content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def view_folio_contact(request, folio_id=None): """ View contact page within folio """ folio = get_object_or_404(Folio, pk=folio_id) if not folio.is_published and folio.author_id != request.user: return render( request, 'showcase/folio_is_not_published.html' ) author = get_object_or_404( UserAccount, pk=folio.author_id.id ) message_form = SendAuthorMessageForm() context = { "user": request.user, "folio": folio, "author": author, "form": message_form } return render( request, 'showcase/view_folio_contact.html', context=context)
0269fea6322486912cdd462961fb847ffd8d038a
3,658,000
def faom03(t): """ Wrapper for ERFA function ``eraFaom03``. Parameters ---------- t : double array Returns ------- c_retval : double array Notes ----- The ERFA documentation is below. - - - - - - - - - - e r a F a o m 0 3 - - - - - - - - - - Fundamental argument, IERS Conventions (2003): mean longitude of the Moon's ascending node. Given: t double TDB, Julian centuries since J2000.0 (Note 1) Returned (function value): double Omega, radians (Note 2) Notes: 1) Though t is strictly TDB, it is usually more convenient to use TT, which makes no significant difference. 2) The expression used is as adopted in IERS Conventions (2003) and is from Simon et al. (1994). References: McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004) Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683 Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ c_retval = ufunc.faom03(t) return c_retval
3e3d1c7e650d6034ed0793e4f1bc8605e9e82e32
3,658,001
from datetime import datetime import calendar def get_dtindex(interval, begin, end=None): """Creates a pandas datetime index for a given interval. Parameters ---------- interval : str or int Interval of the datetime index. Integer values will be treated as days. begin : datetime Datetime index start date. end : datetime, optional Datetime index end date, defaults to current date. Returns ------- dtindex : pandas.tseries.index.DatetimeIndex Datetime index. """ if end is None: end = datetime.now() if interval in ['dekad', 'dekadal', 'decadal', 'decade']: dtindex = dekad_index(begin, end) elif interval in ['daily', 'day', '1']: dtindex = pd.date_range(begin, end, freq='D') elif interval in ['weekly', 'week', '7']: begin2 = begin - timedelta(begin.weekday()) + timedelta(6) dtindex = pd.date_range(begin2, end, freq='7D') elif interval in ['monthly', 'month']: lday = calendar.monthrange(end.year, end.month)[1] end = datetime(end.year, end.month, lday) dtindex = pd.date_range(begin, end, freq='M') if type(interval) is int: dtindex = pd.date_range(begin, end, freq=str(str(interval) + 'D')) return dtindex
32f0992365b075fb8601276bd3680c7db43a677e
3,658,002
import numpy def asanyarray(a, dtype=None, order=None): """Converts the input to an array, but passes ndarray subclasses through. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : dtype, optional By default, the dtype is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major (C-stype) or column-major (Fortran-style) memory representation. Defaults to 'C'. Returns ------- out : ndarray or an ndarray subclass Array interpretation of *a*. If *a* is a subclass of ndarray, it is returned as-is and no copy is performed. See Also -------- asarray : Converts the input to an array. Examples -------- Convert a list into an array: >>> import nlcpy as vp >>> a = [1, 2] >>> vp.asanyarray(a) array([1, 2]) """ if isinstance(a, ndarray): if dtype is None and order is None: return a elif dtype is not None and order is None: if a.dtype == numpy.dtype(dtype): return a elif dtype is None and order is not None: order_char = internal._normalize_order(order) order_char = chr(core._update_order_char(a, order_char)) if order_char == 'C' and a._c_contiguous: return a if order_char == 'F' and a._f_contiguous: return a else: order_char = internal._normalize_order(order) order_char = chr(core._update_order_char(a, order_char)) if a.dtype == numpy.dtype(dtype) and \ (order_char == 'C' and a._c_contiguous or order_char == 'F' and a._f_contiguous): return a return core.array(a, dtype=dtype, order=order)
c079d114ab224c487a65929b7710450262c66733
3,658,003
import os def envi_header(inputpath): """ Convert a envi binary/header path to a header, handling extensions Args: inputpath: path to envi binary file Returns: str: the header file associated with the input reference. """ if os.path.splitext(inputpath)[-1] == '.img' or os.path.splitext(inputpath)[-1] == '.dat' or os.path.splitext(inputpath)[-1] == '.raw': # headers could be at either filename.img.hdr or filename.hdr. Check both, return the one that exists if it # does, if not return the latter (new file creation presumed). hdrfile = os.path.splitext(inputpath)[0] + '.hdr' if os.path.isfile(hdrfile): return hdrfile elif os.path.isfile(inputpath + '.hdr'): return inputpath + '.hdr' return hdrfile elif os.path.splitext(inputpath)[-1] == '.hdr': return inputpath else: return inputpath + '.hdr'
45df7507017676648cd4fae955da26916bbf4738
3,658,004
import base64 import struct from datetime import datetime def parse_fernet_timestamp(ciphertext): """ Returns timestamp embedded in Fernet-encrypted ciphertext, converted to Python datetime object. Decryption should be attempted before using this function, as that does cryptographically strong tests on the validity of the ciphertext. """ try: decoded = base64.urlsafe_b64decode(ciphertext) # This is a value in Unix Epoch time epoch_timestamp = struct.unpack('>Q', decoded[1:9])[0] timestamp = datetime(1970, 1, 1) + timedelta(seconds=epoch_timestamp) return timestamp except struct.error as e: raise ValueError(e.message)
216d314c84679cc5806d6a483f68bff485375b36
3,658,005
def tagcloud(guids): """Get "tag cloud" for the search specified by guids Same return format as taglist, impl is always False. """ guids = set(guids) range = (0, 19 + len(guids)) tags = request.client.find_tags("EI", "", range=range, guids=guids, order="-post", flags="-datatag") return [(tagfmt(t.name), t, False) for t in tags if t.guid not in guids]
fb94fab24040b3c38a68a2731d9b1bba0cccd3bc
3,658,006
def _ValidateContent(path, expected_content): """Helper to validate the given file's content.""" assert os.path.isfile(path), 'File didn\'t exist: %r' % path name = os.path.basename(path) current_content = open(path).read() if current_content == expected_content: print '%s is good.' % name else: try: open(path, 'w').write(expected_content) print 'Updated %s.' % name except IOError as e: if e.errno != errno.EACCES: raise print '%r needs to be updated but is not writable.' % path return False return True
ddf6e3089f66d157f281655357753ff2b746d4a2
3,658,007
import os from sys import path def _test_image_path(): """ A 100 x 50 pixel GeoTIFF image, with 0 as NODATA value """ return os.path.join(path, "test.tiff")
b719a46fc7cdec952953502473000a7adb9b4625
3,658,008
from typing import Optional from typing import Sequence def api_ofrecord_image_decoder_random_crop( input_blob: remote_blob_util.BlobDef, blob_name: str, color_space: str = "BGR", num_attempts: int = 10, seed: Optional[int] = None, random_area: Sequence[float] = [0.08, 1.0], random_aspect_ratio: Sequence[float] = [0.75, 1.333333], name: str = "OFRecordImageDecoderRandomCrop", ) -> remote_blob_util.BlobDef: """This operator is an image decoder with random crop. Args: input_blob (BlobDef): The input Blob blob_name (str): The name of the Blob color_space (str, optional): The color space, such as "RGB", "BGR". Defaults to "BGR". num_attempts (int, optional): The maximum number of random cropping attempts. Defaults to 10. seed (Optional[int], optional): The random seed. Defaults to None. random_area (Sequence[float], optional): The random cropping area. Defaults to [0.08, 1.0]. random_aspect_ratio (Sequence[float], optional): The random scaled ratio. Defaults to [0.75, 1.333333]. name (str, optional): The name for the operation. Defaults to "OFRecordImageDecoderRandomCrop". Returns: BlobDef: The random cropped Blob For example: .. code-block:: python import oneflow as flow import oneflow.typing as tp from typing import Tuple @flow.global_function(type="predict") def ofrecord_reader_job() -> Tuple[tp.Numpy, tp.Numpy]: batch_size = 16 color_space = "RGB" # our ofrecord file path is "./dataset/part-0" ofrecord = flow.data.ofrecord_reader( "./imgdataset", batch_size=batch_size, data_part_num=1, part_name_suffix_length=-1, part_name_prefix='part-', random_shuffle=True, shuffle_after_epoch=True, ) image = flow.data.OFRecordImageDecoderRandomCrop( ofrecord, "encoded", color_space=color_space ) res_image, scale, new_size = flow.image.Resize( image, target_size=(224, 224) ) label = flow.data.OFRecordRawDecoder( ofrecord, "class/label", shape=(1, ), dtype=flow.int32 ) return res_image, label if __name__ == "__main__": images, labels = ofrecord_reader_job() # images.shape (16, 224, 224, 3) """ assert isinstance(name, str) if seed is not None: assert name is not None module = flow.find_or_create_module( name, lambda: OFRecordImageDecoderRandomCropModule( blob_name=blob_name, color_space=color_space, num_attempts=num_attempts, random_seed=seed, random_area=random_area, random_aspect_ratio=random_aspect_ratio, name=name, ), ) return module(input_blob)
bcf8ad7deb97677e52b04e3204281a7ecc89c89c
3,658,009
def student_add_information(adding_student_id, student_information): """ 用于添加学生的详细信息 :@param adding_student_id: int :@param student_information: dict or str :@return : 运行状态(True or False) """ if type(student_information) == dict: adding_information = student_information elif type(student_information) == str: adding_information = {} tmp_key = '' tmp_adding_key = '' tmp_value = '' state = 'write_key' for k in student_information: # 判断当前遍历到哪里 if k == ':': tmp_value = '' state = 'write_value' continue elif k == '\n': tmp_adding_key = tmp_key tmp_key = '' state = 'write_key' adding_information[tmp_adding_key] = tmp_value continue # 判断是否便利到节点 if state == 'write_key': tmp_key += k elif state == 'write_value': tmp_value += k else: return False, 2 times = 0 adding_info_list = [adding_student_id] for i in adding_information.keys(): times += 1 adding_info_list.append(adding_information.get(i)) for j in range(0, 5-times): adding_info_list.append(None) adding_info_tuple = tuple(adding_info_list) adding_info_final = [adding_info_tuple] cur.executemany("insert into student_info values(%s,%s,%s,%s,%s,%s)", adding_info_final) conn.commit()
8a44177b90c1f3e10077313f6765a4699ded676b
3,658,010
from typing import Optional import os import importlib def import_file_as_module(filename: str, name: Optional[str] = None) -> ModuleType: """ NOTE(2020-11-09|domanchi): We're essentially executing arbitrary code here, so some thoughts should be recorded as to the security of this feature. This should not add any additional security risk, given the following assumptions hold true: 1. detect-secrets is not used in an environment that has privileged access (more than the current user), OR 2. detect-secrets (when running in a privileged context) does not accept arbitrary user input that feeds into this function (e.g. custom plugins). The first assumption should be rather self-explanatory: if you are running detect-secrets in a context that has the same permissions as you, you can import any code you want, since this acts more of a utility function than a security flaw. If you're going to do it *anyway*, let's just make your life easier. The second assumption should also be pretty straight-forward: don't trust user input, especially if it's going to be executed as that privileged user, unless you want a privilege escalation vulnerability. detect-secrets is not going to do any sanitization of user input for you. """ if not os.path.exists(filename): raise FileNotFoundError if not name: # NOTE: After several trial and error attempts, I could not discern the importance # of this field, in this context. Hence, I don't think it matters that much. name = os.path.splitext(os.path.basename(filename))[0] # Source: https://stackoverflow.com/a/67692/13340678 spec = importlib.util.spec_from_file_location(name, filename) if not spec: raise InvalidFile module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # type: ignore module.__path__ = os.path.abspath(filename) # type: ignore return module
5aa9a54f8a8ed4a42bc49f806c2ac38d01b8ccfa
3,658,011
async def get_show_by_month_day(month: conint(ge=1, le=12), day: conint(ge=1, le=31)): """Retrieve a Show object, based on month and day, containing: Show ID, date and basic information.""" try: show = Show(database_connection=_database_connection) shows = show.retrieve_by_month_day(month, day) if not shows: raise HTTPException( status_code=404, detail=f"Shows for month {month:02d} and {day:02d} not found", ) else: return {"shows": shows} except ValueError: raise HTTPException( status_code=404, detail=f"Shows for month {month:02d} and {day:02d} not found", ) except ProgrammingError: raise HTTPException( status_code=500, detail="Unable to retrieve show information from the database", ) except DatabaseError: raise HTTPException( status_code=500, detail="Database error occurred while retrieving " "show information from the database", )
e774f61254a3d7cdfc9a49ca1a9eea4f65853f55
3,658,012
import random def generate_random_tag(length): """Generate a random alphanumeric tag of specified length. Parameters ---------- length : int The length of the tag, in characters Returns ------- str An alphanumeric tag of specified length. Notes ----- The generated tag will not use possibly ambiguous characters from this set: - '0' and '1' - 'i' and 'I' - 'l' and 'L' - 'o' and 'O' """ characters_set = ('23456789' + 'abcdefghjkmnpqrstuvwxyz' + 'ABCDEFGHJKMNPQRSTUVWXYZ') return ''.join([characters_set[int(random() * len(characters_set))] for _ in range(length)])
b62a103663b69f0a27d8ba23134473dc01932409
3,658,013
import io def loadmat(filename, check_arrays=False, **kwargs): """ Big thanks to mergen on stackexchange for this: http://stackoverflow.com/a/8832212 This function should be called instead of direct scipy.io.loadmat as it cures the problem of not properly recovering python dictionaries from mat files. It calls the function check keys to cure all entries which are still mat-objects. """ kwargs["struct_as_record"] = False kwargs["squeeze_me"] = True data = io.loadmat(filename, **kwargs) return _check_keys(data, check_arrays)
3b054cbabc03b468ec0c80a4ed544b1c054ef223
3,658,014
def _export_output_to_tensors(export_output): """Get a list of `Tensors` used in `export_output`. Args: export_output: an `ExportOutput` object such as `ClassificationOutput`, `RegressionOutput`, or `PredictOutput`. Returns: a list of tensors used in export_output. Raises: ValueError: if `export_output` is not one of `ClassificationOutput`, `RegressionOutput`, or `PredictOutput`. """ if isinstance(export_output, export_output_lib.ClassificationOutput): return [export_output.scores, export_output.classes] elif isinstance(export_output, export_output_lib.RegressionOutput): return [export_output.value] elif isinstance(export_output, export_output_lib.PredictOutput): return export_output.outputs.values() else: raise ValueError( '`export_output` must be have type `ClassificationOutput`, ' '`RegressionOutput`, or `PredictOutput`; got {}.'.format(export_output))
913c1b232f8ac6e66e9104c055c9d34726db1027
3,658,015
import logging def train_city_s1(city:str, pollutant= 'PM2.5', n_jobs=-2, default_meta=False, search_wind_damp=False, choose_cat_hour=False, choose_cat_month=True, add_weight=True, instr='MODIS', op_fire_zone=False, op_fire_twice=False, op_lag=True, search_tpot=False, main_data_folder: str = '../data/', model_folder='../models/', report_folder='../reports/'): """Training pipeline from process raw data, hyperparameter tune, and save model. Args: city: city name pollutant(optional): pollutant name n_jobs(optional): number of CPUs to use during optimization default_meta(optional): if True, override meta setting with the default value search_wind_damp(optional): if True, search in four options of the fire features. add_weight(optional): if True, use non-uniform weight when fitting and evaluating the model. instr(optional): choose hotspots detection instrument choose_cat_hour(optional): if True, see if adding/not adding hour as catergorical variable is better choose_cat_month(optional): if True, see if adding/not adding month as catergorical variable is better op_fire_twice(optiohnal): if True, optimize fire data after optimizing lag search_tpot(optional): If True, also search for other model using TPOT main_data_folder(optional): main data folder for initializing Dataset object [default:'../data/] model_folder(optional): model folder for initializing Dataset object [default:'../models/'] report_folder(optional): folder to save figure for initializing Dataset object [default:'../reports/'] Returns: dataset: dataset object model: model object poll_meta(dict): parameter dictionary """ # start logging set_logging(level=10) logger = logging.getLogger(__name__) # initialize a trainer object trainer = Trainer(city=city, pollutant=pollutant, instr=instr) trainer.n_jobs = n_jobs if default_meta: trainer.get_default_meta() if ~ add_weight: trainer.dataset.add_weight = 0 #if 'x_cols_org' in trainer.poll_meta.keys(): # trainer.dataset.x_cols = trainer.dataset.x_cols_org = trainer.poll_meta['x_cols_org'] # look for the best rf model trainer.op_rf(fire_dict=trainer.dataset.fire_dict) # remove columns trainer.op2_rm_cols() logger.info(f'current columns {trainer.dataset.x_cols_org}') # op fire trainer.op_fire(x_cols=trainer.dataset.x_cols_org, search_wind_damp=search_wind_damp) if op_fire_zone: trainer.op_fire_zone(step=50) if choose_cat_hour: trainer.choose_cat_hour() if choose_cat_month: trainer.choose_cat_month() if op_lag: # see if adding lag improve things if trainer.dataset.with_interact: # use smaller lag range trainer.op4_lag(lag_range=[1, 20]) else: trainer.op4_lag() else: print('skip adding lag') trainer.dataset.lag_dict = {'n_max': 1, 'step': 1, 'roll':True} trainer.dataset.build_lag( lag_range=np.arange( 1, trainer.dataset.lag_dict['n_max'], trainer.dataset.lag_dict['step']), roll=trainer.dataset.lag_dict['roll']) if op_fire_twice: trainer.op_fire(x_cols=trainer.dataset.x_cols, with_lag=True, search_wind_damp=search_wind_damp) # serach rf model again trainer.op6_rf() trainer.final_fit() # save plot trainer.save_feat_imp(with_interact=trainer.dataset.with_interact, filename=trainer.dataset.report_folder +f'{trainer.poll_name}_rf_fea_op2_nolag.png', title='rf feature of importance') trainer.save_all() if search_tpot: trainer.search_tpot() # turn of logging logging.shutdown() return trainer.dataset, trainer.model, trainer
43cd4ff89068feba1bca3c316e40b19f852c1da2
3,658,016
def constructCbsdGrantInfo(reg_request, grant_request, is_managing_sas=True): """Constructs a |CbsdGrantInfo| tuple from the given data.""" lat_cbsd = reg_request['installationParam']['latitude'] lon_cbsd = reg_request['installationParam']['longitude'] height_cbsd = reg_request['installationParam']['height'] height_type_cbsd = reg_request['installationParam']['heightType'] if height_type_cbsd == 'AMSL': # TODO(sbdt): move the feature of AMSL support within the prop models. altitude_cbsd = drive.terrain_driver.GetTerrainElevation(lat_cbsd, lon_cbsd) height_cbsd = height_cbsd - altitude_cbsd max_eirp, low_frequency, high_frequency = None, None, None if grant_request is not None: if 'requestedOperationParam' in grant_request: max_eirp = grant_request['requestedOperationParam']['maxEirp'] low_frequency = grant_request['requestedOperationParam']['operationFrequencyRange']['lowFrequency'] high_frequency = grant_request['requestedOperationParam']['operationFrequencyRange']['highFrequency'] else: max_eirp = grant_request['operationParam']['maxEirp'] low_frequency = grant_request['operationParam']['operationFrequencyRange']['lowFrequency'] high_frequency = grant_request['operationParam']['operationFrequencyRange']['highFrequency'] return CbsdGrantInfo( # Get information from the registration latitude=lat_cbsd, longitude=lon_cbsd, height_agl=height_cbsd, indoor_deployment=reg_request['installationParam']['indoorDeployment'], antenna_azimuth=reg_request['installationParam']['antennaAzimuth'], antenna_gain=reg_request['installationParam']['antennaGain'], antenna_beamwidth=reg_request['installationParam']['antennaBeamwidth'], cbsd_category=reg_request['cbsdCategory'], max_eirp=max_eirp, iap_eirp={max_eirp}, # *****PATCHED***** low_frequency=low_frequency, high_frequency=high_frequency, is_managed_grant=is_managing_sas)
aff6a37f7831a185a7c1a3168c42a692768ae4e9
3,658,017
def download_raw_pages_content(pages_count): """download habr pages by page count""" return [fetch_raw_content(page) for page in range(1, pages_count + 1)]
77e369a986ff09887a71d996226d147fef9a36ec
3,658,018
def tseries2bpoframe(s: pd.Series, freq: str = "MS", prefix: str = "") -> pd.DataFrame: """ Aggregate timeseries with varying values to a dataframe with base, peak and offpeak timeseries, grouped by provided time interval. Parameters ---------- s : Series Timeseries with hourly or quarterhourly frequency. freq : {'MS' (month, default) 'QS' (quarter), 'AS' (year)} Target frequency. prefix : str, optional (default: '') If specified, add this to the column names of the returned dataframe. Returns ------- DataFrame Dataframe with base, peak and offpeak values (as columns). Index: downsampled timestamps at provided frequency. Notes ----- Can only be used for values that are 'averagable' over a time period, like power [MW] and price [Eur/MWh]. Not for e.g. energy [MWh], revenue [Eur], and duration [h]. In: ts_left 2020-01-01 00:00:00+01:00 41.88 2020-01-01 01:00:00+01:00 38.60 2020-01-01 02:00:00+01:00 36.55 ... 2020-12-31 21:00:00+01:00 52.44 2020-12-31 22:00:00+01:00 51.86 2020-12-31 23:00:00+01:00 52.26 Freq: H, Name: p, Length: 8784, dtype: float64 Out: base peak offpeak ts_left 2020-01-01 00:00:00+01:00 35.034906 42.530036 30.614701 2020-02-01 00:00:00+01:00 21.919009 33.295167 15.931557 ... ... ... 2020-11-01 00:00:00+01:00 38.785706 49.110873 33.226004 2020-12-01 00:00:00+01:00 43.519745 57.872246 35.055449 12 rows × 3 columns """ if freq not in ("MS", "QS", "AS"): raise ValueError( f"Parameter ``freq`` must be one of 'MS', 'QS', 'AS'; got '{freq}'." ) # Remove partial data s = trim_frame(s, freq) # Handle possible units. sin, units = (s.pint.magnitude, s.pint.units) if hasattr(s, "pint") else (s, None) # Do calculations. Use normal mean, because all rows have same duration. sout = sin.resample(freq).apply(lambda s: tseries2singlebpo(s, prefix)) # Handle possible units. if units is not None: sout = sout.astype(nits.pintunit(units)) return sout.unstack()
6b97bc3b8c925be68ba79e8a9abdc2795500df76
3,658,019
def calc_buffered_bounds( format, bounds, meters_per_pixel_dim, layer_name, geometry_type, buffer_cfg): """ Calculate the buffered bounds per format per layer based on config. """ if not buffer_cfg: return bounds format_buffer_cfg = buffer_cfg.get(format.extension) if format_buffer_cfg is None: return bounds geometry_type = normalize_geometry_type(geometry_type) per_layer_cfg = format_buffer_cfg.get('layer', {}).get(layer_name) if per_layer_cfg is not None: layer_geom_pixels = per_layer_cfg.get(geometry_type) if layer_geom_pixels is not None: assert isinstance(layer_geom_pixels, Number) result = bounds_buffer( bounds, meters_per_pixel_dim * layer_geom_pixels) return result by_geometry_pixels = format_buffer_cfg.get('geometry', {}).get( geometry_type) if by_geometry_pixels is not None: assert isinstance(by_geometry_pixels, Number) result = bounds_buffer( bounds, meters_per_pixel_dim * by_geometry_pixels) return result return bounds
5bbf9720525126e3dcd000329493c894c8249771
3,658,020
async def read_users_me( current_user: models.User = Depends(security.get_current_active_user), ): """Get User data""" return current_user
4b2e37586a4e13074ec009f4cd7e64e7a357d539
3,658,021
import os def cal_energy_parameters_for_one_channel(sub_sample_label_dict, channel, importance=1): """ the loss comes equally from four sources: connected component (0D), boundary (1D), area (2D), and rim_enhance e.g. a small region with long boundaries means it accounts for lots of 1D loss and little of 2D loss. If border_outer=False, boundaries are inside lesions, and all connected regions account for the same 0D loss If border_outer=True, boundaries are outside lesions, 0D loss are the same inside the same integrated connected region determined by the outer boundaries. 0D, 1D, 2D loss are uniformly distributed into every pixels inside the integrated connected region; rim_enhance is then added to the boundary pixels. :param sub_sample_label_dict: The dict of representative training sample labels. This function calculate how to balance the loss weights according to these training sample labels. Training sample labels should be numpy arrays shaped: [length, width, channel], and when the channel is specified, it should be a binary image, with 1 means positive, it can be a probability [0, 1]. When summing all channels, we get a 2D array of all ones. :param channel: which channel we need to calculate? The weights are calculated channel-wise. The theoretical basis is that, some TYPES lesions are big and folded; while some are small and smooth. When doing performance measure, we don't care about this difference in the classes. Thus, different classes should account the same training loss. Channel 0 is the probability mask for normal pixels. :param importance: There may be a special class is extremely important. Increase the importance will increase the proportion of training loss for this class. :return: connect_energy_factor, rim_energy_factor, area_enhance, rim_enhance 0D 1D 2D """ sample_names_list = os.listdir(sub_sample_label_dict) total_num_connected_areas = 0 # the number of connected areas in this sub set, counts for 0D loss total_rim_length = 0 # the number of rim voxels, counts for 1D loss total_lesion_area = 0 # the number of lesion voxels, counts for 2D loss if not sub_sample_label_dict[-1] == '/': sub_sample_label_dict = sub_sample_label_dict + '/' for sample_name in sample_names_list: sample = np.load(sub_sample_label_dict + sample_name) # sample should in [width, length, channel] mask = sample[:, :, channel] num_connected_areas, num_rim_voxels, num_lesion_voxels = calculate_balance_weights(mask, return_stat=True) total_num_connected_areas += num_connected_areas total_rim_length += num_rim_voxels total_lesion_area += num_lesion_voxels num_samples = len(sample_names_list) num_loss_per_dimension = num_samples * importance # each sample and each class is defaulted to have 4 units of losses: 3 units, 0D, 1D, 2D, which distributed # uniformly on lesions; and one unit distributed uniformly on the rim pixels. area_enhance = num_loss_per_dimension / total_lesion_area # thus, averagely each slice 1 units of 2D loss rim_energy_factor = num_loss_per_dimension / total_rim_length # thus, averagely each slice 1 units of 1D loss connect_energy_factor = num_loss_per_dimension / total_num_connected_areas # each slice 1 units of 0D loss rim_enhance = num_loss_per_dimension / total_rim_length # averagely further add 1 units to enhance the rim pixels return connect_energy_factor, rim_energy_factor, area_enhance, rim_enhance
7d82fb2b2e232fee027971913475ff310b1b736e
3,658,022
import logging def get_logger(logfile): """Instantiate a simple logger. """ fmt = "%(levelname)s:%(filename)s:%(lineno)s:%(funcName)s: %(message)s" #fmt = '%(levelname)s:%(filename)s:%(lineno)s:%(funcName)s:%(asctime)s: %(message)s'] datefmt = '%Y-%m-%dT%H:%M:%S' logger = logging.getLogger() logger.setLevel(logging.INFO) # logging to logfile ch = logging.FileHandler(logfile, mode='w') #ch.setLevel(logging.INFO) ch.setFormatter( logging.Formatter(fmt, datefmt=datefmt) ) logger.addHandler(ch) ### log stdout #ch = logging.StreamHandler() #ch.setLevel(logging.DEBUG) #ch.setFormatter( logging.Formatter(fmt, datefmt=datefmt) ) #logger.addHandler(ch) # #logger.write = lambda msg: logger.info(msg) if msg != '\n' else None return logger
a3bd9387b745e3cb001a44c4f3c11488fef3c106
3,658,023
import logging def __to_signed(val, bits): """ internal function to convert a unsigned integer to signed of given bits length """ logging.debug(" in: value = %d", val) mask = 0x00 for i in range(int(bits / 8)): mask |= 0xff << (i * 8) if val >= (1 << (bits - 1)): val = -1 - (val ^ mask) logging.debug(" out: value = %d", val) return val
618b02ad5a67c31a5942430ec64abcad59708ddd
3,658,024
from typing import Iterable from typing import Tuple def compute_qp_objective( configuration: Configuration, tasks: Iterable[Task], damping: float ) -> Tuple[np.ndarray, np.ndarray]: """ Compute the Hessian matrix :math:`H` and linear vector :math:`c` of the QP objective function: .. math:: \\frac{1}{2} \\Delta q^T H \\Delta q + c^T q The configuration displacement :math:`\\Delta q` is the output of inverse kinematics (we divide it by :math:`\\Delta t` to get a commanded velocity). Args: configuration: Robot configuration to read kinematics from. tasks: List of kinematic tasks to fulfill at (weighted) best. damping: weight of Tikhonov (everywhere) regularization. Its unit is `[cost]^2 / [tangent]` where `[tangent]` is "the" unit of robot velocities. Improves numerical stability, but larger values slow down all tasks. Returns: Pair :math:`(H, c)` of Hessian matrix and linear vector of the QP objective. """ H = damping * configuration.tangent.eye c = configuration.tangent.zeros for task in tasks: H_task, c_task = task.compute_qp_objective(configuration) H += H_task c += c_task return (H, c)
623997bbaf7ce92c39084fa44960593b55a0b3a0
3,658,025
def _is_existing_account(respondent_email): """ Checks if the respondent already exists against the email address provided :param respondent_email: email of the respondent :type respondent_email: str :return: returns true if account already registered :rtype: bool """ respondent = party_controller.get_respondent_by_email(respondent_email) if not respondent: return False return True
4cb0462f748d0b80dbb12f89364d279a3436b632
3,658,026
import socket def basic_checks(server,port): """Perform basics checks on given host""" sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 2 seconds timeout sock.settimeout(2) return sock.connect_ex((server,int(port))) == 0
4a31521089feb2c178bb5202fa818804dfe87142
3,658,027
import time def test(ipu_estimator, args, x_test, y_test): """ Test the model on IPU by loading weights from the final checkpoint in the given `args.model_dir`. """ def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) dataset = dataset.prefetch(len(x_test)).cache() dataset = dataset.batch(args.batch_size, drop_remainder=True) return dataset num_test_examples = len(x_test) steps = num_test_examples // args.batch_size # IPUEstimator requires no remainder; batches_per_step must divide steps steps -= steps % args.batches_per_step print(f"Evaluating on {steps * args.batch_size} examples") # Set up profiling hook hooks = [] if args.profile: hooks.append(ProfilerHook(ipu_estimator.model_dir, name='eval')) t0 = time.time() metrics = ipu_estimator.evaluate(input_fn=input_fn, steps=steps, hooks=hooks) t1 = time.time() test_loss = metrics["loss"] test_accuracy = metrics["accuracy"] duration_seconds = t1 - t0 print("Test loss: {:g}".format(test_loss)) print("Test accuracy: {:.2f}%".format(100 * test_accuracy)) print(f"Took {duration_seconds:.2f} seconds to compile and run")
083c2c830315ccf2602109a4a3e718cecd1b6760
3,658,028
def _get_service(): """Gets service instance to start API searches. Returns: A Google API Service used to send requests. """ # Create the AI Platform service object. # To authenticate set the environment variable # GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file> return googleapiclient.discovery.build('ml', 'v1')
5d79698216626eff9618dc55b6b651a5da3f5187
3,658,029
def giq(scores, targets, I, ordered, cumsum, penalties, randomized, allow_zero_sets): """ Generalized inverse quantile conformity score function. E from equation (7) in Romano, Sesia, Candes. Find the minimum tau in [0, 1] such that the correct label enters. """ E = -np.ones((scores.shape[0],)) for i in range(scores.shape[0]): E[i] = get_tau( scores[i : i + 1, :], targets[i].item(), I[i : i + 1, :], ordered[i : i + 1, :], cumsum[i : i + 1, :], penalties[0, :], randomized=randomized, allow_zero_sets=allow_zero_sets, ) return E
99a877053cf095622184cbbd9043b742c6ae076f
3,658,030
def findUser(userId): """ :param userId: :return: The user obj Finds a particular user from a dataset. """ return user_collection.find_one({"user_id": userId})
ffca934689c554993ca5d33005a32e4f9afe48cd
3,658,031
def sub_sample_map(data, aug_map, n_input, n_output, n_teach, buffer): """ Expands an augmentation map to produce indexes that will allow targets values of previous outputs to be used as inputs """ n_io = n_input + n_output n_req = n_io teach_range = range(n_teach) tf_map = [] for map_ in aug_map: sample = data[map_["orig_sample_idx"]] n = len(sample) i = np.random.randint(n - n_io - n_teach - buffer) j = i + n_req + n_teach + buffer new_map_ = {"strt_idx": i, "end_idx": j, **map_} tf_map.append(new_map_) return tf_map
05f88939ad2e293e3370f5585ad30f1d9d6256d1
3,658,032
def capture_flow(pkt_hist): """ Monitors the flow in the file. :param pkt_hist: a list of raw eth packets :return: 0 (No errors) """ closedby = [] global numFlows, flow_buffer, sent_buffer, ackd_buffer, received_buffer, retransmissions, end_ts, retransmissions_timeout, retransmissions_fast # print "Starting capture" cnt = 0 for ts, pkt in pkt_hist: cnt+=1 # print "PACKET -----" + str(cnt) tcp_packet = get_tcp_packet(pkt, ts) # print "Seq Num :", str(tcp_packet.seqNum), "| Ack Num :", tcp_packet.ackNum, "| Packet Size :", tcp_packet.pSize, "| Payload Length :", tcp_packet.payloadLength fState = getFlowStateForPacket(tcp_packet) if(fState == 2): #This means that the flow is in active state # print "Packet belongs to Flow", str(getFlowID(tcp_packet)), "which is already in ACTIVE state." pkt_id = add_packet(tcp_packet, cnt, ts) if (tcp_packet._FIN == 1 and getTransDirection(tcp_packet) == 0): updateFlowState(tcp_packet, 3) closedby.append([getFlowID(tcp_packet), cnt, "SENDERCLOSE"]) # FIN ACKed by sender if(tcp_packet._FIN == 1 and getTransDirection(tcp_packet) == 1): updateFlowState(tcp_packet, 4) closedby.append([getFlowID(tcp_packet), cnt, "RECVRCLOSE"]) # FIN ACKed by server elif(fState == 3): pkt_id = add_packet(tcp_packet, cnt, ts) if (tcp_packet._FIN == 1 and getTransDirection(tcp_packet) == 1): updateFlowState(tcp_packet, 5) closedby.append([getFlowID(tcp_packet), cnt, "RECVRCLOSE"]) # Was in 3 state (finned by sender). Now also FIN ACKed by server elif(fState == 4): pkt_id = add_packet(tcp_packet, cnt, ts) if (tcp_packet._FIN == 1 and getTransDirection(tcp_packet) == 0): updateFlowState(tcp_packet, 5) closedby.append([getFlowID(tcp_packet), cnt, "SENDERCLOSE"]) # Was in 4 state (finned by server). Now also FIN ACKed by sender elif(fState == 5): if(tcp_packet._ACK == 1): # Just a stupid ack add_packet(tcp_packet, cnt, ts) end_ts[getFlowID(tcp_packet)] = ts else: print "Suspicious Packet." print(closedby) printFlowBuffer() break else: if(tcp_packet._SYN == 1 and tcp_packet._ACK == 0): # print "Flow initiated with timestamp", ts fid = newFlow(tcp_packet) # updateFlowState(fid, 0) NO NEED TO DO THAT, WHEN WE CREATE A NEW FLOW, ITS DEFAULT STATE IS 0 if(tcp_packet._SYN == 1 and tcp_packet._ACK == 1): # print "Flow SYN/ACK Received" updateFlowState(tcp_packet, 1) winscale[getFlowID(tcp_packet)] = tcp_packet.winscale if (tcp_packet._SYN == 0 and tcp_packet._ACK == 1): 'TODO : IN THIS CASE WE NEED TO CHECK IF IT IS FOR NORMAL ACK OR HANDSHAKE ACK' updateFlowState(tcp_packet, 2) updateFlowWinSize(tcp_packet) pkt_id = add_packet(tcp_packet, cnt, ts) # print "Sent Buffer Length : ", len(sent_buffer), " | Received Buffer Length : ", len(received_buffer), " | Acked Buffer Length : ", len(ackd_buffer) # printFlowBuffer() # print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n\n" if(pkt_id == False): print " >> No TCP Flow registered for this packet with timestamp", ts break # print_first_two_trans() # print closedby return 0
41a1628960aa4c95c2859fbbe10410fb49289d04
3,658,033
import time import subprocess import traceback def run_customcheck_command(check): """Function that starts as a thread (future) to process a custom check command Process a custom check command until a given timeout. The result will be added to the cached_customchecks_check_data object. process_customcheck_results() takes care of a may dying run_customcheck_command thread. Parameters ---------- check Object containing the specific check data (name, command, timeout) """ print_verbose('Start custom check "%s" with timeout %s at %s' % (str(check['name']), str(check['timeout']), str(round(time.time()))), False) agent_log.info('Start custom check "%s" with timeout %s at %s' % (str(check['name']), str(check['timeout']), str(round(time.time())))) cached_customchecks_check_data[check['name']]['running'] = "true" cached_customchecks_check_data[check['name']]['command'] = check['command'] try: p = subprocess.Popen(check['command'], shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) try: stdout, stderr = p.communicate(timeout=int(check['timeout'])) p.poll() if stdout: stdout = stdout.decode() if stderr: stderr = stderr.decode() cached_customchecks_check_data[check['name']]['result'] = str(stdout) cached_customchecks_check_data[check['name']]['error'] = None if str(stderr) == 'None' else str(stderr) cached_customchecks_check_data[check['name']]['returncode'] = p.returncode except subprocess.TimeoutExpired: print_verbose('Custom check "%s" timed out' % (check['name']), False) agent_log.error('Custom check "%s" timed out' % (check['name'])) p.kill() #not needed; just to be sure cached_customchecks_check_data[check['name']]['result'] = None cached_customchecks_check_data[check['name']]['error'] = 'Command timeout after ' + str(check['timeout']) + ' seconds' cached_customchecks_check_data[check['name']]['returncode'] = 124 except: print_verbose('An error occured while running the custom check "%s"!' % (check['name']), True) agent_log.error('An error occured while running the custom check "%s"!' % (check['name'])) if stacktrace: traceback.print_exc() cached_customchecks_check_data[check['name']]['last_updated_timestamp'] = round(time.time()) cached_customchecks_check_data[check['name']]['last_updated'] = time.ctime() del cached_customchecks_check_data[check['name']]['running'] return True
aa4846d08190c16e4a1edb49d369ba093f767b3c
3,658,034
def rcGetBBModelEnum(): """ Get the BeagleBone model as member of the BBModel Enum. """ return BBModel(rcGetBBModel())
90cf6857f2754a1947d017a1a57b11790d534c05
3,658,035
def ordToString(ordList): """Use this function to convert ord values to strings.""" newStrList = [] cstr = "" for cint in ordList: cstr += chr(cint) if cint == 44: newStrList.append(cstr[:-1]) cstr = "" return newStrList
5a836f7fe34803744de90aa2608e3d99a081c7ff
3,658,036
def get_test_data_for_successful_build(): """Returns a test data set of test suites and cases that passed. """ return _get_test_data(["PASSED", "PASSED", "PASSED"])
8969d33f887dcc7c7f7fb8148cbcfc7a4eb4d7c1
3,658,037
import re import logging def fromOldAdjacencyList(adjlist, group=False, saturateH=False): """ Convert a pre-June-2014 string adjacency list `adjlist` into a set of :class:`Atom` and :class:`Bond` objects. It can read both "old style" that existed for years, an the "intermediate style" that existed for a few months in 2014, with the extra column of integers for lone pairs. """ atoms = [] atomdict = {} bonds = {} try: adjlist = adjlist.strip() lines = adjlist.splitlines() if adjlist == '' or len(lines) == 0: raise InvalidAdjacencyListError('Empty adjacency list.') # Skip the first line if it contains a label if len(lines[0].split()) == 1: label = lines.pop(0) if len(lines) == 0: raise InvalidAdjacencyListError('No atoms specified in adjacency list.') mistake1 = re.compile('\{[^}]*\s+[^}]*\}') atomicMultiplicities = {} # these are no longer stored on atoms, so we make a separate dictionary # Iterate over the remaining lines, generating Atom or GroupAtom objects for line in lines: # Sometimes people put spaces after commas, which messes up the # parse-by-whitespace. Examples include '{Cd, Ct}'. if mistake1.search(line): raise InvalidAdjacencyListError( "Shouldn't have spaces inside braces: {0}".format(mistake1.search(line).group()) ) # Sometimes commas are used to delimit bonds in the bond list, # so replace them just in case line = line.replace('},{', '} {') data = line.split() # Skip if blank line if len(data) == 0: continue # First item is index for atom # Sometimes these have a trailing period (as if in a numbered list), # so remove it just in case aid = int(data[0].strip('.')) # If second item starts with '*', then atom is labeled label = ''; index = 1 if data[1][0] == '*': label = data[1] index += 1 # Next is the element or functional group element # A list can be specified with the {,} syntax atomType = data[index] if atomType[0] == '{': atomType = atomType[1:-1].split(',') else: atomType = [atomType] index += 1 # Next is the electron state radicalElectrons = []; atomSpinMultiplicity = [] elecState = data[index].upper() if elecState[0] == '{': elecState = elecState[1:-1].split(',') else: elecState = [elecState] for e in elecState: if e == '0': radicalElectrons.append(0); atomSpinMultiplicity.append(1) elif e == '1': radicalElectrons.append(1); atomSpinMultiplicity.append(2) elif e == '2': radicalElectrons.append(2); atomSpinMultiplicity.append(1) radicalElectrons.append(2); atomSpinMultiplicity.append(3) elif e == '2S': radicalElectrons.append(2); atomSpinMultiplicity.append(1) elif e == '2T': radicalElectrons.append(2); atomSpinMultiplicity.append(3) elif e == '3': radicalElectrons.append(3); atomSpinMultiplicity.append(4) elif e == '3D': radicalElectrons.append(3); atomSpinMultiplicity.append(2) elif e == '3Q': radicalElectrons.append(3); atomSpinMultiplicity.append(4) elif e == '4': radicalElectrons.append(4); atomSpinMultiplicity.append(5) elif e == '4S': radicalElectrons.append(4); atomSpinMultiplicity.append(1) elif e == '4T': radicalElectrons.append(4); atomSpinMultiplicity.append(3) elif e == '4V': radicalElectrons.append(4); atomSpinMultiplicity.append(5) elif e == 'X': radicalElectrons.extend([0,1,2,2]) atomSpinMultiplicity.extend([1,2,1,3]) index += 1 # Next number defines the number of lone electron pairs (if provided) lonePairsOfElectrons = -1 if len(data) > index: lpState = data[index] if lpState[0] == '{': # this is the start of the chemical bonds - no lone pair info was provided lonePairsOfElectrons = -1 else: if lpState == '0': lonePairsOfElectrons = 0 if lpState == '1': lonePairsOfElectrons = 1 if lpState == '2': lonePairsOfElectrons = 2 if lpState == '3': lonePairsOfElectrons = 3 if lpState == '4': lonePairsOfElectrons = 4 index += 1 else: # no bonds or lone pair info provided. lonePairsOfElectrons = -1 # Create a new atom based on the above information if group: # charge currently not allowed atom = GroupAtom(atomType=atomType, radicalElectrons=sorted(set(radicalElectrons)), charge=[0], label=label, lonePairs=(None if lonePairsOfElectrons==-1 else [lonePairsOfElectrons]) ) else: atom = Atom(element=atomType[0], radicalElectrons=radicalElectrons[0], charge=0, label=label, lonePairs=lonePairsOfElectrons ) atomicMultiplicities[atom] = atomSpinMultiplicity # Add the atom to the list atoms.append(atom) atomdict[aid] = atom # Process list of bonds bonds[aid] = {} for datum in data[index:]: # Sometimes commas are used to delimit bonds in the bond list, # so strip them just in case datum = datum.strip(',') aid2, comma, order = datum[1:-1].partition(',') aid2 = int(aid2) if aid == aid2: raise InvalidAdjacencyListError('Attempted to create a bond between atom {0:d} and itself.'.format(aid)) if order[0] == '{': order = order[1:-1].split(',') else: order = [order] bonds[aid][aid2] = order if group: multiplicity = None else: multiplicity = 1 for atom in atoms: multiplicity += max(atomicMultiplicities[atom]) - 1 # Check consistency using bonddict for atom1 in bonds: for atom2 in bonds[atom1]: if atom2 not in bonds: raise InvalidAdjacencyListError('Atom {0:d} not in bond dictionary.'.format(atom2)) elif atom1 not in bonds[atom2]: raise InvalidAdjacencyListError('Found bond between {0:d} and {1:d}, but not the reverse.'.format(atom1, atom2)) elif bonds[atom1][atom2] != bonds[atom2][atom1]: raise InvalidAdjacencyListError('Found bonds between {0:d} and {1:d}, but of different orders "{2}" and "{3}".'.format(atom1, atom2, bonds[atom1][atom2], bonds[atom2][atom1])) # Convert bonddict to use Atom[group] and Bond[group] objects atomkeys = atomdict.keys() atomkeys.sort() for aid1 in atomkeys: atomkeys2 = bonds[aid1].keys() atomkeys2.sort() for aid2 in atomkeys2: if aid1 < aid2: atom1 = atomdict[aid1] atom2 = atomdict[aid2] order = bonds[aid1][aid2] if group: bond = GroupBond(atom1, atom2, order) elif len(order) == 1: bond = Bond(atom1, atom2, order[0]) else: raise InvalidAdjacencyListError('Multiple bond orders specified for an atom in a Molecule.') atom1.edges[atom2] = bond atom2.edges[atom1] = bond if saturateH and not group: # Add explicit hydrogen atoms to complete structure if desired valences = {'H': 1, 'C': 4, 'O': 2, 'N': 3, 'S': 2, 'Si': 4, 'Cl': 1, 'He': 0, 'Ne': 0, 'Ar': 0} orders = {'S': 1, 'D': 2, 'T': 3, 'B': 1.5} newAtoms = [] for atom in atoms: try: valence = valences[atom.symbol] except KeyError: raise InvalidAdjacencyListError('Cannot add hydrogens to adjacency list: Unknown valence for atom "{0}".'.format(atom.symbol)) radical = atom.radicalElectrons order = 0 for atom2, bond in atom.bonds.items(): order += orders[bond.order] count = valence - radical - int(order) for i in range(count): a = Atom(element='H', radicalElectrons=0, charge=0, label='') b = Bond(atom, a, 'S') newAtoms.append(a) atom.bonds[a] = b a.bonds[atom] = b atoms.extend(newAtoms) # Calculate the number of lone pair electrons requiring molecule with all hydrogen atoms present if not group and lonePairsOfElectrons == -1: orders = {'S': 1, 'D': 2, 'T': 3, 'B': 1.5} for atom in atoms: radical = atom.radicalElectrons order = 0 for atom2, bond in atom.bonds.items(): order += orders[bond.order] lonePairs = (1 if atom.symbol == 'H' or atom.symbol == 'He' else 4) - order - radical atom.setLonePairs(lonePairs) atom.updateCharge() elif not group: for atom in atoms: atom.updateCharge() except InvalidAdjacencyListError: logging.error("Troublesome adjacency list:\n" + adjlist) raise return atoms, multiplicity
0c54ee172948437f9cb075c5880eb7eb25d2893f
3,658,038
def read_arg_optional( src, args, n_optional=-1, tolerance=0, mode=MODE_NON_MATH, skip_math=False): """Read next optional argument from buffer. If the command has remaining optional arguments, look for: a. A spacer. Skip the spacer if it exists. b. A bracket delimiter. If the optional argument is bracket-delimited, the contents of the bracket group are used as the argument. :param Buffer src: a buffer of tokens :param TexArgs args: existing arguments to extend :param int n_optional: Number of optional arguments. If < 0, all valid bracket groups will be captured. :param int tolerance: error tolerance level (only supports 0 or 1) :param str mode: math or not math mode :return: number of remaining optional arguments :rtype: int """ while n_optional != 0: spacer = read_spacer(src) if not (src.hasNext() and src.peek().category == TC.BracketBegin): if spacer: src.backward(1) break args.append(read_arg(src, next(src), tolerance=tolerance, mode=mode, skip_math=skip_math)) n_optional -= 1 return n_optional
641fe9ab9a96b6e59e15b115abe843fa09a07659
3,658,039
def searcheduxapian_ajax_get_schlagwort(request, item_container): """ moegliche Schlagworte """ schlagworte = get_schlagworte(request.GET['query']) res = '<items>\n' for schlagwort in schlagworte: res += '<schlagwort>\n<name><![CDATA[%s]]></name>\n</schlagwort>\n' % schlagwort.name res += '</items>\n' return HttpResponse(res, mimetype="text/xml; charset=utf-8")
5a248ced5006d49f2dc303c68957d07ba187c3d5
3,658,040
def expanded_X_y_sample_weights(X, y_proba, expand_factor=10, sample_weight=None, shuffle=True, random_state=None): """ scikit-learn can't optimize cross-entropy directly if target probability values are not indicator vectors. As a workaround this function expands the dataset according to target probabilities. ``expand_factor=None`` means no dataset expansion. """ rng = check_random_state(random_state) if expand_factor: if sample_weight is not None: X, y, sample_weight = zip(*expand_dataset(X, y_proba, factor=expand_factor, random_state=rng, extra_arrays=[ sample_weight ])) else: X, y = zip(*expand_dataset(X, y_proba, factor=expand_factor, random_state=rng)) else: y = y_proba.argmax(axis=1) if isinstance(X, (list, tuple)) and len(X) and issparse(X[0]): X = vstack(X) if shuffle: if sample_weight is not None: X, y, sample_weight = _shuffle(X, y, sample_weight, random_state=rng) else: X, y = _shuffle(X, y, random_state=rng) return X, y, sample_weight
7398062d3eb75fa68c39e20415b944e58a20387e
3,658,041
def refine_uniformly(dom, seg): """ Refine all edges of the given domain and segmentation. :param dom: Domain to refine :type dom: :class:`viennagrid.Domain` :param seg: Segmentation of the domain to refine :type seg: :class:`viennagrid.Segmentation` :returns: A two-element tuple containing the output domain and segmentation after the refinement. :raises: TypeError """ try: config = dom.config dom = dom._domain except AttributeError: raise TypeError('parameter at position 1 is not a valid domain') try: seg = seg._segmentation except AttributeError: raise TypeError('parameter at position 2 is not a valid domain') refined_result = viennagrid.wrapper.refine_uniformly(dom, seg) refined_domain = viennagrid.Domain(config) refined_domain._domain = refined_result[0] refined_segmentation = viennagrid.Segmentation(refined_domain) refined_segmentation._segmentation = refined_result[1] return (refined_domain, refined_segmentation)
623b9fc2fa6c83133ca1e01714fecba7e70ab95e
3,658,042
def rename_tuning(name, new_name): """rename tuning""" session = tables.get_session() if session is None: return False, 'connect' try: tuning_table = TuningTable() if not tuning_table.check_exist_by_name(TuningTable, name, session): return False, 'tuning not exist' if tuning_table.check_exist_by_name(TuningTable, new_name, session): return False, 'duplicate' tuning_table.update_tuning_name(name, new_name, session) session.commit() except SQLAlchemyError as err: LOGGER.error('Rename tuning failed: %s', err) return False, 'error' finally: session.close() return True, ''
1ea1498483fc9abe0bb5be7a7c892c6a171b5df9
3,658,043
import logging async def get_event(token: str, event_id: str) -> dict: """Get event - return new if no event found.""" event = {"id": event_id, "name": "Nytt arrangement", "organiser": "Ikke valgt"} if event_id != "": logging.debug(f"get_event {event_id}") event = await EventsAdapter().get_event(token, event_id) return event
a071da872e9a2f670926da5b7a8d4644acaf237e
3,658,044
import re def _xfsdump_output(data): """ Parse CLI output of the xfsdump utility. """ out = {} summary = [] summary_block = False for line in [l.strip() for l in data.split("\n") if l.strip()]: line = re.sub("^xfsdump: ", "", line) if line.startswith("session id:"): out["Session ID"] = line.split(" ")[-1] elif line.startswith("session label:"): out["Session label"] = re.sub("^session label: ", "", line) elif line.startswith("media file size"): out["Media size"] = re.sub(r"^media file size\s+", "", line) elif line.startswith("dump complete:"): out["Dump complete"] = re.sub(r"^dump complete:\s+", "", line) elif line.startswith("Dump Status:"): out["Status"] = re.sub(r"^Dump Status:\s+", "", line) elif line.startswith("Dump Summary:"): summary_block = True continue if line.startswith(" ") and summary_block: summary.append(line.strip()) elif not line.startswith(" ") and summary_block: summary_block = False if summary: out["Summary"] = " ".join(summary) return out
dbc7fbf9dced99b83a7dc5917c473a1dee16d749
3,658,045
def get_current(): """Return the currently running interpreter.""" id = _interpreters.get_current() return Interpreter(id)
0949280d364cc6f2935b9109c19c508ed06352b8
3,658,046
def csstext(text: str, cls: str, span: bool=False, header: bool=False) -> str: """ Custom build HTML text element. """ if span: tag = 'span' elif header: tag = 'h1' else: tag = 'p' return f'<{tag} class="{cls}">{str(text)}</{tag}>'
0833fd9d83143e09b5c234e193a8e53ef653112b
3,658,047
def trans_exam_list_to_colum(example_list, headers=None): """ 将example列表转换成以列表示的形式,用于适配输出附加信息 :param example_list: example 列表 :param headers: 需要的属性,默认为("question", "answer", "yes_or_no") :return: {header1:[...],header2:[...],...} """ if headers is None: headers = ("question", "answer", "yes_or_no") result = {} for header in headers: result[header] = [] for example in example_list: for header in headers: result[header].append(getattr(example, header, "")) return result
ff5a2e5f6e27ce0a32717e55ba35dbd864a11dbb
3,658,048
def member(): """ RESTful CRUD Controller """ return s3_rest_controller()
2f14df1f9b97ee4777c2ce0740207c691aedb1c2
3,658,049
from datetime import datetime def _now(): """Get EST localized now datetime.""" return EST_TIMEZONE.localize(datetime.datetime.now())
a7a62b5f5febdbacab0c0ac1e6ef0de843f09a11
3,658,050
def pydantic_model_to_pandas(pydantic_model_input) -> pd.DataFrame: """ Function that transforms <pydantic.BaseModel> child objects to <pandas.DataFrame> objects :param pydantic_model_input: Input validator for API """ return dict_to_pandas(pydantic_model_input.dict())
8397c39d7c760ad44565a7b89013d95c241413ed
3,658,051
def calculate_pair_energy(coordinates, i_particle, box_length, cutoff): """ Calculate the interaction energy of a particle with its environment (all other particles in the system) - rewrite Parameters ---------- coordinates : list The coordinates for all particles in the system i_particle : int The particle number for which to calculate the energy cutoff : float The simulation cutoff. Beyond this distance, interactions are not calculated. Returns ------- e_total : float The pairwise interaction energy of he i_th particle with all other particles in the system. """ e_total = 0.0 i_position = coordinates[i_particle] distance_array = calculate_distance(coordinates, i_position, box_length) # Just so we don't use it for calculation distance_array[i_particle] = cutoff*2 less_than_cutoff = distance_array[distance_array < cutoff] interaction_energies = calculate_LJ(less_than_cutoff) e_total = np.sum(interaction_energies) return e_total
42150ff5282731b13e4ac512c08fd71566f0bdb4
3,658,052
def simulation_activation(model, parcel_df, aerosols_panel): """ Given the DataFrame output from a parcel model simulation, compute activation kinetic limitation diagnostics. Parameters ---------- model : ParcelModel The ParcelModel parcel_df : DataFrame used to generate the results to be analyzed The DataFrame containing the parcel's thermodynamic trajectory aerosols_panel : Panel A Panel collection of DataFrames containing the aerosol size evolution Returns ------- act_stats : DataFrame A DataFrame containing the activation statistics """ initial_row = parcel_df.iloc[0] Smax_i, T_i = initial_row['S'], initial_row['T'] acts = {'eq': [], 'kn': [], 'alpha': [], 'phi': []} initial_aerosols = model.aerosols N_all_modes = np.sum([aer.total_N for aer in initial_aerosols]) N_fracs = {aer.species: aer.total_N/N_all_modes for aer in initial_aerosols} for i in range(len(parcel_df)): row_par = parcel_df.iloc[i] rows_aer = {key: aerosols_panel[key].iloc[i] for key in aerosols_panel} # Update thermo T_i = row_par['T'] if row_par['S'] > Smax_i: Smax_i = row_par['S'] eq_tot, kn_tot, alpha_tot, phi_tot = 0., 0., 0., 0. for aerosol in initial_aerosols: N_frac = N_fracs[aerosol.species] rs = rows_aer[aerosol.species] eq, kn, alpha, phi = binned_activation(Smax_i, T_i, rs, aerosol) eq_tot += eq*N_frac kn_tot += kn*N_frac alpha_tot += alpha*N_frac phi_tot += phi*N_frac acts['kn'].append(kn_tot) acts['eq'].append(eq_tot) acts['alpha'].append(alpha_tot) acts['phi'].append(phi_tot) acts_total = pd.DataFrame(acts, index=parcel_df.index) return acts_total
41461da13062177124ca4ebedc801ff5d574fbb8
3,658,053
import os import sys import logging def create(options, args): """ Instantiate and return a Blueprint object from either standard input or by reverse-engineering the system. """ try: with context_managers.mkdtemp(): if not os.isatty(sys.stdin.fileno()): try: b = blueprint.Blueprint.load(sys.stdin, args[0]) except ValueError: logging.error( 'standard input contains invalid blueprint JSON') sys.exit(1) else: b = blueprint.Blueprint.create(args[0]) if options.subtrahend: logging.info('subtracting {0}'.format(options.subtrahend)) b_s = blueprint.Blueprint.checkout(options.subtrahend) b = b - b_s b.commit(options.message or '') return b except blueprint.NameError: logging.error('invalid blueprint name') sys.exit(1)
556ac20f6b10c58011a99f217f8e4410faac6ee9
3,658,054
def create_config( case=None, Exp='Dummy', Type='Tor', Lim=None, Bump_posextent=[np.pi/4., np.pi/4], R=None, r=None, elong=None, Dshape=None, divlow=None, divup=None, nP=None, returnas=None, strict=None, SavePath='./', path=_path_testcases, ): """ Create easily a tofu.geom.Config object In tofu, a Config (short for geometrical configuration) refers to the 3D geometry of a fusion device. It includes, at least, a simple 2D polygon describing the first wall of the fusion chamber, and can also include other structural elements (tiles, limiters...) that can be non-axisymmetric. To create a simple Config, provide either the name of a reference test case, of a set of geometrical parameters (major radius, elongation...). This is just a tool for fast testing, if you want to create a custom config, use directly tofu.geom.Config and provide the parameters you want. Parameters ---------- case : str The name of a reference test case, if provided, this arguments is sufficient, the others are ignored Exp : str The name of the experiment Type : str The type of configuration (toroidal 'Tor' or linear 'Lin') Lim_Bump: list The angular (poloidal) limits, in the cross-section of the extension of the outer bumper R : float The major radius of the center of the cross-section r : float The minor radius of the cross-section elong: float An elongation parameter (in [-1;1]) Dshape: float A parameter specifying the D-shape of the cross-section (in [-1;1]) divlow: bool A flag specifying whether to include a lower divertor-like shape divup: bool A flag specifying whether to include an upper divertor-like shape nP: int Number of points used to describe the cross-section polygon out: str FLag indicating whether to return: - 'dict' : the polygons as a dictionary of np.ndarrays - 'object': the configuration as a tofu.geom.Config instance returnas: object / dict Flag indicating whether to return the config as: - object: a Config instance - dict: a dict of Struct instances strict: bool Flag indicating whether to raise an error if a Struct cannot be loaded Otherwise only raises a warning path: str Absolute path where to find the test case data SavePath: str The default path used for saving Struct and Config objects returned by the routine. Return ------ conf: tofu.geom.Config / dict Depending on the value of parameter out, either: - the tofu.geom.Config object created - a dictionary of the polygons and their pos/extent (if any) """ lp = [R, r, elong, Dshape, divlow, divup, nP] lpstr = '[R, r, elong, Dshape, divlow, divup, nP]' lc = [case is not None, any([pp is not None for pp in lp])] if np.sum(lc) > 1: msg = ("Please provide either:\n" + "\t- case: the name of a pre-defined config\n" + "\t- geometrical parameters {}\n\n".format(lpstr)) raise Exception(msg) elif not any(lc): msg = get_available_config(verb=False, returnas=str) raise Exception(msg) # Get config, either from known case or geometrical parameterization if case is not None: conf = _create_config_testcase( config=case, path=path, returnas=returnas, strict=strict, ) else: poly, pbump, pbaffle = _compute_VesPoly(R=R, r=r, elong=elong, Dshape=Dshape, divlow=divlow, divup=divup, nP=nP) if returnas == 'dict': conf = {'Ves':{'Poly':poly}, 'Baffle':{'Poly':pbaffle}, 'Bumper':{'Poly':pbump, 'pos':Bump_posextent[0], 'extent':Bump_posextent[1]}} else: ves = _core.Ves(Poly=poly, Type=Type, Lim=Lim, Exp=Exp, Name='Ves', SavePath=SavePath) baf = _core.PFC(Poly=pbaffle, Type=Type, Lim=Lim, Exp=Exp, Name='Baffle', color='b', SavePath=SavePath) bump = _core.PFC(Poly=pbump, Type=Type, pos=Bump_posextent[0], extent=Bump_posextent[1], Exp=Exp, Name='Bumper', color='g', SavePath=SavePath) conf = _core.Config(Name='Dummy', Exp=Exp, lStruct=[ves,baf,bump], SavePath=SavePath) return conf
e9f855ff614cd511f730afd34c34e1d610b06a43
3,658,055
def is_project_description(description): """Validates the specified project description. A valid description is simply a non-empty string. Args: description (str): A project description to validate. Returns: <bool, str|None>: A pair containing the value True if the specified description is valid, False otherwise; and an error message in case the description is invalid. """ try: return (False, "A project description must be a non-empty string.") if is_empty_string(description) else (True, None) except TypeError: return (False, "The 'description' argument must be a string.")
ef831f2ddeede75bb1dbd0730dccacba3e379c2b
3,658,056
import json def remove_friend(): """ Accepts an existing friend request. """ data = json.loads(request.data) friend_id = data['id'] user = interface.get_user_by_id(get_jwt_identity()) friend = interface.get_user_by_id(friend_id) interface.remove_friendship(user, friend) return '', 200
0d5e2c390d5da7ff1869d907bbe85bcda80a9513
3,658,057
import functools import logging def ensure_configured(func): """Modify a function to call ``basicConfig`` first if no handlers exist.""" @functools.wraps(func) def wrapper(*args, **kwargs): if len(logging.root.handlers) == 0: basicConfig() return func(*args, **kwargs) return wrapper
2c04afd53ab9c7341fc4913485a8a1f7f7e7e1b3
3,658,058
from typing import Dict from typing import Any from typing import Optional from typing import Type def get_loss(dataset_properties: Dict[str, Any], name: Optional[str] = None) -> Type[Loss]: """ Utility function to get losses for the given dataset properties. If name is mentioned, checks if the loss is compatible with the dataset properties and returns the specific loss Args: dataset_properties (Dict[str, Any]): Dictionary containing properties of the dataset. Must contain task_type and output_type as strings. name (Optional[str]): name of the specific loss Returns: Type[torch.nn.modules.loss._Loss] """ assert 'task_type' in dataset_properties, \ "Expected dataset_properties to have task_type got {}".format(dataset_properties.keys()) assert 'output_type' in dataset_properties, \ "Expected dataset_properties to have output_type got {}".format(dataset_properties.keys()) task = STRING_TO_TASK_TYPES[dataset_properties['task_type']] output_type = STRING_TO_OUTPUT_TYPES[dataset_properties['output_type']] supported_losses = get_supported_losses(task, output_type) if name is not None: if name not in supported_losses.keys(): raise ValueError("Invalid name entered for task {}, and output type {} currently supported losses" " for task include {}".format(dataset_properties['task_type'], dataset_properties['output_type'], list(supported_losses.keys()))) else: loss = supported_losses[name] else: loss = get_default(task) return loss
a9f75d6e2c35a0b9472e3fdc046f72eb1188e48d
3,658,059
def ten_to_base(value : int, base): """Converts a given decimal value into the specified base. :param value: The number to convert :param base: The base to convert the specified number to :return: The converted value in the specified base """ # Check if the base is 10, return the value if base == 10: return value # Keep track of the remainders, which will be the new digits in the specified base remainders = [] # Divide the value by the base until the number is 0 while value != 0: remainders.append(value % base) value //= base # Reverse the order of the remainders and turn each digit # into the proper value from the BASES string remainders.reverse() for i in range(len(remainders)): remainders[i] = BASES[remainders[i]] return "".join(remainders)
2f5ba92af48fe2ce19dbcb6001afadfde2514373
3,658,060
def get_style(selector, name): """ Returns the resolved CSS style for the given property name. :param selector: :param name: """ if not get_instance(): raise Exception("You need to start a browser first with open_browser()") return get_style_g(get_instance(), selector, name)
903e4abc09dc196d0d1dbbbb3c58869e3c0beb78
3,658,061
import inspect def argmod(*args): """ Decorator that intercepts and modifies function arguments. Args: from_param (str|list): A parameter or list of possible parameters that should be modified using `modifier_func`. Passing a list of possible parameters is useful when a function's parameter names have changed, but you still want to support the old parameter names. to_param (str): Optional. If given, to_param will be used as the parameter name for the modified argument. If not given, to_param will default to the last parameter given in `from_param`. modifier_func (callable): The function used to modify the `from_param`. Returns: function: A function that modifies the given `from_param` before the function is called. """ from_param = listify(args[0]) to_param = from_param[-1] if len(args) < 3 else args[1] modifier_func = args[-1] def _decorator(func): try: argspec = inspect.getfullargspec(unwrap(func)) except AttributeError: argspec = inspect.getargspec(unwrap(func)) if to_param not in argspec.args: return func arg_index = argspec.args.index(to_param) @wraps(func) def _modifier(*args, **kwargs): kwarg = False for arg in from_param: if arg in kwargs: kwarg = arg break if kwarg: kwargs[to_param] = modifier_func(kwargs.pop(kwarg)) elif arg_index < len(args): args = list(args) args[arg_index] = modifier_func(args[arg_index]) return func(*args, **kwargs) return _modifier return _decorator
5824d20568a3913be59941df0e4f657f05f08cc0
3,658,062
def group_update(group_id, group_min, group_max, desired): """ Test with invalid input >>> group_update('foo', 2, 1, 4) {} """ if group_min > group_max or desired < group_min or desired > group_max: return {} try: client = boto3.client('autoscaling') response = client.update_auto_scaling_group( AutoScalingGroupName=group_id, MinSize=group_min, MaxSize=group_max, DesiredCapacity=desired) except botocore.exceptions.ClientError: print "Autoscaling client error: update_auto_scaling_group" sys.exit(127) return response
77eef10b7db604a3aa2e32bdd0d226fb44cf07ab
3,658,063
def remove_bookmark(request, id): """ This view deletes a bookmark. If requested via ajax it also returns the add bookmark form to replace the drop bookmark form. """ bookmark = get_object_or_404(Bookmark, id=id, user=request.user) if request.method == "POST": bookmark.delete() if not is_xhr(request): messages.success(request, "Bookmark removed") if request.POST.get("next"): return HttpResponseRedirect(request.POST.get("next")) return HttpResponse("Deleted") return render( request, "admin_tools/menu/add_bookmark_form.html", context={ "url": request.POST.get("next"), "title": "**title**", # replaced on the javascript side }, ) return render( request, "admin_tools/menu/delete_confirm.html", context={"bookmark": bookmark, "title": "Delete Bookmark"}, )
9c8442d5a313e7babf71b9f9a4c41452c65c5aab
3,658,064
def parse_propa(blob): """Creates new blob entries for the given blob keys""" if "track_in" in blob.keys(): muon = blob["track_in"] blob["Muon"] = Table( { "id": np.array(muon)[:, 0].astype(int), "pos_x": np.array(muon)[:, 1], "pos_y": np.array(muon)[:, 2], "pos_z": np.array(muon)[:, 3], "dir_x": np.array(muon)[:, 4], "dir_y": np.array(muon)[:, 5], "dir_z": np.array(muon)[:, 6], "energy": np.array(muon)[:, 7], "time": np.array(muon)[:, 8], "particle_id": np.array(muon)[:, 9].astype(int), "is_charm": np.array(muon)[:, 10].astype(int), "mother_pid": np.array(muon)[:, 11].astype(int), "grandmother_pid": np.array(muon)[:, 11].astype(int), }, h5loc="muon", ) blob["MuonMultiplicity"] = Table( {"muon_multiplicity": len(np.array(muon)[:, 6])}, h5loc="muon_multiplicity" ) if "neutrino" in blob.keys(): nu = blob["neutrino"] blob["Neutrino"] = Table( { "id": np.array(nu)[:, 0].astype(int), "pos_x": np.array(nu)[:, 1], "pos_y": np.array(nu)[:, 2], "pos_z": np.array(nu)[:, 3], "dir_x": np.array(nu)[:, 4], "dir_y": np.array(nu)[:, 5], "dir_z": np.array(nu)[:, 6], "energy": np.array(nu)[:, 7], "time": np.array(nu)[:, 8], "particle_id": np.array(nu)[:, 9].astype(int), "is_charm": np.array(nu)[:, 10].astype(int), "mother_pid": np.array(nu)[:, 11].astype(int), "grandmother_pid": np.array(nu)[:, 11].astype(int), }, h5loc="nu", ) blob["NeutrinoMultiplicity"] = Table( { "total": len(np.array(nu)[:, 6]), "nue": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == 12]), "anue": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == -12]), "numu": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == 14]), "anumu": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == -14]), }, h5loc="nu_multiplicity", ) if ("track_in" or "neutrino") in blob.keys(): blob["Weights"] = Table( { "w1": blob["weights"][0][0], "w2": blob["weights"][0][1], "w3": blob["weights"][0][2], }, h5loc="weights", ) if "track_primary" in blob.keys(): primary = blob["track_primary"] blob["Primary"] = Table( { "id": np.array(primary)[:, 0].astype(int), "pos_x": np.array(primary)[:, 1], "pos_y": np.array(primary)[:, 2], "pos_z": np.array(primary)[:, 3], "dir_x": np.array(primary)[:, 4], "dir_y": np.array(primary)[:, 5], "dir_z": np.array(primary)[:, 6], "energy": np.array(primary)[:, 7], "time": np.array(primary)[:, 8], "particle_id": np.array(primary)[:, 9].astype(int), }, h5loc="primary", ) return blob
ae7993d6e51287b6a88d125f63ef7d6edd001cf1
3,658,065
def parseParams(opt): """Parse a set of name=value parameters in the input value. Return list of (name,value) pairs. Raise ValueError if a parameter is badly formatted. """ params = [] for nameval in opt: try: name, val = nameval.split("=") except ValueError: raise ValueError("Bad name=value format for '%s'" % nameval) params.append((name, val)) return params
b932f74c8e5502ebdd7a8749c2de4b30921d518b
3,658,066
from ._sparse_array import SparseArray def asnumpy(a, dtype=None, order=None): """Returns a dense numpy array from an arbitrary source array. Args: a: Arbitrary object that can be converted to :class:`numpy.ndarray`. order ({'C', 'F', 'A'}): The desired memory layout of the output array. When ``order`` is 'A', it uses 'F' if ``a`` is fortran-contiguous and 'C' otherwise. Returns: numpy.ndarray: Converted array on the host memory. """ if isinstance(a, SparseArray): a = a.todense() return np.array(a, dtype=dtype, copy=False, order=order)
54bea22ab6fe8327b3a4df93ac9e4447b4d65fec
3,658,067
def get_next_cpi_date(): """ Get next CPI release date """ df = pd.read_html(r"https://www.bls.gov/schedule/news_release/cpi.htm")[0][:-1] df["Release Date"] = pd.to_datetime(df["Release Date"], errors='coerce') df = df[df["Release Date"] >= current_date].iloc[0] df['Release Date'] = df['Release Date'].strftime('%Y-%m-%d') return df
e23b9bea0996ac442115163729ffeed1407e52b5
3,658,068
from typing import Tuple from datetime import datetime def date_arithmetic() -> Tuple[datetime, datetime, int]: """ This function is used to calculate what is the date after 3 days is given and the differences between two given dates """ date1: str = "Feb 27, 2020" date_2020: datetime = datetime.strptime( date1, "%b %d, %Y") + timedelta(3) date2: str = "Feb 27, 2019" date_2019: datetime = datetime.strptime( date2, "%b %d, %Y") + timedelta(3) date3: str = "Feb 1, 2019" date4: str = "Sep 30, 2019" days_passed: int = datetime.strptime( date3, "%b %d, %Y") - datetime.strptime(date4, "%b %d, %Y") three_days_after_02272020: datetime = date_2020.strftime("%b %d, %Y") three_days_after_02272019: datetime = date_2019.strftime("%b %d, %Y") days_passed_02012019_09302019: int = abs(days_passed.days) return three_days_after_02272020, three_days_after_02272019, days_passed_02012019_09302019
1e2d4681578ccab11612771589a46f22246071eb
3,658,069
def get_words_from_line_list(text): """ Applies Translations and returns the list of words from the text document """ text = text.translate(translation_table) word_list = [x for x in text.split() if x not in set(stopwords.words('english'))] return word_list
aaa2a1476e887aa6a7d477d67528f838d6f229b9
3,658,070
def _get_name(dist): """Attempts to get a distribution's short name, excluding the name scope.""" return getattr(dist, 'parameters', {}).get('name', dist.name)
fd57e523c1a84a36f9ed56236e4b8db1e887575c
3,658,071
def compute_mean_std(all_X): """Return an approximate mean and std for every feature""" concatenated = np.concatenate(all_X, axis=0).astype(np.float64) mean = np.mean(concatenated, axis=0) std = np.std(concatenated, axis=0) std[std == 0] = 1 return mean, std
b102a045705efdab8d9783e04da192ec30e167f7
3,658,072
def GenerateConfig(context): """Generates configuration.""" key_ring = { 'name': 'keyRing', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings', 'properties': { 'parent': 'projects/' + context.env['project'] + '/locations/' + context.properties['region'], 'keyRingId': context.env['deployment'] + '-key-ring' } } crypto_key = { 'name': 'cryptoKey', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings.cryptoKeys', 'properties': { 'parent': '$(ref.keyRing.name)', 'cryptoKeyId': context.env['deployment'] + '-crypto-key', 'purpose': 'ENCRYPT_DECRYPT' } } resources = [key_ring, crypto_key] outputs = [{ 'name': 'primaryVersion', 'value': '$(ref.cryptoKey.primary)' }] return { 'resources': resources, 'outputs': outputs }
257b7217c1a08bba46866aff0b7faa1a03fe7fdc
3,658,073
def get_valid_collapsed_products(products, limit): """wraps around collapse_products and respecting a limit to ensure that uncomplete products are not collapsed """ next_min_scanid = get_next_min_scanid(products, limit) collapsed_products = [] for scanid, scan in groupby(products, itemgetter('ScanID')): if scanid == next_min_scanid: continue collapsed_products.extend(collapse_products(list(scan))) return collapsed_products, next_min_scanid
df3ffa503855a020c7c011aa58cba20243e19be4
3,658,074
def get_imd(): """Fetches data about LA IMD status. The "local concentration" measure is used - this gives higher weight to particularly deprived areas Source: http://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 """ imd = pd.read_csv( PROJECT_DIR / "inputs/data/societal-wellbeing_imd2019_indicesbyla.csv", usecols=[1, 2], skiprows=7, ) return imd
4e2495dda505bde8dd8ccf62234730a7227ffa97
3,658,075
def read_bgr(file): """指定ファイルからBGRイメージとして読み込む. # Args: file: イメージファイル名. # Returns: 成功したらイメージ、失敗したら None. """ return cv2.imread(file, cv2.IMREAD_COLOR)
ee96842899ffefa0508218d0a4b721f2ae5a7efb
3,658,076
def _remove_none_from_post_data_additional_rules_list(json): """ removes hidden field value from json field "additional_rules" list, which is there to ensure field exists for editing purposes :param json: this is data that is going to be posted """ data = json additional_rules = json.get("additional_rules", None) if additional_rules and "None" in additional_rules: new_additional_rules = [] for rule in additional_rules: if rule != "None": new_additional_rules.append(rule) data["additional_rules"] = new_additional_rules return data
c82aa568f82ba4abcb8f4e6f9c770969277d078f
3,658,077
import traceback def add_email(request, pk): """ This Endpoint will add the email id into the person contact details. It expects personId in URL param. """ try: request_data = request.data email = request_data.get("email") person = Person.objects.filter(id=pk).last() if email: Email.objects.create( email=email, person_id=person.id ) serializer = PersonDetailSerializer(person) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) except: print(traceback.format_exc()) return Response(status=status.HTTP_500_INTERNAL_SERVER_ERROR)
5669b442e7ef4fb3e5a22053c368e6a4b68cfeef
3,658,078
from typing import Any def coords_extracter(): """Exctract coords to send command to robot. To be executed inside of xarm_hand_control module.""" SKIPPED_COMMANDS = 5 COEFF = 22 current = [0] def coords_to_command(data: Any): current[0] += 1 if current[0] < SKIPPED_COMMANDS: return current[0] = 0 if np.linalg.norm(data[0:2], 2) < 0.05: return x = data[0] * COEFF / 1000 z = data[1] * COEFF / 1000 # speed = np.linalg.norm(data, ord=2) * COEFF * 50 # speed = int(speed) # # speed = np.log(speed) * COEFF # mvacc = speed * 10 speed = 500 mvacc = speed * 10 command = Command( x=x, y=0.0, z=z, speed=speed, acc=mvacc, is_radian=True, is_cartesian=True, is_relative=True, ) # print(command) send_command(command) return coords_to_command
930cef91e517751da3c3fb441543ab736be6aa23
3,658,079
def NO_MERGE(writer, segments): """This policy does not merge any existing segments. """ return segments
0742365f30d59cb219ac60483b867180bd910ba8
3,658,080
import gzip import shutil def save_features(): """ Writes extracted feature vectors into a binary or text file, per args. :return: none """ extractor = args.extractor features = [] if extractor == 'multi': features = extract_multi() elif extractor == 'single': features = extract_single() # print("Output shape: ", features.shape) # comment out if you don't care to know output shape extension = str(args.ext) compress = args.compressed out_path = str(args.out_path) # TODO: get rid of boilerplate code outfile = "" + out_path out_full = outfile + "." + extension if extension == "hdf5": # (Recommended, default) save to .hdf5 f = h5py.File("" + out_path + ".hdf5", "w") f.create_dataset(name=str(args.out_path), data=features) if compress: with open(out_full) as f_in: outfile_gz = out_full + ".gz" with gzip.open(outfile_gz, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) elif extension == "npy": # god please don't actually do this # Save to .npy binary (numpy) - incompressible (as of now) np.save(file=outfile, allow_pickle=True, arr=features) if compress: with open(out_full) as f_in: outfile_gz = out_full + ".gz" with gzip.open(outfile_gz, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) elif extension == "csv": # Save to .csv (or, .csv.gz if args.compressed==True) # This option is natively compressible. if compress: extension += ".gz" outfile = "" + out_path + "." + extension # TODO: This needs to return a string, no explicit save np.savetxt(fname=outfile, X=features, fmt='%1.5f') return features # TODO: (distant future) npz for the optional list of concat. 1d arrays
65fd172aa0ff0283111c9e8148eb33a1160255d3
3,658,081
def build_ntwk(p, s_params): """ Construct a network object from the model and simulation params. """ np.random.seed(s_params['RNG_SEED']) # set membrane properties n = p['N_PC'] + p['N_INH'] t_m = cc( [np.repeat(p['T_M_PC'], p['N_PC']), np.repeat(p['T_M_INH'], p['N_INH'])]) e_l = cc( [np.repeat(p['E_L_PC'], p['N_PC']), np.repeat(p['E_L_INH'], p['N_INH'])]) v_th = cc( [np.repeat(p['V_TH_PC'], p['N_PC']), np.repeat(p['V_TH_INH'], p['N_INH'])]) v_r = cc( [np.repeat(p['V_R_PC'], p['N_PC']), np.repeat(p['V_R_INH'], p['N_INH'])]) t_rp = cc( [np.repeat(p['T_R_PC'], p['N_PC']), np.repeat(p['T_R_INH'], p['N_INH'])]) # set latent nrn positions lb = [-s_params['BOX_W']/2, -s_params['BOX_H']/2] ub = [s_params['BOX_W']/2, s_params['BOX_H']/2] # sample evenly spaced place fields ## E cells pfxs_e, pfys_e = cxn.apx_lattice(lb, ub, p['N_PC'], randomize=True) ## I cells pfxs_i, pfys_i = cxn.apx_lattice(lb, ub, p['N_INH'], randomize=True) ## join E & I place fields pfxs = cc([pfxs_e, pfxs_i]) pfys = cc([pfys_e, pfys_i]) # make upstream ws if p['W_PC_PL'] > 0: w_pc_pl_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_PL'], p['S_PC_PL']), p['N_PC']) else: w_pc_pl_flat = np.zeros(p['N_PC']) if p['W_PC_G'] > 0: w_pc_g_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_G'], p['S_PC_G']), p['N_PC']) else: w_pc_g_flat = np.zeros(p['N_PC']) ws_up_temp = { 'E': { ('PC', 'PL'): np.diag(w_pc_pl_flat), ('PC', 'G'): np.diag(w_pc_g_flat), }, } targs_up = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) srcs_up = cc([np.repeat('PL', p['N_PC']), np.repeat('G', p['N_PC'])]) ws_up = join_w(targs_up, srcs_up, ws_up_temp) # make rcr ws w_pc_pc = cxn.make_w_pc_pc(pfxs[:p['N_PC']], pfys[:p['N_PC']], p) w_inh_pc = cxn.make_w_inh_pc( pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], p=p) w_pc_inh = cxn.make_w_pc_inh( pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], p=p) ws_rcr_temp = { 'E': { ('PC', 'PC'): w_pc_pc, ('INH', 'PC'): w_inh_pc, }, 'I': { ('PC', 'INH'): w_pc_inh, }, } targs_rcr = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) ws_rcr = join_w(targs_rcr, targs_rcr, ws_rcr_temp) # make ntwk ntwk = LIFNtwk( t_m=t_m, e_l=e_l, v_th=v_th, v_r=v_r, t_r=t_rp, es_syn={'E': p['E_E'], 'I': p['E_I']}, ts_syn={'E': p['T_E'], 'I': p['T_I']}, ws_up=ws_up, ws_rcr=ws_rcr) ntwk.pfxs = pfxs ntwk.pfys = pfys ntwk.types_up = srcs_up ntwk.types_rcr = targs_rcr ntwk.n_pc = p['N_PC'] ntwk.n_inh = p['N_INH'] ntwk.n_g = p['N_PC'] ntwk.n_inp = p['N_PC'] ntwk.n_rcr = p['N_PC'] + p['N_INH'] ntwk.n_up = 2 * p['N_PC'] ntwk.types_up_slc = { 'PL': slice(0, p['N_PC']), 'G': slice(p['N_PC'], 2*p['N_PC']) } ntwk.types_rcr_slc = { 'PC': slice(0, p['N_PC']), 'INH': slice(p['N_PC'], p['N_PC'] + p['N_INH']) } return ntwk
88a5b5c73edf015d9b2b4137db874252f63a3571
3,658,082
def createAaronWorld(): """ Create an empty world as an example to build future projects from. """ # Set up a barebones project project = makeBasicProject() # Create sprite sheet for the player sprite player_sprite_sheet = addSpriteSheet(project, "actor_animated.png", "actor_animated", "actor_animated") project.settings["playerSpriteSheetId"] = player_sprite_sheet["id"] # add a sprite we can use for the rocks a_rock_sprite = addSpriteSheet(project, "rock.png", "rock", "static") a_dog_sprite = addSpriteSheet(project, "dog.png", "dog", "static") # Add a background image default_bkg = makeBackground("placeholder.png", "placeholder") project.backgrounds.append(default_bkg) a_scene = makeScene(f"Scene", default_bkg) project.scenes.append(a_scene) actor = makeActor(a_rock_sprite, 9, 8) a_scene['actors'].append(actor) dog_actor = makeActor(a_dog_sprite, 5, 5) dog_script = [] element = makeElement() element["command"] = "EVENT_ACTOR_EMOTE" element["args"] = { "actorId": "player", "emoteId": "1" } dog_script.append(element) element = makeElement() element["command"] = "EVENT_END" dog_script.append(element) dog_actor["script"] = dog_script a_scene['actors'].append(dog_actor) # Add some music project.music.append(makeMusic("template", "template.mod")) # Set the starting scene project.settings["startSceneId"] = project.scenes[0]["id"] return project
7326aee61ee4977ccc422955fbd33c6a51b13e37
3,658,083
def builtin_ljustify(s, w, p): """Left-justify a string to a given width with a given padding character.""" sv = s.convert(BStr()).value pv = p.convert(BStr()).value return BStr(sv.ljust(w.value, pv))
dda28d65d1916a7e01aa36e7b90ee5ba98329c58
3,658,084
import os def package_files(directory): """package_files recursive method which will lets you set the package_data parameter in the setup call. """ paths = [] for (path, _, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths
e043de9a9e8ed9092f933df00b167b092ba6abaa
3,658,085
def get_effective_router(appname): """Returns a private copy of the effective router for the specified application""" if not routers or appname not in routers: return None return Storage(routers[appname])
dd0e3ccc8d05864b5a324541129845e5f82c2669
3,658,086
def is_activated(user_id): """Checks if a user has activated their account. Returns True or false""" cur = getDb().cursor() cur.execute('SELECT inactive FROM users where user_id=%s', (user_id,)) inactive = cur.fetchone()[0] cur.close() return False if inactive is 1 else True
704a5c3462be3612e5cd44057ee082d612ae8aa9
3,658,087
import base64 import json def _encode(dictionary): """Encodes any arbitrary dictionary into a pagination token. Args: dictionary: (dict) Dictionary to basee64-encode Returns: (string) encoded page token representing a page of items """ # Strip ugly base64 padding. return base64.urlsafe_b64encode(json.dumps(dictionary)).rstrip('=')
e9a490e659a3a0e6d546fd2ab4dd89a5f6a748af
3,658,088
from typing import List from pathlib import Path import tempfile import gc import os def remove_duplicates_sharded( files: List[Path], outputs: List[Path], hashes_dir: FilesOrDir, field: str, group_hashes: int = 1, tmp_dir: Path = None, min_len: int = 0, ): """Remove duplicates in several passes, when all hashes don't fit in RAM. Note: The current implementation is not doing a 'perfect' deduplication. If a hash appear exactly once in each shard of hashes it won't be detected as a duplicate. This can be fixed if hashes are fully dedup beforehand. """ assert len(files) == len(outputs) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}" if len(hashes_files) <= group_hashes: log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}") rm_dups = DuplicatesRemover(field, hashes_files) rm_dups._prepare() run_par( (jsonql.run_pipes, (rm_dups,), dict(file=f, output=o)) for f, o in zip(files, outputs) ) return log(f"Starting deduplicate_sharded on {files}.") tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None) def tmp_files(i): return [ Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin") for f in files ] last = tmp_files(0) run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last)) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)): hashes = FlatHashSet() for h in group: hashes.load(h) log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)") intermediates = tmp_files(i + 1) # Remove hashes in parallel. Since modern OS have "copy-on-write" and # `hashes` is read-only, we will only have one version of it in RAM. run_par( (_remove_duplicate_hashes, (hashes, f, tmp), {}) for f, tmp in zip(last, intermediates) ) # Force hashes to be freed, before we start allocating a new one. del hashes gc.collect() for tmp in last: os.remove(tmp) last = intermediates def finalize(source, dedup_hashes, min_len): n_chars, n_chars_kept = 0, 0 with open(dedup_hashes, "rb") as hashes: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content or len(content) < min_len: continue sentences = content.split("\n") doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences)) chars, kept_chars = finalize_doc(doc, field, doc_hashes) n_chars += chars n_chars_kept += kept_chars yield doc selectivity = n_chars_kept / n_chars if n_chars else 0 log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") dedup_hashes = last run_par( [ ( jsonql.run_pipe, (finalize,), dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o), ) for h, f, o in zip(dedup_hashes, files, outputs) ] ) tmp_directory.cleanup()
6ab2477cd3c3fb513af2fbb4808c0279212b1cd2
3,658,089
def selectPlate(plates, jdRange, normalise=False, scope='all'): """From a list of simulated plates, returns the optimal one.""" # Gets the JD range for the following night nextNightJDrange = _getNextNightRange(jdRange) # First we exclude plates without new exposures plates = [plate for plate in plates if plate._after['nNewExposures'] > 0] # Sorts plates by inverse plate completion. plates = sorted(plates, reverse=True, key=lambda plate: plate.getPlateCompletion() if plate.getPlateCompletion() <= 1 else 1. / plate.getPlateCompletion()) if len(plates) == 0: return None # If we are scheduling only plugged plates, we rather plug a new plate # unless we can observe a plugged plate at least for a whole set. availableTime = (jdRange[1] - jdRange[0]) * 24. completionIncrease = np.array( [plate._after['completion'] - plate._before['completion'] for plate in plates]) # minSchedulingTime ensures that if the remaining time < length of a set, # we still use the plugged plates, if any. if scope == 'plugged': if (availableTime > minSchedulingTime and np.all(completionIncrease == 0)): return None else: # If no plate has been observed for a whole set, we try to use first # plates that are already plugged. if np.all(completionIncrease == 0): pluggedPlates = [plate for plate in plates if plate.isPlugged] if len(pluggedPlates) > 0: plates = pluggedPlates # If plugger, tries to select only plates at APO if scope == 'plugged': platesAtAPO = [plate for plate in plates if plate.getLocation() == 'APO'] if len(platesAtAPO) > 0: plates = platesAtAPO # Now tries to select only plates that have been marked. markedPlates = [ plate for plate in plates if 'Accepted' in [status.label for status in plate.statuses] ] if len(markedPlates) > 0: plates = markedPlates # We check if any of the plate is complete after the simulation. # If so, we return the one with fewer new exposures. completePlates = [plate for plate in plates if plate._after['completion'] > plate.completion_factor] nNewExposures = [plate._after['nNewExposures'] for plate in completePlates] if len(completePlates) > 0: return completePlates[np.argmin(nNewExposures)] # We record the real completion before and after. We will normalise the # other completions based on our scheduling logic. for plate in plates: plate._before['realCompletion'] = plate._before['completion'] plate._before['realCompletion+'] = plate._before['completion+'] plate._after['realCompletion'] = plate._after['completion'] plate._after['realCompletion+'] = plate._after['completion+'] # If normalise=True, we divide the several completion values by the # length of the observing window for the plate, normalised by the length # of the minimum plate window. The effect of this is that plates with short # observing windows get comparatively larger completions and, thus, have # higher chance of being selected. This is good for plugged plates, as it # tries to schedule first plates with short windows even if other plates # could be completed at the time. # We also increase the completion of plates for which we have patched sets, # while we penalise those with incomplete sets. With this logic, we hope # that plates are observed when their incomplete sets can be patched. if normalise: _normaliseWindowLength(plates, jdRange, factor=1.0, apply=True) # We also normalise using the following night, if possible. if nextNightJDrange is not None: _normaliseWindowLength(plates, nextNightJDrange, factor=nextNightFactor, apply=True) # Now we normalise plate completion using a metric that gives higher # priority to plates for which we have patched incomplete sets. patchedSetFactor = [] for plate in plates: nSetsFactor = 0 for ss in plate.sets: if not ss.isMock: nNewExps = 0 for exp in ss.totoroExposures: if hasattr(exp, '_tmp') and exp._tmp: nNewExps += 1 setComplete = ss.getStatus()[0] in ['Good', 'Excellent'] if setComplete and nNewExps == 0: pass else: if nNewExps > 0: nSetsFactor += 2 * nNewExps if setComplete: nSetsFactor *= 2 else: nSetsFactor -= 1 patchedSetFactor.append(1. + patchSetFactor * nSetsFactor) _completionFactor(plates, patchedSetFactor) # We add the priority into the mix platePriorities = np.array([plate.priority for plate in plates]) - 5. _completionFactor(plates, 1 + platePriorityFactor * platePriorities) ancillaryPriorities = [] for plate in plates: if hasattr(plate, 'ancillary_weight'): ancillaryPriorities.append(plate.ancillary_weight) else: ancillaryPriorities.append(1) _completionFactor(plates, np.array(ancillaryPriorities)) # Selects the plates that have the largest increase in completion completionIncrease = [plate._after['completion'] - plate._before['completion'] for plate in plates if plate.completion_factor <= 1.] if len(completionIncrease) == 0: for plate in plates: if plate.completion_factor > 1: completionIncrease.append( plate._after['completion'] - plate._before['completion']) completionIncrease = np.array(completionIncrease) plates = np.array(plates) maxCompletionIncrease = np.max(completionIncrease) plates = plates[np.where(completionIncrease == maxCompletionIncrease)] if len(plates) == 1: return plates[0] # If maxCompletionIncrease is 0, it means that no plate has been # observed for at least a set. In this case, if possible, we want to use # a plate that already has signal. if maxCompletionIncrease == 0: platesWithSignal = [plate for plate in plates if plate._before['completion+'] > 0] if len(platesWithSignal) > 0: plates = platesWithSignal # If several plates have maximum completion increase, use the incomplete # sets to break the tie. completionIncreasePlus = np.array( [plate._after['completion+'] - plate._before['completion+'] for plate in plates]) return plates[np.argmax(completionIncreasePlus)]
f48207a9be002e6b2295d4100e02ffaddde779e8
3,658,090
from typing import Union def get_events( raw: mne.io.BaseRaw, event_picks: Union[str, list[str], list[tuple[str, str]]], ) -> tuple[np.ndarray, dict]: """Get events from given Raw instance and event id.""" if isinstance(event_picks, str): event_picks = [event_picks] events = None for event_pick in event_picks: if isinstance(event_pick, str): event_id = {event_pick: 1} else: event_id = {event_pick[0]: 1, event_pick[1]: -1} try: events, _ = mne.events_from_annotations( raw=raw, event_id=event_id, verbose=True, ) return events, event_id except ValueError as error: print(error) _, event_id_found = mne.events_from_annotations( raw=raw, verbose=False, ) raise ValueError( f"None of the given `event_picks´ found: {event_picks}." f"Possible events: {*event_id_found.keys(),}" )
d1b5c961160848607a40cfcb5b2ba8a47625ab21
3,658,091
def transplant(root, u, v): """ 注意, 这里要返回root, 不然修改不了 """ if u.parent == None: root = v elif u.parent.left == u: u.parent.left = v else: u.parent.right = v if v: v.parent = u.parent return root
cadf0433399e428596d1d0d4ab200e4d79285d21
3,658,092
def is_head_moderator(): """ Returns true if invoking author is a Head Moderator (role). """ async def predicate(ctx: Context): if not any(config.HEAD_MOD_ROLE in role.id for role in ctx.author.roles): raise NotStaff("The command `{}` can only be used by a Head Moderator.".format(ctx.invoked_with)) return True return commands.check(predicate)
22f80251190d914d38052e67ca8fe47279eab833
3,658,093
def compute_adj_matrices(type, normalize=True): """ Computes adjacency matrices 'n', 'd' or 's' used in GCRAM. """ # Get channel names raw = mne.io.read_raw_edf('dataset/physionet.org/files/eegmmidb/1.0.0/S001/S001R01.edf', preload=True, verbose=False).to_data_frame() ch_names = raw.columns[2:] n_channels = 64 # Compute channel position distances using electrode positions. Required for computing 'd' and 's' adjacency matrices ch_pos_1010 = get_sensor_pos(ch_names) ch_pos_1010_names = [] ch_pos_1010_dist = [] for name, value in ch_pos_1010.items(): ch_pos_1010_names.append(name) ch_pos_1010_dist.append(value) ch_pos_1010_dist = np.array(ch_pos_1010_dist) # Compute adjacency matrices if type=='n': A = n_graph() elif type=='d': A = d_graph(n_channels, ch_pos_1010_dist) elif type=='s': A = s_graph(n_channels, ch_pos_1010_dist) # Normalize adjacency matrices if normalize: A = normalize_adj(A) A = np.array(A, dtype=np.float32) return A
cecf0c94c5d1efe6c6210949736377d5d7d454c4
3,658,094
from typing import Optional def build_census_chart( *, alt, census_floor_df: pd.DataFrame, max_y_axis: Optional[int] = None, use_log_scale: bool = False ) -> Chart: """ This builds the "Admitted Patients" census chart, projecting total number of patients in the hospital over time. Args: alt: Reference to Altair package. census_floor_df: Pandas data frame containing three columns: "census_hospitalized", "census_icu", and "census_ventilated". max_y_axis: Optional maximum value for the Y axis of the chart. use_log_scale: Set to true to use a logarithmic scale on the Y axis. Default is linear scale. Returns: The newly created chart. """ adjusted_census_floor_df = __adjust_data_for_log_scale(census_floor_df) if use_log_scale else census_floor_df y_scale = __build_y_scale(alt, max_y_axis, use_log_scale) x = dict(shorthand="date:T", title=i18n.t("charts-date"), axis=alt.Axis(format=(DATE_FORMAT))) y = dict(shorthand="value:Q", title=i18n.t("charts-census"), scale=y_scale) color = "key:N" tooltip = ["date:T", alt.Tooltip("value:Q", format=".0f", title="Census"), "key:N"] # TODO fix the fold to allow any number of dispositions points = ( alt.Chart() .transform_fold(fold=[i18n.t("census_hospitalized"), i18n.t("census_icu"), i18n.t("census_ventilated")]) .encode(x=alt.X(**x), y=alt.Y(**y), color=color, tooltip=tooltip) .mark_line(point=True) .encode( x=alt.X(**x), y=alt.Y(**y), color=color, tooltip=tooltip, ) ) bar = ( alt.Chart() .encode(x=alt.X(**x)) .transform_filter(alt.datum.day == 0) .mark_rule(color="black", opacity=0.35, size=2) ) census_floor_df_renamed = adjusted_census_floor_df.rename({ "census_hospitalized": i18n.t("census_hospitalized"), "census_icu": i18n.t("census_icu"), "census_ventilated": i18n.t("census_ventilated") }, axis=1) return ( alt.layer(points, bar, data=census_floor_df_renamed) .configure_legend(orient="bottom") .interactive() )
315329e593e116dbf63fb02772bf9394722feb90
3,658,095
def hasNonAsciiCharacters(sText): """ Returns True is specified string has non-ASCII characters, False if ASCII only. """ sTmp = unicode(sText, errors='ignore') if isinstance(sText, str) else sText; return not all(ord(ch) < 128 for ch in sTmp);
c1627d1a0a26e7c4d4e04c84085197ba44b5e640
3,658,096
def draw_matches(image_1, image_1_keypoints, image_2, image_2_keypoints, matches): """ Draws the matches between the image_1 and image_2. (Credit: GT CP2017 course provided source) Params: image_1: The first image (can be color or grayscale). image_1_keypoints: The image_1 keypoints. image_2: The image to search in (can be color or grayscale) image_2_keypoints: The image_2 keypoints. Returns: output: Image with a line drawn between matched keypoints. """ # Compute number of channels. num_channels = 1 if len(image_1.shape) == 3: num_channels = image_1.shape[2] # Separation between images. margin = 10 # Create an array that will fit both images (with a margin of 10 to # separate the two images) joined_image = np.zeros((max(image_1.shape[0], image_2.shape[0]), image_1.shape[1] + image_2.shape[1] + margin, 3)) if num_channels == 1: for channel_idx in range(3): joined_image[:image_1.shape[0], :image_1.shape[1], channel_idx] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:, channel_idx] = image_2 else: joined_image[:image_1.shape[0], :image_1.shape[1]] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:] = image_2 for match in matches: image_1_point = (int(image_1_keypoints[match.queryIdx].pt[0]), int(image_1_keypoints[match.queryIdx].pt[1])) image_2_point = (int(image_2_keypoints[match.trainIdx].pt[0] + image_1.shape[1] + margin), int(image_2_keypoints[match.trainIdx].pt[1])) rgb = (np.random.rand(3) * 255).astype(np.int) cv2.circle(joined_image, image_1_point, 5, rgb, thickness=-1) cv2.circle(joined_image, image_2_point, 5, rgb, thickness=-1) cv2.line(joined_image, image_1_point, image_2_point, rgb, thickness=3) return joined_image
d2984de4c542fca7dda3863ad934e9eddc14a375
3,658,097
def copy_ttl_in(): """ COPY_TTL_IN Action """ return _action("COPY_TTL_IN")
a01acb2645e033ad658435e9ca0323aec10b720c
3,658,098
import torch from typing import Optional def neuron_weight( layer: str, weight: torch.Tensor, x: Optional[int] = None, y: Optional[int] = None, batch: Optional[int] = None, ) -> Objective: """Linearly weighted channel activation at one location as objective :param layer: Name of the layer :type layer: str :param weight: A torch.Tensor of same length as the number of channels :type weight: torch.Tensor :param x: x-position, defaults to None :type x: Optional[int], optional :param y: y-position, defaults to None :type y: Optional[int], optional :param batch: which position at the batch dimension of the image tensor this objective is applied to, defaults to None :type batch: Optional[int], optional :return: Objective to optimize input for a linearly weighted channel activation at one location :rtype: Objective """ @handle_batch(batch) def inner(model): layer_t = model(layer) layer_t = _extract_act_pos(layer_t, x, y) if weight is None: return -layer_t.mean() else: return -(layer_t.squeeze() * weight).mean() return inner
646966613249a02468e00b91157fd43459d246bb
3,658,099