content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import colorsys def hsv_to_rgb(image): """ Convert HSV img to RGB img. Args: image (numpy.ndarray): NumPy HSV image array of shape (H, W, C) to be converted. Returns: numpy.ndarray, NumPy HSV image with same shape of image. """ h, s, v = image[:, :, 0], image[:, :, 1], image[:, :, 2] to_rgb = np.vectorize(colorsys.hsv_to_rgb) r, g, b = to_rgb(h, s, v) return np.stack((r, g, b), axis=2)
4e356beb6e9579c96cea3b050d6cc9b863723554
3,657,900
def dom_to_tupletree(node): """Convert a DOM object to a pyRXP-style tuple tree. Each element is a 4-tuple of (NAME, ATTRS, CONTENTS, None). Very nice for processing complex nested trees. """ if node.nodeType == node.DOCUMENT_NODE: # boring; pop down one level return dom_to_tupletree(node.firstChild) assert node.nodeType == node.ELEMENT_NODE name = node.nodeName attrs = {} contents = [] for child in node.childNodes: if child.nodeType == child.ELEMENT_NODE: contents.append(dom_to_tupletree(child)) elif child.nodeType == child.TEXT_NODE: assert is_text(child.nodeValue), \ "text node %s is not a string" % repr(child) contents.append(child.nodeValue) elif child.nodeType == child.CDATA_SECTION_NODE: contents.append(child.nodeValue) else: raise RuntimeError("can't handle %s" % child) for i in range(node.attributes.length): attr_node = node.attributes.item(i) attrs[attr_node.nodeName] = attr_node.nodeValue # XXX: Cannot yet handle comments, cdata, processing instructions and # other XML batshit. # it's so easy in retrospect! return name, attrs, contents, None
a3df44ff17c1a36eb30a57bb1e327f8c633c51fc
3,657,901
def import_bom_rf3(filename, **kwargs): """Import a NetCDF radar rainfall product from the BoM Rainfields3. Parameters ---------- filename : str Name of the file to import. Returns ------- out : tuple A three-element tuple containing the rainfall field in mm/h imported from the Bureau RF3 netcdf, the quality field and the metadata. The quality field is currently set to None. """ if not netcdf4_imported: raise MissingOptionalDependency( "netCDF4 package is required to import BoM Rainfields3 products " "but it is not installed" ) R = _import_bom_rf3_data(filename) geodata = _import_bom_rf3_geodata(filename) metadata = geodata # TODO(import_bom_rf3): Add missing georeferencing data. metadata["transform"] = None metadata["zerovalue"] = np.nanmin(R) if np.any(np.isfinite(R)): metadata["threshold"] = np.nanmin(R[R > np.nanmin(R)]) else: metadata["threshold"] = np.nan return R, None, metadata
1763a35ba3d46f1c584c53b9bce8dd91f55cfd20
3,657,902
def pipe_collapse(fq, outdir, gzipped=True): """ Collapse, by sequence """ fname = filename(fq) check_path(outdir) fq_out = collapse_fx(fq, outdir, gzipped=True) stat_fq(fq_out) # 1U 10A fq_list = split_fq_1u10a(fq_out) for f in fq_list: stat_fq(f) # wrap stat df = wrap_stat_fq(outdir) return [fq_out, df]
5f510894b0eecc5d0c7e35a0b5e4e3550cfc49f9
3,657,903
from tqdm.auto import tqdm #if they have it, let users have a progress bar def multi_bw(init, y, X, n, k, family, tol, max_iter, rss_score, gwr_func, bw_func, sel_func, multi_bw_min, multi_bw_max, bws_same_times, verbose=False): """ Multiscale GWR bandwidth search procedure using iterative GAM backfitting """ if init is None: bw = sel_func(bw_func(y, X)) optim_model = gwr_func(y, X, bw) else: bw = init optim_model = gwr_func(y, X, init) bw_gwr = bw err = optim_model.resid_response.reshape((-1, 1)) param = optim_model.params XB = np.multiply(param, X) if rss_score: rss = np.sum((err)**2) iters = 0 scores = [] delta = 1e6 BWs = [] bw_stable_counter = 0 bws = np.empty(k) gwr_sel_hist = [] try: except ImportError: def tqdm(x, desc=''): #otherwise, just passthrough the range return x for iters in tqdm(range(1, max_iter + 1), desc='Backfitting'): new_XB = np.zeros_like(X) params = np.zeros_like(X) for j in range(k): temp_y = XB[:, j].reshape((-1, 1)) temp_y = temp_y + err temp_X = X[:, j].reshape((-1, 1)) bw_class = bw_func(temp_y, temp_X) if bw_stable_counter >= bws_same_times: #If in backfitting, all bws not changing in bws_same_times (default 5) iterations bw = bws[j] else: bw = sel_func(bw_class, multi_bw_min[j], multi_bw_max[j]) gwr_sel_hist.append(deepcopy(bw_class.sel_hist)) optim_model = gwr_func(temp_y, temp_X, bw) err = optim_model.resid_response.reshape((-1, 1)) param = optim_model.params.reshape((-1, )) new_XB[:, j] = optim_model.predy.reshape(-1) params[:, j] = param bws[j] = bw #If bws remain the same as from previous iteration if (iters > 1) and np.all(BWs[-1] == bws): bw_stable_counter += 1 else: bw_stable_counter = 0 num = np.sum((new_XB - XB)**2) / n den = np.sum(np.sum(new_XB, axis=1)**2) score = (num / den)**0.5 XB = new_XB if rss_score: predy = np.sum(np.multiply(params, X), axis=1).reshape((-1, 1)) new_rss = np.sum((y - predy)**2) score = np.abs((new_rss - rss) / new_rss) rss = new_rss scores.append(deepcopy(score)) delta = score BWs.append(deepcopy(bws)) if verbose: print("Current iteration:", iters, ",SOC:", np.round(score, 7)) print("Bandwidths:", ', '.join([str(bw) for bw in bws])) if delta < tol: break opt_bws = BWs[-1] return (opt_bws, np.array(BWs), np.array(scores), params, err, gwr_sel_hist, bw_gwr)
f1631a7c9d511fa4d6e95002042f846c484f30f5
3,657,904
def _auth_url(url): """Returns the authentication URL based on the URL originally requested. Args: url: String, the original request.url Returns: String, the authentication URL. """ parsed_url = urlparse.urlparse(url) parsed_auth_url = urlparse.ParseResult(parsed_url.scheme, parsed_url.netloc, '/_auth', parsed_url.params, parsed_url.query, parsed_url.fragment) return parsed_auth_url.geturl()
ede4b75e10e605b1ae36970ffdf3f6f31d70b810
3,657,905
import os import errno import stat def ismount(path): """ Test whether a path is a mount point. This is code hijacked from C Python 2.6.8, adapted to remove the extra lstat() system call. """ try: s1 = os.lstat(path) except os.error as err: if err.errno == errno.ENOENT: # It doesn't exist -- so not a mount point :-) return False raise if stat.S_ISLNK(s1.st_mode): # A symlink can never be a mount point return False s2 = os.lstat(os.path.join(path, '..')) dev1 = s1.st_dev dev2 = s2.st_dev if dev1 != dev2: # path/.. on a different device as path return True ino1 = s1.st_ino ino2 = s2.st_ino if ino1 == ino2: # path/.. is the same i-node as path return True return False
d1d18af449c720ed0b616436d905c28313ed88d1
3,657,906
def getSupportedPrintTypes(mainControl, guiParent=None): """ Returns dictionary {printTypeName: (printObject, printTypeName, humanReadableName, addOptPanel)} addOptPanel is the additional options GUI panel and is always None if guiParent is None """ return groupOptPanelPlugins(mainControl, getPrintTypeDict(mainControl), guiParent=guiParent)
468eb8a0aa404ac701f574b7ae2af276e2fd6136
3,657,907
def read_image(file_name: str) -> np.array: """ pomocna funkce na nacteni obrazku :param file_name: cesta k souboru :return: numpy array, pripravene na upravy pomoci nasich funkcni """ return np.asarray(Image.open(file_name), dtype=np.int32)
1241049c6cb2dff2a467cadea15cc92f4f8be958
3,657,908
def weighted_img(img, initial_img, α=0.8, β=1.0, γ=0.0): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + γ NOTE: initial_img and img must be the same shape! """ return cv2.addWeighted(initial_img, α, img, β, γ)
635870b037dabaa02ea7d2acb8726d98b604c288
3,657,909
def md5SessionKey(params, password): """ If the "algorithm" directive's value is "MD5-sess", then A1 [the session key] is calculated only once - on the first request by the client following receipt of a WWW-Authenticate challenge from the server. This creates a 'session key' for the authentication of subsequent requests and responses which is different for each "authentication session", thus limiting the amount of material hashed with any one key. Because the server need only use the hash of the user credentials in order to create the A1 value, this construction could be used in conjunction with a third party authentication service so that the web server would not need the actual password value. The specification of such a protocol is beyond the scope of this specification. """ keys = ("username", "realm", "nonce", "cnonce") params_copy = {} for key in keys: params_copy[key] = params[key] params_copy["algorithm"] = MD5_SESS return _A1(params_copy, password)
2df5a7ce449553b55155618e1c93621a306eb6c8
3,657,910
def all_state_action(buffer: RolloutBuffer, learner: BaseAlgorithm, state_only: bool = False): """ Equivalent of state_action on the whole RolloutBuffer.""" o_shape = get_obs_shape(learner.observation_space) t = lambda x, shape=[-1]: buffer.to_torch(x).view(buffer.buffer_size*buffer.n_envs, *shape) if isinstance(buffer.observations, dict): observations = {k: t(v, o_shape[k]) for k, v in buffer.observations.items()} # OrderedDict? else: observations = t(buffer.observations, o_shape) actions = t(buffer.actions) return state_action(observations, actions, learner, state_only)
89c236ac32893b7bab41cb2a00e7484dd0f15b1f
3,657,911
def write_results(conn, cursor, mag_dict, position_dict): """ Write star truth results to the truth table Parameters ---------- conn is a sqlite3 connection to the database cursor is a sqlite3.conneciton.cursor() object mag_dict is a dict of mags. It is keyed on the pid of the Process used to process a chunk of magnitudes. Each value is a 2-D numpy array of shape (n_obj, n_bandpasses). It is produced by calculate_magnitudes. position_dict is a dict keyed on pid of the Process used to process a chunk of stars. The values are also dicts, these keyed on 'healpix', 'ra', 'dec', 'id' with the values being arrays of those quantities for the corresponding chunk of stars. Returns ------- None Just writes to the database """ assert len(mag_dict) == len(position_dict) row_ct = 0 for k in mag_dict.keys(): mm = mag_dict[k] pp = position_dict[k] row_ct += len(pp['ra']) if len(mm) != len(pp['ra']): raise RuntimeError('%d mm %d pp' % (len(mm), len(pp['ra']))) values = ((int(pp['healpix'][i_obj]), int(pp['id'][i_obj]), 1, 0, 0, pp['ra'][i_obj], pp['dec'][i_obj], 0.0, mm[i_obj][0], mm[i_obj][1], mm[i_obj][2], mm[i_obj][3], mm[i_obj][4], mm[i_obj][5]) for i_obj in range(len(pp['ra']))) cursor.executemany('''INSERT INTO truth VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)''', values) conn.commit() return row_ct
0b0c9234a32050277a7e70fee3ab7ba1be5931bb
3,657,912
def get_sparameters(sim: td.Simulation) -> np.ndarray: """Adapted from tidy3d examples. Returns full Smatrix for a component https://support.lumerical.com/hc/en-us/articles/360042095873-Metamaterial-S-parameter-extraction """ sim = run_simulation(sim).result() def get_amplitude(monitor): f, b = sim.data(monitor)["mode_amps"] return np.squeeze(f), np.squeeze(b) monitors = sim.monitors n = len(monitors) - 1 S = np.zeros((n, n), dtype=np.complex128) # for i, monitor_i in enumerate(monitors): # for j, monitor_j in enumerate(monitors): # if i > 0 and j > 0: # if monitor_i.name.startswith("W"): # ai, bi = get_amplitude(monitor_i) # else: # bi, ai = get_amplitude(monitor_i) # if monitor_j.name.startswith("W"): # aj, bj = get_amplitude(monitor_j) # else: # bj, aj = get_amplitude(monitor_j) # S[i - i, j - 1] = bi / aj if len(monitors) == 5: _, incident, reflect, top, bot = monitors S[0, 0] = get_amplitude(incident)[-1] S[1, 0] = get_amplitude(reflect)[-1] S[0, 1] = get_amplitude(top)[0] S[1, 1] = get_amplitude(bot)[0] elif len(monitors) == 3: _, incident, reflect = monitors S[0, 0] = S[1, 1] = get_amplitude(incident)[-1] S[1, 0] = S[0, 1] = get_amplitude(reflect)[-1] return S
6577fac645e195c4e30406c6252c9b55831343a0
3,657,913
def mapmri_STU_reg_matrices(radial_order): """ Generates the static portions of the Laplacian regularization matrix according to [1]_ eq. (11, 12, 13). Parameters ---------- radial_order : unsigned int, an even integer that represent the order of the basis Returns ------- S, T, U : Matrices, shape (N_coef,N_coef) Regularization submatrices References ---------- .. [1]_ Fick, Rutger HJ, et al. "MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data." NeuroImage (2016). """ S = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): S[i, j] = map_laplace_s(i, j) T = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): T[i, j] = map_laplace_t(i, j) U = np.zeros((radial_order + 1, radial_order + 1)) for i in range(radial_order + 1): for j in range(radial_order + 1): U[i, j] = map_laplace_u(i, j) return S, T, U
40cb1159f04d1291e06146dabd89380936c407a0
3,657,914
def _checker(word: dict): """checks if the 'word' dictionary is fine :param word: the node in the list of the text :type word: dict :return: if "f", "ref" and "sig" in word, returns true, else, returns false :rtype: bool """ if "f" in word and "ref" in word and "sig" in word: return True return False
ee6ec5a7ee393ddcbc97b13f6c09cdd9019fb1a6
3,657,915
def construc_prob(history, window, note_set, model, datafilename): """ This function constructs the proabilities of seeing each next note Inputs: history, A list of strings, the note history in chronological order window, and integer how far back we are looking note_set, the set of notes to be considered model, the model used to construct probabilities datafilename, a string, the name of the file containing the information to convert strings of notes to interaction dummies Outputs: A list of probabilities of len(note_set) """ recent_history = history[len(history)-window + 1:len(history)] like_prob = [] # Initialize a empty list of probabilities of liking a certain sequence for note in note_set: potential_hist = recent_history + [note] X = create_X(potential_hist, datafilename) # print(potential_hist) # print(model(X)) like_prob.append(model(X)) return selection_prob(like_prob)
92e75d386c5fce984302ca60f80b2dc1891fc873
3,657,916
def renderPybullet(envs, config, tensor=True): """Provides as much images as envs""" if type(envs) is list: obs = [ env_.render( mode="rgb_array", image_size=config["image_size"], color=config["color"], fpv=config["fpv"], camera_id=0, ) for env_ in envs ] obs = np.array(obs).transpose(0, 3, 1, 2) / 255.0 else: obs = envs.render( mode="rgb_array", image_size=config["image_size"], color=config["color"], fpv=config["fpv"], camera_id=0, ) obs = obs.transpose(2, 0, 1) / 255.0 if tensor: obs = obs[None] return obs
fb04ecda7e0dbfbe7899d4684979828b3fcd83c6
3,657,917
def wifi(request): """Collect status information for wifi and return HTML response.""" context = { 'refresh': 5, 'item': '- Wifi', 'timestamp': timestamp(), 'wifi': sorted(Wifi().aps), } return render(request, 'ulm.html', context)
0a5412c2912eaeae192dd6d5fe85d336dec1b169
3,657,918
def genModel( nChars, nHidden, numLayers = 1, dropout = 0.5, recurrent_dropout = 0.5 ): """Generates the RNN model with nChars characters and numLayers hidden units with dimension nHidden.""" model = Sequential() model.add( LSTM( nHidden, input_shape = (None, nChars), return_sequences = True, dropout = dropout, recurrent_dropout = recurrent_dropout ) ) for _ in range( numLayers - 1 ): model.add( LSTM( nHidden, return_sequences = True, dropout = dropout, recurrent_dropout = recurrent_dropout ) ) model.add( TimeDistributed( Dense(nChars) ) ) model.add( Activation('softmax') ) model.compile( loss = "categorical_crossentropy", optimizer = "adam" ) return model
4aeef47b8a4948e37eaa2ea07ac22ecee167df51
3,657,919
def rotate_system(shape_list, angle, center_point = None): """Rotates a set of shapes around a given point If no center point is given, assume the center of mass of the shape Args: shape_list (list): A list of list of (x,y) vertices angle (float): Angle in radians to rotate counterclockwise center_point ([float, float]): (x,y) point to rotate around Returns: A new shape list with rotated vertices """ if center_point is None: center_point = centroid_for_uncomputed_shapes(shape_list) return [rotate_polygon(s, angle, center_point) for s in shape_list]
64c4ff717fd432a187d2616263405ae89a0d89f8
3,657,920
def _large_compatible_negative(tensor_type): """Large negative number as Tensor. This function is necessary because the standard value for epsilon in this module (-1e9) cannot be represented using tf.float16 Args: tensor_type: a dtype to determine the type. Returns: a large negative number. """ if tensor_type == tf.float16: return tf.float16.min return -1e9
c73a9e2de341d771ec07ecf2b2a178911ecc27bd
3,657,921
def classified_unread_counts(): """ Unread counts return by helper.classify_unread_counts function. """ return { 'all_msg': 12, 'all_pms': 8, 'unread_topics': { (1000, 'Some general unread topic'): 3, (99, 'Some private unread topic'): 1 }, 'unread_pms': { 1: 2, 2: 1, }, 'unread_huddles': { frozenset({1001, 11, 12}): 3, frozenset({1001, 11, 12, 13}): 2 }, 'streams': { 1000: 3, 99: 1 } }
4d5e984641de88fd497b6c78891b7e6478bb8385
3,657,922
def company_key(company_name=DEFAULT_COMPANY_NAME): """Constructs a Datastore key for a Company entity with company_name.""" return ndb.Key('Company', company_name)
f9387ef2ee33ea87a4a9fd721f14c35ca60ac482
3,657,923
def to_n_class(digit_lst, data, labels): """to make a subset of MNIST dataset, which has particular digits Parameters ---------- digit_lst : list for example, [0,1,2] or [1, 5, 8] data : numpy.array, shape (n_samples, n_features) labels : numpy.array or list of str Returns ------- numpy.array, list of int """ if not set(digit_lst) <= set(range(10)): raise ValueError indices = [] new_labels = [] for i, x in enumerate(data): for digit in digit_lst: if labels[i] == str(digit): indices.append(i) new_labels.append(digit) return data[indices], new_labels
79652687ec0670ec00d67681711903ae01f4cc87
3,657,924
from re import T import numpy from operator import ne def acosh(x: T.Tensor) -> T.Tensor: """ Elementwise inverse hyperbolic cosine of a tensor. Args: x (greater than 1): A tensor. Returns: tensor: Elementwise inverse hyperbolic cosine. """ y = numpy.clip(x,1+T.EPSILON, numpy.inf) return ne.evaluate('arccosh(y)')
c5566c9b67b8be57be47c96762ce7371e1d4d988
3,657,925
import argparse def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Rock the Casbah', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('replace', metavar='str', help='The string that will be inserted') return parser.parse_args()
3b7211aea79cf67e4b4b4e8e6c29d37cbf65bac6
3,657,926
def run_unit_tests(): """ Run unit tests against installed tools rpms """ # At the time of this writing, no unit tests exist. # A unit tests script will be run so that unit tests can easily be modified print "Running unit tests..." success, output = run_cli_cmd(["/bin/sh", UNIT_TEST_SCRIPT], False) return success, output
fd2241bd471b7de61bac922f3da485cb954fbe06
3,657,927
def encode_input_descr(prm): """ Encode process description input.""" elem = NIL("Input", *_encode_param_common(prm)) elem.attrib["minOccurs"] = ("1", "0")[bool(prm.is_optional)] elem.attrib["maxOccurs"] = "1" if isinstance(prm, LiteralData): elem.append(_encode_literal(prm, True)) elif isinstance(prm, ComplexData): elem.append(_encode_complex(prm, True)) elif isinstance(prm, BoundingBoxData): elem.append(_encode_bbox(prm, True)) return elem
9d5db979f5da325595501a50c2031f56fd438b47
3,657,928
def poly_quo(f, g, *symbols): """Returns polynomial quotient. """ return poly_div(f, g, *symbols)[0]
2a4b04b053189db9bd5cb946b6399257b49a8afb
3,657,929
import random from typing import OrderedDict def preprocess_data(dataset, encoder, config): """ Function to perform 4 preprocessing steps: 1. Exclude classes below minimum threshold defined in config.threshold 2. Exclude all classes that are not referenced in encoder.classes 3. Encode and normalize data into (path: str, label: int) tuples 4. Partition data samples into fractional splits defined in config.data_splits_meta Parameters ---------- dataset : BaseDataset Any instance of BaseDataset or its subclasses encoder : LabelEncoder Description of parameter `encoder`. config : Namespace or stuf.stuf Config object containing the attributes/properties: config.threshold config.data_splits_meta Returns ------- dict Dictionary mapping from keys defined in config.data_splits_meta.keys(), to lists of tuples representing each sample. Examples ------- Examples should be written in doctest format, and should illustrate how to use the function/class. >>> dataset = LeavesDataset() ... encoder = LabelEncoder(dataset.data.family) ... data_splits = preprocess_data(dataset, encoder, config) """ dataset.exclude_rare_classes(threshold=config.threshold) encoder.encoder = dataset.classes dataset, _ = dataset.enforce_class_whitelist(class_names=encoder.classes) x = list(dataset.data['path'].values)#.reshape((-1,1)) y = np.array(encoder.encode(dataset.data['family'])) # import pdb;pdb.set_trace() shuffled_data = list(zip(x,y)) random.shuffle(shuffled_data) partitioned_data = partition_data(data=shuffled_data, partitions=OrderedDict(config.data_splits_meta) ) return {k:v for k,v in partitioned_data.items() if len(v)>0}
ed7f7382c4d1c8bc6ce718605b9d64cc2cb6ff6e
3,657,930
from dronekit.mavlink import MAVConnection def connect(ip, _initialize=True, wait_ready=None, timeout=30, still_waiting_callback=default_still_waiting_callback, still_waiting_interval=1, status_printer=None, vehicle_class=None, rate=4, baud=115200, heartbeat_timeout=30, source_system=255, source_component=0, use_native=False): """ Returns a :py:class:`Vehicle` object connected to the address specified by string parameter ``ip``. Connection string parameters (``ip``) for different targets are listed in the :ref:`getting started guide <get_started_connecting>`. The method is usually called with ``wait_ready=True`` to ensure that vehicle parameters and (most) attributes are available when ``connect()`` returns. .. code:: python from dronekit import connect # Connect to the Vehicle using "connection string" (in this case an address on network) vehicle = connect('127.0.0.1:14550', wait_ready=True) :param String ip: :ref:`Connection string <get_started_connecting>` for target address - e.g. 127.0.0.1:14550. :param Bool/Array wait_ready: If ``True`` wait until all default attributes have downloaded before the method returns (default is ``None``). The default attributes to wait on are: :py:attr:`parameters`, :py:attr:`gps_0`, :py:attr:`armed`, :py:attr:`mode`, and :py:attr:`attitude`. You can also specify a named set of parameters to wait on (e.g. ``wait_ready=['system_status','mode']``). For more information see :py:func:`Vehicle.wait_ready <Vehicle.wait_ready>`. :param status_printer: (deprecated) method of signature ``def status_printer(txt)`` that prints STATUS_TEXT messages from the Vehicle and other diagnostic information. By default the status information is handled by the ``autopilot`` logger. :param Vehicle vehicle_class: The class that will be instantiated by the ``connect()`` method. This can be any sub-class of ``Vehicle`` (and defaults to ``Vehicle``). :param int rate: Data stream refresh rate. The default is 4Hz (4 updates per second). :param int baud: The baud rate for the connection. The default is 115200. :param int heartbeat_timeout: Connection timeout value in seconds (default is 30s). If a heartbeat is not detected within this time an exception will be raised. :param int source_system: The MAVLink ID of the :py:class:`Vehicle` object returned by this method (by default 255). :param int source_component: The MAVLink Component ID fo the :py:class:`Vehicle` object returned by this method (by default 0). :param bool use_native: Use precompiled MAVLink parser. .. note:: The returned :py:class:`Vehicle` object acts as a ground control station from the perspective of the connected "real" vehicle. It will process/receive messages from the real vehicle if they are addressed to this ``source_system`` id. Messages sent to the real vehicle are automatically updated to use the vehicle's ``target_system`` id. It is *good practice* to assign a unique id for every system on the MAVLink network. It is possible to configure the autopilot to only respond to guided-mode commands from a specified GCS ID. The ``status_printer`` argument is deprecated. To redirect the logging from the library and from the autopilot, configure the ``dronekit`` and ``autopilot`` loggers using the Python ``logging`` module. :returns: A connected vehicle of the type defined in ``vehicle_class`` (a superclass of :py:class:`Vehicle`). """ if not vehicle_class: vehicle_class = Vehicle handler = MAVConnection(ip, baud=baud, source_system=source_system, source_component=source_component, use_native=use_native) vehicle = vehicle_class(handler) if status_printer: vehicle._autopilot_logger.addHandler(ErrprinterHandler(status_printer)) if _initialize: vehicle.initialize(rate=rate, heartbeat_timeout=heartbeat_timeout) if wait_ready: if wait_ready is True: vehicle.wait_ready(still_waiting_interval=still_waiting_interval, still_waiting_callback=still_waiting_callback, timeout=timeout) else: vehicle.wait_ready(*wait_ready) return vehicle
3cd30bcc35b308913a5f54f39f2e0fb7a5583032
3,657,931
import os import importlib import sys def load_test_environment(skill): """Load skill's test environment if present Arguments: skill (str): path to skill root folder Returns: Module if a valid test environment module was found else None """ test_env = None test_env_path = os.path.join(skill, 'test/__init__.py') if exists(test_env_path): skill_env = skill + '.test_env' spec = importlib.util.spec_from_file_location(skill_env, test_env_path) module = importlib.util.module_from_spec(spec) sys.modules[skill_env] = module spec.loader.exec_module(module) if (hasattr(module, 'test_runner') and callable(module.test_runner) or hasattr(module, 'test_setup') and callable(module.test_setup)): test_env = module return test_env
333d769ea59455afe73e20df00eedd88dd0a3f88
3,657,932
import json from datetime import datetime async def ready(request): """ For Kubernetes readiness probe, """ try: # check redis valid. if app.redis_pool: await app.redis_pool.save('health', 'ok', 1) # check mysql valid. if app.mysql_pool: sql = "SELECT 666" result = await app.mysql_pool.fetchone(sql) if result is None: raise ServerError(error='内部错误', code='10500', message="msg") except Exception as e: raise ServerError(error='内部错误', code='10500', message="msg") return json({ 'pong': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'version': app.config['API_VERSION'] })
f776787f65609fa341eb360c801cf8ebdc16a2eb
3,657,933
def surface_area(polygon_mesh): """ Computes the surface area for a polygon mesh. Parameters ---------- polygon_mesh : ``PolygonMesh`` object Returns ------- result : surface area """ if isinstance(polygon_mesh, polygonmesh.FaceVertexMesh): print("A FaceVertex Mesh") result = 0.0 for face in polygon_mesh.faces: v1, v2, v3 = face result += 0.5 * abs(np.linalg.norm( np.cross( polygon_mesh.vertices[v2]-polygon_mesh.vertices[v1], polygon_mesh.vertices[v3]-polygon_mesh.vertices[v1] ))) return result return None
587740d493ef5762c85f75f81d98e141121b5d7d
3,657,934
from scipy.optimize import fsolve # non-linear solver import numpy as np def gas_zfactor(T_pr, P_pr): """ Calculate Gas Compressibility Factor For range: 0.2 < P_pr < 30; 1 < T_pr < 3 (error 0.486%) (Dranchuk and Aboukassem, 1975) """ # T_pr : calculated pseudoreduced temperature # P_pr : calculated pseudoreduced pressure if T_pr > 1 and T_pr < 3 and P_pr > 0.2 and P_pr < 30: a1 = 0.3265; a2 = -1.0700; a3 = -0.5339; a4 = 0.01569; a5 = -0.05165; a6 = 0.5475 a7 = -0.7361; a8 = 0.1844; a9 = 0.1056; a10 = 0.6134; a11 = 0.7210 def f(y): rho_pr, z = y c1 = a1 + (a2/T_pr) + (a3/(T_pr**3))+ (a4/(T_pr**4))+ (a5/(T_pr**5)) c2 = a6 + (a7/T_pr) + (a8/(T_pr**2)) c3 = a9*((a7/T_pr) + (a8/(T_pr**2))) c4 = (a10)*(1+(a11*(rho_pr**2)))*((rho_pr**2)/(T_pr**3))*(np.exp(-a11*(rho_pr**2))) f1 = z + (c3*(rho_pr**5)) - (c2*(rho_pr**2)) - (c1*(rho_pr**1)) - c4 - 1 f2 = rho_pr - ((0.27 * P_pr) / (z * T_pr)) return[f1, f2] pseudo_rho, z_factor = fsolve(f, [1, 1]) # initial guess else: pseudo_rho, z_factor = np.nan, np.nan return(pseudo_rho, z_factor)
b9b1d770483737da8277a89b3f1100ea0c49c1c0
3,657,935
def format_value_with_percentage(original_value): """ Return a value in percentage format from an input argument, the original value """ percentage_value = "{0:.2%}".format(original_value) return percentage_value
78bfb753b974bc7cbe3ac96f58ee49251063d2e7
3,657,936
import numpy def get_Z_and_extent(topofile): """Get data from an ESRI ASCII file.""" f = open(topofile, "r") ncols = int(f.readline().split()[1]) nrows = int(f.readline().split()[1]) xllcorner = float(f.readline().split()[1]) yllcorner = float(f.readline().split()[1]) cellsize = float(f.readline().split()[1]) nodatavalue = float(f.readline().split()[1]) data = numpy.zeros((nrows, ncols), dtype=numpy.float64) for i in range(nrows): data[i, :] = f.readline().strip().split() f.close() extent = [xllcorner, xllcorner+ncols*cellsize, yllcorner, yllcorner+nrows*cellsize] return data, extent
e96db5c2ae4a0d6c94654d7ad29598c3231ec186
3,657,937
from typing import Sequence from typing import MutableMapping import copy def modified_config( file_config: submanager.models.config.ConfigPaths, request: pytest.FixtureRequest, ) -> submanager.models.config.ConfigPaths: """Modify an existing config file and return the path.""" # Get and check request params request_param = getattr(request, PARAM_ATTR, None) if request_param is None: raise ValueError("Update dict must be passed via request param") if isinstance(request_param, Sequence): update_dict, disable_all = request_param else: update_dict = request_param disable_all = False if not isinstance(update_dict, MutableMapping): raise TypeError( f"Update dict {update_dict!r} must be a mapping, " f"not {type(update_dict)!r}", ) # Disable all items if requested config_data = submanager.config.utils.load_config(file_config.static) if disable_all: config_data_modified = ( submanager.utils.dicthelpers.process_items_recursive( dict(config_data), fn_torun=lambda value: False, keys_match={"enabled"}, inplace=False, ) ) if isinstance(disable_all, str): config_data_level = config_data_modified for key in disable_all.split("."): config_data_level = config_data_level[key] if config_data_level.get("enabled", None) is not None: config_data_level["enabled"] = True else: config_data_modified = copy.deepcopy(dict(config_data)) # Modify config and write it back config_data_modified = submanager.utils.dicthelpers.update_recursive( base=config_data_modified, update=dict(update_dict), inplace=False, ) submanager.config.utils.write_config( config_data_modified, config_path=file_config.static, ) return file_config
8a453233b6340b50fdcbc4d3bf7b2f1f1e7e15ce
3,657,938
import torch def train_discrim(discrim, state_features, actions, optim, demostrations, settings): """demostractions: [state_features|actions] """ criterion = torch.nn.BCELoss() for _ in range(settings.VDB_UPDATE_NUM): learner = discrim(torch.cat([state_features, actions], dim=-1)) expert = discrim(demostrations) discrim_loss = criterion(learner, torch.ones( [len(state_features), 1])) + criterion( expert, torch.zeros(len(demostrations), 1)) optim.zero_grad() discrim_loss.backward() optim.step() expert_acc = ((discrim(demostrations) < 0.5).float()).mean() learner_acc = ((discrim(torch.cat([state_features, actions], dim=1)) > 0.5).float()).mean() return expert_acc, learner_acc
7e6c16fc396b371e92d3a04179eacb9cae63659c
3,657,939
import sys from pathlib import Path def task_install(): """install the packages into the sys.packages""" def install(pip): if pip: name = get_name() assert not doit.tools.CmdAction( f"python -m pip install --find-links=dist --no-index --ignore-installed --no-deps {name}" ).execute(sys.stdout, sys.stderr) elif PYPROJECT_TOML.exists(): backend = build_backend() if backend == "flit_core": needs("flit") assert not doit.tools.CmdAction("flit install").execute( sys.stdout, sys.stderr ) elif backend == "poetry": needs("poetry") assert not doit.tools.CmdAction("poetry install").execute( sys.stdout, sys.stderr ) else: assert not doit.tools.CmdAction("pip install . --no-deps").execute( sys.stdout, sys.stderr ) name, version = get_name(), get_version() return Task( file_dep=[ PYPROJECT_TOML, to_whl(Path(), name, version), to_sdist(Path(), name, version), ], actions=[install], task_dep=["build"], params=[_DEVELOP, _PIP], )
48c413f3b478a9fdba22ba5780efa982158f0fc9
3,657,940
def filter_column(text, column, start=0, sep=None, **kwargs): """ Filters (like grep) lines of text according to a specified column and operator/value :param text: a string :param column: integer >=0 :param sep: optional separator between words (default is arbitrary number of blanks) :param kwargs: operator=value eg eq='exact match', contains='substring', startswith='prefix' etc... :return: """ if len(kwargs) != 1: raise TypeError("Missing or too many keyword parameter in filter_column") op, value = kwargs.items()[0] if op in ('eq', 'equals'): op = '__eq__' elif op in ('contains', 'includes'): op = '__contains__' elif not op in ('startswith', 'endswith'): raise ValueError("Unknown filter_column operator: {}".format(op)) lines = text.splitlines() if isinstance(text, basestring) else text if start: lines = lines[start:] values = [] for line in lines: elts = line.split(sep) if sep else line.split() if elts and column < len(elts): elt = elts[column] if getattr(elt, op)(value): values.append(line.strip()) return values
f7a788d2d79dba33961213c6bc469d41a0151812
3,657,941
def max_tb(collection): # pragma: no cover """Returns the maximum number of TB recorded in the collection""" max_TB = 0 for doc in collection.find({}).sort([('total_TB',-1)]).limit(1): max_TB = doc['total_TB'] return max_TB
bde417de0b38de7a7b5e4e3db8c05e87fa6c55ca
3,657,942
def prep_im_for_blob(im, pixel_means, target_size_1, target_size_2, max_size_1, max_size_2): """Mean subtract and scale an image for use in a blob.""" im = im.astype(np.float32, copy=False) im -= pixel_means im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale_1 = float(target_size_1) / float(im_size_min) im_scale_2 = float(target_size_2) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale_1 * im_size_max) > max_size_1: im_scale_1 = float(max_size_1) / float(im_size_max) if np.round(im_scale_2 * im_size_max) > max_size_2: im_scale_2 = float(max_size_2) / float(im_size_max) im_1 = cv2.resize(im, None, None, fx=im_scale_1, fy=im_scale_1, interpolation=cv2.INTER_LINEAR) im_2 = cv2.resize(im, None, None, fx=im_scale_2, fy=im_scale_2, interpolation=cv2.INTER_LINEAR) return im_1, im_2, im_scale_1, im_scale_2
a1842d918149f5d1ccc52e04cc499005570b72ea
3,657,943
import os import logging def bandit_run_bandit_scan(attr_dict, path_package, package_name, path_sdk_settings=None, **__): """ Run Bandit Scan on whole package using the settings defined in ``constants.BANDIT_DEFAULT_ARGS``. Raises a SDKException if ``bandit`` isn't installed. In use with ``validate``, this method should only be called after successfully calling ``bandit_validate_bandit_installed``. If a call to that method returns a failing SDKValidateIssue, this method shouldn't be called The default severity level on which the bandit scan fails is "medium" (defined as command line arg "-ll") The user can overwrite the default settings using an SDK Settings JSON file either in the default location or by using the --settings flag to pass in a path. The settings file should have a "bandit" attribute which is a list of bandit command line options. Example (to change level to "low" and give 5 context lines): .. code-block:: json { "bandit": [ "-l", "-n", "5" ] } NOTE: that you can include more than just the severity level in the list. Any valid bandit command line args will be parsed (as seen above with the "-n" arg added in). More info here: https://github.com/PyCQA/bandit#readme or by running ``bandit -h`` The user can run the scan in ``verbose`` mode using the ``-v`` flag for the SDK to get output live as the scan is running. :param attr_dict: dictionary of attributes for the bandit scan defined in ``bandit_attributes`` :type attr_dict: dict :param path_package: path to package :type path_package: str :param package_name: name of the package (i.e. fn_my_package) :type package_name: str :param path_sdk_settings: (optional) path to a sdk settings JSON file :type path_sdk_settings: str :param __: (unused) other unused named args :type __: dict :return: 1 or 0 and a SDKValidateIssue with details about the bandit scan :rtype: (int, SDKValidateIssue) """ # Because this method requires importing bandit, it must be installed in the env if not sdk_helpers.get_package_version(constants.BANDIT_PACKAGE_NAME): raise SDKException("Cannot call {0} without bandit installed".format(bandit_run_bandit_scan.__name__)) bandit_args = [constants.BANDIT_PACKAGE_NAME, "-r", os.path.join(path_package, package_name)] bandit_args.extend(constants.BANDIT_DEFAULT_ARGS) if LOG.isEnabledFor(logging.DEBUG): # if running validate in verbose, append verbose flag to bandit args bandit_args.extend(constants.BANDIT_VERBOSE_FLAG) # grab bandit settings from sdk settings file if given and exists # if either file doesn't exist or file doesn't have "bandit" section # append on default severity level if path_sdk_settings and os.path.exists(path_sdk_settings): # if a settings file exists, check if it has a bandit section settings_file_contents = sdk_helpers.read_json_file(path_sdk_settings) # grab the bandit section (should be a list) settings_bandit_section = settings_file_contents.get(constants.SDK_SETTINGS_BANDIT_SECTION_NAME) if settings_bandit_section and isinstance(settings_bandit_section, list): LOG.debug("Reading bandit command line args from sdk settings JSON file {0}".format(path_sdk_settings)) LOG.debug("Bandit settings found in settings file: {0}".format(settings_bandit_section)) bandit_args.extend(settings_bandit_section) else: bandit_args.extend(constants.BANDIT_DEFAULT_SEVERITY_LEVEL) else: bandit_args.extend(constants.BANDIT_DEFAULT_SEVERITY_LEVEL) # run bandit as a subprocess exit_code, details = sdk_helpers.run_subprocess(bandit_args, cmd_name="bandit scan") # bandit will return a non-zero exit code if an issue of minimum severity level or higher # is found. # Example: if "-ll" (our default level which is called "medium") is passed, the process # will only return a non-zero code if there are "medium" or "high" issues. # if only "low" or "uncategorized" issues are found, it will return 0 if exit_code != 0: # all information above the "Test results" are not really relevant # but incase that string is not found, we just take the whole details details_start_string = "Test results" if details.index(details_start_string) != -1: details = details[details.index(details_start_string):] details = details.replace("\n", "\n\t\t") return 0, SDKValidateIssue( name=attr_dict.get("name"), description=attr_dict.get("fail_msg").format(details), severity=attr_dict.get("severity"), solution=attr_dict.get("fail_solution") if not LOG.isEnabledFor(logging.DEBUG) else "" ) else: # success return 1, SDKValidateIssue( name=attr_dict.get("name"), description=attr_dict.get("pass_msg"), severity=SDKValidateIssue.SEVERITY_LEVEL_INFO, solution=attr_dict.get("pass_solution") )
0229a0ca9980232d5c9ff4b52f7ae4d4ec2c737c
3,657,944
def plotann(annotation, title = None, timeunits = 'samples', returnfig = False): """ Plot sample locations of an Annotation object. Usage: plotann(annotation, title = None, timeunits = 'samples', returnfig = False) Input arguments: - annotation (required): An Annotation object. The sample attribute locations will be overlaid on the signal. - title (default=None): A string containing the title of the graph. - timeunits (default='samples'): String specifying the x axis unit. Allowed options are: 'samples', 'seconds', 'minutes', and 'hours'. - returnfig (default=False): Specifies whether the figure is to be returned as an output argument Output argument: - figure: The matplotlib figure generated. Only returned if the 'returnfig' option is set to True. Note: The plotrec function is useful for plotting annotations on top of signal waveforms. Example Usage: import wfdb annotation = wfdb.rdann('sampledata/100', 'atr', sampfrom = 100000, sampto = 110000) annotation.fs = 360 wfdb.plotann(annotation, timeunits = 'minutes') """ # Check the validity of items used to make the plot # Get the x axis annotation values to plot plotvals = checkannplotitems(annotation, title, timeunits) # Create the plot fig=plt.figure() plt.plot(plotvals, np.zeros(len(plotvals)), 'r+') if title is not None: plt.title(title) # Axis Labels if timeunits == 'samples': plt.xlabel('index/sample') else: plt.xlabel('time/'+timeunits[:-1]) plt.show(fig) # Return the figure if requested if returnfig: return fig
2159c1ffed52ef6524990f861d7e986b7aa00c25
3,657,945
def match_assignments(nb_assignments, course_id): """ Check sqlalchemy table for match with nbgrader assignments from a specified course. Creates a dictionary with nbgrader assignments as the key If match is found, query the entry from the table and set as the value. Else, set the value to None """ nb_matches = {assignment.name:AssignmentMatch.query.filter_by(nbgrader_assign_name=assignment.name, course_id=course_id).first() for assignment in nb_assignments} return nb_matches
22158bc0d3655a78b8e5b6cb245b781e187f1481
3,657,946
def tan(input): """Computes tangent of values in ``input``. :rtype: TensorList of tan(input). If input is an integer, the result will be float, otherwise the type is preserved. """ return _arithm_op("tan", input)
27e6487591ff4d207baea094293be83ef22a4099
3,657,947
def recall_from_IoU(IoU, samples=500): """ plot recall_vs_IoU_threshold """ if not (isinstance(IoU, list) or IoU.ndim == 1): raise ValueError('IoU needs to be a list or 1-D') iou = np.float32(IoU) # Plot intersection over union IoU_thresholds = np.linspace(0.0, 1.0, samples) recall = np.zeros_like(IoU_thresholds) for idx, IoU_th in enumerate(IoU_thresholds): tp, relevant = 0, 0 inds, = np.where(iou >= IoU_th) recall[idx] = len(inds) * 1.0 / len(IoU) return recall, IoU_thresholds
9c24a4e546a76998339ce85e02fae6fec3adb00d
3,657,948
import math def _GetImage(options): """Returns the ndvi regression image for the given options. Args: options: a dict created by _ReadOptions() containing the request options Returns: An ee.Image with the coefficients of the regression and a band called "rmse" containing the Root Mean Square Error for the ndvi value calculated by the regression or None if collection is empty. """ # renaming the used options regression = options["regression"] start = options["start"] collection = _GetCollection(options) # _GetCollection() returns None if collection is empty if collection is None: return None # Function to calculate the values needed for a regression with a polynomial of degree 1 def makePoly1Variables(img): date = img.date() doy = date.getRelative("day", "year") x1 = doy x0 = 1 return (img.select() .addBands(ee.Image.constant(x0)) # 0. a0 constant term .addBands(ee.Image.constant(x1)) # 1. a1*x .addBands(img.normalizedDifference(["NIR","RED"])) # 2. response variable (NDVI) .toFloat()) # Function to calculate the values needed for a regression with a polynomial of degree 2 def makePoly2Variables(img): date = img.date() doy = date.getRelative("day", "year") x2 = doy.pow(2) x1 = doy x0 = 1 return (img.select() .addBands(ee.Image.constant(x0)) # 0. a0 constant term .addBands(ee.Image.constant(x1)) # 1. a1*x .addBands(ee.Image.constant(x2)) # 2. a2*x^2 .addBands(img.normalizedDifference(["NIR","RED"])) # 4. response variable (NDVI) .toFloat()) # Function to calculate the values needed for a regression with a polynomial of degree 3 def makePoly3Variables(img): date = img.date() doy = date.getRelative("day", "year") x3 = doy.pow(3) x2 = doy.pow(2) x1 = doy x0 = 1 return (img.select() .addBands(ee.Image.constant(x0)) # 0. a0 constant term .addBands(ee.Image.constant(x1)) # 1. a1*x .addBands(ee.Image.constant(x2)) # 2. a2*x^2 .addBands(ee.Image.constant(x3)) # 3. a3*x^3 .addBands(img.normalizedDifference(["NIR","RED"])) # 4. response variable (NDVI) .toFloat()) # Function to calculate the values needed for a regression with the model after Zhu & Woodcock def makeZhuWoodVariables(img): seconds = img.date().millis().divide(1000).floor() seconds_start = ee.Date("%s-01-01" % start).millis().divide(1000).floor() seconds_offset = seconds.subtract(seconds_start) sin_intra = ee.Number(2).multiply(math.pi).divide(365*24*60*60).multiply(seconds_offset).sin() cos_intra = ee.Number(2).multiply(math.pi).divide(365*24*60*60).multiply(seconds_offset).cos() inter = seconds_offset return (img.select() .addBands(ee.Image.constant(1)) # 0. constant term .addBands(ee.Image.constant(cos_intra)) # 1. cos intra-annual .addBands(ee.Image.constant(sin_intra)) # 2. sin intra-annual .addBands(ee.Image.constant(inter)) # 3. inter-annual .addBands(img.normalizedDifference(["NIR","RED"])) # 5. response variable (NDVI) .toFloat()) makeVariables = {"poly1": makePoly1Variables,"poly2": makePoly2Variables, "poly3": makePoly3Variables, "zhuWood": makeZhuWoodVariables} # calculate the needed values for the regression collection_prepared = collection.map(makeVariables[regression]) predictorsCount = {"poly1": 2,"poly2": 3, "poly3": 4, "zhuWood": 4} # counts the ndvi values per pixel countValues = collection_prepared.select("nd").reduce(ee.Reducer.count()) # masks pixels with less than 2 * number of predictors, to deliver better results def countMask(img): return img.updateMask(countValues.gt(predictorsCount[regression]*2-1)) # use the countMask collection_prepared = collection_prepared.map(countMask) # doing the regression coefficients = collection_prepared.reduce(ee.Reducer.linearRegression(predictorsCount[regression], 1)) # flattens regression coefficients to one image with multiple bands flattenPattern = {"poly1": ["a0", "a1"], "poly2": ["a0", "a1", "a2"], "poly3": ["a0", "a1", "a2", "a3"], "zhuWood": ["a0", "a1", "a2", "a3"]} renamePattern = {"poly1": "doy", "poly2": "doy", "poly3": "doy", "zhuWood": "sec"} coefficientsImage = coefficients.select(["coefficients"]).arrayFlatten([flattenPattern[regression],[renamePattern[regression]]]) # flattens the root mean square of the predicted ndvi values rmse = coefficients.select("residuals").arrayFlatten([["rmse"]]) # combines coefficients and rmse and returns them a one ee.Image return coefficientsImage.addBands(rmse)
00b4bd82e772a8afa8c4f92c3dd9afa880af79f2
3,657,949
def get_registered_plugins(registry, as_instances=False, sort_items=True): """Get registered plugins. Get a list of registered plugins in a form if tuple (plugin name, plugin description). If not yet auto-discovered, auto-discovers them. :param registry: :param bool as_instances: :param bool sort_items: :return list: """ ensure_autodiscover() if as_instances: return registry._registry registered_plugins = [] for uid, plugin in registry._registry.items(): plugin_name = safe_text(plugin.name) registered_plugins.append((uid, plugin_name)) if sort_items: registered_plugins.sort() return registered_plugins
68b695ebe3de95a86d37831fe38ce934bcced16c
3,657,950
import time def datetime_to_timestamp(d): """convert a datetime object to seconds since Epoch. Args: d: a naive datetime object in default timezone Return: int, timestamp in seconds """ return int(time.mktime(d.timetuple()))
356ac090b0827d49e9929a7ef26041b26c6cc690
3,657,951
import torch def gumbel_softmax(logits, temperature): """From https://gist.github.com/yzh119/fd2146d2aeb329d067568a493b20172f logits: a tensor of shape (*, n_class) returns an one-hot vector of shape (*, n_class) """ y = gumbel_softmax_sample(logits, temperature) shape = y.size() _, ind = y.max(dim=-1) y_hard = torch.zeros_like(y).view(-1, shape[-1]) y_hard.scatter_(1, ind.view(-1, 1), 1) y_hard = y_hard.view(*shape) return (y_hard - y).detach() + y
49a79bf5955cfc01fd27f0a56c23d001e3ef65cc
3,657,952
def in_whitelist(address): """ Test if the given email address is contained in the list of allowed addressees. """ if WHITELIST is None: return True else: return any(regex.search(address) for regex in WHITELIST)
ed552f16a2cd4b9d5e97033e47d5ec8950841164
3,657,953
def decomposePath(path): """ :example: >>> decomposePath(None) >>> decomposePath("") >>> decomposePath(1) >>> decomposePath("truc") ('', 'truc', '', 'truc') >>> decomposePath("truc.txt") ('', 'truc', 'txt', 'truc.txt') >>> decomposePath("/home/truc.txt") ('/home/', 'truc', 'txt', 'truc.txt') >>> decomposePath("/home/truc.txt.bz2") ('/home/', 'truc.txt', 'bz2', 'truc.txt.bz2') >>> decomposePath("/truc.txt.bz2") ('/', 'truc.txt', 'bz2', 'truc.txt.bz2') >>> decomposePath("./truc.txt.bz2") ('./', 'truc.txt', 'bz2', 'truc.txt.bz2') >>> decomposePath(".truc.txt.bz2") ('', '.truc.txt', 'bz2', '.truc.txt.bz2') """ if path is None or type(path) is not str or len(path) == 0: return None filenameExt = path.split("/")[-1] dir = path[0:-len(filenameExt)] filename = ".".join(filenameExt.split(".")[0:-1]) ext = filenameExt.split(".")[-1] if len(filename) == 0 and len(ext) > 0: filename, ext = ext, filename return (dir, filename, ext, filenameExt)
7b45cfe64f631912fc56246f404ddbea51b9f1ec
3,657,954
def BSCLLR(c,p): """ c: A list of ones and zeros representing a codeword received over a BSC. p: Flip probability of the BSC. Returns log-likelihood ratios for c. """ N = len(c) evidence = [0]*N for i in range(N): if (c[i]): evidence[i] = log(p/(1-p)) else: evidence[i] = log((1-p)/p) return evidence
2ee6f4a72a8c2aa3257ae00e8374511f74edcbdb
3,657,955
import torch def _res_dynamics_fwd( real_input, imag_input, sin_decay, cos_decay, real_state, imag_state, threshold, w_scale, dtype=torch.int32 ): """ """ dtype = torch.int64 device = real_state.device real_old = (real_state * w_scale).clone().detach().to(dtype).to(device) imag_old = (imag_state * w_scale).clone().detach().to(dtype).to(device) sin_decay_int = (sin_decay).clone().detach().to(dtype).to(device) cos_decay_int = (cos_decay).clone().detach().to(dtype).to(device) real = torch.zeros_like(real_input) imag = torch.zeros_like(imag_input) threshold *= w_scale num_steps = real_input.shape[-1] for n in range(num_steps): real_new = right_shift_to_zero(cos_decay_int * real_old, 12) \ - right_shift_to_zero(sin_decay_int * imag_old, 12) \ + (w_scale * real_input[..., n]).to(dtype) imag_new = right_shift_to_zero(sin_decay_int * real_old, 12) \ + right_shift_to_zero(cos_decay_int * imag_old, 12) \ + (w_scale * imag_input[..., n]).to(dtype) if threshold >= 0: spike_new = (imag_new >= threshold).to(dtype) real_old = ((1 - spike_new) * real_new).to(dtype) imag_old = ( spike_new * (threshold - 1) + (1 - spike_new) * imag_new ).to(dtype) else: real_old = real_new imag_old = imag_new real[..., n] = real_new / w_scale imag[..., n] = imag_new / w_scale return real, imag
259b520c9ba4491931726b02ff51bc1c69283cdd
3,657,956
def make_json_error(error): """ Handle errors by logging and """ message = extract_error_message(error) status_code = extract_status_code(error) context = extract_context(error) retryable = extract_retryable(error) headers = extract_headers(error) # Flask will not log user exception (fortunately), but will log an error # for exceptions that escape out of the application entirely (e.g. if the # error handler raises an error) error_logger.debug("Handling {} error: {}".format( status_code, message, )) # Serialize into JSON response response_data = { "code": status_code, "context": context, "message": message, "retryable": retryable, } # Don't pass in the error schema because it will suppress any extra fields return dump_response_data(None, response_data, status_code, headers)
ea249272428cdab765ef21cc3cef8d899c9edb19
3,657,957
def tokenize_finding(finding): """Turn the finding into multiple findings split by whitespace.""" tokenized = set() tokens = finding.text.split() cursor = 0 # Note that finding.start and finding.end refer to the location in the overall # text, but finding.text is just the text for this finding. for token in tokens: start = finding.text.find(token, cursor) cursor = end = start + len(token) tokenized.add(Finding( finding.category, start + finding.start, end + finding.start, token, finding.context_start, finding.raw_context)) return tokenized
28974a87bdb006bbdf37fff68345a9df81ea0962
3,657,958
import scipy def gaussian_filter_density(gt): """generate ground truth density map Args: gt: (height, width), object center is 1.0, otherwise 0.0 Returns: density map """ density = np.zeros(gt.shape, dtype=np.float32) gt_count = np.count_nonzero(gt) if gt_count == 0: return density pts = np.array(list(zip(np.nonzero(gt)[1], np.nonzero(gt)[0]))) # (x,y) leaf_size = 2048 # build kd tree tree = scipy.spatial.KDTree(pts.copy(), leafsize=leaf_size) # query kd tree distances, locations = tree.query(pts, k=4) for i, pt in enumerate(pts): pt2d = np.zeros(gt.shape, dtype=np.float32) pt2d[pt[1], pt[0]] = 1. if gt_count > 1: sigma = (distances[i][1] + distances[i][2] + distances[i][3]) * 0.085 sigma = min(sigma, 999) # avoid inf else: raise NotImplementedError('should not be here!!') density += scipy.ndimage.filters.gaussian_filter(pt2d, sigma, mode='constant') return density
9a51de844a08af18e5d1f72d368dbd6b05d24d34
3,657,959
def RGBfactorstoBaseandRange( lumrange: list[int, int], rgbfactors: list[float, float, float]): """Get base color luminosity and luminosity range from color expressed as r, g, b float values and min and max byte luminosity values Args: lumrange: [minval: byte maxval: byte] rgbfactors: color as [r: float, g: float, b: float] Returns: base luminosity as [r: byte, g: byte, b: byte] luminosity range as [r: byte, g: byte, b: byte] """ baselum = intscalarmulvect( rgbfactors, lumrange[0]) lumrange = subvect(scalarmulvect( rgbfactors, lumrange[1]), baselum) return baselum, lumrange
47fba5a98b324fc27869fee8b03903f844ef2c38
3,657,960
def mean_by_orbit(inst, data_label): """Mean of data_label by orbit over Instrument.bounds Parameters ---------- data_label : string string identifying data product to be averaged Returns ------- mean : pandas Series simple mean of data_label indexed by start of each orbit """ return _core_mean(inst, data_label, by_orbit=True)
55e3edac3231d4c42428cd87ee758f1b27d959b9
3,657,961
from typing import Callable from typing import Optional def quantile_constraint( column: str, quantile: float, assertion: Callable[[float], bool], where: Optional[str] = None, hint: Optional[str] = None, ) -> Constraint: """ Runs quantile analysis on the given column and executes the assertion column: Column to run the assertion on quantile: Which quantile to assert on assertion Callable that receives a float input parameter (the computed quantile) and returns a boolean hint: A hint to provide additional context why a constraint could have failed """ quant = Quantile(column, quantile, where) constraint = AnalysisBasedConstraint[float]( quant, assertion, hint=hint # type: ignore[arg-type] ) return NamedConstraint(constraint, f"QuantileConstraint({quant})")
b3e3924a830ec7fd47de981e1ae9eb3f1810c2a1
3,657,962
from typing import Tuple import torch def _compute_rank( kg_embedding_model, pos_triple, corrupted_subject_based, corrupted_object_based, device, ) -> Tuple[int, int]: """ :param kg_embedding_model: :param pos_triple: :param corrupted_subject_based: :param corrupted_object_based: :param device: :param all_pos_triples_hashed: This parameter isn't used but is necessary for compatability """ corrupted_subject_based = torch.tensor( corrupted_subject_based, dtype=torch.long, device=device ) corrupted_object_based = torch.tensor(corrupted_object_based, dtype=torch.long, device=device) scores_of_corrupted_subjects = kg_embedding_model.predict(corrupted_subject_based) scores_of_corrupted_objects = kg_embedding_model.predict(corrupted_object_based) pos_triple = np.array(pos_triple) pos_triple = np.expand_dims(a=pos_triple, axis=0) pos_triple = torch.tensor(pos_triple, dtype=torch.long, device=device) score_of_positive = kg_embedding_model.predict(pos_triple) scores_subject_based = np.append(arr=scores_of_corrupted_subjects, values=score_of_positive) indice_of_pos_subject_based = scores_subject_based.size - 1 scores_object_based = np.append(arr=scores_of_corrupted_objects, values=score_of_positive) indice_of_pos_object_based = scores_object_based.size - 1 _, sorted_score_indices_subject_based = torch.sort( torch.tensor(scores_subject_based, dtype=torch.float), descending=False) sorted_score_indices_subject_based = sorted_score_indices_subject_based.cpu().numpy() _, sorted_score_indices_object_based = torch.sort( torch.tensor(scores_object_based, dtype=torch.float), descending=False) sorted_score_indices_object_based = sorted_score_indices_object_based.cpu().numpy() # Get index of first occurrence that fulfills the condition rank_of_positive_subject_based = np.where(sorted_score_indices_subject_based == \ indice_of_pos_subject_based)[0][0] rank_of_positive_object_based = np.where(sorted_score_indices_object_based == \ indice_of_pos_object_based)[0][0] return ( rank_of_positive_subject_based, rank_of_positive_object_based, )
2b5043dfed43907563c473141257626bb93027b7
3,657,963
def _get_bool_argument(ctx: ClassDefContext, expr: CallExpr, name: str, default: bool) -> bool: """Return the boolean value for an argument to a call or the default if it's not found. """ attr_value = _get_argument(expr, name) if attr_value: ret = ctx.api.parse_bool(attr_value) if ret is None: ctx.api.fail('"{}" argument must be True or False.'.format(name), expr) return default return ret return default
7f903f884edcb4af328207a0b7d2569cefce0a93
3,657,964
import json def validate_filter_parameter(string): """ Extracts a single filter parameter in name[=value] format """ result = () if string: comps = string.split('=', 1) if comps[0]: if len(comps) > 1: # In the portal, if value textbox is blank we store the value as empty string. # In CLI, we should allow inputs like 'name=', which correspond to empty string value. # But there is no way to differentiate between CLI inputs 'name=' and 'name=""'. # So even though "" is invalid JSON escaped string, we will accept it and set the value as empty string. filter_param_value = '\"\"' if comps[1] == "" else comps[1] try: # Ensure that provided value of this filter parameter is valid JSON. Error out if value is invalid JSON. filter_param_value = json.loads(filter_param_value) except ValueError: raise CLIError('Filter parameter value must be a JSON escaped string. "{}" is not a valid JSON object.'.format(filter_param_value)) result = (comps[0], filter_param_value) else: result = (string, '') else: # Error out on invalid arguments like '=value' or '=' raise CLIError('Invalid filter parameter "{}". Parameter name cannot be empty.'.format(string)) return result
8258cff656889a57aaeb24644ea4efc9a60a6997
3,657,965
def ones(distribution, dtype=float): """Create a LocalArray filled with ones.""" la = LocalArray(distribution=distribution, dtype=dtype) la.fill(1) return la
d3caa46b76932a44d441574c78ebbd9c4e8d29f9
3,657,966
def update_podcast_url(video): """Query the DDB table for this video. If found, it means we have a podcast m4a stored in S3. Otherwise, return no podcast. """ try: response = PODCAST_TABLE_CLIENT.query( KeyConditionExpression=Key('session').eq(video.session_id) & Key('year').eq(video.get_published_year()) ) except ClientError as error: print('Problem getting data from DynamoDB: {}'.format(error)) return False else: if response['Count'] == 1: video.podcast_url = response['Items'][0]['url'] return True
50a39aceaba7980dff90043bf444b01607b258ae
3,657,967
def translate(filename): """ File editing handler """ if request.method == 'POST': return save_translation(app, request, filename) else: return open_editor_form(app, request, filename)
5f9419db30ebd76e17f9f5c6efd746b3ddc1d8b0
3,657,968
def read_fileset(fileset): """ Extract required data from the sdoss fileset. """ feat_data = { 'DATE_OBS': [], 'FEAT_HG_LONG_DEG': [], 'FEAT_HG_LAT_DEG': [], 'FEAT_X_PIX': [], 'FEAT_Y_PIX': [], 'FEAT_AREA_DEG2': [], 'FEAT_FILENAME': []} for current_file in fileset: current_date = get_date_obs(current_file) current_data = read_csv(current_file) if (len(current_data) == 0): LOG.error("Empty file: %s!", current_file) return None for cd in current_data: feat_data['DATE_OBS'].append(current_date) feat_data['FEAT_HG_LONG_DEG'].append(float(cd['FEAT_HG_LONG_DEG'])) feat_data['FEAT_HG_LAT_DEG'].append(float(cd['FEAT_HG_LAT_DEG'])) feat_data['FEAT_X_PIX'].append(int(cd['FEAT_X_PIX'])) feat_data['FEAT_Y_PIX'].append(int(cd['FEAT_Y_PIX'])) feat_data['FEAT_AREA_DEG2'].append(float(cd['FEAT_AREA_DEG2'])) feat_data['FEAT_FILENAME'].append(current_file) return feat_data
3c1c9018444af04ca8cc7d95176032ad92c42928
3,657,969
def get_branch_index(edge_index, edge_degree, branch_cutting_frequency=1000): """Finds the branch indexes for each branch in the MST. Parameters ---------- edge_index : array The node index of the ends of each edge. edge_degree : array The degree for the ends of each edge. branch_cutting_frequency : int, optional An optimisation parameter, used to remove edges that have already been placed into a branch. This significantly improves the speed of the algorithm as branches that are already constructed are now removed from the branch finder. Returns ------- branch_index : list A list of branches where each branch is a list of the edge index of edges contained in each branch. branch_index_rejected : list A list of branches that have not been completed. This will occur only if a subset of the edge indexes of the full tree is provided. """ degree1 = edge_degree[0] degree2 = edge_degree[1] index1 = edge_index[0] index2 = edge_index[1] condition = np.where((degree1 == 2.) & (degree2 == 2.))[0] index_branch_mid = condition index_branch_mid1 = index1[index_branch_mid] index_branch_mid2 = index2[index_branch_mid] condition = np.where(((degree1 == 2.) & (degree2 != 2.)) | ((degree1 != 2.) & (degree2 == 2.)))[0] index_branch_end = condition index_branch_end1 = index1[index_branch_end] index_branch_end2 = index2[index_branch_end] degree_branch_end1 = degree1[index_branch_end] degree_branch_end2 = degree2[index_branch_end] check_mid = np.ones(len(index_branch_mid)) check_end = np.ones(len(index_branch_end)) branch_index = [] branch_index_rejected = [] mask_end = np.ones(index_branch_end.shape, dtype=np.bool) mask_mid = np.ones(index_branch_mid.shape, dtype=np.bool) count = 0 item = 0 while item < len(index_branch_end): if check_end[item] == 1.: check_end[item] = 0. done = 0. _twig = [] _twig.append(index_branch_end[item]) if degree_branch_end1[item] == 2.: node_index = index_branch_end1[item] elif degree_branch_end2[item] == 2.: node_index = index_branch_end2[item] else: assert ValueError("branch edge incorrect.") mask_end[item] = False while done == 0.: condition = np.where(((check_mid == 1.) & (index_branch_mid1 == node_index)) | ((check_mid == 1.) & (index_branch_mid2 == node_index)))[0] if len(condition) == 0: condition = np.where(((check_end == 1.) & (index_branch_end1 == node_index)) | ((check_end == 1.) & (index_branch_end2 == node_index)))[0] if len(condition) == 0: branch_index_rejected = branch_index_rejected + \ np.ndarray.tolist(np.ndarray.flatten(np.array(_twig))) done = 1. else: check_end[condition] = 0. _twig.append(index_branch_end[condition]) done = 1. mask_end[condition] = False branch_index.append(np.ndarray.tolist(np.ndarray.flatten(np.array(_twig)))) else: if len(condition) == 1: check_mid[condition] = 0. _twig.append(index_branch_mid[condition]) if index_branch_mid1[condition] == node_index: node_index = index_branch_mid2[condition] elif index_branch_mid2[condition] == node_index: node_index = index_branch_mid1[condition] else: assert ValueError("Identification error.") mask_mid[condition] = False else: assert ValueError("Found more than one vertex.") else: pass if count % branch_cutting_frequency == 0 and count != 0: index_branch_end = index_branch_end[mask_end] check_end = check_end[mask_end] index_branch_end1 = index_branch_end1[mask_end] index_branch_end2 = index_branch_end2[mask_end] degree_branch_end1 = degree_branch_end1[mask_end] degree_branch_end2 = degree_branch_end2[mask_end] index_branch_mid = index_branch_mid[mask_mid] check_mid = check_mid[mask_mid] index_branch_mid1 = index_branch_mid1[mask_mid] index_branch_mid2 = index_branch_mid2[mask_mid] mask_end = mask_end[mask_end] mask_mid = mask_mid[mask_mid] count = count + 1 item = 0 elif count % 1001 == 0: count = count + 1 item = item + 1 elif item == len(index_branch_end) - 1: index_branch_end = index_branch_end[mask_end] check_end = check_end[mask_end] index_branch_end1 = index_branch_end1[mask_end] index_branch_end2 = index_branch_end2[mask_end] degree_branch_end1 = degree_branch_end1[mask_end] degree_branch_end2 = degree_branch_end2[mask_end] index_branch_mid = index_branch_mid[mask_mid] check_mid = check_mid[mask_mid] index_branch_mid1 = index_branch_mid1[mask_mid] index_branch_mid2 = index_branch_mid2[mask_mid] mask_end = mask_end[mask_end] mask_mid = mask_mid[mask_mid] count = count + 1 item = 0 else: count = count + 1 item = item + 1 branch_index_rejected = branch_index_rejected + np.ndarray.tolist(np.ndarray.flatten(np.array(index_branch_mid))) branch_index = [np.ndarray.tolist(np.hstack(np.array(branch_index[i]))) for i in range(0, len(branch_index))] if len(branch_index_rejected) != 0: branch_index_rejected = np.ndarray.tolist(np.hstack(np.array(branch_index_rejected))) return branch_index, branch_index_rejected
3ac24625f9c67cdb60759e840b06b21f260733c9
3,657,970
def update_coverage(coverage, path, func, line, status): """Add to coverage the coverage status of a single line""" coverage[path] = coverage.get(path, {}) coverage[path][func] = coverage[path].get(func, {}) coverage[path][func][line] = coverage[path][func].get(line, status) coverage[path][func][line] = coverage[path][func][line].combine(status) return coverage
46e5a1e5c4ebba3a9483f90ada96a0f7f94d8c1d
3,657,971
def cross_product(v1, v2): """Calculate the cross product of 2 vectors as (x1 * y2 - x2 * y1).""" return v1.x * v2.y - v2.x * v1.y
871d803ef687bf80facf036549b4b2062f713994
3,657,972
def loadData(fname='Unstra.out2.00008.athdf'): """load 3d bfield and calc the current density""" #data=ath.athdf(fname,quantities=['B1','B2','B3']) time,data=ath.athdf(fname,quantities=['vel1']) vx = data['vel1'] time,data=ath.athdf(fname,quantities=['vel2']) vy = data['vel2'] time,data=ath.athdf(fname,quantities=['vel3']) vz = data['vel3'] x = data['x1f'] y = data['x2f'] z = data['x3f'] # --- def curl(vx,vy,vz,dx,dy,dz): [dzvx,dyvx,dxvx] = np.gradient(vx) [dzvy,dyvy,dxvy] = np.gradient(vy) [dzvz,dyvz,dxvz] = np.gradient(vz) cx = dyvz/dy-dzvy/dz cy = dzvx/dz-dxvz/dx cz = dxvy/dx-dyvx/dy # No need to del the reference by one manually # allow python to perform its own garbage collection # after the function return cxyz #del dzvx #del dzvy #del dzvz return cx,cy,cz # --- dx = dz = x[1]-x[0] dy = y[1]-y[0] jx,jy,jz = curl(vx,vy,vz,dx,dy,dz) w2 = jx**2+jy**2+jz**2 del jx,jy,jz,vx,vy,vz return w2
121768232fe71ce8ce3714aea70b5bf2c7493907
3,657,973
def text_iou(ground_truth: Text, prediction: Text) -> ScalarMetricValue: """ Calculates agreement between ground truth and predicted text """ return float(prediction.answer == ground_truth.answer)
5ea135b30ba93da45fb1ecd624fe7dc556f01cf5
3,657,974
def divisors(num): """ Takes a number and returns all divisors of the number, ordered least to greatest :param num: int :return: list (int) """ # Fill in the function and change the return statment. return 0
f15169b2672847294a219207f6022ad3e49338d2
3,657,975
def space_oem(*argv): """Handle oem files Usage: space-oem get <selector>... space-oem insert (- | <file>) space-oem compute (- | <selector>...) [options] space-oem list <selector>... [options] space-oem purge <selector>... [--until <until>] space-oem list-tags <selector>... space-oem tag <selector> <tag> [options] Options: get Retrieve an existing OEM from the database insert Insert an OEM into the database compute Compute OEM from an other OPM, OEM or TLE list List existing ephemerides purge Remove old OEMs. Use --last option list-tags List available tags for ephems of the selected objects tag Create a tag for a particular ephem <selector> Selector of the satellite (see help of the "sat" command) -f, --frame <frame> Frame in which to write the file to -d, --date <date> Start date of the ephem [default: midnight] (format %Y-%m-%dT%H:%M:%S) -r, --range <days> Duration of extrapolation [default: 3d] -s, --step <step> Step size of the OEM [default: 180s] -i, --interp <inter> Interpolation method (linear, lagrange) [default: lagrange] -l, --last <last> When listing print the last N OEM [default: 10] -I, --insert Insert the computed OEM into the database -F, --force Force insertion --until <until> When purging, remove all file older than this date [default: 4w] May be a duration, or a date """ return _generic_cmd("oem", space_oem.__doc__, *argv)
54c479f7008f475f778f491c7b6c5574390fd38c
3,657,976
def compare_distance(tree,target): """ Checks tree edit distance. Since every node has a unique position, we know that the node is the same when the positions are the same. Hence, a simple method of counting the number of edits one needs to do to create the target tree out of a given tree is equal to the number of positional differences. """ # check for positional overlap edit_value = 0 for node in target: node.found = False for node in tree: same_node = False for t_node in target: if node.pos[0] == t_node.pos[0] and node.pos[1] == t_node.pos[1]: same_node = True t_node.found = True if same_node == False: edit_value += 1 # count found for node in target: if not node.found: edit_value += 1 return edit_value
96b57e88b8e70dbb43231b56cbe7e9b7ebcfd10f
3,657,977
def header(name='peptide'): """ Parameters ---------- name Returns ------- """ with open('{}.pdb'.format(name), 'r') as f: file = f.read() model = file.find('\nMODEL') atom = file.find('\nATOM') if atom < 0: raise ValueError('no ATOM entries found in PDB') if model < 0: index = atom else: index = min(model, atom) return file[:index] + '\n'
84e75e34771b7c395ee36611c8d055ca1fdf67dc
3,657,978
from datetime import datetime def isoUTC2datetime(iso): """Convert and ISO8601 (UTC only) like string date/time value to a :obj:`datetime.datetime` object. :param str iso: ISO8061 string :rtype: datetime.datetime """ formats = ["%Y-%m-%d %H:%M:%S", "%Y-%m-%d %H:%M:%S.%f"] if 'T' in iso: formats = ["%Y-%m-%dT%H:%M:%S", "%Y-%m-%dT%H:%M:%S.%f", "%Y-%m-%dT%H:%M:%SZ", "%Y-%m-%dT%H:%M:%S.%fZ"] for fmt in formats: try: return datetime.datetime.strptime(iso, fmt) except ValueError: continue raise ValueError("Couldn't parse ISO8061 string '{}'".format(iso))
0dae4fb7828f7319afa7190deca6ae4fda5ffd1d
3,657,979
from typing import Optional from typing import Dict from typing import Union def groupstatus(aid: int, state: int = 0) -> EndpointResult: """Retrieve anime release status for different groups. :param aid: anidb anime id :type aid: int :param state: release state. int 1 to 6. Example: zenchi.mappings.group_status.ONGOING :type state: int, optional :return: a tuple (data, code). data is a dictionary with the keys: if code == (325, 330: :message str: NO SUCH GROUPS FOUND, NO SUCH ANIME if code == 225: :status: List of dictionaries with the following keys: :group_id int: :group_name str: :completion_state int: :last_episode_number int: :rating int: :votes int: :episode_range str: :truncated bool: if the response was truncated because it didn't fit the UDP packet, this will be True. :rtype: EndpointResult """ def cb(code: int, response: str) -> Optional[EndpointDict]: if code in (325, 330): return dict(message=response_message[code]) if code == 225: result = [] groups_data = response.splitlines()[1:] truncated = False for group_data in groups_data: parts = group_data.split("|") if len(parts) < 7: logger.warning( "Response was truncated, too much data for UDP packet." ) truncated = True break result.append( { "group_id": int(parts[0]), "group_name": parts[1], "completion_state": int(parts[2]), "last_episode_number": int(parts[3]), "rating": int(parts[4]), "votes": int(parts[5]), "episode_range": parts[6], } ) return dict(status_list=result, truncated=truncated) return None params: Dict[str, Union[str, int]] = dict(aid=aid) if state: params["state"] = state return send("GROUPSTATUS", params, cb)
f81ab06c8d47b9660cac9bde76978a722a13f49f
3,657,980
def get_communities_codes(communities, fields=None, community_field='Community'): """From the postal code conversion file, select entries for the `communities`. This function is similar to get_community_codes, but works if `communities` and `fields` are strings or lists of strings. """ if not isinstance(communities, pd.DataFrame) and not isinstance(communities, pd.Series): communities = pd.Series(communities, name=community_field) df = _pccf_df.merge(communities, on=community_field) return df if fields is None else df[ensure_list(fields) + [community_field]].drop_duplicates()
552fef722cd138f1a935755349116c89e0df3e3b
3,657,981
from vba import VBA from dataFrame import DF def GLMFit_(file, designMatrix, mask, outputVBA, outputCon, fit="Kalman_AR1"): """ Call the GLM Fit function with apropriate arguments Parameters ---------- file designmatrix mask outputVBA outputCon fit='Kalman_AR1' Returns ------- glm, a vba.VBA instance representing the GLM """ if fit == "Kalman_AR1": model = "ar1" method = "kalman" elif fit == "Ordinary Least Squares": method = "ols" model="spherical" elif fit == "Kalman": method = "kalman" model = "spherical" s = dict() s["GlmDumpFile"] = outputVBA s["ConfigFilePath"] = outputCon s["DesignFilePath"] = designMatrix tab = DF.read(designMatrix) glm = VBA(tab, mask_url=mask, create_design_mat = False, mri_names = file, model = model, method = method) glm.fit() glm.save(s) return glm
25ced91bc6c865faaffab30278d59aad6a475d4f
3,657,982
from typing import Iterable def get_stoch_rsi(quotes: Iterable[Quote], rsi_periods: int, stoch_periods: int, signal_periods: int, smooth_periods: int = 1): """Get Stochastic RSI calculated. Stochastic RSI is a Stochastic interpretation of the Relative Strength Index. Parameters: `quotes` : Iterable[Quote] Historical price quotes. `rsi_periods` : int Number of periods for the RSI. `stoch_periods` : int Number of periods for the Stochastic. `signal_periods` : int Number of periods for the Stochastic RSI SMA signal line. `smooth_periods` : int, defaults 1 Number of periods for Stochastic Smoothing. Use 1 for Fast or 3 for Slow. Returns: `StochRSIResults[StochRSIResult]` StochRSIResults is list of StochRSIResult with providing useful helper methods. See more: - [Stochastic RSI Reference](https://daveskender.github.io/Stock.Indicators.Python/indicators/StochRsi/#content) - [Helper Methods](https://daveskender.github.io/Stock.Indicators.Python/utilities/#content) """ stoch_rsi_results = CsIndicator.GetStochRsi[Quote](CsList(Quote, quotes), rsi_periods, stoch_periods, signal_periods, smooth_periods) return StochRSIResults(stoch_rsi_results, StochRSIResult)
b548a620ef3b3bc4cb37049d1dfb29aac442b394
3,657,983
def PUtilHann (inUV, outUV, err, scratch=False): """ Hanning smooth a UV data set returns smoothed UV data object inUV = Python UV object to smooth Any selection editing and calibration applied before average. outUV = Predefined UV data if scratch is False, ignored if scratch is True. err = Python Obit Error/message stack scratch = True if this is to be a scratch file (same type as inUV) """ ################################################################ if inUV.myClass=='AIPSUVData': raise TypeError("Function unavailable for "+inUV.myClass) # Checks if not inUV.UVIsA(): raise TypeError("inUV MUST be a Python Obit UV") if ((not scratch) and (not outUV.UVIsA())): raise TypeError("outUV MUST be a Python Obit UV") if not OErr.OErrIsA(err): raise TypeError("err MUST be an OErr") # # Create output for scratch if scratch: outUV = UV("None") outUV.me = Obit.UVUtilHann(inUV.me, scratch, outUV.me, err.me) if err.isErr: OErr.printErrMsg(err, "Error Hanning UV data") # Get scratch file info if scratch: PUVInfo (outUV, err) return outUV # end PUtilHann
a53f8d442055b2d575b36f49a96b68f6c6eff7ed
3,657,984
def str2bytes(seq): """ Converts an string to a list of integers """ return map(ord,str(seq))
7afe8e40cd4133c59be673b537f2717591b093cf
3,657,985
def __downloadFilings(cik: str) -> list: """Function to download the XML text of listings pages for a given CIK from the EDGAR database. Arguments: cik {str} -- Target CIK. Returns: list -- List of page XML, comprising full listing metadata for CIK. """ idx = 0 # Current page index end = False # Flags for loop count = 100 # Number of results per page (limited by SEC) # Text indicating next page exists next_page_text = 'rel="next" type="application/atom+xml" />' pages = [] while not end: # Making request page_text = __makeRequest(cik=cik, start_idx=idx, count=count) end = (page_text.find(next_page_text) == -1) # Update end flag idx += count # Increment index for next page pages.append(page_text) # Save page text return pages
c98996d3607076ed0328a5e0621ef015037ddc2e
3,657,986
def KK_RC43_fit(params, w, t_values): """ Kramers-Kronig Function: -RC- Kristian B. Knudsen ([email protected] / [email protected]) """ Rs = params["Rs"] R1 = params["R1"] R2 = params["R2"] R3 = params["R3"] R4 = params["R4"] R5 = params["R5"] R6 = params["R6"] R7 = params["R7"] R8 = params["R8"] R9 = params["R9"] R10 = params["R10"] R11 = params["R11"] R12 = params["R12"] R13 = params["R13"] R14 = params["R14"] R15 = params["R15"] R16 = params["R16"] R17 = params["R17"] R18 = params["R18"] R19 = params["R19"] R20 = params["R20"] R21 = params["R21"] R22 = params["R22"] R23 = params["R23"] R24 = params["R24"] R25 = params["R25"] R26 = params["R26"] R27 = params["R27"] R28 = params["R28"] R29 = params["R29"] R30 = params["R30"] R31 = params["R31"] R32 = params["R32"] R33 = params["R33"] R34 = params["R34"] R35 = params["R35"] R36 = params["R36"] R37 = params["R37"] R38 = params["R38"] R39 = params["R39"] R40 = params["R40"] R41 = params["R41"] R42 = params["R42"] R43 = params["R43"] return ( Rs + (R1 / (1 + w * 1j * t_values[0])) + (R2 / (1 + w * 1j * t_values[1])) + (R3 / (1 + w * 1j * t_values[2])) + (R4 / (1 + w * 1j * t_values[3])) + (R5 / (1 + w * 1j * t_values[4])) + (R6 / (1 + w * 1j * t_values[5])) + (R7 / (1 + w * 1j * t_values[6])) + (R8 / (1 + w * 1j * t_values[7])) + (R9 / (1 + w * 1j * t_values[8])) + (R10 / (1 + w * 1j * t_values[9])) + (R11 / (1 + w * 1j * t_values[10])) + (R12 / (1 + w * 1j * t_values[11])) + (R13 / (1 + w * 1j * t_values[12])) + (R14 / (1 + w * 1j * t_values[13])) + (R15 / (1 + w * 1j * t_values[14])) + (R16 / (1 + w * 1j * t_values[15])) + (R17 / (1 + w * 1j * t_values[16])) + (R18 / (1 + w * 1j * t_values[17])) + (R19 / (1 + w * 1j * t_values[18])) + (R20 / (1 + w * 1j * t_values[19])) + (R21 / (1 + w * 1j * t_values[20])) + (R22 / (1 + w * 1j * t_values[21])) + (R23 / (1 + w * 1j * t_values[22])) + (R24 / (1 + w * 1j * t_values[23])) + (R25 / (1 + w * 1j * t_values[24])) + (R26 / (1 + w * 1j * t_values[25])) + (R27 / (1 + w * 1j * t_values[26])) + (R28 / (1 + w * 1j * t_values[27])) + (R29 / (1 + w * 1j * t_values[28])) + (R30 / (1 + w * 1j * t_values[29])) + (R31 / (1 + w * 1j * t_values[30])) + (R32 / (1 + w * 1j * t_values[31])) + (R33 / (1 + w * 1j * t_values[32])) + (R34 / (1 + w * 1j * t_values[33])) + (R35 / (1 + w * 1j * t_values[34])) + (R36 / (1 + w * 1j * t_values[35])) + (R37 / (1 + w * 1j * t_values[36])) + (R38 / (1 + w * 1j * t_values[37])) + (R39 / (1 + w * 1j * t_values[38])) + (R40 / (1 + w * 1j * t_values[39])) + (R41 / (1 + w * 1j * t_values[40])) + (R42 / (1 + w * 1j * t_values[41])) + (R43 / (1 + w * 1j * t_values[42])) )
9f88b73ac5da422069e67af28c15c2846178169b
3,657,987
from .column import ColumnVirtualConstant def vconstant(value, length, dtype=None, chunk_size=1024): """Creates a virtual column with constant values, which uses 0 memory. :param value: The value with which to fill the column :param length: The length of the column, i.e. the number of rows it should contain. :param dtype: The preferred dtype for the column. :param chunk_size: Could be used to optimize the performance (evaluation) of this column. """ return ColumnVirtualConstant(value=value, length=length, dtype=dtype, chunk_size=chunk_size)
b712ec9f1aea2f65f1f992cd3b23ab671339f97a
3,657,988
import os def getsize(filename): """Return the size of a file, reported by os.stat().""" return os.stat(filename).st_size
f21bd048bf1fdbc80cdcbd4f14dba8f390439f74
3,657,989
def get_all_nsds_of_node(logger, instance): """ This function performs "mmlsnsd -X -Y". Args: instance (str): instance for which disks are use by filesystem. region (str): Region of operation Returns: all_disk_names (list): Disk names in list format. Ex: [nsd_1a_1_0, nsd_1c_1_0, nsd_1c_d_1] """ logger.debug("Function Entry: get_all_nsds_of_node. " "Args: instance={0}".format(instance)) nsd_list = [] nsd_list = SpectrumScaleNSD.get_all_nsd_info() all_nsd_names = [] for nsd in nsd_list: if nsd.get_remarks() == 'server node' and instance in nsd.get_server_list(): all_nsd_names.append(nsd.get_name()) logger.debug("Function Exit: get_all_nsds_of_node(). " "Return Params: all_nsd_names={0} ".format(all_nsd_names)) return all_nsd_names
648bb6706c2dd01d448044b98425642319a75eca
3,657,990
def gen_color_palette(n: int): """ Generates a hex color palette of size n, without repeats and only light colors (easily visible on dark background). Adapted from code by 3630 TAs Binit Shah and Jerred Chen Args: n (int): number of clouds, each cloud gets a unique color """ palette = [] do_replace = False if len(COLOR_OPTIONS) >= n else True for i in np.random.choice(len(COLOR_OPTIONS), n, replace=do_replace): palette.append(COLOR_OPTIONS[i]) return palette
6b1004674d1448cdcca8c3500b149b1602e0045f
3,657,991
def absolute_vorticity(u, v, dx, dy, lats, dim_order='yx'): """Calculate the absolute vorticity of the horizontal wind. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float or ndarray The grid spacing(s) in the x-direction. If an array, there should be one item less than the size of `u` along the applicable axis. dy : float or ndarray The grid spacing(s) in the y-direction. If an array, there should be one item less than the size of `u` along the applicable axis. lats : (M, N) ndarray latitudes of the wind data Returns ------- (M, N) ndarray absolute vorticity Notes ----- If inputs have more than two dimensions, they are assumed to have either leading dimensions of (x, y) or trailing dimensions of (y, x), depending on the value of ``dim_order``. """ f = coriolis_parameter(lats) relative_vorticity = vorticity(u, v, dx, dy, dim_order=dim_order) return relative_vorticity + f
9ae200b3a8b8415f67fc640b0702bc5272c77d3a
3,657,992
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = input.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return input * random_tensor
289ae545fa184bb459275685d3a2894e5219db2e
3,657,993
from typing import Dict from typing import Any from typing import List import secrets def ask_user_config() -> Dict[str, Any]: """ Ask user a few questions to build the configuration. Interactive questions built using https://github.com/tmbo/questionary :returns: Dict with keys to put into template """ questions: List[Dict[str, Any]] = [ { "type": "confirm", "name": "dry_run", "message": "Do you want to enable Dry-run (simulated trades)?", "default": True, }, { "type": "text", "name": "stake_currency", "message": "Please insert your stake currency:", "default": 'USDT', }, { "type": "text", "name": "stake_amount", "message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):", "default": "100", "validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val), "filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"' if val == UNLIMITED_STAKE_AMOUNT else val }, { "type": "text", "name": "max_open_trades", "message": f"Please insert max_open_trades (Integer or '{UNLIMITED_STAKE_AMOUNT}'):", "default": "3", "validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val), "filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"' if val == UNLIMITED_STAKE_AMOUNT else val }, { "type": "text", "name": "timeframe", "message": "Please insert your desired timeframe (e.g. 5m):", "default": "5m", }, { "type": "text", "name": "fiat_display_currency", "message": "Please insert your display Currency (for reporting):", "default": 'USD', }, { "type": "select", "name": "exchange_name", "message": "Select exchange", "choices": [ "binance", "binanceus", "bittrex", "kraken", "ftx", "kucoin", "gateio", Separator(), "other", ], }, { "type": "autocomplete", "name": "exchange_name", "message": "Type your exchange name (Must be supported by ccxt)", "choices": available_exchanges(), "when": lambda x: x["exchange_name"] == 'other' }, { "type": "password", "name": "exchange_key", "message": "Insert Exchange Key", "when": lambda x: not x['dry_run'] }, { "type": "password", "name": "exchange_secret", "message": "Insert Exchange Secret", "when": lambda x: not x['dry_run'] }, { "type": "password", "name": "exchange_key_password", "message": "Insert Exchange API Key password", "when": lambda x: not x['dry_run'] and x['exchange_name'] == 'kucoin' }, { "type": "confirm", "name": "telegram", "message": "Do you want to enable Telegram?", "default": False, }, { "type": "password", "name": "telegram_token", "message": "Insert Telegram token", "when": lambda x: x['telegram'] }, { "type": "text", "name": "telegram_chat_id", "message": "Insert Telegram chat id", "when": lambda x: x['telegram'] }, { "type": "confirm", "name": "api_server", "message": "Do you want to enable the Rest API (includes FreqUI)?", "default": False, }, { "type": "text", "name": "api_server_listen_addr", "message": "Insert Api server Listen Address (best left untouched default!)", "default": "127.0.0.1", "when": lambda x: x['api_server'] }, { "type": "text", "name": "api_server_username", "message": "Insert api-server username", "default": "freqtrader", "when": lambda x: x['api_server'] }, { "type": "text", "name": "api_server_password", "message": "Insert api-server password", "when": lambda x: x['api_server'] }, ] answers = prompt(questions) if not answers: # Interrupted questionary sessions return an empty dict. raise OperationalException("User interrupted interactive questions.") # Force JWT token to be a random string answers['api_server_jwt_key'] = secrets.token_hex() return answers
7697ba65c7ba7f73b81af3ae3575beb0eb9b30b8
3,657,994
def generate_menusystem(): """ Generate Top-level Menu Structure (cached for specified timeout) """ return '[%s] Top-level Menu System' % timestamp()
eb3575835889af768887f3071816d0f22f867568
3,657,995
import time def main(): """ main loop """ #TODO: enable parallezation to use multiple cores N = int(1e18) def sum(N): start = time.time() result = 0 for i in range(N): if i % int(1e9) == 0: print("** step %i **" % int(i/1e9)) result += i end = time.time() print("Sum till %N yields %s, took %s seconds" %(N,result, end-start)) return result, end-start def count_friend_numbers(N, base=10): """ Project Euler problem 612 - https://projecteuler.net/problem=612 Let's call two numbers friend numbers if their representation in base 10 has at least one common digit. E.g. 1123 and 3981 are friend numbers. Let f(N) be the number of pairs (p,q) with 1≤p<q<N such that p and q are friend numbers. This function will calculate f(N) :param N: ceiling number to calculate the number of friend numbers :return: number of friend number (p,q) s.t. 1≤p<q<N """ start = time.time() result = 0 for i in range(1,base): # 1. till N=100=1e2 # single digit: friends XX result += 2*base-2 # double digits: friends XX result += int( ((base-1)+(base-i))*i/2 ) result += int(( 1 + base-i-2)*(base-i-2)/2 ) result += (i+1)*2*(base-i-1) result += (base-i-1)*(base-2 + 2*(base-i-1)) # 2. till N=1000=1e3 # single digits: extra friends XXX result += base^2 + (base-2)*(2*base-1) # double digits: extra friends XXX result += (base-2)*( 2*base^2 + (base-2)*(2*base-1) + (base-3)*(2*base-1) ) result += 2*( base^2 + (base-2)*base + 2*(base-2)*(base-1) ) # triple digits: friends XXX # 3. till N=10000=1e4 # single digits: extra friends XXXX # result += base^3 + (base-2)*( base^2 + (base-1)*(2*base-1) ) end = time.time() print("Counting friend numbers till %s yields %s, took %0.5f seconds" %(N,result, end-start)) return result, end-start # sum(N) count_friend_numbers(100)
1327fcff07e706624cfb5fa9f270bbac25f340bb
3,657,996
import json import aiohttp import asyncio from loguru import logger from typing import Optional async def simple_post(session, url: str, data: dict, timeout: int = 10) -> Optional[dict]: """ A simple post function with exception feedback Args: session (CommandSession): current session url (str): post url data (dict): post data timeout (int): timeout threshold Returns: Json response in dict if no exception occurred Otherwise, return None and send feedback to user. """ try: logger.debug(f"Start posting {data} to {url} ...") async with aiohttp.ClientSession() as client: async with client.post(url, data=data, timeout=timeout, proxy=get_local_proxy()) as response: if response.status != 200: logger.error(f"Cannot connect to {url}, Status: {response.status}") session.send("无法连接到服务器") return None r = json.loads(await response.text()) logger.debug(f"Response: {r}") return r except asyncio.TimeoutError: logger.error(f"Cannot connect to {url}, Error: Timeout") await session.send("请求超时")
2a0b6a26154f322f42850106a21b167161fe7cc0
3,657,997
def gnomonic_proj(lon, lat, lon0=0, lat0=0): """ lon, lat : arrays of the same shape; longitude and latitude of points to be projected lon0, lat0: floats, longitude and latitude in radians for the tangency point --------------------------- Returns the gnomonic projection, x, y https://mathworld.wolfram.com/GnomonicProjection.html """ cosc = sin(lat0)*sin(lat) + cos(lat0)*cos(lat)*cos(lon-lon0) x = cos(lat)*sin(lon-lon0)/cosc y = (cos(lat0)*sin(lat) - sin(lat0)*cos(lat)*cos(lon-lon0))/cosc return x, y
61daaee7bc0ca5dd901582adc03ec6c36ddf2ef2
3,657,998
def local_pluggables(pluggable_type): """ Accesses pluggable names Args: pluggable_type (Union(PluggableType,str)): The pluggable type Returns: list[str]: pluggable names Raises: AquaError: if the type is not registered """ _discover_on_demand() if isinstance(pluggable_type, str): for ptype in PluggableType: if ptype.value == pluggable_type: pluggable_type = ptype break if not isinstance(pluggable_type, PluggableType): raise AquaError( 'Invalid pluggable type {}'.format(pluggable_type)) if pluggable_type not in _REGISTRY_PLUGGABLE.registry: raise AquaError('{} not registered'.format(pluggable_type)) return [pluggable.name for pluggable in _REGISTRY_PLUGGABLE.registry[pluggable_type].values()]
8626e931da1fd33d76cef4ed85b6ea1a7d7e907d
3,657,999