content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def set_edge_font_size_mapping(table_column, table_column_values=None, sizes=None, mapping_type='c', default_size=None, style_name=None, network=None, base_url=DEFAULT_BASE_URL): """Map table column values to sizes to set the edge size. Args: table_column (str): Name of Cytoscape table column to map values from table_column_values (list): List of values from Cytoscape table to be used in mapping sizes (list): List of size values to map to ``table_column_values`` mapping_type (str): discrete or passthrough (d,p); default is discrete default_size (int): Size value to set as default style_name (str): name for style network (SUID or str or None): Name or SUID of a network or view. Default is the "current" network active in Cytoscape. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: str: '' Raises: CyError: if table column doesn't exist, table column values doesn't match values list, or invalid style name, network or mapping type, or if invalid size requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> set_edge_font_size_mapping('EdgeBetweenness', table_column_values=[2.0, 20000.0], sizes=[20, 80], style_name='galFiltered Style') '' >>> set_edge_font_size_mapping('interaction', table_column_values=['pp', 'pd'], sizes=[40, 90], mapping_type='d', style_name='galFiltered Style') '' >>> set_edge_font_size_mapping(**gen_edge_size_map('interaction', mapping_type='d')) '' >>> set_edge_font_size_mapping(**gen_edge_size_map('EdgeBetweenness', scheme_c_number_continuous(100, 200), style_name='galFiltered Style')) '' >>> set_edge_font_size_mapping('PassthruCol', mapping_type='p', default_size=20, style_name='galFiltered Style') '' See Also: :meth:`gen_edge_size_map` See Also: `Value Generators <https://py4cytoscape.readthedocs.io/en/0.0.9/concepts.html#value-generators>`_ in the Concepts section in the py4cytoscape User Manual. """ verify_dimensions('size', sizes) if default_size is not None: style_defaults.set_edge_font_size_default(default_size, style_name=style_name, base_url=base_url) return _update_visual_property('EDGE_LABEL_FONT_SIZE', table_column, table_column_values=table_column_values, range_map=sizes, mapping_type=mapping_type, style_name=style_name, network=network, base_url=base_url, table='edge')
7360f57d1e4921d58eaf5af4e57a6c5f636fefdb
20,500
def compute_time_overlap(appointment1, appointment2): """ Compare two appointments on the same day """ assert appointment1.date_ == appointment2.date_ print("Checking for time overlap on \"{}\"...". format(appointment1.date_)) print("Times to check: {}, {}". format(appointment1.time_range_, appointment2.time_range_)) latest_start = max(appointment1.start_time_, appointment2.start_time_) earliest_end = min(appointment1.end_time_, appointment2.end_time_) delta = (earliest_end - latest_start).seconds overlap = max(0, delta) if overlap == 0: print("No time overlap.") return False print("\033[93mFound time overlap.\033[0m") return True
c459ef52d78bc8dd094d5be9c9f4f035c4f9fcaa
20,501
def set_up_prior(data, params): """ Function to create prior distribution from data Parameters ---------- data: dict catalog dictionary containing bin endpoints, log interim prior, and log interim posteriors params: dict dictionary of parameter values for creation of prior Returns ------- prior: chippr.mvn object prior distribution as multivariate normal """ zs = data['bin_ends'] # print(str(len(zs))+' input redshift bin ends') log_nz_intp = data['log_interim_prior'] # modify above line if testing implicit prior misspecification print('reading implicit prior '+str(log_nz_intp)) log_z_posts = data['log_interim_posteriors'] z_difs = zs[1:]-zs[:-1] z_mids = (zs[1:]+zs[:-1])/2. n_bins = len(z_mids) # print(str(n_bins)+' bin centers') n_pdfs = len(log_z_posts) a = 1.#amplitude b = 5.#inverse wavelength c = 1.e-2#random fluctuations prior_var = np.eye(n_bins) for k in range(n_bins): # print(k) prior_var[k] = a * np.exp(-0.5 * b * (z_mids[k] - z_mids) ** 2) prior_var += c * np.eye(n_bins) prior_mean = log_nz_intp # print('prior dimensions: '+str((np.shape(prior_mean), np.shape(prior_var)))) prior = mvn(prior_mean, prior_var) if params['prior_mean'] is 'sample': prior_mean = prior.sample_one() prior = mvn(prior_mean, prior_var) return (prior, prior_var)
eb75965b9425bbf9fe3a33b7f0c850e27e2d454a
20,502
def is_nonincreasing(arr): """ Returns true if the sequence is non-increasing. """ return all([x >= y for x, y in zip(arr, arr[1:])])
6d78ef5f68ca93767f3e204dfea2c2be8b3040af
20,503
def restore_missing_features(nonmissing_X, missing_features): """Insert columns corresponding to missing features. Parameters ---------- nonmissing_X : array-like, shape (n_samples, n_nonmissing) Array containing data with missing features removed. missing_features : array-like, shape (n_missing,) Array containing the column indices in the original data that correspond to missing features. Returns ------- X : array-like, shape (n_samples, n_features) Array with missing features inserted. """ if missing_features is None: missing_features = [] n_samples, n_nonmissing = nonmissing_X.shape n_missing = len(missing_features) n_features = n_missing + n_nonmissing # Ensure missing indices are consistent with the # inferred number of features. if len(missing_features) > 0: if min(missing_features) < 0 or max(missing_features) >= n_features: raise ValueError( 'Missing features are inconsistent with ' 'number of features in complete data') if is_dask_array(nonmissing_X): cols = [] idx = 0 for i in range(n_features): if i in missing_features: cols.append(dask.array.full((n_samples, 1), np.NaN)) else: cols.append(nonmissing_X[:, idx].reshape((n_samples, 1))) idx += 1 X = dask.array.hstack(cols) else: nonmissing_features = [i for i in range(n_features) if i not in missing_features] X = np.full((n_samples, n_features), np.NaN) X[:, nonmissing_features] = nonmissing_X return X
733fd72d36ea86269472949eaa12a306835578f9
20,504
def get_sample_type_from_recipe(recipe): """Retrieves sample type from recipe Args: recipe: Recipe of the project Returns: sample_type_mapping, dic: Sample type of the project For Example: { TYPE: "RNA" } , { TYPE: "DNA" }, { TYPE: "WGS" } """ return find_mapping(recipe_type_mapping, recipe)
57cef2f592d530ad15aed47cc51da4441430f3d2
20,505
import yaml def _is_download_necessary(path, response): """Check whether a download is necessary. There three criteria. 1. If the file is missing, download it. 2. The following two checks depend on each other. 1. Some files have an entry in the header which specifies when the file was modified last. If the file has been modified, download it. 2. If the header has no entry for the last modified date, we compare file sizes. If the file sizes do not match, the file is downloaded. """ path_yaml = path.with_suffix(".yaml") if path_yaml.exists(): last_modified_offline = pd.to_datetime( yaml.safe_load(path_yaml.read_text())["last_modified"] ) else: last_modified_offline = None last_modified_online = pd.to_datetime(response.headers.get("last-modified", None)) path.with_suffix(".yaml").write_text( yaml.dump({"last_modified": response.headers.get("last-modified", None)}) ) if not path.exists(): is_necessary = True reason = f"The file {path.name} does not exist." elif ( last_modified_online is not None and last_modified_online > last_modified_offline ): is_necessary = True reason = f"{path.name} has been modified online." elif last_modified_online is None: file_size_offline = path.stat().st_size file_size_online = int(response.headers.get("content-length", 0)) if file_size_online != file_size_offline: is_necessary = True reason = f"File sizes differ for {path.name}" else: is_necessary = False reason = f"File {path.name} is already downloaded." else: is_necessary = False reason = f"File {path.name} is already downloaded." return is_necessary, reason
69cd2778fb6d4706ff88bd35c1b5c1abda9a39ba
20,506
import hashlib def hash64(s): """ะ’ั‹ั‡ะธัะปัะตั‚ ั…ะตัˆ - 8 ัะธะผะฒะพะปะพะฒ (64 ะฑะธั‚ะฐ) """ hex = hashlib.sha1(s.encode("utf-8")).hexdigest() return "{:x}".format(int(hex, 16) % (10 ** 8))
e35a367eac938fdb66584b52e1e8da59582fdb9a
20,507
def course_runs(): """Fixture for a set of CourseRuns in the database""" return CourseRunFactory.create_batch(3)
1ffd4efe008e44f9e2828c9128acfe3cdafb5160
20,508
import json def _response(data=None, status_code=None): """Build a mocked response for use with the requests library.""" response = MagicMock() if data: response.json = MagicMock(return_value=json.loads(data)) if status_code: response.status_code = status_code response.raise_for_status = MagicMock() return response
0ccd38a954d28a4f010becc68319b49896323de0
20,509
def findtailthreshold(v, figpath=None): """ function [f,mns,sds,gmfit] = findtailthreshold(v,wantfig) <v> is a vector of values <wantfig> (optional) is whether to plot a diagnostic figure. Default: 1. Fit a Gaussian Mixture Model (with n=2) to the data and find the point that is greater than the median and at which the posterior probability is equal (50/50) across the two Gaussians. This serves as a nice "tail threshold". To save on computational load, we take a random subset of size 1000000 if there are more than that number of values. We also use some discretization in computing our solution. return: <f> as the threshold <mns> as [A B] with the two means (A < B) <sds> as [C D] with the corresponding std devs <gmfit> with the gmdist object (the order might not be the same as A < B) example: from numpy.random import randn f, mns, sds, gmfit = findtailthreshold(np.r_[randn(1000), 5+3*randn(500)], figpath='test.png') """ # internal constants numreps = 3 # number of restarts for the GMM maxsz = 1000000 # maximum number of values to consider nprecision = 500 # linearly spaced values between median and upper robust range # inputs if figpath is None: wantfig = 0 else: wantfig = 1 # quick massaging of input v2 = v[np.isfinite(v)] if len(v2) > maxsz: print('warning: too big, so taking a subset') v2 = picksubset(v2, maxsz) # fit mixture of two gaussians gmfit = gmdist(n_components=2, n_init=numreps).fit(v2.reshape(-1, 1)) # figure out a nice range rng = robustrange(v2.flatten())[0] # evaluate posterior allvals = np.linspace(np.median(v2), rng[1], num=nprecision) checkit = gmfit.predict_proba(allvals.reshape(-1, 1)) # figure out crossing np.testing.assert_equal( np.any(checkit[:, 0] > .5) and np.any(checkit[:, 0] < .5), True, err_msg='no crossing of 0.5 detected') ix = np.argmin(np.abs(checkit[:, 0]-.5)) # return it f = allvals[ix] # prepare other outputs mns = gmfit.means_.flatten() sds = np.sqrt(gmfit.covariances_.flatten()) if mns[1] < mns[0]: mns = mns[[1, 0]] sds = sds[[1, 0]] # start the figure if wantfig: # make figure plt.plot(allvals, checkit) plt.plot([allvals[ix], allvals[ix]], plt.ylim(), 'k-', linewidth=2) plt.title('Posterior Probabilities') plt.savefig(figpath) plt.close('all') return f, mns, sds, gmfit
8ef0c3267582d604621bd98fa7c81976b76b2c51
20,510
from typing import Optional from typing import Dict import asyncio async def make_request_and_envelope_response( app: web.Application, method: str, url: URL, headers: Optional[Dict[str, str]] = None, data: Optional[bytes] = None, ) -> web.Response: """ Helper to forward a request to the catalog service """ session = get_client_session(app) try: async with session.request(method, url, headers=headers, data=data) as resp: payload = await resp.json() try: resp.raise_for_status() resp_data = wrap_as_envelope(data=payload) except ClientResponseError as err: if 500 <= err.status: raise err resp_data = wrap_as_envelope(error=payload["errors"]) return web.json_response(resp_data, status=resp.status, dumps=json_dumps) except (asyncio.TimeoutError, ClientConnectionError, ClientResponseError) as err: logger.warning( "Catalog service errors upon request %s %s: %s", method, url.relative(), err ) raise web.HTTPServiceUnavailable( reason="catalog is currently unavailable" ) from err
22d18de671cc84d3471120273a7b0599fda26210
20,511
import os def _app_node(app_id, existing=True): """Returns node path given app id.""" path = os.path.join(z.SCHEDULED, app_id) if not existing: path = path + '#' return path
dca3abc7376c50f015a64767333432b89a2d7009
20,512
def get_provincial_miif_sets(munis): """ collect set of indicator values for each province, MIIF category and year returns dict of the form { 'cash_coverage': { 'FS': { 'B1': { '2015': [{'result': ...}] } } } } """ prov_sets = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(list)))) dev_cat_key = lambda muni: muni['municipality.miif_category'] dev_cat_sorted = sorted(munis, key=dev_cat_key) prov_key = lambda muni: muni['municipality.province_code'] for calculator in get_indicator_calculators(has_comparisons=True): name = calculator.indicator_name for dev_cat, dev_cat_group in groupby(dev_cat_sorted, dev_cat_key): prov_sorted = sorted(dev_cat_group, key=prov_key) for prov_code, prov_group in groupby(prov_sorted, prov_key): for muni in prov_group: for period in muni[name]['values']: if period['result'] is not None: prov_sets[name][prov_code][dev_cat][period['date']].append(period) return prov_sets
a4484a40a30f8fe9e702735f6eccf78c395ea446
20,513
def create_kernel(radius=2, invert=False): """Define a kernel""" if invert: value = 0 k = np.ones((2*radius+1, 2*radius+1)) else: value = 1 k = np.zeros((2*radius+1, 2*radius+1)) y,x = np.ogrid[-radius:radius+1, -radius:radius+1] mask = x**2 + y**2 <= radius**2 k[mask] = value return k
33bbfa6141eb722180ffa9111555e4e00fbdac6a
20,514
def edimax_get_power(ip_addr="192.168.178.137"): """ Quelle http://sun-watch.net/index.php/eigenverbrauch/ipschalter/edimax-protokoll/ """ req = """<?xml version="1.0" encoding="UTF8"?><SMARTPLUG id="edimax"><CMD id="get"> <NOW_POWER><Device.System.Power.NowCurrent> </Device.System.Power.NowCurrent><Device.System.Power.NowPower> </Device.System.Power.NowPower></NOW_POWER></CMD></SMARTPLUG> """ r = requests.post("http://{0}:10000/smartplug.cgi".format(ip_addr), auth=("admin","1234"), data=req) soup = BeautifulSoup(r.text, features="xml") power = soup.find(name="Device.System.Power.NowPower").get_text() print r.text return float(power)
9de1720f00ca4194b66f79048314bac1cac950ed
20,515
import torch def get_class_inst_data_params_n_optimizer(nr_classes, nr_instances, device): """Returns class and instance level data parameters and their corresponding optimizers. Args: nr_classes (int): number of classes in dataset. nr_instances (int): number of instances in dataset. device (str): device on which data parameters should be placed. Returns: class_parameters (torch.Tensor): class level data parameters. inst_parameters (torch.Tensor): instance level data parameters optimizer_class_param (SparseSGD): Sparse SGD optimizer for class parameters optimizer_inst_param (SparseSGD): Sparse SGD optimizer for instance parameters """ class_parameters = torch.tensor( np.ones(nr_classes) * np.log(1.0), dtype=torch.float32, requires_grad=True, device=device ) optimizer_class_param = SparseSGD( [class_parameters], lr=0.1, momentum=0.9, skip_update_zero_grad=True ) inst_parameters = torch.tensor( np.ones(nr_instances) * np.log(1.0), dtype=torch.float32, requires_grad=True, device=device ) optimizer_inst_param = SparseSGD( [inst_parameters], lr=0.1, momentum=0.9, skip_update_zero_grad=True ) return class_parameters, inst_parameters, optimizer_class_param, optimizer_inst_param
f97e12b99a42f32bb3629df5567ca44477d71dc0
20,516
def inc(x): """ Add one to the current value """ return x + 1
c8f9a68fee2e8c1a1d66502ae99e42d6034b6b5c
20,517
def regionError(df, C, R): """Detects if a selected region is not part of one of the selected countries Parameters: ----------- df : Pandas DataFrame the original dataset C : str list list of selected countries R : str list list of selected regions Returns ----------- bool True if the error is detected """ if C == None: C = ['USA'] available_regions = list(regions_of_country(df, C)) + ['All_regions', 'All'] for region in R: if not(region in available_regions): return True return False
53e237bba7c1696d23b5f1e3c77d4b2d2a4c9390
20,518
def lherzolite(): """ Elastic constants of lherzolite rock (GPa) from Peselnick et al. (1974), in Voigt notation - Abbreviation: ``'LHZ'`` Returns: (tuple): tuple containing: * C (np.ndarray): Elastic stiffness matrix (shape ``(6, 6)``) * rho (float): Density (3270 kg/m^3) Example ------- >>> from telewavesim import elast >>> elast.lherzolite()[0] array([[ 1.8740e+02, 6.3710e+01, 6.3870e+01, 7.8000e-01, 2.0200e+00, -3.2000e+00], [ 6.3710e+01, 2.1125e+02, 6.4500e+01, -3.0700e+00, 8.7000e-01, -5.7800e+00], [ 6.3870e+01, 6.4500e+01, 1.9000e+02, 3.8000e-01, 2.3800e+00, -1.2000e-01], [ 7.8000e-01, -3.0700e+00, 3.8000e-01, 6.7900e+01, -2.1200e+00, 1.6000e+00], [ 2.0200e+00, 8.7000e-01, 2.3800e+00, -2.1200e+00, 6.3120e+01, -5.5000e-01], [-3.2000e+00, -5.7800e+00, -1.2000e-01, 1.6000e+00, -5.5000e-01, 6.6830e+01]]) >>> elast.lherzolite()[1] 3270.0 """ rho = 3270. C = np.zeros((6,6), dtype=float) C[0,0] = 187.4; C[0,1] = 63.71; C[0,2] = 63.87; C[0,3] = 0.78; C[0,4] = 2.02; C[0,5] = -3.2 C[1,0] = C[0,1]; C[1,1] = 211.25; C[1,2] = 64.5; C[1,3] = -3.07; C[1,4] = 0.87; C[1,5] = -5.78 C[2,0] = C[0,2]; C[2,1] = C[1,2]; C[2,2] = 190.; C[2,3] = 0.38; C[2,4] = 2.38; C[2,5] = -0.12 C[3,0] = C[0,3]; C[3,1] = C[1,3]; C[3,2] = C[2,3]; C[3,3] = 67.9; C[3,4] = -2.12; C[3,5] = 1.6 C[4,0] = C[0,4]; C[4,1] = C[1,4]; C[4,2] = C[2,4]; C[4,3] = C[3,4]; C[4,4] = 63.12; C[4,5] = -0.55 C[5,0] = C[0,5]; C[5,1] = C[1,5]; C[5,2] = C[2,5]; C[5,3] = C[3,5]; C[5,4] = C[4,5]; C[5,5] = 66.83 return C, rho
4d7e16fcfc1732ee3a881d4b1c2d755bbd9035f3
20,519
def int_to_bit(x_int, nbits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor.""" x_l = tf.expand_dims(x_int, axis=-1) x_labels = [] for i in range(nbits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
a9529c737e058da664d31055aa85cc7e6179f585
20,520
def create_ldap_external_user_directory_config_content(server=None, roles=None, role_mappings=None, **kwargs): """Create LDAP external user directory configuration file content. """ entries = { "user_directories": { "ldap": { } } } entries["user_directories"]["ldap"] = [] if server: entries["user_directories"]["ldap"].append({"server": server}) if roles: entries["user_directories"]["ldap"].append({"roles": [{r: None} for r in roles]}) if role_mappings: for role_mapping in role_mappings: entries["user_directories"]["ldap"].append({"role_mapping": role_mapping}) return create_xml_config_content(entries, **kwargs)
baaf3d7a02f2f4e18c3ccddb7f3ff4d5b379c1d4
20,521
def intersection(lst1, lst2): """! \details Finds hashes that are common to both lists and stores their location in both documents Finds similarity that is measured by sim(A,B) = number of hashes in intersection of both hash sets divided by minimum of the number of hashes in lst1 and lst2 \param lst1 : 1st list whose elements are of the form [hash, start location, end location] \param lst2: 2nd list whose elements are of the form [hash, start location, end location] \return l3: list of common hashes and their locations in both documents. This is a list whose elements are of the form [common hash, [start location in 1, end location in 1], [start location in 2, end location in 2]] \return sim: similarity measure evaluated """ l1h = [h[0] for h in lst1] l2h = [h[0] for h in lst2] l1loc = {h[0]:h[1:] for h in lst1} l2loc = {h[0]:h[1:] for h in lst2} l3h = list(set(l1h)&set(l2h)) l3 = [[h, l1loc[h], l2loc[h]] for h in l3h] sim = len(l3)/min(len(set(l1h)), len(set(l2h))) return l3, sim
7288e523e743fda89596e56f217aac8c87899b50
20,522
def allrad2(F_nm, hull, N_sph=None, jobs_count=1): """Loudspeaker signals of All-Round Ambisonic Decoder 2. Parameters ---------- F_nm : ((N_sph+1)**2, S) numpy.ndarray Matrix of spherical harmonics coefficients of spherical function(S). hull : LoudspeakerSetup N_sph : int Decoding order, defaults to hull.characteristic_order. jobs_count : int or None, optional Number of parallel jobs, 'None' employs 'cpu_count'. Returns ------- ls_sig : (L, S) numpy.ndarray Loudspeaker L output signal S. References ---------- Zotter, F., & Frank, M. (2018). Ambisonic decoding with panning-invariant loudness on small layouts (AllRAD2). In 144th AES Convention. Examples -------- .. plot:: :context: close-figs ls_setup = spa.decoder.LoudspeakerSetup(ls_x, ls_y, ls_z) ls_setup.pop_triangles(normal_limit=85, aperture_limit=90, opening_limit=150) ls_setup.ambisonics_setup(update_hull=True) spa.plots.decoder_performance(ls_setup, 'ALLRAD2') """ if not hull.ambisonics_hull: raise ValueError('Run LoudspeakerSetup.ambisonics_setup() first!') if hull.kernel_hull: kernel_hull = hull.kernel_hull else: raise ValueError('Run LoudspeakerSetup.ambisonics_setup() first!') if N_sph is None: N_sph = hull.characteristic_order N_sph_in = int(np.sqrt(F_nm.shape[0]) - 1) assert(N_sph == N_sph_in) # for now if N_sph_in > kernel_hull.N_kernel: warn("Undersampling the sphere. Needs higher N_Kernel.") # virtual t-design loudspeakers J = len(kernel_hull.points) # virtual speakers expressed as phantom sources (Kernel) G_k = allrap2(src=kernel_hull.points, hull=hull, N_sph=N_sph, jobs_count=jobs_count) # tapering already applied in kernel, sufficient? # virtual Ambisonic decoder _k_azi, _k_colat, _k_r = utils.cart2sph(kernel_hull.points[:, 0], kernel_hull.points[:, 1], kernel_hull.points[:, 2]) # band-limited Dirac Y_bld = sph.sh_matrix(N_sph, _k_azi, _k_colat, SH_type='real') # ALLRAD2 Decoder D = 4 * np.pi / J * G_k.T @ Y_bld # loudspeaker output signals ls_sig = D @ F_nm return ls_sig
a34cfd7719c36dd8abf1313e3eca4aa2ce49477b
20,523
import os import numpy as np import nibabel as nb from nipype.utils.filemanip import fname_presuffix from skimage.exposure import match_histograms def match_histogram(reference, image, ref_mask=None, img_mask=None): """Match the histogram of the T2-like anatomical with the EPI.""" nii_img = nb.load(image) img_data = np.asanyarray(nii_img.dataobj) ref_data = np.asanyarray(nb.load(reference).dataobj) ref_mask = ( np.ones_like(ref_data, dtype=bool) if ref_mask is None else np.asanyarray(nb.load(ref_mask).dataobj) > 0 ) img_mask = ( np.ones_like(img_data, dtype=bool) if img_mask is None else np.asanyarray(nb.load(img_mask).dataobj) > 0 ) out_file = fname_presuffix(image, suffix="_matched", newpath=os.getcwd()) img_data[img_mask] = match_histograms( img_data[img_mask], ref_data[ref_mask], ) nii_img.__class__( img_data, nii_img.affine, nii_img.header, ).to_filename(out_file) return out_file
3af65929e05955d297ae11ea6e8cd77884b544b9
20,524
def outfeed(token, xs): """Outfeeds value `xs` to the host. Experimental. `token` is used to sequence infeed and outfeed effects. """ flat_xs, _ = pytree.flatten(xs) return outfeed_p.bind(token, *flat_xs)
1b4b8c289ebd5dbb90ddd7b565c98ea9ebaec038
20,525
def add_gaussian_noise(images: list, var: list, random_var: float=None, gauss_noise: list=None): """ Add gaussian noise to input images. If random_var and gauss_noise are given, use them to compute the final images. Otherwise, compute random_var and gauss_noise. :param images: list of images :param var: variance range from which the variance value is uniformly sampled if random_var is None. :param random_var: optional value specifying the variance multiplier. :param gauss_noise: optional value specifying the additive gaussian noise per image. :return: transformed image, random_var value, gauss_noise_out list """ if random_var is None: random_var = np.random.uniform(var[0], var[1]) mean = 0 new_images = [] gauss_noise_out = [] for i,image in enumerate(images): row, col, c = image.shape if gauss_noise is None or \ (gauss_noise is not None and row*col*c != gauss_noise[i].shape[0]*gauss_noise[i].shape[1] * gauss_noise[i].shape[2]): gauss = np.random.normal(mean, random_var * 127.5, (row, col, c)) else: gauss = gauss_noise[i] gauss_noise_out.append(gauss) gauss = gauss.reshape(row, col, c) image1 = np.clip(image + gauss, 0., 255.) new_images.append(image1) return new_images, random_var, gauss_noise_out
e453f1fda24ec428eb1e33aec87db9456fa015b2
20,526
def get_sso_backend(): """ Return SingleSignOnBackend class instance. """ return get_backend_instance(cfg.CONF.auth.sso_backend)
4c2a9b857006405f804826b1c096aa8d828d6e42
20,527
def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ a, conv_cache = conv_forward_fast(x, w, b, conv_param) s, relu_cache = relu_forward(a) out, pool_cache = max_pool_forward_fast(s, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache
20d5f3d4b30edd91ef54b53a7b09882b3e2ab9b8
20,528
def ConnectWithReader(readerName, mode): """ ConnectWithReader """ hresult, hcontext = SCardEstablishContext(SCARD_SCOPE_USER) if hresult != SCARD_S_SUCCESS: raise EstablishContextException(hresult) hresult, hcard, dwActiveProtocol = SCardConnect(hcontext, readerName, mode, SCARD_PROTOCOL_ANY) return hresult, hcontext, hcard
af7606fb9ad669185c7a655967d0193b59404fe1
20,529
def interpolate(points: type_alias.TensorLike, weights: type_alias.TensorLike, indices: type_alias.TensorLike, normalize: bool = True, allow_negative_weights: bool = False, name: str = "weighted_interpolate") -> type_alias.TensorLike: """Weighted interpolation for M-D point sets. Given an M-D point set, this function can be used to generate a new point set that is formed by interpolating a subset of points in the set. Note: In the following, A1 to An, and B1 to Bk are optional batch dimensions. Args: points: A tensor with shape `[B1, ..., Bk, M]` and rank R > 1, where M is the dimensionality of the points. weights: A tensor with shape `[A1, ..., An, P]`, where P is the number of points to interpolate for each output point. indices: A tensor of dtype tf.int32 and shape `[A1, ..., An, P, R-1]`, which contains the point indices to be used for each output point. The R-1 dimensional axis gives the slice index of a single point in `points`. The first n+1 dimensions of weights and indices must match, or be broadcast compatible. normalize: A `bool` describing whether or not to normalize the weights on the last axis. allow_negative_weights: A `bool` describing whether or not negative weights are allowed. name: A name for this op. Defaults to "weighted_interpolate". Returns: A tensor of shape `[A1, ..., An, M]` storing the interpolated M-D points. The first n dimensions will be the same as weights and indices. """ with tf.name_scope(name): points = tf.convert_to_tensor(value=points) weights = tf.convert_to_tensor(value=weights) indices = tf.convert_to_tensor(value=indices) shape.check_static( tensor=points, tensor_name="points", has_rank_greater_than=1) shape.check_static( tensor=indices, tensor_name="indices", has_rank_greater_than=1, has_dim_equals=(-1, points.shape.ndims - 1)) shape.compare_dimensions( tensors=(weights, indices), axes=(-1, -2), tensor_names=("weights", "indices")) shape.compare_batch_dimensions( tensors=(weights, indices), last_axes=(-2, -3), tensor_names=("weights", "indices"), broadcast_compatible=True) if not allow_negative_weights: weights = asserts.assert_all_above(weights, 0.0, open_bound=False) if normalize: sums = tf.reduce_sum(input_tensor=weights, axis=-1, keepdims=True) sums = asserts.assert_nonzero_norm(sums) weights = safe_ops.safe_signed_div(weights, sums) point_lists = tf.gather_nd(points, indices) return vector.dot( point_lists, tf.expand_dims(weights, axis=-1), axis=-2, keepdims=False)
13d49a570ac482a0b2b76ab0bb49bf7994df7204
20,530
def calcADPs(atom): """Calculate anisotropic displacement parameters (ADPs) from anisotropic temperature factors (ATFs). *atom* must have ATF values set for ADP calculation. ADPs are returned as a tuple, i.e. (eigenvalues, eigenvectors).""" linalg = importLA() if not isinstance(atom, Atom): raise TypeError('atom must be of type Atom, not {0:s}' .format(type(atom))) anisou = atom.getAnisou() if anisou is None: raise ValueError('atom does not have anisotropic temperature factors') element = zeros((3,3)) element[0,0] = anisou[0] element[1,1] = anisou[1] element[2,2] = anisou[2] element[0,1] = element[1,0] = anisou[3] element[0,2] = element[2,0] = anisou[4] element[1,2] = element[2,1] = anisou[5] vals, vecs = linalg.eigh(element) return vals[[2,1,0]], vecs[:, [2,1,0]]
0a0a0db2ca99d4a3b754acb9cd22ec4659af948f
20,531
def _create_groups(properties): """Create a tree of groups from a list of properties. Returns: Group: The root group of the tree. The name of the group is set to None. """ # We first convert properties into a dictionary structure. Each dictionary # represents a group. The None key corresponds to the fields directly stored # on that group. The other keys map from group name to another dictionary. # For example: # { # None: [field1, field2, ...] # 'groupA': { None: [field3] }, # 'groupB': { # None: [], # 'groupC': { None: [field4] }, # }, # } # # We then recursively convert this dictionary into a tree of Groups. # TODO(shend): Skip the first step by changing Group attributes into methods. def _dict_to_group(name, group_dict): fields_in_current_group = group_dict.pop(None) subgroups = [_dict_to_group(subgroup_name, subgroup_dict) for subgroup_name, subgroup_dict in group_dict.items()] return Group(name, subgroups, _reorder_fields(fields_in_current_group)) root_group_dict = {None: []} for property_ in properties: current_group_dict = root_group_dict if property_['field_group']: for group_name in property_['field_group'].split('->'): current_group_dict[group_name] = current_group_dict.get(group_name, {None: []}) current_group_dict = current_group_dict[group_name] current_group_dict[None].extend(_create_fields(property_)) return _dict_to_group(None, root_group_dict)
bb3c582074c718250a1eb16a29830242b4ccaa5f
20,532
def bitset(array, bits): """ To determine if the given bits are set in an array. Input Parameters ---------------- array : array A numpy array to search. bits : list or array A list or numpy array of bits to search. Note that the "first" bit is denoted as zero, while the "second" bit is denoted as 1. Optional Parameters: None Returns -------- array Returns a byte array of the same size as array. A pixel is set if any of the bits requested are set in the same pixel of array. Procedure --------- Uses the Gumley IDL ishft technique. Example -------- >>> bitset(np.array([3,4,1]),[0]) array([1, 0, 1]) Modification History -------------------- 2022-03-09 - Written by M. Cushing, University of Toledo. Based on the mc_bitset.pro IDL program. """ # Define empty mask mask = np.zeros_like(array, dtype=np.int8) # Loop over every bit requested and identify those pixels for which that bit is set. for val in bits: tmp = (array >> val) & 1 mask = mask | tmp return mask
cbae61dabfbe0789ff349f12b0df43860db72df7
20,533
import os def build_classifier_pipeline( input_files, output_files, config, use_fake_tables = False, converter_impl = ConverterImplType.PYTHON, ): """Pipeline for converting finetuning examples.""" if len(output_files) != len(input_files): raise ValueError(f'Size mismatch: {output_files} {input_files}') def _pipeline(root): """Pipeline.""" for (input_file, output_file) in zip(input_files, output_files): name = os.path.basename(input_file) interactions = read_interactions(root, input_file, name) if use_fake_tables: interactions = ( interactions | f'InsertFakeTable_{name}' >> beam.Map(insert_fake_table_fn)) examples = ( interactions | f'CheckTableId_{name}' >> beam.FlatMap( pretrain_utils.check_table_id_fn) | f'AddNumericValues_{name}' >> beam.Map( pretrain_utils.add_numeric_values_fn) | f'ToClassifierTensorflowExample_{name}' >> beam.ParDo( ToClassifierTensorflowExample( config, name, convert_impl_value=converter_impl.value, ))) pretrain_utils.write_proto_outputs(output_file, f'WriteExamples_{name}', examples, tf.train.Example) return _pipeline
04c62ac25e3161316858f0e77cafc6796130d160
20,534
from typing import OrderedDict def sample_gene_matrix(request, variant_annotation_version, samples, gene_list, gene_count_type, highlight_gene_symbols=None): """ highlight_gene_symbols - put these genes 1st """ # 19/07/18 - Plotly can't display a categorical color map. See: https://github.com/plotly/plotly.js/issues/1747 # So just doing as HTML table if gene_list: genes = gene_list.get_genes(variant_annotation_version.gene_annotation_release) gene_symbols = set(gene_list.get_gene_names()) else: # This was originally designed around a gene list, but now we need to support no gene list (only when uses # variant classifications) genes = [] gene_symbols = [] qs = gene_count_type.get_variant_queryset(variant_annotation_version) GS_PATH = "variantannotation__transcript_version__gene_version__gene_symbol" qs = qs.filter(**{GS_PATH + "__isnull": False}) for gene, gene_symbol in qs.values_list("variantannotation__gene", GS_PATH).distinct(): genes.append(gene) gene_symbols.append(gene_symbol) gene_values = list(gene_count_type.genevalue_set.all().order_by("id")) default_color = "#d9d9d9" default_text = "" empty_gene_value = list(filter(lambda x: x.use_as_empty_value, gene_values)) if len(empty_gene_value) == 1: default_color = empty_gene_value[0].rgb phenotypes = ["Age", "HPO", "OMIM"] highlight_gene_labels = [] other_gene_labels = [] gene_links_lookup = OrderedDict() for gene_symbol in sorted(gene_symbols): gene_classes_list = ["gene-label", gene_symbol] highlight = highlight_gene_symbols and gene_symbol in highlight_gene_symbols if highlight: gene_classes_list.append("highlight-gene") gene_classes = ' '.join(gene_classes_list) if request.user.is_authenticated: # Only display links to logged in users url = reverse('view_gene_symbol', kwargs={"gene_symbol": gene_symbol}) gene_symbol_text = f'<a class="{gene_classes}" href="{url}">{gene_symbol}</a>' else: gene_symbol_text = f"<span class='{gene_classes}'>{gene_symbol}</span>" if highlight: highlight_gene_labels.append(gene_symbol_text) else: other_gene_labels.append(gene_symbol_text) gene_links_lookup[gene_symbol] = gene_symbol_text matrix_rows = phenotypes + highlight_gene_labels + other_gene_labels color_df = pd.DataFrame(index=matrix_rows, dtype='O') text_df = pd.DataFrame(index=matrix_rows) sample_names = [] used_sample_names = set() for i, sample in enumerate(samples): try: can_access = False if request.user.is_authenticated: # Only display links to logged in users try: Sample.get_for_user(request.user, sample.pk) # Throws exception can_access = True except (Sample.DoesNotExist, PermissionDenied): pass source = SampleAnnotationVersionVariantSource.objects.get(sample=sample, variant_annotation_version=variant_annotation_version) gvcc = GeneValueCountCollection.objects.get(source=source, gene_count_type=gene_count_type) gvc_qs = gvcc.genevaluecount_set.filter(gene__in=genes) sample_code = "%03d" % i if can_access: view_sample_url = reverse('view_sample', kwargs={'sample_id': sample.pk}) sample_link = f'<a href="{view_sample_url}">{sample.name}</a>' if sample_link in used_sample_names: uniq_sample_name = sample.name + "_" + sample_code sample_link = f'<a href="{view_sample_url}">{uniq_sample_name}</a>' sample_name = sample_link else: sample_name = "S" + sample_code sample_names.append(sample_name) used_sample_names.add(sample_name) color_df[sample_name] = default_color color_df.loc["Age", sample_name] = '#FFFFFF' color_df.loc["HPO", sample_name] = '#FFFFFF' color_df.loc["OMIM", sample_name] = '#FFFFFF' text_df[sample_name] = default_text if sample.patient: try: # Check you have Patient permissions patient = Patient.get_for_user(request.user, sample.patient.pk) def format_ontology(ontology_term): return f"<div title='{ontology_term}'>{ontology_term.name}</div>" hpo, omim = OntologyTerm.split_hpo_and_omim(patient.get_ontology_term_ids()) hpo_text = " ".join(map(format_ontology, hpo)) omim_text = " ".join(map(format_ontology, omim)) try: age = sample.specimen.age_at_collection_date except: age = None text_df.loc["Age", sample_name] = age or '' text_df.loc["HPO", sample_name] = hpo_text text_df.loc["OMIM", sample_name] = omim_text except PermissionDenied: pass except Patient.DoesNotExist: pass FIELDS = ["gene__geneversion__gene_symbol", "value__rgb", "value__show_counts", "count"] for gene_symbol, rgb, show_counts, count in gvc_qs.values_list(*FIELDS): gene_link = gene_links_lookup[gene_symbol] color_df.loc[gene_link, sample_name] = rgb if show_counts: text_df.loc[gene_link, sample_name] = count except (SampleAnnotationVersionVariantSource.DoesNotExist, GeneValueCountCollection.DoesNotExist): pass def set_style(s): color_series = color_df[s.name] styles = [] for color in color_series: styles.append(f"color: {rgb_invert(color)}; background-color: {color};") return styles style = text_df.style.apply(set_style) style = style.set_table_attributes('class="sample-gene-matrix"') text_table_html = style.render() context = {"text_table_html": text_table_html, "gene_values": gene_values} return render(request, 'snpdb/patients/cohort_gene_counts_matrix.html', context)
70ed9387ebba73664efdf3c94fe08a67ed07acc9
20,535
import requests import yaml import os def validate_yaml_online(data, schema_uri=None): """ Validates the given data structure against an online schema definition provided by schema_uri. If schema_uri is not given, we try to get it from the 'descriptor_schema' field in 'data'. Returns: True/False """ if schema_uri is None: # try to get schema_uri from data schema_uri = data.get("descriptor_schema", None) if schema_uri is None: LOG.error("Cannot find URI pointing to schema.") return False try: # try to download schema r = requests.get(schema_uri, timeout=3) # try to parse schema schema = yaml.load(r.text) except BaseException as e: LOG.warning("Couldn't fetch schema from '{}': {}".format( schema_uri, e)) # ok, no internet? lets try to use a local NAPD schema try: path = os.path.join( os.path.expanduser("~"), ".tng-schema/package-specification/napd-schema.yml") LOG.info("Using local schema: {}".format(path)) with open(path, "r") as f: schema = yaml.load(f) except BaseException as e: LOG.error("Get schema from '{}' or '{}': {}".format( schema_uri, path, e)) return False try: if schema is None: raise BaseException("No schema found online and offile") # validate data against schema validate(data, schema) except BaseException as e: LOG.error("Couldn't validate against schema from '{}': {}".format( schema_uri, e)) return False return True
624b9aa706fc0afda24bf9c0afc8756637c8a9bd
20,536
import random def normal218(startt,endt,money2,first,second,third,forth,fifth,sixth,seventh,zz1,zz2,bb1,bb2,bb3,aa1,aa2): """ for source and destination id generation """ """ for type of banking work,label of fraud and type of fraud """ idvariz=random.choice(zz2) idgirande=random.choice(bb2) first.append("transfer") second.append(idvariz) third.append(idgirande) sixth.append("0") seventh.append("none") """ for amount of money generation """ numberofmoney=random.randrange(50000,money2) forth.append(numberofmoney) """ for date and time generation randomly between two dates """ final=randomDate(startt,endt, random.random()) fifth.append(final) return (first,second,third,forth,fifth,sixth,seventh)
aec17f55306691395dc2797cf30e175e0cb5b9e8
20,537
def get_fast_loaders(dataset, batch_size, test, device, data_path=None, train_transform=None, validation_transform=None, train_percentage=0.85, workers=4): """Return :class:`FastLoader` for training and validation, outfitted with a random sampler. If set to run on the test set, :param:`train_percentage` will be ignored and set to 1. The transforms should only include operations on PIL images and should not convert the images to a tensor, nor handle normalization of the tensors. This is handled at runtime by the fast loaders. If you are not looking for high-performance, prefer :func:`get_loaders`. :param dataset: name of the dataset, (MNIST, FashionMNIST, CIFAR-10, CIFAR-100, ImageNette, ImageWoof, ImageNet) are available. :type dataset: str :param batch_size: batch size for training and validation. :type batch_size: int :param test: run validation on the test set. :type test: bool :param data_path: path to folder containing dataset. :type data_path: str :param train_transform: PyTorch transform to apply to images for training. :type train_transform: torchvision.transforms.Compose :param validation_transform: PyTorch transform to apply to images for validation. :type validation_transform: torchvision.transforms.Compose :param train_percentage: percentage of the data in the training set. :type train_percentage: float :param workers: number of subprocesses to use for data loading. Use 0 for loading in the main process. :type workers: int :return: training and validation fast data loaders. :rtype: (FastLoader, FastLoader) """ # Check if any parameters has been set to its default value, and if so, setup the defaults. data_path, train_transform, validation_transform = _setup_defaults(dataset, data_path, train_transform, validation_transform, fast=True) # Get all of the training data available. train_data = _get_train_data(dataset, data_path, train_transform) log.log("Training data succesfully fetched!", LOGTAG, log.Level.DEBUG) if not test: # Perform a train/validation split on the training data available: # For performance reasons, the train/validation split will always be the same. # TODO: Implement random train/validation split with fast loading and distributed training. log.log("Running in standard training/validation mode.", LOGTAG, log.Level.INFO) dataset_size = len(train_data) split_index = int(dataset_size * train_percentage) log.log("{0}:{1}".format(dataset_size, split_index), LOGTAG, log.Level.HIGHLIGHT) validation_data = train_data[split_index:] train_data = train_data[:split_index] log.log("Validation data succesfully fetched!", LOGTAG, log.Level.DEBUG) else: # Fetch the test data: log.log("Running in <b>test</b> mode. All training data available will be used, and " "validation will be done on the test set. Are you really ready to publish?", LOGTAG, log.Level.WARNING) validation_data = _get_test_data(dataset, data_path, validation_transform) log.log("Test data succesfully fetched!", LOGTAG, log.Level.DEBUG) if distributed.is_initialized(): # If running in distributed mode, use a DistributedSampler: log.log("Running in <b>distributed</b> mode. This hasn't been thoroughly tested, beware!", LOGTAG, log.Level.WARNING) train_sampler = data_utils.distributed.DistributedSampler(train_data) else: # Otherwise, default to a RandomSampler: train_sampler = data_utils.RandomSampler(train_data) # Build the train and validation loaders, using pinned memory and a custom collate function to build the batches. train_loader = data_utils.DataLoader(train_data, batch_size=batch_size, num_workers=workers, pin_memory=True, sampler=train_sampler, collate_fn=_fast_collate, drop_last=True) log.log("Train loader succesfully created!", LOGTAG, log.Level.DEBUG) validation_loader = data_utils.DataLoader(validation_data, batch_size=batch_size, num_workers=workers, pin_memory=True, collate_fn=_fast_collate) log.log("Validation loader succesfully created!", LOGTAG, log.Level.DEBUG) # Wrap the PyTorch loaders in the custom FastLoader class and feed it the normalization parameters associated # with the dataset. return FastLoader(train_loader, device, *NORMALIZATION[DATASETS[dataset]]), \ FastLoader(validation_loader, device, *NORMALIZATION[DATASETS[dataset]])
444ff949ba247ebc21f1e34fcfcb752ccbf6360d
20,538
from typing import List def find_paths(root: TreeNode, required_sum: int) -> List[List[int]]: """ Time Complexity: O(N^2) Space Complexity: O(N) Parameters ---------- root : TreeNode Input binary tree. required_sum : int Input number 'S'. Returns ------- all_paths : List[List[int]] All paths from root-to-leaf such that the sum of all the node values of each path equals 'S'. """ def find_paths_recursive(cur_node: TreeNode, path_sum: int, cur_path: List[int], ins_all_paths: List[List[int]]): if not cur_node: return cur_path.append(cur_node.val) if cur_node.val == path_sum and not cur_node.left and not cur_node.right: ins_all_paths.append(cur_path.copy()) else: find_paths_recursive(cur_node.left, path_sum - cur_node.val, cur_path, ins_all_paths) find_paths_recursive(cur_node.right, path_sum - cur_node.val, cur_path, ins_all_paths) del cur_path[-1] all_paths = [] find_paths_recursive(root, required_sum, [], all_paths) return all_paths
71cd37db1be97015173748e8d2142601e306552b
20,539
import time import requests import json def macro_bank_switzerland_interest_rate(): """ ็‘žๅฃซๅคฎ่กŒๅˆฉ็އๅ†ณ่ฎฎๆŠฅๅ‘Š, ๆ•ฐๆฎๅŒบ้—ดไปŽ20080313-่‡ณไปŠ https://datacenter.jin10.com/reportType/dc_switzerland_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_switzerland_interest_rate_decision_all.js?v=1578582240 :return: ็‘žๅฃซๅคฎ่กŒๅˆฉ็އๅ†ณ่ฎฎๆŠฅๅ‘Š-ไปŠๅ€ผ(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_switzerland_interest_rate_decision_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["็‘žๅฃซๅคฎ่กŒๅˆฉ็އๅ†ณ่ฎฎๆŠฅๅ‘Š"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["ไปŠๅ€ผ(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "25", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "switzerland_interest_rate" temp_df = temp_df.astype("float") return temp_df
14eb2ce7dc85e0611a8d55147172256ed8a2c71e
20,540
def create_dataframe(message): """Create Pandas DataFrame from CSV.""" dropdowns = [] df = pd.DataFrame() if message != "": df = pd.read_csv(message) df = df.sample(n = 50, random_state = 2) # reducing Data Load Running on Heroku Free !!!! if len(df) == 0: return pd.DataFrame() df.insert(0,"Index", df.index) for column in df.columns: dropdowns.append({"label":column, "value":column}) return df, dropdowns
c0d764ed47cba31d0129d1c61e645065ba2e99b5
20,541
def load_model(path): """ This function ... :param path: :return: """ # Get the first line of the file with open(path, 'r') as f: first_line = f.readline() # Create the appropriate model if "SersicModel" in first_line: return SersicModel.from_file(path) elif "ExponentialDiskModel" in first_line: return ExponentialDiskModel.from_file(path) elif "DeprojectionModel" in first_line: return DeprojectionModel.from_file(path) else: raise ValueError("Unrecognized model file")
425113abe09b1de1efa1d5cf1ca2df4d999886c2
20,542
import functools def add_metaclass(metaclass): """ Class decorator for creating a class with a metaclass. Borrowed from `six` module. """ @functools.wraps(metaclass) def wrapper(cls): orig_vars = cls.__dict__.copy() slots = orig_vars.get('__slots__') if slots is not None: if isinstance(slots, str): slots = [slots] for slots_var in slots: orig_vars.pop(slots_var) orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper
f6ee3feef418d5bff4f0495fdbfc98c9a8f48665
20,543
import torch def max_pool_nd_inverse(layer, relevance_in : torch.Tensor, indices : torch.Tensor = None, max : bool = False) -> torch.Tensor : """ Inversion of LogSoftmax layer Arguments --------- relevance : torch.Tensor Input relavance indices : torch.Tensor Maximum feature indexes obtained when max pooling max : bool Implement winner takes all scheme in relevance re-distribution Returns ------- torch.Tensor Output relevance """ if indices is None : indices = layer.indices out_shape = layer.out_shape bs = relevance_in.size(0) relevance_in = torch.cat([r.view(out_shape) for r in relevance_in ], dim=0) indices = torch.cat([indices] * bs, dim=0) return ( winner_takes_all(relevance_in, layer.in_shape, layer.indices) if max else relevance_in )
ae3ad1b2a3791063c90568f0c954d3de6f3985f8
20,544
def aroon_up(close, n=25, fillna=False): """Aroon Indicator (AI) Identify when trends are likely to change direction (uptrend). Aroon Up - ((N - Days Since N-day High) / N) x 100 https://www.investopedia.com/terms/a/aroon.asp Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return AroonIndicator(close=close, n=n, fillna=fillna).aroon_up()
2a44c15b06e9a1d2facaa800a186b780fc226717
20,545
import os import hashlib def hash_file(filename): """ computes hash value of file contents, to simplify pytest assert statements for complex test cases that output files. For cross-platform compatibility, make sure files are read/written in binary, and use unix-style line endings, otherwise hashes will not match despite content being same in ASCII. Args: filename Returns: hashnumber """ if os.path.isfile(filename) is False: raise Exception("File not found for hash operation") # open file for reading in binary mode with open(filename, "rb") as file: return hashlib.sha512(file.read()).hexdigest()
e26f92869a44c0e60fcd58764069b0c7828dee95
20,546
def spatial_batchnorm_forward(x, gamma, beta, bn_param): """ Computes the forward pass for spatial batch normalization. Inputs: - x: Input data of shape (N, C, H, W) - gamma: Scale parameter, of shape (C,) - beta: Shift parameter, of shape (C,) - bn_param: Dictionary with the following keys: - mode: 'train' or 'test'; required - eps: Constant for numeric stability - momentum: Constant for running mean / variance. momentum=0 means that old information is discarded completely at every time step, while momentum=1 means that new information is never incorporated. The default of momentum=0.9 should work well in most situations. - running_mean: Array of shape (D,) giving running mean of features - running_var Array of shape (D,) giving running variance of features Returns a tuple of: - out: Output data, of shape (N, C, H, W) - cache: Values needed for the backward pass """ out, cache = None, None ########################################################################### # TODO: Implement the forward pass for spatial batch normalization. # # # # HINT: You can implement spatial batch normalization using the vanilla # # version of batch normalization defined above. Your implementation should# # be very short; ours is less than five lines. # ########################################################################### N, C, H, W = x.shape out = np.zeros((N, C, H, W)) cache = [] for c in range(C): xc = x[:, c, :, :] outc, cachec = batchnorm_forward(xc.reshape(N, H * W), gamma[c], beta[c], bn_param) out[:,c,:,:] = outc.reshape(N, H, W) cache += [cachec] ########################################################################### # END OF YOUR CODE # ########################################################################### return out, cache
0b27b4b00e21de2117a1f079741f0b968fd30042
20,547
def triangulate(points): """ triangulate the plane for operation and visualization """ num_points = len(points) indices = np.arange(num_points, dtype=np.int) segments = np.vstack((indices, np.roll(indices, -1))).T tri = pymesh.triangle() tri.points = np.array(points) tri.segments = segments tri.verbosity = 0 tri.run() return tri.mesh
d18a7d171715217b59056337c86bf5b49609b664
20,548
def immutable(): """ Get group 1. """ allowed_values = {'NumberOfPenguins', 'NumberOfSharks'} return ImmutableDict(allowed_values)
851853b54b106cbc3ee621119a863a7b2862e8d5
20,549
def test_plot_colors_sizes_proj(data, region): """ Plot the data using z as sizes and colors with a projection. """ fig = Figure() fig.coast(region=region, projection="M15c", frame="af", water="skyblue") fig.plot( x=data[:, 0], y=data[:, 1], color=data[:, 2], size=0.5 * data[:, 2], style="cc", cmap="copper", ) return fig
4a9f2727d046d91445504d8f147fcef95a261cb5
20,550
def predict_to_score(predicts, num_class): """ Checked: the last is for 0 === Example: score=1.2, num_class=3 (for 0-2) (0.8, 0.2, 0.0) * (1, 2, 0) :param predicts: :param num_class: :return: """ scores = 0. i = 0 while i < num_class: scores += i * predicts[:, i - 1] i += 1 return scores
ee4038583404f31bed42bed4eaf6d0c25684c0de
20,551
def quasi_diagonalize(link): """sort clustered assets by distance""" link = link.astype(int) sort_idx = pd.Series([link[-1, 0], link[-1, 1]]) num_items = link[-1, 3] # idx of original items while sort_idx.max() >= num_items: sort_idx.index = list(range(0, sort_idx.shape[0] * 2, 2)) # make space df0 = sort_idx[sort_idx >= num_items] # find clusters i = df0.index j = df0.values - num_items sort_idx[i] = link[j, 0] # item 1 df0 = pd.Series(link[j, 1], index=i + 1) sort_idx = sort_idx.append(df0) # item 2 sort_idx = sort_idx.sort_index() # re-sort sort_idx.index = list(range(sort_idx.shape[0])) # re-index return sort_idx.tolist()
8f10f62d5f0b3dc7b8687134497dd42f183194b4
20,552
import os import fnmatch def dataset_files(rootdir, pattern): """Returns a list of all image files in the given directory""" matches = [] for root, dirnames, filenames in os.walk(rootdir): for filename in fnmatch.filter(filenames, pattern): matches.append(os.path.join(root, filename)) return matches
b99d24d48b26393cc7cbf4df9e7cd7f1d7c018e0
20,553
def keyword(variable): """ Verify that the field_name isn't part of know Python keywords :param variable: String :return: Boolean """ for backend in ADAPTERS: if variable.upper() in ADAPTERS[backend]: msg = ( f'Variable "{variable}" is a "{backend.upper()}" ' f"reserved SQL/NOSQL keyword" ) raise SyntaxError(msg) if not VALID_TABLE_FIELD.match(variable) or PYTHON_KEYWORDS.match(variable): raise SyntaxError(f"Field: invalid field name: {variable}") return f"{variable} isn't a known keyword"
b1c6322d3ce3c9ee4bda4eff251af44ca3e2c699
20,554
import logging import json def gcp_api_main(request): """Responds to any HTTP request. Args: request (flask.Request): HTTP request object. Returns: The response text or any set of values that can be turned into a Response object using `make_response <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>`. """ logging.basicConfig(level=logging.INFO) try: request_json = request.get_json() if request.args and 'message' in request.args: return request.args.get('message') elif request_json and 'message' in request_json: return request_json['message'] elif request_json and 'stock_data' in request_json and 'name' in request_json: logging.info('run_fb_prophet') return json.dumps( FBProphetThread.run_fb_prophet( json.dumps(request_json['model_input']))).replace('NaN', '"-"') else: return f'Hello World!' except Exception as ex: err_msg = 'Generated an exception: {ex}'.format(ex=ex) logging.error(err_msg) return err_msg
21ec4b1dba4ad6f5dac518a3907cd15579a0ba00
20,555
def box_area_3d(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2, z1, z2) coordinates. Arguments: boxes (Union[Tensor, ndarray]): boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2, z1, z2) format. [N, 6] Returns: area (Union[Tensor, ndarray]): area for each box [N] """ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4])
be8b3c4d58d301d2044e7cfe2844516933c1247f
20,556
from sqlalchemy import create_mock_engine import re def mock_engine(dialect_name=None): """Provides a mocking engine based on the current testing.db. This is normally used to test DDL generation flow as emitted by an Engine. It should not be used in other cases, as assert_compile() and assert_sql_execution() are much better choices with fewer moving parts. """ if not dialect_name: dialect_name = config.db.name buffer = [] def executor(sql, *a, **kw): buffer.append(sql) def assert_sql(stmts): recv = [re.sub(r"[\n\t]", "", str(s)) for s in buffer] assert recv == stmts, recv def print_sql(): d = engine.dialect return "\n".join(str(s.compile(dialect=d)) for s in engine.mock) engine = create_mock_engine(dialect_name + "://", executor) assert not hasattr(engine, "mock") engine.mock = buffer engine.assert_sql = assert_sql engine.print_sql = print_sql return engine
d773a6e2cd0b2060e5dd66d5ec4e758ac7f1f504
20,557
def get_feedback_thread_reply_info_by_reply_to_id(reply_to_id): """Gets the domain object corresponding to the model which is fetched by reply-to-id field. Args: reply_to_id: str. The reply_to_id to search for. Returns: FeedbackThreadReplyInfo or None. The corresponding domain object. """ model = email_models.GeneralFeedbackEmailReplyToIdModel.get_by_reply_to_id( reply_to_id) if model is None: return None return get_feedback_thread_reply_info_from_model(model)
e27521030717a1dc15cd9e678dabafba86007f90
20,558
def _cross_correlations(n_states): """Returns list of crosscorrelations Args: n_states: number of local states Returns: list of tuples for crosscorrelations >>> l = _cross_correlations(np.arange(3)) >>> assert l == [(0, 1), (0, 2), (1, 2)] """ l = n_states cross_corr = [[(l[i], l[j]) for j in l[1:][i:]] for i in l[:-1]] return [item for sublist in cross_corr for item in sublist]
c11c5655ba655a29991421c6627a3eaca4f7681d
20,559
def select_interface(worker): """ It gets a worker interface channel to do something. """ interfaces = worker.interfaces_list() if len(interfaces) == 0: print ' Error. Worker without interface known.' return -1 elif len(interfaces) == 1: return 1 option = raw_input(' Select interface -> ') if option == '': return -1 while not option.isdigit() or int(option) < 1 or int(option) > len(interfaces): print ' Error. None worker interface was selected.' option = raw_input(' Select interface -> ') if option == '': return -1 return int(option)
97d90670dd69d57b4e1f85df250a0abc56106fb6
20,560
def get_middle(arr): """ Get middle point ???? """ n_val = np.array(arr.shape) / 2.0 n_int = n_val.astype(np.int0) # print(n_int) if n_val[0] % 2 == 1 and n_val[1] % 2 == 1: return arr[n_int[0], n_int[1]] if n_val[0] % 2 == 0 and n_val[1] % 2 == 0: return np.average(arr[n_int[0]:n_int[0] + 2, n_int[1]:n_int[1] + 2]) if n_val[0] % 2 == 1 and n_val[1] % 2 == 0: return np.average(arr[n_int[0], n_int[1]:n_int[1]+2]) return np.average(arr[n_int[0]:n_int[0]+2, n_int[1]])
9651bcadc991bbf7a0c635a8870356f422d43e7e
20,561
def annotate_segmentation(image, segmentation): """Return annotated segmentation.""" annotation = AnnotatedImage.from_grayscale(image) for i in segmentation.identifiers: region = segmentation.region_by_identifier(i) color = pretty_color() annotation.mask_region(region.border.dilate(), color) props = skimage.measure.regionprops(segmentation) for p in props: try: minr, minc, maxr, maxc = p.bbox cval = int(p.centroid[1]) line = skimage.draw.line(minr, cval, maxr, cval) annotation.mask_region(line, (0, 255, 0)) except IndexError: # Don't draw line if it falls outside of the image. pass return annotation
2fadbe8d2339e37bea0dbfe054199002a3997b20
20,562
def get_champ_data(champ: str, tier: int, rank: int): """ Gives Champ Information by their champname, tier, and rank. """ champ_info = NewChampsDB() try: champ_info.get_data(champ, tier, rank) champs_dict = { "name": f"{champ_info.name}", "released": champ_info.released, "class": champ_info.class_type, "tier": champ_info.tier, "rank": champ_info.rank, "prestige": champ_info.prestige, "hp": champ_info.hp, "attack": champ_info.attack, "crit_rate": champ_info.crit_rate, "crit_dmge": champ_info.crit_dmge, "armor": champ_info.armor, "block_prof": champ_info.block_prof, "energy_resist": champ_info.energy_resist, "physical_resist": champ_info.physical_resist, "crit_resist": champ_info.crit_resist, "sig_info": champ_info.sig_info, "abilities": champ_info.abilities, "challenger_rating": champ_info.challenger_rating, "find": champ_info.find, "tags": champ_info.tags, "abilities": champ_info.abilities, "contact": champ_info.contact, "url_page": f"{champ_info.url_page}", "img_portrait": f"{champ_info.img_portrait}", "champid": f"{champ_info.champid}", } champs_dict.update({"status": 200, "detail": "Successful"}) return champs_dict except Exception as e: if isinstance(e, FileNotFoundError): raise HTTPException(status_code=404, detail="404: " + champ_info.error) elif isinstance(e, KeyError): raise HTTPException(status_code=400, detail="400: " + champ_info.error) else: raise e
7d810fc5ced3d187c68533f42c2443ef8bec651b
20,563
import http import os def handler(event, context): """ Handler method for insert resource function. """ if event is None: return response(http.HTTPStatus.BAD_REQUEST, Constants.error_insufficient_parameters()) if event is None or Constants.event_body() not in event or Constants.event_http_method() not in event: return response(http.HTTPStatus.BAD_REQUEST, Constants.error_insufficient_parameters()) if event[Constants.event_body()] is None or len(event[Constants.event_body()]) is 0: return response(http.HTTPStatus.BAD_REQUEST, Constants.error_insufficient_parameters()) global _dynamodb if _dynamodb is None: try: ddb = DynamoDB() _dynamodb = ddb.connect(os.environ[Constants.env_var_region()]) except Exception as e: return response(http.HTTPStatus.INTERNAL_SERVER_ERROR, str(e)) try: request_handler = RequestHandler(_dynamodb) except Exception as e: return response(http.HTTPStatus.INTERNAL_SERVER_ERROR, str(e)) return request_handler.handler(event, context)
671144bed701c8bd2480b86522bd2002ccd35e73
20,564
def serving_input_receiver_fn(): """This is used to define inputs to serve the model. Returns: A ServingInputReciever object. """ csv_row = tf.placeholder(shape=[None], dtype=tf.string) features, _ = _make_input_parser(with_target=False)(csv_row) return tf.estimator.export.ServingInputReceiver(features, {'csv_row': csv_row})
bcc6f0c4050d40df114ba4e5d895524f736b463a
20,565
import time def offsetTimer(): """ 'Starts' a timer when called, returns a timer function that returns the time in seconds elapsed since the timer was started """ start_time = time.monotonic() def time_func(): return time.monotonic() - start_time return time_func
348105a408ccedd1fcb840b73d5a58dfd59dd8cc
20,566
import os def _get_sender(pusher_email): """Returns "From" address based on env config and default from.""" use_author = 'GITHUB_COMMIT_EMAILER_SEND_FROM_AUTHOR' in os.environ if use_author: sender = pusher_email else: sender = os.environ.get('GITHUB_COMMIT_EMAILER_SENDER') return sender
09167bfd09ff031d60b4ca033fbb0cad206393f9
20,567
from typing import Callable import functools def find_resolution(func: Callable = None) -> Callable: """Decorator that gives the decorated function the image resolution.""" @functools.wraps(func) def wrapper(self: MultiTraceChart, *args, **kwargs): if 'width' not in kwargs: kwargs['width'] = self.resolution[0] if 'height' not in kwargs: kwargs['height'] = self.resolution[1] if 'resolution' in kwargs: kwargs['width'] = kwargs['resolution'][0] kwargs['height'] = kwargs['resolution'][1] del kwargs['resolution'] if 'size' in kwargs: kwargs['width'] = kwargs['size'][0] kwargs['height'] = kwargs['size'][1] del kwargs['size'] return func(self, *args, **kwargs) return wrapper
70edffcec5ac772bd52cb819db589d26497fda87
20,568
def transform_spikes_to_isi(self, spikes, time_epoch, last_event_is_spike=False): """Convert spike times to data array, which is a suitable format for optimization. Parameters ---------- spikes : numpy array (num_neuron,N), dtype=np.ndarray A sequence of spike times for each neuron on each trial. Each entry is 1D array of floats. time_epoch : list of tuples List of N tuples, where N is the number of trials. Each tuple consists of the trial's start time and end time in seconds. Note that the end time should be an actual end time, but not the timeout in the case of last_event_is_spike is True. last_event_is_spike : bool If true, trial termination time will not be recorded. Otherwise, trial termination time will be recorded. Returns ------- data : numpy array (N,2),dtype=np.ndarray. Spike data packed as numpy array of the size (N,2), where each elements is a 1D array of floats. N is the number of trials, and for each trial the first column contains the interspike intervals (ISIs), and the second column contains the corresponding neuronal indices. """ num_neuron, num_trial = spikes.shape # initialize data array data = np.empty((num_trial, 2), dtype=np.ndarray) # indices of neurons that spiked spike_ind = np.empty(num_neuron, dtype=np.ndarray) # transform spikes to interspike intervals format for iTrial in range(num_trial): for iCell in range(num_neuron): spike_ind[iCell] = iCell * np.ones(len(spikes[iCell, iTrial]), dtype=np.int) all_spikes = np.concatenate(spikes[:, iTrial], axis=0) all_spike_ind = np.concatenate(spike_ind[:], axis=0) # create data array data[iTrial, 0] = np.zeros(len(all_spikes) + (not last_event_is_spike)) if all_spikes.shape[0] == 0: data[iTrial, 1] = np.zeros(0) # If no spikes emitted, set to trial beginning time last_spike_time = time_epoch[iTrial][0] else: # sort spike times and neuron index arrays ind_sort = np.argsort(all_spikes) all_spikes = all_spikes[ind_sort] all_spike_ind = all_spike_ind[ind_sort] data[iTrial, 0][1:len(all_spikes)] = all_spikes[1:] - all_spikes[:-1] data[iTrial, 0][0] = all_spikes[0] - time_epoch[iTrial][0] # handle the first ISI last_spike_time = all_spikes[-1] if not last_event_is_spike: data[iTrial, 0][-1] = time_epoch[iTrial][1] - last_spike_time # assign indicies of neurons which fired, -1 to absorption event data[iTrial, 1] = all_spike_ind if last_event_is_spike else np.concatenate((all_spike_ind, [-1])) return data
cc2b54e80e00b10b8cabf79093509fde1980b804
20,569
def api_github_v2(user_profile, event, payload, branches, default_stream, commit_stream, issue_stream, topic_focus = None): """ processes github payload with version 2 field specification `payload` comes in unmodified from github `default_stream` is set to what `stream` is in v1 above `commit_stream` and `issue_stream` fall back to `default_stream` if they are empty This and allowing alternative endpoints is what distinguishes v1 from v2 of the github configuration """ if not commit_stream: commit_stream = default_stream if not issue_stream: issue_stream = default_stream target_stream = commit_stream repository = payload['repository'] if not topic_focus: topic_focus = repository['name'] # Event Handlers if event == 'pull_request': pull_req = payload['pull_request'] subject = github_generic_subject('pull request', topic_focus, pull_req) content = github_generic_content('pull request', payload, pull_req) elif event == 'issues': # in v1, we assume that this stream exists since it is # deprecated and the few realms that use it already have the # stream target_stream = issue_stream issue = payload['issue'] subject = github_generic_subject('issue', topic_focus, issue) content = github_generic_content('issue', payload, issue) elif event == 'issue_comment': # Comments on both issues and pull requests come in as issue_comment events issue = payload['issue'] if 'pull_request' not in issue or issue['pull_request']['diff_url'] is None: # It's an issues comment target_stream = issue_stream noun = 'issue' else: # It's a pull request comment noun = 'pull request' subject = github_generic_subject(noun, topic_focus, issue) comment = payload['comment'] content = ("%s [commented](%s) on [%s %d](%s)\n\n~~~ quote\n%s\n~~~" % (comment['user']['login'], comment['html_url'], noun, issue['number'], issue['html_url'], comment['body'])) elif event == 'push': subject, content = build_message_from_gitlog(user_profile, topic_focus, payload['ref'], payload['commits'], payload['before'], payload['after'], payload['compare'], payload['pusher']['name'], forced=payload['forced'], created=payload['created']) elif event == 'commit_comment': comment = payload['comment'] subject = "%s: commit %s" % (topic_focus, comment['commit_id']) content = ("%s [commented](%s)" % (comment['user']['login'], comment['html_url'])) if comment['line'] is not None: content += " on `%s`, line %d" % (comment['path'], comment['line']) content += "\n\n~~~ quote\n%s\n~~~" % (comment['body'],) return (target_stream, subject, content)
bed307903d7ddcce216919d18accb3ecfd94937d
20,570
from typing import Iterable from typing import Optional from typing import Callable from typing import Dict def concatenate( iterable: Iterable[Results], callback: Optional[Callable] = None, modes: Iterable[str] = ("val", "test"), reduction: str = "none", ) -> Results: """Returns a concatenated Results. Args: iterable (iterable of Results): Iterable of `Results` instance. callback (callable, optional): Called for each `Results`. Must take (`mode`, `index`, `output`, `target`) arguments and return a tuple of ('index', `output`, `target`). modes (iterable of str): Specify modes to concatenate. reduction (str, optional): Reduction. `none` or `mean`. """ modes = list(modes) indexes: Dict[str, list] = {mode: [] for mode in modes} outputs: Dict[str, list] = {mode: [] for mode in modes} targets: Dict[str, list] = {mode: [] for mode in modes} for results in iterable: for mode in modes: if mode not in results: continue result = results[mode] index, output, target = result["index"], result["output"], result["target"] if callback: index, output, target = callback(index, output, target) indexes[mode].append(index) outputs[mode].append(output) targets[mode].append(target) results = Results() for mode in modes: index = np.concatenate(indexes[mode]) output = np.concatenate(outputs[mode]) target = np.concatenate(targets[mode]) dict = ivory.core.collections.Dict() results[mode] = dict(index=index, output=output, target=target) if reduction != "none": results = getattr(results, reduction)() return results
6833a50ddc84d44c942c6e85c1ebbdb793bd78a9
20,571
def parse_version(s: str) -> tuple[int, ...]: """poor man's version comparison""" return tuple(int(p) for p in s.split('.'))
445cd029efa3c8d4331e916f9925daddbc277ada
20,572
def replay_train(DQN, train_batch): """ ์—ฌ๊ธฐ์„œ train_batch๋Š” minibatch์—์„œ ๊ฐ€์ ธ์˜จ data๋“ค์ž…๋‹ˆ๋‹ค. x_stack์€ state๋“ค์„ ์Œ“๋Š” ์šฉ๋„๋กœ์ด๊ณ , y_stack์€ deterministic Q-learning ๊ฐ’์„ ์Œ“๊ธฐ ์œ„ํ•œ ์šฉ๋„์ž…๋‹ˆ๋‹ค. ์šฐ์„  ์Œ“๊ธฐ์ „์— ๋น„์–ด์žˆ๋Š” ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค์–ด๋†“๊ธฐ๋กœ ํ•˜์ฃ . """ x_stack = np.empty(0).reshape(0, DQN.input_size) # array(10, 4) y_stack = np.empty(0).reshape(0, DQN.output_size) # array(10, 2) # Get stored information from the buffer """for๋ฅผ ํ†ตํ•ด์„œ minibatch(train_batch)์—์„œ ๊ฐ€์ ธ์˜จ ๊ฐ’๋“ค์„ ํ•˜๋‚˜์”ฉ ๊บผ๋ƒ…๋‹ˆ๋‹ค.""" for state, action, reward, next_state, done in train_batch: Q = DQN.predict(state) # terminal if done: Q[0, action] = reward else : # Obtain the Q' values by feeding the new state through our network Q[0, action] = reward + dis * np.max(DQN.predict(next_state)) """ ์—ฌ๊ธฐ์„œ mian์— ์žˆ๋Š” action = np.argmax(mainDQN.predict(state))๊ณผ predict๊ฐ€ ๊ฐ™์ด ์“ฐ์ด๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— Non-stationary targets์˜ ๋ฌธ์ œ๊ฐ€ ์ƒ๊น๋‹ˆ๋‹ค. """ """np.vstack๋Š” y_stack์— ์Œ“๊ธฐ ์œ„ํ•œ numpyํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.""" y_stack = np.vstack([y_stack, Q]) x_stack = np.vstack([x_stack, state]) # Train our network using target and predicted Q values on each episode """ ์Œ“์€ stack๋“ค์„ ๋ฐ”๋กœ update๋กœ ๋Œ๋ ค์„œ ํ•™์Šต์„ ์‹œํ‚ต๋‹ˆ๋‹ค. ํ•™์Šต์€ ์œ„์—์„œ ๋งŒ๋“ค์—ˆ๋˜ neural network(linear regression)์„ ํ†ตํ•ด์„œ ํ•™์Šต์ด ๋˜๊ฒ ์ง€์š”. """ return DQN.update(x_stack, y_stack)
05b85aab223b82637a23853d15cd8e073ecca845
20,573
def make_reverse_macro_edge_name(macro_edge_name): """Autogenerate a reverse macro edge name for the given macro edge name.""" if macro_edge_name.startswith(INBOUND_EDGE_FIELD_PREFIX): raw_edge_name = macro_edge_name[len(INBOUND_EDGE_FIELD_PREFIX) :] prefix = OUTBOUND_EDGE_FIELD_PREFIX elif macro_edge_name.startswith(OUTBOUND_EDGE_FIELD_PREFIX): raw_edge_name = macro_edge_name[len(OUTBOUND_EDGE_FIELD_PREFIX) :] prefix = INBOUND_EDGE_FIELD_PREFIX else: raise AssertionError("Unreachable condition reached: {}".format(macro_edge_name)) reversed_macro_edge_name = prefix + raw_edge_name return reversed_macro_edge_name
807efcc26fb21e553241b2de4d2c6633a24548a2
20,574
def unescaped_split(pattern, string, max_split=0, remove_empty_matches=False, use_regex=False): """ Splits the given string by the specified pattern. The return character (\\n) is not a natural split pattern (if you don't specify it yourself). This function handles escaped split-patterns (and so splits only patterns that are unescaped). :param pattern: A pattern that defines where to split. :param string: The string to split by the defined pattern. :param max_split: Defines the maximum number of splits. If 0 or less is provided, the number of splits is not limited. :param remove_empty_matches: Defines whether empty entries should be removed from the result. :param use_regex: Specifies whether to treat the split pattern as a regex or simple string. :return: An iterator returning the split up strings. """ return _split(string, max_split, remove_empty_matches, unescaped_search_for, pattern, string, 0, 0, use_regex)
5a5cec1a54b94840e13ddec3ca8796a73e908898
20,575
def citation_distance_matrix(graph): """ :param graph: networkx graph :returns: distance matrix, node labels """ sinks = [key for key, outdegree in graph.out_degree() if outdegree==0] paths = {s: nx.shortest_path_length(graph, target=s) for s in sinks} paths_df = pd.DataFrame(paths)#, index=graph.nodes) paths_nonzero_df = 1*~paths_df.isnull() a_paths_nonzero = paths_nonzero_df.values m = a_paths_nonzero intersect = m.dot(m.T) union = m.dot(np.ones(m.shape).T) + np.ones(m.shape).dot(m.T) -intersect union[union==0] = 1 dist = 1 - intersect/union return dist, paths_nonzero_df.index
b3c41164c2081704b3b36ce0c5b1ca55440a88be
20,576
from typing import IO def read_into_dataframe(file: IO, filename: str = "", nrows: int = 100,max_characters: int = 50) -> pd.DataFrame: """Reads a file into a DataFrame. Infers the file encoding and whether a header column exists Args: file (IO): file buffer. filename (str): filename. Used to infer compression. nrows (int, optional): number of rows to peek. Default: 100. max_characters (int, optional): max characters a column name can have to be distinguished from a real text value Returns: A pandas.DataFrame. """ detector = UniversalDetector() for line, text in enumerate(file): detector.feed(text) if detector.done or line > nrows: break detector.close() encoding = detector.result.get("encoding") compression = infer_compression(filename, "infer") file.seek(0, SEEK_SET) contents = file.read() with BytesIO(contents) as file: df0 = pd.read_csv( file, encoding=encoding, compression=compression, sep=None, engine="python", header="infer", nrows=nrows, ) df0_cols = list(df0.columns) #Check if all columns are strins and short strings(text values tend to be long) column_names_checker = all([type(item) == str for item in df0_cols]) if column_names_checker: column_names_checker = all([len(item) < max_characters for item in df0_cols]) #Check if any column can be turned to float conversion_checker= True for item in df0_cols: try: item = float(item) conversion_checker = False break except: pass #Prefix and header final_checker = True if (column_names_checker and conversion_checker) else False header = "infer" if final_checker else None prefix = None if header else "col" with BytesIO(contents) as file: df = pd.read_csv( file, encoding=encoding, compression=compression, sep=None, engine="python", header=header, prefix=prefix, ) return df
fe95c60870779353f2aa751c20ed331a2e0156bf
20,577
import torch def load_generator(config: dict): """ Create the generator and load its weights using the function `load_weights`. Args: config (dict): Dictionary with the configurations. Returns: BigGAN.Generator: The generator. """ # GPU device = "cuda" torch.backends.cudnn.benchmark = True # TODO: how to handle seed? # Seed RNG utils.seed_rng(config["seed"]) # Import the model model_name = "BigGAN" # ! Code rewrite only supports BigGAN model = __import__(model_name) # Create generator and load it to the GPU G = model.Generator(**config).to(device) # If using EMA, prepare it if config["ema"]: G_ema = model.Generator(**{**config, "skip_init": True, "no_optim": True}).to( device ) utils.ema(G, G_ema, config["ema_decay"], config["ema_start"]) else: G_ema = None # If loading from a pre-trained model, load weights try: load_weights(G, config, G_ema=G_ema if config["ema"] else None) except: load_weights(G, config, G_ema=None) G_ema.load_state_dict(G.state_dict()) # Switch to eval mode G.eval() if config["ema"]: G_ema.eval() return G_ema if config["ema"] and config["use_ema"] else G
ad6ae9536610e12106e53ce94d9d1d60beff2fc5
20,578
from typing import OrderedDict import torch def Navigatev0_action_to_tensor(act: OrderedDict, task=1): """ Creates the following (batch_size, seq_len, 11) action tensor from Navigatev0 actions: 0. cam left 1. cam right 2. cam up 3. cam down 4. place + jump 5. place 6. forward + attack 7. attack 8. forward + jump 9. jump 10. forward """ batch_size, seq_len = act["jump"].shape PLACE_OPTIONS = {"none": 0, "dirt": 1} # ONE_HOT = {0: np.array([1, 0]), 1: np.array([0, 1])} out = torch.zeros((batch_size,seq_len,11)) for b in range(batch_size): for s in range(seq_len): c = act["camera"] # We don't need to check if 0, 1, and 10 are in task actions # since they always will be task_acts = TASK_ACTIONS[task] # Set camera left if c[b,s][0] < -10 and abs(c[b,s][0]) >= abs(c[b,s][1]): out[b,s][0] = 1 # Set camera right elif c[b,s][0] > 10 and abs(c[b,s][0]) >= abs(c[b,s][1]): out[b,s][1] = 1 # Set camera up elif 2 in task_acts and c[b,s][1] < -10 and abs(c[b,s][1]) >= abs(c[b,s][0]): out[b,s][2] = 1 elif 3 in task_acts and c[b,s][1] > 10 and abs(c[b,s][1]) >= abs(c[b,s][0]): out[b,s][3] = 1 elif PLACE_OPTIONS[act["place"][b,s]] == 1: if 4 in task_acts and act["jump"][b,s] == 1: out[b,s][4] = 1 elif 5 in task_acts: out[b,s][5] = 1 elif act["attack"][b,s] == 1: if 6 in task_acts and act["forward"][b,s] == 1: out[b,s][6] = 1 elif 7 in task_acts: out[b,s][7] = 1 elif act["jump"][b,s] == 1: if 8 in task_acts and act["forward"][b,s] == 1: out[b,s][8] = 1 elif 9 in task_acts: out[b,s][9] = 1 else: out[b,s][10] = 1 return out
39d481d2e8597902b18695de97f041606f24f035
20,579
def asfarray(a, dtype=mstype.float32): """ Similar to asarray, converts the input to a float tensor. If non-float dtype is defined, this function will return a float32 tensor instead. Args: a (Union[int, float, bool, list, tuple, numpy.ndarray]): Input data, in any form that can be converted to a `Tensor`. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and numpy.ndarray. dtype (Union[:class:`mindspore.dtype`, str], optional): Designated tensor dtype, can be in format of np.int32, or \'int32\'. If dtype is :class:`None`, the data type of the new tensor will be inferred from `a`. Default is :class:`mindspore.float32`. Returns: Tensor, generated tensor with the specified float dtype. Raises: TypeError: If input arguments have types not specified above. ValueError: If input `a` has different sizes at different dimensions. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> print(np.asfarray([1,2,3])) [1. 2. 3.] """ _check_input_for_asarray(a) if dtype is None: return asarray(a) dtype = _check_dtype(dtype) if dtype not in (mstype.float16, mstype.float32, mstype.float64): dtype = mstype.float32 if isinstance(a, (list, tuple)): # Convert all tuple/nested tuples to lists a = _deep_list(a) # Convert all tensor sub-elements to numpy arrays a = _deep_tensor_to_nparray(a) a = onp.asarray(a) if a.dtype is onp.dtype('object'): raise TypeError(f"For Tensor conversion, the input_data is {a} that contains unsupported element.") if isinstance(a, onp.ndarray): a = Tensor.from_numpy(a) return Tensor(a, dtype)
4da49b2bcab9686b2757cf1b9066c21876f992e6
20,580
from typing import Optional from typing import Callable import click def _verify_option(value: Optional[str], value_proc: Callable) -> Optional[str]: """Verifies that input value via click.option matches the expected value. This sets ``value`` to ``None`` if it is invalid so the rest of the prompt can flow smoothly. Args: value (Optional[str]): Input value. value_proc (Callable): A function to check the validity of ``value``. Returns: (Optional[str]): ``value`` if it is a valid value. ``None`` if it is not. Raises: click.exceptions.UsageError: When ``value`` is invalid. """ if value is None: return value try: value = value_proc(value) except click.exceptions.UsageError as error: click.echo(f"Error: {error.message}", err=True) value = None return value
4d0f58827982924a9d027112ffa3aaeef7634fe8
20,581
def batch_jacobian(output, inp, use_pfor=True, parallel_iterations=None): """Computes and stacks jacobians of `output[i,...]` w.r.t. `input[i,...]`. e.g. x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) y = x * x jacobian = batch_jacobian(y, x) # => [[[2, 0], [0, 4]], [[6, 0], [0, 8]]] Args: output: A tensor with shape [b, y1, ..., y_n]. `output[i,...]` should only depend on `inp[i,...]`. inp: A tensor with shape [b, x1, ..., x_m] use_pfor: If true, uses pfor for computing the Jacobian. Else uses a tf.while_loop. parallel_iterations: A knob to control how many iterations and dispatched in parallel. This knob can be used to control the total memory usage. Returns: A tensor `t` with shape [b, y_1, ..., y_n, x1, ..., x_m] where `t[i, ...]` is the jacobian of `output[i, ...]` w.r.t. `inp[i, ...]`, i.e. stacked per-example jacobians. Raises: ValueError: if first dimension of `output` and `inp` do not match. (NL) This function is taken from the following (and minimally modified to be used): https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/parallel_for/gradients.py#L81 """ output_shape = output.shape if not output_shape[0].is_compatible_with(inp.shape[0]): raise ValueError("Need first dimension of output shape (%s) and inp shape " "(%s) to match." % (output.shape, inp.shape)) if output_shape.is_fully_defined(): batch_size = int(output_shape[0]) output_row_size = output_shape.num_elements() // batch_size else: output_shape = tf.shape(output) batch_size = output_shape[0] output_row_size = tf.size(output) // batch_size inp_shape = tf.shape(inp) # Flatten output to 2-D. with tf.control_dependencies([tf.assert_equal(batch_size, inp_shape[0])]): output = tf.reshape(output, [batch_size, output_row_size]) def loop_fn(i): y = tf.gather(output, i, axis=1) return tf.gradients(y, inp)[0] #if use_pfor: if False: pfor_output = tf.pfor(loop_fn, output_row_size, parallel_iterations=parallel_iterations) else: pfor_output = for_loop( loop_fn, output.dtype, output_row_size, parallel_iterations=parallel_iterations) if pfor_output is None: return None pfor_output = tf.reshape(pfor_output, [output_row_size, batch_size, -1]) output = tf.transpose(pfor_output, [1, 0, 2]) new_shape = tf.concat([output_shape, inp_shape[1:]], axis=0) return tf.reshape(output, new_shape)
dd42fcc9542bba8033a1eb204bf0d3a91b192dbc
20,582
def declare(baseFamily=None, baseDefault=0, derivedFamily=None, derivedDefault=""): """ Declare a pair of components """ # the declaration class base(pyre.component, family=baseFamily): """a component""" b = pyre.properties.int(default=baseDefault) class derived(base, family=derivedFamily): """a derived component""" d = pyre.properties.str(default=derivedDefault) # return the pair to the caller return base, derived
30c8d8f7d264a0e908f4305198b07c3d76a3cfac
20,583
from datetime import datetime def parse_iso8601(dtstring: str) -> datetime: """naive parser for ISO8061 datetime strings, Parameters ---------- dtstring the datetime as string in one of two formats: * ``2017-11-20T07:16:29+0000`` * ``2017-11-20T07:16:29Z`` """ return datetime.strptime( dtstring, '%Y-%m-%dT%H:%M:%SZ' if len(dtstring) == 20 else '%Y-%m-%dT%H:%M:%S%z')
415a4f3a9006109e31ea344cf99e885a3fd2738d
20,584
def CalcCurvature(vertices,faces): """ CalcCurvature recives a list of vertices and faces and the normal at each vertex and calculates the second fundamental matrix and the curvature by least squares, by inverting the 3x3 Normal matrix INPUT: vertices -nX3 array of vertices faces -mX3 array of faces VertexNormals - nX3 matrix (n=number of vertices) containing the normal at each vertex FaceNormals - mX3 matrix (m = number of faces) containing the normal of each face OUTPUT: FaceSFM - a list of 2x2 np arrays of (m = number of faces) second fundamental tensor at the faces VertexSFM - a list of 2x2 np arrays (n = number of vertices) second fundamental tensor at the vertices Other Parameters wfp : mx3 array of vertex voronoi cell area/Mixed area weights as given in Meyer 2002 up,vp : local coordinate system at each vertex e0,e1,e2 : edge vectors """ #list of 2x2 arrays for each vertex VertexSFM = [np.zeros([2,2]) for i in vertices] up = np.zeros(vertices.shape) e0=vertices[faces[:,2]]-vertices[faces[:,1]] e1=vertices[faces[:,0]]-vertices[faces[:,2]] e2=vertices[faces[:,1]]-vertices[faces[:,0]] e0_norm=normr(e0) e1_norm=normr(e1) e2_norm=normr(e2) FaceNormals=0.5*fastcross(e1,e2) #not unit length. holds the area which is needed next VertNormals,wfp=GetVertexNormalsExtra(vertices,faces,FaceNormals,e0,e1,e2) FaceNormals=normr(FaceNormals) #Calculate initial coordinate system up[faces[:,0]]=e2_norm up[faces[:,1]]=e0_norm up[faces[:,2]]=e1_norm #Calculate initial vertex coordinate system up=fastcross(up,VertNormals) up=normr(up) vp=fastcross(VertNormals,up) B=normr(fastcross(FaceNormals,e0_norm)) nfaces=faces.shape[0] # Build a least square problem at each face to get the SFM at each face and solve it using the normal equation scale=1.0/np.sqrt(np.sum((e0[0,:]**2+e1[0,:]**2+e2[0,:]**2)/3.0)) AT = scale*np.array([[inner1d(e0,e0_norm), inner1d(e0,B), np.zeros(nfaces)], [np.zeros(nfaces), inner1d(e0,e0_norm), inner1d(e0,B)], [inner1d(e1,e0_norm), inner1d(e1,B), np.zeros(nfaces)], [np.zeros(nfaces), inner1d(e1,e0_norm), inner1d(e1,B)], [inner1d(e2,e0_norm), inner1d(e2,B), np.zeros(nfaces)], [np.zeros(nfaces), inner1d(e2,e0_norm), inner1d(e2,B)]]).T A = np.transpose(AT,axes=(0,2,1)).copy() dn0=VertNormals[faces[:,2]]-VertNormals[faces[:,1]] dn1=VertNormals[faces[:,0]]-VertNormals[faces[:,2]] dn2=VertNormals[faces[:,1]]-VertNormals[faces[:,0]] b= scale*np.array([inner1d(dn0,e0_norm), inner1d(dn0,B ), inner1d(dn1,e0_norm), inner1d(dn1,B ), inner1d(dn2,e0_norm), inner1d(dn2,B )]).T[:,:,np.newaxis] X1=np.array([np.linalg.pinv(a,-1) for a in A]) X = np.matmul(X1,b) #now calculate curvature per vertex as weighted sum of the face curvature for i,f in enumerate(faces): for j in [0,1,2]: new_ku,new_kuv,new_kv = ProjectCurvatureTensor(e0_norm[i],B[i],FaceNormals[i],X[i][0],X[i][1],X[i][2],up[f[j]],vp[f[j]]) VertexSFM[f[j]]+=wfp[i,j]*np.array([[new_ku,new_kuv],[new_kuv,new_kv]]).squeeze() return VertexSFM,VertNormals
b0e31073fe8aff61e60d0393098cca390bb95708
20,585
from typing import Optional def query_abstracts( q: Optional[str] = None, n_results: Optional[int] = None, index: str = "agenda-2020-1", fields: list = ["title^2", "abstract", "fullname", "institution"], ): """ Query abstracts from a given Elastic index q: str, query n_results: int, number of results from index: str, index of ElasticSearch fields: list, list of fields that are included in the search """ responses = query(q, n_results, index, fields) return responses
4ed554231c863c3164c5368978da900e3647570d
20,586
import typing import pickle def PretrainedEmbeddingIndicesDictionary() -> typing.Dict[str, int]: """Read and return the embeddings indices dictionary.""" with open(INST2VEC_DICITONARY_PATH, "rb") as f: return pickle.load(f)
d4c0c8f5d7c83d99927342c5cacd8fd80a4f7d56
20,587
def color_negative_red(val): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val < 0 else 'black' return 'color: %s' % color
1806af9c915740612a6a11df723f1439c73bde2f
20,588
import os import fnmatch def globpattern(dir, pattern): """ Return leaf names in the specified directory which match the pattern. """ if not hasglob(pattern): if pattern == '': if os.path.isdir(dir): return [''] return [] if os.path.exists(util.normaljoin(dir, pattern)): return [pattern] return [] leaves = os.listdir(dir) + ['.', '..'] # "hidden" filenames are a bit special if not pattern.startswith('.'): leaves = [leaf for leaf in leaves if not leaf.startswith('.')] leaves = fnmatch.filter(leaves, pattern) leaves = [l for l in leaves if os.path.exists(util.normaljoin(dir, l))] leaves.sort() return leaves
b5d37fc5ffa69df67e3370cbb7abb2884c482d08
20,589
def get_student_discipline(person_id: str = None): """ Returns student discipline information for a particular person. :param person_id: The numeric ID of the person you're interested in. :returns: String containing xml or an lxml element. """ return get_anonymous('getStudentDiscipline', person_id=person_id)
4e96fb4e9d566af7094b16b29540617bbb230f67
20,590
import argparse import torch import os import tqdm import time import json def main(): """evaluate gpt-model fine-tune on qa dataset""" parser = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='gpt2', help='pretrained model name') parser.add_argument("--using_cache", type=bool, default=False) parser.add_argument( "--importance", type=float, help="LifeLong Learning need its (Lambda)") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--do_eval",action="store_true") # parser.add_argument("--old_dataset", type=str, default="") parser.add_argument('--eval_dataset', type=str, default='') parser.add_argument('--seed', type=int, default=42) parser.add_argument('--eval_batch_size', type=int, default=8) # parser.add_argument('--old_batch_size', type=int, default=1) parser.add_argument("--length", type=int, default=20) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=8) parser.add_argument("--top_p", type=float, default=0.9) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training \ steps to perform. Override num_train_epochs.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before\ performing a backward/update pass.") parser.add_argument("--no_cuda",action="store_true") parser.add_argument("--argmax",action="store_true") parser.add_argument("--sample",type=int,default=1) args = parser.parse_args() args.device = torch.device( "cuda:0" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() print(args) set_seed(args.seed) device=args.device n_gpu = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(device, n_gpu)) if not args.do_eval: raise ValueError("At least `do_eval` must be True.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) special_tokens = ['_context_', '_question_', '_ans_','_eos_','_pad_'] load_dir, tokenizer, model, special_tokens_ids = load_tool(args.model_name,special_tokens,device) print(special_tokens_ids) def tokenize_and_encode(obj): """ Tokenize and encode a nested object """ if isinstance(obj, str): # print("str ",obj) return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) elif isinstance(obj, set): return obj return list(tokenize_and_encode(o) for o in obj) logger.info("Encoding dataset...") eval_dataset = load_squad_dataset( args.eval_dataset, using_cache=args.using_cache) datasets = (eval_dataset, ) encoded_datasets = tokenize_and_encode(datasets) max_length, q_length, a_length = longest_length(model) input_length = max(len(story[:max_length]) + len(question[:q_length]) + 5 \ for dataset in encoded_datasets for story, question, ans, _ in dataset) input_length = min(input_length, model.config.n_positions-2) # Load and encode the datasets # Prepare inputs tensors and dataloaders tensor_datasets, ID_list = pre_process_datasets(encoded_datasets, input_length,*special_tokens_ids) eval_data = TensorDataset(*tensor_datasets[0]) eval_sampler = SequentialSampler(eval_data) eval_sampler=BatchSampler(eval_sampler,batch_size=args.eval_batch_size,drop_last=False) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,num_workers=8) if args.do_eval: model.eval() answer_dict = dict() compared_dict = dict() tqdm_bar = tqdm(eval_dataloader, desc="Evaluating") for step, data in enumerate(tqdm_bar): start_time = time.time() sentence, answer, ID_index = tuple(t.to(device) for t in data) sentence = sentence[sentence != special_tokens_ids[4]].long() answer = answer[answer != special_tokens_ids[4]].long() # print(answer) # pdb.set_trace() out = sample_sequence( model=model, context=sentence, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, device=args.device, is_xlnet=False, tokenizer=tokenizer, argmax=args.argmax,num_samples=args.sample) end_time = time.time() # print("It costs {} seconds for generate data!!".format(end_time-start_time)) out_ = out[:, :].tolist() answer_ = tokenizer.decode(answer.tolist(),clean_up_tokenization_spaces=True) for i in range(len(out_)): text = tokenizer.decode(out_[i], clean_up_tokenization_spaces=True,skip_special_tokens=True) answer_dict[ID_list[ID_index[0][i]]] = text compared_dict[ID_list[ID_index[0][i]]] = (text,answer_) if step % 50 == 0: print("step:", step) print(" prediction: ",text) print(" groundtrut: ",answer_) with open(args.output_dir + "/predictions.json", "w") as outfile: json.dump(answer_dict, outfile) with open(args.output_dir + "/compared_answer.json","w") as outfile: json.dump(compared_dict, outfile) return
59be7014ff8d677261263ee8ab69ec1e0a1771e4
20,591
from re import X def dot(p1, p2): """ Dot product :param p1: :param p2: :return: """ return p1[X] * p2[X] + p1[Y] * p2[Y]
13ba17e8757ebf9022f07d21b58a26376520f84a
20,592
def logout(): """View function which handles a logout request.""" tf_clean_session() if current_user.is_authenticated: logout_user() # No body is required - so if a POST and json - return OK if request.method == "POST" and _security._want_json(request): return _security._render_json({}, 200, headers=None, user=None) return redirect(get_post_logout_redirect())
0343be8ec063b5c215a0a019003cbf137588171a
20,593
import os import pkgutil def _lookup_configuration(): """Lookup the configuration file. :return: opened configuration file :rtype: stream """ for pth in CONFIG_PATH: path = os.path.abspath(os.path.expanduser(pth)) LOGGER.debug('Checking for %s', path) if os.path.exists(path): LOGGER.info('Config file: %s', path) return open(path) return pkgutil.get_data('picdb', 'resources/config_app.yaml')
1f3e23baa2947bf5ffd8df080fe52c37235e94b6
20,594
def splinter_session_scoped_browser(): """Make it test scoped.""" return False
a7587f6edff821bab3052dca73929201e98dcf56
20,595
from typing import Counter def sample_mask(source, freq_vocab, threshold=1e-3, min_freq=0, seed=None, name=None): """Generates random mask for downsampling high frequency items. Args: source: string `Tensor` of any shape, items to be sampled. freq_vocab: `Counter` with frequencies vocabulary. threshold: `float`, items occurrence threshold. min_freq: `int`, items below that frequency will be treated as unique. seed: `int`, used to create a random seed (optional). See @{tf.random.set_seed} for behavior. name: `string`, a name for the operation (optional). Returns: A boolean `Tensor` of same shape as source: "keep" flags. """ with tf.name_scope(name or 'sample_mask'): source = tf.convert_to_tensor(source, dtype=tf.string, name='source') seed1, seed2 = random_seed.get_seed(seed) if not isinstance(freq_vocab, Counter): raise ValueError('Frequency vocabulary should be a Counter instance') keys, freqs = zip(*freq_vocab.most_common()) return tfmiss_ops.miss_sample_mask( source=source, keys=keys, freqs=freqs, threshold=threshold, min_freq=min_freq, seed=seed1, seed2=seed2 )
30fca98f95ac7a6aa2f3a3576f32abf271a693bb
20,596
def _xList(l): """ """ if l is None: return [] return l
ef09d779c7ebc2beb321d90726f43603c0ac8315
20,597
def IABN2Float(module: nn.Module) -> nn.Module: """If `module` is IABN don't use half precision.""" if isinstance(module, InplaceAbn): module.float() for child in module.children(): IABN2Float(child) return module
587565ad78afd08d3365f637ab5b98b17e977566
20,598
from datetime import datetime def start_of_day(val): """ Return a new datetime.datetime object with values that represent a start of a day. :param val: Date to ... :type val: datetime.datetime | datetime.date :rtype: datetime.datetime """ if type(val) == date: val = datetime.fromordinal(val.toordinal()) return val.replace(hour=0, minute=0, second=0, microsecond=0)
74e302513edf428f825f9e24567e23b3a5e5d4f5
20,599