content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_contour_verts(cn): """unpack the SVM contour values""" contours = [] # for each contour line for cc in cn.collections: paths = [] # for each separate section of the contour line for pp in cc.get_paths(): xy = [] # for each segment of that section for vv in pp.iter_segments(): xy.append(vv[0]) paths.append(np.vstack(xy)) contours.append(paths) return contours
93dc98e758aca4390adf75afa7ef9bede2d2ac1a
3,658,200
def play(data_type, stream_id, name, start=-2, duration=-1, reset=False): """ Construct a 'play' message to start receive audio/video data from publishers on the server. :param data_type: int the RTMP datatype. :param stream_id: int the stream which the message will be sent on. :param name: str the name of the stream that is published/recorded on the server. :param start: N/A. :param duration: N/A. :param reset: N/A. """ # TODO: Add start, duration, reset(?) Will it work with 'play'? msg = {'msg': data_type, 'stream_id': stream_id, 'command': [u'play', 0, None, u'' + str(name)]} return msg
d7c28ba7444e6774427f89d30887cbad97b01cb2
3,658,201
def _compute_covariances(precisions_chol): """Compute covariancess from Cholesky decomposition of the precision matrices. Parameters ---------- precisions_chol : array-like, shape (n_components, n_features, n_features) The Cholesky decomposition of the sample precisions. Returns ------- covariances : array-like The covariance matrices corresponding to the given precision matrices. """ n_components, n_features, _ = precisions_chol.shape covariances = np.empty((n_components, n_features, n_features)) for k, prec_chol in enumerate(precisions_chol): cov_chol = sl.solve_triangular(prec_chol, np.eye(n_features), lower=True).T covariances[k] = np.dot(cov_chol, cov_chol.T) return covariances
4268a807ed2d6a61e69bd2f07ebbdbf332e030da
3,658,202
def rad2deg(angle): """ Convert radian to degree. Parameters ---------- angle : float Angle in radians Returns ------- degree : float Angle in degrees """ return (180./PI) * angle
dea3270a96cf82bb136ce4f6e873617245a4bac3
3,658,203
import csv def parse_kinetics_splits(level): """Parse Kinetics-400 dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Kinetics-400. """ def convert_label(s, keep_whitespaces=False): """Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string. """ if not keep_whitespaces: return s.replace('"', '').replace(' ', '_') else: return s.replace('"', '') def line_to_map(x, test=False): """A function to map line string to vid and label. Args: x (str): A single line from Kinetics-400 csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (vid, label), vid is the video id, label is the video label. """ if test: # vid = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}' vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' label = -1 # label unknown return vid, label else: vid = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' if level == 2: vid = f'{convert_label(x[0])}/{vid}' else: assert level == 1 label = class_mapping[convert_label(x[0])] return vid, label train_file = 'data/kinetics400/annotations/kinetics_train.csv' val_file = 'data/kinetics400/annotations/kinetics_val.csv' test_file = 'data/kinetics400/annotations/kinetics_test.csv' csv_reader = csv.reader(open(train_file)) # skip the first line next(csv_reader) labels_sorted = sorted(set([convert_label(row[0]) for row in csv_reader])) class_mapping = {label: i for i, label in enumerate(labels_sorted)} csv_reader = csv.reader(open(train_file)) next(csv_reader) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(val_file)) next(csv_reader) val_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(test_file)) next(csv_reader) test_list = [line_to_map(x, test=True) for x in csv_reader] splits = ((train_list, val_list, test_list), ) return splits
ee2521919f9f9c3f499cd28bc6003528eb402d2b
3,658,204
def rotateContoursAbout(contours, about, degrees=90, ccw=True): """\ Rotate the given contours the given number of degrees about the point about in a clockwise or counter-clockwise direction. """ rt = Transform.rotationAbout(about, degrees, ccw) return rt.applyToContours(contours)
c929a8c412f4b3fe9b70c21dde62b0672f575abc
3,658,205
import torch def coordinate_addition(v, b, h, w, A, B, psize): """ Shape: Input: (b, H*W*A, B, P*P) Output: (b, H*W*A, B, P*P) """ assert h == w v = v.view(b, h, w, A, B, psize) coor = torch.arange(h, dtype=torch.float32) / h coor_h = torch.cuda.FloatTensor(1, h, 1, 1, 1, psize).fill_(0.) coor_w = torch.cuda.FloatTensor(1, 1, w, 1, 1, psize).fill_(0.) coor_h[0, :, 0, 0, 0, 0] = coor coor_w[0, 0, :, 0, 0, 1] = coor v = v + coor_h + coor_w v = v.view(b, h * w * A, B, psize) return v
9eeb906539a61b887216c59faf3ac2928e999d6c
3,658,206
import uuid def ticket() -> str: """生成请求饿百接口所需的ticket参数""" return str(uuid.uuid1()).upper()
aaf1135d6ef5e61aa65960c5c38007848cbd0b17
3,658,207
def create_WchainCNOT_layered_ansatz(qc: qiskit.QuantumCircuit, thetas: np.ndarray, num_layers: int = 1): """Create WchainCNOT layered ansatz Args: - qc (qiskit.QuantumCircuit): init circuit - thetas (np.ndarray): parameters - n_layers (Int): numpy of layers Returns: - qiskit.QuantumCircuit """ n = qc.num_qubits if isinstance(num_layers, int) != True: num_layers = (num_layers['num_layers']) if len(thetas) != num_layers * (n * 3): raise Exception( 'Number of parameters must be equal n_layers * num_qubits * 3') for i in range(0, num_layers): phis = thetas[i * (n * 3):(i + 1) * (n * 3)] qc = create_WchainCNOT(qc) qc.barrier() qc = create_rz_nqubit(qc, phis[:n]) qc = create_rx_nqubit(qc, phis[n:n * 2]) qc = create_rz_nqubit(qc, phis[n * 2:n * 3]) return qc
488950214a26cdcf1812524511561d19baa9dfc9
3,658,208
import itertools def birth_brander(): """ This pipeline operator will add or update a "birth" attribute for passing individuals. If the individual already has a birth, just let it float by with the original value. If it doesn't, assign the individual the current birth ID, and then increment the global, stored birth count. We don't increment a birth ID in the ctor because that overall birth count will bloat due to clone operations. Inserting this operator into the pipeline will ensure that each individual that passes through is properly "branded" with a unique birth ID. However, care must be made to ensure that the initial population is similarly branded. Provides: * brand_population() to brand an entire population all at once, which is useful for branding initial populations. * brand() for explicitly branding a single individual :param next_thing: preceding individual in the pipeline :return: branded individual """ # incremented with each birth num_births = itertools.count() # sometimes next_thing is a population, so we need this to track that # the next individual in the population iterator = None def brand(individual): """ brand the given individual :param individual: to be branded :return: branded individual """ if not hasattr(individual, "birth"): # Only assign a birth ID if they don't already have one individual.birth = next(num_births) return individual def brand_population(population): """ We want to brand an entire population in one go Usually used to brand an initial population is one shot. :param population: to be branded :return: branded population """ return [brand(i) for i in population] def do_birth_branding(next_thing): """ This has the flexibility of being inserted in a pipeline such that the preceding pipeline is a population or a generator that provides an individual. It'll flexibly handle either situation. :param next_thing: either the next individual in the pipeline or a population of individuals to be branded :return: branded individual """ nonlocal num_births nonlocal iterator while True: if is_iterable(next_thing): # We're being passed in a single individual in a pipeline next_thing = next(next_thing) else: # We're being passed a test_sequence/population if iterator is None: iterator = iter(next_thing) next_thing = next(iterator) next_thing = brand(next_thing) yield next_thing do_birth_branding.brand_population = brand_population return do_birth_branding
dd2c1ef2e9ac2f56436e10829ca9c0685439ce6d
3,658,209
def find_center_vo(tomo, ind=None, smin=-50, smax=50, srad=6, step=0.5, ratio=0.5, drop=20, smooth=True): """ Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`. Parameters ---------- tomo : ndarray 3D tomographic data. ind : int, optional Index of the slice to be used for reconstruction. smin, smax : int, optional Coarse search radius. Reference to the horizontal center of the sinogram. srad : float, optional Fine search radius. step : float, optional Step of fine searching. ratio : float, optional The ratio between the FOV of the camera and the size of object. It's used to generate the mask. drop : int, optional Drop lines around vertical center of the mask. smooth : bool, optional Whether to apply additional smoothing or not. Returns ------- float Rotation axis location. """ tomo = dtype.as_float32(tomo) if ind is None: ind = tomo.shape[1] // 2 _tomo = tomo[:, ind, :] # Reduce noise by smooth filters. Use different filters for coarse and fine search _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1)) if smooth else _tomo _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2)) if smooth else _tomo # Coarse and fine searches for finding the rotation center. if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k) _tomo_coarse = downsample(np.expand_dims(_tomo_cs,1), level=2)[:, 0, :] init_cen = _search_coarse(_tomo_coarse, smin / 4.0, smax / 4.0, ratio, drop) fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop) else: init_cen = _search_coarse(_tomo_cs, smin, smax, ratio, drop) fine_cen = _search_fine(_tomo_fs, srad, step, init_cen, ratio, drop) logger.debug('Rotation center search finished: %i', fine_cen) return fine_cen
ff943940a133b88686c6d40cdc09886b050bf181
3,658,210
def random_fit_nonnegative(values, n): """ Generates n random values using a normal distribution fitted from values used as argument. Returns only non-negative values. :param values: array/list to use as model fot the random data :param n: number of random elements to return :returns: an array of n random non-negative numbers """ values = np.array(values) mean = np.mean(values) sd = np.std(values) random_values = np.empty(0) offset = 0.05 # 5% offset to compensate values less than 0 while len(random_values) < n: random_values = np.round(np.random.normal(mean, sd, round(n * (1 + offset)))) random_values = random_values[random_values >= 0] # If the while loop check fail, next time will try with a larger offset offset *= 2 # slice n first elements and shape the array to int return random_values[:n].astype("int")
9591b87b36c668681873fda1969d1710e7a2dd8b
3,658,211
def connected_components(weak_crossings=None, strong_crossings=None, probe_adjacency_list=None, join_size=None, channels=None): """Find all connected components in binary arrays of threshold crossings. Parameters ---------- weak_crossings : array `(n_samples, n_channels)` array with weak threshold crossings strong_crossings : array `(n_samples, n_channels)` array with strong threshold crossings probe_adjacency_list : dict A dict `{channel: [neighbors]}` channels : array An (n_channels,) array with a list of all non-dead channels join_size : int The number of samples defining the tolerance in time for finding connected components Returns ------- A list of lists of pairs `(samp, chan)` of the connected components in the 2D array `weak_crossings`, where a pair is adjacent if the samples are within `join_size` of each other, and the channels are adjacent in `probe_adjacency_list`, the channel graph. Note ---- The channel mapping assumes that column #i in the data array is channel #i in the probe adjacency graph. """ if probe_adjacency_list is None: probe_adjacency_list = {} if channels is None: channels = [] # If the channels aren't referenced at all but exist in 'channels', add a # trivial self-connection so temporal floodfill will work. If this channel # is dead, it should be removed from 'channels'. probe_adjacency_list.update({i: {i} for i in channels if not probe_adjacency_list.get(i)}) # Make sure the values are sets. probe_adjacency_list = {c: set(cs) for c, cs in probe_adjacency_list.items()} if strong_crossings is None: strong_crossings = weak_crossings assert weak_crossings.shape == strong_crossings.shape # Set of connected component labels which contain at least one strong # node. strong_nodes = set() n_s, n_ch = weak_crossings.shape join_size = int(join_size or 0) # An array with the component label for each node in the array label_buffer = np.zeros((n_s, n_ch), dtype=np.int32) # Component indices, a dictionary with keys the label of the component # and values a list of pairs (sample, channel) belonging to that component comp_inds = {} # mgraph is the channel graph, but with edge node connected to itself # because we want to include ourself in the adjacency. Each key of the # channel graph (a dictionary) is a node, and the value is a set of nodes # which are connected to it by an edge mgraph = {} for source, targets in probe_adjacency_list.items(): # we add self connections mgraph[source] = targets.union([source]) # Label of the next component c_label = 1 # For all pairs sample, channel which are nonzero (note that numpy .nonzero # returns (all_i_s, all_i_ch), a pair of lists whose values at the # corresponding place are the sample, channel pair which is nonzero. The # lists are also returned in sorted order, so that i_s is always increasing # and i_ch is always increasing for a given value of i_s. izip is an # iterator version of the Python zip function, i.e. does the same as zip # but quicker. zip(A,B) is a list of all pairs (a,b) with a in A and b in B # in order (i.e. (A[0], B[0]), (A[1], B[1]), .... In conclusion, the next # line loops through all the samples i_s, and for each sample it loops # through all the channels. for i_s, i_ch in zip(*weak_crossings.nonzero()): # The next two lines iterate through all the neighbours of i_s, i_ch # in the graph defined by graph in the case of edges, and # j_s from i_s-join_size to i_s. for j_s in range(i_s - join_size, i_s + 1): # Allow us to leave out a channel from the graph to exclude bad # channels if i_ch not in mgraph: continue for j_ch in mgraph[i_ch]: # Label of the adjacent element. adjlabel = label_buffer[j_s, j_ch] # If the adjacent element is nonzero we need to do something. if adjlabel: curlabel = label_buffer[i_s, i_ch] if curlabel == 0: # If current element is still zero, we just assign # the label of the adjacent element to the current one. label_buffer[i_s, i_ch] = adjlabel # And add it to the list for the labelled component. comp_inds[adjlabel].append((i_s, i_ch)) elif curlabel != adjlabel: # If the current element is unequal to the adjacent # one, we merge them by reassigning the elements of the # adjacent component to the current one. # samps_chans is an array of pairs sample, channel # currently assigned to component adjlabel. samps_chans = np.array(comp_inds[adjlabel], dtype=np.int32) # samps_chans[:, 0] is the sample indices, so this # gives only the samp,chan pairs that are within # join_size of the current point. # TODO: is this the right behaviour? If a component can # have a width bigger than join_size I think it isn't! samps_chans = samps_chans[i_s - samps_chans[:, 0] <= join_size] # Relabel the adjacent samp,chan points with current # label. samps, chans = samps_chans[:, 0], samps_chans[:, 1] label_buffer[samps, chans] = curlabel # Add them to the current label list, and remove the # adjacent component entirely. comp_inds[curlabel].extend(comp_inds.pop(adjlabel)) # Did not deal with merge condition, now fixed it # seems... # WARNING: might this "in" incur a performance hit # here...? if adjlabel in strong_nodes: strong_nodes.add(curlabel) strong_nodes.remove(adjlabel) # NEW: add the current component label to the set of all # strong nodes, if the current node is strong. if curlabel > 0 and strong_crossings[i_s, i_ch]: strong_nodes.add(curlabel) if label_buffer[i_s, i_ch] == 0: # If nothing is adjacent, we have the beginnings of a new # component, # so we label it, create a new list for the new # component which is given label c_label, # then increase c_label for the next new component afterwards. label_buffer[i_s, i_ch] = c_label comp_inds[c_label] = [(i_s, i_ch)] if strong_crossings[i_s, i_ch]: strong_nodes.add(c_label) c_label += 1 # Only return the values, because we don't actually need the labels. comps = [comp_inds[key] for key in comp_inds.keys() if key in strong_nodes] return comps
d1d4c3393a69e0a30a3bdf2328dd6535aee699d0
3,658,212
def channel_values(channel_freqs, channel_samples, dt, t): """Computes value of channels with given frequencies, samples, sample size and current time. Args: channel_freqs (array): 1d array of channel frequencies channel_samples (array): 2d array of channel samples, the first index being time step and the second index indexing channel dt (float): size of each sample t (float): current time Returns: array: array of channel values at the given time """ sample_idx = int(t // dt) if sample_idx >= len(channel_samples): sample_idx = len(channel_samples) - 1 sample_vals = channel_samples[sample_idx] return np.real(sample_vals * np.exp(1j * 2 * np.pi * channel_freqs * t))
cdc555a5ab2d21c0dba71f2f24386144796898c1
3,658,213
import os import nibabel as nb import numpy as np from scipy.fftpack import fft, ifft def bandpass_voxels(realigned_file, bandpass_freqs, sample_period = None): """ Performs ideal bandpass filtering on each voxel time-series. Parameters ---------- realigned_file : string Path of a realigned nifti file. bandpass_freqs : tuple Tuple containing the bandpass frequencies. (LowCutoff, HighCutoff) sample_period : float, optional Length of sampling period in seconds. If not specified, this value is read from the nifti file provided. Returns ------- bandpassed_file : string Path of filtered output (nifti file). """ def ideal_bandpass(data, sample_period, bandpass_freqs): #Derived from YAN Chao-Gan 120504 based on REST. # sample_period = T # LowCutoff = 10. # HighCutoff = 15. # data = x def nextpow2(n): x = np.log2(n) return 2**np.ceil(x) sample_freq = 1./sample_period sample_length = data.shape[0] data_p = np.zeros(nextpow2(sample_length)) data_p[:sample_length] = data LowCutoff, HighCutoff = bandpass_freqs if(LowCutoff is None): #No lower cutoff (low-pass filter) low_cutoff_i = 0 elif(LowCutoff > sample_freq/2.): #Cutoff beyond fs/2 (all-stop filter) low_cutoff_i = int(data_p.shape[0]/2) else: low_cutoff_i = np.ceil(LowCutoff*data_p.shape[0]*sample_period).astype('int') if(HighCutoff > sample_freq/2. or HighCutoff is None): #Cutoff beyond fs/2 or unspecified (become a highpass filter) high_cutoff_i = int(data_p.shape[0]/2) else: high_cutoff_i = np.fix(HighCutoff*data_p.shape[0]*sample_period).astype('int') freq_mask = np.zeros_like(data_p, dtype='bool') freq_mask[low_cutoff_i:high_cutoff_i+1] = True freq_mask[data_p.shape[0]-high_cutoff_i:data_p.shape[0]+1-low_cutoff_i] = True f_data = fft(data_p) f_data[freq_mask != True] = 0. data_bp = np.real_if_close(ifft(f_data)[:sample_length]) return data_bp nii = nb.load(realigned_file) data = nii.get_data().astype('float64') mask = (data != 0).sum(-1) != 0 Y = data[mask].T Yc = Y - np.tile(Y.mean(0), (Y.shape[0], 1)) if not sample_period: hdr = nii.get_header() sample_period = float(hdr.get_zooms()[3]) # Sketchy check to convert TRs in millisecond units if sample_period > 20.0: sample_period /= 1000.0 print 'Frequency filtering using sample period: ', sample_period, 'sec' Y_bp = np.zeros_like(Y) for j in range(Y.shape[1]): Y_bp[:,j] = ideal_bandpass(Yc[:,j], sample_period, bandpass_freqs) data[mask] = Y_bp.T img = nb.Nifti1Image(data, header=nii.get_header(), affine=nii.get_affine()) bandpassed_file = os.path.join(os.getcwd(), 'bandpassed_demeaned_filtered.nii.gz') img.to_filename(bandpassed_file) return bandpassed_file
772ae195007347ba24670814d907284180a33225
3,658,214
def get_small_corpus(num=10000): """ 获取小型文本库,用于调试网络模型 :param num: 文本库前n/2条对联 :return: 默认返回前500条对联(1000句话)的list """ list = getFile('/total_list.json') return list[:num]
032ea34eaa6b5e1478e3770c91fa3da3214d907b
3,658,215
from tqdm import tqdm_notebook def groupby_apply2(df_1, df_2, cols, f, tqdn=True): """Apply a function `f` that takes two dataframes and returns a dataframe. Groups inputs by `cols`, evaluates for each group, and concatenates the result. """ d_1 = {k: v for k,v in df_1.groupby(cols)} d_2 = {k: v for k,v in df_2.groupby(cols)} if tqdn: progress = tqdm_notebook else: progress = lambda x: x arr = [] for k in progress(d_1): arr.append(f(d_1[k], d_2[k])) return pd.concat(arr)
082ce61477c116ac421ab086e68b040dfc04ffff
3,658,216
from datetime import datetime import pytz def login(request): """Logs in the user if given credentials are valid""" username = request.data['username'] password = request.data['password'] try: user = User.objects.get(username=username) except: user = None if user is not None: encoded = user.password hasher = PBKDF2PasswordHasher() login_valid = hasher.verify(password, encoded) if login_valid: key = username + str(datetime.datetime.now()) key = hasher.encode(key, 'key', 10) life = datetime.datetime.now() + datetime.timedelta(hours=14) timezone = pytz.timezone("America/Bogota") life_aware = timezone.localize(life) loginsession = LoginSession(key=key, life=life_aware, user=user) loginsession.save() request.session['loginsession'] = key data = { 'success': True, 'key': key } return Response(data, status=status.HTTP_200_OK, content_type='application/json') data = { 'success': False, 'message':"Nombre de usuario o contraseña incorrectos" } return Response(data, status=status.HTTP_200_OK, content_type='application/json')
79add2a805a36cd3339aeecafb7d0af95e42d2e5
3,658,217
def replace_data_in_gbq_table(project_id, table_id, complete_dataset): """ replacing data in Google Cloud Table """ complete_dataset.to_gbq( destination_table=table_id, project_id=project_id, credentials=credentials, if_exists="replace", ) return None
1de5464cdce77f94857abe46a93f7b64f5e2dd1e
3,658,218
def default_pubkey_inner(ctx): """Default expression for "pubkey_inner": tap.inner_pubkey.""" return get(ctx, "tap").inner_pubkey
9333a62c0111f28e71c202b5553d7f2a8c4f71ce
3,658,219
def quantize_8(image): """Converts and quantizes an image to 2^8 discrete levels in [0, 1].""" q8 = tf.image.convert_image_dtype(image, tf.uint8, saturate=True) return tf.cast(q8, tf.float32) * (1.0 / 255.0)
d822ff34b9941c6a812a69766de3483c2348e7da
3,658,220
def get_clients( wlc, *vargs, **kvargs ): """ create a single dictionary containing information about all associated stations. """ rsp = wlc.rpc.get_stat_user_session_status() ret_data = {} for session in rsp.findall('.//USER-SESSION-STATUS'): locstat = session.find('.//USER-LOCATION-MEMBER') ret_data[session.get('mac-addr')] = dict(session.attrib) ret_data[session.get('mac-addr')].update(locstat.attrib) return ret_data
c4ab5941033632d7f2b95bc23878f0464d12adb7
3,658,221
def coalmine(eia923_dfs, eia923_transformed_dfs): """Transforms the coalmine_eia923 table. Transformations include: * Remove fields implicated elsewhere. * Drop duplicates with MSHA ID. Args: eia923_dfs (dict): Each entry in this dictionary of DataFrame objects corresponds to a page from the EIA923 form, as reported in the Excel spreadsheets they distribute. eia923_transformed_dfs (dict): A dictionary of DataFrame objects in which pages from EIA923 form (keys) correspond to normalized DataFrames of values from that page (values). Returns: dict: eia923_transformed_dfs, a dictionary of DataFrame objects in which pages from EIA923 form (keys) correspond to normalized DataFrames of values from that page (values). """ # These are the columns that we want to keep from FRC for the # coal mine info table. coalmine_cols = ['mine_name', 'mine_type', 'state', 'county_id_fips', 'mine_id_msha'] # Make a copy so we don't alter the FRC data frame... which we'll need # to use again for populating the FRC table (see below) cmi_df = eia923_dfs['fuel_receipts_costs'].copy() # Keep only the columns listed above: cmi_df = _coalmine_cleanup(cmi_df) cmi_df = cmi_df[coalmine_cols] # If we actually *have* an MSHA ID for a mine, then we have a totally # unique identifier for that mine, and we can safely drop duplicates and # keep just one copy of that mine, no matter how different all the other # fields associated with the mine info are... Here we split out all the # coalmine records that have an MSHA ID, remove them from the CMI # data frame, drop duplicates, and then bring the unique mine records # back into the overall CMI dataframe... cmi_with_msha = cmi_df[cmi_df['mine_id_msha'] > 0] cmi_with_msha = cmi_with_msha.drop_duplicates(subset=['mine_id_msha', ]) cmi_df.drop(cmi_df[cmi_df['mine_id_msha'] > 0].index) cmi_df.append(cmi_with_msha) cmi_df = cmi_df.drop_duplicates(subset=['mine_name', 'state', 'mine_id_msha', 'mine_type', 'county_id_fips']) # drop null values if they occur in vital fields.... cmi_df.dropna(subset=['mine_name', 'state'], inplace=True) # we need an mine id to associate this coalmine table with the frc # table. In order to do that, we need to create a clean index, like # an autoincremeted id column in a db, which will later be used as a # primary key in the coalmine table and a forigen key in the frc table # first we reset the index to get a clean index cmi_df = cmi_df.reset_index() # then we get rid of the old index cmi_df = cmi_df.drop(labels=['index'], axis=1) # then name the index id cmi_df.index.name = 'mine_id_pudl' # then make the id index a column for simpler transferability cmi_df = cmi_df.reset_index() cmi_df = PUDL_META.get_resource("coalmine_eia923").encode(cmi_df) eia923_transformed_dfs['coalmine_eia923'] = cmi_df return eia923_transformed_dfs
eb420428dcb2dceeeab1c5bbdceee7c7da2e5c11
3,658,222
import random def _throw_object_x_at_y(): """ Interesting interactions: * If anything is breakable :return: """ all_pickupable_objects_x = env.all_objects_with_properties({'pickupable': True}) x_weights = [10.0 if (x['breakable'] or x['mass'] > 4.0) else 1.0 for x in all_pickupable_objects_x] if len(all_pickupable_objects_x) == 0: raise ValueError('No pickupable objects') all_objects_y = env.all_objects_with_properties({'pickupable': True}) y_weights = [10.0 if (y['breakable'] and not y['pickupable']) else ( 4.0 if y['breakable'] else 1.0) for y in all_objects_y] object_x = all_pickupable_objects_x[_weighted_choice(x_weights)] object_y = all_objects_y[_weighted_choice(y_weights)] if object_x['objectId'] == object_y['objectId']: raise ValueError('objects are the same?') ##################### hardness_options = {'softly': 10.0, 'normally': 100.0, 'aggressively': 1000.0} hardness = random.choice(sorted(hardness_options.keys())) renv = RecordingEnv(env, text=f'Throw $1 at $2 {hardness}.', main_object_ids=(object_x['objectId'], object_y['objectId']) ) s_a = pickup_object(renv, object_x['objectId'], navigate=True) print("Pickup {} succeeds".format(object_x['objectId']), flush=True) path2use = path_to_object(renv.env, object_y, angle_noise=0, dist_to_obj_penalty=0.1) while len(path2use) > 0 and path2use[-1]['action'].startswith(('Rotate', 'Look')): path2use.pop(-1) for p in path2use: renv.step(p) # Teleport, throw, then snap back to grid # Face object old_pos = renv.env.get_agent_location() new_pos = {k: v for k, v in old_pos.items()} new_pos['rotation'] = rotation_angle_to_object(object_y, renv.env.get_agent_location()) new_pos['horizon'] = horizon_angle_to_object(object_y, renv.env.get_agent_location()) renv.env.teleport_agent_to(**new_pos, ignore_y_diffs=True, only_initially_reachable=False) if not renv.env.last_action_success: raise ValueError("teleport failed") if renv.env.get_agent_location()['y'] < -10: raise ValueError("negative coords") s_b = renv.step(dict(action='ThrowObject', moveMagnitude=hardness_options[hardness], forceAction=True)) # If something broke then things are interesting is_interesting = s_b and any([(x['isBroken'] or 'Cracked' in x['objectType']) for x in renv.new_items.values()]) renv.env.teleport_agent_to(**old_pos, ignore_y_diffs=True) return renv, is_interesting
03f6c6a99754d79d94df5a4f857ae358db663081
3,658,223
def plot( X, color_by=None, color_map="Spectral", colors=None, edges=None, axis_limits=None, background_color=None, marker_size=1.0, figsize_inches=(8.0, 8.0), savepath=None, ): """Plot an embedding, in one, two, or three dimensions. This function plots embeddings. The input embedding's dimension should be at most 3. The embedding is visualized as a scatter plot. The points can optionally be colored according to categorical or continuous values, or according to a pre-defined sequence of colors. Additionally, edges can optionally be superimposed. Arguments --------- X: array-like The embedding to plot, of shape ``(n_items, embedding_dim)``. The second dimension should be 1, 2, or 3. color_by: array-like, optional A sequence of values, one for each item, which should be used to color each embedding vector. These values may either be categorical or continuous. For example, if ``n_items`` is 4, .. code:: python3 np.ndarray(['dog', 'cat', 'zebra', 'cat']) np.ndarray([0, 1, 1, 2] np.ndarray([0.1, 0.5, 0.31, 0.99] are all acceptable. The first two are treated as categorical, the third is continuous. A finite number of colors is used when the values are categorical, while a spectrum of colors is used when the values are continuous. color_map: str or matplotlib colormap instance Color map to use when resolving ``color_by`` to colors; ignored when ``color_by`` is None. colors: array-like, optional A sequence of colors, one for each item, specifying the exact color each item should be colored. Each row must represent an RGBA value. Only one of ``color_by`` and ``colors`` should be non-None. edges: array-like, optional List of edges to superimpose over the scatter plot, shape ``(any, 2)`` axis_limits: tuple, optional tuple ``(limit_low, limit_high)`` of axis limits, applied to both the x and y axis. background_color: str, optional color of background marker_size: float, optional size of each point in the scatter plot figsize_inches: tuple size of figures in inches: ``(width_inches, height_inches)`` savepath: str, optional path to save the plot. Returns ------- matplotlib.Axes: Axis on which the embedding is plotted. """ if color_by is not None and colors is not None: raise ValueError("Only one of 'color_by` and `colors` can be non-None") ax = _plot( X=X, color_by=color_by, cmap=color_map, colors=colors, edges=edges, lim=axis_limits, background_color=background_color, s=marker_size, figsize=figsize_inches, ) if savepath is not None: plt.savefig(savepath) return ax
f6c5ef6084278bcd3eb81c9286af53594aca4a1e
3,658,224
def CausalConvIntSingle(val, time, kernel): """ Computing convolution of time varying data with given kernel function. """ ntime = time.size dt_temp = np.diff(time) dt = np.r_[time[0], dt_temp] out = np.zeros_like(val) for i in range(1, ntime): temp = 0. if i==0: temp += val[0]*kernel(time[i]-time[0])*dt[0]*0.5 for k in range(1,i+1): temp += val[k-1]*kernel(time[i]-time[k-1])*dt[k]*0.5 temp += val[k]*kernel(time[i]-time[k])*dt[k]*0.5 out[i] = temp return out
a4e94bfe2213c428042df4e561f584ffede3f9ab
3,658,225
def sbox1(v): """AES inverse S-Box.""" w = mpc.to_bits(v) z = mpc.vector_add(w, B) y = mpc.matrix_prod([z], A1, True)[0] x = mpc.from_bits(y)**254 return x
c10e9d440e1c1149c8d2b0f9fbd3fd5d4868596c
3,658,226
def _get_photon_info_COS(tag, x1d, traceloc='stsci'): """ Add spectral units (wavelength, cross dispersion distance, energy/area) to the photon table in the fits data unit "tag". For G230L, you will get several 'xdisp' columns -- one for each segment. This allows for the use of overlapping background regions. Parameters ---------- tag x1d traceloc Returns ------- xdisp, order """ if x1d is not None: xd, xh = x1d[1].data, x1d[1].header det = tag[0].header['detector'] segment = tag[0].header['segment'] data_list = [] for i,t in enumerate(tag): if t.name != 'EVENTS': continue td,th = t.data, t.header """ Note: How STScI extracts the spectrum is unclear. Using 'y_lower/upper_outer' from the x1d reproduces the x1d gross array, but these results in an extraction ribbon that has a varying height and center -- not the parallelogram that is described in the Data Handbook as of 2015-07-28. The parameters in the xtractab reference file differ from those populated in the x1d header. So, I've punted and stuck with using the x1d header parameters because it is easy and I think it will make little difference for most sources. The largest slope listed in the xtractab results in a 10% shift in the spectral trace over the length of the detector. In general, I should just check to be sure the extraction regions I'm using are reasonable. """ data = [td[s] for s in ['time', 'wavelength', 'epsilon', 'dq', 'pha']] if det == 'NUV': # all "orders" (segments) of the NUV spectra fall on the same detector and are just offset in y, # I'll just duplicate the events for each spectrum segs = [s[-1] for s in xd['segment']] orders = list(range(len(segs))) else: seg = segment[-1] segs = [seg] orders = [0 if seg == 'A' else 1] for order, seg in zip(orders, segs): if not (traceloc == 'stsci' or type(traceloc) in [int, float]) and det == 'NUV': raise NotImplementedError('NUV detector has multiple traces on the same detector, so custom traceloc ' 'has not been implemented.') if traceloc == 'stsci': yspec = xh['SP_LOC_'+seg] elif traceloc == 'median': Npixx = th['talen2'] x, y = td['xfull'], td['yfull'] yspec = _median_trace(x, y, Npixx, 8) elif traceloc == 'lya': Npixy = th['talen3'] yspec = _lya_trace(td['wavelength'], td['yfull'], Npixy) elif type(traceloc) in [int, float]: yspec = float(traceloc) else: raise ValueError('traceloc={} not recognized.'.format(traceloc)) xdisp = td['yfull'] - yspec order_vec = _np.ones_like(xdisp, 'i2')*order if det == 'NUV': w = data[1] keep = (xdisp > -15.) & (xdisp < 15.) x = td['xfull'] xref, wref = x[keep], w[keep] isort = _np.argsort(xref) xref, wref = xref[isort], wref[isort] wnew = _np.interp(x, xref, wref) data_list.append(data[:1] + [wnew] + data[2:] + [xdisp, order_vec]) else: data_list.append(data + [xdisp, order_vec]) data = list(map(_np.hstack, list(zip(*data_list)))) return data
d1f06d6b8b26894a3297471c74c291cd15b3cb22
3,658,227
def maximum_value(tab): """ brief: return maximum value of the list args: tab: a list of numeric value expects at leas one positive value return: the max value of the list the index of the max value raises: ValueError if expected a list as input ValueError if no positive value found """ if not(isinstance(tab, list)): raise ValueError('Expected a list as input') valMax = 0.0 valMaxIndex = -1; nPositiveValues = 0 for i in range(len(tab)): if tab[i] >= 0 and tab[i] > valMax: valMax = float(tab[i]) valMaxIndex = i nPositiveValues += 1 if nPositiveValues <= 0: raise ValueError('No positive value found') return valMax, valMaxIndex
1c31daf3a953a9d781bc48378ef53323313dc22a
3,658,228
import mpmath def pdf(x, k, loc, scale): """ Probability density function for the Weibull distribution (for minima). This is a three-parameter version of the distribution. The more typical two-parameter version has just the parameters k and scale. """ with mpmath.extradps(5): x = mpmath.mpf(x) k, loc, scale = _validate_params(k, loc, scale) if x == loc: if k < 1: return mpmath.mp.inf elif k == 1: return 1/scale else: return mpmath.mp.zero if x < loc: return mpmath.mp.zero return mpmath.exp(logpdf(x, k, loc, scale))
77efc3f7ceda57377a412dc7641114cea3562953
3,658,229
def add_flight(): """Allows users to add flights.""" if request.method == "GET": return render_template("add.html", airports=AIRPORTS) else: # Move request.form into a dictionary that's a bit shorter to access than request.form form = dict(request.form) # Change hour and minute into integers form["hour"] = int(form["hour"]) form["minute"] = int(form["minute"]) # TODO: Return error message if hour not in valid 0-23 range # TODO: Return error message if minute not in valid 0-59 range # TODO: Return error message if either airport not in AIRPORTS, or if they're equal # Insert into database insert_flight(db, form) # TODO: Redirect user to homepage return "TODO"
7ac6d73bddfcba7475ff4e293a93fd3fe1fff546
3,658,230
def rescale_column_test(img, img_shape, gt_bboxes, gt_label, gt_num): """rescale operation for image of eval""" img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True) if img_data.shape[0] > config.img_height: img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True) scale_factor = scale_factor*scale_factor2 pad_h = config.img_height - img_data.shape[0] pad_w = config.img_width - img_data.shape[1] assert ((pad_h >= 0) and (pad_w >= 0)) pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype) pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data img_shape = np.append(img_shape, (scale_factor, scale_factor)) img_shape = np.asarray(img_shape, dtype=np.float32) return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num)
11c7be91988aba926e5d9934443545a5112d2525
3,658,231
from typing import Union from typing import List import asyncio from typing import Set import os async def start_workers( search_requests: Union[List[SearchIndexRequest], asyncio.Queue] ) -> Set[str]: """Runs the pipeline using asyncio concurrency with three main coroutines: - get results: fetch the search requests queue, perform the search and output the results - download and parse the body: fetch the results queue, download and parse the body and meta from S3 - persist the data: fetch the 'to_persist' queue and serialize the data to ndjson files """ results_queue = asyncio.Queue(maxsize=settings.MAX_RESULTS_QUEUE_SIZE) to_persist_queue = asyncio.Queue(maxsize=settings.MAX_PERSIST_QUEUE_SIZE) search_end_event = asyncio.Event() download_end_event = asyncio.Event() if isinstance(search_requests, asyncio.Queue): search_requests_queue = search_requests else: search_requests_queue = asyncio.Queue() for request in search_requests: await search_requests_queue.put(request) num_search_requests = search_requests_queue.qsize() logger.info( f"Starting pipeline. Total of {num_search_requests} search index requests to process." ) async with create_client() as client: gateway = CDXGateway(client) search_indexes = SearchIndexesExecutor( gateway, results_queue, search_requests_queue ) search_indexes_task = asyncio.create_task(search_indexes.run()) download_task = asyncio.create_task( download_executor( results_queue, to_persist_queue, client, search_end_event, ) ) store_results_task = asyncio.create_task( store_results(to_persist_queue, download_end_event, os.getpid()) ) while not search_indexes_task.done(): await asyncio.sleep(1) logger.debug( f"Search index requests pending: {search_requests_queue.qsize()}" ) else: search_end_event.set() while not download_task.done(): await asyncio.sleep(1) else: download_end_event.set() while not store_results_task.done(): await asyncio.sleep(1) for task in [search_indexes_task, download_task, store_results_task]: exc = task.exception() if exc: logger.exception(exc_info=exc) logger.info("Pipeline finished, exiting.") return store_results_task.result()
b0cd669af8ebd7127c5bea4455e7e401e0e3ffd7
3,658,232
def resolvability_query(m, walks_): """ :param m: cost matrix :param walks_: list of 0-percolation followed by its index of redundancy as returned by percolation_finder :return: M again untouched, followed by the list of $0$-percolation with minimal index of redundancy, and with a flag, True if the minimal index is 0 and so we have already our solution, False otherwise. """ min_redundancy = np.min(walks_[1::2]) filtered_walks = [walks_[i] for i in list(range(len(walks_)))[::2] \ if walks_[i + 1] == min_redundancy] if min_redundancy == 0: flag = True else: flag = False return [m, filtered_walks, flag]
968acb44a94952187cd91ed50ee2f7c1d1f0f54f
3,658,233
import os def lock_parent_directory(filename, timeout=10): """ Context manager that acquires a lock on the parent directory of the given file path. This will block until the lock can be acquired, or the timeout time has expired (whichever occurs first). :param filename: file path of the parent directory to be locked :param timeout: timeout (in seconds) """ return lock_path(os.path.dirname(filename), timeout=timeout)
2774c61d30d6844ae7c9fa07dd4df2d0ecac2918
3,658,234
import math def dsh( incidence1: float, solar_az1: float, incidence2: float, solar_az2: float ): """Returns the Shadow-Tip Distance (dsh) as detailed in Becker et al.(2015). The input angles are assumed to be in radians. This is defined as the distance between the tips of the shadows in the two images for a hypothetical vertical post of unit height. The "shadow length" describes the shadow of a hypothetical pole so it applies whether there are actually shadows in the image or not. It's a simple and consistent geometrical way to quantify the difference in illumination. This quantity is computed analogously to dp. """ def shx(inc: float, sunazgnd: float): return -1 * math.tan(inc) * math.cos(sunazgnd) def shy(inc: float, sunazgnd: float): return math.tan(inc) * math.sin(sunazgnd) shx1 = shx(incidence1, solar_az1) shx2 = shx(incidence2, solar_az2) shy1 = shy(incidence1, solar_az1) shy2 = shy(incidence2, solar_az2) return math.sqrt(math.pow(shx1 - shx2, 2) + math.pow(shy1 - shy2, 2))
5aef1c9d7ffeb3e8534568a53cf537d26d97324a
3,658,235
def similarity(vec1, vec2): """Cosine similarity.""" return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
22a97fc08b4a8d7b662d0ba38eb6338aad587ca2
3,658,236
import _warnings def epv00(date1, date2): """ Earth position and velocity, heliocentric and barycentric, with respect to the Barycentric Celestial Reference System. :param date1, date2: TDB as a two-part Julian date. :type date1, date2: float :returns: a tuple of two items: * heliocentric Earth position velocity as a numpy.matrix of shape \ 2x3. * barycentric Earth position/velocity as a numpy.matrix of shape \ 2x3. :raises: :exc:`UserWarning` if the date falls outside the range 1900-2100. .. seealso:: |MANUAL| page 79 """ pvh = _np.asmatrix(_np.zeros(shape=(2,3), dtype=float, order='C')) pvb = _np.asmatrix(_np.zeros(shape=(2,3), dtype=float, order='C')) s = _sofa.iauEpv00(date1, date2, pvh, pvb) if s != 0: _warnings.warn(_epv00_msg[s], UserWarning, 2) return pvh, pvb
bb2c97517966168beb07e1732231bb0388eca0f3
3,658,237
def algorithm_conflict(old_config, new_config): """Generate an algorithm configuration conflict""" return conflicts.AlgorithmConflict(old_config, new_config)
8f9a1dcbf90b38efd69e028a35591d4d424d72c4
3,658,238
def nin(): """ :return: """ def nin_block(num_channels, kernel_size, strides, padding): blk = nn.Sequential() blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'), nn.Conv2D(num_channels, kernel_size=1, activation='relu'), nn.Conv2D(num_channels, kernel_size=1, activation='relu')) return blk net = nn.Sequential() net.add(nin_block(96, kernel_size=11, strides=4, padding=0), nn.MaxPool2D(pool_size=3, strides=2), nin_block(256, kernel_size=5, strides=1, padding=2), nn.MaxPool2D(pool_size=3, strides=2), nin_block(384, kernel_size=3, strides=1, padding=1), nn.MaxPool2D(pool_size=3, strides=2), nn.Dropout(0.5), # 标签类别数是10 nin_block(10, kernel_size=3, strides=1, padding=1), # 全局平均池化层将窗口形状自动设置成输入的高和宽 nn.GlobalAvgPool2D(), # 将四维的输出转成二维的输出,其形状为(批量大小, 10) nn.Flatten()) X = nd.random.uniform(shape=(1, 1, 224, 224)) net.initialize() for layer in net: X = layer(X) print(layer.name, 'output shape:\t', X.shape) lr, num_epochs, batch_size, ctx = 0.1, 5, 128, d2l.try_gpu() net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier()) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs)
8641d6b34256168d09d2ab3c6fa0d4a0aff71410
3,658,239
def factorial(n): """ Return the product of the integers 1 through n. n must be a nonnegative integer. """ return product(range(2, n + 1))
132b772d27e661816979ea9a5f2fa3b53114b55c
3,658,240
def get_status_lines(frames, check_transposed=True): """ Extract status lines from the given frames. `frames` can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of array. Automatically check if the status line is present; return ``None`` if it's not. If ``check_transposed==True``, check for the case where the image is transposed (i.e., line becomes a column). """ if isinstance(frames,list): return [get_status_lines(f,check_transposed=check_transposed) for f in frames] if frames.shape[-1]>=4: lines=_extract_line(frames,True) if _check_magic(lines): return lines lines=_extract_line(frames,False) if _check_magic(lines): return lines if check_transposed: tframes=frames.T if frames.ndim==2 else frames.transpose((0,2,1)) return get_status_lines(tframes,check_transposed=False) return None
8bc68246b0c4987836414810a0308a2034b16368
3,658,241
def quote(): """Get stock quote.""" if request.method == "POST": quote = lookup(request.form.get("symbol")) if quote == None: return apology("invalid symbol", 400) return render_template("quoted.html", quote=quote) # User reached route via GET (as by clicking a link or via redi) else: return render_template("quote.html")
fb9d4b54e97a4d7b104f3c0d361347b99db68195
3,658,242
import json def stats(api, containers=None, stream=True): """Get container stats container When stream is set to true, the raw HTTPResponse is returned. """ path = "/containers/stats" params = {'stream': stream} if containers is not None: params['containers'] = containers try: response = api.get(path, params=params) if stream: return response return json.loads(str(response.read(), 'utf-8')) except errors.NotFoundError as e: api.raise_not_found(e, e.response, errors.ContainerNotFound)
8e8da5ab96ab14871e3a5de363d8cae66fba5701
3,658,243
def add_engineered(features): """Add engineered features to features dict. Args: features: dict, dictionary of input features. Returns: features: dict, dictionary with engineered features added. """ features["londiff"] = features["dropofflon"] - features["pickuplon"] features["latdiff"] = features["dropofflat"] - features["pickuplat"] features["euclidean"] = tf.math.sqrt( features["londiff"]**2 + features["latdiff"]**2) return features
56efe3ad922f5068c91ac702366416210e95dd74
3,658,244
def test_3tris(): """3 triangles""" conv = ToPointsAndSegments() polygons = [ [[(0, 0), (1, 0), (0.5, -0.5), (0, 0)]], [[(1, 0.5), (2, 0.5), (1.5, 1), (1, 0.5)]], [[(2, 0), (3, 0), (2.5, -0.5), (2, 0)]], ] for polygon in polygons: conv.add_polygon(polygon) return conv, 24, 16, 8
fc9504e9c3ca0ae251ed67f8c99530ac6a1de73c
3,658,245
def program_modules_with_functions(module_type, function_templates): """ list the programs implementing a given set of functions """ prog_lsts = [program_modules_with_function(module_type, function_template) for function_template in function_templates] # get the intersection of all of them progs = _reduce(set.intersection, map(set, prog_lsts)) return tuple(sorted(progs))
c3cfd6ee6c9fdcca3926015016e5d28a2a1f599d
3,658,246
def tasmax_below_tasmin( tasmax: xarray.DataArray, tasmin: xarray.DataArray, ) -> xarray.DataArray: """Check if tasmax values are below tasmin values for any given day. Parameters ---------- tasmax : xarray.DataArray tasmin : xarray.DataArray Returns ------- xarray.DataArray, [bool] Examples -------- To gain access to the flag_array: >>> from xclim.core.dataflags import tasmax_below_tasmin >>> ds = xr.open_dataset(path_to_tas_file) >>> flagged = tasmax_below_tasmin(ds.tasmax, ds.tasmin) """ tasmax_lt_tasmin = _sanitize_attrs(tasmax < tasmin) description = "Maximum temperature values found below minimum temperatures." tasmax_lt_tasmin.attrs["description"] = description tasmax_lt_tasmin.attrs["units"] = "" return tasmax_lt_tasmin
c112dcf5b1a89f20151daaea8d56ea8b08262886
3,658,247
import torch def laplace_attention(q, k, v, scale, normalize): """ Laplace exponential attention Parameters ---------- q : torch.Tensor Shape (batch_size, m, k_dim) k : torch.Tensor Shape (batch_size, n, k_dim) v : torch.Tensor Shape (batch_size, n, v_dim) scale : float scale in the L1 distance normalize : bool does the weights sum to 1? Returns ------- r : torch.Tensor Shape (batch_size, m, v_dim) """ k = k.unsqueeze(1) # shape [B, 1, n, k_dim] q = q.unsqueeze(2) # shape [B, m, 1, k_dim] unnorm_weights = - torch.abs((k - q) / scale) # shape [B, m, n, k_dim] unnorm_weights = torch.mean(weights, dim=-1) # shape [B, m, n] if normalize: weight_fn = F.softmax else: weight_fn = lambda x: 1 + torch.tanh(x) weights = weight_fn(unnorm_weights) # shape [B, m, n] r = torch.einsum('bij,bjk->bik', weights, v) # shape [B, m, v_dim] return r
600ac2f75e5396dfe6e169776425229ffedbc884
3,658,248
def instantiate(class_name, *args, **kwargs): """Helper to dynamically instantiate a class from a name.""" split_name = class_name.split(".") module_name = split_name[0] class_name = ".".join(split_name[1:]) module = __import__(module_name) class_ = getattr(module, class_name) return class_(*args, **kwargs)
d5906c835de9c2e86fbe3c15a9236662d6c7815d
3,658,249
def fawa(pv_or_state, grid=None, levels=None, interpolate=None): """Finite-Amplitude Wave Activity according to Nakamura and Zhu (2010). - If the first parameter is not a `barotropic.State`, `grid` must be specified. - `levels` specifies the number of contours generated for the equivalent latitude zonalization. - By default, FAWA is returned on the computed equivalent latitudes. To obtain FAWA interpolated to a specific set of latitudes, specify these with the `interpolate` parameter. Returns a tuple containing FAWA and its latitude coordinates. """ grid, pv = _get_grid_vars(["pv"], grid, pv_or_state) # Compute zonalized background state of PV qq, yy = grid.zonalize_eqlat(pv, levels=levels, interpolate=None, quad="sptrapz") # Use formulation that integrates PV over areas north of PV # contour/equivalent latitude and then computes difference q_int = np.vectorize(lambda q: grid.quad_sptrapz(pv, pv - q)) y_int = np.vectorize(lambda y: grid.quad_sptrapz(pv, grid.lat - y)) # Normalize by zonal circumference at each latitude fawa = (q_int(qq) - y_int(yy)) / grid.circumference(yy) # Interpolate to a given set of latitudes if specified if interpolate is not None: fawa = np.interp(interpolate, yy, fawa, left=0, right=0) yy = interpolate return fawa, yy
91ca98bcb5abf71100ec9716f11c5cd38688836d
3,658,250
def bmm_update(context, bmm_id, values, session=None): """ Updates Bare Metal Machine record. """ if not session: session = get_session_dodai() session.begin() bmm_ref = bmm_get(context, bmm_id, session=session) bmm_ref.update(values) bmm_ref.save(session=session) return bmm_ref
71c73582c9f6b96ffc5021598c8ef017ccb5af83
3,658,251
from datetime import datetime def to_unified(entry): """ Convert to a unified entry """ assert isinstance(entry, StatementEntry) date = datetime.datetime.strptime(entry.Date, '%d/%m/%Y').date() return UnifiedEntry(date, entry.Reference, method=entry.Transaction_Type, credit=entry.Money_In, debit=entry.Money_Out)
d6eca8cbd970931569a2ad740298578c1106e7c9
3,658,252
def edit_profile(): """ POST endpoint that edits the student profile. """ user = get_current_user() json = g.clean_json user.majors = Major.objects.filter(id__in=json['majors']) user.minors = Minor.objects.filter(id__in=json['minors']) user.interests = Tag.objects.filter(id__in=json['interests']) user.save() return _fetch_user_profile(user)
4548c4621f31bbd159535b7ea0768167655b4f5b
3,658,253
import six def _stringcoll(coll): """ Predicate function to determine whether COLL is a non-empty collection (list/tuple) containing only strings. Arguments: - `coll`:* Return: bool Exceptions: None """ if isinstance(coll, (list, tuple)) and coll: return len([s for s in coll if isinstance(s, six.string_types)]) == len(coll) return False
9490a973900e230f70fea112f250cfe29be3a8bc
3,658,254
import contextlib def create_user_db_context( database=Database(), *args, **kwargs): """ Create a context manager for an auto-configured :func:`msdss_users_api.tools.create_user_db_func` function. Parameters ---------- database : :class:`msdss_base_database:msdss_base_database.core.Database` Database to use for managing users. *args, **kwargs Additional arguments passed to :func:`msdss_users_api.tools.create_user_db_func`. Return ------ dict Returns a dictionary with the following keys: * ``get_user_db_context`` (:func:`contextlib.asynccontextmanager`): function returned from :func:`contextlib.asynccontextmanager` created from an auto-configured :func:`msdss_users_api.tools.create_user_db_func` function * ``get_user_db`` (func): user db function from :func:`msdss_users_api.tools.create_user_db_func` * ``async_database`` (:class:`databases:databases.Database`): auto-configured :class:`databases:databases.Database` from env vars * ``database_engine`` (:class:`sqlalchemy:sqlalchemy.engine.Engine`): auto-configured :class:`sqlalchemy:sqlalchemy.engine.Engine` from env vars Author ------ Richard Wen <[email protected]> Example ------- .. jupyter-execute:: from msdss_users_api.tools import * results = create_user_db_context() get_user_db_context = results['get_user_db_context'] async_database = results['async_database'] """ # (create_user_db_func_db) Create databases database_engine = database._connection async_database = databases.Database(str(database_engine.url)) # (get_user_db_context_return) Return user db context get_user_db = create_user_db_func(database_engine=database_engine, async_database=async_database, *args, **kwargs) out = dict( get_user_db_context=contextlib.asynccontextmanager(get_user_db), get_user_db=get_user_db, async_database=async_database, database_engine=database_engine ) return out
2bafe1f31f19c2b115d54e61c124f06368694b6b
3,658,255
from pathlib import Path import textwrap def config(base_config): """:py:class:`nemo_nowcast.Config` instance from YAML fragment to use as config for unit tests.""" config_file = Path(base_config.file) with config_file.open("at") as f: f.write( textwrap.dedent( """\ file group: allen vhfr fvcom runs: host: arbutus.cloud run types: nowcast x2: results: /nemoShare/MEOPAR/SalishSea/fvcom-nowcast-x2/ forecast x2: results: /nemoShare/MEOPAR/SalishSea/fvcom-forecast-x2/ nowcast r12: results: /nemoShare/MEOPAR/SalishSea/fvcom-nowcast-r12/ results archive: nowcast x2: /opp/fvcom/nowcast-x2/ forecast x2: /opp/fvcom/forecast-x2/ nowcast r12: /opp/fvcom/nowcast-r12/ """ ) ) config_ = nemo_nowcast.Config() config_.load(config_file) return config_
3ed4253f660a87e8b24392b4eb926b387067010f
3,658,256
def __check_complete_list(list_, nb_max, def_value): """ make sure the list is long enough complete with default value if not :param list_: list to check :param nb_max: maximum length of the list :param def_value: if list too small, completes it with this value :return: boolean, False if the list is too long """ if len(list_) <= nb_max: list_.extend([def_value] * (nb_max - len(list_))) return True else: return False
9d439cd3eeea04e7a3e0e59aa4fe0bbb875bdfe4
3,658,257
import pickle def _fill_function(func, globals, defaults, closure, dct): """ Fills in the rest of function data into the skeleton function object that were created via _make_skel_func(). """ func.func_globals.update(globals) func.func_defaults = defaults func.func_dict = dct if len(closure) != len(func.func_closure): raise pickle.UnpicklingError("closure lengths don't match up") for i in range(len(closure)): _change_cell_value(func.func_closure[i], closure[i]) return func
7ac454b7d6c43f49da1adf32522c03d28d88e6b7
3,658,258
import os def symlink_gfid_to_path(brick, gfid): """ Each directories are symlinked to file named GFID in .glusterfs directory of brick backend. Using readlink we get PARGFID/basename of dir. readlink recursively till we get PARGFID as ROOT_GFID. """ if gfid == ROOT_GFID: return "" out_path = "" while True: path = os.path.join(brick, ".glusterfs", gfid[0:2], gfid[2:4], gfid) path_readlink = os.readlink(path) pgfid = os.path.dirname(path_readlink) out_path = os.path.join(os.path.basename(path_readlink), out_path) if pgfid == "../../00/00/%s" % ROOT_GFID: break gfid = os.path.basename(pgfid) return out_path
5cede0058a3d1fa6697dfc84eac4c1315a9a531f
3,658,259
import PIL def resize_img(img, size, keep_aspect_ratio=True): """resize image using pillow Args: img (PIL.Image): pillow image object size(int or tuple(in, int)): width of image or tuple of (width, height) keep_aspect_ratio(bool): maintain aspect ratio relative to width Returns: (PIL.Image): pillow image """ if isinstance(size, int): size = (size, size) # get ratio width, height = img.size requested_width = size[0] if keep_aspect_ratio: ratio = width / requested_width requested_height = height / ratio else: requested_height = size[1] size = (int(requested_width), int(requested_height)) img = img.resize(size, resample=PIL.Image.LANCZOS) return img
b3ddc2c929fa530f2af612c3021802f7bd1ed285
3,658,260
from typing import Tuple def calculate_clip_from_vd(circuit: DiodeCircuit, v_d: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ :returns: v_in, v_out """ Rs = circuit.Rs Is = circuit.diode.Is n = circuit.diode.n Vt = circuit.diode.Vt Rp = circuit.Rp Rd = circuit.Rd Id = Is * (np.exp(v_d / (n * Vt)) - 1.0) Vd = v_d if Rp is None: Vin = Vd + (Rd * Id) + (Rs * Id) else: Vin = Vd + (Rd * Id) + (Rs * Id) + (Vd * Rs / Rp) + (Id * Rd * Rs / Rp) Vout = Vd + Id * Rd return Vin, Vout
ec60231622c06f1a972af050c0403e8247aa75ed
3,658,261
def tex_coord(x, y, n=8): """ Return the bounding vertices of the texture square. """ m = 1.0 / n dx = x * m dy = y * m return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
0776dd61aa83b9c9d8afe7574607022c9f7c2b77
3,658,262
def uniindtemp_compute(da: xr.DataArray, thresh: str = "0.0 degC", freq: str = "YS"): """Docstring""" out = da - convert_units_to(thresh, da) out = out.resample(time=freq).mean() out.attrs["units"] = da.units return out
640a50e2a4ff61192f97e31c782be58437d301d0
3,658,263
def verify_parentheses(parentheses_string: str) -> bool: """Takes input string of only '{},[],()' and evaluates to True if valid.""" open_parentheses = [] valid_parentheses_set = {'(', ')', '[', ']', '{', '}'} parentheses_pairs = { ')' : '(', ']' : '[', '}' : '{' } if len(parentheses_string) % 2 != 0: return False for character in parentheses_string: if character not in valid_parentheses_set: raise ValueError("Only parentheses may be part of input string.") if character in {'(', '[', '{'}: open_parentheses.append(character) if character in {')', ']', '}'}: if len(open_parentheses) == 0: return False elif open_parentheses[-1] != parentheses_pairs[character]: return False del open_parentheses[-1] if len(open_parentheses) > 0: return False return True
2e2c07314d474b582f12af8cf53a311c0fa323c1
3,658,264
import time def _stableBaselineTrainingAndExecution(env, typeAgent, numberOptions, mode): """"Function to execute Baseline algorithms""" if typeAgent == 2: model = A2C(MlpPolicy, env, verbose=1) else: model = PPO2(MlpPolicy, env, verbose=1) print("Training model....") startTime = time() model.learn(total_timesteps=DEFAULT_TRAINING_RANGE) trainingTime = time() - startTime print("Model trained in " + str(trainingTime) + ".") print("Starting episodes....") totalSteps, numberEpisodes, studentTotalScore, projectTotalScore, skillsTotalScore = 0, 0, 0., 0., 0. bestResult = [] bestStudentScore = 0.0 bestStudentAssigned = 0 sumStudentAssigned = 0.0 allStudentsAssigned = [] allProjectAssignations = [] allSteps = [] allResults = [] allAverageStudentScore = [] allAverageProjectScore = [] allAverageSkillsScore = [] allStudentScores = [] allProjectScores = [] progressBar = Bar("-> Execution progress:", max=DEFAULT_EXECUTION_RANGE) for i in range(DEFAULT_EXECUTION_RANGE): state = env.reset(1) steps, reward = 0, 0 done = False print("Execution " + str(i)) while not done: action, _state = model.predict(state) state, reward, done, info = env.step(action) # env.render() steps += 1 numberEpisodes += 1 allSteps.append(steps) averageStudentScore, averageProjectScore, averageSkillsScore, studentScores, projectScores, studentsAssigned, projectAssignations = env.stepScores() allResults.append(env.finalState()) allAverageStudentScore.append(averageStudentScore) allAverageProjectScore.append(averageProjectScore) allAverageSkillsScore.append(averageSkillsScore) allStudentScores.append(studentScores) allProjectScores.append(projectScores) allStudentsAssigned.append(studentsAssigned) allProjectAssignations.append(projectAssignations) averageStudentAssigned = sum(studentsAssigned) / numberOptions sumStudentAssigned += sum(studentsAssigned) / numberOptions if averageStudentAssigned >= bestStudentAssigned and averageStudentScore > bestStudentScore: bestStudentAssigned = averageStudentAssigned bestStudentScore = averageStudentScore bestResult = env.finalState() progressBar.next() progressBar.finish() print("Execution done.") print(trainingTime) if mode == 0: _executionAnalysis(numberEpisodes, allStudentScores, allProjectScores, allSteps, bestStudentAssigned, numberOptions, allStudentsAssigned, allProjectAssignations, sumStudentAssigned) return bestResult
7fd91b28ab475fb43ea7e6af4ca17302863e269a
3,658,265
def string_to_hexadecimale_device_name(name: str) -> str: """Encode string device name to an appropriate hexadecimal value. Args: name: the desired name for encoding. Return: Hexadecimal representation of the name argument. """ length = len(name) if 1 < length < 33: hex_name = hexlify(name.encode()) zeros_pad = ("00" * (32 - length)).encode() return (hex_name + zeros_pad).decode() raise ValueError("name length can vary from 2 to 32")
53d5c5a221a2c3dac46c5fb15d051d78592b109b
3,658,266
def createTeam( firstIndex, secondIndex, isRed, first = 'DefensiveAgent', second = 'OffensiveAgent'): """ This function should return a list of two agents that will form the team, initialized using firstIndex and secondIndex as their agent index numbers. isRed is True if the red team is being created, and will be False if the blue team is being created. As a potentially helpful development aid, this function can take additional string-valued keyword arguments ("first" and "second" are such arguments in the case of this function), which will come from the --redOpts and --blueOpts command-line arguments to capture.py. For the nightly contest, however, your team will be created without any extra arguments, so you should make sure that the default behavior is what you want for the nightly contest. """ return [eval(first)(firstIndex), eval(second)(secondIndex)]
b99e8f548b6e6166517fb35a89f5381ef6d7692b
3,658,267
def str_dice(die): """Return a string representation of die. >>> str_dice(dice(1, 6)) 'die takes on values from 1 to 6' """ return 'die takes on values from {0} to {1}'.format(smallest(die), largest(die))
29eb7f6aa43e068e103016bbc8c35699fbf4a3ea
3,658,268
import pyregion def pyregion_subset(region, data, mywcs): """ Return a subset of an image (`data`) given a region. Parameters ---------- region : `pyregion.parser_helper.Shape` A Shape from a pyregion-parsed region file data : np.ndarray An array with shape described by WCS mywcs : `astropy.wcs.WCS` A world coordinate system describing the data """ shapelist = pyregion.ShapeList([region]) if shapelist[0].coord_format not in ('physical','image'): # Requires astropy >0.4... # pixel_regions = shapelist.as_imagecoord(self.wcs.celestial.to_header()) # convert the regions to image (pixel) coordinates celhdr = mywcs.sub([wcs.WCSSUB_CELESTIAL]).to_header() pixel_regions = shapelist.as_imagecoord(celhdr) else: # For this to work, we'd need to change the reference pixel after cropping. # Alternatively, we can just make the full-sized mask... todo.... raise NotImplementedError("Can't use non-celestial coordinates with regions.") pixel_regions = shapelist # This is a hack to use mpl to determine the outer bounds of the regions # (but it's a legit hack - pyregion needs a major internal refactor # before we can approach this any other way, I think -AG) mpl_objs = pixel_regions.get_mpl_patches_texts()[0] # Find the minimal enclosing box containing all of the regions # (this will speed up the mask creation below) extent = mpl_objs[0].get_extents() xlo, ylo = extent.min xhi, yhi = extent.max all_extents = [obj.get_extents() for obj in mpl_objs] for ext in all_extents: xlo = xlo if xlo < ext.min[0] else ext.min[0] ylo = ylo if ylo < ext.min[1] else ext.min[1] xhi = xhi if xhi > ext.max[0] else ext.max[0] yhi = yhi if yhi > ext.max[1] else ext.max[1] log.debug("Region boundaries: ") log.debug("xlo={xlo}, ylo={ylo}, xhi={xhi}, yhi={yhi}".format(xlo=xlo, ylo=ylo, xhi=xhi, yhi=yhi)) subwcs = mywcs[ylo:yhi, xlo:xhi] subhdr = subwcs.sub([wcs.WCSSUB_CELESTIAL]).to_header() subdata = data[ylo:yhi, xlo:xhi] mask = shapelist.get_mask(header=subhdr, shape=subdata.shape) log.debug("Shapes: data={0}, subdata={2}, mask={1}".format(data.shape, mask.shape, subdata.shape)) return (xlo,xhi,ylo,yhi),mask
03578a1957b8cbbae573588f85f24f8f528dc05b
3,658,269
def transformer_encoder(encoder_input, encoder_self_attention_bias, hparams, name="encoder", nonpadding=None, save_weights_to=None, make_image_summary=True): """A stack of transformer layers. Args: encoder_input: a Tensor encoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string nonpadding: optional Tensor with shape [batch_size, encoder_length] indicating what positions are not padding. This must either be passed in, which we do for "packed" datasets, or inferred from encoder_self_attention_bias. The knowledge about padding is used for pad_remover(efficiency) and to mask out padding in convolutional layers. save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. Returns: y: a Tensors """ x = encoder_input attention_dropout_broadcast_dims = ( common_layers.comma_separated_string_to_integer_list( getattr(hparams, "attention_dropout_broadcast_dims", ""))) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_NUM_HIDDEN_LAYERS, value=hparams.num_encoder_layers or hparams.num_hidden_layers) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_ATTENTION_DROPOUT, value=hparams.attention_dropout) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_ATTENTION_DENSE, value={ "use_bias": "false", "num_heads": hparams.num_heads, "hidden_size": hparams.hidden_size }) with tf.variable_scope(name): if nonpadding is not None: padding = 1.0 - nonpadding else: padding = common_attention.attention_bias_to_padding( encoder_self_attention_bias) nonpadding = 1.0 - padding pad_remover = None if hparams.use_pad_remover and not common_layers.is_xla_compiled(): pad_remover = expert_utils.PadRemover(padding) for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers): initial_sparsity = None if hparams.get("load_masks_from"): initial_sparsity = hparams.get("initial_sparsity") with tf.variable_scope("layer_%d" % layer): with tf.variable_scope("self_attention"): y = sparse_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), None, encoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, max_relative_position=hparams.max_relative_position, heads_share_relative_embedding=( hparams.heads_share_relative_embedding), add_relative_to_values=hparams.add_relative_to_values, save_weights_to=save_weights_to, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, max_length=hparams.get("max_length"), vars_3d=hparams.get("attention_variables_3d"), sparsity_technique=hparams.get("sparsity_technique"), threshold=hparams.get("log_alpha_threshold"), training=hparams.get("mode") == tf.estimator.ModeKeys.TRAIN, clip_alpha=hparams.get("clip_log_alpha"), initial_sparsity=initial_sparsity, split_heads=hparams.get("split_heads")) x = common_layers.layer_postprocess(x, y, hparams) with tf.variable_scope("ffn"): y = transformer_ffn_layer( common_layers.layer_preprocess(x, hparams), hparams, pad_remover) x = common_layers.layer_postprocess(x, y, hparams) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_NORM, value={"hidden_size": hparams.hidden_size}) return common_layers.layer_preprocess(x, hparams)
0f56315a972acc235dba7ec48c8b83b84bd6b3f1
3,658,270
import os def update(event, context): """ Place your code to handle Update events here To return a failure to CloudFormation simply raise an exception, the exception message will be sent to CloudFormation Events. """ region = os.environ['AWS_REGION'] prefix_list_name = event['ResourceProperties']['PrefixListName'] physical_resource_id = 'RetrievedPrefixList' response_data = get_pl_id(prefix_list_name, region) return physical_resource_id, response_data
cc5762bbd6fb79f6ec4823d706139c2d4abb3a31
3,658,271
import re def compute_dict(file_path): """Computes the dict for a file whose path is file_path""" file_dict = {} with open(file_path, encoding = 'utf8') as fin: for line in fin: line = line.strip() txt = re.sub('([^a-zA-Z0-9\s]+)',' \\1 ',line) txt = re.sub('([\s]+)',' ',txt) words = txt.split(" ") for word in words: w = str(word) if(w not in file_dict): file_dict[w] = 1 else: file_dict[w] = file_dict[w] + 1 return file_dict
821e29181aad781279b27174be0fd7458b60481f
3,658,272
def get_scale(lat1, lon1, var, desired_distance, unit='miles'): """ Calculate the difference in either latitude or longitude that is equivalent to some desired distance at a given point on Earth. For example, at a specific point, how much does latitude need to change (assuming longitude is constant) to be equal to 60 miles? This is especially important since lines of longitude are closer together near Earth's poles. This function is helpful when converting latitude and longitude coordinates to pixel coordinates in order to plot a point on the screen. Parameters: 1 - latitude of position in decimal degrees 2 - longitude of position in decimal degrees 3 - "lat" or "lon" to specify if calulating change for latitude or longitude 4 - the desired distance from the given point 5 - unit of measure (optional), "miles" or "km", default is miles Returns: The difference in latitude or longitude """ # Create a second point that is initially set to the starting point # The idea is to that push this point farther and farther away (either by lat or lon) # until it is the desired distance away lat2 = lat1 lon2 = lon1 # Create a variable for tracking the actual distance between the two points, which # can be compared against the desired distance actual_distance = get_distance(lat1, lon1, lat2, lon2, unit) n = 1 # Place value to increase or decrease lat/lon by (1, .1, .01, .001, etc.) decrease_n = False # Flag to indicate if n should be decreased if var == 'lat': var_value = lat2 # Variable for holding either latitude or longitude (whichever is being modified) elif var == 'lon': var_value = lon2 else: print '\nvalue not recognized: ' + str(var) + '\n' # Keep looping until the difference between the desired distance and the actual distance # is less than 0.0001 (in whatever units)... basically until it's really close while abs(round(desired_distance - actual_distance, 4)) > 0.0001: # Keep increasing the var_value until the actual distance is too great, then start decreasing until it's too small # If desired distance is greater than actual, add n to the var_value if desired_distance > actual_distance: var_value += n var_value = round(var_value, 6) # Round to 6 decimal places to clean up floating point messiness decrease_n = True # Indicate it's ok the decrease n if the following else statement is evaluated # If actual distance is greater than desired, subtract n from var_value else: if decrease_n: n *= 0.1 # Decrease n by a factor of ten var_value -= n var_value = round(var_value, 6) decrease_n = False # Don't decrease n until after the next time the if statement is evaluated # Recalculate the actual distance if var == 'lat': actual_distance = get_distance(lat1, lon1, var_value, lon2, unit) else: actual_distance = get_distance(lat1, lon1, lat2, var_value, unit) # print round(actual_distance, 4) for testing purposes # Return the difference between lat2 and lat1 (or lon2/lon1) that is equal to the desired distance if var == 'lat': return abs(round(var_value - lat1, 6)) else: return abs(round(var_value - lon1, 6))
258d95b1372d1b863f121552abb2ba6047f5aaad
3,658,273
from typing import Union from pathlib import Path async def connect_unix(path: Union[str, PathLike]) -> UNIXSocketStream: """ Connect to the given UNIX socket. Not available on Windows. :param path: path to the socket :return: a socket stream object """ path = str(Path(path)) return await get_asynclib().connect_unix(path)
825d69aa19afd593b355063639cbcd91cb23e9fa
3,658,274
def isMatch(s, p): """ Perform regular simple expression matching Given an input string s and a pattern p, run regular expression matching with support for '.' and '*'. Parameters ---------- s : str The string to match. p : str The pattern to match. Returns ------- bool Was it a match or not. """ dp = [[False] * (len(p) + 1) for _ in range(len(s) + 1)] dp[0][0] = True # The only way to match a length zero string # is to have a pattern of all *'s. for ii in range(1, len(p)): if p[ii] == "*" and dp[0][ii-1]: dp[0][ii + 1] = True for ii in range(len(s)): for jj in range(len(p)): # Matching a single caracter c or '.'. if p[jj] in {s[ii], '.'}: dp[ii+1][jj+1] = dp[ii][jj] elif p[jj] == '*': # Double **, which is equivalent to * if p[jj-1] not in {s[ii], '.'}: dp[ii+1][jj+1] = dp[ii+1][jj-1] # We can match .* or c* multiple times, once, or zero # times (respective clauses in the or's) else: dp[ii+1][jj+1] = dp[ii][jj+1] or dp[ii+1][jj] or dp[ii+1][jj-1] return dp[-1][-1]
92cd3171afeb73c6a58bbcd3d3ea6d707401cb09
3,658,275
def cepheid_lightcurve_advanced(band, tarr, m0, period, phaseshift, shape1, shape2, shape3, shape4, datatable=None): """ Generate a Cepheid light curve. More flexibility allowed. band: one of "B", "V", "I" tarr: times at which you want the light curve evaluated m0: mean magnitude for the light curve period: same units as tarr phaseshift: same units as tarr shape1-4: parameters determining the shape of the light curve. These are the first four principle components from Yoachim et al. 2009 They should generally be > 0. You can use datatable: which set of templates to use. By default, it loads the long period templates. Long period: >10 days; Short period: <10 days Can also pass an integer. Even int -> long period, odd int -> short period. Note: for speed in fitting, read the table you want and pass it in. """ allowed_bands = ["I","V","B"] assert band.upper() in allowed_bands if datatable is None: datatable = load_longperiod_datatable() elif isinstance(datatable,(int,float)): datatable = int(datatable) if (datatable % 2) == 1: datatable = load_shortperiod_datatable() else: datatable = load_longperiod_datatable() Nt = len(tarr) tstack = np.ravel([tarr for x in range(3)]) #p0 = m0i, m0v, m0b, period, phase shift, tbreak, tbreak2 p0 = [m0,m0,m0,period,phaseshift,Nt,2*Nt, shape1, shape2, shape3, shape4] lcs = gen_lc(tstack, p0, datatable) lc = lcs[allowed_bands.index(band)] return lc
7e9a94f4e59f3da31c8c21a6e35822a0ac0d8051
3,658,276
def app_list(context): """ Renders the app list for the admin dashboard widget. """ context["dashboard_app_list"] = admin_app_list(context["request"]) return context
699aa55403169f87c26fc9655d8c6dcb29aa14d2
3,658,277
def path_depth(path: str, depth: int = 1) -> str: """Returns the `path` up to a certain depth. Note that `depth` can be negative (such as `-x`) and will return all elements except for the last `x` components """ return path_join(path.split(CONFIG_SEPARATOR)[:depth])
c04899974560b2877db313fa0444203cc483a2b0
3,658,278
def read_config_file(filename, preserve_order=False): """ Read and parse a configuration file. Parameters ---------- filename : str Path of configuration file Returns ------- dict Configuration dictionary """ with open(filename) as f: return parse_config(f, preserve_order)
6a0aab4ae0da3abdddf080c98ee69eb92d2d8d04
3,658,279
def languages_list_handler(): """Get list of supported review languages (language codes from ISO 639-1). **Example Request:** .. code-block:: bash $ curl https://critiquebrainz.org/ws/1/review/languages \\ -X GET **Example Response:** .. code-block:: json { "languages": [ "aa", "ab", "af", "ak", "yo", "za", "zh", "zu" ] } :resheader Content-Type: *application/json* """ return jsonify(languages=supported_languages)
5b8791ad5d71a94486d96379f62ed9ebf850ec59
3,658,280
def corpus_subdirs(path): """ pathの中のdir(txt以外)をlistにして返す """ subdirs = [] for x in listdir(path): if not x.endswith('.txt'): subdirs.append(x) return subdirs
645f198f78795dbc5c14b7cfd400fa1e94dc9244
3,658,281
def edit_string_for_tags(tags): """ Given list of ``Tag`` instances or tag strings, creates a string representation of the list suitable for editing by the user, such that submitting the given string representation back without changing it will give the same list of tags. Tag names which contain commas will be double quoted. If any tag name which isn't being quoted contains whitespace, the resulting string of tag names will be comma-delimited, otherwise it will be space-delimited. Ported from Jonathan Buchanan's `django-tagging <http://django-tagging.googlecode.com/>`_ """ names = [] for tag in tags: if hasattr(tag, 'name'): name = tag.name elif isinstance(tag, (str, unicode,)): name = tag else: continue if u',' in name or u' ' in name: names.append('"%s"' % name) else: names.append(name) return u', '.join(sorted(names))
a05b6cb12e36304096d076e015077f1ec1cc3432
3,658,282
from typing import Optional def convert_postgres_array_as_string_to_list(array_as_string: str) -> Optional[list]: """ Postgres arrays are stored in CSVs as strings. Elasticsearch is able to handle lists of items, but needs to be passed a list instead of a string. In the case of an empty array, return null. For example, "{this,is,a,postgres,array}" -> ["this", "is", "a", "postgres", "array"]. """ return array_as_string[1:-1].split(",") if len(array_as_string) > 2 else None
cc64fe8e0cc765624f80abc3900985a443f76792
3,658,283
def generate_prime_number(min_value=0, max_value=300): """Generates a random prime number within the range min_value to max_value Parameters ---------- min_value : int, optional The smallest possible prime number you want, by default 0 max_value : int, optional The largest possible prime number you want, by default 300 Returns ------- int A randomly selected prime number in the range min_value to max_value """ # Create a list of prime values within the range primes = [number for number in range(min_value,max_value) if is_prime(number)] return choice(primes)
539f74fcdba2c366b0fe13b0bc0fab6727300ec1
3,658,284
def sort_extended_practitioner(practitioner): """ sort on date latestDate Then alpha on other practitioners :param practitioner: :return: practitioner """ uniques = [] for p in practitioner: if find_uniques(p, uniques): uniques.append(p) return uniques
476d9adf9d93b88f20166b1e95715aaa54bd67f9
3,658,285
def lti13_login_params_dict(lti13_login_params): """ Return the initial LTI 1.3 authorization request as a dict """ utils = LTIUtils() args = utils.convert_request_to_dict(lti13_login_params) return args
026e65c132666816f774a05f6977dac9ab194b77
3,658,286
def calcShannonEnt(dataset): """ 计算数据集的熵 输入:数据集 输出:熵 """ numEntris = len(dataset) labelCounts = {} for featVec in dataset: currentLabel = featVec[-1] #每行数据中的最后一个数,即数据的决策结果 label if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel]+=1 #labelCounts记录了叶节点的种类(keys)和每个类的数量(values) # shannonEnt = 0 for key in labelCounts: prob = float(labelCounts[key])/numEntris shannonEnt -= prob*log(prob,2) return shannonEnt
9b64d0ad0bb517deb77c24f3c08e004d255daa68
3,658,287
import array def get_boundaries_medians(things, lowers=[], uppers=[]): """Return the boundaries and medians of given percentage ranges. Parameters: 1. things: a list of numbers 2. lowers: lower percentage limits 3. uppers: upper percentage limits Returns: lower, median, upper """ # if neither list nor array nor tuple, just return None if type(things)!=list and type(things)!=array and type(things)!=tuple: return [], [], [] n_things = len(things) if n_things == 0: return [], [], [] sthings = sorted(list(things)) l = map(lambda x: int(round(1.0*x*n_things/100))-1, lowers) r = map(lambda x: int(round(1.0*x*n_things/100)), uppers) return map(lambda x: sthings[x], l), map(lambda x, y: median(sthings[max(0, x):min(n_things, y+1)]), l, r), map(lambda y: sthings[y], r)
d83365ad2d9598dc19c279a6b20424746f53d6ce
3,658,288
def getMeanBySweep(abf, markerTime1, markerTime2): """ Return the mean value between the markers for every sweep. """ assert isinstance(abf, pyabf.ABF) pointsPerSecond = abf.dataRate sweepIndex1 = pointsPerSecond * markerTime1 sweepIndex2 = pointsPerSecond * markerTime2 means = [] for i in range(abf.sweepCount): abf.setSweep(i) segment = abf.sweepY[sweepIndex1:sweepIndex2] segmentMean = np.mean(segment) means.append(segmentMean) return means
8051d67c832c9b331798f896b8f98c2673770a94
3,658,289
import json def handler(event, context): """ Params: ------- event (dict): content (dict): Both params are standard lambda handler invocation params but not used within this lambda's code. Returns: ------- (string): JSON-encoded dict with top level keys for each of the possible queries that can be run against the `/datasets` endpoint (key: _all_ contains result of the LIST operation, each of other keys contain the result of GET /datasets/{spotlight_id | "global"}) """ # TODO: defined TypedDicts for these! datasets = _gather_json_data(DATASETS_JSON_FILEPATH) sites = _gather_json_data(SITES_JSON_FILEPATH) result = json.dumps(_gather_datasets_metadata(datasets, sites)) print( f"Saving generated metadata to {DATASET_METADATA_FILENAME} in bucket {metadata_host_bucket.name}" ) metadata_host_bucket.put_object( Body=result, Key=DATASET_METADATA_FILENAME, ContentType="application/json", ) return result
21d49c8bdf174633ec33f64dd77d16485e694f1d
3,658,290
def add_prefix(key): """Dummy key_function for testing index code.""" return "id_" + key
96dda0bd57b4eb89f17c8bb69ad48e3e1675a470
3,658,291
def schedule_conv2d_nhwc_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_tensorcore" in op.tag: schedule_nhwc_tensorcore_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
318be211f02469c1e971a9303f48f92f88af5755
3,658,292
import tqdm def simulate(config, show_progress=False): """Simulate incarceration contagion dynamics. Parameters ---------- config : Config Config object specifying simulation parameters. Returns ------- dict Dictionary specifying simulated population of agents. """ popu = initialize(config) agents = popu.values() def display(range_obj): if show_progress: range_obj = tqdm(range_obj) return range_obj # these are in years. need to work in terms of months for itr in display(range(config.start_iter, config.end_iter)): for month in range(12): # infection step for person in agents: # random infection, not due to contagion if valid_age(person, itr, config.min_age): person["infected"] += infect("*", "*", "*") # infect connected people if person["incarcerated"] > 0: person["incarcerated"] -= 1 person["months_in_prison"] += 1 spread_infection(popu, person, itr, month, config) # sentencing step for person in agents: if person["infected"] and not person["incarcerated"]: assign_sentence(person, itr, month, config) person["infected"] = 0 return popu
b5b813c1038d6b473ff3f4fa6beccdad2615f2af
3,658,293
import cel_import def get_event_log(file_path: str = None, use_celonis=False): """ Gets the event log data structure from the event log file. Dispatches the methods to be used by file tyoe :param use_celonis: If the attribute is set to true the event log will be retrieved from celonis :param file_path: Path to the event-log file :return:EventLog data structure """ if file_path is None and not use_celonis: raise ValueError("Parameters file_path was None and use_celonis was false at the same time." "This behavior is not supported") if use_celonis: return cel_import.get_event_log_from_celonis() else: file_path_lowercase = file_path.lower() if file_path_lowercase.endswith(".xes"): return __handle_xes_file(file_path) else: raise ValueError('The input file was not a XES file')
9b77a2bed9d6551cc2d0e4eb607de0d81b95c6f3
3,658,294
def find_peak(corr, method='gaussian'): """Peak detection algorithm switch After loading the correlation window an maximum finder is invoked. The correlation window is cut down to the necessary 9 points around the maximum. Afterwards the maximum is checked not to be close to the boarder of the correlation frame. This cropped window is used in along with the chosen method to interpolate the sub pixel shift. Each interpolation method returns a tuple with the sub pixel shift in x and y direction. The maximums position and the sub pixel shift are added and returned. If an error occurred during the sub pixel interpolation the shift is set to nan. Also if the interpolation method is unknown an exception in thrown. :param corr: correlation window :param method: peak finder algorithm (gaussian, centroid, parabolic, 9point) :raises: Sub pixel interpolation method not found :returns: shift in interrogation window """ i, j = np.unravel_index(corr.argmax(), corr.shape) if check_peak_position(corr, i, j) is False: return np.nan, np.nan window = corr[i-1:i+2, j-1:j+2] if method == 'gaussian': subpixel_interpolation = gaussian elif method == 'centroid': subpixel_interpolation = centroid elif method == 'parabolic': subpixel_interpolation = parabolic elif method == '9point': subpixel_interpolation = gaussian2D else: raise Exception('Sub pixel interpolation method not found!') try: dx, dy = subpixel_interpolation(window) except: return np.nan, np.nan else: return (i + dx, j + dy)
685eb87cefc6cd2566a9e9d40f827a1fea010b73
3,658,295
import os def mesh_plot( mesh: PyEITMesh, el_pos, mstr="", figsize=(9, 6), alpha=0.5, offset_ratio=0.075, show_image=False, show_mesh=False, show_electrode=True, show_number=False, show_text=True, ): """plot mesh structure (base layout)""" # load mesh structure pts = mesh.node tri = mesh.element fig, ax = plt.subplots(figsize=figsize) ax.set_facecolor("black") ax.set_aspect("equal") # load background if show_image and os.path.exists(mstr): image_name = mstr.replace("mes", "bmp") im = plt.imread(image_name) ax.imshow(im) else: # without imshow, the yaxis should be inverted ax.invert_yaxis() # show mesh structure if show_mesh: ax.triplot(pts[:, 0], pts[:, 1], tri, alpha=alpha) # show electrodes markers if show_electrode: ax.plot(pts[el_pos, 0], pts[el_pos, 1], "yo") # annotate electrodes numbering if show_number: for i, e in enumerate(el_pos): ax.text(pts[e, 0], pts[e, 1], np.str(i + 1), color="r", size=12) # annotate (L) at offset_ratio*d beside node 0 if show_text: xb, xa = pts[el_pos[8], 0], pts[el_pos[0], 0] d = np.abs(xa - xb) offset = d * offset_ratio x, y = xa + offset, pts[el_pos[0], 1] ax.text(x, y, "L", size=20, color="w") # enlarge the right of axes if using annotation ax.set_xlim([xb - offset, xa + 2 * offset]) # clean up axis ax.grid("off") plt.setp(ax.get_xticklines(), visible=False) plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklines(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) return fig, ax
ba82a9ceebd6b8470b3fb441204cd0d8155e5cdb
3,658,296
def binaryToString(binary): """ 从二进制字符串转为 UTF-8 字符串 """ index = 0 string = [] rec = lambda x, i: x[2:8] + (rec(x[8:], i - 1) if i > 1 else '') if x else '' fun = lambda x, i: x[i + 1:8] + rec(x[8:], i - 1) while index + 1 < len(binary): chartype = binary[index:].index('0') # 存放字符所占字节数,一个字节的字符会存为0 length = chartype * 8 if chartype else 8 string.append(chr(int(fun(binary[index:index + length], chartype), 2))) index += length return ''.join(string)
2044109d573abe7c9428b64b289b5aa82ec4d624
3,658,297
import functools import logging def disable_log_warning(fun): """Temporarily set FTP server's logging level to ERROR.""" @functools.wraps(fun) def wrapper(self, *args, **kwargs): logger = logging.getLogger('pyftpdlib') level = logger.getEffectiveLevel() logger.setLevel(logging.ERROR) try: return fun(self, *args, **kwargs) finally: logger.setLevel(level) return wrapper
6990a2a1a60ea5a24e4d3ac5c5e7fbf443825e48
3,658,298
def create_csv_step_logger(save_dir: pyrado.PathLike, file_name: str = "progress.csv") -> StepLogger: """ Create a step-based logger which only safes to a csv-file. :param save_dir: parent directory to save the results in (usually the algorithm's `save_dir`) :param file_name: name of the cvs-file (with ending) :return: step-based logger """ logger = StepLogger() logfile = osp.join(save_dir, file_name) logger.printers.append(CSVPrinter(logfile)) return logger
355c205cf5f42b797b84005c1485c2b6cae74c2e
3,658,299