sqrt(2)/3, +np.sqrt(2/3)], [-1/3, -np.sqrt(2)/3, -np.sqrt(2/3)], ]) return v.transpose()
b10c2c781d1f7ed7050e14f069efd3e0e9a80a2b
8,794
def get_output_msg(status, num_logs): """ Returnes the output message in accordance to the script status """ if status == EXECUTION_STATE_COMPLETED: return "Retrieved successfully {} logs that triggered the alert".format(num_logs) else: return "Failed to retrieve logs. Please check the script's logs to see what went wrong..."
caec8de737251cc7c386a85a098d73d19617e71a
8,795
def kSEQK(age): """Age-dependent organ-specific absorbed dose rate per unit kerma rate, normalized against the corresponding value for an adult Parameters ---------- age: float or list Age(s) when kSEQK is evaluated. """ k=[] if (not isinstance(age,list)) and (not isinstance(age,np.ndarray)): age=[age] for a in age: if a<20: #TODO is that /1017 actually correct? k.append((0.0124*a**4-0.5364*a**3+7.4882*a**2-44.888*a+1209.8)/1000) #k.append((0.0015*a**5 - 0.1214*a**4 + 3.473*a**3 - 40.28*a**2 + 136.3*a + 1233)/1017) else: k.append(1.0) if len(k) == 1: return k[0] else: return np.array(k)
967584edc3be078eab2b8d21338bb5221f9c65ca
8,796
import re def insert_channel_links(message: str) -> str: """ Takes a message and replaces all of the channel references with links to those channels in Slack formatting. :param message: The message to modify :return: A modified copy of the message """ message_with_links = message matches = re.findall(r'#[a-z0-9\-_(){}\[\]\'\"/]{1,22}', message) for match in matches: channel_name = match[1:] channel = bot.channels.get(channel_name) if channel is not None: channel_link_string = f"<#{channel.id}|{channel.name}>" message_with_links = message_with_links.replace(match, channel_link_string) return message_with_links
ce56e81e8eb66dc0f2754141bcfc30f42db50c5a
8,797
def check_int_uuid(uuid): """Check that the int uuid i pass is valid.""" try: converted = UUID(int=uuid, version=4) except ValueError: return False return converted.int == uuid
a0ba7447e6c8cc0c35b68024fb4ade25f0802239
8,798
def calc_E_E_C_hs_d_t_i(i, device, region, A_A, A_MR, A_OR, L_CS_d_t, L_CL_d_t): """暖冷房区画𝑖に設置された冷房設備機器の消費電力量(kWh/h)を計算する Args: i(int): 暖冷房区画の番号 device(dict): 暖冷房機器の仕様 region(int): 省エネルギー地域区分 A_A(float): 床面積の合計 (m2) A_MR(float): 主たる居室の床面積 (m2) A_OR(float): その他の居室の床面積 (m2) L_CS_d_t(ndarray): 冷房区画の冷房顕熱負荷 L_CL_d_t(ndarray): 冷房区画の冷房潜熱負荷 Returns: ndarray: 暖冷房区画𝑖に設置された冷房設備機器の消費電力量(kWh/h) """ if device['type'] == 'ルームエアコンディショナー': # 仕様の取得 A_HCZ_i = calc_A_HCZ_i(i, A_A, A_MR, A_OR) q_rtd_C = rac_spec.get_q_rtd_C(A_HCZ_i) e_rtd_C = rac_spec.get_e_rtd_C(device['e_class'], q_rtd_C) # 電力消費量の計算 E_E_C_d_t_i = rac.calc_E_E_C_d_t( region=region, q_rtd_C=q_rtd_C, e_rtd_C=e_rtd_C, dualcompressor=device['dualcompressor'], L_CS_d_t=L_CS_d_t[i - 1], L_CL_d_t=L_CL_d_t[i - 1] ) else: raise ValueError(device['type']) print('{} E_E_C_d_t_{} = {} [kWh] (L_H_d_t_{} = {} [MJ])'.format(device['type'], i, np.sum(E_E_C_d_t_i), i, np.sum(L_CS_d_t + L_CL_d_t))) return E_E_C_d_t_i
8dbd0119ac90f3847de1f5af05891583a9bda26b
8,799