content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os def get_wharton_sessionid(public=False): """ Try to get a GSR session id. """ sessionid = request.args.get("sessionid") cache_key = "studyspaces:gsr:sessionid" if sessionid: return sessionid if public: if db.exists(cache_key): return db.get(cache_key).decode("utf8") return os.environ.get("GSR_SESSIONID") return None
83cc911185a8849ca7c37bf74ea0ae652b596461
3,657,600
def timing ( name = '' , logger = None ) : """Simple context manager to measure the clock counts >>> with timing () : ... whatever action is here at the exit it prints the clock counts >>> with timing () as c : ... whatever action is here at the exit it prints the clock counts >>> print c.delta """ return Timer ( name , logger )
f22769f267df8472f8b11db64ab6817db6e24414
3,657,601
def abs(x): """ complex-step safe version of numpy.abs function. Parameters ---------- x : ndarray array value to be computed on Returns ------- ndarray """ if isinstance(x, np.ndarray): return x * np.sign(x) elif x.real < 0.0: return -x return x
71503b89e3a78e12a50f88ce2e0a17301f985ec7
3,657,602
import time import re from operator import sub async def add_comm_post(request): # return json.dumps(current_id, title, link, proc_id) """current_id это id ветки""" # ip = request.environ.get('REMOTE_ADDR') data = await request.post(); ip = None print('data->', data) #get ip address client peername = request.transport.get_extra_info('peername'); host=None if peername is not None: host, port = peername ip = host # print ('host, port->', host, port) user = get_current_user(request, True) if check_ban(request, host, user): return response_json(request, {"result":"fail", "error":"Ваш ip или аккаунт забанен на этом сайте, свяжитесь с администрацией"}) else: title = data.get('title') if not user_has_permission(request, 'des:obj', 'add_com') and not user_has_permission(request, 'des:obj', 'add_com_pre'): return response_json(request, {"result":"fail", "error":"no comment"}) if not check_user_rate(request, user): return response_json(request, {"result":"fail", "error":"Вы не можете оставлять сообщения слишком часто, из-за отрицательной кармы"}) doc_id = data.get('comm_id') id = data.get('id') if user_is_logged_in(request): title = get_current_user(request) # tle = get_doc(request, doc_id ) # print( doc_id ) # print( tle ) # tle = get_doc(request, doc_id )['doc']['title'] title_ = ct(request, title ) title = no_script( title ) if title else 'Аноним' parent = data.get('parent', "_") descr = data.get( 'descr') descr = no_script( descr ) descr = descr.replace('\n', '<br/>') # ретурн если нет и того и другого а если нет только одного то как раз проверим pre = 'true' if not user_has_permission(request, 'des:obj', 'add_com') else 'false' date = str( time.strftime("%Y-%m-%d %H:%M:%S") ) user_ = get_current_user_name(request, title ) or title our = "true" if user_is_logged_in(request) else "false" body = re.sub(r'(http?://([a-z0-9-]+([.][a-z0-9-]+)+)+(/([0-9a-z._%?#]+)+)*/?)', r'<a href="\1">\1</a>', descr) # добавление родителю ребенка request.db.doc.update({ "_id": parent }, { "$addToSet": { "child": doc_id } } ) # занесение коментов в справочник коментов doc_id_comm, updated = create_empty_row_(request, 'des:comments', parent, '', { "user":'user:'+title }) data = {"id":doc_id_comm, "title":title_, "date":date, "body":body, "parent":parent, "owner":id, 'ip':ip, 'name':user_, "our":our, 'pre':pre } update_row_(request, 'des:comments', doc_id_comm, data, parent) if 'notify_user' in dir(settings) and settings.notify_user: # if 'notify_user' in settings and settings.notify_user: # link = make_link('show_object', {'doc_id':doc_id }, True)+'#comm_'+ str( id ) link = settings.domain+'/news/'+doc_id+'#comm_'+ str( id ) subject = 'User {} add comment'.format( title ) sub('user:'+title, link, subject) print('id1', id) id = get_doc(request, id)['_id'] print('id2', id) invalidate_cache('single_page', id=id) # rev = get_doc(request, doc_id)['doc']['rev'] # reset_cache(type="doc", doc_id=rev) # добавление подсчета коментариев в отдельном документе request.db.doc.update({ "_id": doc_id }, { "$inc": { "count_branch":1 } } ) # return json.dumps({"result":"ok", "content":data.update({"title":title}), "hash":""}) return response_json(request, {"result":"ok", "content":data, "hash":""})
1038edd1834786ba1325e7f28f77f505adc8fb4b
3,657,603
def reachable_from_node(node, language=None, include_aliases=True): """Returns a tuple of strings containing html <ul> lists of the Nodes and pages that are children of "node" and any MetaPages associated with these items. :params node: node to find reachables for :params language: if None, returns all items, if specified restricts list to just those with the given language, defaults to None :params include_aliases: False to skip calculation of aliases, returns None for second item in tuple :returns: (node_list, alias_list) """ alias_list = None if include_aliases: # find all of the MetaPages that would be unreachable nodes = list(node.get_descendants()) nodes.append(node) metapages = MetaPage.objects.filter(node__in=nodes) # find anything that aliases one of the targeted metapages alias_list = reachable_aliases(metapages, language) node_list = \ """<ul> %s </ul>""" % _pages_subtree_as_list(node, node.site.default_language) return (node_list, alias_list)
dcc93486fcae168293f17ee2a7c067dbc1eef5fe
3,657,604
def init_data(): """ setup all kinds of constants here, just to make it cleaner :) """ if args.dataset=='imagenet32': mean = (0.4811, 0.4575, 0.4078) std = (0.2605 , 0.2533, 0.2683) num_classes = 1000 else: raise NotImplementedError if args.whiten_image==0: mean = (0.5, 0.5, 0.5) std = (0.5, 0.5, 0.5) transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), # with p = 0.5 transforms.RandomCrop(32, padding=4, padding_mode='reflect'), # with p = 1 transforms.ToTensor(), transforms.Normalize(mean, std) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean, std) ]) trainset = ImageNet32(root=args.data_root, train=True,transform=transform_train) testset = ImageNet32(root=args.data_root, train=False,transform=transform_test) return trainset, testset, transform_train, transform_test, num_classes
7d75af1f316a703041926d9a1875ae18f19c8342
3,657,605
def make_status_craft(): """ Cria alguns status de pedido de fabricação""" if Statusfabricacao.objects.count() == 0: status1 = Statusfabricacao(order=0, status='Pedido Criado') status2 = Statusfabricacao(order=1, status='Maturação') status3 = Statusfabricacao(order=2, status='Finalização') status4 = Statusfabricacao(order=3, status='Produção Encerrada') status1.save() status2.save() status3.save() status4.save() return True return False
01b9e1cbb48654f3baab7a4e55cd0f22a0bb60fe
3,657,606
import requests import json def _call_rest_api(url, input_data, request_type): """Calls the other rest api's""" try: if request_type == 'post': req = requests.post(url, params=input_data, json=input_data, timeout=30) else: req = requests.get(url, params=input_data, timeout=30) response = req.text val = json.loads(response) except Exception as e: logger.error("Exception in _call_rest_api : " + str(e)) raise ValueError("Filter is down!!!!") return val
8c67e79c6867d1e63a1487c747682c24da229e46
3,657,607
def compute_tso_threshold(arr, min_td=0.1, max_td=0.5, perc=10, factor=15.0): """ Computes the daily threshold value separating rest periods from active periods for the TSO detection algorithm. Parameters ---------- arr : array Array of the absolute difference of the z-angle. min_td : float Minimum acceptable threshold value. max_td : float Maximum acceptable threshold value. perc : integer, optional Percentile to use for the threshold. Default is 10. factor : float, optional Factor to multiply the percentil value by. Default is 15.0. Returns ------- td : float """ td = min((max((percentile(arr, perc) * factor, min_td)), max_td)) return td
4188d4a290e884210351f928d18d6f4bdd4e8a0b
3,657,608
def run_generator(conversation_name): """ Input: conversation_name: name of conversation to analyze Output: username of next speaker, message for that speaker to send next """ state = settings.DISCORD_CONVERSATION_STATES.get(conversation_name, {}) ( next_speaker_username, next_message, convo, index, ) = generate_next_speaker_and_message(state, conversation_name) if not next_speaker_username: return None, None bot = TwitterBot.objects.get(username=next_speaker_username) post = TwitterPost.objects.create(author=bot, content=next_message) convo.twitterconversationpost_set.create(index=index, author=bot, post=post) return next_speaker_username, next_message
22735cdd46469976d079f065ee60e3a886dfc654
3,657,609
def count_uniques(row): """ Count the unique values in row -1 (becase nan counts as a unique value) """ return len(np.unique(row)) - 1
af28e419aba44992ee27c57dacb271ff692fc535
3,657,610
import numpy def gmres_dot(X, surf_array, field_array, ind0, param, timing, kernel): """ It computes the matrix-vector product in the GMRES. Arguments ---------- X : array, initial vector guess. surf_array : array, contains the surface classes of each region on the surface. field_array: array, contains the Field classes of each region on the surface. ind0 : class, it contains the indices related to the treecode computation. param : class, parameters related to the surface. timing : class, it contains timing information for different parts of the code. kernel : pycuda source module. Returns -------- MV : array, resulting matrix-vector multiplication. """ Nfield = len(field_array) Nsurf = len(surf_array) # Check if there is a complex dielectric if any([numpy.iscomplexobj(f.E) for f in field_array]): complex_diel = True else: complex_diel = False # Place weights on corresponding surfaces and allocate memory Naux = 0 for i in range(Nsurf): N = len(surf_array[i].triangle) if surf_array[i].surf_type == 'dirichlet_surface': if complex_diel: surf_array[i].XinK = numpy.zeros(N, dtype=numpy.complex) else: surf_array[i].XinK = numpy.zeros(N) surf_array[i].XinV = X[Naux:Naux + N] Naux += N elif surf_array[i].surf_type == 'neumann_surface' or surf_array[ i].surf_type == 'asc_surface': surf_array[i].XinK = X[Naux:Naux + N] if complex_diel: surf_array[i].XinV = numpy.zeros(N, dtype=numpy.complex) else: surf_array[i].XinV = numpy.zeros(N) Naux += N else: surf_array[i].XinK = X[Naux:Naux + N] surf_array[i].XinV = X[Naux + N:Naux + 2 * N] Naux += 2 * N if complex_diel: surf_array[i].Xout_int = numpy.zeros(N, dtype=numpy.complex) surf_array[i].Xout_ext = numpy.zeros(N, dtype=numpy.complex) else: surf_array[i].Xout_int = numpy.zeros(N) surf_array[i].Xout_ext = numpy.zeros(N) # Loop over fields for F in range(Nfield): parent_type = 'no_parent' if len(field_array[F].parent) > 0: parent_type = surf_array[field_array[F].parent[0]].surf_type if parent_type == 'asc_surface': # ASC only for self-interaction so far LorY = field_array[F].LorY p = field_array[F].parent[0] v = selfASC(surf_array[p], p, p, LorY, param, ind0, timing, kernel) surf_array[p].Xout_int += v if parent_type != 'dirichlet_surface' and parent_type != 'neumann_surface' and parent_type != 'asc_surface': LorY = field_array[F].LorY param.kappa = field_array[F].kappa if len(field_array[F].parent) > 0: p = field_array[F].parent[0] v = selfInterior(surf_array[p], p, LorY, param, ind0, timing, kernel) surf_array[p].Xout_int += v # if child surface -> self exterior operator + sibling interaction # sibling interaction: non-self exterior saved on exterior vector if len(field_array[F].child) > 0: C = field_array[F].child for c1 in C: v, t1, t2 = selfExterior(surf_array[c1], c1, LorY, param, ind0, timing, kernel) surf_array[c1].Xout_ext += v for c2 in C: if c1 != c2: v = nonselfExterior(surf_array, c2, c1, LorY, param, ind0, timing, kernel) surf_array[c1].Xout_ext += v # if child and parent surface -> parent-child and child-parent interaction # parent->child: non-self interior saved on exterior vector # child->parent: non-self exterior saved on interior vector if len(field_array[F].child) > 0 and len(field_array[ F].parent) > 0: p = field_array[F].parent[0] C = field_array[F].child for c in C: v = nonselfExterior(surf_array, c, p, LorY, param, ind0, timing, kernel) surf_array[p].Xout_int += v v = nonselfInterior(surf_array, p, c, LorY, param, ind0, timing, kernel) surf_array[c].Xout_ext += v # Gather results into the result vector if complex_diel: MV = numpy.zeros(len(X), dtype=numpy.complex) else: MV = numpy.zeros(len(X)) Naux = 0 for i in range(Nsurf): N = len(surf_array[i].triangle) if surf_array[i].surf_type == 'dirichlet_surface': MV[Naux:Naux + N] = surf_array[i].Xout_ext * surf_array[i].Precond[ 0, :] Naux += N elif surf_array[i].surf_type == 'neumann_surface': MV[Naux:Naux + N] = surf_array[i].Xout_ext * surf_array[i].Precond[ 0, :] Naux += N elif surf_array[i].surf_type == 'asc_surface': MV[Naux:Naux + N] = surf_array[i].Xout_int * surf_array[i].Precond[ 0, :] Naux += N else: MV[Naux:Naux + N] = surf_array[i].Xout_int * surf_array[i].Precond[ 0, :] + surf_array[i].Xout_ext * surf_array[i].Precond[1, :] MV[Naux + N:Naux + 2 * N] = surf_array[i].Xout_int * surf_array[ i].Precond[2, :] + surf_array[i].Xout_ext * surf_array[ i].Precond[3, :] Naux += 2 * N return MV
89ab7b49ef8f55bdeddbd9676acdc6cbe0de321f
3,657,611
import torch def update_pris(traj, td_loss, indices, alpha=0.6, epsilon=1e-6, update_epi_pris=False, seq_length=None, eta=0.9): """ Update priorities specified in indices. Parameters ---------- traj : Traj td_loss : torch.Tensor indices : torch.Tensor ot List of int alpha : float epsilon : float update_epi_pris : bool If True, all priorities of a episode including indices[0] are updated. seq_length : int Length of batch. eta : float Returns ------- traj : Traj """ pris = (torch.abs(td_loss) + epsilon) ** alpha traj.data_map['pris'][indices] = pris.detach().to(traj.traj_device()) if update_epi_pris: epi_start = -1 epi_end = -1 seq_start = indices[0] for i in range(1, len(traj._epis_index)): if seq_start < traj._epis_index[i]: epi_start = traj._epis_index[i-1] epi_end = traj._epis_index[i] break pris = traj.data_map['pris'][epi_start: epi_end] n_seq = len(pris) - seq_length + 1 abs_pris = np.abs(pris.cpu().numpy()) seq_pris = np.array([eta * np.max(abs_pris[i:i+seq_length]) + (1 - eta) * np.mean(abs_pris[i:i+seq_length]) for i in range(n_seq)], dtype='float32') traj.data_map['seq_pris'][epi_start:epi_start + n_seq] = torch.tensor(seq_pris, dtype=torch.float, device=get_device()) return traj
41648ae78f25618b2789d8dde41cffbe0445d16b
3,657,612
from typing import Sequence from pydantic import BaseModel # noqa: E0611 import hashlib def get_library_version(performer_prefix: str, schemas: Sequence[Schema]) -> str: """Generates the library's version string. The version string is of the form "{performer_prefix}_{latest_creation_date}_{library_hash}". Args: performer_prefix: Performer prefix for context. schemas: YAML schemas. Returns: Version string. """ # New class is needed to properly convert entire library to JSON class YamlLibrary(BaseModel): __root__: Sequence[Schema] yaml_library = YamlLibrary(__root__=schemas) json_schemas = yaml_library.json(exclude_none=True, ensure_ascii=False) input_hash = hashlib.md5(json_schemas.encode()).hexdigest()[:7] latest_creation_date = max(schema.creation_date_formatted for schema in schemas) library_version = f"{performer_prefix}_{latest_creation_date}_{input_hash}" return library_version
90bf2c695eece054f20bc0636b8e9759983affef
3,657,613
def sizeFromString(sizeStr, relativeSize): """ Converts from a size string to a float size. sizeStr: The string representation of the size. relativeSize: The size to use in case of percentages. """ if not sizeStr: raise Exception("Size not specified") dpi = 96.0 cm = 2.54 if len(sizeStr) > 2 and sizeStr[-2:] == 'cm': return float(sizeStr[:-2])*dpi/cm elif len(sizeStr) > 2 and sizeStr[-2:] == 'mm': return float(sizeStr[:-2])*dpi/(cm*10.0) elif len(sizeStr) > 1 and sizeStr[-1:] == 'Q': return float(sizeStr[:-1])*dpi/(cm*40.0) elif len(sizeStr) > 2 and sizeStr[-2:] == 'in': return float(sizeStr[:-2])*dpi elif len(sizeStr) > 2 and sizeStr[-2:] == 'pc': return float(sizeStr[:-2])*dpi/6.0 elif len(sizeStr) > 2 and sizeStr[-2:] == 'pt': return float(sizeStr[:-2])*dpi/72.0 elif len(sizeStr) > 2 and sizeStr[-2:] == 'em': return float(sizeStr[:-2])*16.0 elif len(sizeStr) > 2 and sizeStr[-2:] == 'px': return float(sizeStr[:-2]) elif len(sizeStr) > 1 and sizeStr[-1:] == '%': return float(sizeStr[:-1])/100.0*relativeSize return float(sizeStr)
5f53d7d1ea86d4c54beb3aaebca228f7706e5a9b
3,657,614
from typing import Union from typing import List def plot_r2( model: mofa_model, x="Group", y="Factor", factors: Union[int, List[int], str, List[str]] = None, groups_df: pd.DataFrame = None, group_label: str = None, views=None, groups=None, cmap="Blues", vmin=None, vmax=None, **kwargs, ): """ Plot R2 values for the model Parameters ---------- model : mofa_model Factor model x : str Dimension along X axis: Group (default), View, or Factor y : str Dimension along Y axis: Group, View, or Factor (default) factors : optional Index of a factor (or indices of factors) to use (all factors by default) views : optional Make a plot for certain views (None by default to plot all views) groups : optional Make a plot for certain groups (None by default to plot all groups) group_label : optional Sample (cell) metadata column to be used as group assignment groups_df : optional pd.DataFrame Data frame with samples (cells) as index and first column as group assignment cmap : optional The colourmap for the heatmap (default is 'Blues' with darker colour for higher R2) vmin : optional Display all R2 values smaller than vmin as vmin (0 by default) vmax : optional Display all R2 values larger than vmax as vmax (derived from the data by default) """ r2 = model.get_r2( factors=factors, groups=groups, views=views, group_label=group_label, groups_df=groups_df, ) vmax = r2.R2.max() if vmax is None else vmax vmin = 0 if vmin is None else vmin split_by = [dim for dim in ["Group", "View", "Factor"] if dim not in [x, y]] assert ( len(split_by) == 1 ), "x and y values should be different and be one of Group, View, or Factor" split_by = split_by[0] split_by_items = r2[split_by].unique() fig, axes = plt.subplots(ncols=len(split_by_items), sharex=True, sharey=True) cbar_ax = fig.add_axes([0.91, 0.3, 0.03, 0.4]) if len(split_by_items) == 1: axes = [axes] for i, item in enumerate(split_by_items): r2_sub = r2[r2[split_by] == item] r2_df = r2_sub.sort_values("R2").pivot(index=y, columns=x, values="R2") if y == "Factor": # Sort by factor index r2_df.index = r2_df.index.astype("category") r2_df.index = r2_df.index.reorder_categories( sorted(r2_df.index.categories, key=lambda x: int(x.split("Factor")[1])) ) r2_df = r2_df.sort_values("Factor") if x == "Factor": # Re-order columns by factor index r2_df.columns = r2_df.columns.astype("category") r2_df.columns = r2_df.columns.reorder_categories( sorted( r2_df.columns.categories, key=lambda x: int(x.split("Factor")[1]) ) ) r2_df = r2_df[r2_df.columns.sort_values()] g = sns.heatmap( r2_df.sort_index(level=0, ascending=False), ax=axes[i], cmap=cmap, vmin=vmin, vmax=vmax, cbar=i == 0, cbar_ax=None if i else cbar_ax, **kwargs, ) axes[i].set_title(item) axes[i].tick_params(axis="both", which="both", length=0) if i == 0: g.set_yticklabels(g.yaxis.get_ticklabels(), rotation=0) else: axes[i].set_ylabel("") plt.close() return fig
4898f56ca89ef55db775f0dc3b0106c36a2ced05
3,657,615
from typing import Union from typing import Optional from typing import Tuple from typing import List def all(x: Union[ivy.Array, ivy.NativeArray], axis: Optional[Union[int, Tuple[int], List[int]]] = None, keepdims: bool = False)\ -> ivy.Array: """ Tests whether all input array elements evaluate to ``True`` along a specified axis. .. note:: Positive infinity, negative infinity, and NaN must evaluate to ``True``. .. note:: If ``x`` is an empty array or the size of the axis (dimension) along which to evaluate elements is zero, the test result must be ``True``. Parameters ---------- x: input array. axis: axis or axes along which to perform a logical AND reduction. By default, a logical AND reduction must be performed over the entire array. If a tuple of integers, logical AND reductions must be performed over multiple axes. A valid ``axis`` must be an integer on the interval ``[-N, N)``, where ``N`` is the rank (number of dimensions) of ``x``. If an ``axis`` is specified as a negative integer, the function must determine the axis along which to perform a reduction by counting backward from the last dimension (where ``-1`` refers to the last dimension). If provided an invalid ``axis``, the function must raise an exception. Default: ``None``. keepdims: If ``True``, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`). Otherwise, if ``False``, the reduced axes (dimensions) must not be included in the result. Default: ``False``. Returns ------- out: if a logical AND reduction was performed over the entire array, the returned array must be a zero-dimensional array containing the test result; otherwise, the returned array must be a non-zero-dimensional array containing the test results. The returned array must have a data type of ``bool``. """ return _cur_framework(x).all(x, axis, keepdims)
3854912ea0d6fceb4dc51576dd4b11923da68876
3,657,616
import re def verify_time_format(time_str): """ This method is to verify time str format, which is in the format of 'hour:minute', both can be either one or two characters. Hour must be greater or equal 0 and smaller than 24, minute must be greater or equal 0 and smaller than 60 :param time_str: time str :return: """ if not isinstance(time_str, str): return False time_format = r'^(\d{1,2}):(\d{1,2})$' matched = re.match(time_format, time_str) if matched: if 0 <= int(matched.group(1)) < 24 and 0 <= int(matched.group(2)) < 60: return True else: print('Hour should be within [0, 24); Minute should be within [0, 60)') return False else: return False
fee469248d4d1d792c1ed858cf9043e5695c9f5d
3,657,617
def extract_region_df(region_code="11"): """ Extracts dataframes that describes regional-level vaccines data for a single region, making some analysis on it. :rtype: Dataframe """ df = RAW_DF df = df.loc[df['codice_regione_ISTAT'] == region_code] df = df.sort_values('data_somministrazione') df = df.reset_index() # Filter data from September df = df[df['data_somministrazione'] >= '2021-01-01'] # Doses per 100.000 inhabitants df['prima_dose_per_100000_ab'] = df.apply(lambda x: x['prima_dose'] / population_dict[x['codice_regione_ISTAT']] * 100000, axis=1) df['seconda_dose_per_100000_ab'] = df.apply(lambda x: x['seconda_dose'] / population_dict[x['codice_regione_ISTAT']] * 100000, axis=1) df['totale_su_pop'] = df.apply(lambda x: x['totale'] / population_dict[x['codice_regione_ISTAT']], axis=1) df['totale_per_100000_ab'] = df.apply(lambda x: x['totale_su_pop'] * 100000, axis=1) # Historical totals df['totale_storico'] = df['totale'].cumsum() df['totale_storico_su_pop'] = df.apply(lambda x: x['totale_storico'] / population_dict[x['codice_regione_ISTAT']], axis=1) df['prima_dose_totale_storico'] = df['prima_dose'].cumsum() df['prima_dose_totale_storico_su_pop'] = df.apply(lambda x: x['prima_dose_totale_storico'] / population_dict[x['codice_regione_ISTAT']], axis=1) df['seconda_dose_totale_storico'] = df['seconda_dose'].cumsum() df['seconda_dose_totale_storico_su_pop'] = df.apply(lambda x: x['seconda_dose_totale_storico'] / population_dict[x['codice_regione_ISTAT']], axis=1) return df
8c3e77c1548b8bf40d0be31ac52237c532a4c622
3,657,618
from bs4 import BeautifulSoup def get_title(offer_markup): """ Searches for offer title on offer page :param offer_markup: Class "offerbody" from offer page markup :type offer_markup: str :return: Title of offer :rtype: str, None """ html_parser = BeautifulSoup(offer_markup, "html.parser") return html_parser.h1.text.strip()
72618da71ea63d1b3431ba76f5d8a9549af6fe76
3,657,619
import os import shutil def genome(request): """Create a test genome and location""" name = "ce10" # Use fake name for blacklist test fafile = "tests/data/small_genome.fa.gz" genomes_dir = os.path.join(os.getcwd(), ".genomepy_plugin_tests") if os.path.exists(genomes_dir): shutil.rmtree(genomes_dir) genome_dir = os.path.join(genomes_dir, name) genomepy.utils.mkdir_p(genome_dir) fname = os.path.join(genome_dir, f"{name}.fa.gz") shutil.copyfile(fafile, fname) # unzip genome if required if request.param == "unzipped": sp.check_call(["gunzip", fname]) # add annotation (for STAR and hisat2), but only once gtf_file = "tests/data/ce10.annotation.gtf.gz" aname = os.path.join(genome_dir, f"{name}.annotation.gtf.gz") shutil.copyfile(gtf_file, aname) return genomepy.Genome(name, genomes_dir=genomes_dir)
21f6b4c41fdfe5c8f934c358d78d9862a16e3324
3,657,620
def get_twinboundary_shear_structure(twinboundary_relax_structure, shear_strain_ratio, previous_relax_structure=None, **additional_relax_structures, ): """ If latest_structure is None, use s=0 structure as the original structure to be sheared. shear_strain_ratios must include zero. additional_relaxes is AttributeDict. """ relax_wf = WorkflowFactory('vasp.relax') tb_relax_wf = WorkflowFactory('twinpy.twinboundary_relax') ratio = shear_strain_ratio.value tb_rlx_node = get_create_node(twinboundary_relax_structure.pk, tb_relax_wf) addi_rlx_pks = [] for i in range(len(additional_relax_structures)): label = 'additional_structure_%02d' % (i+1) structure_pk_ = additional_relax_structures[label].pk rlx_pk = get_create_node(structure_pk_, relax_wf).pk addi_rlx_pks.append(rlx_pk) aiida_twinboundary_relax = \ AiidaTwinBoudnaryRelaxWorkChain(tb_rlx_node) aiida_rlx = aiida_twinboundary_relax.get_aiida_relax( additional_relax_pks=addi_rlx_pks) tb_analyzer = \ aiida_twinboundary_relax.get_twinboundary_analyzer( additional_relax_pks=addi_rlx_pks) if addi_rlx_pks == []: kpt_info = aiida_rlx.get_kpoints_info() else: kpt_info = aiida_rlx.aiida_relaxes[0].get_kpoints_info() if previous_relax_structure is None: orig_cell = tb_analyzer.get_shear_cell( shear_strain_ratio=ratio, is_standardize=False) cell = tb_analyzer.get_shear_cell( shear_strain_ratio=ratio, is_standardize=True) else: prev_rlx_node = get_create_node(previous_relax_structure.pk, relax_wf) create_tb_shr_node = get_create_node(prev_rlx_node.inputs.structure.pk, CalcFunctionNode) prev_orig_structure = \ create_tb_shr_node.outputs.twinboundary_shear_structure_orig prev_orig_cell = get_cell_from_aiida(prev_orig_structure) prev_aiida_rlx = AiidaRelaxWorkChain(prev_rlx_node) prev_rlx_analyzer = prev_aiida_rlx.get_relax_analyzer( original_cell=prev_orig_cell) atom_positions = \ prev_rlx_analyzer.final_cell_in_original_frame[1] orig_cell = tb_analyzer.get_shear_cell( shear_strain_ratio=ratio, is_standardize=False, atom_positions=atom_positions) cell = tb_analyzer.get_shear_cell( shear_strain_ratio=ratio, is_standardize=True, atom_positions=atom_positions) orig_structure = get_aiida_structure(cell=orig_cell) structure = get_aiida_structure(cell=cell) # kpoints rlx_mesh = np.array(kpt_info['mesh']) rlx_offset = np.array(kpt_info['offset']) rlx_kpoints = (rlx_mesh, rlx_offset) std_base = StandardizeCell(tb_analyzer.relax_analyzer.original_cell) orig_kpoints = std_base.convert_kpoints( kpoints=rlx_kpoints, kpoints_type='primitive')['original'] std = StandardizeCell(orig_cell) kpoints = std.convert_kpoints(kpoints=orig_kpoints, kpoints_type='original')['primitive'] kpt_orig = KpointsData() kpt_orig.set_kpoints_mesh(orig_kpoints[0], offset=orig_kpoints[1]) kpt = KpointsData() kpt.set_kpoints_mesh(kpoints[0], offset=kpoints[1]) return_vals = {} return_vals['twinboundary_shear_structure_orig'] = orig_structure return_vals['twinboundary_shear_structure'] = structure return_vals['kpoints_orig'] = kpt_orig return_vals['kpoints'] = kpt return return_vals
c155db78f4d3d7f939e7c38e0c05955c3bd0f8c9
3,657,621
def _map_spectrum_weight(map, spectrum=None): """Weight a map with a spectrum. This requires map to have an "energy" axis. The weights are normalised so that they sum to 1. The mean and unit of the output image is the same as of the input cube. At the moment this is used to get a weighted exposure image. Parameters ---------- map : `~gammapy.maps.Map` Input map with an "energy" axis. spectrum : `~gammapy.modeling.models.SpectralModel` Spectral model to compute the weights. Default is power-law with spectral index of 2. Returns ------- map_weighted : `~gammapy.maps.Map` Weighted image """ if spectrum is None: spectrum = PowerLawSpectralModel(index=2.0) # Compute weights vector energy_edges = map.geom.get_axis_by_name("energy").edges weights = spectrum.integral( emin=energy_edges[:-1], emax=energy_edges[1:], intervals=True ) weights /= weights.sum() shape = np.ones(len(map.geom.data_shape)) shape[0] = -1 return map * weights.reshape(shape.astype(int))
5a1d9b9e3a94854e8c53947ca494f7448d2af570
3,657,622
def fetch_all_db_as_df(allow_cached=False): """Converts list of dicts returned by `fetch_all_db` to DataFrame with ID removed Actual job is done in `_worker`. When `allow_cached`, attempt to retrieve timed cached from `_fetch_all_db_as_df_cache`; ignore cache and call `_work` if cache expires or `allow_cached` is False. """ def _work(): ret_dict = fetch_all_db() if len(ret_dict) == 0: return None df_dict = {} for level, data in ret_dict.items(): df = pd.DataFrame.from_records(data) df.drop('_id', axis=1, inplace=True) df.columns = map(str.lower, df.columns) df_dict[level] = df return df_dict if allow_cached: try: return _fetch_all_db_as_df_cache['cache'] except KeyError: pass ret = _work() _fetch_all_db_as_df_cache['cache'] = ret return ret
c7f049590c8405a862890944cfaabfefebea1d58
3,657,623
def tool_proxy_from_persistent_representation(persisted_tool, strict_cwl_validation=True, tool_directory=None): """Load a ToolProxy from a previously persisted representation.""" ensure_cwltool_available() return ToolProxy.from_persistent_representation( persisted_tool, strict_cwl_validation=strict_cwl_validation, tool_directory=tool_directory )
e1f96d66cb1634d4de82b3e31f0fb9dd81080262
3,657,624
def has_space_element(source): """ 判断对象中的元素,如果存在 None 或空字符串,则返回 True, 否则返回 False, 支持字典、列表和元组 :param: * source: (list, set, dict) 需要检查的对象 :return: * result: (bool) 存在 None 或空字符串或空格字符串返回 True, 否则返回 False 举例如下:: print('--- has_space_element demo---') print(has_space_element([1, 2, 'test_str'])) print(has_space_element([0, 2])) print(has_space_element([1, 2, None])) print(has_space_element((1, [1, 2], 3, ''))) print(has_space_element({'a': 1, 'b': 0})) print(has_space_element({'a': 1, 'b': []})) print('---') 执行结果:: --- has_space_element demo--- False False True True False True --- """ if isinstance(source, dict): check_list = list(source.values()) elif isinstance(source, list) or isinstance(source, tuple): check_list = list(source) else: raise TypeError('source except list, tuple or dict, but got {}'.format(type(source))) for i in check_list: if i is 0: continue if not (i and str(i).strip()): return True return False
ab8a968fb807654af73d9017145c0af2259ae41e
3,657,625
def return_latest_psm_is(df, id_col, file_col, instr_col, psm_col): """ Extracts info on PSM number, search ID and Instrument from the last row in DB """ last_row = df.iloc[-1] search_id = last_row[id_col] instr = last_row[instr_col] psm = last_row[psm_col] psm_string = str(psm) + ' PSMs in file ' + str(last_row[file_col]) print('String to put on the graph', psm_string) return (search_id, instr, psm, psm_string)
73c5acc945b9a6ef40aa1ce102351152b948a4b6
3,657,626
def add_parser_arguments_misc(parser): """ Adds the options that the command line parser will search for, some miscellaneous parameters, like use of gpu, timing, etc. :param parser: the argument parser :return: the same parser, but with the added options. """ parser.add_argument('--use_gpu', action='store_true', help='use GPU (CUDA). For loading data on Windows OS, if you get an Access Denied or Operation ' 'Not Supported for cuda, you must set --loader_num_workers to 0 ' '(you can\'t share CUDA tensors among Windows processes).') parser.add_argument('--gpu_num', default="0", type=str) parser.add_argument('--map_gpu_beginning', action='store_true', help='Will map all tensors (including FULL dataset) to GPU at the start of the instance, if ' '--use_gpu flag is supplied and CUDA is available. This option is NOT recommended if you ' 'have low GPU memory or if you dataset is very large, since you may quickly run out of ' 'memory.') parser.add_argument('--timing', action='store_true', help='if specified, will display times for several parts of training') parser.add_argument('--load_args_from_json', type=str, default=None, help='Path to json file containing args to pass. Should be an object containing the keys of ' 'the attributes you want to change (keys that you don\'t supply will be left unchanged) ' 'and their values according to their type (int, str, bool, list, etc.)') return parser
706ec64dfd6393fd1bd4741568e5e1af1d22a4d0
3,657,627
from typing import Union import torch def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: """ Clone a model data tensor Args: t (Union[StatefulTensor, torch.Tensor]): a model data tensor target_device (torch.device): the target device Returns: torch.Tensor: a cloned torch tensor """ # TODO() rename this function colo_model_data_tensor_move_inline(t, target_device) t_payload = t.payload if isinstance(t, StatefulTensor) else t return t_payload
799d23e5f69ad73ecef040e94fecb64bb7b8c7d9
3,657,628
def plugin_init(config): """Registers HTTP Listener handler to accept sensor readings Args: config: JSON configuration document for the South device configuration category Returns: handle: JSON object to be used in future calls to the plugin Raises: """ handle = config return handle
a3e81bebdc806073b720e0a3174e62240ba81724
3,657,629
import time import json def search(query,page): """Scrapes the search query page and returns the results in json format. Parameters ------------ query: The query you want to search for. page: The page number for which you want the results. Every page returns 11 results. """ driver.get(f'https://phys.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query={query}&type=wiki') clicks = page while clicks>1: showMoreButton = driver.find_element_by_xpath('//*[@id="mt-search-spblls-component"]/div[2]/div/button') showMoreButton.click() clicks -= 1 time.sleep(2) output = [] start = (page-1)* 11 stop = start + 12 for i in range(start+1,stop): content = driver.find_element_by_xpath(f'//*[@id="search-results"]/li[{i}]/div/div[2]/div[2]/span[1]').text path = f'//*[@id="search-results"]/li[{i}]/div/div[1]/a' for a in driver.find_elements_by_xpath(path): title = a.get_attribute('title') link = a.get_attribute('href') result = { "title":title, "link":link, "content":content } output.append(result) output_json = { "results":output } driver.close() return json.dumps(output_json)
4bcc78aeb29715adaca7b99d98d94c28448e24f7
3,657,630
import os import json def get_jobs(job_filename): """Reads jobs from a known job file location """ jobs = list() if job_filename and os.path.isfile(job_filename): with open(job_filename, 'r') as input_fd: data = input_fd.read() job_dict = json.loads(data) del data for job in job_dict['jobs']: jobs.append(job) os.unlink(job_filename) return jobs
eaa091131a026c8a4c5f4e788406e185e1bbffde
3,657,631
def quote_with_backticks_definer(definer): """Quote the given definer clause with backticks. This functions quotes the given definer clause with backticks, converting backticks (`) in the string with the correct escape sequence (``). definer[in] definer clause to quote. Returns string with the definer quoted with backticks. """ if not definer: return definer parts = definer.split('@') if len(parts) != 2: return definer return '@'.join([quote_with_backticks(parts[0]), quote_with_backticks(parts[1])])
ab87c8582d8081e324b494d7038916e984d5813a
3,657,632
import base64 def cvimg_to_b64(img): """ 图片转换函数,将二进制图片转换为base64加密格式 """ try: image = cv2.imencode('.jpg', img)[1] #将图片格式转换(编码)成流数据,赋值到内存缓存中 base64_data = str(base64.b64encode(image))[2:-1] #将图片加密成base64格式的数据 return base64_data #返回加密后的结果 except Exception as e: return "error"
c9f4c99ff24578ac4f6216ddefade0602c60c697
3,657,633
from PIL import Image from scipy.misc import fromimage from skimage.color import label2rgb from skimage.transform import resize from io import StringIO def draw_label(label, img, n_class, label_titles, bg_label=0): """Convert label to rgb with label titles. @param label_title: label title for each labels. @type label_title: dict """ colors = labelcolormap(n_class) label_viz = label2rgb(label, img, colors=colors[1:], bg_label=bg_label) # label 0 color: (0, 0, 0, 0) -> (0, 0, 0, 255) label_viz[label == 0] = 0 # plot label titles on image using matplotlib plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.axis('off') # plot image plt.imshow(label_viz) # plot legend plt_handlers = [] plt_titles = [] for label_value in np.unique(label): if label_value not in label_titles: continue fc = colors[label_value] p = plt.Rectangle((0, 0), 1, 1, fc=fc) plt_handlers.append(p) plt_titles.append(label_titles[label_value]) plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=0.5) # convert plotted figure to np.ndarray f = StringIO.StringIO() plt.savefig(f, bbox_inches='tight', pad_inches=0) result_img_pil = Image.open(f) result_img = fromimage(result_img_pil, mode='RGB') result_img = resize(result_img, img.shape, preserve_range=True) result_img = result_img.astype(img.dtype) return result_img
11b8f1e9c774df3e6312aa3dd0f71e7f300b5547
3,657,634
def inspect(template_dir, display_type=None): """Generates a some string representation of all undefined variables in templates. Args: template_dir (str): all files within are treated as templates display_type (str): tabulate.tabulate tablefmt or 'terse'. Examples: Yields an overview of config parameter placeholders for FireWorks config template directory `imteksimfw/fireworks/templates/fwconfig`: ╒══════════════════════════════╤══════════════╤══════════════════╤═════════════╤════════════╤════════════════════╤═══════════╤════════════════╤══════════════╤═══════════════════╤═════════╤═══════════════╕ │ │ FIREWORKS_DB │ FW_CONFIG_PREFIX │ WEBGUI_PORT │ LOGDIR_LOC │ MONGODB_PORT_LOCAL │ FW_PREFIX │ FIREWORKS_USER │ MONGODB_HOST │ FW_AUTH_FILE_NAME │ MACHINE │ FIREWORKS_PWD │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ FW_config.yaml │ │ x │ x │ │ │ x │ │ │ x │ x │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ bwcloud_noqueue_fworker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ fireworks_mongodb_auth.yaml │ x │ │ │ x │ x │ │ x │ x │ │ │ x │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ forhlr2_noqueue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ forhlr2_queue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ forhlr2_slurm_qadapter.yaml │ │ x │ │ │ │ │ │ │ x │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ juwels_noqueue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ juwels_queue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ juwels_slurm_qadapter.yaml │ │ x │ │ │ │ │ │ │ x │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ nemo_moab_qadapter.yaml │ │ x │ │ │ │ │ │ │ x │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ nemo_noqueue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ├──────────────────────────────┼──────────────┼──────────────────┼─────────────┼────────────┼────────────────────┼───────────┼────────────────┼──────────────┼───────────────────┼─────────┼───────────────┤ │ nemo_queue_worker.yaml │ │ │ │ │ │ │ │ │ │ │ │ ╘══════════════════════════════╧══════════════╧══════════════════╧═════════════╧════════════╧════════════════════╧═══════════╧════════════════╧══════════════╧═══════════════════╧═════════╧═══════════════╛ """ undefined = get_undefined(template_dir) return variable_overview(undefined, display_type)
1f557da1742ca3c2118bb5629f228079ee14e729
3,657,635
def calc_fitness_all(chromosomes, video_list, video_data): """Calculates fitness for all chromosomes Parameters ---------- chromosomes : np.ndarrray List of chromosomes video_list : np.ndarray List of all video titles (in this case number identifiers) video_data : pd dataframe Dataframe of Emotion by Time w/ video as a column Returns ------- list Determinant of the covariance matrix of all emotions by time """ fitness = [] for chromosome in chromosomes: fitness.append(calc_fitness_individual(chromosome, video_list, video_data)) return fitness
e0a28880a31fb5d1546c4f959cd1836e89822471
3,657,636
from typing import List from typing import Set def grouping_is_valid( proposed_grouping: List[Set[str]], past_groups: List[Set[str]], max_intersection_size: int, ) -> bool: """Returns true if no group in the proposed grouping intersects with any past group with intersection size strictly greater than `max_intersection_size`. """ for group in proposed_grouping: for past_group in past_groups: if len(group & past_group) > max_intersection_size: return False return True
caeb7568a2e8fddea9058ccc512dc9c06070ece9
3,657,637
def next_wire_in_dimension(wire1, tile1, wire2, tile2, tiles, x_wires, y_wires, wire_map, wires_in_node): """ next_wire_in_dimension returns true if tile1 and tile2 are in the same row and column, and must be adjcent. """ tile1_info = tiles[tile1] tile2_info = tiles[tile2] tile1_x = tile1_info['grid_x'] tile2_x = tile2_info['grid_x'] tile1_y = tile1_info['grid_y'] tile2_y = tile2_info['grid_y'] # All wires are in the same row or column or if the each wire lies in its own # row or column. if len(y_wires) == 1 or len(x_wires) == len(wires_in_node) or abs( tile1_y - tile2_y) == 0: ordered_wires = sorted(x_wires.keys()) idx1 = ordered_wires.index(tile1_x) idx2 = ordered_wires.index(tile2_x) if len(x_wires[tile1_x]) == 1 and len(x_wires[tile2_x]) == 1: return abs(idx1 - idx2) == 1 if len(x_wires) == 1 or len(y_wires) == len(wires_in_node) or abs( tile1_x - tile2_x) == 0: ordered_wires = sorted(y_wires.keys()) idx1 = ordered_wires.index(tile1_y) idx2 = ordered_wires.index(tile2_y) if len(y_wires[tile1_y]) == 1 and len(y_wires[tile2_y]) == 1: return abs(idx1 - idx2) == 1 return None
2c2b6a2cb4d117f2435568437d38f05311b7dd13
3,657,638
from typing import Optional def get(*, db_session, report_id: int) -> Optional[Report]: """ Get a report by id. """ return db_session.query(Report).filter(Report.id == report_id).one_or_none()
021a7d35e060a2c92c9443361beff03de9aaf048
3,657,639
import urllib def host_from_path(path): """returns the host of the path""" url = urllib.parse.urlparse(path) return url.netloc
95b362e8f20c514a77506356c3a4a0c1ef200490
3,657,640
def sampleM(a0, bk, njk, m_cap=20): """produces sample from distribution over M using normalized log probabilities parameterizing a categorical dist.""" raise DeprecationWarning() wts = np.empty((m_cap,)) sum = 0 for m in range(m_cap): wts[m] = gammaln(a0*bk) - gammaln(a0*bk+njk) + log(stirling.get(njk, m)+1e-9) + m*(a0+bk) sum += wts[-1] wts = np.array(wts) / sum print(wts, np.sum(wts)) return rand.multinomial(1, wts)
76cc9e0bd6a0594bd8b6350053957073ccf9caf9
3,657,641
def or_default(none_or_value, default): """ inputs: none_or_value: variable to test default: value to return if none_or_value is None """ return none_or_value if none_or_value is not None else default
43200fe3bd1308eed87de0ad905873fd3c629067
3,657,642
def find_optimal_components_subset(contours, edges): """Find a crop which strikes a good balance of coverage/compactness. Returns an (x1, y1, x2, y2) tuple. """ c_info = props_for_contours(contours, edges) c_info.sort(key=lambda x: -x['sum']) total = np.sum(edges) / 255 area = edges.shape[0] * edges.shape[1] c = c_info[0] del c_info[0] this_crop = c['x1'], c['y1'], c['x2'], c['y2'] crop = this_crop covered_sum = c['sum'] while covered_sum < total: changed = False recall = 1.0 * covered_sum / total prec = 1 - 1.0 * crop_area(crop) / area f1 = 2 * (prec * recall / (prec + recall)) #print '----' for i, c in enumerate(c_info): this_crop = c['x1'], c['y1'], c['x2'], c['y2'] new_crop = union_crops(crop, this_crop) new_sum = covered_sum + c['sum'] new_recall = 1.0 * new_sum / total new_prec = 1 - 1.0 * crop_area(new_crop) / area new_f1 = 2 * new_prec * new_recall / (new_prec + new_recall) # Add this crop if it improves f1 score, # _or_ it adds 25% of the remaining pixels for <15% crop expansion. # ^^^ very ad-hoc! make this smoother remaining_frac = c['sum'] / (total - covered_sum) new_area_frac = 1.0 * crop_area(new_crop) / crop_area(crop) - 1 if new_f1 > f1 or ( remaining_frac > 0.25 and new_area_frac < 0.15): print('%d %s -> %s / %s (%s), %s -> %s / %s (%s), %s -> %s' % ( i, covered_sum, new_sum, total, remaining_frac, crop_area(crop), crop_area(new_crop), area, new_area_frac, f1, new_f1)) crop = new_crop covered_sum = new_sum del c_info[i] changed = True break if not changed: break return crop
016815811b6fa80378142303e3dce8f7736c514c
3,657,643
import re def scrape(html): """정규표현식으로 도서 정보 추출""" books = [] for partial_html in re.findall(r'<td class="left">Ma.*?</td>', html, re.DOTALL): #도서의 URL 추출 url = re.search(r'<a href="(.*?)">', partial_html).group(1) url = 'http://www.hanbit.co.kr' + url #태그를 제거해 도서의 제목 추출 title = re.sub(r'<.*?>', '', partial_html) title = unescape(title) books.append({'url': url, 'title': title}) return books
8703c48748607934491e92c3e0243e92cd7edf12
3,657,644
def get_time_zone_offset(area_code): """ Returns an integer offset value if it finds a matching area code, otherwise returns None.""" if not isinstance(area_code, str): area_code = str(area_code) if area_code in area_code_mapping: return area_code_mapping[area_code][1]
4697a07d53af25ef70facf30f4bbef2472494781
3,657,645
def true_false_counts(series: pd.Series): """ input: a boolean series returns: two-tuple (num_true, num_false) """ return series.value_counts().sort_index(ascending=False).tolist()
7fc7d0beb1d11aa7a4e3ccb6dd00155194deac3d
3,657,646
def phyutility(DIR,alignment,min_col_occup,seqtype,min_chr=10): """ remove columns with occupancy lower than MIN_COLUMN_OCCUPANCY remove seqs shorter than MIN_CHR after filter columns """ if DIR[-1] != "/": DIR += "/" cleaned = alignment+"-cln" if os.path.exists(DIR+cleaned): return cleaned assert alignment.endswith(".aln"),\ "phyutility infile "+alignment+" not ends with .aln" assert os.stat(DIR+alignment).st_size > 0, DIR+alignment+"empty" assert seqtype == "aa" or seqtype == "dna","Input data type: dna or aa" if seqtype == "aa": cmd = ["phyutility","-aa","-clean",str(min_col_occup),"-in",\ DIR+alignment,"-out",DIR+alignment+"-pht"] else: cmd = ["phyutility","-clean",str(min_col_occup),"-in",\ DIR+alignment,"-out",DIR+alignment+"-pht"] print " ".join(cmd) os.system(" ".join(cmd)) assert os.path.exists(DIR+alignment+"-pht"),"Error phyutility" #remove empty and very short seqs outfile = open(DIR+cleaned,"w") for s in read_fasta_file(DIR+alignment+"-pht"): if len(s.seq.replace("-","")) >= min_chr: outfile.write(s.get_fasta()) outfile.close() os.remove(DIR+alignment+"-pht") return cleaned
42a14d2588e71af5834179f0364925da31d9ef34
3,657,647
def configProject(projectName): """ read in config file""" if projectName==None:return filename=os.path.join(projectsfolder,unicode(projectName),u"project.cfg" ).encode("utf-8") if projectName not in projects: print 'Content-type: text/plain\n\n',"error in projects:",type(projectName),"projectName:",[projectName] print projects return if os.path.exists(filename): try: config = ConfigObj(filename,encoding="UTF-8") #config.BOM=True if verbose : print "read", filename except Exception, e: if verbose : print "can't read config file:",filename,e return return readinContent(config,projectName)
e11c31be073b8699c2bd077815720467b9fd6e2e
3,657,648
def bitwise_not(rasters, extent_type="FirstOf", cellsize_type="FirstOf", astype=None): """ The BitwiseNot operation The arguments for this function are as follows: :param rasters: array of rasters. If a scalar is needed for the operation, the scalar can be a double or string :param extent_type: one of "FirstOf", "IntersectionOf", "UnionOf", "LastOf" :param cellsize_type: one of "FirstOf", "MinOf", "MaxOf, "MeanOf", "LastOf" :param astype: output pixel type :return: the output raster """ return local(rasters, 13, extent_type=extent_type, cellsize_type=cellsize_type, astype=astype)
0edaeaf2b96a48520309dee4809c3251d47c98e8
3,657,649
import re def keyclean(key): """ Default way to clean table headers so they make good dictionary keys. """ clean = re.sub(r'\s+', '_', key.strip()) clean = re.sub(r'[^\w]', '', clean) return clean
0f28f0e92e2817a98a31396949690a46e7538ace
3,657,650
import collections def get_rfactors_for_each(lpin): """ R-FACTORS FOR INTENSITIES OF DATA SET /isilon/users/target/target/Iwata/_proc_ox2r/150415-hirata/1010/06/DS/multi011_1-5/XDS_ASCII_fullres.HKL RESOLUTION R-FACTOR R-FACTOR COMPARED LIMIT observed expected 5.84 60.4% 50.1% 174 4.13 58.1% 51.5% 310 3.38 60.0% 54.6% 410 2.92 90.3% 76.1% 483 2.62 130.4% 100.3% 523 2.39 241.1% 180.5% 612 2.21 353.9% 277.9% 634 2.07 541.1% 444.0% 673 1.95 -99.9% -99.9% 535 total 84.5% 71.2% 4354 """ read_flag = False filename = None ret = collections.OrderedDict() # {filename: list of [dmin, Robs, Rexpt, Compared]} for l in open(lpin): if "R-FACTORS FOR INTENSITIES OF DATA SET" in l: filename = l.strip().split()[-1] elif "LIMIT observed expected" in l: read_flag = True elif read_flag: sp = l.strip().replace("%","").split() if len(sp) == 4: dmin, robs, rexp, compared = sp if dmin != "total": dmin = float(dmin) else: dmin, read_flag = None, False robs, rexp = map(float, (robs, rexp)) compared = int(compared) ret.setdefault(filename, []).append([dmin, robs, rexp, compared]) return ret
937ad8e2cf01fa6ab92838d235a385f9bbfb1b63
3,657,651
def value_left(self, right): """ Returns the value of the right type instance to use in an operator method, namely when the method's instance is on the left side of the expression. """ return right.value if isinstance(right, self.__class__) else right
f28c2f0548d3e004e3dd37601dda6c1ea5ab36f6
3,657,652
def correct_throughput(inspec, spFile='BT-Settl_Asplund2009.fits', quiet=False): """ Main function Inputs: inspec - list of input spectra, each list item should be a 3xN array of wavelenghts (in microns), flux, and variance. One list item for each order for orders 71-77 spFile - (optional) path to fits file containing BT-Setll grid, default: BT-Settl_Asplund2009.fits quiet - set True to turn off all printed output Returns: wave - wavelength array of final combined spectrum flam - flux array fvar - variance array """ ## Read in synthetic spectrum grid spgrid, spwave, spaxes = readGrid(spFile) ## Parse input spectrum waves, flams, fvars = parseSpec(inspec, spwave) ## Define cheby grid norder, npix = waves.shape chebx = np.linspace(-1,1,npix) ## Initial guesses ## Polynomial to correct for blaze function nbpoly = 3 bpolys = np.zeros((norder, nbpoly+1)) ## Polynomial to correct wavelength nwpoly = 1 wpolys = np.zeros((norder, nwpoly+1)) wpolys[:,0] = 1.0 for i in range(norder): bpolys[i] = chebfit(chebx, 1./flams[i], nbpoly) rv = getrv(waves[i], flams[i]*chebval(chebx,bpolys[i]), spwave, spgrid[:,9,2]) wpolys[i,0] = (1.+rv/3e5) ## Model parameters teff = 3500 mh = 0.0 ips = np.array([np.hstack((bpolys[i],wpolys[i])) for i in range(norder)]) ## Loop over entire model grid and fit for each order chi2s = np.zeros([norder,spgrid.shape[1],spgrid.shape[2]]) chi2s [:] = 9e9 ps = np.tile(np.zeros_like(ips[0]), [norder,spgrid.shape[1],spgrid.shape[2],1]) for k in range(0, spgrid.shape[1]): for l in range(spgrid.shape[2]): if not quiet: print('Teff = {0}, [M/H] = {1}'.format(spaxes[0][k],spaxes[1][l])) for i in range(norder): flam = flams[i] fvar = fvars[i] wave = waves[i] fit = minimize(fitFun, ips[i], args=(wave,flam,fvar,nbpoly,chebx,spwave,spgrid,k,l)) chi2s[i,k,l] = fit['fun'] ps[i,k,l] = fit['x'] #if not quiet: # print(' '+fit['message']) # print(' '+str(fit['x'])) # print(' '+str(fit['fun'])) # print() if not quiet: print(np.mean(chi2s[:,k,l])) mink, minl = np.unravel_index(np.argmin(np.sum(chi2s,0)),[len(spaxes[0]),len(spaxes[1])]) bpolys, wpolys = np.split(ps[:,mink,minl], [nbpoly+1], axis=1) teff = spaxes[0][mink] mh = spaxes[1][minl] ## Correct everything corrwaves = np.zeros_like(waves) corrflams = np.zeros_like(flams) corrfvars = np.zeros_like(fvars) for i in range(norder): corrwaves[i] = waves[i] * chebval(chebx, wpolys[i]) corrflams[i] = flams[i] * chebval(chebx, bpolys[i]) corrfvars[i] = (np.sqrt(fvars[i]) * chebval(chebx, bpolys[i]))**2. ## Flatten and sort wave = corrwaves.flatten() srt = np.argsort(wave) wave = wave[srt] flam = corrflams.flatten()[srt] fvar = corrfvars.flatten()[srt] return wave, flam, fvar
1c1eecf308f738cce891176ab8e527be97839493
3,657,653
import numbers import collections def convert_list( items, ids, parent, attr_type, ): """Converts a list into an XML string.""" LOG.info('Inside convert_list()') output = [] addline = output.append if ids: this_id = get_unique_id(parent) for (i, item) in enumerate(items): LOG.info('Looping inside convert_list(): item="%s", type="%s"' % (unicode_me(item), type(item).__name__)) attr = ({} if not ids else {'id': '%s_%s' % (this_id, i + 1)}) if isinstance(item, numbers.Number) or type(item) in (str, unicode): addline(convert_kv('item', item, attr_type, attr)) elif hasattr(item, 'isoformat'): # datetime addline(convert_kv('item', item.isoformat(), attr_type, attr)) elif type(item) == bool: addline(convert_bool('item', item, attr_type, attr)) elif isinstance(item, dict): if not attr_type: addline('<item>%s</item>' % convert_dict(item, ids, parent, attr_type)) else: addline('<item type="dict">%s</item>' % convert_dict(item, ids, parent, attr_type)) elif isinstance(item, collections.Iterable): if not attr_type: addline('<item %s>%s</item>' % (make_attrstring(attr), convert_list(item, ids, 'item', attr_type))) else: addline('<item type="list"%s>%s</item>' % (make_attrstring(attr), convert_list(item, ids, 'item', attr_type))) elif item is None: addline(convert_none('item', None, attr_type, attr)) else: raise TypeError('Unsupported data ' / 'type: %s (%s)' % (item, type(item).__name__)) return ''.join(output)
3e73fa756e5bd2685d529bb21170ab35dd6dedff
3,657,654
def get_mid_surface(in_surfaces): """get_mid_surface gives the mid surface when dealing with the 7 different surfaces Args: (list of strings) in_surfaces : List of path to the 7 different surfaces generated by mris_expand Returns: (string) Path to the mid surface """ return in_surfaces[3]
718ab8fa7a3b716241ae05a4e507f40ab6cb0efd
3,657,655
def parse_type(msg_type): """ Parse ROS message field type :param msg_type: ROS field type, ``str`` :returns: base_type, is_array, array_length, ``(str, bool, int)`` :raises: :exc:`ValueError` If *msg_type* cannot be parsed """ if not msg_type: raise ValueError("Invalid empty type") if '[' in msg_type: var_length = msg_type.endswith('[]') splits = msg_type.split('[') if len(splits) > 2: raise ValueError("Currently only support 1-dimensional array types: %s"%msg_type) if var_length: return msg_type[:-2], True, None else: try: length = int(splits[1][:-1]) return splits[0], True, length except ValueError: raise ValueError("Invalid array dimension: [%s]"%splits[1][:-1]) else: return msg_type, False, None
1dfe4f3abb7b69bed17b60ee2666279081666dc6
3,657,656
from typing import List from typing import Optional import glob def preprocess(feature_modules: List, queries: List[Query], prefix: Optional[str] = None, process_count: Optional[int] = None): """ Args: feature_modules: the feature modules used to generate features, each must implement the add_features function queries: all the queri objects that have to be preprocessed prefix: prefix for the output files, ./preprocessed-data- by default process_count: how many subprocesses will I run simultaneously, by default takes all available cpu cores. """ if process_count is None: process_count = cpu_count() if prefix is None: prefix = "preprocessed-data" pool_function = partial(_preprocess_one_query, prefix, [m.__name__ for m in feature_modules]) with Pool(process_count) as pool: pool.map(pool_function, queries) output_paths = glob(f"{prefix}-*.hdf5") return output_paths
2896482423d9306d01d225ef785e0680844a13a4
3,657,657
def to_distance(maybe_distance_function): """ Parameters ---------- maybe_distance_function: either a Callable, which takes two arguments, or a DistanceFunction instance. Returns ------- """ if maybe_distance_function is None: return NoDistance() if isinstance(maybe_distance_function, DistanceFunction): return maybe_distance_function return SimpleFunctionDistance(maybe_distance_function)
4e801a948d86594efdb1d05f352eb449e8bbdd02
3,657,658
def echo(text): """Return echo function.""" return text
c128bc86bc63006a1ac5b209c10b21f787b7100a
3,657,659
import os def predict(): """Renders the predict page and makes predictions if the method is POST.""" if request.method == 'GET': return render_predict() # Get arguments checkpoint_name = request.form['checkpointName'] if 'data' in request.files: # Upload data file with SMILES data = request.files['data'] data_name = secure_filename(data.filename) data_path = os.path.join(app.config['TEMP_FOLDER'], data_name) data.save(data_path) # Check if header is smiles possible_smiles = get_header(data_path)[0] smiles = [possible_smiles] if Chem.MolFromSmiles(possible_smiles) is not None else [] # Get remaining smiles smiles.extend(get_smiles(data_path)) elif request.form['textSmiles'] != '': smiles = request.form['textSmiles'].split() else: smiles = [request.form['drawSmiles']] checkpoint_path = os.path.join(app.config['CHECKPOINT_FOLDER'], checkpoint_name) task_names = load_task_names(checkpoint_path) num_tasks = len(task_names) gpu = request.form.get('gpu') # Create and modify args parser = ArgumentParser() add_predict_args(parser) args = parser.parse_args([]) preds_path = os.path.join(app.config['TEMP_FOLDER'], app.config['PREDICTIONS_FILENAME']) args.test_path = 'None' # TODO: Remove this hack to avoid assert crashing in modify_predict_args args.preds_path = preds_path args.checkpoint_path = checkpoint_path if gpu is not None: if gpu == 'None': args.no_cuda = True else: args.gpu = int(gpu) modify_predict_args(args) # Run predictions preds = make_predictions(args, smiles=smiles) if all(p is None for p in preds): return render_predict(errors=['All SMILES are invalid']) # Replace invalid smiles with message invalid_smiles_warning = "Invalid SMILES String" preds = [pred if pred is not None else [invalid_smiles_warning] * num_tasks for pred in preds] return render_predict(predicted=True, smiles=smiles, num_smiles=min(10, len(smiles)), show_more=max(0, len(smiles)-10), task_names=task_names, num_tasks=len(task_names), preds=preds, warnings=["List contains invalid SMILES strings"] if None in preds else None, errors=["No SMILES strings given"] if len(preds) == 0 else None)
bd3fb9d7ca6c54946e6c65e281682e69f3550340
3,657,660
def zernike_name(index, framework='Noll'): """ Get the name of the Zernike with input index in input framework (Noll or WSS). :param index: int, Zernike index :param framework: str, 'Noll' or 'WSS' for Zernike ordering framework :return zern_name: str, name of the Zernike in the chosen framework """ noll_names = {1: 'piston', 2: 'tip', 3: 'tilt', 4: 'defocus', 5: 'astig45', 6: 'astig0', 7: 'ycoma', 8: 'xcoma', 9: 'ytrefoil', 10: 'xtrefoil', 11: 'spherical'} wss_names = {1: 'piston', 2: 'tip', 3: 'tilt', 5: 'defocus', 4: 'astig45', 6: 'astig0', 8: 'ycoma', 7: 'xcoma', 10: 'ytrefoil', 11: 'xtrefoil', 9: 'spherical'} if framework == 'Noll': zern_name = noll_names[index] elif framework == 'WSS': zern_name = wss_names[index] else: raise ValueError('No known Zernike convention passed.') return zern_name
33e73739c11bc2340a47162e161ba7d87e26d279
3,657,661
def discriminator_train_batch_mle(batches, discriminator, loss_fn, optimizer): """ Summary 1. watch discriminator trainable_variables 2. extract encoder_output, labels, sample_weight, styles, captions from batch and make them tensors 3. predictions = discriminator(encoder_output, captions, styles, training=True) 4. loss = loss_fn(labels, predictions, sample_weight=sample_weight) 5. gradients = tape.gradient(loss, discriminator.trainable_variables)) 6. optimizer.apply_gradients(zip(gradients, discriminator.trainable_variables)) """ with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(discriminator.trainable_variables) encoder_output = tf.concat([b[0] for b in batches], axis=0) labels = tf.concat([b[2] for b in batches], axis=0) sample_weight = tf.concat([b[3] for b in batches], axis=0) styles = tf.concat([b[4] for b in batches], axis=0) captions = [b[1] for b in batches] max_caption_length = max([c.shape[1] for c in captions]) captions = [tf.pad(c, paddings=tf.constant([[0, 0], [0, max_caption_length - c.shape[1]]])) for c in captions] captions = tf.concat(captions, axis=0) predictions = discriminator(encoder_output, captions, styles, training=True) loss = loss_fn(labels, predictions, sample_weight=sample_weight) gradients = tape.gradient(loss, discriminator.trainable_variables) optimizer.apply_gradients(zip(gradients, discriminator.trainable_variables)) return loss
2bb4cd47ddeea5c2edb6f627e39843ba18593833
3,657,662
def get_subs_dict(expression, mod): """ Builds a substitution dictionary of an expression based of the values of these symbols in a model. Parameters ---------- expression : sympy expression mod : PysMod Returns ------- dict of sympy.Symbol:float """ subs_dict = {} symbols = expression.atoms(Symbol) for symbol in symbols: attr = str(symbol) subs_dict[attr] = getattr(mod, attr) return subs_dict
075b406dfbdcb5a0049589880ad8b08fbd459159
3,657,663
def save_index_summary(name, rates, dates, grid_dim): """ Save index file Parameters ---------- See Also -------- DataStruct """ with open(name + INDEX_SUMMARY_EXT, "w+b") as file_index: nlist = 0 keywords_data, nums_data, nlist = get_keywords_section_data(rates) # need to calc NLIST filed for DIMENS write_unrst_data_section(f=file_index, name=RESTART, stype=INDEX_META_BLOCK_SPEC[RESTART]['type'], data_array=np.array( [' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8, ' ' * 8])) dimen = INDEX_META_BLOCK_SPEC[DIMENS] dimen['struct']['nlist'].val = nlist write_unrst_section(file_index, DIMENS, dimen, grid_dim) write_unrst_data_section(f=file_index, name=KEYWORDS, stype=INDEX_SECTIONS_DATA[KEYWORDS].type, data_array=keywords_data) wgnames_date = get_wgnames_section_data(rates) write_unrst_data_section(f=file_index, name=WGNAMES, stype=INDEX_SECTIONS_DATA[WGNAMES].type, data_array=wgnames_date) write_unrst_data_section(f=file_index, name=NUMS, stype=INDEX_SECTIONS_DATA[NUMS].type, data_array=nums_data) units_data, nlist = get_units_section_data(rates) write_unrst_data_section(f=file_index, name=UNITS, stype=INDEX_SECTIONS_DATA[UNITS].type, data_array=units_data) write_unrst_data_section(f=file_index, name=STARTDAT, stype=INDEX_SECTIONS_DATA[STARTDAT].type, data_array=get_startdat_section_data(dates[0])) return nlist
ac807dac6a1c63eca7b20322dc2c4122dc0b7ec8
3,657,664
def fluxes_SIF_predict_noSIF(model_NEE, label, EV1, EV2, NEE_max_abs): """ Predict the flux partitioning from a trained NEE model. :param model_NEE: full model trained on NEE :type model_NEE: keras.Model :param label: input of the model part 1 (APAR) :type label: tf.Tensor :param EV1: input of the model part 2 (GPP_input) :type EV1: tf.Tensor :param EV2: input of the model part 3 (Reco_input) :type EV2: tf.Tensor :param NEE_max_abs: normalization factor of NEE :type NEE_max_abs: tf.Tensor | float :return: corresponding NEE, GPP and Reco value for the provided data :rtype: (tf.Tensor, tf.Tensor, tf.Tensor) """ NEE_NN = (layer_output_noSIF(model_NEE, 'NEE', label, EV1, EV2) * NEE_max_abs) NEE_NN = tf.reshape(NEE_NN, (NEE_NN.shape[0],)) GPP_NN = (layer_output_noSIF(model_NEE, 'GPP', label, EV1, EV2) * NEE_max_abs) GPP_NN = tf.reshape(GPP_NN, (NEE_NN.shape[0],)) Reco_NN = (layer_output_noSIF(model_NEE, 'Reco', label, EV1, EV2) * NEE_max_abs) Reco_NN = tf.reshape(Reco_NN, (NEE_NN.shape[0],)) return NEE_NN, GPP_NN, Reco_NN
3f5ecf95c27a4deb04894c84de903a5eb34858d0
3,657,665
def xml_string(line, tag, namespace, default=None): """ Get string value from etree element """ try: val = (line.find(namespace + tag).text) except: val = default return val
77745d463cf6604ed787e220fdabf6ff998f770e
3,657,666
from datetime import datetime def generate_header(salutation, name, surname, postSalutation, address, zip, city, phone, email): """ This function generates the header pdf page """ # first we take the html file and parse it as a string #print('generating header page', surname, name) with open('/home/danielg3/www/crowdlobbying.ch/python/pdf/header.html', 'r', encoding='utf-8') as myfile: data = myfile.read() to_write = data.format(salutation, name, (surname + ' ' + postSalutation), str(datetime.datetime.now())[0:10]) pdfkit.from_string(to_write, '/tmp/header.pdf') return open('/tmp/header.pdf', 'rb')
c979c2985d730eee0ce5b442e55a050e7cc4a672
3,657,667
def cli_cosmosdb_collection_exists(client, database_id, collection_id): """Returns a boolean indicating whether the collection exists """ return len(list(client.QueryContainers( _get_database_link(database_id), {'query': 'SELECT * FROM root r WHERE r.id=@id', 'parameters': [{'name': '@id', 'value': collection_id}]}))) > 0
99ada0b4c4176b02d4bbe00c07b991a579a917d0
3,657,668
def probabilities (X) -> dict: """ This function maps the set of outcomes found in the sequence of events, 'X', to their respective probabilty of occuring in 'X'. The return value is a python dictionary where the keys are the set of outcomes and the values are their associated probabilities.""" # The set of outcomes, denoted as 'C', and the total events, denoted as 'T'. C, T = set(X), len(X) return {c: X.count(c) / T for c in C}
c908a1186feea270be71bb1f03485c901bc82733
3,657,669
import time import requests def get_recommend_news(): """获取新闻推荐列表""" # 触电新闻主页推荐实际URL recommend_news_url = 'https://api.itouchtv.cn:8090/newsservice/v9/recommendNews?size=24&channelId=0' # 当前毫秒时间戳 current_ms = int(time.time() * 1000) headers = get_headers(target_url=recommend_news_url, ts_ms=current_ms) resp = requests.get(url=recommend_news_url, headers=headers) if resp.ok: news_data = resp.json() return news_data.get('newsList', []) else: raise Exception('请求异常:\n==> target_url: %s\n==> headers: %s' % (recommend_news_url, headers))
3bee0bb7c1fb977d9380a9be07aab4b802149d6a
3,657,670
def put_profile_pic(url, profile): """ Takes a url from filepicker and uploads it to our aws s3 account. """ try: r = requests.get(url) size = r.headers.get('content-length') if int(size) > 10000000: #greater than a 1mb #patlsotw return False filename, headers = urlretrieve(url + "/resize?w=600&h=600") resize_filename, headers = urlretrieve(url + "/resize?w=40&h=40") # store profile sized picture (40x40px) conn = S3Connection(settings.AWS["AWS_ACCESS_KEY_ID"], settings.AWS["AWS_SECRET_ACCESS_KEY"]) b = conn.get_bucket(settings.AWS["BUCKET"]) _set_key(b, profile.user.username, filename) k = _set_key(b, profile.user.username + "resize", resize_filename) except Exception as e: print e return False return "http://s3.amazonaws.com/%s/%s"% (settings.AWS["BUCKET"], k.key)
7bc201b754f33518a96a7e6a562e5a6ec601dfb5
3,657,671
from typing import Tuple from pathlib import Path from typing import Dict def get_raw_data() -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Loads serialized data from file. Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: Tuple of features, labels and classes for the dataset. """ data_file: str = Path().absolute().joinpath(RAW_DATA_FILE).__str__() data_dict: Dict[str, np.ndarray] = np.load(data_file, allow_pickle=True) x: np.ndarray = data_dict['X'] y: np.ndarray = data_dict['Y'] classes: np.ndarray = data_dict['classes'] return x, y, classes
58e98b733c396fa8dca5f9dd442625283cae5f1e
3,657,672
import requests def cog_pixel_value( lon, lat, url, bidx=None, titiler_endpoint="https://titiler.xyz", verbose=True, **kwargs, ): """Get pixel value from COG. Args: lon (float): Longitude of the pixel. lat (float): Latitude of the pixel. url (str): HTTP URL to a COG, e.g., 'https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2018-02-16/pine-gulch-fire20/1030010076004E00.tif' bidx (str, optional): Dataset band indexes (e.g bidx=1, bidx=1&bidx=2&bidx=3). Defaults to None. titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None. verbose (bool, optional): Print status messages. Defaults to True. Returns: list: A dictionary of band info. """ titiler_endpoint = check_titiler_endpoint(titiler_endpoint) kwargs["url"] = url if bidx is not None: kwargs["bidx"] = bidx r = requests.get(f"{titiler_endpoint}/cog/point/{lon},{lat}", params=kwargs).json() bands = cog_bands(url, titiler_endpoint) # if isinstance(titiler_endpoint, str): # r = requests.get(f"{titiler_endpoint}/cog/point/{lon},{lat}", params=kwargs).json() # else: # r = requests.get( # titiler_endpoint.url_for_stac_pixel_value(lon, lat), params=kwargs # ).json() if "detail" in r: if verbose: print(r["detail"]) return None else: values = r["values"] result = dict(zip(bands, values)) return result
40494f5ee491283b127409f52dd0e1d9029bce52
3,657,673
def select_daily(ds, day_init=15, day_end=21): """ Select lead time days. Args: ds: xarray dataset. day_init (int): first lead day selection. Defaults to 15. day_end (int): last lead day selection. Defaults to 21. Returns: xarray dataset subset based on time selection. ::Lead time indices for reference:: Week 1: 1, 2, 3, 4, 5, 6, 7 Week 2: 8, 9, 10, 11, 12, 13, 14 Week 3: 15, 16, 17, 18, 19, 20, 21 Week 4: 22, 23, 24, 25, 26, 27, 28 Week 5: 29, 30, 31, 32, 33, 34, 35 Week 6: 36, 37, 38, 39, 40, 41, 42 """ return ds.isel(lead=slice(day_init, day_end + 1))
9948ecba5acc3c1ca2fe28526585d0bfa81fb862
3,657,674
def project_polarcoord_lines(lines, img_w, img_h): """ Project lines in polar coordinate space <lines> (e.g. from hough transform) onto a canvas of size <img_w> by <img_h>. """ if img_w <= 0: raise ValueError('img_w must be > 0') if img_h <= 0: raise ValueError('img_h must be > 0') lines_ab = [] for i, (rho, theta) in enumerate(lines): # calculate intersections with canvas dimension minima/maxima cos_theta = np.cos(theta) sin_theta = np.sin(theta) x_miny = rho / cos_theta if cos_theta != 0 else float("inf") # x for a minimal y (y=0) y_minx = rho / sin_theta if sin_theta != 0 else float("inf") # y for a minimal x (x=0) x_maxy = (rho - img_w * sin_theta) / cos_theta if cos_theta != 0 else float("inf") # x for maximal y (y=img_h) y_maxx = (rho - img_h * cos_theta) / sin_theta if sin_theta != 0 else float("inf") # y for maximal x (y=img_w) # because rounding errors happen, sometimes a point is counted as invalid because it # is slightly out of the bounding box # this is why we have to correct it like this def border_dist(v, border): return v if v <= 0 else v - border # set the possible points # some of them will be out of canvas possible_pts = [ ([x_miny, 0], (border_dist(x_miny, img_w), 0)), ([0, y_minx], (border_dist(y_minx, img_h), 1)), ([x_maxy, img_h], (border_dist(x_maxy, img_w), 0)), ([img_w, y_maxx], (border_dist(y_maxx, img_h), 1)), ] # get the valid and the dismissed (out of canvas) points valid_pts = [] dismissed_pts = [] for p, dist in possible_pts: if 0 <= p[0] <= img_w and 0 <= p[1] <= img_h: valid_pts.append(p) else: dismissed_pts.append((p, dist)) # from the dismissed points, get the needed ones that are closed to the canvas n_needed_pts = 2 - len(valid_pts) if n_needed_pts > 0: dismissed_pts_sorted = sorted(dismissed_pts, key=lambda x: abs(x[1][0]), reverse=True) for _ in range(n_needed_pts): p, (dist, coord_idx) = dismissed_pts_sorted.pop() p[coord_idx] -= dist # correct valid_pts.append(p) p1 = pt(*valid_pts[0]) p2 = pt(*valid_pts[1]) lines_ab.append((p1, p2)) return lines_ab
7a6a75daedadc6ddfd6f8f55a7a57ae80865605e
3,657,675
def standardize_for_imshow(image): """ A luminance standardization for pyplot's imshow This just allows me to specify a simple, transparent standard for what white and black correspond to in pyplot's imshow method. Likely could be accomplished by the colors.Normalize method, but I want to make this as explicit as possible. If the image is nonnegative, we divide by the scalar that makes the largest value 1.0. If the image is nonpositive, we divide by the scalar that makes the smallest value -1.0, and then add 1, so that this value is 0.0, pitch black. If the image has both positive and negative values, we divide and shift so that 0.0 in the original image gets mapped to 0.5 for imshow and the largest absolute value gets mapped to either 0.0 or 1.0 depending on whether it was positive of negative. Parameters ---------- image : ndarray The image to be standardized, can be (h, w) or (h, w, c). All operations are scalar operations applied to every color channel. Note this, may change hue of color images, I think. Returns ------- standardized_image : ndarray An RGB image in the range [0.0, 1.0], ready to be showed by imshow. raw_val_mapping : tuple(float, float, float) Indicates what raw values got mapped to 0.0, 0.5, and 1.0, respectively """ max_val = np.max(image) min_val = np.min(image) if max_val == min_val: # constant value standardized_image = 0.5 * np.ones(image.shape) if max_val > 0: raw_val_mapping = [0.0, max_val, 2*max_val] elif max_val < 0: raw_val_mapping = [2*max_val, max_val, 0.0] else: raw_val_mapping = [-1.0, 0.0, 1.0] else: if min_val >= 0: standardized_image = image / max_val raw_val_mapping = [0.0, 0.5*max_val, max_val] elif max_val <= 0: standardized_image = (image / -min_val) + 1.0 raw_val_mapping = [min_val, 0.5*min_val, 0.0] else: # straddles 0.0. We want to map 0.0 to 0.5 in the displayed image skew_toward_max = np.argmax([abs(min_val), abs(max_val)]) if skew_toward_max: normalizer = (2 * max_val) raw_val_mapping = [-max_val, 0.0, max_val] else: normalizer = (2 * np.abs(min_val)) raw_val_mapping = [min_val, 0.0, -min_val] standardized_image = (image / normalizer) + 0.5 return standardized_image, raw_val_mapping
8b89235623746019b53d3c44dd8cecc2d313ffbd
3,657,676
def err_failure(error) : """ Check a error on failure """ return not err_success(error)
17e9edbbe7bb5451d991fb94108148d2d0b1c644
3,657,677
def rah_fixed_dt( u2m, roh_air, cp, dt, disp, z0m, z0h, tempk): """ It takes input of air density, air specific heat, difference of temperature between surface skin and a height of about 2m above, and the aerodynamic resistance to heat transport. This version runs an iteration loop to stabilize psychrometric data for the aerodynamic resistance to heat flux. Fixed temperature difference correction of aerodynamic roughness for heat transport """ PI = 3.14159265358979323846 ublend=u2m*(log(100-disp)-log(z0m))/(log(2-disp)-log(z0m)) for i in range(10): ustar = 0.41*ublend/(log((100-disp)/z0m)-psim) rah = (log((2-disp)/z0h)-psih)/(0.41*ustar) h_in = roh_air * cp * dt / rah length= -roh_air*cp*pow(ustar,3)*tempk/(0.41*9.81*h_in) xm = pow(1.0-16.0*((100-disp)/length),0.25) xh = pow(1.0-16.0*((2-disp)/length),0.25) psim = 2.0*log((1.0+xm)/2.0)+log((1+xm*xm)-2*atan(xm)+0.5*PI) psih = 2.0*log((1.0+xh*xh)/2.0) return rah
bd48c62817f25964fa394ace35ab24357d455797
3,657,678
def process_grid_subsets(output_file, start_subset_id=0, end_subset_id=-1): """"Execute analyses on the data of the complete grid and save the processed data to a netCDF file. By default all subsets are analyzed Args: output_file (str): Name of netCDF file to which the results are saved for the respective subset. (including format {} placeholders) start_subset_id (int): Starting subset id to be analyzed end_subset_id (int): Last subset id to be analyzed (set to -1 to process all subsets after start_subset_id) """ ds, lons, lats, levels, hours, i_highest_level = read_raw_data(start_year, final_year) check_for_missing_data(hours) # Reading the data of all grid points from the NetCDF file all at once requires a lot of memory. On the other hand, # reading the data of all grid points one by one takes up a lot of CPU. Therefore, the dataset is analysed in # pieces: the subsets are read and processed consecutively. n_subsets = int(np.ceil(float(len(lats)) / read_n_lats_per_subset)) # Define subset range to be processed in this run if end_subset_id == -1: subset_range = range(start_subset_id, n_subsets) else: subset_range = range(start_subset_id, end_subset_id+1) if subset_range[-1] > (n_subsets-1): raise ValueError("Requested subset ID ({}) is higher than maximal subset ID {}." .format(subset_range[-1], (n_subsets-1))) # Loop over all specified subsets to write processed data to the output file. counter = 0 total_iters = len(lats) * len(lons)*len(subset_range)/n_subsets start_time = timer() for i_subset in subset_range: # Find latitudes corresponding to the current i_subset i_lat0 = i_subset * read_n_lats_per_subset if i_lat0+read_n_lats_per_subset < len(lats): lat_ids_subset = range(i_lat0, i_lat0 + read_n_lats_per_subset) else: lat_ids_subset = range(i_lat0, len(lats)) lats_subset = lats[lat_ids_subset] print("Subset {}, Latitude(s) analysed: {} to {}".format(i_subset, lats_subset[0], lats_subset[-1])) # Initialize result arrays for this subset res = initialize_result_dict(lats_subset, lons) print(' Result array configured, reading subset input now, time lapsed: {:.2f} hrs' .format(float(timer()-start_time)/3600)) # Read data for the subset latitudes v_levels_east = ds.variables['u'][:, i_highest_level:, lat_ids_subset, :].values v_levels_north = ds.variables['v'][:, i_highest_level:, lat_ids_subset, :].values v_levels = (v_levels_east**2 + v_levels_north**2)**.5 t_levels = ds.variables['t'][:, i_highest_level:, lat_ids_subset, :].values q_levels = ds.variables['q'][:, i_highest_level:, lat_ids_subset, :].values try: surface_pressure = ds.variables['sp'][:, lat_ids_subset, :].values except KeyError: surface_pressure = np.exp(ds.variables['lnsp'][:, lat_ids_subset, :].values) print(' Input read, performing statistical analysis now, time lapsed: {:.2f} hrs' .format(float(timer()-start_time)/3600)) for i_lat_in_subset in range(len(lat_ids_subset)): # Saves a file for each subset. for i_lon in range(len(lons)): if (i_lon % 20) == 0: # Give processing info every 20 longitudes print(' {} of {} longitudes analyzed, satistical analysis of longitude {}, time lapsed: ' '{:.2f} hrs'.format(i_lon, len(lons), lons[i_lon], float(timer()-start_time)/3600)) counter += 1 level_heights, density_levels = compute_level_heights(levels, surface_pressure[:, i_lat_in_subset, i_lon], t_levels[:, :, i_lat_in_subset, i_lon], q_levels[:, :, i_lat_in_subset, i_lon]) # Determine wind at altitudes of interest by means of interpolating the raw wind data. v_req_alt = np.zeros((len(hours), len(heights_of_interest))) # Interpolation results array. rho_req_alt = np.zeros((len(hours), len(heights_of_interest))) for i_hr in range(len(hours)): if not np.all(level_heights[i_hr, 0] > heights_of_interest): raise ValueError("Requested height ({:.2f} m) is higher than height of highest model level." .format(level_heights[i_hr, 0])) v_req_alt[i_hr, :] = np.interp(heights_of_interest, level_heights[i_hr, ::-1], v_levels[i_hr, ::-1, i_lat_in_subset, i_lon]) rho_req_alt[i_hr, :] = np.interp(heights_of_interest, level_heights[i_hr, ::-1], density_levels[i_hr, ::-1]) p_req_alt = calc_power(v_req_alt, rho_req_alt) # Determine wind statistics at fixed heights of interest. for i_out, fixed_height_id in enumerate(analyzed_heights_ids['fixed']): v_mean, v_perc5, v_perc32, v_perc50 = get_statistics(v_req_alt[:, fixed_height_id]) res['fixed']['wind_speed']['mean'][i_out, i_lat_in_subset, i_lon] = v_mean res['fixed']['wind_speed']['percentile'][5][i_out, i_lat_in_subset, i_lon] = v_perc5 res['fixed']['wind_speed']['percentile'][32][i_out, i_lat_in_subset, i_lon] = v_perc32 res['fixed']['wind_speed']['percentile'][50][i_out, i_lat_in_subset, i_lon] = v_perc50 v_ranks = get_percentile_ranks(v_req_alt[:, fixed_height_id], [4., 8., 14., 25.]) res['fixed']['wind_speed']['rank'][4][i_out, i_lat_in_subset, i_lon] = v_ranks[0] res['fixed']['wind_speed']['rank'][8][i_out, i_lat_in_subset, i_lon] = v_ranks[1] res['fixed']['wind_speed']['rank'][14][i_out, i_lat_in_subset, i_lon] = v_ranks[2] res['fixed']['wind_speed']['rank'][25][i_out, i_lat_in_subset, i_lon] = v_ranks[3] p_fixed_height = p_req_alt[:, fixed_height_id] p_mean, p_perc5, p_perc32, p_perc50 = get_statistics(p_fixed_height) res['fixed']['wind_power_density']['mean'][i_out, i_lat_in_subset, i_lon] = p_mean res['fixed']['wind_power_density']['percentile'][5][i_out, i_lat_in_subset, i_lon] = p_perc5 res['fixed']['wind_power_density']['percentile'][32][i_out, i_lat_in_subset, i_lon] = p_perc32 res['fixed']['wind_power_density']['percentile'][50][i_out, i_lat_in_subset, i_lon] = p_perc50 p_ranks = get_percentile_ranks(p_fixed_height, [40., 300., 1600., 9000.]) res['fixed']['wind_power_density']['rank'][40][i_out, i_lat_in_subset, i_lon] = p_ranks[0] res['fixed']['wind_power_density']['rank'][300][i_out, i_lat_in_subset, i_lon] = p_ranks[1] res['fixed']['wind_power_density']['rank'][1600][i_out, i_lat_in_subset, i_lon] = p_ranks[2] res['fixed']['wind_power_density']['rank'][9000][i_out, i_lat_in_subset, i_lon] = p_ranks[3] # Integrate power along the altitude. for range_id in integration_range_ids: height_id_start = analyzed_heights_ids['integration_ranges'][range_id][1] height_id_final = analyzed_heights_ids['integration_ranges'][range_id][0] p_integral = [] x = heights_of_interest[height_id_start:height_id_final + 1] for i_hr in range(len(hours)): y = p_req_alt[i_hr, height_id_start:height_id_final+1] p_integral.append(-np.trapz(y, x)) res['integration_ranges']['wind_power_density']['mean'][range_id, i_lat_in_subset, i_lon] = \ np.mean(p_integral) # Determine wind statistics for ceiling cases. for i_out, ceiling_id in enumerate(analyzed_heights_ids['ceilings']): # Find the height maximizing the wind speed for each hour. v_ceiling = np.amax(v_req_alt[:, ceiling_id:analyzed_heights_ids['floor'] + 1], axis=1) v_ceiling_ids = np.argmax(v_req_alt[:, ceiling_id:analyzed_heights_ids['floor'] + 1], axis=1) + \ ceiling_id # optimal_heights = [heights_of_interest[max_id] for max_id in v_ceiling_ids] # rho_ceiling = get_density_at_altitude(optimal_heights + surf_elev) rho_ceiling = rho_req_alt[np.arange(len(hours)), v_ceiling_ids] p_ceiling = calc_power(v_ceiling, rho_ceiling) v_mean, v_perc5, v_perc32, v_perc50 = get_statistics(v_ceiling) res['ceilings']['wind_speed']['mean'][i_out, i_lat_in_subset, i_lon] = v_mean res['ceilings']['wind_speed']['percentile'][5][i_out, i_lat_in_subset, i_lon] = v_perc5 res['ceilings']['wind_speed']['percentile'][32][i_out, i_lat_in_subset, i_lon] = v_perc32 res['ceilings']['wind_speed']['percentile'][50][i_out, i_lat_in_subset, i_lon] = v_perc50 v_ranks = get_percentile_ranks(v_ceiling, [4., 8., 14., 25.]) res['ceilings']['wind_speed']['rank'][4][i_out, i_lat_in_subset, i_lon] = v_ranks[0] res['ceilings']['wind_speed']['rank'][8][i_out, i_lat_in_subset, i_lon] = v_ranks[1] res['ceilings']['wind_speed']['rank'][14][i_out, i_lat_in_subset, i_lon] = v_ranks[2] res['ceilings']['wind_speed']['rank'][25][i_out, i_lat_in_subset, i_lon] = v_ranks[3] p_mean, p_perc5, p_perc32, p_perc50 = get_statistics(p_ceiling) res['ceilings']['wind_power_density']['mean'][i_out, i_lat_in_subset, i_lon] = p_mean res['ceilings']['wind_power_density']['percentile'][5][i_out, i_lat_in_subset, i_lon] = p_perc5 res['ceilings']['wind_power_density']['percentile'][32][i_out, i_lat_in_subset, i_lon] = p_perc32 res['ceilings']['wind_power_density']['percentile'][50][i_out, i_lat_in_subset, i_lon] = p_perc50 p_ranks = get_percentile_ranks(p_ceiling, [40., 300., 1600., 9000.]) res['ceilings']['wind_power_density']['rank'][40][i_out, i_lat_in_subset, i_lon] = p_ranks[0] res['ceilings']['wind_power_density']['rank'][300][i_out, i_lat_in_subset, i_lon] = p_ranks[1] res['ceilings']['wind_power_density']['rank'][1600][i_out, i_lat_in_subset, i_lon] = p_ranks[2] res['ceilings']['wind_power_density']['rank'][9000][i_out, i_lat_in_subset, i_lon] = p_ranks[3] print('Locations analyzed: ({}/{:.0f}).'.format(counter, total_iters)) # Flatten output, convert to xarray Dataset and write to output file. output_file_name_formatted = output_file.format(**{'start_year': start_year, 'final_year': final_year, 'lat_subset_id': i_subset, 'max_lat_subset_id': n_subsets-1}) print('Writing output to file: {}'.format(output_file_name_formatted)) flattened_subset_output = get_result_dict(lats_subset, lons, hours, res) nc_out = xr.Dataset.from_dict(flattened_subset_output) nc_out.to_netcdf(output_file_name_formatted) nc_out.close() time_lapsed = float(timer()-start_time) time_remaining = time_lapsed/counter*(total_iters-counter) print("Time lapsed: {:.2f} hrs, expected time remaining: {:.2f} hrs.".format(time_lapsed/3600, time_remaining/3600)) ds.close() # Close the input NetCDF file. return n_subsets-1
4103cffd3b519f16205fbf5dfb38ae198f315258
3,657,679
def bulk_lookup(license_dict, pkg_list): """Lookup package licenses""" pkg_licenses = {} for pkg in pkg_list: # Failsafe in case the bom file contains incorrect entries if not pkg.get("name") or not pkg.get("version"): continue pkg_key = pkg["name"] + "@" + pkg["version"] if pkg.get("vendor"): pkg_key = pkg.get("vendor") + ":" + pkg["name"] + "@" + pkg["version"] for lic in pkg.get("licenses"): if lic == "X11": lic = "MIT" elif "MIT" in lic: lic = "MIT" curr_list = pkg_licenses.get(pkg_key, []) match_lic = license_dict.get(lic) if match_lic: curr_list.append(match_lic) pkg_licenses[pkg_key] = curr_list return pkg_licenses
aa06b02fdfaa079dbfc4e1210ccccc995393dc52
3,657,680
def pack_bits(bools): """Pack sequence of bools into bits""" if len(bools) % 8 != 0: raise ValueError("list length must be multiple of 8") bytes_ = [] b = 0 for j, v in enumerate(reversed(bools)): b <<= 1 b |= v if j % 8 == 7: bytes_.append(b) b = 0 return bytes_
fadfb5e6abdb80691473262fac57f22384827c50
3,657,681
def init_ring_dihedral(species,instance,geom = []): """ Calculates the required modifications to a structures dihedral to create a cyclic TS """ if len(geom) == 0: geom = species.geom if len(instance) > 3: if len(instance) < 6: final_dihedral = 15. else: final_dihedral = 1. dihedrals = [] for i in range(len(instance)-3): dihedrals.append(calc_dihedral(geom[instance[i]], geom[instance[i+1]], geom[instance[i+2]], geom[instance[i+3]])[0]) dihedral_diff = [final_dihedral - dihedrals[i] for i in range(len(dihedrals))] return dihedral_diff
7799ec63b4188d79104e4ab758fb42b497a64053
3,657,682
from typing import List from typing import Optional def get_largest_contour( contours: List[NDArray], min_area: int = 30 ) -> Optional[NDArray]: """ Finds the largest contour with size greater than min_area. Args: contours: A list of contours found in an image. min_area: The smallest contour to consider (in number of pixels) Returns: The largest contour from the list, or None if no contour was larger than min_area. Example:: # Extract the blue contours BLUE_HSV_MIN = (90, 50, 50) BLUE_HSV_MAX = (110, 255, 255) contours = rc_utils.find_contours( rc.camera.get_color_image(), BLUE_HSV_MIN, BLUE_HSV_MAX ) # Find the largest contour largest_contour = rc_utils.get_largest_contour(contours) """ # Check that the list contains at least one contour if len(contours) == 0: return None # Find and return the largest contour if it is larger than min_area greatest_contour = max(contours, key=cv.contourArea) if cv.contourArea(greatest_contour) < min_area: return None return greatest_contour
e505e9265540ae2f35e2de0f587aeaee067e5583
3,657,683
def particle( engine, particle_id="", color: Tuple4 = (1, 0.4, 0.1, 1), random_color: bool = False, color_temp: bool = False, vx=None, vy=None, vz=None, speed_limit=None, ) -> Material: """ Particle material. """ mat = bpy.data.materials.new(f"Particle{particle_id}") # FIXME(tpvasconcelos): Use different colors within a particle system # if color_temp == 'temperature': # factor = _get_speed_factor(vx, vy, vz, speed_limit) if random_color: color = _get_randomcolor() if engine == "BLENDER_RENDER": return _render_particle(mat, color[:-1]) return _cycles_particle(mat, color)
2bb120d4fd32c31bad7f9ee9765d1fc5808992a4
3,657,684
import os import scipy def _get_hardware_sharing_throughputs( outdirs, device, device_model, precs, filename, mode, ): """ The result is in the format of { 'amp': pd.DataFrame, # df contains max_B rows 'fp32': pd.DataFrame, # df contains max_B rows } df format: (`B` is the index) B {mode}:{prec}:0 {mode}:{prec}:1 ... {mode}:{prec}:avg {mode}:{prec}:min {mode}:{prec}:max 1 float float ... float float float 2 float float ... float float float 3 float float ... float float float ... max_B float float ... float float float """ throughputs = {} for prec in precs: throughputs[prec] = {'B': []} for outdir_idx, outdir in enumerate(outdirs): Bs = [] throughputs_of_Bs = [] mode_outdir_path = os.path.join(outdir, device, device_model, prec, mode) for B_exp in os.listdir(mode_outdir_path): B = int(B_exp[1:]) Bs.append(B) B_outdir_path = os.path.join(mode_outdir_path, B_exp) timing_dfs = None if mode == 'hfta': timing_dfs = [pd.read_csv(os.path.join(B_outdir_path, filename))] else: timing_dfs = [ pd.read_csv( os.path.join(B_outdir_path, 'idx{}'.format(idx), filename)) for idx in range(B) ] throughputs_of_Bs.append(_calculate_throughputs(timing_dfs, device)) max_B = max(Bs) linear_interpolator = scipy.interpolate.interp1d(Bs, throughputs_of_Bs) throughputs[prec]['{}:{}:{}'.format(mode, prec, outdir_idx)] = [ linear_interpolator(B) for B in range(1, max_B + 1) ] throughputs[prec]['B'] = range(1, max_B + 1) throughputs[prec] = pd.DataFrame(throughputs[prec]).set_index('B') _aggregate_along_rows(throughputs[prec], mode, prec) return throughputs
bd104c88144cc1635e4387c93aaf838f210b9703
3,657,685
def mask_to_segm(mask, bbox, segm_size, index=None): """Crop and resize mask. This function requires cv2. Args: mask (~numpy.ndarray): See below. bbox (~numpy.ndarray): See below. segm_size (int): The size of segm :math:`S`. index (~numpy.ndarray): See below. :math:`R = N` when :obj:`index` is :obj:`None`. Returns: ~numpy.ndarray: See below. .. csv-table:: :header: name, shape, dtype, format :obj:`mask`, ":math:`(N, H, W)`", :obj:`bool`, -- :obj:`bbox`, ":math:`(R, 4)`", :obj:`float32`, \ ":math:`(y_{min}, x_{min}, y_{max}, x_{max})`" :obj:`index` (optional), ":math:`(R,)`", :obj:`int32`, -- :obj:`segms` (output), ":math:`(R, S, S)`", :obj:`float32`, \ ":math:`[0, 1]`" """ pad = 1 _, H, W = mask.shape bbox = chainer.backends.cuda.to_cpu(bbox) # To work around an issue with cv2.resize (it seems to automatically # pad with repeated border values), we manually zero-pad the masks by 1 # pixel prior to resizing back to the original image resolution. # This prevents "top hat" artifacts. We therefore need to expand # the reference boxes by an appropriate factor. padded_segm_size = segm_size + pad * 2 expand_scale = padded_segm_size / segm_size bbox = _expand_bbox(bbox, expand_scale) resize_size = padded_segm_size bbox = _integerize_bbox(bbox) segm = [] if index is None: index = np.arange(len(bbox)) else: index = chainer.backends.cuda.to_cpu(index) for i, bb in zip(index, bbox): y_min = max(bb[0], 0) x_min = max(bb[1], 0) y_max = max(min(bb[2], H), 0) x_max = max(min(bb[3], W), 0) if y_max <= y_min or x_max <= x_min: segm.append(np.zeros((segm_size, segm_size), dtype=np.float32)) continue bb_height = bb[2] - bb[0] bb_width = bb[3] - bb[1] cropped_m = np.zeros((bb_height, bb_width), dtype=np.bool) y_offset = y_min - bb[0] x_offset = x_min - bb[1] cropped_m[y_offset:y_offset + y_max - y_min, x_offset:x_offset + x_max - x_min] =\ chainer.backends.cuda.to_cpu(mask[i, y_min:y_max, x_min:x_max]) with chainer.using_config('cv_resize_backend', 'cv2'): sgm = transforms.resize( cropped_m[None].astype(np.float32), (resize_size, resize_size))[0].astype(np.int32) segm.append(sgm[pad:-pad, pad:-pad]) return np.array(segm, dtype=np.float32)
5fd4003595ce7b13bcf59ce8669bfdb37a545d5b
3,657,686
def append_unique(func): """ This decorator will append each result - regardless of type - into a list. """ def inner(*args, **kwargs): return list( set( _results( args[0], func.__name__, *args, **kwargs ) ) ) return inner
ed656c500f95b03e8036605e9af5cc739830ff7b
3,657,687
def _get_unique_figs(tree): """ Extract duplicate figures from the tree """ return _find_unique_figures_wrap(list(map(_get_fig_values(tree), tree)), [])
ba8a40766981bca9ca23fd3ec681f1a8d52ad85b
3,657,688
def read_fssp(fssp_handle): """Process a FSSP file and creates the classes containing its parts. Returns: :header: Contains the file header and its properties. :sum_dict: Contains the summary section. :align_dict: Contains the alignments. """ header = FSSPHeader() sum_dict = FSSPSumDict() align_dict = FSSPAlignDict() curline = fssp_handle.readline() while not summary_title.match(curline): # Still in title header.fill_header(curline) curline = fssp_handle.readline() if not summary_title.match(curline): raise ValueError("Bad FSSP file: no summary record found") curline = fssp_handle.readline() # Read the title line, discard curline = fssp_handle.readline() # Read the next line # Process the summary records into a list while summary_rec.match(curline): cur_sum_rec = FSSPSumRec(curline) sum_dict[cur_sum_rec.nr] = cur_sum_rec curline = fssp_handle.readline() # Outer loop: process everything up to the EQUIVALENCES title record while not equiv_title.match(curline): while (not alignments_title.match(curline) and not equiv_title.match(curline)): curline = fssp_handle.readline() if not alignments_title.match(curline): if equiv_title.match(curline): # print("Reached equiv_title") break else: raise ValueError("Bad FSSP file: no alignments title record found") if equiv_title.match(curline): break # If we got to this point, this means that we have matched an # alignments title. Parse the alignment records in a loop. curline = fssp_handle.readline() # Read the title line, discard curline = fssp_handle.readline() # Read the next line while alignments_rec.match(curline): align_rec = FSSPAlignRec(fff_rec(curline)) key = align_rec.chain_id + align_rec.res_name + str(align_rec.pdb_res_num) align_list = curline[fssp_rec.align.start_aa_list:].strip().split() if key not in align_dict: align_dict[key] = align_rec align_dict[key].add_align_list(align_list) curline = fssp_handle.readline() if not curline: print("EOFEOFEOF") raise EOFError for i in align_dict.values(): i.pos_align_list2dict() del i.PosAlignList align_dict.build_resnum_list() return (header, sum_dict, align_dict)
4ac2c61ed40f14102d0ae1a8a3b6fa8e69252f27
3,657,689
import json def LoadJSON(json_string): """Loads json object from string, or None. Args: json_string: A string to get object from. Returns: JSON object if the string represents a JSON object, None otherwise. """ try: data = json.loads(json_string) except ValueError: data = None return data
598c9b4d5e358a7a4672b25541c9db7743fcd587
3,657,690
import inspect import re def _dimensions_matrix(channels, n_cols=None, top_left_attribute=None): """ time,x0 y0,x0 x1,x0 y1,x0 x0,y0 time,y0 x1,y0 y1,y0 x0,x1 y0,x1 time,x1 y1,x1 x0,y1 y0,y1 x1,y1 time,y1 """ # Generate the dimensions matrix from the docstring. ds = inspect.getdoc(_dimensions_matrix).strip() x, y = channels[:2] def _get_dim(d): if d == 'time': return d assert re.match(r'[xy][01]', d) c = x if d[0] == 'x' else y f = int(d[1]) return c, f dims = [[_.split(',') for _ in re.split(r' +', line.strip())] for line in ds.splitlines()] x_dim = {(i, j): _get_dim(dims[i][j][0]) for i, j in product(range(4), range(4))} y_dim = {(i, j): _get_dim(dims[i][j][1]) for i, j in product(range(4), range(4))} return x_dim, y_dim
2c119c74e7e37827d6813437d9e0d8bbd97cbbc7
3,657,691
def is_monotonic_increasing(x): """ Helper function to determine if a list is monotonically increasing. """ dx = np.diff(x) return np.all(dx >= 0)
6d0afe3a6a70d57ec4ae09e20164c34c0739855f
3,657,692
import copy def cluster_size_threshold(data, thresh=None, min_size=20, save=False): """ Removes clusters smaller than a prespecified number in a stat-file. Parameters ---------- data : numpy-array or str 3D Numpy-array with statistic-value or a string to a path pointing to a nifti-file with statistic values. thresh : int, float Initial threshold to binarize the image and extract clusters. min_size : int Minimum size (i.e. amount of voxels) of cluster. Any cluster with fewer voxels than this amount is set to zero ('removed'). save : bool If data is a file-path, this parameter determines whether the cluster- corrected file is saved to disk again. """ if isinstance(data, (str, unicode)): fname = copy(data) data = nib.load(data) affine = data.affine data = data.get_data() if thresh is not None: data[data < thresh] = 0 clustered, num_clust = label(data > 0) values, counts = np.unique(clustered.ravel(), return_counts=True) # Get number of clusters by finding the index of the first instance # when 'counts' is smaller than min_size first_clust = np.sort(counts)[::-1] < min_size if first_clust.sum() == 0: print('All clusters were larger than: %i, returning original data' % min_size) return data n_clust = np.argmax(first_clust) # Sort and trim cluster_nrs = values[counts.argsort()[::-1][:n_clust]] cluster_nrs = np.delete(cluster_nrs, 0) # Set small clusters to zero. data[np.invert(np.in1d(clustered, cluster_nrs)).reshape(data.shape)] = 0 if save: img = nib.Nifti1Image(data, affine=affine) basename = op.basename(fname) nib.save(img, basename.split('.')[0] + '_thresholded.nii.gz') return data
3b946a639e2dae1c47fb78ad30dded32b0dd5f06
3,657,693
def convert_df(df): """Makes a Pandas DataFrame more memory-efficient through intelligent use of Pandas data types: specifically, by storing columns with repetitive Python strings not with the object dtype for unique values (entirely stored in memory) but as categoricals, which are represented by repeated integer values. This is a net gain in memory when the reduced memory size of the category type outweighs the added memory cost of storing one more thing. As such, this function checks the degree of redundancy for a given column before converting it.""" converted_df = pd.DataFrame() # Initialize DF for memory-efficient storage of strings (object types) # TO DO: Infer dtypes of df df_obj = df.select_dtypes(include=['object']).copy() # Filter to only those columns of object data type for col in df.columns: if col in df_obj: num_unique_values = len(df_obj[col].unique()) num_total_values = len(df_obj[col]) if (num_unique_values / num_total_values) < 0.5: # Only convert data types if at least half of values are duplicates converted_df.loc[:,col] = df[col].astype('category') # Store these columns as dtype "category" else: converted_df.loc[:,col] = df[col] else: converted_df.loc[:,col] = df[col] converted_df.select_dtypes(include=['float']).apply(pd.to_numeric,downcast='float') converted_df.select_dtypes(include=['int']).apply(pd.to_numeric,downcast='signed') return converted_df
7f6f2c20762963dceb0f52d36b7b724c5a89d8d4
3,657,694
def run_add(request): """Add a run.""" if request.method == "POST": form = forms.AddRunForm(request.POST, user=request.user) run = form.save_if_valid() if run is not None: messages.success( request, u"Run '{0}' added.".format( run.name) ) return redirect("manage_runs") else: pf = PinnedFilters(request.COOKIES) form = forms.AddRunForm( user=request.user, initial=pf.fill_form_querystring(request.GET).dict(), ) return TemplateResponse( request, "manage/run/add_run.html", { "form": form } )
c1eca5702e93e3a0751b2b22de18aa1aa4c88db7
3,657,695
def map_aemo_facility_status(facility_status: str) -> str: """ Maps an AEMO facility status to an Opennem facility status """ unit_status = facility_status.lower().strip() if unit_status.startswith("in service"): return "operating" if unit_status.startswith("in commissioning"): return "commissioning" if unit_status.startswith("committed"): return "committed" if unit_status.startswith("maturing"): return "maturing" if unit_status.startswith("emerging"): return "emerging" raise Exception( "Could not find AEMO status for facility status: {}".format( unit_status ) )
43e1d5e5ea984d36260604cf25f4c7b90d5e56f1
3,657,696
def demand_monthly_ba(tfr_dfs): """A stub transform function.""" return tfr_dfs
74bbb3d732b64a30f0529f76deedd646cc7d4171
3,657,697
def render_page(page, title="My Page", context=None): """ A simple helper to render the md_page.html template with [context] vars, and the additional contents of `page/[page].md` in the `md_page` variable. It automagically adds the global template vars defined above, too. It returns a string, usually the HTML contents to display. """ if context is None: context = {} context['title'] = title context['md_page'] = '' with file(get_path('page/%s.md' % page)) as f: context['md_page'] = f.read() return tpl_engine.get_template('md_page.html.jinja2').render( dict(tpl_global_vars.items() + context.items()) )
fd2e427f096324b2e9a17587f498626a2ebfb47e
3,657,698
def _SortableApprovalStatusValues(art, fd_list): """Return a list of approval statuses relevant to one UI table column.""" sortable_value_list = [] for fd in fd_list: for av in art.approval_values: if av.approval_id == fd.field_id: # Order approval statuses by life cycle. # NOT_SET == 8 but should be before all other statuses. sortable_value_list.append( 0 if av.status.number == 8 else av.status.number) return sortable_value_list
15ce3c6191495957674ab38c2f990d34f10ecdf6
3,657,699