content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re from typing import Sequence def resolve_pointer(document, pointer: str): """ Resolve a JSON pointer ``pointer`` within the referenced ``document``. :param document: the referent document :param str pointer: a json pointer URI fragment to resolve within it """ root = document # Do only split at single forward slashes which are not prefixed by a caret parts = re.split(r"(?<!\^)/", unquote(pointer.lstrip("/"))) if pointer else [] for part in parts: # Restore escaped slashes and carets replacements = {r"^/": r"/", r"^^": r"^"} part = re.sub( "|".join(re.escape(key) for key in replacements.keys()), lambda k: replacements[k.group(0)], part, ) if isinstance(document, Sequence): # Try to turn an array index to an int try: part = int(part) except ValueError: pass try: document = document[part] except KeyError as e: raise KeyError(f"Pointer does not resolve to value: {pointer}") from e if document is root: # Prevents infinite recursion on same document return document else: return replace(document, root)
c37323b19547f4cb8e20eb8c391d606e77c68b66
3,657,700
def load_config_file(config_file): """ Loads the given file into a list of lines :param config_file: file name of the config file :type config_file: str :return: config file as a list (one item per line) as returned by open().readlines() """ with open(config_file, 'r') as f: config_document = f.readlines() return config_document
6a6e0199566e9ea27db309b2164f323cd5f57fdc
3,657,701
def retrieve_analysis_report(accession, fields=None, file=None): """Retrieve analysis report from ENA :param accession: accession id :param fields: comma-separated list of fields to have in the report (accessible with get_returnable_fields with result=analysis) :param file: filepath to save the content of the report :return: requested run repor """ return retrieve_filereport( accession=accession, result="analysis", fields=fields, file=file)
4adde7fea75c26f809d5efc1b5ff04b31ff9fa87
3,657,702
import code_hygiene import sys import os def _CommonChecks(input_api, output_api): """Checks for both upload and commit.""" results = [] results.extend(input_api.canned_checks.PanProjectChecks( input_api, output_api, project_name='Native Client', excluded_paths=tuple(EXCLUDE_PROJECT_CHECKS))) # The commit queue assumes PRESUBMIT.py is standalone. # TODO(bradnelson): Migrate code_hygiene to a common location so that # it can be used by the commit queue. old_sys_path = list(sys.path) try: sys.path.append(os.path.join(NACL_TOP_DIR, 'tools')) sys.path.append(os.path.join(NACL_TOP_DIR, 'build')) finally: sys.path = old_sys_path del old_sys_path affected_files = input_api.AffectedFiles(include_deletes=False) exclude_dirs = [ NACL_TOP_DIR + '/' + x for x in EXCLUDE_PROJECT_CHECKS ] for filename in affected_files: filename = filename.AbsoluteLocalPath() if filename in exclude_dirs: continue if not IsFileInDirectories(filename, exclude_dirs): errors, warnings = code_hygiene.CheckFile(filename, False) for e in errors: results.append(output_api.PresubmitError(e, items=errors[e])) for w in warnings: results.append(output_api.PresubmitPromptWarning(w, items=warnings[w])) return results
9bebe1909c70a053b8d16f5aa17958efb106ce52
3,657,703
import copy def visualize_cluster_entropy( doc2vec, eval_kmeans, om_df, data_cols, ks, cmap_name="brg" ): """Visualize entropy of embedding space parition. Currently only supports doc2vec embedding. Parameters ---------- doc2vec : Doc2Vec model instance Instance of gensim.models.doc2vec.Doc2Vec eval_kmeans : callable Callable cluster fit function For instance, .. code-block:: python def eval_kmeans(X,k): km = KMeans(n_clusters=k) km.fit(X) return km om_df : DataFrame A pandas dataframe containing O&M data, which contains columns specified in om_col_dict data_cols : list List of column names (str) which have text data. ks : list List of k parameters required for the clustering mechanic `eval_kmeans` cmap_name : Optional, color map Returns ------- Matplotlib figure instance """ df = om_df.copy() cols = data_cols fig = plt.figure(figsize=(6, 6)) cmap = plt.cm.get_cmap(cmap_name, len(cols) * 2) for i, col in enumerate(cols): X = df[col].tolist() X = [x.lower() for x in X] tokenized_data = [word_tokenize(x) for x in X] doc2vec_data = [ TaggedDocument(words=x, tags=[str(i)]) for i, x in enumerate(tokenized_data) ] model = copy.deepcopy(doc2vec) model.build_vocab(doc2vec_data) model.train( doc2vec_data, total_examples=model.corpus_count, epochs=model.epochs ) X_doc2vec = [model.infer_vector(tok_doc) for tok_doc in tokenized_data] sse = [] clusters = [] for true_k in ks: km = eval_kmeans(X_doc2vec, true_k) sse.append(km.inertia_) clusters.append(km.labels_) plt.plot( ks, sse, color=cmap(2 * i), marker="o", label=f"Doc2Vec + {col} entropy" ) vectorizer = TfidfVectorizer() X_tfidf = vectorizer.fit_transform(X) sse = [] clusters = [] for true_k in ks: km = eval_kmeans(X_tfidf, true_k) sse.append(km.inertia_) clusters.append(km.labels_) plt.plot( ks, sse, color=cmap(2 * i + 1), marker="o", label=f"TF-IDF + {col} entropy" ) plt.xlabel(r"Number of clusters *k*") plt.ylabel("Sum of squared distance") plt.legend() return fig
5e91167fa23c09ada2f81d5e388e5d95a84fe283
3,657,704
def delete_student_meal_plan( person_id: str = None, academic_term_id: str = None): """ Removes a meal plan from a student. :param person_id: The numeric ID of the person. :param academic_term_id: The numeric ID of the academic term you're interested in. :returns: String containing xml or an lxml element. """ return get_anonymous( 'deleteStudentMealPlan', person_id=person_id, academic_term_id=academic_term_id)
75cd875b751b5af0ccbf71c090712f73b866f29b
3,657,705
import torch def colorize(x): """Converts a one-channel grayscale image to a color heatmap image. """ if x.dim() == 2: torch.unsqueeze(x, 0, out=x) return if x.dim() == 3: cl = torch.zeros([3, x.size(1), x.size(2)]) cl[0] = gauss(x, .5, .6, .2) + gauss(x, 1, .8, .3) cl[1] = gauss(x, 1, .5, .3) cl[2] = gauss(x, 1, .2, .3) cl[cl.gt(1)] = 1 return cl elif x.dim() == 4: cl = torch.zeros([x.size(0), 3, x.size(2), x.size(3)]) cl[:, 0, :, :] = gauss(x, .5, .6, .2) + gauss(x, 1, .8, .3) cl[:, 1, :, :] = gauss(x, 1, .5, .3) cl[:, 2, :, :] = gauss(x, 1, .2, .3) return cl
0b5c95bc296fcdc3ed352d656984a3f46fa66fad
3,657,706
from typing import Counter def local_role_density( annotated_hypergraph, include_focus=False, absolute_values=False, as_array=False ): """ Calculates the density of each role within a 1-step neighbourhood of a node, for all nodes. Input: annotated_hypergraph [AnnotatedHypergraph]: An annotated hypergraph. include_focus [Bool]: If True, includes the roles of the focal node in th calculation. absolute_values [Bool]: If True, returns role counts rather than densities. as_array [Bool]: If True, return an array rather than a Counter. Returns: role_densities []: An array of dimension (# nodes x # roles) describing the density of each role. """ A = annotated_hypergraph def get_counts(group): return Counter([x.role for x in group]) by_edge = { eid: get_counts(v) for eid, v in groupby( sorted(A.IL, key=lambda x: x.eid, reverse=True), lambda x: x.eid ) } densities = {} for incidence in A.IL: densities[incidence.nid] = ( densities.get(incidence.nid, Counter()) + by_edge[incidence.eid] ) if not include_focus: densities[incidence.nid] = densities.get( incidence.nid, Counter() ) - Counter([incidence.role]) keys = set(chain.from_iterable(densities.values())) for item in densities.values(): item.update({key: 0 for key in keys if key not in item}) if not absolute_values: normalise_counters(densities) if as_array: densities = to_matrix(densities, A) return densities
75ccc0e51ad627f3bd6f2f664bfaa93fd9e532d8
3,657,707
import re import requests def get(url: str) -> dict: """ author、audioName、audios """ data = {} headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Connection": "keep-alive", "Host": "www.kuwo.cn", "Referer": "http://www.kuwo.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", } song_info_url_format = "http://m.kuwo.cn/newh5/singles/songinfoandlrc?musicId={id}" mp3_url_format = "http://www.kuwo.cn/url?format=mp3&rid={id}&response=url&type=convert_url3&br={quality}&from=web" # http://www.kuwo.cn/play_detail/********* id = re.findall(r"/(\d{1,})", url) if id: id = id[0] else: data["msg"] = "不支持输入的链接形式" return data session = requests.session() # 得到最高品质以及歌曲信息 with session.get(song_info_url_format.format(id=id), headers=headers, timeout=10) as rep: if rep.status_code == 200 and rep.json().get("status") == 200: best_quality = rep.json().get("data").get( "songinfo").get("coopFormats")[0] author = rep.json().get("data").get("songinfo").get("artist") song_name = rep.json().get("data").get("songinfo").get("songName") pic = rep.json().get("data").get("songinfo").get("pic") data["author"] = author data["audioName"] = song_name data["imgs"] = [pic] else: data["msg"] = "获取失败" return data if not best_quality: best_quality = "128kmp3" # 得到歌曲链接 with session.get(mp3_url_format.format(id=id, quality=best_quality), headers=headers, timeout=10) as rep: if rep.status_code == 200 and rep.json().get("code") == 200: play_url = rep.json().get("url") data["audios"] = [play_url] else: data["msg"] = "获取音频链接失败" return data
5dd97f4974b1fdc0a89ad36bbb14ad5c26e1582d
3,657,708
import glob def get_subject_mask(subject, run=1, rois=[1030,2030], path=DATADIR, space=MRISPACE, parcellation=PARCELLATION): """ Get subject mask by run and ROI key to apply to a dataset (rois are in DATADIR/PARCELLATION.tsv) inputs: subject - sid00[0-9]{4} run - which run to use for parcellation (redundant?) [1-8] rois - list of regions of interest for mask [1030,2030] path - dir containing roi parcellations [DATADIR] space - parcellation space [MRISPACE] parcellation- file [PARCELLATION] outputs: mask_ds - pymvpa Dataset containing mask data {0,[rois]} """ fname = opj(path, 'sub-%s'%subject, 'func', 'sub-%s_task-*_run-%02d_space-%s_%s.nii.gz'%(subject, run, space, parcellation)) #print fname fname = glob.glob(fname)[0] ds=P.fmri_dataset(fname) found = np.where(np.isin(ds.samples,rois))[1] return ds[:,found]
2838c8067dff1878af2b7f874cffa3cd4fc5adf1
3,657,709
def social_auth(user): """ Return True if specified user has logged in with local account, False if user uses 3rd party account for sign-in. """ return True if user.password is not settings.SOCIAL_AUTH_USER_PASSWORD else False
197fccbe875de1e4ea08a28a2f7927160d9dae6e
3,657,710
def update_post(post_id): """ The route used to update a post. It displays the create_post.html page with the original posts contents filled in, and allows the user to change anything about the post. When the post has been successfully updated it redirects to the post route. """ post = Post.query.get_or_404(post_id) if post.author != current_user: abort(403) form = PostForm() if form.validate_on_submit(): post.title = form.title.data post.content = form.content.data db.session.commit() flash('Your post has been updated!', 'success') return redirect(url_for('posts.post', post_id=post.id)) elif request.method == 'GET': form.title.data = post.title form.content.data = post.content return render_template('create_post.html', title='Update Post', form=form, legend='Update Post')
2761f2fdc9ad50f96c36e8ee13f87f67275b360e
3,657,711
def lrelu(x, leak=0.2, scope="lrelu"): """ leaky relu if x > 0: return x else: return leak * x :param x: tensor :param leak: float, leak factor alpha >= 0 :param scope: str, name of the operation :return: tensor, leaky relu operation """ with tf.variable_scope(scope): # if leak < 1: # return tf.maximum(x, leak * x) # elif x > 0: # return x # else: # return leak * x return tf.nn.relu(x) - leak * tf.nn.relu(-x)
25757c70ae7d37b568b16ea9d489a5d15b68042f
3,657,712
from typing import Callable from typing import Optional def enable_async(func: Callable) -> Callable: """ Overview: Empower the function with async ability. Arguments: - func (:obj:`Callable`): The original function. Returns: - runtime_handler (:obj:`Callable`): The wrap function. """ @wraps(func) def runtime_handler(task: "Task", *args, async_mode: Optional[bool] = None, **kwargs) -> "Task": """ Overview: If task's async mode is enabled, execute the step in current loop executor asyncly, or execute the task sync. Arguments: - task (:obj:`Task`): The task instance. - async_mode (:obj:`Optional[bool]`): Whether using async mode. Returns: - result (:obj:`Union[Any, Awaitable]`): The result or future object of middleware. """ if async_mode is None: async_mode = task.async_mode if async_mode: assert not kwargs, "Should not use kwargs in async_mode, use position parameters, kwargs: {}".format(kwargs) t = task._async_loop.run_in_executor(task._thread_pool, func, task, *args, **kwargs) task._async_stack.append(t) return task else: return func(task, *args, **kwargs) return runtime_handler
82b44b7e3bc3b59e6d0a12aca7983f3c2b0f6468
3,657,713
from io import StringIO def get_past_data_from_bucket_as_dataframe(): """Read a blob""" bucket_name = "deep_learning_model_bucket" blob_name = "past_data.csv" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(blob_name) return_data = blob.download_as_text() return_data = StringIO(return_data) df = pd.read_csv(return_data, sep=",", header=0, index_col=False) return df
74ca2fddbd94efc51652974cc2e62a699e92ea80
3,657,714
def align_junction_LeftRight(viral_seq, bp_pos, ri_pos, align_to="L"): """If align_to="L", put all the ambiguous nucleotides in the 'body' part of the junction defined by bp_pos and ri_pos, that is the junction point is moved as close to the 5' end (of viral_seq) as possible. If align_to="R", do the opposite.""" py_ri = ri_pos-1 # in this way viral_seq[py_ri] is the first nucleotide after the junction obtained by DI-tector py_bp = bp_pos-1 # in this way viral_seq[py_bp] is the last nucleotide before the junction obtained by DI-tector assert (align_to == "L" or align_to == "R"), "Plese enter R or L to align as right as possible or as left as possible." new_bp_pos = py_bp new_ri_pos = py_ri try_next_alignement = True while try_next_alignement: if align_to == "L": if vir_seq[new_bp_pos] == vir_seq[new_ri_pos-1]: new_bp_pos -= 1 new_ri_pos -= 1 else: try_next_alignement = False elif align_to == "R": if vir_seq[new_bp_pos+1] == vir_seq[new_ri_pos]: new_bp_pos += 1 new_ri_pos += 1 else: try_next_alignement = False new_bp_pos += 1 # in this way I am using a fixed convention new_ri_pos += 1 # in this way I am using a fixed convention return new_bp_pos, new_ri_pos
92634e4ff6ca6600fb91046202c240d87aac1135
3,657,715
def initialize_sqlite_tables_if_not_initialized() -> bool: """ Initialize the sqlite tables if they have not been initialized yet. Returns ------- initialized : bool If initialized, returns True. """ table_exists: bool = _table_exists( table_name=TableName.EXPRESSION_NORMAL) if table_exists: return False _create_expression_normal_table() _create_expression_handler_table() _create_indent_num_normal_table() _create_indent_num_handler_table() _create_last_scope_table() _create_event_handler_scope_count_table() _create_loop_count_table() _create_debug_mode_setting_table() _create_debug_mode_callable_count_table() _create_stage_elem_id_table() _create_variable_name_count_table() _create_handler_calling_stack_table() _create_circular_calling_handler_name_table() _create_stage_id_table() return True
9392b404d9023356902efaed8837cdd2d32cdd99
3,657,716
def poisson2vpvs(poisson_ratio): """ Convert Poisson's ratio to Vp/Vs ratio. Parameters ---------- poisson_ratio : float Poisson's ratio. Returns ------- vpvs_ratio : float Vp/Vs ratio. """ return sqrt(2 * (poisson_ratio - 1) / (2 * poisson_ratio - 1))
9f0f41ec3dd5be539dca341ed2ec4b091aeee730
3,657,717
def vs30_to_z1pt0_cy14(vs30, japan=False): """ Returns the estimate depth to the 1.0 km/s velocity layer based on Vs30 from Chiou & Youngs (2014) California model :param numpy.ndarray vs30: Input Vs30 values in m/s :param bool japan: If true returns the Japan model, otherwise the California model :returns: Z1.0 in m """ if japan: c1 = 412. ** 2. c2 = 1360.0 ** 2. return np.exp((-5.23 / 2.0) * np.log((np.power(vs30,2.) + c1) / (c2 + c1))) else: c1 = 571 ** 4. c2 = 1360.0 ** 4. return np.exp((-7.15 / 4.0) * np.log((vs30 ** 4. + c1) / (c2 + c1)))
f4f985c2e0aa533cac8afd8533bfad126edbaf01
3,657,718
def empowerment(iface, priority=0): """ Class decorator for indicating a powerup's powerup interfaces. The class will also be declared as implementing the interface. @type iface: L{zope.interface.Interface} @param iface: The powerup interface. @type priority: int @param priority: The priority the powerup will be installed at. """ def _deco(cls): cls.powerupInterfaces = ( tuple(getattr(cls, 'powerupInterfaces', ())) + ((iface, priority),)) implementer(iface)(cls) return cls return _deco
2f63892e539928951ca462239cfd014bdd8b0409
3,657,719
def multigauss_and_bgd_jacobian(x, *params): """Jacobien of the multiple Gaussian profile plus a polynomial background to data. The degree of the polynomial background is fixed by parameters.CALIB_BGD_NPARAMS. The order of the parameters is a first block CALIB_BGD_NPARAMS parameters (from low to high Legendre polynome degree, contrary to np.polyval), and then block of 3 parameters for the Gaussian profiles like amplitude, mean and standard deviation. x values are renormalised on the [-1, 1] interval for the background. Parameters ---------- x: array The x data values. *params: list of float parameters as described above. Returns ------- y: array The jacobian values. Examples -------- >>> import spectractor.parameters as parameters >>> parameters.CALIB_BGD_NPARAMS = 4 >>> x = np.arange(600.,800.,1) >>> p = [20, 1, -1, -1, 20, 650, 3, 40, 750, 5] >>> y = multigauss_and_bgd_jacobian(x, *p) >>> assert(np.all(np.isclose(y.T[0],np.ones_like(x)))) >>> print(y.shape) (200, 10) """ bgd_nparams = parameters.CALIB_BGD_NPARAMS out = [] x_norm = rescale_x_for_legendre(x) for k in range(bgd_nparams): # out.append(params[k]*(parameters.CALIB_BGD_ORDER-k)*x**(parameters.CALIB_BGD_ORDER-(k+1))) # out.append(x ** (bgd_nparams - 1 - k)) c = np.zeros(bgd_nparams) c[k] = 1 out.append(np.polynomial.legendre.legval(x_norm, c)) for k in range((len(params) - bgd_nparams) // 3): jac = gauss_jacobian(x, *params[bgd_nparams + 3 * k:bgd_nparams + 3 * k + 3]).T for j in jac: out.append(list(j)) return np.array(out).T
e4347f50da3bd94ec4aac49c5af3ead4e08fed3b
3,657,720
def get_empty_config(): """ Return an empty Config object with no options set. """ empty_color_config = get_empty_color_config() result = Config( examples_dir=None, custom_dir=None, color_config=empty_color_config, use_color=None, pager_cmd=None, editor_cmd=None, squeeze=None, subs=None ) return result
f744d770822bd6d58777d346674ea6c16b665701
3,657,721
def parse(sql_string): """Given a string containing SQL, parse it and return the normalized result.""" parsed = select_stmt.parseString(sql_string) parsed.from_clause = _normalize_from_clause(parsed.from_clause) parsed.where_clause = _normalize_where_clause(parsed.where_clause) return parsed
96a369262bfd852ab7da484c86a2cd06b121d4be
3,657,722
from pathlib import Path def check_overwrite(path: str, overwrite: bool = False) -> str: """ Check if a path exists, if so raising a RuntimeError if overwriting is disabled. :param path: Path :param overwrite: Whether to overwrite :return: Path """ if Path(path).is_file() and not overwrite: raise RuntimeError( f"Requested existing {path!r} as output, but overwriting is disabled." ) return path
961affdcc87b055cdd5acb9a28547ef87ae426b9
3,657,723
import struct def bytes_to_text(input): """Converts given bytes (latin-1 char + padding)*length to text""" content = struct.unpack((int(len(input)/2))*"sx", input) return "".join([x.decode("latin-1") for x in content]).rstrip("\x00")
f058847886fc3a488c54b8e01c3d7506f6d76510
3,657,724
def flatten_conv_capsule(inputs): """ :param inputs is output from a convolutional capsule layer inputs.shape = [N,OH,OW,C,PH] C is channel number, PH is vector length :return shape = [N,OH*OW*C,PH] """ inputs_shape = inputs.shape l=[] for i1 in range(inputs_shape[1]): for i2 in range(inputs_shape[2]): for i3 in range(inputs_shape[3]): l.append(inputs[:,i1,i2,i3,:]) out = tf.stack(l,axis=1) return out
8be5319c85311122ef728af5266dd9aecf549be0
3,657,725
def LookupValue(values, name, scope, kind): """Like LookupKind, but for constant values.""" # If the type is an enum, the value can be specified as a qualified name, in # which case the form EnumName.ENUM_VALUE must be used. We use the presence # of a '.' in the requested name to identify this. Otherwise, we prepend the # enum name. if isinstance(kind, mojom.Enum) and '.' not in name: name = '%s.%s' % (kind.spec.split(':', 1)[1], name) for i in reversed(xrange(len(scope) + 1)): test_spec = '.'.join(scope[:i]) if test_spec: test_spec += '.' test_spec += name value = values.get(test_spec) if value: return value return values.get(name)
211a4b161c74971d59d256db28935e33005f1782
3,657,726
def SI1452(key, Aleph=u'\u05d0', Tav=u'\u05ea'): """ Minimalist caps action Make sure latin capital letters are produced in keys carrying them (additionally, make Hebrew-letter keys go to level 2) """ if Aleph<=key.level_chars[1]<=Tav or u'A' <=key.level_chars[2]<=u'Z': return CapsByShift() else: return None
51c14d32d090d25e5625582e32d8bbd45d9a819b
3,657,727
def new_topic(request): """添加新主题""" if request.method != 'POST': form = TopicForm() # 如果不是POST请求, 表示首次请求, 返回空表单 else: # POST提交了数据, 对数据进行处理 form = TopicForm(request.POST) # 根据请求传入的数据创建一个表单对象 # is_valid()函数核实用户填写了所有必不可少的字段(表单字段默认都是必不可少的), # 且输入的数据与要求的字段类型一致 if form.is_valid(): # 检查表单的信息是否合法有效 form.save() # 将数据保存至数据库 # reverse()获取页面对应的URL, HttpResponseRedirect用于将浏览器页面重定向到topic return HttpResponseRedirect(reverse('learning_logs:topics')) context = {'form': form} # 传入到父类模板中显示, html中包含context字段 return render(request, 'learning_logs/new_topic.html', context)
b4e6524f0c8d4fdc6d88bd879f61c7430112ae9f
3,657,728
import subprocess import sys def pkg_config(*packages, **kw): """Translate pkg-config data to compatible Extension parameters. Example usage: >>> from distutils.extension import Extension >>> from pkgdist import pkg_config >>> >>> ext_kwargs = dict( ... include_dirs=['include'], ... extra_compile_args=['-std=c++11'], ... ) >>> extensions = [ ... Extension('foo', ['foo.c']), ... Extension('bar', ['bar.c'], **pkg_config('lcms2')), ... Extension('ext', ['ext.cpp'], **pkg_config(('nss', 'libusb-1.0'), **ext_kwargs)), ... ] """ flag_map = { '-I': 'include_dirs', '-L': 'library_dirs', '-l': 'libraries', } try: tokens = subprocess.check_output( ['pkg-config', '--libs', '--cflags'] + list(packages)).split() except OSError as e: sys.stderr.write(f'running pkg-config failed: {e.strerror}\n') sys.exit(1) for token in tokens: token = token.decode() if token[:2] in flag_map: kw.setdefault(flag_map.get(token[:2]), []).append(token[2:]) else: kw.setdefault('extra_compile_args', []).append(token) return kw
1a3471ed181f135b401c09fc8e798889451923fe
3,657,729
from pathlib import Path async def get_xdg_data_dir(app=None): """Return a data directory for this app. Create the directory if it does not exist. """ if app is None: app = await get_package_name() data_home = Path(await get_xdg_home('XDG_DATA_HOME')) data_dir = data_home / app if not await data_dir.exists(): await data_dir.mkdir() return await data_dir.resolve()
fe73abc5e91bf2c3c4a1dfd745981b1e0733aa5a
3,657,730
def patch_subscription(subscription, data): """ Patches the given subscription with the data provided """ return stage_based_messaging_client.update_subscription( subscription["id"], data)
68575f24a0e0a881b8c3a9572a496b2ba6293be2
3,657,731
def update_game(game_obj, size, center1, center2): """ Update game state """ new_game_obj = game_obj.copy() if center1 is not None: new_game_obj['rudder1_pos'] = center1 if center2 is not None: new_game_obj['rudder2_pos'] = center2 # Check if hitting corner init_vel = new_game_obj['velocity'] if new_game_obj['pos'][1] >= 480-15 or new_game_obj['pos'][1] <= 15: new_game_obj['velocity'] = (init_vel[0], -1*init_vel[1]) if new_game_obj['pos'][0] >= 640-15: new_game_obj['pos'] = (size[1]/2, size[0]/2) new_game_obj['velocity'] = (-1.05*abs(new_game_obj['velocity'][0]), 1.05*abs(new_game_obj['velocity'][1])) new_game_obj['score1'] += 1 elif new_game_obj['pos'][0] <= 15: new_game_obj['pos'] = (size[1]/2, size[0]/2) new_game_obj['score2'] += 1 new_game_obj['velocity'] = (1.05*abs(new_game_obj['velocity'][0]), -1.05*abs(new_game_obj['velocity'][1])) elif 0 <= new_game_obj['pos'][0]-new_game_obj['rudder1_pos'][0] <= 17 and new_game_obj['rudder1_pos'][1]-(50+15) < new_game_obj['pos'][1] < new_game_obj['rudder1_pos'][1] + 50+15: new_game_obj['velocity'] = (-1*init_vel[0], init_vel[1]) elif 0 <= new_game_obj['rudder2_pos'][0] - new_game_obj['pos'][0] <= 17 and new_game_obj['rudder2_pos'][1]-(50+15) < new_game_obj['pos'][1] < new_game_obj['rudder2_pos'][1]+(50+15): init_vel = new_game_obj['velocity'] new_game_obj['velocity'] = (-1*init_vel[0], init_vel[1]) new_game_obj['pos'] = (new_game_obj['pos'][0] + new_game_obj['velocity'] [0], new_game_obj['pos'][1] + new_game_obj['velocity'][1]) # print(new_game_obj) return new_game_obj
33646593e6743d11174f72be6f4b825633fe8782
3,657,732
def get_background_pools(experiment: Experiment) -> ThreadPoolExecutor: """ Create a pool for background activities. The pool is as big as the number of declared background activities. If none are declared, returned `None`. """ method = experiment.get("method") rollbacks = experiment.get("rollbacks", []) activity_background_count = 0 for activity in method: if activity and activity.get("background"): activity_background_count = activity_background_count + 1 activity_pool = None if activity_background_count: logger.debug( "{c} activities will be run in the background".format( c=activity_background_count)) activity_pool = ThreadPoolExecutor(activity_background_count) rollback_background_pool = 0 for activity in rollbacks: if activity and activity.get("background"): rollback_background_pool = rollback_background_pool + 1 rollback_pool = None if rollback_background_pool: logger.debug( "{c} rollbacks will be run in the background".format( c=rollback_background_pool)) rollback_pool = ThreadPoolExecutor(rollback_background_pool) return activity_pool, rollback_pool
1a5fe86a84127ee56ae0e8cb62081f0b2f9af45d
3,657,733
import requests def download_thumb(se: requests.Session, proxy: dict, addr: str) -> str: """下载缩略图 Args: se: 会话对象 proxy: 代理字典 addr: 缩略图地址 Returns: 成功时返回缩略图的本地绝对路径,失败时返回空字符串 """ header = {'User-Agent': USER_AGENT} try: with se.get(addr, headers=header, proxies=proxy, stream=True, timeout=5) as thumb_res: with NamedTemporaryFile('w+b', prefix='PETSpider_', delete=False) as thumb: for chunk in thumb_res.iter_content(): thumb.write(chunk) path = thumb.name except (OSError, IOError): return '' else: return path
06971178c80376bb9c7bf30ca6cc8ad8c2a4b6b9
3,657,734
def iter_dir_completions(arg): """Generate an iterator that iterates through directory name completions. :param arg: The directory name fragment to match :type arg: str """ return iter_file_completions(arg, True)
e29544ea7886b08c03d6ba79374d0576b5af701e
3,657,735
def climate_eurotronic_spirit_z_fixture(client, climate_eurotronic_spirit_z_state): """Mock a climate radio danfoss LC-13 node.""" node = Node(client, climate_eurotronic_spirit_z_state) client.driver.controller.nodes[node.node_id] = node return node
7d24ada11d4ed30dd62d7bf160757f8909f7d4c8
3,657,736
def xi_eta_to_ab(ξ, η): """ function to transform xi, eta coords to a, b see Hesthaven function 'rstoab' @param xi, eta vectors of xi, eta pts """ a, b = np.zeros_like(ξ), np.zeros_like(η) singular = np.isclose(η, 1.0) nonsingular = np.logical_not(singular) a[nonsingular] = 2*(1. + ξ[nonsingular])/(1 - η[nonsingular]) - 1 a[singular] = -1 b = η return a, b
3664e90754ab9ebb86cc76f585e8383d76d6d75d
3,657,737
from typing import List import time from datetime import datetime import os def generate_run_base_dir( result_dir: str, timestamp: int = None, tag: str = None, sub_dirs: List[str] = None ) -> str: """ Generate a base directory for each experiment run. Looks like this: result_dir/date_tag/sub_dir_1/.../sub_dir_n Args: result_dir (str): Experiment output directory. timestamp (int): Timestamp which will be inlcuded in the form of '%y%m%d_%H%M'. tag (str): Tag after timestamp. sub_dirs (List[str]): List of subdirectories that should be created. Returns: str: Directory name. """ if timestamp is None: timestamp = time.time() if sub_dirs is None: sub_dirs = [] # Convert time date = datetime.datetime.fromtimestamp(timestamp) date_str = date.strftime("%y-%m-%d_%H:%M") # Append tag if given if tag is None: base_dir = date_str else: base_dir = date_str + "_" + tag # Create directory base_dir = os.path.join(result_dir, base_dir, *sub_dirs) return base_dir
fffdd1e44b63dec9df108f0bc22a83944805ec02
3,657,738
def mulaw_to_value(mudata): """Convert a mu-law encoded value to linear.""" position = ((mudata & 0xF0) >> 4) + 5 return ((1 << position) | ((mudata & 0xF) << (position - 4)) | (1 << (position - 5))) - 33
2ccca7f13861c7a212ac3a1dd2afc439839b19a7
3,657,739
from typing import Iterable from typing import Set import re import click def init_exclusion_regexes(paths_ignore: Iterable[str]) -> Set[re.Pattern]: """ filter_set creates a set of paths of the ignored entries from 3 sources: .gitguardian.yaml files in .git files ignore in .gitignore """ res = set() for path in paths_ignore: if not is_pattern_valid(path): raise click.ClickException(f"{path} is not a valid exclude pattern.") res.add(re.compile(translate_user_pattern(path))) return res
54c7dd9b064fd2582545b82b2f8df324448e49f3
3,657,740
def validate_watch(value): """Validate "watch" parameter.""" if not value: return None if isinstance(value, str): value = [_ for _ in value.split("\n") if _] return value
203b77f376a747cbd10f0c674897f912bb75618f
3,657,741
def diatomic_unitary(a, b, c): """ Unitary decomposed as a diatomic gate of the form Ztheta + X90 + Ztheta + X90 + Ztheta """ X90 = expm(-0.25j*np.pi*pX) return expm(-0.5j*a*pZ)@X90@expm(-0.5j*b*pZ)@X90@expm(-0.5j*c*pZ)
38bbd194f2179aff1874190dbbb95546790f9d91
3,657,742
def is_x_y_in_hidden_zone_all_targets(room_representation, camera_id, x, y): """ :description Extend the function is_x_y_in_hidden_zone_one_target, 1.for every target in the room :param 1. (RoomRepresentation) -- room description of the target and the cameras 2. (int) camera_id -- camera id to find it in the given room description 1. (int) x -- x coordinate of a point in the room frame 2. (int) y -- y coordinate of a point in the room frame :return / modify vector 1. (bool) -- True if the point is not hidden """ camera = find_cam_in_camera_representation(room_representation, camera_id) if camera is None: return False for target in room_representation.target_representation_list: xt = target.xc yt = target.yc radius = target.radius if is_x_y_in_hidden_zone_one_target(camera, x, y, xt, yt, radius): return True return False
a682a2ac99798c3c8d7ad23881f965ffa33071bf
3,657,743
def _create_pure_mcts_player( game: polygames.Game, mcts_option: mcts.MctsOption, num_actor: int ) -> mcts.MctsPlayer: """a player that uses only mcts + random rollout, no neural net""" player = mcts.MctsPlayer(mcts_option) for _ in range(num_actor): actor = polygames.Actor( None, game.get_feat_size(), game.get_action_size(), False, False, None ) player.add_actor(actor) return player
8faf70a43e0734362dfd3aba0c0575758945eb09
3,657,744
def get_fans_users(): """ 获取用户的粉丝 :return: """ user_id = request.argget.all("user_id") page = str_to_num(request.argget.all("page", 1)) pre = str_to_num(request.argget.all("pre", 20)) s, r = arg_verify(reqargs=[("user id", user_id)], required=True) if not s: return r data = {"users": []} fans = mdbs["user"].db.user_follow.find({"type": "account", "follow": user_id}) data_cnt = fans.count(True) for user in fans.skip(pre * (page - 1)).limit(pre): s, r = get_user_public_info(user_id=user["user_id"], is_basic=False, current_user_isauth=current_user.is_authenticated) if s: data["users"].append(r) data["users"] = datas_paging( pre=pre, page_num=page, data_cnt=data_cnt, datas=data["users"]) return data
0af36e4f2b3051975f834df554ff09e9d539ec82
3,657,745
import re def test_invalid_patterns(list, pattern): """ Function to facilitate the tests in MyRegExTest class :param list: list with strings of invalid cases :param pattern: a regular expression :return: list with the result of all matches which should be a list of None """ newList = [] for item in list: matched = re.match(pattern, item) if matched is None: newList.append(None) else: raise ValueError(item + ' matched to ' + pattern + ' while it should not have matched') return newList
94a8232d66ff4c705e7a587aedc9d1cbe0b4f072
3,657,746
import argparse def args_parse(): """Parse the input args.""" parser = argparse.ArgumentParser(description='Certificate import') parser.add_argument("--cert", default="./kmc/config/crt/sever.cert", type=str, help="The path of certificate file") parser.add_argument("--key", default='./kmc/config/crt/sever.key', type=str, help="The path of private Key file.") parser.add_argument("--key_component_1", default='./kmc/config/ksf/ksmaster.dat', type=str, help="key material 1.") parser.add_argument("--key_component_2", default='./kmc/config/ksf/ksstandby.dat', type=str, help="key material 2.") args = parser.parse_args() return args
88b114ac63afe32bac097a26bb15fe704fc2e8c1
3,657,747
def remove_constant_features(sfm): """ Remove features that are constant across all samples """ # boolean matrix of whether x == first column (feature) x_not_equal_to_1st_row = sfm._x != sfm._x[0] non_const_f_bool_ind = x_not_equal_to_1st_row.sum(axis=0) >= 1 return sfm.ind_x(selected_f_inds=non_const_f_bool_ind)
ae8c6e1d14b7260c8d2491b2f8a00ba352d7375a
3,657,748
def flatten(x): """ Flatten list an array. Parameters ---------- x: list of ndarray or ndarray the input dataset. Returns ------- y: ndarray 1D the flatten input list of array. shape: list of uplet the input list of array structure. """ # Check input if not isinstance(x, list): x = [x] elif len(x) == 0: return None, None # Flatten the dataset y = x[0].flatten() shape = [x[0].shape] for data in x[1:]: y = np.concatenate((y, data.flatten())) shape.append(data.shape) return y, shape
4efb7c740cb197bf9e8e094a9e6b6e38badb5a25
3,657,749
def sample_automaton(): """ Creates a sample automaton and returns it. """ # The states are a python Set. Name them whatever you want. states = {"0","1","2"} # Choose one of the states to be the initial state. You need to give this a Set, but that Set usually only contains one state. init_state = {"0"} # The set of accepted states should also be a subset of the states. accept_states = {"0","1"} # The automaton works based on a set alphabet. alphabet = {"a","b"} #The transition diagram for the automaton is a set of edges. Each edge q1 --x--> q2 is represented by a tuple (not a list!) (q1, x, q2). # The constructor will accept the actual set, like below, or you can pass it a # simplified string that shows the edges. So either of the two lines below works. d = { ("0","a","1"), ("0","b","2"), ("1","a","2"), ("2","b","0") } d = "0a1,0b2,2b0" #create automaton usr_auto = Automaton(states, init_state, accept_states, alphabet, d) return usr_auto
f0b7da88825c88841e55dd1ebaf46d5979eaa0fb
3,657,750
def mae(data, data_truth): """Computes mean absolute error (MAE) :param data: Predicted time series values (n_timesteps, n_timeseries) :type data: numpy array :param data_truth: Ground truth time series values :type data_truth: numpy array """ return np.mean(np.abs(data - data_truth))
76fce7e40adbfbf28f3d08df4117502baa01cbed
3,657,751
def _find_ntc_family(guide_id): """Return a String of the NTC family """ guide_id_list = guide_id.split('_') return '_'.join(guide_id_list[0:2])
2b340694c2379682b232e49c9b0f1f0a91c778cf
3,657,752
def CreateFilletCurves(curve0, point0, curve1, point1, radius, join, trim, arcExtension, tolerance, angleTolerance, multiple=False): """ Creates a tangent arc between two curves and trims or extends the curves to the arc. Args: curve0 (Curve): The first curve to fillet. point0 (Point3d): A point on the first curve that is near the end where the fillet will be created. curve1 (Curve): The second curve to fillet. point1 (Point3d): A point on the second curve that is near the end where the fillet will be created. radius (double): The radius of the fillet. join (bool): Join the output curves. trim (bool): Trim copies of the input curves to the output fillet curve. arcExtension (bool): Applies when arcs are filleted but need to be extended to meet the fillet curve or chamfer line. If true, then the arc is extended maintaining its validity. If false, then the arc is extended with a line segment, which is joined to the arc converting it to a polycurve. tolerance (double): The tolerance, generally the document's absolute tolerance. Returns: Curve[]: The results of the fillet operation. The number of output curves depends on the input curves and the values of the parameters that were used during the fillet operation. In most cases, the output array will contain either one or three curves, although two curves can be returned if the radius is zero and join = false. For example, if both join and trim = true, then the output curve will be a polycurve containing the fillet curve joined with trimmed copies of the input curves. If join = False and trim = true, then three curves, the fillet curve and trimmed copies of the input curves, will be returned. If both join and trim = false, then just the fillet curve is returned. """ url = "rhino/geometry/curve/createfilletcurves-curve_point3d_curve_point3d_double_bool_bool_bool_double_double" if multiple: url += "?multiple=true" args = [curve0, point0, curve1, point1, radius, join, trim, arcExtension, tolerance, angleTolerance] if multiple: args = list(zip(curve0, point0, curve1, point1, radius, join, trim, arcExtension, tolerance, angleTolerance)) response = Util.ComputeFetch(url, args) response = Util.DecodeToCommonObject(response) return response
fee4c009db83ff77d6369e8e88d2bd3bc1d64390
3,657,753
from typing import List from typing import Tuple import json from typing import Dict def select_ads() -> jsonify: """ select ads """ try: if INSERTED_FILES_NUM == 0 or INSERTED_FILES_NUM != PROCESSED_FILES_NUM: raise Exception('server is not ready') weights: List[Tuple[str, int]] = json.loads(request.get_json()) selected_ads: List[Dict[str, int or float]] = server_algo.select_ads(weights) return jsonify({'ads': selected_ads}), 200 except Exception as e: return jsonify(str(e)), 400
7e65b21792c6b80e90dcb16bab644a329e8f7eb5
3,657,754
from typing import Dict from typing import List from typing import Any def _xpath_find(data: Dict, xparts: List, create_if_missing: bool = False) -> Any: """ Descend into a data dictionary. :arg data: The dictionary where to look for `xparts`. :arg xparts: Elements of an Xpath split with xpath_split() :arg bool create_if_missing: If elements are missing from `data`, create them. :returns: The element identified by `xparts`. :raises KeyError: If create_if_missing=False and the element is not found in `data`. :raises TypeError: If `data` does not match the expected structure conveyed by `xparts`. """ for _, name, keys in xparts: if not isinstance(data, dict): raise TypeError("expected a dict") if keys: if name not in data and create_if_missing: data[name] = KeyedList(key_name=_xpath_keys_to_key_name(keys)) lst = data[name] # may raise KeyError if isinstance(lst, KeyedList): try: data = lst[_xpath_keys_to_key_val(keys)] except KeyError: if not create_if_missing: raise data = dict(keys) lst.append(data) elif isinstance(lst, list): # regular python list, need to iterate over it try: i = _list_find_key_index(keys, lst) data = lst[i] except ValueError: # not found if not create_if_missing: raise KeyError(keys) from None data = dict(keys) lst.append(data) else: raise TypeError("expected a list") elif create_if_missing: data = data.setdefault(name, {}) else: data = data[name] # may raise KeyError return data
24bd5e04c5ba8bd7dc4950c3f655241d4d4e8d65
3,657,755
def r_mediate(y, t, m, x, interaction=False): """ This function calls the R function mediate from the package mediation (https://cran.r-project.org/package=mediation) y array-like, shape (n_samples) outcome value for each unit, continuous t array-like, shape (n_samples) treatment value for each unit, binary m array-like, shape (n_samples) mediator value for each unit, here m is necessary binary and uni- dimensional x array-like, shape (n_samples, n_features_covariates) covariates (potential confounders) values interaction boolean, default=False whether to include interaction terms in the model interactions are terms XT, TM, MX """ m = m.ravel() var_names = [[y, 'y'], [t, 't'], [m, 'm'], [x, 'x']] df_list = list() for var, name in var_names: if len(var.shape) > 1: var_dim = var.shape[1] col_names = ['{}_{}'.format(name, i) for i in range(var_dim)] sub_df = pd.DataFrame(var, columns=col_names) else: sub_df = pd.DataFrame(var, columns=[name]) df_list.append(sub_df) df = pd.concat(df_list, axis=1) m_features = [c for c in df.columns if ('y' not in c) and ('m' not in c)] y_features = [c for c in df.columns if ('y' not in c)] if not interaction: m_formula = 'm ~ ' + ' + '.join(m_features) y_formula = 'y ~ ' + ' + '.join(y_features) else: m_formula = 'm ~ ' + ' + '.join(m_features + [':'.join(p) for p in combinations(m_features, 2)]) y_formula = 'y ~ ' + ' + '.join(y_features + [':'.join(p) for p in combinations(y_features, 2)]) robjects.globalenv['df'] = df mediator_model = Rstats.lm(m_formula, data=base.as_symbol('df')) outcome_model = Rstats.lm(y_formula, data=base.as_symbol('df')) res = mediation.mediate(mediator_model, outcome_model, treat='t', mediator='m', boot=True, sims=1) relevant_variables = ['tau.coef', 'z1', 'z0', 'd1', 'd0'] to_return = [np.array(res.rx2(v))[0] for v in relevant_variables] return to_return + [None]
c07afc4c2569566d67e652e8de4a5ee770a49218
3,657,756
def default_props(reset=False, **kwargs): """Return current default properties Parameters ---------- reset : bool if True, reset properties and return default: False """ global _DEFAULT_PROPS if _DEFAULT_PROPS is None or reset: reset_default_props(**kwargs) return _DEFAULT_PROPS
43a7015bd8089082d17ca7625748a8789b3eb52a
3,657,757
def ReadFlatFileNGA(xlsfile): """ Generate NGA flatfile dictionary for generate usage """ # read in excel flatfile book = xlrd.open_workbook(xlsfile) sh = book.sheet_by_index(0) # 'Flatfile' sheet name keys = sh.row_values(0) for itmp in range( len(keys) ): keys[itmp] = keys[itmp].encode('ascii') # Column names needed ( add more depending on selection criterion ) names_predictors = [ 'Record Sequence Number', 'EQID', # IDs 'Earthquake Magnitude', 'Dip (deg)','Rake Angle (deg)','Dept to Top Of Fault Rupture Model', 'Fault Rupture Width (km)', # source related 'Joyner-Boore Dist. (km)', 'ClstD (km)', 'FW/HW Indicator', 'Source to Site Azimuth (deg)', # source-site pair related "GMX's C1", 'HP-H1 (Hz)', 'HP-H2 (Hz)', 'LP-H1 (Hz)', 'LP-H2 (Hz)','File Name (Horizontal 1)','File Name (Horizontal 2)', # seismogram related 'Preferred Vs30 (m/s)', 'Measured/Inferred Class', 'Z1 (m)', 'Z1.5 (m)', 'Z2.5 (m)' # site related ] keys_predictors = ['RecordID', 'EQID', 'Mw', 'dip', 'rake', 'Ztor', 'W', 'Rjb', 'Rrup', 'Fhw', 'azimuth', 'GMX_C1', 'HP1', 'HP2', 'LP1', 'LP2', 'H1','H2', 'Vs30', 'VsFlag', 'Z1.0','Z1.5','Z2.5' ] Fhwi = {'hw':1,'fw':0,'nu':0,'na':0,'':None} # relate indicators to Fhw flag # IM related names_IMs = ['Record Sequence Number', 'PGA (g)', 'PGV (cm/sec)', 'PGD (cm)' ] keys_IMs = ['RecordID', 'PGA', 'PGV', 'PGD'] periods = [] for ikey, key in enumerate( keys ): if isinstance( key, str ): key.encode( 'ascii' ) # key now is one of the column name if key[0] == 'T' and key[-1] == 'S': names_IMs.append( key ) keys_IMs.append( 'SA'+key[1:-1] ) periods.append( float(key[1:-1]) ) # colname and colindex map icol_dictP = {} icol_dictI = {} for ikey, key in enumerate( keys ): if key in names_predictors: icol_dictP[key] = ikey if key in names_IMs: icol_dictI[key] = ikey nga_flats = {}; nga_IMs = {} for icol, key in enumerate( names_predictors ): col0 = sh.col_values(icol_dictP[key]) col0[0] = col0[0].encode('ascii') if isinstance( col0[1], str ): if key == 'FW/HW Indicator': # Fhw string to flag (int) for irow in range(1, len(col0) ): col0[irow] = col0[irow].encode('ascii') col0[irow] = Fhwi[col0[irow]] else: for irow in range(1, len(col0) ): col0[irow] = col0[irow].encode('ascii') keyP = keys_predictors[icol] nga_flats[keyP] = col0[1:] for icol, key in enumerate( names_IMs ): col0 = sh.col_values(icol_dictI[key]) if isinstance( col0[1], str ): for irow in range(1, len(col0) ): col0[irow] = col0[irow].encode('ascii') keyI = keys_IMs[icol] nga_IMs[keyI] = col0[1:] return nga_flats, nga_IMs
8ed4c66a541cb5fcebce6965c1f9b9a514bea1ae
3,657,758
def _chr_ord(x): """ This is a private utility function for getBytesIOString to return chr(ord(x)) """ return chr(ord(x))
8529686bf3a40cd1f2c32f458ebdba17a9b35a05
3,657,759
def vkToWchar (m): """ Mapping from virtual key to character """ ret = [] retTbl = ['/* table of virtual key to wchar mapping tables */', 'static VK_TO_WCHAR_TABLE aVkToWcharTable[] = {'] def generate (n, g, defPrefix=''): defname = f'aVkToWch{defPrefix}{n}' ret.extend ([f'/* map virtual key to flags and {n} unicode output characters */', f'static VK_TO_WCHARS{n} {defname}[] = {{']) for vk, flags, chars in g: def toRepr (s): if s is None: return WChar.NONE.cdefName elif len (s) != 1: # everything else belongs to ligature tables, which we # don’t support. raise Exception (f'only single-character strings are supported ({s!r})') else: return f'0x{ord (s):04X}u /*{repr (s)}*/' chars = ', '.join (map (toRepr, chars)) ret.append (f'\t{{{vk.cdefName}, {flags}, {{{chars}}}}},') ret.extend ([f'\t{{0, 0, {{{("0, "*n)}}}}},', '\t};', '']) # add the new table retTbl.append (f'\t{{(PVK_TO_WCHARS1) {defname}, {n}, sizeof({defname}[0])}},') f = lambda x: len (x[2]) m = groupby (sorted (m, key=f), key=f) for n, g in m: generate (n, g) # We are almost always going to need the numpad keys. They also need to be # last, so translation from string to virtual key does not map them. numpad = [ (VirtualKey.NUMPAD0, 0, '0'), (VirtualKey.NUMPAD1, 0, '1'), (VirtualKey.NUMPAD2, 0, '2'), (VirtualKey.NUMPAD3, 0, '3'), (VirtualKey.NUMPAD4, 0, '4'), (VirtualKey.NUMPAD5, 0, '5'), (VirtualKey.NUMPAD6, 0, '6'), (VirtualKey.NUMPAD7, 0, '7'), (VirtualKey.NUMPAD8, 0, '8'), (VirtualKey.NUMPAD9, 0, '9'), ] generate (1, numpad, 'Num') retTbl.extend (['\t{NULL, 0, 0},', '\t};']) return '\n'.join (ret + retTbl)
b0b938720c13ed45c32dcd402f43e93f24aaa111
3,657,760
def load_glove_vectors(glove_file="/home/yaguang/pretrained_models/glove.6B.50d.txt"): """Load the glove word vectors""" word_vectors = {} with open(glove_file) as f: for line in f: split = line.split() word_vectors[split[0]] = [float(x) for x in split[1:]] return word_vectors
a7bb1650885e12f436273b012d0c1c381e1be311
3,657,761
def _ParseFileVersion(file_version): """Convert the string file_version in event.proto into a float. Args: file_version: String file_version from event.proto Returns: Version number as a float. """ tokens = file_version.split("brain.Event:") try: return float(tokens[-1]) except ValueError: ## This should never happen according to the definition of file_version ## specified in event.proto. logger.warn( ( "Invalid event.proto file_version. Defaulting to use of " "out-of-order event.step logic for purging expired events." ) ) return -1
43e4cfdc116ae5e687e4c0f6ed55bc8b7518f6b1
3,657,762
import gzip def get_file_format(input_files): """ Takes all input files and checks their first character to assess the file format. Returns one of the following strings; fasta, fastq, other or mixed. fasta and fastq indicates that all input files are of the same format, either fasta or fastq. other indiates that all files are not fasta nor fastq files. mixed indicates that the inputfiles are a mix of different file formats. """ # Open all input files and get the first character file_format = [] invalid_files = [] for infile in input_files: if is_gzipped(infile):#[-3:] == ".gz": f = gzip.open(infile, "rb") fst_char = f.read(1); else: f = open(infile, "rb") fst_char = f.read(1); f.close() # Assess the first character if fst_char == b"@": file_format.append("fastq") elif fst_char == b">": file_format.append("fasta") else: invalid_files.append("other") if len(set(file_format)) != 1: return "mixed" return ",".join(set(file_format))
901ed1ca81563321eb9a16e6a36fbebb12f3b2ea
3,657,763
def get_nominal_hour(train_num): """Get the nominal hour for a train num (most frequent)""" res = database.get().query(""" SELECT count(*) as count, substr(date, 12, 5) as hour FROM results WHERE num = '%s' GROUP BY hour ORDER BY count DESC LIMIT 1; """ % train_num) return next(res).hour
c51fba63b03e2aa930399077143ff77e1fe5f485
3,657,764
from typing import List import os def prepare_aggregation_data(group_name: str) -> List[PlotValues]: """Constructs and returns learning rate curves Args: group_name (str): group name for which to construct the curves Returns: A list of `PlotValues`. """ group_dir = os.path.join(FLAGS.results_dir, group_name) # List of tuples (benchmark_name, unitary_accuracy, federated_accuracy) labels_and_lrs = read_all_task_values(group_dir=group_dir) assert labels_and_lrs, "No values for group found" return [ (label, lrs, [i for i in range(1, len(lrs) + 1, 1)]) for label, lrs in labels_and_lrs ]
d94d0241adc2525a899b319d5539978320bfafc9
3,657,765
def compute_cgan_metrics(img_y, img_g, i = 0): """ Computes accuracy, precision, recall, f1, iou_score for passed image, return None in case of div 0 img_y: ground truth building footprint semantic map img_g: generated image i: 0 for entire image, 1 for inner (excluding border) Note: image format is (n,n,1) and each pixel is either -1 (for 'no' building at pixel) or 1 (for 'yes' building at pixel) """ # image size (it is square), and ring step iz, rz = int(img_y.shape[0]), int(img_y.shape[0] / (4 * 2)) # building inner square mask (ring) where we calculate metrics # example of such mask: # 1 1 1 1 # 1 0 0 1 # 1 0 0 1 # 1 1 1 1 ring = np.ones(img_y.shape, dtype=bool) ring[i * rz:iz - i * rz, i * rz:iz - i * rz, 0] = False # now, erasing all areas which are not in ring with 0 img_y[ring] = 0 img_g[ring] = 0 # TP (true positive), TN, FP, FN TP = np.sum(np.logical_and((img_y == 1), (img_g == 1))) TN = np.sum(np.logical_and((img_y == -1), (img_g == -1))) FP = np.sum(np.logical_and((img_y == -1), (img_g == 1))) FN = np.sum(np.logical_and((img_y == 1), (img_g == -1))) # IoU (intersection over union) intersection = np.logical_and((img_y == 1), (img_g == 1)) union = np.logical_or((img_y == 1), (img_g == 1)) if TP + FP == 0 or TP + FN == 0: return None # reporting metrics accuracy = (TP + TN) / (TP + TN + FP + FN) precision = TP / (TP + FP) recall = TP / (TP + FN) if precision == 0 and recall == 0: return None f1 = 2.0 * (precision * recall) / (precision + recall) iou_score = np.sum(intersection) / np.sum(union) return accuracy, precision, recall, f1, iou_score
be900b303d333ec1c7233d59779c8006333fba36
3,657,766
def learning(spiking_neurons, spike_times, taup, taum, Ap, Am, wmax, w_init): """ Takes a spiking group of neurons, connects the neurons sparsely with each other, and learns the weight 'pattern' via STDP: exponential STDP: f(s) = A_p * exp(-s/tau_p) (if s > 0), where s=tpost_{spike}-tpre_{spike} :param spiking_neurons, spike_times: np.arrays for Brian2's SpikeGeneratorGroup (list of lists created by `generate_spike_train.py`) - spike train used for learning :param taup, taum: time constant of weight change (in ms) :param Ap, Am: max amplitude of weight change :param wmax: maximum weight (in S) :param w_init: initial weights (in S) :return weightmx: learned synaptic weights """ np.random.seed(12345) pyrandom.seed(12345) #plot_STDP_rule(taup/ms, taum/ms, Ap/1e-9, Am/1e-9, "STDP_rule") PC = SpikeGeneratorGroup(nPCs, spiking_neurons, spike_times*second) # mimics Brian1's exponentialSTPD class, with interactions='all', update='additive' # see more on conversion: http://brian2.readthedocs.io/en/stable/introduction/brian1_to_2/synapses.html STDP = Synapses(PC, PC, """ w : 1 dA_presyn/dt = -A_presyn/taup : 1 (event-driven) dA_postsyn/dt = -A_postsyn/taum : 1 (event-driven) """, on_pre=""" A_presyn += Ap w = clip(w + A_postsyn, 0, wmax) """, on_post=""" A_postsyn += Am w = clip(w + A_presyn, 0, wmax) """) STDP.connect(condition="i!=j", p=connection_prob_PC) STDP.w = w_init run(400*second, report="text") weightmx = np.zeros((nPCs, nPCs)) weightmx[STDP.i[:], STDP.j[:]] = STDP.w[:] return weightmx
7324a2290e7ec14146be28d2b5a14e10b6ec44e4
3,657,767
import optparse def build_arg_parser2(): """ Build an argument parser using optparse. Use it when python version is 2.5 or 2.6. """ usage_str = "Smatch table calculator -- arguments" parser = optparse.OptionParser(usage=usage_str) parser.add_option("--fl", dest="fl", type="string", help='AMR ID list file') parser.add_option("-f", dest="f", type="string", action="callback", callback=cb, help="AMR IDs (at least one)") parser.add_option("-p", dest="p", type="string", action="callback", callback=cb, help="User list") parser.add_option("--fd", dest="fd", type="string", help="file directory") parser.add_option("-r", "--restart", dest="r", type="int", help='Restart number (Default: 4)') parser.add_option("-v", "--verbose", action='store_true', dest="v", help='Verbose output (Default:False)') parser.set_defaults(r=4, v=False, ms=False, fd=isi_dir_pre) return parser
7118b337bda7b9b170bf3eedf230a5fcd323a17b
3,657,768
def _write_log(path, lines): """ :param path: log file path :param lines: content :return status:Bool """ try: with open(path, 'w') as file: logi('open file {log_path} for writting'.format(log_path=path)) file.writelines(lines) except Exception as e: loge(e) return False return True
f98d87939a23549a82370ce81e7bf28b1ac52b10
3,657,769
def update_meal_plan(plan_id: str, meal_plan: MealPlan): """ Updates a meal plan based off ID """ meal_plan.process_meals() meal_plan.update(plan_id) # try: # meal_plan.process_meals() # meal_plan.update(plan_id) # except: # raise HTTPException( # status_code=404, # detail=SnackResponse.error("Unable to Update Mealplan"), # ) return SnackResponse.success("Mealplan Updated")
cf201280d6f89aac5d412af3344e4ba89b29d1ed
3,657,770
def clean_data(df): """ INPUT: df - Panda DataFrame - A data frame that contains the data OUTPUT: df - Panda DataFrame - A Cleaned Panda Data frame """ #split categories into a data frame and take the first row cat = df.categories.str.split(';', expand=True) row = cat.iloc[0] rew=row.unique() # Fix columns name f = [] for x in rew: r = x[:-2] f.append(r) category_colnames = pd.Series(f) cat.columns = category_colnames for column in cat: cat[column] = cat[column].str.strip().str[-1] # convert column from string to numeric cat[column] = cat[column].astype('int64') # concating the categories column with df and dropping unnesscary values df = df.drop(['categories'], axis = 1) df = pd.concat([df, cat], axis=1 ) df = df.drop_duplicates() df.dropna(how='any') return df pass
7d19cf395094fe780da6204f10f80528526083d0
3,657,771
def vec2transform(v): """Convert a pose from 7D vector format ( x y z qx qy qz qw) to transformation matrix form Args: v pose in 7D vector format Returns: T 4x4 transformation matrix $ rosrun tf tf_echo base os_lidar - Translation: [-0.084, -0.025, 0.050] - Rotation: in Quaternion [0.000, 0.000, 0.924, 0.383] in RPY (radian) [0.000, -0.000, 2.356] in RPY (degree) [0.000, -0.000, 135.000] Random quaternion sent by nived in Mattermost -Rotation: q_BL: [ 0.0122965, -0.002454, 0.9226886, 0.385342] """ T_cam_to_os = np.eye(4) T_cam_to_os[:3, -1] = np.array([-0.084, -0.025, 0.050]) T_cam_to_os[:3, :3] = o3d.geometry.Geometry3D.get_rotation_matrix_from_quaternion( np.array([0.383, 0.000, 0.000, 0.924]) ) T_os_to_cam = np.linalg.inv(T_cam_to_os) T = np.eye(4) T[:3, -1] = v[:3] T[:3, :3] = o3d.geometry.Geometry3D.get_rotation_matrix_from_quaternion( np.array([v[6], v[3], v[4], v[5]]) ) return T_os_to_cam @ T @ T_cam_to_os
e3a6023fe2b6bedc7b023d08bb22abd406bb9612
3,657,772
import re def cleanup_name_customregex(cname, customregex=None, returnmatches=False): """Cleanup the input name given a custom dictionary of regular expressions (format of customregex: a dict like {'regex-pattern': 'replacement'}""" if customregex is None: customregex = {'_': ' ', 'repos': '', 'ecg': '', '[0-9]+': '', } matches = set() # For each pattern for pattern, replacement in customregex.iteritems(): # First try to see if there is a match and store it if yes if returnmatches: m = re.search(pattern, cname, flags=re.I) if m: matches.add(m.group(0)) # Then replace the pattern found cname = re.sub(pattern, replacement, cname, flags=re.I) # Return both the cleaned name and matches if returnmatches: return (cname, matches) # Return just the cleaned name else: return cname
15cbaf0cb439ba8aa3a550cc7713e19e34d714d4
3,657,773
import math def compute_recommended_batch_size_for_trustworthy_experiments(C: int, H: int, W: int, safety_val: float) -> int: """ Based on inequality with safety_val=s: N' >= s*D' the recommended batch size is, assuming N'=B*H*W and D'=C (so considering neurons as filter, patches as data): B*H*W >= s*C leading to any batch size B that satisfies: B >= (s*C)/(H*W) for the current layer and model. So, C, H, W are for the current model at that layer. note: - recommended way to compute this is to get the largest B after plugging in the C, H, W for all the layers of your model - essentially computing the "worst-case" B needed for the model. :return: """ recommended_batch_size: int = int(math.ceil(safety_val * C / (H * W))) assert (recommended_batch_size > 0), 'Batch size that was recommnded was negative, check the input your using.' return recommended_batch_size
80f11adb87b252a31aba590c38e60350535025ae
3,657,774
def filter_gradient(t, h_, n_std=3): """Filter outliers by evaluating the derivative. Take derivative and evaluate outliers in derivative. """ h = h_.copy() # NOTE: This must be a separate step # dh/dt = 0 -> invalid dhdt = np.gradient(h) invalid = np.round(dhdt, 6) == 0.0 dhdt[invalid] = np.nan invalid = np.isnan(dhdt) | ( np.abs(dhdt - np.nanmedian(dhdt)) > mad_std(dhdt) * n_std ) if sum(invalid) == 0: return h h[invalid] = np.nan return h
4e4547f38c2886f33c3b42442ff37b9100dda9c7
3,657,775
import jsonschema def network_driver_create_endpoint(): """Creates new Neutron Subnets and a Port with the given EndpointID. This function takes the following JSON data and delegates the actual endpoint creation to the Neutron client mapping it into Subnet and Port. :: { "NetworkID": string, "EndpointID": string, "Options": { ... }, "Interface": { "Address": string, "AddressIPv6": string, "MacAddress": string } } Then the following JSON response is returned. :: { "Interface": { "Address": string, "AddressIPv6": string, "MacAddress": string } } See the following link for more details about the spec: https://github.com/docker/libnetwork/blob/master/docs/remote.md#create-endpoint # noqa """ json_data = flask.request.get_json(force=True) LOG.debug("Received JSON data %s for " "/NetworkDriver.CreateEndpoint", json_data) jsonschema.validate(json_data, schemata.ENDPOINT_CREATE_SCHEMA) endpoint_id = json_data['EndpointID'] neutron_network_identifier = _make_net_identifier(json_data['NetworkID'], tags=app.tag) filtered_networks = _get_networks_by_identifier(neutron_network_identifier) if not filtered_networks: return flask.jsonify({ 'Err': "Neutron net associated with identifier {0} doesn't exist." .format(neutron_network_identifier) }) else: neutron_network_id = filtered_networks[0]['id'] interface = json_data['Interface'] or {} # Workaround for null interface_cidrv4 = interface.get('Address', '') interface_cidrv6 = interface.get('AddressIPv6', '') interface_mac = interface.get('MacAddress', '') if not interface_cidrv4 and not interface_cidrv6: return flask.jsonify({ 'Err': "Interface address v4 or v6 not provided." }) neutron_port, subnets = _create_or_update_port( neutron_network_id, endpoint_id, interface_cidrv4, interface_cidrv6, interface_mac) try: port_driver = get_driver(neutron_port) (stdout, stderr) = port_driver.create_host_iface( endpoint_id, neutron_port, subnets, filtered_networks[0]) LOG.debug(stdout) if stderr: LOG.error(stderr) except (exceptions.VethCreationFailure, exceptions.BindingNotSupportedFailure) as ex: with excutils.save_and_reraise_exception(): LOG.error('Preparing the veth ' 'pair was failed: %s.', ex) except processutils.ProcessExecutionError: with excutils.save_and_reraise_exception(): LOG.error('Could not bind the Neutron port to ' 'the veth endpoint.') except (exceptions.KuryrException, n_exceptions.NeutronClientException) as ex: with excutils.save_and_reraise_exception(): LOG.error('Failed to set up the interface: %s', ex) if app.vif_plug_is_fatal: port_active = utils.wait_for_port_active( app.neutron, neutron_port['id'], app.vif_plug_timeout) if not port_active: neutron_port_name = neutron_port['name'] raise exceptions.InactiveResourceException( "Neutron port {0} did not become active on time." .format(neutron_port_name)) response_interface = {} created_fixed_ips = neutron_port['fixed_ips'] subnets_dict_by_id = {subnet['id']: subnet for subnet in subnets} if not interface_mac: response_interface['MacAddress'] = neutron_port['mac_address'] vnic_type = neutron_port.get('binding:vnic_type') if vnic_type in const.VNIC_TYPES_SRIOV: response_interface.pop('MacAddress', None) if not (interface_cidrv4 or interface_cidrv6): if 'ip_address' in neutron_port: _process_interface_address( neutron_port, subnets_dict_by_id, response_interface) for fixed_ip in created_fixed_ips: _process_interface_address( fixed_ip, subnets_dict_by_id, response_interface) LOG.debug("Response JSON data %s for /NetworkDriver.CreateEndpoint", {'Interface': response_interface}) return flask.jsonify({'Interface': response_interface})
8a2f8fc065064699b60a7854b23cd36844a0ff6d
3,657,776
def generate_valve_from_great_vessel( label_great_vessel, label_ventricle, valve_thickness_mm=8, ): """ Generates a geometrically-defined valve. This function is suitable for the pulmonic and aortic valves. Args: label_great_vessel (SimpleITK.Image): The binary mask for the great vessel (pulmonary artery or ascending aorta) label_ventricle (SimpleITK.Image): The binary mask for the ventricle (left or right) valve_thickness_mm (int, optional): Valve thickness, in millimetres. Defaults to 8. Returns: SimpleITK.Image: The geometric valve, as a binary mask. """ # To speed up binary morphology operations we first crop all images template_img = 0 * label_ventricle cb_size, cb_index = label_to_roi( (label_great_vessel + label_ventricle) > 0, expansion_mm=(20, 20, 20) ) label_ventricle = crop_to_roi(label_ventricle, cb_size, cb_index) label_great_vessel = crop_to_roi(label_great_vessel, cb_size, cb_index) # Convert valve thickness to voxels _, _, res_z = label_ventricle.GetSpacing() valve_thickness = int(valve_thickness_mm / res_z) # Dilate the ventricle label_ventricle_dilate = sitk.BinaryDilate(label_ventricle, (valve_thickness,) * 3) # Find the overlap overlap = label_great_vessel & label_ventricle_dilate # Mask to thinner great vessel mask = label_great_vessel | label_ventricle_dilate overlap = sitk.Mask(overlap, mask) label_valve = sitk.BinaryMorphologicalClosing(overlap) # Finally, paste back to the original image space label_valve = sitk.Paste( template_img, label_valve, label_valve.GetSize(), (0, 0, 0), cb_index, ) return label_valve
4a40ab9513e6093486a914099316e80a8a24f58e
3,657,777
def current_decay(dataframe,two_components=False): """ Fits 95% peak to: A(t) = A*exp(-t/Taufast) + B*exp(-t/Tauslow) +Iss Parameters ---------- dataframe : A pandas dataframe Should be baselined two_components : True/False When False, a single exponential component is fitted to the current decay (B is zero). When True, the sum of two exponential components is fitted.The default is False. Returns ------- A Graph of the current decay with superimposed fit. Values for fast (and slow, if selected) time constants, or value for single time constant in mS """ # will need to get peak - done # get steady state # need to get amplitude of the fast component (peak) # amplitude of the slower component # Currently going for an unbinned approach, but can always consider a binned peak = get_peak(dataframe,decay=True) # gives component A for both fittig routines peak_to_baseline = dataframe.loc[peak:,:].mean(axis=1) # using get_Iss() and get_component (both should return amplitude and time # Normalising times to time of peak current peak_to_baseline.index = peak_to_baseline.index-(peak_to_baseline.index[0]) #### get 95% current to baseline current_at_t = peak_to_baseline[peak_to_baseline > (peak_to_baseline.iloc[0]*0.95)] # get times t = np.array(current_at_t.index) ##### # reformat current to numpy.array current_at_t = np.array(current_at_t) # get Iss _,Iss = get_Iss(peak_to_baseline) # fast component,A, peak amplitude A = current_at_t[0] ##### # preparing figure if two_components: xdata = np.zeros([np.size(t),4]) xdata[:,0] = t xdata[:,1] = A xdata[:,2] = Iss _,B = get_component(peak_to_baseline,'slow') # amplitude of slow component plt.style.use('ggplot') decayfig,decayaxs = plt.subplots(1) decayaxs.set_xlabel("t(ms)") decayaxs.set_ylabel("I(pA)") xdata[:,3] = B xdata = xdata.transpose() times = t*10**3 # rescaling to mS popt,_ = sp.optimize.curve_fit(double_exp_fit,xdata,current_at_t) # popt = Tfast,Tslow decayaxs.plot(times,double_exp_fit(xdata,popt[0],popt[1]),linestyle="--",color= 'red',label = "fit") decayaxs.plot(times,current_at_t,color = 'black',label = "data") decayaxs.set_title("Decay from 95% Ipeak:baseline. Tauf = {}ms,Taus = {}ms".format((popt[0]*10**3),(popt[1]*10**3))) decayaxs.legend() decayfig.tight_layout() return(popt[0]*10**3,popt[1]*10**3) else: xdata = np.zeros([np.size(t),3]) xdata[:,0] = t xdata[:,1] = A xdata[:,2] = Iss xdata = xdata.transpose() plt.style.use('ggplot') decayfig,decayaxs = plt.subplots(1) decayaxs.set_xlabel("t(ms)") decayaxs.set_ylabel("I(pA)") times = t*10**3 # rescaling to mS popt,_ = sp.optimize.curve_fit(exp_fit,xdata,current_at_t) #popt = Tau of single component decayaxs.plot(times,current_at_t,color = 'black',label = "data") decayaxs.plot(times,exp_fit(xdata,popt),linestyle="--",color= 'red',label = "fit") decayaxs.set_title("Decay from 95% Ipeak:baseline. Tau = {}ms".format((popt[0]*10**3))) decayaxs.legend() decayfig.tight_layout() return(popt[0]*10**3)
048e001b23344b2ac72f6683b0ca1ca66af8dcbd
3,657,778
import ctypes def get_n_mode_follow(p_state, idx_image=-1, idx_chain=-1): """Returns the index of the mode which to follow.""" return int(_MMF_Get_N_Mode_Follow(p_state, ctypes.c_int(idx_image), ctypes.c_int(idx_chain)))
30a548369b4fd708b3c8c73549b79951c9435667
3,657,779
import os def get_possible_centroid_nodes_from_partial_preprocessing(nw_name): """ this function returns a list of partially preprocessed nodes to used them as zone systems (for fast routing) """ nw_path = os.path.join(MAIN_DIR, "data", "networks", nw_name) ppf = os.path.join(nw_path, "base", "tt_matrix.npy") if os.path.isfile(ppf): tt_matrx = np.load(ppf) return [i for i in range(tt_matrx.shape[0])] else: raise FileExistsError("file {} not found! not preprocessed?".format(ppf))
a965888a6f8439b889429702714b6a3673567658
3,657,780
def divide(lhs, rhs): """Division with auto-broadcasting Parameters ---------- lhs : tvm.Tensor or Expr The left operand rhs : tvm.Tensor or Expr The right operand Returns ------- ret : tvm.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.divide(lhs, rhs)
d4a6f3b28eaa35faa300a64e5a81ac64aa6740cb
3,657,781
import gzip import pickle def load(filename): """Loads a compressed object from disk """ file = gzip.GzipFile(filename, 'rb') buffer = b'' while True: data = file.read() if data == b'': break buffer += data object = pickle.loads(buffer) file.close() return object
8a2b9bff8297fdf2824f962df9202b8e08c8d8a1
3,657,782
from multiprocessing import Queue from .rabbitmq import Queue from .beanstalk import Queue from .redis_queue import Queue def connect_message_queue(name, url=None, maxsize=0): """ create connection to message queue name: name of message queue rabbitmq: amqp://username:password@host:5672/%2F Refer: https://www.rabbitmq.com/uri-spec.html beanstalk: beanstalk://host:11300/ redis: redis://host:6379/db builtin: None """ if not url: return Queue(maxsize=maxsize) parsed = urlparse.urlparse(url) if parsed.scheme == 'amqp': return Queue(name, url, maxsize=maxsize) elif parsed.scheme == 'beanstalk': return Queue(name, host=parsed.netloc, maxsize=maxsize) elif parsed.scheme == 'redis': db = parsed.path.lstrip('/').split('/') try: db = int(db[0]) except: db = 0 return Queue(name, parsed.hostname, parsed.port, db=db, maxsize=maxsize) raise Exception('unknow connection url: %s', url)
4cb3ea808de8ffd5c157c4fbbf95e78d1ad2b075
3,657,783
def load_document(filepath): """ Description:Opens and loads the file specified by filepath as a raw txt string; assumes valid text file format. Input: String -> filepath of file from current directory Output: Entire contents of text file as a string """ #assert(filepath.endswith(".txt")), "Function: Load Document -> File specificed by filepath is not of type .txt" file = open(filepath, 'r') file_string = file.read() file.close() return file_string
b44a3af09ec7c776a1d3bd1a90efe3deb90da821
3,657,784
def get_user(request, uid): """ GET /user/1/ """ if uid != 1: return JsonResponse({"code": 10101, "message": "user id null"}) data = {"age": 22, "id": 1, "name": "tom"} return JsonResponse({"code": 10200, "data": data, "message": "success"})
92ef79cf015de5556d1c5715e57cb550a42ef1ca
3,657,785
import collections import tokenize def count_ngrams(lines, min_length=1, max_length=3): """ Iterate through given lines iterator (file object or list of lines) and return n-gram frequencies. The return value is a dict mapping the length of the n-gram to a collections.Counter object of n-gram tuple and number of times that n-gram occurred. Returned dict includes n-grams of length min_length to max_length. """ lengths = range(min_length, max_length + 1) ngrams = {length: collections.Counter() for length in lengths} queue = collections.deque(maxlen=max_length) # Helper function to add n-grams at start of current queue to dict def add_queue(): current = tuple(queue) for length in lengths: if len(current) >= length: ngrams[length][current[:length]] += 1 # Loop through all lines and words and add n-grams to dict for line in lines: for word in tokenize(line): queue.append(word) if len(queue) >= max_length: add_queue() # Make sure we get the n-grams at the tail end of the queue while len(queue) > min_length: queue.popleft() add_queue() return ngrams
514a313b96d139c3483dc07999f60d1abafd0d91
3,657,786
def notas(*n, sit = False): """ -> Função para analisar notas e situação de vários alunos. :param n: notas (uma ou mais) :param sit: situação (valor opcional) :return: dicionário com várias informaçoes sobre o aluno. """ r = {} r['total'] = len(n) r['maior'] = max(n) r['menor'] = min(n) r['média'] = sum(n) / len(n) if sit: if r['média'] >= 7: r['situação'] = 'boa' elif r['média'] >= 5: r['situação'] = 'razoavél' else: r['situação'] = 'ruim' return r
f151c90e22e5eac1c69b59240906e7bf55943321
3,657,787
import numpy def accuracy(output, labels_test): """How many correct predictions?""" TP, TN, FP, FN = confusionMatrix(labels_test, numpy.sign(output)) return float(TP + TN) / (TP + TN + FP + FN)
f3801bbe3590e9d271403795d23a737d642fbed8
3,657,788
def metric_pairs(request): """Pairs of (dask-ml, sklearn) accuracy metrics. * accuracy_score """ return ( getattr(dask_ml.metrics, request.param), getattr(sklearn.metrics, request.param) )
e82b799c06e41c4fea19cd33e9d836b1b03d02df
3,657,789
import time from datetime import datetime def MyDuration(duration, initial_time=None): """ Usecase: a timestamp is provided as when an access token expires, then add it to the current time, then showing it as a human-readable future time. Alternatively specify a *initial_time* as manual now value. Args duration: <type 'int'> OR <type 'str'> Duration in seconds. If given as a string, convert to int. initial_time: <type 'int'> OR <type 'str'> Time to start differenc calculation from. If given as a string, convert to int. If not set, use current time. Returns out_time: what time will it be after number seconds in have elapsed. Shows in format '2016-12-11 15:40:00' if printed. """ duration = int(duration) if initial_time: initial_time = int(initial_time) else: initial_time = time.time() # use current time in_time = initial_time + duration # add duration to start time out_time = datetime.datetime.fromtimestamp(in_time) return out_time
d81a12295c2715ab9ed93595ccee2af2474c671e
3,657,790
def orthogonal_init(shape, gain=1.0): """Generating orthogonal matrix""" # Check the shape if len(shape) < 2: raise ValueError("The tensor to initialize must be " "at least two-dimensional") # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) # Generate a random matrix a = np.random.normal(size=flat_shape).astype(np.float32) # Compute the qr factorization q, r = np.linalg.qr(a, mode='reduced') # Make Q uniform square_len = np.minimum(num_rows, num_cols) d = np.diagonal(r[:square_len, :square_len]) ph = d / np.absolute(d) q *= ph # Pad zeros to Q (if rows smaller than cols) if num_rows < num_cols: padding = np.zeros([num_rows, num_cols - num_rows], dtype=np.float32) q = np.concatenate([q, padding], 1) return gain * np.reshape(q, shape)
4d7b1f81a13228e4185d59e0fd23ba629888a232
3,657,791
def application(env, start_response): """The callable function per the WSGI spec; PEP 333""" headers = {x[5:].replace('_', '-'):y for x, y in env.items() if x.startswith('HTTP_')} if env.get('CONTENT_TYPE', None): headers['Content-Type'] = env['CONTENT_TYPE'] if env.get('CONTENT_LENGTH', None): headers['Content-Length'] = env['CONTENT_LENGTH'] headers.pop('CONNECTION', None) # let RelayQuery choose to use keepalives or not body = env['wsgi.input'] uri = env.get('PATH_INFO', '') if not uri: # Some WSGI servers use RAW_URI instead of PATH_INFO. # Gunicorn uses PATH_INFO, gevent.pywsgi.WSGIServer uses RAW_URI uri = env.get('RAW_URI', '') token = env.get('HTTP_X_AUTH', '').encode() host, tls, port = router.get_host(uri=uri, token=token) if env.get('QUERY_STRING', None): uri += '?{}'.format(env['QUERY_STRING']) resp = RelayQuery(host=host, method=env['REQUEST_METHOD'], uri=uri, headers=headers, body=body, port=port, tls=tls) start_response(resp.status, resp.headers) return resp
1c5cbb62316b4170bbd54ef8fa404eccc32b8441
3,657,792
def angle_normalize(x): """ Normalize angles between 0-2PI """ return ((x + np.pi) % (2 * np.pi)) - np.pi
0c39dcf67a5aae2340a65173e6a866e429b4d176
3,657,793
import torch def load_data(BASE_DIR, DATA_DIR): """ Loads data necessary for project Arguments: BASE_DIR (str) -- path to working dir DATA_DIR (str) -- path to KEGG data Returns: tla_to_mod_to_kos (defaultdict of dicts) -- maps tla to series of dicts, keys are KEGG modules and values are lists of KOs in that module (e.g.: 'eun': {'M00001': ['K00845', etc]}, etc} etc}) mod_sets (defaultdict) -- raw data from KEGG defining which KOs are in each module tla_to_tnum (dict) -- for each genome, converts tla to tnum tnum_to_tla (dict) -- for each genome, converts tnum to tla keepers (list) -- KEGG genomes selected for inclusion in this study tnum_to_kos (dict) -- maps tnums to KOs encoded by that genome, e.g.: 'T00001': [K00001, ... 'K0000N'] n_kos_tot (int) -- total number of KOs in the dataset all_kos (list) -- list of all KOs in the dataset mod_to_ko_clean (dict )-- the functions of many modules can be "completed" by different sets of genes. Here we choose to represent each module by the most common set of genes. Dict maps each module (e.g.: 'K00001') to a list of genes (e.g.: ['K00845', ..., 'K00873']) train_data (numpy.ndarray) -- training data. Rows are genomes, columns are genes/KOs. 1's denote presence of a gene in the genome, 0's denote absence test_data (numpy.ndarray) -- test data. Rows are genomes, columns are genes/KOs. 1's denote presence of a gene in the genome, 0's denote absence train_genomes (list) -- tnums of genomes in the training set test_genomes (list) -- tnums of genomes in the test set """ tla_to_mod_to_kos, mod_sets = load_mods(DATA_DIR) # path to dir with tla_to_mod_to_kos.pkl tla_to_tnum, tnum_to_tla, keepers = genomes2include(DATA_DIR) tnum_to_kos, n_kos_tot, all_kos = load_kos(tla_to_tnum, tnum_to_tla, tla_to_mod_to_kos, DATA_DIR) mod_to_kos = create_mod_to_kos(tla_to_mod_to_kos) mod_to_ko_clean = clean_kos(mod_sets) all_kos = torch.load(BASE_DIR+"all_kos_2020-09-29.pt") tla_to_mod_to_kos = torch.load(BASE_DIR+"tla_to_mod_to_kos_2020-09-29.pt") train_data = torch.load(BASE_DIR+"kegg_v2_train_2020-09-29.pt") test_data = torch.load(BASE_DIR+"kegg_v2_test_2020-09-29.pt") train_genomes = torch.load(BASE_DIR+"kegg_v2_train_genomes_2020-09-29.pt") test_genomes = torch.load(BASE_DIR+"kegg_v2_test_genomes_2020-09-29.pt") return tla_to_mod_to_kos, mod_sets, tla_to_tnum, tnum_to_tla, keepers, tnum_to_kos, n_kos_tot, all_kos, mod_to_ko_clean, all_kos, train_data, test_data, train_genomes, test_genomes
d32a6be8cae02ac6ab5903f055326f27d0a549c5
3,657,794
def disable_app(app, base_url=DEFAULT_BASE_URL): """Disable App. Disable an app to effectively remove it from your Cytoscape session without having to uninstall it. Args: app (str): Name of app base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: {'appName': <name of app>}, and is returned whether or not app exists Raises: requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> disable_app('stringApp') {'appName': 'stringApp'} """ verify_supported_versions(1, 3.7, base_url=base_url) res = commands.commands_post(f'apps disable app="{app}"', base_url=base_url) return narrate(res)
2a2a00609b0acb6090219d24fcc7d24ed8f7dc7e
3,657,795
import pandas as pd def wrangle_adni(): """This function returns three dataframes. Unpack the dataframes when calling the function. """ # ensure pandas availability for the function if 'pd' not in globals(): # read in the data to a pandas dataframe adni_full = pd.read_csv('ADNIMERGE.csv', dtype='object') # set the logical orders for the two diagnoses DX = ['CN', 'MCI', 'AD'] DX_bl = ['CN', 'SMC', 'EMCI', 'LMCI', 'AD'] # initialize empty dataframe adni = pd.DataFrame() # convert datatypes to categorical, datetime, and int adni.loc[:, 'PTGENDER'] = pd.Categorical(adni_full.PTGENDER) adni.loc[:, 'DX'] = pd.Categorical(adni_full.DX, ordered=True, categories=DX) adni.loc[:, 'DX_bl'] = pd.Categorical(adni_full.DX_bl, ordered=True, categories=DX_bl) adni.loc[:, 'EXAMDATE'] = pd.to_datetime(adni_full['EXAMDATE']) adni.loc[:, 'EXAMDATE_bl'] = pd.to_datetime(adni_full['EXAMDATE_bl']) adni.loc[:, 'PTEDUCAT'] = adni_full.PTEDUCAT.astype('int') adni.loc[:, 'Month'] = adni_full.Month.astype('int') adni.loc[:, 'RID'] = adni_full.RID.astype('int') # create a list of float data columns, loop and assign float dtypes floats = ['AGE', 'CDRSB', 'ADAS11', 'ADAS13', 'MMSE', 'RAVLT_immediate', 'Hippocampus', 'Ventricles', 'WholeBrain', 'Entorhinal', 'MidTemp', 'FDG', 'AV45'] # loop and assign dtypes for i in floats: adni.loc[:, i] = adni_full[i].astype('float') # age has no baseline '_bl' equivalent if i == 'AGE': continue # every other column has a '_bl' equivalent to convert as well else: y = i + '_bl' adni.loc[:, y] = adni_full[y].astype('float') # drop columns with too much missing data adni.drop(labels=['FDG', 'FDG_bl', 'AV45', 'AV45_bl'], axis='columns', inplace=True) # set the index adni.set_index(adni.RID, inplace=True) # sort the index adni.sort_index(inplace=True) # remove redundant columns adni.drop('RID', axis='columns', inplace=True) # calculate dynamic age adni.loc[:, 'AGE_dynamic'] = adni.AGE + (adni.Month / 12) # create dataframe with only patients that have complete data adni_rmv = adni.dropna(how='any') # filter those results to only patients with multiple visits num_comp_exams = adni_rmv.groupby('RID')['EXAMDATE_bl'].count() adni_comp_filter = num_comp_exams[num_comp_exams > 1] adni_comp = adni_rmv.loc[adni_comp_filter.index] # map baseline diagnosis categories to match subsequent diagnosis categories # map new column for DX_bl to categorize based on subsequent DX categories # 'SMC' -> 'CN' due to medical definitions # combine 'LMCI' and 'EMCI' into 'MCI' mapper = {'SMC': 'CN', 'LMCI': 'MCI', 'EMCI': 'MCI', 'CN': 'CN', 'AD': 'AD'} adni_comp.loc[:, 'DX_bl2'] = adni_comp.DX_bl.map(mapper) # isolate clinical data clin_cols = ['EXAMDATE', 'EXAMDATE_bl', 'Month', 'PTGENDER', 'DX', 'DX_bl', 'PTEDUCAT', 'AGE', 'AGE_dynamic', 'CDRSB', 'CDRSB_bl', 'ADAS11', 'ADAS11_bl', 'ADAS13', 'ADAS13_bl', 'MMSE', 'MMSE_bl', 'RAVLT_immediate', 'RAVLT_immediate_bl', 'DX_bl2'] clin_data = pd.DataFrame() clin_data = adni.reindex(columns=clin_cols) # filter the scan data scan_cols = ['EXAMDATE', 'EXAMDATE_bl', 'Month', 'PTGENDER', 'DX', 'DX_bl', 'PTEDUCAT', 'AGE', 'AGE_dynamic', 'Hippocampus', 'Hippocampus_bl', 'Ventricles', 'Ventricles_bl', 'WholeBrain', 'WholeBrain_bl', 'Entorhinal', 'Entorhinal_bl', 'MidTemp', 'MidTemp_bl', 'DX_bl2'] scan_data = pd.DataFrame() scan_data = adni.reindex(columns=scan_cols) return adni_comp, clin_data, scan_data
58fb853731bcafdd297cd211242b043da365b2dc
3,657,796
def readByte (file): """ Read a byte from file. """ return ord (file.read (1))
4e82d1b688d7742fd1dd1025cd7ac1ccb13bbca0
3,657,797
import json import requests def qa_tfserving(data_input, url): """ tf-serving 一整套流程 """ bert_input = covert_text_to_id(data_input) data = json.dumps(bert_input) r = requests.post(url, data) r_text_json = json.loads(r.text) r_post = postprocess(r_text_json) return r_post
1192982521dedda82ccf4aaa1bd1a3b29f445371
3,657,798
def contract_creation_exceptions(): """ Return create exceptions. These elements depend on the networksegments table which was renamed in the contract branch. """ return { sa.Table: ['segmenthostmappings'], sa.Index: ['segmenthostmappings'] }
842a7d604c1211d629d28533dbd8bdb6df451f49
3,657,799