content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List from typing import Dict def process_line(line: str, conditional_chain: List[str], fields: Dict[str, str]): """ Processes a line in the template, i.e. returns the output html code after evaluating all if statements and filling the fields. Since we oftentimes are in the middle of several if statements, we need to pass the current conditional_chain (i.e. the list of if statments the following line will be subject to) on (and also need to use it). Args: line: Line we are processing conditional_chain: In which conditionals are we currently enclosed? fields: field values Returns: (html output, conditional_chain) """ after = line out = "" while after: before, enclosed, after = next_braces(after) if evaluate_conditional_chain(conditional_chain, fields): out += before if is_pos_conditional(enclosed) or is_neg_conditional(enclosed): conditional_chain.append(enclosed) elif is_close_conditional(enclosed): if not len(conditional_chain) >= 1: _ = "Closing conditional '{}' found, but we didn't encounter" \ " a conditional before.".format(enclosed) logger.error(_) else: field_name = get_field_name(enclosed) if field_name not in conditional_chain[-1]: _ = "Closing conditional '{}' found, but the last opened" \ " conditional was {}. I will " \ "ignore this.".format(enclosed, field_name) logger.error(_) else: conditional_chain.pop() elif is_field(enclosed): field_name = get_field_name(enclosed) if field_name in fields: out += fields[field_name] else: _ = "Could not find value for field '{}'".format(field_name) logger.error(_) return out, conditional_chain
d84a679d1dc292f3f9cccaf7b6f6718c1ff7cbfc
20,400
def get_groundstation_code(gsi): """ Translate a GSI code into an EODS domain code. Domain codes are used in dataset_ids. It will also translate common gsi aliases if needed. :type gsi: str :rtype: str >>> get_groundstation_code('ASA') '002' >>> get_groundstation_code('HOA') '011' >>> # Aliases should work too. >>> get_groundstation_code('ALSP') '002' """ groundstation = metadata.get_groundstation(gsi) if not groundstation: return None return groundstation.eods_domain_code
a9a04935cfceeb4ca4b90f7ba05ff5c7076ff917
20,401
from typing import Union import copy def concatenate(*data_frames: DataFrame, **data_points_or_frames: Union[DataFrame, DataPoint]) \ -> DataFrame: """ Concatenate DataFrame's objects or DataPoint's into one DataFrame. Example: if one DataFrame represents as: df1 -> {'a': 1, 'b': 2} another as: df2 -> {'c': 3, 'd': 4} you can concatenate simple keys into one DataFrame: df3 = concatenate(b=df1.get('b'), c=df2.get('c')) It's not performance friendly operation for long DataFrames (DataFrames which has a lot of function). Because data will be duplicated and merged in the end of first pipeline graph. :param data_frames: list of DataFrames to concatenate together, if some keys overlapped - it will replaced by latest DataFrame. :param data_points_or_frames: mapping of key->DataPoint or key->DataFrame which will store in new DataFrame. If value is a DataFrame it will be wrapped in new key. :return: New DataFrame which represents concatenation of provided values. """ ensure_concatenate_allowed(data_frames, data_points_or_frames) base_pipeline = None if data_frames: base_pipeline = data_frames[0].data_pipeline if data_points_or_frames: base_pipeline = list(data_points_or_frames.values())[0].data_pipeline keys = sorted(data_points_or_frames.keys()) connector_name = "%s:%s" % ("concatenate", "/".join(keys)) last_p_component = PipelineConnectorComponent( pipeline=base_pipeline, name=connector_name) # TODO: check if all data_pipelines_transformations actually transformations data_pipeline_items = [dp.data_pipeline for dp in data_points_or_frames.values()] # generate's result transformation object for key, data_point_or_frame in data_points_or_frames.items(): p = data_point_or_frame.data_pipeline leaves = pipeline_graph.get_leaves(p.graph) assert len(leaves) == 1 if isinstance(data_point_or_frame, DataPoint): data_point = data_point_or_frame keys_to_transform = {data_point.get_key(): key} transformation_func = transformations_types.KeyToKey(keys_to_transform) leaves[0].p_component.add_context(last_p_component, transformation_func) else: data_frame = data_point_or_frame keys_to_transform = data_frame.transformation transformation_func = transformations_types.KeysToDict(key, keys_to_transform) leaves[0].p_component.add_context(last_p_component, transformation_func) for data_frame in data_frames: p = data_frame.data_pipeline leaves = pipeline_graph.get_leaves(p.graph) assert len(leaves) == 1 keys_to_transform = data_frame.transformation transformation_func = transformations_types.AllKeys(keys_to_transform) leaves[0].p_component.add_context(last_p_component, transformation_func) base_data_pipeline = copy.copy(data_pipeline_items[0]) base_graph = base_data_pipeline.graph base_worker_info = data_pipeline_items[0].worker_info for data_pipeline in data_pipeline_items[1:]: if data_pipeline.worker_info is not base_worker_info: raise RuntimeError("Not possible to use different worker configs, " "for pipeline") graph, base_g_item, handler_item = \ concatenate_sequentially(base_graph, data_pipeline.graph) base_graph = graph base_graph.add_pipeline_component(last_p_component) return DataFrame(base_data_pipeline)
7f2fb0731c5f1ee8f743e086b8e5ea667f066982
20,402
def mixed_social_welfare(game, mix): """Returns the social welfare of a mixed strategy profile""" return game.expected_payoffs(mix).dot(game.num_role_players)
72c465211bdc79c9fcf2b1b9d8c7dd5abae5d8df
20,403
def bdh( tickers, flds=None, start_date=None, end_date='today', adjust=None, **kwargs ) -> pd.DataFrame: """ Bloomberg historical data Args: tickers: ticker(s) flds: field(s) start_date: start date end_date: end date - default today adjust: `all`, `dvd`, `normal`, `abn` (=abnormal), `split`, `-` or None exact match of above words will adjust for corresponding events Case 0: `-` no adjustment for dividend or split Case 1: `dvd` or `normal|abn` will adjust for all dividends except splits Case 2: `adjust` will adjust for splits and ignore all dividends Case 3: `all` == `dvd|split` == adjust for all Case 4: None == Bloomberg default OR use kwargs **kwargs: overrides Returns: pd.DataFrame Examples: >>> res = bdh( ... tickers='VIX Index', flds=['High', 'Low', 'Last_Price'], ... start_date='2018-02-05', end_date='2018-02-07', ... ).round(2).transpose() >>> res.index.name = None >>> res.columns.name = None >>> res 2018-02-05 2018-02-06 2018-02-07 VIX Index High 38.80 50.30 31.64 Low 16.80 22.42 21.17 Last_Price 37.32 29.98 27.73 >>> bdh( ... tickers='AAPL US Equity', flds='Px_Last', ... start_date='20140605', end_date='20140610', adjust='-' ... ).round(2) ticker AAPL US Equity field Px_Last 2014-06-05 647.35 2014-06-06 645.57 2014-06-09 93.70 2014-06-10 94.25 >>> bdh( ... tickers='AAPL US Equity', flds='Px_Last', ... start_date='20140606', end_date='20140609', ... CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False, ... ).round(2) ticker AAPL US Equity field Px_Last 2014-06-06 645.57 2014-06-09 93.70 """ logger = logs.get_logger(bdh, level=kwargs.pop('log', logs.LOG_LEVEL)) # Dividend adjustments if isinstance(adjust, str) and adjust: if adjust == 'all': kwargs['CshAdjNormal'] = True kwargs['CshAdjAbnormal'] = True kwargs['CapChg'] = True else: kwargs['CshAdjNormal'] = 'normal' in adjust or 'dvd' in adjust kwargs['CshAdjAbnormal'] = 'abn' in adjust or 'dvd' in adjust kwargs['CapChg'] = 'split' in adjust con, _ = create_connection() elms = assist.proc_elms(**kwargs) ovrds = assist.proc_ovrds(**kwargs) if isinstance(tickers, str): tickers = [tickers] if flds is None: flds = ['Last_Price'] if isinstance(flds, str): flds = [flds] e_dt = utils.fmt_dt(end_date, fmt='%Y%m%d') if start_date is None: start_date = pd.Timestamp(e_dt) - relativedelta(months=3) s_dt = utils.fmt_dt(start_date, fmt='%Y%m%d') logger.info( f'loading historical data from Bloomberg:\n' f'{assist.info_qry(tickers=tickers, flds=flds)}' ) logger.debug( f'\nflds={flds}\nelms={elms}\novrds={ovrds}\nstart_date={s_dt}\nend_date={e_dt}' ) res = con.bdh( tickers=tickers, flds=flds, elms=elms, ovrds=ovrds, start_date=s_dt, end_date=e_dt ) res.index.name = None if (len(flds) == 1) and kwargs.get('keep_one', False): return res.xs(flds[0], axis=1, level=1) return res
2c57e9e7d8f1f0155dab35b59e3a2c31cf4f7aa1
20,404
import re def isValid(text): """ "Play Blackjack" """ return bool(re.search(r'\bblackjack\b', text, re.IGNORECASE))
c1960a9683bde9701b4e3900edd41e4d6e5444ac
20,405
def init_app(app): """init the flask application :param app: :return: """ return app
6e460eb1fdc19553c6c4139e60db06daec507a2d
20,406
def bounds(geometry, **kwargs): """Computes the bounds (extent) of a geometry. For each geometry these 4 numbers are returned: min x, min y, max x, max y. Parameters ---------- geometry : Geometry or array_like **kwargs For other keyword-only arguments, see the `NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Examples -------- >>> bounds(Geometry("POINT (2 3)")).tolist() [2.0, 3.0, 2.0, 3.0] >>> bounds(Geometry("LINESTRING (0 0, 0 2, 3 2)")).tolist() [0.0, 0.0, 3.0, 2.0] >>> bounds(Geometry("POLYGON EMPTY")).tolist() [nan, nan, nan, nan] >>> bounds(None).tolist() [nan, nan, nan, nan] """ # We need to provide the `out` argument here for compatibility with # numpy < 1.16. See https://github.com/numpy/numpy/issues/14949 geometry_arr = np.asarray(geometry, dtype=np.object_) out = np.empty(geometry_arr.shape + (4,), dtype="float64") return lib.bounds(geometry_arr, out=out, **kwargs)
bdf90b760fc7c62d66596159136961e7840077c4
20,407
def getRidgeEdge(distComponent, maxCoord, direction): """ 最大値〜最大値-1の範囲で、指定された方向から見て最も遠い点と近い点を見つける。 緑領域からの距離が最大値近辺で、カメラから見て最も遠い点と近い点を見つけるための関数。 これにより、石の天面の中心と底面の中心を求める """ # 最大値 maxValue = distComponent[maxCoord] # 最大値-1以上の点の座標群 ridge = np.array(np.where(distComponent >= maxValue - 1)).T # 隣の石を検出しないよう、maxCoordからの距離がmaxValue以内という制約を設ける ridge = ridge[np.apply_along_axis( lambda pt: np.linalg.norm( np.array(pt) - maxCoord ) <= maxValue , axis=1, arr=ridge)] # 内積の値 dotValue = np.apply_along_axis( lambda pt: np.dot(np.array(pt) - maxCoord, direction), axis=1, arr=ridge ) # 内積が最大になる点の座標と最小になる点の座標を返す maxEdgePoint = np.array(ridge[np.argmax(dotValue)]) minEdgePoint = np.array(ridge[np.argmin(dotValue)]) return maxEdgePoint, minEdgePoint
b22b592ee9467f1205d49e5c83dfe978b5dc2f35
20,408
def map_vL(X, w): """ Maps a random sample drawn from vector Langevin with orientation u = [0,...,0,1] to a sample that follows vector Langevin with orientation w. """ assert w.shape[0] == X.shape[0] #assert np.linalg.norm(w) == 1. #print('Orientation vector length : ' + str(np.linalg.norm(w))) d = w.shape[0] w = w.reshape(w.shape[0],1) H = np.eye(d) - 2 * np.dot(w, w.T) [l, v] = np.linalg.eigh(H) V = v[:,::-1] if np.sum( w.flatten()*V[:,-1] ) < 0: V[:,-1] = -V[:,-1].copy() return np.dot(V, X)
a7d06a295569bb08d800c46c302c5a38ef2c2f52
20,409
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1): """ Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(current_step: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1.0, num_warmup_steps)) return 1.0 return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
825c4e14f91992c39d5be37b814e5c3bd7177c50
20,410
def slid_window_avg(a, wi): """ a simple window-averaging function, centerd on the current point """ # TODO: replace with pandas rolling average. - rth acopy = np.array(a).copy() a_smoothed = np.zeros(acopy.shape) wi_half = wi // 2 wi_other_half = wi - wi_half for i in range(acopy.shape[0]): aslice = acopy[ max(0, i - wi_half) : min(i + wi_other_half, acopy.shape[0]) ] a_smoothed[i] = np.mean(aslice, axis=0) # a_smoothed[i] += np.sum(aslice,axis=0)/ (aslice).shape[0] # print(aslice,a_smoothed[i] , acopy[i]) return a_smoothed
bd29ca53e33b473a49fcf75cf639335fb84708fd
20,411
def find_bigrams(textdict, threshold=0.1): """ find bigrams in the texts Input: - textdict: a dict with {docid: preprocessed_text} - threshold: for bigrams scores Returns: - bigrams: a list of "word1 word2" bigrams """ docids = set(textdict.keys()) # to identify bigrams, transform the texts into lists of words (assume texts are preprocessed) text_words = [textdict[did].split() for did in docids] bigram_scores = get_bigram_scores(text_words) return [bigram for bigram in bigram_scores if bigram_scores[bigram] > threshold]
4f3d6e3b4b62e42a98ab8bc3f823853680ca9e6f
20,412
def _rec_filter_to_info(line): """Move a DKFZBias filter to the INFO field, for a record. """ parts = line.rstrip().split("\t") move_filters = {"bSeq": "strand", "bPcr": "damage"} new_filters = [] bias_info = [] for f in parts[6].split(";"): if f in move_filters: bias_info.append(move_filters[f]) elif f not in ["."]: new_filters.append(f) if bias_info: parts[7] += ";DKFZBias=%s" % ",".join(bias_info) parts[6] = ";".join(new_filters or ["PASS"]) return "\t".join(parts) + "\n"
496056126bdf390a6213dfad5c40c4a14ec35caa
20,413
def find_files(config, file_to_find, exact_filename=False): """finds all the files in config.diag_dir that matches the prefix or will use the config.files string (split on ,) if present and not use a prefix but a full file name match. Example: files = [my.log], diag_dir = "" => only matches my.log NOT my.log.1 file_to_find = "my.log", files = [], diag_dir = "mydir" => matches my.log, my.log.1, my.log.2, etc """ files = [] use_as_prefix = not exact_filename if config.files: files = config.files.split(",") use_as_prefix = False elif config.diag_dir: try: files = find_logs(config.diag_dir, file_to_find, use_as_prefix) except Exception as ex: if env.DEBUG: print(ex) raise UnableToReadDiagException(config.diag_dir, ex) else: print("no --diagdir or --files flag used") return None return files
2eea21dcc29a45871629ee081b0fcb422d6163af
20,414
import ast def ast_node_to_source(ast_node: ast.AST) -> str: """ Uses astor package to produce source code from ast Also handles low-level ast functions, such as wrapping in a module if necessary, and fixing line numbers for modified/extracted ast Args: ast_node: Returns: """ # Must be a module to output to source. Wrap in module if not already if not isinstance(ast_node, ast.Module): ast_node = ast.Module([ast_node]) # Fix line numbers ast.fix_missing_locations(ast_node) return astor.to_source(ast_node)
bc4bb2a9f09907e2c9ab8a8f1629135695da6aa9
20,415
import codecs import os def read(*parts): """ returns contents of file """ with codecs.open(os.path.join(PROJECT, *parts), "rb", "utf-8") as file: return file.read()
065320d95a93602a55c886d05ca54b8be34610ce
20,416
import typing def _get_base(*, name: str, schemas: oa_types.Schemas) -> typing.Type: """ Retrieve the base class of a schema considering inheritance. If x-inherits is True, retrieve the parent. If it is a string, verify that the parent is valid. In either case, the model for that schema is used as the base instead of the usual base. If x-inherits is not present or False, return the usual base. Raise InheritanceConstructionOrderError if the parent of the schema has not been constructed when attempting to construct the child. Args: name: The name of the schema to determine the base for. schemas: All the schemas. Returns: The base of the model. Either the usual base or the model parent in the case of inheritance. """ schema = schemas.get(name) if schema is None: raise exceptions.SchemaNotFoundError(f"Could not fund schema {name}.") if _schema_helper.inherits(schema=schema, schemas=schemas): parent = _inheritance.retrieve_parent(schema=schema, schemas=schemas) try: return getattr(models, parent) except AttributeError as exc: raise exceptions.InheritanceError( "Any parents of a schema must be constructed before the schema can be " "constructed." ) from exc return getattr(models, "Base")
47bcca20c82078cd3bd821a0d10e951b346a1e87
20,417
def classNumber(A): """ Returns the number of transition classes in the matrix A """ cos = 0 if type(A[0][0]) == list: cos = len(A) else: cos = 1 return cos
a71bce468f7429746bfe246d94f5dcebb85c41d4
20,418
def lz4_decompress_c(src, dlen, dst=None): """ Decompresses src, a bytearray of compressed data. The dst argument can be an optional bytearray which will have the output appended. If it's None, a new bytearray is created. The output bytearray is returned. """ if dst is None: dst = bytearray() print(str(src)) b = bytes(src) d=lz4zfs.decompress(b,dlen) l=len(d) if (dlen != l): print("[-] decompress size differ from %d, got %d" %(dlen,l)) raise RuntimeError("decompress size differ from %d, got %d" %(dlen,l)) else: if (dlen < l): dst[0:dlen] = d; else: dst[0:l] = d; print(str(dst)) return dst
5b2b15f323c00a8cedec4b9caee0fea8dda89f76
20,419
def format_coordinates(obj, no_seconds=True, wgs_link=True): """Format WGS84 coordinates as HTML. .. seealso:: https://en.wikipedia.org/wiki/ISO_6709#Order.2C_sign.2C_and_units """ def degminsec(dec, hemispheres): _dec = abs(dec) degrees = int(floor(_dec)) _dec = (_dec - int(floor(_dec))) * 60 minutes = int(floor(_dec)) _dec = (_dec - int(floor(_dec))) * 60 seconds = _dec if no_seconds: if seconds > 30: if minutes < 59: minutes += 1 else: minutes = 0 degrees += 1 fmt = "{0}\xb0" if minutes: fmt += "{1:0>2d}'" if not no_seconds and seconds: fmt += '{2:0>2f}"' fmt += hemispheres[0] if dec > 0 else hemispheres[1] return str(fmt).format(degrees, minutes, seconds) if not isinstance(obj.latitude, float) or not isinstance(obj.longitude, float): return '' return HTML.div( HTML.table( HTML.tr( HTML.td( 'Coordinates ', external_link( 'https://en.wikipedia.org/wiki/World_Geodetic_System_1984', label="WGS84") if wgs_link else ''), HTML.td( HTML.span('%s, %s' % ( degminsec(obj.latitude, 'NS'), degminsec(obj.longitude, 'EW'))), HTML.br(), HTML.span( '{0.latitude:.2f}, {0.longitude:.2f}'.format(obj), class_='geo'))), class_="table table-condensed"))
1fc6a151f73e8836ee935db3cf265438e597fec2
20,420
import os import distutils def _defaultGromacsIncludeDir(): """Find the location where gromacs #include files are referenced from, by searching for (1) gromacs environment variables, (2) for the gromacs binary 'pdb2gmx' or 'gmx' in the PATH, or (3) just using the default gromacs install location, /usr/local/gromacs/share/gromacs/top """ if 'GMXDATA' in os.environ: return os.path.join(os.environ['GMXDATA'], 'top') if 'GMXBIN' in os.environ: return os.path.abspath(os.path.join(os.environ['GMXBIN'], '..', 'share', 'gromacs', 'top')) pdb2gmx_path = distutils.spawn.find_executable('pdb2gmx') if pdb2gmx_path is not None: return os.path.abspath(os.path.join(os.path.dirname(pdb2gmx_path), '..', 'share', 'gromacs', 'top')) else: gmx_path = distutils.spawn.find_executable('gmx') if gmx_path is not None: return os.path.abspath(os.path.join(os.path.dirname(gmx_path), '..', 'share', 'gromacs', 'top')) return '/usr/local/gromacs/share/gromacs/top'
126d74d22cf0ee3e37c2e718d9fa3cddb8f7e6d5
20,421
def delete_keys_on_selected(): """ deletes set driven keys from selected controllers. :return: <bool> True for success. """ s_ctrls = object_utils.get_selected_node(single=False) if not s_ctrls: raise IndexError("[DeleteKeysOnSelectedError] :: No controllers are selected.") selected_ctrls = s_ctrls[:-1] interface_ctrl = s_ctrls[-1] for c_ctrl in selected_ctrls: if not check_if_object_is_control(c_ctrl): continue print('[DeleteKeysOnSelected] :: Deleting keys on {}.'.format(c_ctrl)) delete_keys_on_controller(c_ctrl, interface_ctrl) return True
5d1b55bdcefcd8b4997432851e015e2a875eb80a
20,422
def scan_continuation(curr, prompt_tag, look_for=None, escape=False): """ Segment a continuation based on a given continuation-prompt-tag. The head of the continuation, up to and including the desired continuation prompt is reversed (in place), and the tail is returned un-altered. The hint value |look_for| is used to determine when the continuation being installed is a prefix of the extant continuation. In this case, installing the continuation is much simpler, as the expensive merge operation needed to find common substructure is the two continuation is not needed. """ handlers = False xs = [] while isinstance(curr, Cont): if curr is look_for: return None, handlers handlers |= isinstance(curr, DynamicWindValueCont) xs.append(curr) if isinstance(curr, Prompt) and curr.tag is prompt_tag: break curr = curr.prev if not escape and not jit.isvirtual(curr): return _scan_continuation(curr, prompt_tag, look_for, xs, handlers) return xs, handlers
1182394c26b6d9e745f469f5006b5269e5854db8
20,423
import logging import os import subprocess def reloadATSConfigs(conf:Configuration) -> bool: """ This function will reload configuration files for the Apache Trafficserver caching HTTP proxy. It does this by calling ``traffic_ctl config reload` :param conf: An object representing the configuration of :program:`traffic_ops_ort` :returns: whether or not the reload succeeded (as indicated by the exit code of ``traffic_ctl``) :raises OSError: when something goes wrong executing the child process """ # First of all, ATS must be running for this to work if not setATSStatus(True, conf): logging.error("Cannot reload configs, ATS not running!") return False cmd = [os.path.join(conf.tsroot, "bin", "traffic_ctl"), "config", "reload"] cmdStr = ' '.join(cmd) if ( conf.mode is Configuration.Modes.INTERACTIVE and not getYN("Run command '%s' to reload configuration?" % cmdStr, default='Y')): logging.warning("Configuration will not be reloaded for Apache Trafficserver!") logging.warning("Changes will NOT be applied!") return True logging.info("Apache Trafficserver configuration reload will be done via: %s", cmdStr) if conf.mode is Configuration.Modes.REPORT: return True sub = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = sub.communicate() if sub.returncode: logging.debug("========== PROCESS STDOUT ==========") logging.debug("%s", out.decode()) logging.debug("========== PROCESS STDERR ==========") logging.debug("%s", err.decode()) logging.debug("====================================") return False return True
cbfca3129ea6ef64bc9e30115597ce10b77063e6
20,424
def solar_wcs_frame_mapping(wcs): """ This function registers the coordinates frames to their FITS-WCS coordinate type values in the `astropy.wcs.utils.wcs_to_celestial_frame` registry. """ dateobs = wcs.wcs.dateobs if wcs.wcs.dateobs else None # SunPy Map adds 'heliographic_observer' and 'rsun' attributes to the WCS # object. We check for them here, and default to None. if hasattr(wcs, 'heliographic_observer'): observer = wcs.heliographic_observer else: observer = None if hasattr(wcs, 'rsun'): rsun = wcs.rsun else: rsun = None # First we try the Celestial sub, which rectifies the order. # It will return anything matching ??LN*, ??LT* wcss = wcs.sub([WCSSUB_CELESTIAL]) # If the SUB works, use it. if wcss.naxis == 2: wcs = wcss xcoord = wcs.wcs.ctype[0][0:4] ycoord = wcs.wcs.ctype[1][0:4] if xcoord == 'HPLN' and ycoord == 'HPLT': return Helioprojective(obstime=dateobs, observer=observer, rsun=rsun) if xcoord == 'HGLN' and ycoord == 'HGLT': return HeliographicStonyhurst(obstime=dateobs) if xcoord == 'CRLN' and ycoord == 'CRLT': return HeliographicCarrington(obstime=dateobs) if xcoord == 'SOLX' and ycoord == 'SOLY': return Heliocentric(obstime=dateobs, observer=observer)
dd6a52e8356a242c5f2dfb4808e0a3d1ed57073f
20,425
def toa_error_peak_detection(snr): """ Computes the error in time of arrival estimation for a peak detection algorithm, based on input SNR. Ported from MATLAB Code Nicholas O'Donoughue 11 March 2021 :param snr: Signal-to-Noise Ratio [dB] :return: expected time of arrival error variance [s^2] """ # Convert SNR to linear units snr_lin = utils.unit_conversions.db_to_lin(snr) # Compute Error return 1/(2*snr_lin)
4ab2f653c81a29484d96aed58cb73ca4327dbde0
20,426
from typing import Set from typing import List import glob import os import random def scrape_random_contracts(data_dir: str, max_contracts=10000, verbose: bool = True, filtering: bool = True, stop_words: Set[str] = None) -> List[LabeledProvision]: """Randomly sample contracts to extract labeled provisions from""" if verbose: print('Fetching contracts from', data_dir) contracts = glob.glob(os.path.join(data_dir, '*/*/*/*.htm')) if verbose: print(len(contracts), 'contracts found, sampling', max_contracts) random.shuffle(contracts) contracts_scraped = 0 provisions: List[LabeledProvision] = [] for contract in contracts: if verbose: print('Scraping', contracts_scraped, contract) provisions_doc = scrape_exhibit_10(contract, filtering=filtering, stop_words=stop_words) if provisions_doc: provisions.extend(provisions_doc) contracts_scraped += 1 if contracts_scraped == max_contracts: break return provisions
a1724f4b88661faaa6ed345b2c48e3e12cabddbc
20,427
def statCellFraction(gridLimit, gridSpace, valueFile): """ Calculate the fractional value of each grid cell, based on the values stored in valueFile. :param dict gridLimit: Dictionary of bounds of the grid. :param dict gridSpace: Resolution of the grid to calculate values. :param str valueFile: Path to the ascii grid file containing values to sample. :returns: :class:`numpy.ndarray` of fractional values, with length equal to the number of cells Notes: Still need to include bounds checking to ensure the valueFile data actually covers the gridLimits. """ gLon, gLat, gData = grdRead(valueFile) nCells = maxCellNum(gridLimit, gridSpace) + 1 output = np.zeros(nCells) for cellNum in range(nCells): cellLon, cellLat = getCellLonLat(cellNum, gridLimit, gridSpace) wLon = cellLon eLon = cellLon + gridSpace['x'] nLat = cellLat sLat = cellLat - gridSpace['y'] ii = np.where((gLon <= eLon) & (gLon >= wLon)) jj = np.where((gLat <= nLat) & (gLat >= sLat)) cellValues = gData[np.meshgrid(jj[0], ii[0])] if abs(cellValues).max() == 0: output[cellNum] = np.average(cellValues) else: output[cellNum] = np.average(cellValues) / abs(cellValues).max() return output
e26f011c10d94435b134e9f1b3adb2d1b1cd88ce
20,428
from tcrdist.repertoire import TCRrep import re import multiprocessing import os def tabulate_metaclonotype( file, metaclonotype_source_path, metaclonotype_file, source_path, ncpus =1, max_radius = 36, write = False, project_path = "counts"): """ Tabulate a set of meta-clonotypes in a single bulk repertoires Parameters ---------- metaclonotype_source_path : str filepath to metaclonotype file metaclonotype_file : str filename containing meta-clonotype definitions source_path : str filepath to bulk files file: str filename ncpus = 6 maximum number of cpus to use in meta-clonotype vs. bulk distance computation max_radius = 36 maximum radius to store Returns ------- df_join : pd.DataFrame """ ncpus = min(multiprocessing.cpu_count(), ncpus) df_search = pd.read_csv(os.path.join(metaclonotype_source_path, metaclonotype_file), sep = "\t") df_bulk = pd.read_csv(os.path.join(source_path, file), sep = "\t") # When one want to track each clone indivually regardless of identical TRBV-CDR3-TRBJ df_bulk = df_bulk.sort_values('count').reset_index(drop = True) df_bulk['rank'] = df_bulk.index.to_list() tr = TCRrep( cell_df = df_search, organism = "human", chains = ['beta'], compute_distances= False) tr.cpus = ncpus tr_bulk = TCRrep( cell_df = df_bulk, organism = "human", chains = ['beta'], compute_distances= False) chunk_size = get_safe_chunk(tr.clone_df.shape[0], tr_bulk.clone_df.shape[0]) tr.compute_sparse_rect_distances( df = tr.clone_df, df2 = tr_bulk.clone_df, radius = max_radius , chunk_size = chunk_size) df_join = join_by_dist( how = 'inner', csrmat = tr.rw_beta, left_df = tr.clone_df, right_df = tr_bulk.clone_df, left_cols = tr.clone_df.columns.to_list(), right_cols = tr_bulk.clone_df.columns.to_list(), left_suffix = '_search', right_suffix = '_bulk', max_n= 1000, radius = max_radius ) # df_join has more results df_join['RADIUS'] = df_join.apply(lambda x: x['dist'] <= x['radius_search'], axis = 1) df_join['MOTIF'] = df_join.apply(lambda x: re.search(string = x['cdr3_b_aa_bulk'], pattern = x['regex_search']) is not None, axis = 1) df_join['RADIUSANDMOTIF'] = df_join['RADIUS'] & df_join['MOTIF'] df_join['EXACT'] = df_join.apply(lambda x: x['dist'] <= 0, axis = 1) df_join['unique_clones'] = 1 df_join['feature'] = df_join['v_b_gene_search'] + "+" \ + df_join['cdr3_b_aa_search'] + "+" \ + df_join['radius_search'].apply(lambda x : str(x)) + "+"\ + df_join['regex_search'] # mc_file = 'mira_epitope_55_524_ALRKVPTDNYITTY_KVPTDNYITTY.tcrdist3.csv.ranked_centers_bkgd_ctlr_1E6_manuscript.tsv' df_mc = pd.read_csv(os.path.join(metaclonotype_source_path, metaclonotype_file), sep = "\t") df_mc['feature'] = df_mc['v_b_gene'] + "+" \ + df_mc['cdr3_b_aa'] + "+" \ + df_mc['radius'].apply(lambda x : str(x)) + "+" \ + df_mc['regex'] radius = df_join.query('RADIUS').groupby('feature')['templates_bulk'].sum() motif = df_join.query('RADIUSANDMOTIF').groupby('feature')['templates_bulk'].sum() exact = df_join.query('EXACT').groupby('feature')['templates_bulk'].sum() df_result = pd.concat([pd.DataFrame(index = df_mc['feature'] ), radius, motif, exact], axis = 1) df_result.columns = ['RADIUS','MOTIF','EXACT'] df_result['file'] = file df_result = df_result.fillna(0) if write: outname = os.path.join(project_path, f"{file}.counts.tsv") df_result.reset_index(drop = False).to_csv(outname, sep = "\t", index = False) return (df_join, df_result)
af04ef49ccfa1ee8d707923a47b6f73c0267b817
20,429
def relative_url_functions(current_url, course, lesson): """Return relative URL generators based on current page. """ def lesson_url(lesson, *args, **kwargs): if not isinstance(lesson, str): lesson = lesson.slug if course is not None: absolute = url_for('course_page', course=course, lesson=lesson, *args, **kwargs) else: absolute = url_for('lesson', lesson=lesson, *args, **kwargs) return get_relative_url(current_url, absolute) def subpage_url(page_slug): if course is not None: absolute = url_for('course_page', course=course, lesson=lesson, page=page_slug) else: absolute = url_for('lesson', lesson=lesson, page=page_slug) return get_relative_url(current_url, absolute) def static_url(path): absolute = url_for('lesson_static', lesson=lesson, path=path, course=course) return get_relative_url(current_url, absolute) return lesson_url, subpage_url, static_url
b49009cfdb8e9095c9ca17fee39feb8689624bd4
20,430
def fix_CompanySize(r): """ Fix the CompanySize column """ if type(r.CompanySize) != str: if r.Employment == "Independent contractor, freelancer, or self-employed": r.CompanySize = "0 to 1 Employees" elif r.Employment in [ "Not employed, but looking for work", "full-time", "Not employed, and not looking for work", "part-time", "Retired", ]: r.CompanySize = "Not Applicable" return r
bd34bb3e72920fb7ef37279a743198387b1c4717
20,431
import yaml from pathlib import Path def write_thermo_yaml(phases=None, species=None, reactions=None, lateral_interactions=None, units=None, filename=None, T=300., P=1., newline='\n', ads_act_method='get_H_act', yaml_options={'default_flow_style': None, 'indent': 2, 'sort_keys': False, 'width': 79}): """Writes the units, phases, species, lateral interactions, reactions and additional options in the CTI format for OpenMKM Parameters ---------- phases : list of :class:`~pmutt.omkm.phase.Phase` objects Phases to write in YAML file. The species should already be assigned. species : list of :class:`~pmutt.empirical.nasa.Nasa`, :class:`~pmutt.empirical.nasa.Nasa9` or :class:`~pmutt.empirical.shomate.Shomate` Species to write in YAML file. reactions : list of :class:`~pmutt.omkm.reaction.SurfaceReaction` Reactions to write in YAML file. lateral_interactions : list of :class:`~pmutt.mixture.cov.PiecewiseCovEffect` objects, optional Lateral interactions to include in YAML file. Default is None. units : dict or :class:`~pmutt.omkm.units.Unit` object, optional Units to write file. If a dict is inputted, the key is the quantity and the value is the unit. If not specified, uses the default units of :class:`~pmutt.omkm.units.Unit`. filename: str, optional Filename for the input.yaml file. If not specified, returns file as str. T : float, optional Temperature in K. Default is 300 K. P : float, optional Pressure in atm. Default is 1 atm. newline : str, optional Type of newline to use. Default is Linux newline ('\\n') ads_act_method : str, optional Activation method to use for adsorption reactions. Accepted options include 'get_H_act' and 'get_G_act'. Default is 'get_H_act'. Returns ------- lines_out : str If ``filename`` is None, CTI file is returned. """ lines = [ _get_file_timestamp(comment_char='# '), '# See documentation for OpenMKM YAML file here:', '# https://vlachosgroup.github.io/openmkm/input', ] yaml_dict = {} '''Organize units units''' if units is None: units = Units() elif isinstance(units, dict): units = Units(**units) units_out = units.to_omkm_yaml() '''Pre-assign IDs for lateral interactions so phases can be written''' if lateral_interactions is not None: interactions_out = [] i = 0 for lat_interaction in lateral_interactions: if lat_interaction.name is None: lat_interaction.name = 'i_{:04d}'.format(i) i += 1 interaction_dict = lat_interaction.to_omkm_yaml(units=units) interactions_out.append(interaction_dict) '''Pre-assign IDs for reactions so phases can be written''' beps = [] if reactions is not None: reactions_out = [] i = 0 for reaction in reactions: # Assign reaction ID if not present if reaction.id is None: reaction.id = 'r_{:04d}'.format(i) i += 1 # Write reaction reaction_dict = reaction.to_omkm_yaml(units=units, T=T) reactions_out.append(reaction_dict) # Add unique BEP relationship if any try: bep = reaction.bep except AttributeError: pass else: if bep is not None and bep not in beps: beps.append(bep) '''Write phases''' if phases is not None: phases_out = [] for phase in phases: phase_dict = _force_pass_arguments(phase.to_omkm_yaml, units=units) phases_out.append(phase_dict) # yaml_dict['phases'] = phases_out '''Write species''' if species is not None: species_out = [] for ind_species in species: ind_species_dict = _force_pass_arguments(ind_species.to_omkm_yaml, units=units) species_out.append(ind_species_dict) # yaml_dict['species'] = species_out '''Organize BEPs''' if len(beps) > 0: beps_out = [] i = 0 for bep in beps: # Assign name if necessary if bep.name is None: bep.name = 'b_{:04d}'.format(i) i += 1 bep_dict = _force_pass_arguments(bep.to_omkm_yaml, units=units) beps_out.append(bep_dict) # yaml_dict['beps'] = beps_out '''Organize fields''' fields = ('units', 'phases', 'species', 'reactions', 'beps', 'interactions',) for field in fields: try: val = locals()['{}_out'.format(field)] except: pass else: # Create a YAML string yaml_str = yaml.dump(data={field: val}, stream=None, **yaml_options) lines.extend( ['', '#' + '-' * 79, '# {}'.format(field.upper()), '#' + '-' * 79, yaml_str]) # yaml_dict[field] = val # Convert to YAML format # yaml_str = yaml.dump(data=yaml_dict, stream=None, **yaml_options) # Remove redundant quotes # yaml_str = yaml_str.replace('\'', '') # lines.append(yaml_str) lines_out = '\n'.join(lines) # Remove redundant strings lines_out = lines_out.replace('\'', '') # Add spacing between list elements lines_out = lines_out.replace('\n-', '\n\n-') if filename is not None: filename = Path(filename) with open(filename, 'w', newline=newline) as f_ptr: f_ptr.write(lines_out) else: # Or return as string return lines_out
f8d12226a137d2cf3b9ddecb427dc51257498145
20,432
import random def move_weighted(state: State, nnet: NNet) -> tuple: """ Returns are random move with weighted probabilities from the neural network. :param state: State to evaluate :param nnet: Neural network used for evaluation :return: Move as ((origin_row, origin_column),(target_row,target_column) """ policy = nnet.prediction(state)[0] moves = list(policy.keys()) weights = list(policy.values()) return random.choices(moves, weights=weights)[0]
0d9ad3e6344c3c24e71530bd7bbe6dc5a0b9a254
20,433
from typing import Any def build_get301_request(**kwargs: Any) -> HttpRequest: """Return 301 status code and redirect to /http/success/200. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ accept = "application/json" # Construct URL url = kwargs.pop("template_url", "/http/redirect/301") # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
2ef01a4c126890fd30fd3bc656036b92d2ef0408
20,434
def error_function_latticeparameters(varying_parameters_values_array, varying_parameters_keys, Miller_indices, allparameters, absolutespotsindices, Xexp, Yexp, initrot=IDENTITYMATRIX, pureRotation=0, verbose=0, pixelsize=165.0 / 2048, dim=(2048, 2048), weights=None, kf_direction="Z>0", returnalldata=False, additional_expression="none"): """ q = UzUyUz Ustart B0 G* Interface error function to return array of pair (exp. - model) distances Sum_i [weights_i((Xmodel_i-Xexp_i)**2+(Ymodel_i-Yexp_i)**2) ] Xmodel,Ymodel comes from G*=ha*+kb*+lc* q = refinedUzUyUz Ustart refinedB0 G* B0 reference structure reciprocal space frame (a*,b*,c*) a* // ki b* perp to a* and perp to z (z belongs to the plane of ki and detector normal vector n) i.e. columns of B0 are components of a*,b* and c* expressed in x,y,z LT frame refinedB0 is obtained by refining the 5 /6 lattice parameters possible keys for parameters to be refined are: five detector frame calibration parameters: det_distance,det_xcen,det_ycen,det_beta, det_gamma three misorientation angles with respect to LT orthonormal frame (x, y, z) matrices Ux, Uy,Uz: anglex,angley,anglez 5 lattice parameters among 6 (a,b,c,alpha, beta,gamma) """ # reading default parameters # CCD plane calibration parameters if isinstance(allparameters, np.ndarray): calibrationparameters = (allparameters.tolist())[:5] else: calibrationparameters = allparameters[:5] # allparameters[5:8] = 0,0,0 Uy, Ux, Uz = IDENTITYMATRIX, IDENTITYMATRIX, IDENTITYMATRIX latticeparameters = np.array(allparameters[8:14]) nb_varying_parameters = len(varying_parameters_keys) # factorscale = 1. for varying_parameter_index, parameter_name in enumerate(varying_parameters_keys): # print "varying_parameter_index,parameter_name", varying_parameter_index, parameter_name if parameter_name in ("anglex", "angley", "anglez"): # print "got angles!" if nb_varying_parameters > 1: anglevalue = varying_parameters_values_array[varying_parameter_index] * DEG else: anglevalue = varying_parameters_values_array[0] * DEG # print "anglevalue (rad)= ",anglevalue ca = np.cos(anglevalue) sa = np.sin(anglevalue) if parameter_name is "angley": Uy = np.array([[ca, 0, sa], [0, 1, 0], [-sa, 0, ca]]) elif parameter_name is "anglex": Ux = np.array([[1.0, 0, 0], [0, ca, sa], [0, -sa, ca]]) elif parameter_name is "anglez": Uz = np.array([[ca, -sa, 0], [sa, ca, 0], [0, 0, 1.0]]) elif parameter_name in ("alpha", "beta", "gamma"): # print 'got Tc elements: ', parameter_name indparam = dict_lattice_parameters[parameter_name] # if nb_varying_parameters > 1: # latticeparameters[indparam] = latticeparameters[3] * np.exp(varying_parameters_values_array[varying_parameter_index] / factorscale) # else: # latticeparameters[indparam] = latticeparameters[3] * np.exp(varying_parameters_values_array[0] / factorscale) if nb_varying_parameters > 1: latticeparameters[indparam] = varying_parameters_values_array[varying_parameter_index] else: latticeparameters[indparam] = varying_parameters_values_array[0] elif parameter_name in ("a", "b", "c"): # print 'got Tc elements: ', parameter_name indparam = dict_lattice_parameters[parameter_name] # if nb_varying_parameters > 1: # latticeparameters[indparam] = latticeparameters[0] * np.exp(varying_parameters_values_array[varying_parameter_index] / factorscale) # else: # latticeparameters[indparam] = latticeparameters[0] * np.exp(varying_parameters_values_array[0] / factorscale) if nb_varying_parameters > 1: latticeparameters[indparam] = varying_parameters_values_array[varying_parameter_index] else: latticeparameters[indparam] = varying_parameters_values_array[0] Uxyz = np.dot(Uz, np.dot(Ux, Uy)) if additional_expression == "a==b": indparam = dict_lattice_parameters["b"] indparam1 = dict_lattice_parameters["a"] latticeparameters[indparam] = latticeparameters[indparam1] newB0matrix = CP.calc_B_RR(latticeparameters, directspace=1, setvolume=False) # if verbose: # print("\n-------\nvarying_parameters_keys", varying_parameters_keys) # print("varying_parameters_values_array", varying_parameters_values_array) # print("Uxyz", Uxyz) # print("latticeparameters", latticeparameters) # print("newB0matrix", newB0matrix) # DictLT.RotY40 such as X=DictLT.RotY40 Xsample (xs,ys,zs =columns expressed in x,y,z frame) # transform in sample frame Ts # same transform in x,y,z LT frame T # Ts = DictLT.RotY40-1 T DictLT.RotY40 # T = DictLT.RotY40 Ts DictLT.RotY40-1 newmatrix = np.dot(Uxyz, initrot) # if 0: # verbose: # print("initrot", initrot) # print("newmatrix", newmatrix) Xmodel, Ymodel, _, _ = calc_XY_pixelpositions(calibrationparameters, Miller_indices, absolutespotsindices, UBmatrix=newmatrix, B0matrix=newB0matrix, pureRotation=0, labXMAS=0, verbose=0, pixelsize=pixelsize, dim=dim, kf_direction=kf_direction) if 0: # verbose: print("Xmodel, Ymodel", Xmodel, Ymodel) if 0: # verbose: print("Xexp, Yexp", Xexp, Yexp) distanceterm = np.sqrt((Xmodel - Xexp) ** 2 + (Ymodel - Yexp) ** 2) if weights is not None: allweights = np.sum(weights) distanceterm = distanceterm * weights / allweights # if verbose: # # print "** distance residues = " , distanceterm, " ********" # print("** mean distance residue = ", np.mean(distanceterm), " ********") # print "twthe, chi", twthe, chi alldistances_array = distanceterm if verbose: # print "varying_parameters_values in error_function_on_demand_strain",varying_parameters_values # print "arr_indexvaryingparameters",arr_indexvaryingparameters # print "Xmodel",Xmodel # print "pixX",pixX # print "Ymodel",Ymodel # print "pixY",pixY # print "newmatrix",newmatrix # print "newB0matrix",newB0matrix # print "deltamat",deltamat # print "initrot",initrot # print "param_orient",param_calib # print "distanceterm",distanceterm pass # if weights is not None: # print("***********mean weighted pixel deviation ", # np.mean(alldistances_array), " ********") # else: # print( # "***********mean pixel deviation ", np.mean(alldistances_array), # " ********") # print "newmatrix", newmatrix if returnalldata: # concatenated all pairs distances, all UB matrices, all UB.newB0matrix matrices return alldistances_array, Uxyz, newmatrix, newB0matrix, latticeparameters else: return alldistances_array
e1c3242855354ed82d2dd164a7ae16aa76cd5e22
20,435
def run_forward_model(z_in): """ Run forward model and return approximate measured values """ x_dummy[:prm.nn]=z_in x_dummy[prm.nn:]=prm.compute_velocity(z_in,t0) x_meas = H_meas.dot(x_dummy) return x_meas
fd6bfbbacba59e08b2bb8c4588793b969cab4b60
20,436
def optimize(name: str, circuit: cirq.Circuit) -> cirq.Circuit: """Applies sycamore circuit decompositions/optimizations. Args: name: the name of the circuit for printing messages circuit: the circuit to optimize_for_sycamore """ print(f'optimizing: {name}', flush=True) start = timer() optimized = cirq.google.optimized_for_sycamore(circuit) stop = timer() print_stats(stop - start, optimized) return optimized
07027dc2ad21e33ca2038cb40c3cbb2b529941e7
20,437
def download_sbr(destination=None): """Download an example of SBR+ Array and return the def path. Examples files are downloaded to a persistent cache to avoid re-downloading the same file twice. Parameters ---------- destination : str, optional Path where files will be downloaded. Optional. Default is user temp folder. Returns ------- str Path to the example file. Examples -------- Download an example result file and return the path of the file >>> from pyaedt import examples >>> path = examples.download_antenna_array() >>> path 'C:/Users/user/AppData/local/temp/pyaedtexamples/FiniteArray_Radome_77GHz_3D_CADDM.aedt' """ return _download_file("sbr", "Cassegrain.aedt", destination)
0b928977806b546325569dbf71e93e8b760868fa
20,438
from typing import Tuple from typing import Union def isvalid_sequence( level: str, time_series: Tuple[Union[HSScoring, CollegeScoring]] ) -> bool: """Checks if entire sequence is valid. Args: level: 'high school' or 'college' level for sequence analysis. time_series: Tuple of sorted match time_series events. Raises: ValueError: Invalid level. ValueError: Not sorted time_series. ValueError: Invalid position. Returns: bool: True if sequence is valid, otherwise raises ValueError. """ if level not in {"college", "high school"}: raise ValueError( f"Expected `level` to be one of " f"'college' or 'high school', " f"got {level!r}." ) # aliases sequences based on level sequences = COLLEGE_SEQUENCES if level == "college" else HS_SEQUENCES position = "neutral" # skips iteration the last value because we check the next for i, score in enumerate(time_series[:-1]): # current time can't be larger than next time if time_series[i].time_stamp > time_series[i + 1].time_stamp: raise ValueError( f"Values in `time_series` appear to be sorted incorrectly." ) if position == "neutral": check_neutral(score, sequences["neutral"]) if score.formatted_label == "fT2" or score.formatted_label == "oBOT" or score.formatted_label == 'fTOP': position = "top" elif score.formatted_label == "oT2" or score.formatted_label == "fBOT" or score.formatted_label == 'oTOP': position = "bottom" elif position == "top": check_top(score, sequences["top"]) if ( score.formatted_label == "oE1" or score.formatted_label == "fNEU" or score.formatted_label == "oNEU" ): position = "neutral" elif ( score.formatted_label == "oR2" or score.formatted_label == "fBOT" or score.formatted_label == "oTOP" ): position = "bottom" elif position == "bottom": check_bottom(score, sequences["bottom"]) if ( score.formatted_label == "fE1" or score.formatted_label == "fNEU" or score.formatted_label == "oNEU" ): position = "neutral" elif ( score.formatted_label == "fR2" or score.formatted_label == "oBOT" or score.formatted_label == "fTOP" ): position = "top" else: raise ValueError( f"Invalid `position`, expected one of ['neutral', " f"'top', 'bottom'], got {position!r}." ) return True
5e32906408540c504347c745113fc303ef0d989b
20,439
def create_backend_app(): # pragma: no cover """Returns WSGI app for backend.""" routes = handlers.get_backend_routes() + swarming.get_backend_routes() app = webapp2.WSGIApplication(routes, debug=utils.is_local_dev_server()) gae_ts_mon.initialize(app, cron_module='backend') gae_ts_mon.register_global_metrics(metrics.GLOBAL_METRICS) gae_ts_mon.register_global_metrics_callback( 'buildbucket_global', metrics.update_global_metrics ) return app
395b34d8a8752664bc49af6d2c0b37fe76ab6956
20,440
def non_linear_relationships(): """Plot logarithmic and exponential data along with correlation coefficients.""" # make subplots fig, axes = plt.subplots(1, 2, figsize=(12, 3)) # plot logarithmic log_x = np.linspace(0.01, 10) log_y = np.log(log_x) axes[0].scatter(log_x, log_y) axes[0].set_title(f'ρ = {np.round(np.corrcoef(log_x, log_y)[0][1], 2):.2f}') # plot exponential exp_x = np.linspace(0, 10) exp_y = np.exp(exp_x) axes[1].scatter(exp_x, exp_y) axes[1].set_title(f'ρ = {np.round(np.corrcoef(exp_x, exp_y)[0][1], 2):.2f}') # labels for ax in axes: ax.set_xlabel('x') ax.set_ylabel('y') return axes
86ce934aebc6b6f8e6b5c1826d9d26c408efc8df
20,441
import io def label_samples(annotation, atlas, atlas_info=None, tolerance=2): """ Matches all microarray samples in `annotation` to parcels in `atlas` Attempts to place each sample provided in `annotation` into a parcel in `atlas`, where the latter is a 3D niimg-like object that contains parcels each idnetified by a unique integer ID. The function tries to best match samples in `annotation` to parcels defined in `atlas` by: 1. Determining if the sample falls directly within a parcel, 2. Checking to see if there are nearby parcels by slowly expanding the search space to include nearby voxels, up to a specified distance (specified via the `tolerance` parameter), 3. Assigning the sample to the closest parcel if there are multiple nearby parcels, where closest is determined by the parcel centroid. If at any step a sample can be assigned to a parcel the matching process is terminated. If there is still no parcel for a given sample after this process the sample is provided a label of 0. Parameters ---------- annotation : (S, 13) pandas.DataFrame Pre-loaded annotation information for a given AHBA donor atlas : niimg-like object A parcellation image in MNI space, where each parcel is identified by a unique integer ID atlas_info : pandas.DataFrame, optional Filepath to or pre-loaded dataframe containing information about `atlas`. Must have *at least* columns 'id', 'hemisphere', and 'structure' containing information mapping atlas IDs to hemisphere and broad structural class (i.e., "cortex", "subcortex", "cerebellum"). Default: None tolerance : int, optional Distance (in mm) that a sample must be from a parcel for it to be matched to that parcel. This is only considered if the sample is not directly within a parcel. Default: 2 Returns ------- labels : (S, 1) pandas.DataFrame Dataframe with parcel labels for each of `S` samples """ # get annotation and atlas data annotation = io.read_annotation(annotation) atlas = utils.check_img(atlas) label_data, affine = np.asarray(atlas.dataobj), atlas.affine # load atlas_info, if provided if atlas_info is not None: atlas_info = utils.check_atlas_info(atlas, atlas_info) # get ijk coordinates for microarray samples and find labels g_ijk = utils.xyz_to_ijk(annotation[['mni_x', 'mni_y', 'mni_z']], affine) labelled = label_data[g_ijk[:, 0], g_ijk[:, 1], g_ijk[:, 2]] # if sample coordinates aren't directly inside a parcel, increment radius # around sample up to `tolerance` to try and find nearby parcels. # if still no parcel, then ignore this sample for idx in np.where(labelled == 0)[0]: label, tol = labelled[idx], 1 while label == 0 and tol <= tolerance: label = _assign_sample(g_ijk[[idx]], atlas, sample_info=annotation.iloc[idx], atlas_info=atlas_info, tolerance=tol) tol += 1 labelled[idx] = label return pd.DataFrame(labelled, dtype=int, columns=['label'], index=annotation.index)
65a3f83b031871a14b250df48c9edef3cdcce7ac
20,442
def group_by(x, group_by_fields='Event', return_group_indices=False): """ Splits x into LIST of arrays, each array with rows that have same group_by_fields values. Gotchas: Assumes x is sorted by group_by_fields (works in either order, reversed or not) Does NOT put in empty lists if indices skip a value! (e.g. events without peaks) If return_indices=True, returns list of arrays with indices of group elements in x instead """ # Support single index and list of indices try: group_by_fields[0] except TypeError: group_by_fields = tuple(group_by_fields) # Define array we'll split if return_group_indices: to_return = np.arange(len(x)) else: to_return = x # Indices to determine split points from indices = fields_view(x, group_by_fields) # Should we split at all? if indices[0] == indices[-1]: return [to_return] else: # Split where indices change value split_points = np.where((np.roll(indices, 1) != indices))[0] # 0 shouldn't be a split_point, will be in it due to roll (and indices[0] != indices[-1]), so remove it split_points = split_points[1:] return np.split(to_return, split_points)
12e8034556ca303a9ebd2ccaab83cbcc131b0bec
20,443
def unlock_file(fd): """unlock file. """ try: fcntl.flock(fd, fcntl.LOCK_UN) return (True, 0) except IOError, ex_value: return (False, ex_value[0])
2c6ce071072fa45607ce284b0881af5df44b5e6d
20,444
def DsseTrad(nodes_num, measurements, Gmatrix, Bmatrix, Yabs_matrix, Yphase_matrix): """ Traditional state estimator It performs state estimation using rectangular node voltage state variables and it is customized to work without PMU measurements @param nodes_num: number of nodes of the grid @param measurements: Vector of measurements in Input (voltages, currents, powers) @param Gmatrix: conductance matrix @param Bmatrix: susceptance matrix @param Yabs_matrix: magnitude of the admittance matrix @param Yphase_matrix: phase of the admittance matrix return: np.array V - estimated voltages """ # calculate weightsmatrix (obtained as stdandard_deviations^-2) weights = measurements.getWeightsMatrix() W = np.diag(weights) inj_code = 0 # Jacobian for Power Injection Measurements H2, H3 = calculateJacobiMatrixSinj(measurements, nodes_num, Gmatrix, Bmatrix, inj_code, type=2) # Jacobian for branch Power Measurements H4, H5 = calculateJacobiBranchPower(measurements, nodes_num, Gmatrix, Bmatrix, inj_code, type=2) # get array which contains the index of measurements type V_mag and I_mag vidx = measurements.getIndexOfMeasurements(type=MeasType.V_mag) iidx = measurements.getIndexOfMeasurements(type=MeasType.I_mag) nvi = len(vidx) nii = len(iidx) # get array which contains the index of measurements type MeasType.Sinj_real, MeasType.Sinj_imag in the array measurements.measurements pidx = measurements.getIndexOfMeasurements(type=MeasType.Sinj_real) qidx = measurements.getIndexOfMeasurements(type=MeasType.Sinj_imag) # get array which contains the index of measurements type MeasType.S_real, MeasType.S_imag in the array measurements.measurements p1br = measurements.getIndexOfMeasurements(type=MeasType.S1_real) p2br = measurements.getIndexOfMeasurements(type=MeasType.S2_real) q1br = measurements.getIndexOfMeasurements(type=MeasType.S1_imag) q2br = measurements.getIndexOfMeasurements(type=MeasType.S2_imag) # get an array with all measured values (affected by uncertainty) z = measurements.getMeasValues() V = np.ones(nodes_num) + 1j * np.zeros(nodes_num) State = np.concatenate((np.ones(nodes_num), np.zeros(nodes_num-1)), axis=0) epsilon = 5 num_iter = 0 # Iteration of Netwon Rapson method: needed to solve non-linear system of equation while epsilon > 10 ** (-6): """ Computation of equivalent current measurements in place of the power measurements """ # in every iteration the input power measurements are converted into currents by dividing by the voltage estimated at the previous iteration z = convertSinjMeasIntoCurrents(measurements, V, z, pidx, qidx) z = convertSbranchMeasIntoCurrents(measurements, V, z, p1br, q1br, p2br, q2br) """ Voltage Magnitude Measurements """ h1, H1 = update_h1_vector(measurements, V, vidx, nvi, nodes_num, inj_code, type=2) """ Power Injection Measurements """ # h(x) vector where power injections are present h2 = np.inner(H2, State) h3 = np.inner(H3, State) """ Power Flow Measurements """ # h(x) vector where power flows are present h4 = np.inner(H4, State) h5 = np.inner(H5, State) """ Current Magnitude Measurements """ h6, H6 = update_h6_vector(measurements, V, iidx, nii, Yabs_matrix, Yphase_matrix, nodes_num, num_iter, inj_code, type=2) """ WLS computation """ # all the sub-matrixes of H calcualted so far are merged in a unique matrix H = np.concatenate((H1, H2, H3, H4, H5, H6), axis=0) # h(x) sub-vectors are concatenated y = np.concatenate((h1, h2, h3, h4, h5, h6), axis=0) # "res" is the residual vector. The difference between input measurements and h(x) res = np.subtract(z, y) # g = transpose(H) * W * res g = np.inner(H.transpose(), np.inner(W, res)) WH = np.inner(W, H.transpose()) # G is the gain matrix, that will have to be inverted at each iteration G = np.inner(H.transpose(), WH.transpose()) # inversion of G Ginv = np.linalg.pinv(G) # Delta includes the updates of the states for the current Newton Rapson iteration Delta_State = np.inner(Ginv, g) # state is updated State = State + Delta_State # calculate the NR treeshold (for the next while check) epsilon = np.amax(np.absolute(Delta_State)) # update the voltages V.real = State[:nodes_num] V.imag = np.concatenate(([0], State[nodes_num:]), axis=0) num_iter = num_iter + 1 return V
9e662255875970fc8df38c29e728637e53a30db5
20,445
def _get_specs(layout, surfs, array_name, cbar_range, nvals=256): """Get array specifications. Parameters ---------- layout : ndarray, shape = (n_rows, n_cols) Array of surface keys in `surfs`. Specifies how window is arranged. surfs : dict[str, BSPolyData] Dictionary of surfaces. array_name : ndarray Names of point data array to plot for each layout entry. cbar_range : {'sym'} or tuple, Range for each array. If 'sym', uses a symmetric range. Only used is array has positive and negative values. nvals : int, optional Number of lookup table values for continuous arrays. Default is 256. Returns ------- specs : ndarray Array with specifications for each array entry. """ nrow, ncol = layout.shape n_overlays = max([len(a) for a in array_name.ravel()]) def _set_spec(x, rg): if rg is None or rg == 'sym': a, b = np.nanmin(x), np.nanmax(x) if rg == 'sym' and np.sign(a) != np.sign(b): b = max(np.abs(a), b) a = -b rg = (a, b) if np.issubdtype(x.dtype, np.floating): return (*rg, nvals, np.array([]), False) vals = np.unique(x) return (*rg, vals.size, vals, True) dt = np.dtype([('min', 'f8'), ('max', 'f8'), ('nval', 'i8'), ('val', 'O'), ('disc', '?')]) specs = np.zeros((n_overlays, nrow, ncol), dtype=dt) specs[:] = (np.nan, np.nan, nvals, np.array([]), False) map_sp = {k: {} for k in surfs.keys()} for idx, k in np.ndenumerate(layout): if k is None: continue for ia, name in enumerate(array_name[idx]): if name not in surfs[k].point_keys: continue if name not in map_sp[k]: arr = surfs[k].PointData[name] map_sp[k][name] = _set_spec(arr, cbar_range[idx][ia]) specs[(ia,) + idx] = map_sp[k][name] return specs
310208c5bd8db46d37635fa8e2fcd8422a753a1b
20,446
import subprocess def get_pool_data(index, val, field): """ Return val for volume based on index. Parameters ---------- index: str base field name. val: str base field value. field: str requested field value. Returns ------- str: the requested value, None if absent. """ cmd = [oci_kvm_path, 'list-pool', '--output-mode', 'parsable'] all_pool_data = subprocess.check_output(cmd).decode('utf-8').splitlines() for pool in all_pool_data: pool_list = pool.split('#') if index not in pool_fields or field not in pool_fields: return None if pool_list[pool_fields.index(index)] == val: return pool_list[pool_fields.index(field)] return None
3f4934acfaae40e64bafc69048671d7f1c1c832f
20,447
def upper_camel_to_lower_camel(upper_camel: str) -> str: """convert upper camel case to lower camel case Example: CamelCase -> camelCase :param upper_camel: :return: """ return upper_camel[0].lower() + upper_camel[1:]
e731bbee45f5fc3d8e3e218837ccd36c00eff734
20,448
def get(isamAppliance, cert_dbase_id, check_mode=False, force=False): """ Get details of a certificate database """ return isamAppliance.invoke_get("Retrieving all current certificate database names", "/isam/ssl_certificates/{0}/details".format(cert_dbase_id))
34ade7c42fcc1b1409b315f8748105ee99157986
20,449
def model_check(func): """Checks if the model is referenced as a valid model. If the model is valid, the API will be ready to find the correct endpoint for the given model. :param func: The function to decorate :type func: function """ def wrapper(*args, **kwargs): model = None if kwargs: model = kwargs.get("model", None) if not model: if len(args) > 1: model = args[1] # args[0] is the decorted function if not constants.TRANSLATION.get(model, None): raise ValueError( "'{model}' doesn't exists. Allowed models: {allowed_models}".format( model=model, allowed_models=",\n".join( list(constants.TRANSLATION.keys()) ), ) ) return func(*args, **kwargs) return wrapper
809d7659a721ad6dedf4a651dd1fdab1b1dbf51e
20,450
def content_loss_func(sess, model): """Content loss function defined in the paper.""" def _content_loss(p, x): # N is the number of filters at layer 1 N = p.shape[3] # M is the height * width of the feature map at layer 1 M = p.shape[1] * p.shape[2] return (1 / (4 * N * M)) * tf.reduce_mean(tf.pow(x - p, 2)) return _content_loss(sess.run(model["conv4_2"]), model["conv4_2"])
229866eaaf6021e7a078460dc29a6f0bfaa853bd
20,451
import joblib def Extract_from_DF_kmeans(dfdir,num,mode=True): """ PlaneDFを読み込んで、client_IP毎に該当index番号の羅列をそれぞれのtxtに書き出す modeがFalseのときはシーケンスが既にあっても上書き作成 """ flag = exists("Database/KMeans/km_full_"+dfdir+"_database_name")#namelistが存在するかどうか if(flag and mode):return plane_df = joblib.load("./DFs/"+dfdir) result_df = joblib.load("./DFs/Results/KMeans/Result_km_"+str(num)+"_full_Input_"+dfdir+"_continuous") iplist=list(set(plane_df["client_ip"]))#読み込んだDFに含まれるclient_ipのリスト(重複はsetによって削除済み) joblib.dump(iplist,"./List/iplist_"+dfdir)#iplistを出力:異常検知に各シーケンスを入れるときに利用 database = []#シーケンスをどんどん追加して最後に出力する database_name = [] if(not(flag)):database_name = []#シーケンス毎の名前を記録 命名規則:(client_ip)_(server_ip) for ip in iplist: result_list = list(result_df.loc[list(plane_df[plane_df["client_ip"]==ip].index)].values.flatten())#client_IPでシーケンス作成 database.append(result_list) database_name.append(ip) #if(len(list(set(result_list)))>1):print(" "+ip+"_"+sip+" : "+str(result_list)) joblib.dump(database,"Database/KMeans/km_"+str(num)+"_full_"+dfdir+"_database") if(not(flag)):joblib.dump(database_name,"Database/KMeans/km_full_"+dfdir+"_database_name") return [database,database_name]
cb086c07024716022343c7e8eb5755f2de3695db
20,452
from typing import Optional def get_workspace(workspace_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWorkspaceResult: """ Resource schema for AWS::IoTTwinMaker::Workspace :param str workspace_id: The ID of the workspace. """ __args__ = dict() __args__['workspaceId'] = workspace_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:iottwinmaker:getWorkspace', __args__, opts=opts, typ=GetWorkspaceResult).value return AwaitableGetWorkspaceResult( arn=__ret__.arn, creation_date_time=__ret__.creation_date_time, description=__ret__.description, role=__ret__.role, s3_location=__ret__.s3_location, tags=__ret__.tags, update_date_time=__ret__.update_date_time)
5c0970884be38923ae156511faf619fda725d004
20,453
import socket def find_open_port(): """ Use socket's built in ability to find an open port. """ sock = socket.socket() sock.bind(('', 0)) host, port = sock.getsockname() return port
516540fd23259d0fe247e02c4058c5ed7f3ee3a8
20,454
import itertools def split_list_round_robin(data: tp.Iterable, chunks_num: int) -> tp.List[list]: """Divide iterable into `chunks_num` lists""" result = [[] for _ in range(chunks_num)] chunk_indexes = itertools.cycle(i for i in range(chunks_num)) for item in data: i = next(chunk_indexes) result[i].append(item) return result
a87322b2c6a3601cda6c949354e55c38e215289a
20,455
def calc_Q_loss_FH_d_t(Q_T_H_FH_d_t, r_up): """温水床暖房の放熱損失 Args: Q_T_H_FH_d_t(ndarray): 温水暖房の処理暖房負荷 [MJ/h] r_up(ndarray): 当該住戸の温水床暖房の上面放熱率 [-] Returns: ndarray: 温水床暖房の放熱損失 """ return hwfloor.get_Q_loss_rad(Q_T_H_rad=Q_T_H_FH_d_t, r_up=r_up)
04ad561fa0090de2eb64d5514a28729da92af63c
20,456
import asyncio async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" _LOGGER.debug("__init__ async_unload_entry") unload_ok = all( await asyncio.gather( *( hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ) ) ) if unload_ok: config_data = hass.data[DOMAIN].pop(entry.data["unique_id"]) if "api" in config_data: energy_api = config_data[CONF_API] await energy_api.close() return unload_ok
dac09bd63986488e9d6164e775ddfc5a953576da
20,457
import random def t06_ManyGetPuts(C, pks, crypto, server): """Many clients upload many files and their contents are checked.""" clients = [C("c" + str(n)) for n in range(10)] kvs = [{} for _ in range(10)] for _ in range(200): i = random.randint(0, 9) uuid1 = "%08x" % random.randint(0, 100) uuid2 = "%08x" % random.randint(0, 100) clients[i].upload(str(uuid1), str(uuid2)) kvs[i][str(uuid1)] = str(uuid2) good = total = 0 # verify integrity for i, (c, kv) in enumerate(zip(clients, kvs)): for k, v in kv.items(): vv = c.download(k) if vv == v: good += 1 total += 1 return float(good) / total
384aa2b03169da613b25d2da60cdd1ec007aeed5
20,458
def multi_lightness_function_plot(functions=None, **kwargs): """ Plots given *Lightness* functions. Parameters ---------- functions : array_like, optional *Lightness* functions to plot. \*\*kwargs : \*\* Keywords arguments. Returns ------- bool Definition success. Raises ------ KeyError If one of the given *Lightness* function is not found in the factory *Lightness* functions. Examples -------- >>> fs = ('CIE 1976', 'Wyszecki 1964') >>> multi_lightness_function_plot(fs) # doctest: +SKIP True """ if functions is None: functions = ('CIE 1976', 'Wyszecki 1964') samples = np.linspace(0, 100, 1000) for i, function in enumerate(functions): function, name = LIGHTNESS_METHODS.get(function), function if function is None: raise KeyError( ('"{0}" "Lightness" function not found in factory ' '"Lightness" functions: "{1}".').format( name, sorted(LIGHTNESS_METHODS.keys()))) pylab.plot(samples, [function(x) for x in samples], label=u'{0}'.format(name), linewidth=2) settings = { 'title': '{0} - Lightness Functions'.format(', '.join(functions)), 'x_label': 'Luminance Y', 'y_label': 'Lightness L*', 'x_tighten': True, 'legend': True, 'legend_location': 'upper left', 'x_ticker': True, 'y_ticker': True, 'grid': True, 'limits': [0, 100, 0, 100]} settings.update(kwargs) bounding_box(**settings) aspect(**settings) return display(**settings)
18a4706d919c5b8822ff76a40dcd657028a6179b
20,459
def delete_notification(request): """ Creates a Notification model based on uer input. """ print request.POST # Notification's PK Notification.objects.get(pk=int(request.POST["pk"])).delete() return JsonResponse({})
c4750bfbaa8184e64293517689671dbf717e6cd4
20,460
from dateutil import tz def parse_query_value(query_str): """ Return value for the query string """ try: query_str = str(query_str).strip('"\' ') if query_str == 'now': d = Delorean(timezone=tz) elif query_str.startswith('y'): d = Delorean(Delorean(timezone=tz).midnight) d -= timedelta(days=len(query_str)) elif query_str.startswith('t'): d = Delorean(Delorean(timezone=tz).midnight) d += timedelta(days=len(query_str) - 1) else: # Parse datetime string or timestamp try: ts = float(query_str) if ts >= 1000000000000: ts /= 1000 d = epoch(float(ts)) d.shift(tz) except ValueError: d = parse(str(query_str), tz, dayfirst=False) except (TypeError, ValueError): d = None return d
ac9c6845871094d043eee7004214fdcecb20daec
20,461
def build_model(): """ Build the model :return: the model """ model = keras.Sequential([ layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]), layers.Dense(64, activation='relu'), layers.Dense(1) ]) optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse']) return model
b5e4b0a64e7d39a0c7b72c0380ef98d8eaf9cc01
20,462
def detect(stream): """Returns True if given stream is a readable excel file.""" try: opendocument.load(BytesIO(stream)) return True except: pass
a9ef5361d9f6f5ae40767f40f12b89c3d53177a4
20,463
def new_default_channel(): """Create new gRPC channel from settings.""" channel_url = urlparse(format_url(settings.SERVICE_BIND)) return Channel(host=channel_url.hostname, port=channel_url.port)
4771306570213fa03cc5df08a0e8c9b216ecfd44
20,464
def iou(bbox1, bbox2): """ Calculates the intersection-over-union of two bounding boxes. Args: bbox1 (numpy.array, list of floats): bounding box in format x1,y1,x2,y2. bbox2 (numpy.array, list of floats): bounding box in format x1,y1,x2,y2. Returns: int: intersection-over-onion of bbox1, bbox2 """ bbox1 = [float(x) for x in bbox1] bbox2 = [float(x) for x in bbox2] (x0_1, y0_1, x1_1, y1_1) = bbox1 (x0_2, y0_2, x1_2, y1_2) = bbox2 # get the overlap rectangle overlap_x0 = max(x0_1, x0_2) overlap_y0 = max(y0_1, y0_2) overlap_x1 = min(x1_1, x1_2) overlap_y1 = min(y1_1, y1_2) # check if there is an overlap if overlap_x1 - overlap_x0 <= 0 or overlap_y1 - overlap_y0 <= 0: return 0 # if yes, calculate the ratio of the overlap to each ROI size and the unified size size_1 = (x1_1 - x0_1) * (y1_1 - y0_1) size_2 = (x1_2 - x0_2) * (y1_2 - y0_2) size_intersection = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0) size_union = size_1 + size_2 - size_intersection return size_intersection / size_union
7609bcc6eb39757240a22c28fc7c15f4024cd789
20,465
def get_version(): """ Obtain the version of the ITU-R P.1511 recommendation currently being used. Returns ------- version: int Version currently being used. """ return __model.__version__
4d36eacabebe74bfb18879ba64f190ceb1bbc22a
20,466
import copy def sample_filepaths(filepaths_in, filepaths_out, intensity): """ `filepaths_in` is a list of filepaths for in-set examples. `filepaths_out` is a list of lists, where `filepaths_out[i]` is a list of filepaths corresponding to the ith out-of-set class. `intensity` is the number of in-set examples as a proportion of the total number of examples: `intensity = N_in / (N_in + N_out)`. We can rearrange this to get `N_out = N_in * ((1 / intensity) - 1)`, which we use to set `n_left_to_sample`. An intensity of 0.5 gives `N_in = N_out`. """ filepaths_out_copy = copy.deepcopy(filepaths_out) filepaths_out_sampled = [] inds_to_sample_from = range(len(filepaths_out)) n_left_to_sample = int(len(filepaths_in) * ((1 / intensity) - 1)) while n_left_to_sample > 0: if n_left_to_sample < len(filepaths_out): inds_to_sample_from = np.random.choice( inds_to_sample_from, n_left_to_sample, replace=False) for i in inds_to_sample_from: sample = np.random.choice(filepaths_out_copy[i]) filepaths_out_copy[i].remove(sample) filepaths_out_sampled.append(sample) n_left_to_sample -= len(inds_to_sample_from) return np.random.permutation(filepaths_in + filepaths_out_sampled)
b20c1e1a019eaebc0eb7ea46b33c286b72da7af7
20,467
def makekey(s): """ enerates a bitcoin private key from a secret s """ return CBitcoinSecret.from_secret_bytes(sha256(s).digest())
51658c6426a78ae2e20752542bc579f5bb7ebc01
20,468
def shape_broadcast(shape1: tuple, shape2: tuple) -> tuple: """ Broadcast two shapes to create a new union shape. Args: shape1 (tuple) : first shape shape2 (tuple) : second shape Returns: tuple : broadcasted shape Raises: IndexingError : if cannot broadcast """ for shape in (shape1, shape2): if not shape: raise IndexingError(f"Shape must have at least one dimension: {shape}") len_shape1 = len(shape1) len_shape2 = len(shape2) max_length = max(len_shape1, len_shape2) new_shape = [0] * max_length shape1_reversed = list(reversed(shape1)) shape2_reversed = list(reversed(shape2)) for idx in range(max_length): # iterate over every index. check if values are broadcastable, and if # so, add to new shape dimension if idx >= len_shape1: new_shape[idx] = shape2_reversed[idx] elif idx >= len_shape2: new_shape[idx] = shape1_reversed[idx] else: new_shape[idx] = max(shape1_reversed[idx], shape2_reversed[idx]) if ( shape1_reversed[idx] != new_shape[idx] and shape1_reversed[idx] != 1 ) or (shape2_reversed[idx] != new_shape[idx] and shape2_reversed[idx] != 1): raise IndexingError( f"The size of tensor a ({shape1_reversed[idx]}) must match the size " f"of tensor b ({shape2_reversed[idx]}) at non-singleton dimension {idx}" ) return tuple(reversed(new_shape))
4737332b371e0f16df3860d5c53e46718f68f30e
20,469
import xxhash def hash_array(kmer): """Return a hash of a numpy array.""" return xxhash.xxh32_intdigest(kmer.tobytes())
9761316333fdd9f28e74c4f1975adfca1909f54a
20,470
def GenerateDiskTemplate( lu, template_name, instance_uuid, primary_node_uuid, secondary_node_uuids, disk_info, file_storage_dir, file_driver, base_index, feedback_fn, full_disk_params): """Generate the entire disk layout for a given template type. """ vgname = lu.cfg.GetVGName() disk_count = len(disk_info) disks = [] CheckDiskTemplateEnabled(lu.cfg.GetClusterInfo(), template_name) if template_name == constants.DT_DISKLESS: pass elif template_name == constants.DT_DRBD8: if len(secondary_node_uuids) != 1: raise errors.ProgrammerError("Wrong template configuration") remote_node_uuid = secondary_node_uuids[0] minors = lu.cfg.AllocateDRBDMinor( [primary_node_uuid, remote_node_uuid] * len(disk_info), instance_uuid) (drbd_params, _, _) = objects.Disk.ComputeLDParams(template_name, full_disk_params) drbd_default_metavg = drbd_params[constants.LDP_DEFAULT_METAVG] names = [] for lv_prefix in _GenerateUniqueNames(lu, [".disk%d" % (base_index + i) for i in range(disk_count)]): names.append(lv_prefix + "_data") names.append(lv_prefix + "_meta") for idx, disk in enumerate(disk_info): disk_index = idx + base_index data_vg = disk.get(constants.IDISK_VG, vgname) meta_vg = disk.get(constants.IDISK_METAVG, drbd_default_metavg) disk_dev = _GenerateDRBD8Branch(lu, primary_node_uuid, remote_node_uuid, disk[constants.IDISK_SIZE], [data_vg, meta_vg], names[idx * 2:idx * 2 + 2], "disk/%d" % disk_index, minors[idx * 2], minors[idx * 2 + 1]) disk_dev.mode = disk[constants.IDISK_MODE] disk_dev.name = disk.get(constants.IDISK_NAME, None) disks.append(disk_dev) else: if secondary_node_uuids: raise errors.ProgrammerError("Wrong template configuration") name_prefix = _DISK_TEMPLATE_NAME_PREFIX.get(template_name, None) if name_prefix is None: names = None else: names = _GenerateUniqueNames(lu, ["%s.disk%s" % (name_prefix, base_index + i) for i in range(disk_count)]) if template_name == constants.DT_PLAIN: def logical_id_fn(idx, _, disk): vg = disk.get(constants.IDISK_VG, vgname) return (vg, names[idx]) elif template_name in (constants.DT_FILE, constants.DT_SHARED_FILE): logical_id_fn = \ lambda _, disk_index, disk: (file_driver, "%s/%s" % (file_storage_dir, names[idx])) elif template_name == constants.DT_BLOCK: logical_id_fn = \ lambda idx, disk_index, disk: (constants.BLOCKDEV_DRIVER_MANUAL, disk[constants.IDISK_ADOPT]) elif template_name == constants.DT_RBD: logical_id_fn = lambda idx, _, disk: ("rbd", names[idx]) elif template_name == constants.DT_EXT: def logical_id_fn(idx, _, disk): provider = disk.get(constants.IDISK_PROVIDER, None) if provider is None: raise errors.ProgrammerError("Disk template is %s, but '%s' is" " not found", constants.DT_EXT, constants.IDISK_PROVIDER) return (provider, names[idx]) else: raise errors.ProgrammerError("Unknown disk template '%s'" % template_name) dev_type = template_name for idx, disk in enumerate(disk_info): params = ExtractDiskParams(disk, template_name) disk_index = idx + base_index size = disk[constants.IDISK_SIZE] feedback_fn("* disk %s, size %s" % (disk_index, utils.FormatUnit(size, "h"))) disk_dev = objects.Disk(dev_type=dev_type, size=size, logical_id=logical_id_fn(idx, disk_index, disk), iv_name="disk/%d" % disk_index, mode=disk[constants.IDISK_MODE], params=params, spindles=disk.get(constants.IDISK_SPINDLES)) disk_dev.name = disk.get(constants.IDISK_NAME, None) disk_dev.uuid = lu.cfg.GenerateUniqueID(lu.proc.GetECId()) disks.append(disk_dev) return disks
87995b08d3579fc22a8db7c8408a9c29e47a8271
20,471
def check_pc_overlap(pc1, pc2, min_point_num): """ Check if the bounding boxes of the 2 given point clouds overlap """ b1 = get_pc_bbox(pc1) b2 = get_pc_bbox(pc2) b1_c = Polygon(b1) b2_c = Polygon(b2) inter_area = b1_c.intersection(b2_c).area union_area = b1_c.area + b2_c.area - inter_area if b1_c.area > 11 and b2_c.area > 11: overlap = (inter_area / union_area) > 0.5 elif inter_area > 0: overlap = True else: overlap = False pc_merged = pc2 if overlap: bbox_min = MinimumBoundingBox.MinimumBoundingBox( np.concatenate((pc1[:, 0:2], pc2[:, 0:2]), axis=0) ) l01 = bbox_min.length_parallel l02 = bbox_min.length_orthogonal area = l01 * l02 # shape doesn't look like car bbox if ((area < 2 or area > 12) or ((l01 > 4.6 or l02 > 4.6)) or ((l01 < 1 or l02 < 1)) or union_area > 15 ): if b1_c.area > b2_c.area: pc_merged = pc1 else: pc_merged = pc2 else: idx_overlap = np.zeros((len(pc1))) for i in range(len(pc1)): diff = pc2 - pc1[i] diff = np.sum(diff ** 2, axis=1) if 0 in diff: idx_overlap[i] = 1 pc_merged = np.concatenate((pc_merged, pc1[idx_overlap == 0]), axis=0) if not is_car(pc_merged, min_point_num): overlap = False return overlap, pc_merged
8caa07a42850d9ca2a4d298e9be91a44ac15f6a5
20,472
def apply_hypercube(cube: DataCube, context: dict) -> DataCube: """Reduce the time dimension for each tile and compute min, mean, max and sum for each pixel over time. Each raster tile in the udf data object will be reduced by time. Minimum, maximum, mean and sum are computed for each pixel over time. Args: udf_data (UdfData): The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data. """ # The list of tiles that were created array: xarray.DataArray = cube.get_array() result = xarray.concat( [array.min(dim='t'), array.max(dim='t'), array.sum(dim='t'), array.mean(dim='t')], dim='bands' ) return DataCube(result)
c2c3b7b90a48a37f5e172111ef13e8529a3a80c5
20,473
def dateIsBefore(year1, month1, day1, year2, month2, day2): """Returns True if year1-month1-day1 is before year2-month2-day2. Otherwise, returns False.""" if year1 < year2: return True if year1 == year2: if month1 < month2: return True if month1 == month2: if day1 < day2: return True else: return False else: return False else: return False
3ba19b6e57c8e51a86e590561331057a44885d10
20,474
def all_stat(x, stat_func=np.mean, upper_only=False, stat_offset=3): """ Generate a matrix that contains the value returned by stat_func for all possible sub-windows of x[stat_offset:]. stat_func is any function that takes a sequence and returns a scalar. if upper_only is False, values are added to both the upper and lower triangular sections of the matrix. If True, only the upper section is populated """ if len(x) < stat_offset: return np.zeros([]) stat = np.zeros((len(x), len(x))) for i in range(0, len(x)): for j in range(i + stat_offset, len(x)): v = stat_func(x[i:j]) stat[i, j] = v if not upper_only: stat[j, i] = v return stat
16ef240b33a477948ae99862bb21540a230a8a2f
20,475
def PyCallable_Check(space, w_obj): """Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always succeeds.""" return int(space.is_true(space.callable(w_obj)))
e5b8ee9bbbdb0fe53d6fc7241d19f93f7ee8259a
20,476
from typing import Callable def _multiclass_metric_evaluator(metric_func: Callable[..., float], n_classes: int, y_test: np.ndarray, y_pred: np.ndarray, **kwargs) -> float: """Calculate the average metric for multiclass classifiers.""" metric = 0 for label in range(n_classes): metric += metric_func(y_test[:, label], y_pred[:, label], **kwargs) metric /= n_classes return metric
a8a61c7a2e3629ff69a6a2aefdb4565e903b82de
20,477
import glob import os import time from datetime import datetime from io import StringIO def insert_phots_into_database(framedir, frameglob='rsub-*-xtrns.fits', photdir=None, photglob='rsub-*-%s.iphot', maxframes=None, overwrite=False, database=None): """ This makes photometry index rows in the postgresql database. Intended for use when the sqlite3 databases get out of hand. """ # open a database connection if database: cursor = database.cursor() closedb = False else: database = pg.connect(user=PGUSER, password=PGPASSWORD, database=PGDATABASE, host=PGHOST) cursor = database.cursor() closedb = True # first, figure out the directories if not photdir: photdir = framedir # start work here try: if isinstance(framedir, list): framelist = framedir else: # first, find all the frames framelist = glob.glob(os.path.join(os.path.abspath(framedir), frameglob)) # restrict to maxframes max frames if maxframes: framelist = framelist[:maxframes] # turn off table logging and drop indexes for speed cursor.execute('drop index if exists photindex_iphots_rjd_idx') cursor.execute('drop index if exists photindex_iphots_objectid_idx') starttime = time.time() # go through all the frames for ix, frame in enumerate(framelist): print('%sZ: inserting %d frame %s into pg database' % (datetime.utcnow().isoformat(), ix, frame)) # generate the names of the associated phot and sourcelist files frameinfo = FRAMEREGEX.findall(os.path.basename(frame)) framekey = '%s-%s_%s' % (frameinfo[0][0], frameinfo[0][1], frameinfo[0][2]) photsearch = photglob % ('%s-%s_%s' % (frameinfo[0][0], frameinfo[0][1], frameinfo[0][2])) originalframe = '%s-%s_%s.fits' % (frameinfo[0][0], frameinfo[0][1], frameinfo[0][2]) photmatch = glob.glob(os.path.join(os.path.abspath(photdir), photsearch)) originalframe = os.path.join(os.path.abspath(framedir), originalframe) # check these files exist, and populate the dict if they do if (photmatch and os.path.exists(photmatch[0]) and os.path.exists(originalframe)): phot = photmatch[0] # get the JD from the FITS file. # NOTE: this is the ORIGINAL FITS frame, since the subtracted # one contains some weird JD header (probably inherited from the # photref frame) framerjd = get_header_keyword(originalframe, 'JD') # now get the phot file and read it photf = open(phot, 'rb') photo = StringIO() for line in photf: hatid = line.split()[0] photo.write('%.5f,%s,%s,%s' % (framerjd, hatid, framekey, line)) photf.close() photo.seek(0) # do a fast insert using pg's copy protocol cursor.copy_from(photo,'photindex_iphots',sep=',') photo.close() # if some associated files don't exist for this frame, ignore it else: print('WRN! %sZ: ignoring frame %s, ' 'photometry for this frame is not available!' % (datetime.utcnow().isoformat(), frame)) # now we're all done with frame inserts # regenerate the indexes and reset table logging for durability print('%sZ: recreating indexes' % (datetime.utcnow().isoformat())) cursor.execute('create index on photindex_iphots(rjd)') cursor.execute('create index on photindex_iphots(objectid)') cursor.execute('analyze photindex_iphots') # commit the transaction database.commit() print('%sZ: done, time taken: %.2f minutes' % (datetime.utcnow().isoformat(), (time.time() - starttime)/60.0)) returnval = (framedir, True) # catch the overwrite = False scenario except pg.IntegrityError as e: database.rollback() message = ('failed to insert photometry from %s ' 'into DB because some of it exists already ' 'and overwrite = False' % framedir) print('EXC! %sZ: %s\n%s' % (datetime.utcnow().isoformat(), message, format_exc()) ) returnval = (framedir, False) # if everything goes wrong, exit cleanly except Exception as e: database.rollback() message = 'failed to insert photometry from %s into DB' % framedir print('EXC! %sZ: %s\nexception was: %s' % (datetime.utcnow().isoformat(), message, format_exc()) ) returnval = (framedir, False) finally: cursor.close() if closedb: database.close() return returnval
9d80f1016c4ed8c0fa70ed818c7ed44f8c09a920
20,478
def idxs_of_duplicates(lst): """ Returns the indices of duplicate values. """ idxs_of = dict({}) dup_idxs = [] for idx, value in enumerate(lst): idxs_of.setdefault(value, []).append(idx) for idxs in idxs_of.values(): if len(idxs) > 1: dup_idxs.extend(idxs) return dup_idxs
adc8a0b0223ac78f0c8a6edd3d60acfaf7ca4c04
20,479
async def store_rekey( handle: StoreHandle, wrap_method: str = None, pass_key: str = None, ) -> StoreHandle: """Replace the wrap key on a Store.""" return await do_call_async( "askar_store_rekey", handle, encode_str(wrap_method and wrap_method.lower()), encode_str(pass_key), )
e7abb35147bd7b5be5aa37b6583571e5be8f144b
20,480
import requests def prepare_bitbucket_data(data, profile_data, team_name): """ Prepare bitbucket data by extracting information needed if the data contains next page for this team/organisation continue to fetch the next page until the last page """ next_page = False link = None profile_data = append_bitbucket_data(data.json(), profile_data, team_name) if data.json().get('next'): next_page = True link = data.json().get('next') while next_page: next_data = requests.get(link) profile_data = append_bitbucket_data(next_data.json(), profile_data, team_name) if next_data.json().get('next'): link = next_data.json().get('next') else: next_page = False return profile_data
a2fe54a4fd02e80b4bf4d41ff932e27b555afc5c
20,481
def add(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.add <numpy.add>`. See its docstring for more information. """ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in add") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.add(x1._array, x2._array))
7c35ea06f5bff91da283e3521185a6b9f1b55b32
20,482
def aslist(l): """Convenience function to wrap single items and lists, and return lists unchanged.""" if isinstance(l, list): return l else: return [l]
99ccef940229d806d27cb8e429da9c85c44fed07
20,483
import sys import locale import os def form_03(request_data): """ Статистическая форма 066/у Приложение № 5 к приказу Минздрава России от 30 декабря 2002 г. № 413 """ num_dir = request_data["dir_pk"] direction_obj = Napravleniya.objects.get(pk=num_dir) hosp_nums_obj = hosp_get_hosp_direction(num_dir) hosp_nums = f"- {hosp_nums_obj[0].get('direction')}" ind_card = direction_obj.client patient_data = ind_card.get_data_individual() hospital: Hospitals = request_data["hospital"] hospital_name = hospital.safe_short_title hospital_address = hospital.safe_address hospital_kod_ogrn = hospital.safe_ogrn if sys.platform == 'win32': locale.setlocale(locale.LC_ALL, 'rus_rus') else: locale.setlocale(locale.LC_ALL, 'ru_RU.UTF-8') pdfmetrics.registerFont(TTFont('PTAstraSerifBold', os.path.join(FONTS_FOLDER, 'PTAstraSerif-Bold.ttf'))) pdfmetrics.registerFont(TTFont('PTAstraSerifReg', os.path.join(FONTS_FOLDER, 'PTAstraSerif-Regular.ttf'))) buffer = BytesIO() doc = SimpleDocTemplate(buffer, pagesize=A4, leftMargin=25 * mm, rightMargin=5 * mm, topMargin=6 * mm, bottomMargin=10 * mm, allowSplitting=1, title="Форма {}".format("066/у-02")) width, height = portrait(A4) styleSheet = getSampleStyleSheet() style = styleSheet["Normal"] style.fontName = "PTAstraSerifReg" style.fontSize = 12 style.leading = 15 style.spaceAfter = 0.5 * mm styleBold = deepcopy(style) styleBold.fontName = "PTAstraSerifBold" styleCenter = deepcopy(style) styleCenter.alignment = TA_CENTER styleCenter.fontSize = 12 styleCenter.leading = 15 styleCenter.spaceAfter = 1 * mm styleCenterBold = deepcopy(styleBold) styleCenterBold.alignment = TA_CENTER styleCenterBold.fontSize = 12 styleCenterBold.leading = 15 styleCenterBold.face = 'PTAstraSerifBold' styleCenterBold.borderColor = black styleJustified = deepcopy(style) styleJustified.alignment = TA_JUSTIFY styleJustified.spaceAfter = 4.5 * mm styleJustified.fontSize = 12 styleJustified.leading = 4.5 * mm objs = [] styleT = deepcopy(style) styleT.alignment = TA_LEFT styleT.fontSize = 10 styleT.leading = 4.5 * mm styleT.face = 'PTAstraSerifReg' print_district = '' if SettingManager.get("district", default='True', default_type='b'): if ind_card.district is not None: print_district = 'Уч: {}'.format(ind_card.district.title) opinion = [ [ Paragraph('<font size=11>{}<br/>Адрес: {}<br/>ОГРН: {} <br/><u>{}</u> </font>'.format(hospital_name, hospital_address, hospital_kod_ogrn, print_district), styleT), Paragraph('<font size=9 >Код формы по ОКУД:<br/>Код организации по ОКПО: 31348613<br/>' 'Медицинская документация<br/>форма № 066/у-02</font>', styleT), ], ] tbl = Table(opinion, 2 * [90 * mm]) tbl.setStyle( TableStyle( [ ('GRID', (0, 0), (-1, -1), 0.75, colors.white), ('LEFTPADDING', (1, 0), (-1, -1), 80), ('VALIGN', (0, 0), (-1, -1), 'TOP'), ] ) ) objs.append(tbl) space_symbol = '&nbsp;' if patient_data['age'] < SettingManager.get("child_age_before", default='15', default_type='i'): patient_data['serial'] = patient_data['bc_serial'] patient_data['num'] = patient_data['bc_num'] else: patient_data['serial'] = patient_data['passport_serial'] patient_data['num'] = patient_data['passport_num'] card_num_obj = patient_data['card_num'].split(' ') p_card_num = card_num_obj[0] sex = patient_data['sex'] if sex == 'м': sex = f'{sex} - 1' if sex == 'ж': sex = f'{sex} - 2' doc_patient = f"{patient_data['type_doc']}, {patient_data['serial']} - {patient_data['num']}" polis_data = f"{patient_data['oms']['polis_serial']} {patient_data['oms']['polis_num']}" ############################################################################################################ # Получить данные из первичного приема (самого первого hosp-направления) hosp_first_num = hosp_nums_obj[0].get('direction') primary_reception_data = primary_reception_get_data(hosp_first_num) hospitalized = '' if primary_reception_data['what_time_hospitalized'] and primary_reception_data['plan_hospital']: if primary_reception_data['what_time_hospitalized'].lower().replace(' ', '') == 'впервые': hospitalized = "первично - 1" if primary_reception_data['what_time_hospitalized'].lower().replace(' ', '') == 'повторно': hospitalized = "повторно - 2" if primary_reception_data['plan_hospital'].lower().replace(' ', '') == 'да': hospitalized = f"{hospitalized}; в плановом порядке -4" if primary_reception_data['extra_hospital'].lower().replace(' ', '') == 'да': hospitalized = f"{hospitalized}; по экстренным показаниям - 3" # Получить отделение - из названия услуги или самого главного направления hosp_depart = hosp_nums_obj[0].get('research_title') # взять самое последнее направленеие из hosp_dirs hosp_last_num = hosp_nums_obj[-1].get('direction') # 'Время выписки', 'Дата выписки', 'Основной диагноз (описание)', 'Осложнение основного диагноза (описание)', 'Сопутствующий диагноз (описание)' date_value, time_value, outcome, result_hospital = '', '', '', '' hosp_extract_data = hosp_extract_get_data(hosp_last_num) days_count = '__________________________' doc_fio = '' if hosp_extract_data: if hosp_extract_data['result_hospital']: result_hospital = hosp_extract_data['result_hospital'] if hosp_extract_data['outcome']: outcome = hosp_extract_data['outcome'] if hosp_extract_data['date_value']: date_value = hosp_extract_data['date_value'] if hosp_extract_data['time_value']: time_value = hosp_extract_data['time_value'] days_count = hosp_extract_data['days_count'] doc_fio = hosp_extract_data['doc_fio'] title_page = [ Indenter(left=0 * mm), Spacer(1, 8 * mm), Paragraph( '<font fontname="PTAstraSerifBold" size=13>СТАТИСТИЧЕСКАЯ КАРТА ВЫБЫВШЕГО ИЗ СТАЦИОНАРА<br/> ' 'круглосуточного пребывания, дневного стационара при больничном<br/> учреждении, дневного стационара при' ' амбулаторно-поликлиническом<br/> учреждении, стационара на дому<br/>' 'N медицинской карты {} {}</font>'.format(p_card_num, hosp_nums), styleCenter, ), Spacer(1, 2 * mm), Spacer(1, 2 * mm), Spacer(1, 2 * mm), Paragraph('1. Код пациента: ________ 2. Ф.И.О.: {}'.format(patient_data['fio']), style), Paragraph('3. Пол: {} {}4. Дата рождения {}'.format(sex, space_symbol * 24, patient_data['born']), style), Paragraph('5. Документ, удостов. личность: (название, серия, номер) {} {}'.format(space_symbol * 2, doc_patient), style), Paragraph('6. Адрес: регистрация по месту жительства: {}'.format(patient_data['main_address']), style), Paragraph('7. Код территории проживания: ___ Житель: город - 1; село - 2.', style), Paragraph('8. Страховой полис (серия, номер):{}'.format(polis_data), style), Paragraph('Выдан: {}'.format(patient_data['oms']['polis_issued']), style), Paragraph('9. Вид оплаты:______________', style), Paragraph('10. Социальный статус: {}'.format(primary_reception_data['social_status']), style), Paragraph('11. Категория льготности: {}'.format(primary_reception_data['category_privilege']), style), Paragraph('12. Кем направлен больной: {}'.format(primary_reception_data['who_directed']), style), Paragraph('13. Кем доставлен: _________________________________ Код______ Номер наряда__________', style), Paragraph('14. Диагноз направившего учреждения: {}'.format(primary_reception_data['diagnos_who_directed']), style), Paragraph('14.1 Состояние при поступлении: {}'.format(primary_reception_data['state']), style), Paragraph('15. Диагноз приемного отделения:{}'.format(primary_reception_data['diagnos_entered']), style), Paragraph('16. Доставлен в состоянии опьянения: Алкогольного — 1; Наркотического — 2.', style), Paragraph('17. Госпитализирован по поводу данного заболевания в текущем году: {}'.format(hospitalized), style), Paragraph('18.Доставлен в стационар от начала заболевания(получения травмы): {}'.format(primary_reception_data['time_start_ill']), style), Paragraph('19. Травма: {}'.format(primary_reception_data['type_trauma']), style), Paragraph('20. Дата поступления в приемное отделение:______________ Время__________', style), Paragraph( '21. Название отделения: <u>{}</u>; дата поступления: <u>{}</u>; время: <u>{}</u>'.format( hosp_depart, primary_reception_data['date_entered_value'], primary_reception_data['time_entered_value'] ), style, ), Paragraph('Подпись врача приемного отделения ______________ Код __________', style), Paragraph('22. Дата выписки (смерти): {}; Время {}'.format(date_value, time_value), style), Paragraph('23. Продолжительность госпитализации (койко - дней): {}'.format(days_count), style), Paragraph('24. Исход госпитализации: {}'.format(outcome), style), Paragraph('24.1. Результат госпитализации: {}'.format(result_hospital), style), ] closed_bl_result = closed_bl(hosp_nums_obj[0].get('direction')) title_page.append( Paragraph( f"25. Листок нетрудоспособности: открыт <u>{closed_bl_result['start_date']}</u> закрыт: <u>{closed_bl_result['end_date']}</u>" f" к труду: <u>{closed_bl_result['start_work']}</u>", style, ) ) title_page.append(Paragraph(f"25.1. Номере ЛН : <u>{closed_bl_result['num']}</u>", style)) title_page.append(Paragraph(f"25.2. Выдан кому : {closed_bl_result['who_get']}", style)) title_page.append(Paragraph('25.3. По уходу за больным Полных лет: _____ Пол: {}'.format(sex), style)) title_page.append(Paragraph('26. Движение пациента по отделениям:', style)) objs.extend(title_page) styleTB = deepcopy(style) styleTB.fontSize = 8.7 styleTB.alignment = TA_CENTER styleTB.leading = 3.5 * mm styleTC = deepcopy(style) styleTC.fontSize = 9.5 styleTC.alignment = TA_LEFT styleTCright = deepcopy(styleTC) styleTCright.alignment = TA_RIGHT styleTCcenter = deepcopy(styleTC) styleTCcenter.alignment = TA_CENTER opinion = [ [ Paragraph('N', styleTB), Paragraph('Код отделения', styleTB), Paragraph('Профиль коек', styleTB), Paragraph('Код врача', styleTB), Paragraph('Дата поступления', styleTB), Paragraph('Дата выписки, перевода', styleTB), Paragraph('Код диагноза по МКБ', styleTB), Paragraph('Код медицинского стандарта', styleTB), Paragraph('Код прерванного случая', styleTB), Paragraph('Вид оплаты', styleTB), ] ] patient_movement = hosp_patient_movement(hosp_nums_obj) x = 0 for i in patient_movement: x += 1 doc_code = '' if i['doc_confirm_code']: doc_code = str(i['doc_confirm_code']) tmp_data = [ [ Paragraph(str(x), styleTB), Paragraph('', styleTB), Paragraph(i['bed_profile_research_title'], styleTB), Paragraph(doc_code, styleTB), Paragraph(i['date_entered_value'], styleTB), Paragraph(i['date_oute'], styleTB), Paragraph(i['diagnos_mkb'], styleTB), Paragraph('', styleTB), Paragraph('', styleTB), Paragraph('ОМС', styleTB), ], ] opinion.extend(tmp_data.copy()) # получить структуру данных для таблицы tbl_act = Table(opinion, repeatRows=1, colWidths=(7 * mm, 15 * mm, 30 * mm, 20 * mm, 21 * mm, 21 * mm, 20 * mm, 14 * mm, 14 * mm, 20 * mm)) tbl_act.setStyle( TableStyle( [ ('GRID', (0, 0), (-1, -1), 1.0, colors.black), ('BOTTOMPADDING', (0, 0), (-1, -1), 1.5 * mm), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ] ) ) objs.append(tbl_act) objs.append(Spacer(1, 2 * mm)) objs.append( Paragraph('27. Хирургические операции(обозначить: основную операцию, использование спец.аппаратуры):', style), ) opinion = [ [ Paragraph('Дата, Час', styleTB), Paragraph('Код <br/>хирурга', styleTB), Paragraph('Код отделения', styleTB), Paragraph('наименование операции', styleTB), Paragraph('код операции', styleTB), Paragraph('наименование осложнения', styleTB), Paragraph('Код ослонения', styleTB), Paragraph('Анестезия (код врача)', styleTB), Paragraph('энд.', styleTB), Paragraph('лазер.', styleTB), Paragraph('криог.', styleTB), Paragraph('Вид оплаты', styleTB), ] ] patient_operation = hosp_get_operation_data(num_dir) operation_result = [] for i in patient_operation: operation_template = [''] * 12 operation_template[0] = Paragraph(i['date'] + '<br/>' + i['time_start'] + '-' + i['time_end'], styleTB) operation_template[1] = Paragraph(str(i['doc_code']), styleTB) operation_template[3] = Paragraph(f"{i['name_operation']} <br/><font face=\"PTAstraSerifBold\" size=\"8.7\">({i['category_difficult']})</font>", styleTB) operation_template[4] = Paragraph('{}'.format(i['code_operation'] + '<br/>' + i['plan_operation']), styleTB) operation_template[7] = Paragraph('{}'.format(i['anesthesia method'] + '<br/> (' + i['code_doc_anesthesia'] + ')'), styleTB) operation_template[5] = Paragraph(i['complications'], styleTB) operation_template[11] = Paragraph(" ОМС", styleTB) operation_result.append(operation_template.copy()) opinion.extend(operation_result) tbl_act = Table(opinion, repeatRows=1, colWidths=(22 * mm, 12 * mm, 11 * mm, 26 * mm, 26 * mm, 20 * mm, 10 * mm, 15 * mm, 7 * mm, 7 * mm, 7 * mm, 16 * mm)) tbl_act.setStyle( TableStyle( [ ('GRID', (0, 0), (-1, -1), 1.0, colors.black), ('BOTTOMPADDING', (0, 0), (-1, -1), 1.5 * mm), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ] ) ) objs.append(tbl_act) objs.append(Spacer(1, 2 * mm)) space_symbol = '&nbsp;' objs.append( Paragraph('28. Обследован: RW {} AIDS '.format(space_symbol * 10), style), ) objs.append(Spacer(1, 2 * mm)) objs.append( Paragraph('29. Диагноз стационара(при выписке):', style), ) opinion = [ [ Paragraph('Клинический заключительный', styleTB), Paragraph('Основное заболевание', styleTB), Paragraph('Код МКБ', styleTB), Paragraph('Осложнение', styleTB), Paragraph('Код МКБ', styleTB), Paragraph('Сопутствующее заболевание', styleTB), Paragraph('Код МКБ', styleTB), ] ] hosp_last_num = hosp_nums_obj[-1].get('direction') hosp_extract_data = hosp_extract_get_data(hosp_last_num) opinion_diagnos = [] if hosp_extract_data: opinion_diagnos = [ [ Paragraph('', styleTB), Paragraph(hosp_extract_data['final_diagnos'], styleTB), Paragraph(hosp_extract_data['final_diagnos_mkb'], styleTB), Paragraph(hosp_extract_data['other_diagnos'], styleTB), Paragraph(hosp_extract_data['other_diagnos_mkb'], styleTB), Paragraph(hosp_extract_data['near_diagnos'].replace('<', '&lt;').replace('>', '&gt;'), styleTB), Paragraph(hosp_extract_data['near_diagnos_mkb'], styleTB), ] ] opinion.extend(opinion_diagnos) opinion_pathologist = [ [ Paragraph('Патологоанатомический ', styleTB), Paragraph('', styleTB), Paragraph('', styleTB), Paragraph('', styleTB), Paragraph('', styleTB), Paragraph('', styleTB), Paragraph('', styleTB), ] ] opinion.extend(opinion_pathologist) tbl_act = Table(opinion, repeatRows=1, colWidths=(28 * mm, 45 * mm, 15 * mm, 30 * mm, 15 * mm, 30 * mm, 15 * mm)) tbl_act.setStyle( TableStyle( [ ('GRID', (0, 0), (-1, -1), 1.0, colors.black), ('BOTTOMPADDING', (0, 0), (-1, -1), 1.5 * mm), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('SPAN', (0, 0), (0, 1)), ] ) ) objs.append(tbl_act) objs.append(Spacer(1, 2 * mm)) objs.append( Paragraph('30.В случае смерти указать основную причину:______________________________________________________________' 'Код МКБ', style), ) objs.append(Spacer(1, 20 * mm)) objs.append( Paragraph( '31. Дефекты догоспитального этапа: несвоевременность госпитализации - 1; недостаточный объем клинико - диагностического обследования - 2; ' 'неправильная тактика лечения - 3; несовпадение диагноза - 4.', style, ), ) objs.append(Spacer(1, 7 * mm)) objs.append( Paragraph('Подпись лечащего врача ({}) ____________________________'.format(doc_fio), style), ) objs.append(Spacer(1, 7 * mm)) objs.append( Paragraph('Подпись заведующего отделением', style), ) def first_pages(canvas, document): canvas.saveState() canvas.restoreState() def later_pages(canvas, document): canvas.saveState() canvas.restoreState() doc.build(objs, onFirstPage=first_pages, onLaterPages=later_pages) pdf = buffer.getvalue() buffer.close() return pdf
29d3dba011969ce95ab3fcc99081ac2e1bee07d4
20,484
def getKeyList(rootFile,pathSplit): """ Get the list of keys of the directory (rootFile,pathSplit), if (rootFile,pathSplit) is not a directory then get the key in a list """ if isDirectory(rootFile,pathSplit): changeDirectory(rootFile,pathSplit) return ROOT.gDirectory.GetListOfKeys() else: return [getKey(rootFile,pathSplit)]
69d51a496ec77e00753518fee7ae8a0e5b9e7c9a
20,485
import argparse def get_args(): """Parse command line arguments and return namespace object""" parser = argparse.ArgumentParser(description='Transcode some files') parser.add_argument('-c', action="store", dest="config", required=True) parser.add_argument('-l', action="store", dest="limit", type=int, default=None) parser.add_argument('-p', action="store", dest="processes", type=int) parser.add_argument('-q', action="store_true", dest="quiet") return parser.parse_args()
8d811d1ff9437eef6fe5031618f9561248e40940
20,486
from typing import Any def query_from_json(query_json: Any, client: cl.Client = None): """ The function converts a dictionary or json string of Query to a Query object. :param query_json: A dictionary or json string that contains the keys of a Query. :type query_json: Any :param client: An IBM PAIRS client. :type client: ibmpairs.client.Client :rtype: ibmpairs.query.Query :raises Exception: if not a dict or a str. """ query = Query.from_json(query_json) cli = common.set_client(input_client = client, global_client = cl.GLOBAL_PAIRS_CLIENT) query.client = cli return query
58d1b1f3efedf0b74a0136d1edd1da13bf16bf8c
20,487
import os def _write(info, directory, format, name_format): """ Writes the string info Args: directory (str): Path to the directory where to write format (str): Output format name_format (str): The file name """ #pylint: disable=redefined-builtin file_name = name_format file_path = os.path.join( directory, f"{file_name}.{format}") os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path,'w',encoding='utf-8') as f: f.write(info) return file_path
c8f595769607151aa771b4d8d841b4beee77bc9e
20,488
def fetch_validation_annotations(): """ Returns the validation annotations Returns: complete_annotations: array of annotation data - [n_annotations, 4] row format is [T, X, Y, Z] """ ann_gen = _annotation_generator() data = [] for annotation in ann_gen: if annotation[0] in VAL_TIMEPOINTS: data.append(annotation) data = np.asarray(data) # scale z down to expected range data *= [1, 1, 1, 0.2] return data
1b9a8b86bbc005c79b152e1f59e653b7711e674f
20,489
def enough_data(train_data, test_data, verbose=False): """Check if train and test sets have any elements.""" if train_data.empty: if verbose: print('Empty training data\n') return False if test_data.empty: if verbose: print('Empty testing data\n') return False return True
f11014d83379a5df84a67ee3b8f1e85b23c058f7
20,490
import argparse import sys def parse_args(args): """ Parse the arguments to this application, then return the constructed namespace argument. :param args: list of arguments to parse :return: namespace argument """ parser = argparse.ArgumentParser( description="Connects data from F prime flight software to the GDS tcp server" ) # Setup this parser to handle MiddleWare arguments fprime_gds.executables.cli.MiddleWareParser.add_args(parser) # Add a parser for each adapter subparsers = parser.add_subparsers( help="Type of adapter used for processing", dest="subcommand" ) for ( adapter_name ) in fprime_gds.common.adapters.base.BaseAdapter.get_adapters().keys(): adapter = fprime_gds.common.adapters.base.BaseAdapter.get_adapters()[ adapter_name ] # Check adapter real quick before moving on if not hasattr(adapter, "get_arguments") or not callable( getattr(adapter, "get_arguments", None) ): LOGGER.error( "'%s' does not have 'get_arguments' method, skipping.", (adapter_name) ) continue subparse = subparsers.add_parser(adapter_name) # Add arguments for the parser for argument in adapter.get_arguments().keys(): subparse.add_argument(*argument, **adapter.get_arguments()[argument]) args = parser.parse_args(args) try: extras = fprime_gds.executables.cli.refine(parser, args) fprime_gds.common.logger.configure_py_log(extras["logs"], "comm-adapter.log") except ValueError as exc: print("[ERROR] {}".format(exc), file=sys.stderr) parser.print_help(sys.stderr) sys.exit(-1) return args
36d450bca31efd8709a6c108fa719d15c1d1e724
20,491
def calculate_tidal_offset(TIDE, GM, R, refell): """ Calculates the spherical harmonic offset for a tide system to change from a tide free state where there is no permanent direct and indirect tidal potentials Arguments --------- TIDE: output tidal system R: average radius used in gravity model GM: geocentric graviational constant used in gravity model refell: reference ellipsoid name Returns ------- deltaC20: offset for changing from tide free system """ #-- get ellipsoid parameters for refell ellip = ref_ellipsoid(refell) #-- standard gravitational acceleration gamma = 9.80665 trans = (-0.198*gamma*R**3)/(np.sqrt(5.0)*GM*ellip['a']**2) #-- load love number for degree 2 from PREM (Han and Wahr, 1995) k2 = -0.30252982142510 #-- conversion for each tidal system if (TIDE == 'mean_tide'): conv = (1.0 + k2) elif (TIDE == 'zero_tide'): conv = k2 #-- return the C20 offset return conv*trans
278b27b2a1378cf0ccb44055a37baf9def7d6c6a
20,492
def get_questions(set_id, default_txt=None): """Method to get set of questions list.""" try: cache_key = 'question_list_%s' % (set_id) cache_list = cache.get(cache_key) if cache_list: v_list = cache_list print('FROM Cache %s' % (cache_key)) else: v_list = ListAnswers.objects.filter( answer_set_id=set_id, is_void=False) cache.set(cache_key, v_list, 300) my_list = v_list.values_list( 'answer_code', 'answer').order_by('the_order') if default_txt: initial_list = ('', default_txt) final_list = [initial_list] + list(my_list) return final_list except Exception as e: print('error - %s' % (e)) return () else: return my_list
0153ab71caa705f7a4f2a07ce5ef210b02618dd4
20,493
import pathlib import tempfile import logging import glob import os def _export_photo_uuid_applescript( uuid, dest, filestem=None, original=True, edited=False, live_photo=False, timeout=120, burst=False, ): """ Export photo to dest path using applescript to control Photos If photo is a live photo, exports both the photo and associated .mov file uuid: UUID of photo to export dest: destination path to export to filestem: (string) if provided, exported filename will be named stem.ext where ext is extension of the file exported by photos (e.g. .jpeg, .mov, etc) If not provided, file will be named with whatever name Photos uses If filestem.ext exists, it wil be overwritten original: (boolean) if True, export original image; default = True edited: (boolean) if True, export edited photo; default = False If photo not edited and edited=True, will still export the original image caller must verify image has been edited *Note*: must be called with either edited or original but not both, will raise error if called with both edited and original = True live_photo: (boolean) if True, export associated .mov live photo; default = False timeout: timeout value in seconds; export will fail if applescript run time exceeds timeout burst: (boolean) set to True if file is a burst image to avoid Photos export error Returns: list of paths to exported file(s) or None if export failed Note: For Live Photos, if edited=True, will export a jpeg but not the movie, even if photo has not been edited. This is due to how Photos Applescript interface works. """ # setup the applescript to do the export export_scpt = AppleScript( """ on export_by_uuid(theUUID, thePath, original, edited, theTimeOut) tell application "Photos" set thePath to thePath set theItem to media item id theUUID set theFilename to filename of theItem set itemList to {theItem} if original then with timeout of theTimeOut seconds export itemList to POSIX file thePath with using originals end timeout end if if edited then with timeout of theTimeOut seconds export itemList to POSIX file thePath end timeout end if return theFilename end tell end export_by_uuid """ ) dest = pathlib.Path(dest) if not dest.is_dir: raise ValueError(f"dest {dest} must be a directory") if not original ^ edited: raise ValueError(f"edited or original must be True but not both") tmpdir = tempfile.TemporaryDirectory(prefix="osxphotos_") # export original filename = None try: filename = export_scpt.call( "export_by_uuid", uuid, tmpdir.name, original, edited, timeout ) except Exception as e: logging.warning("Error exporting uuid %s: %s" % (uuid, str(e))) return None if filename is not None: # need to find actual filename as sometimes Photos renames JPG to jpeg on export # may be more than one file exported (e.g. if Live Photo, Photos exports both .jpeg and .mov) # TemporaryDirectory will cleanup on return filename_stem = pathlib.Path(filename).stem files = glob.glob(os.path.join(tmpdir.name, "*")) exported_paths = [] for fname in files: path = pathlib.Path(fname) if len(files) > 1 and not live_photo and path.suffix.lower() == ".mov": # it's the .mov part of live photo but not requested, so don't export logging.debug(f"Skipping live photo file {path}") continue if len(files) > 1 and burst and path.stem != filename_stem: # skip any burst photo that's not the one we asked for logging.debug(f"Skipping burst photo file {path}") continue if filestem: # rename the file based on filestem, keeping original extension dest_new = dest / f"{filestem}{path.suffix}" else: # use the name Photos provided dest_new = dest / path.name logging.debug(f"exporting {path} to dest_new: {dest_new}") _copy_file(str(path), str(dest_new)) exported_paths.append(str(dest_new)) return exported_paths else: return None
1602969314a3530b8a9312a3e009f2f0c21268a9
20,494
def get_mms_operation(workspace, operation_id): """ Retrieve the operation payload from MMS. :return: The json encoded content of the reponse. :rtype: dict """ response = make_mms_request(workspace, 'GET', '/operations/' + operation_id, None) return response.json()
c88aca93803ab5075a217a10b7782ae791f168bc
20,495
def _check_data_nan(data): """Ensure data compatibility for the series received by the smoother. (Without checking for inf and nans). Returns ------- data : array Checked input. """ data = np.asarray(data) if np.prod(data.shape) == np.max(data.shape): data = data.ravel() if data.ndim > 2: raise ValueError( "The format of data received is not appropriate. " "Pass an objet with data in this format (series, timesteps)") if data.ndim == 0: raise ValueError( "Pass an object with data in this format (series, timesteps)") if data.dtype not in [np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64]: raise ValueError("data contains not numeric types") return data
1cde49f2836405deb0c1328d5ce53c69ffbcb721
20,496
def function(row, args): """Execute a named function function(arg, arg...) @param row: the HXL data row @param args: the arguments parsed (the first one is the function name) @returns: the result of executing the function on the arguments """ f = FUNCTIONS.get(args[0]) if f: return f(row, args[1:], True) else: logger.error("Unknown function %s", args[0]) return ''
3b6e2e20c09c6cefebb4998d40376ff1b1aa63f2
20,497
import os def currencyrates(): """ print a sh-friendly set of variables representing todays currency rates for $EXCHANGERATES which is a semicolon- separated list of currencyexchange names from riksbanken.se using daily avg aggregation :return: none """ #print(ratesgroup()) rates = os.environ.get("EXCHANGERATES",'SEKEURPMI;SEKUSDPMI') series = [dict(groupid=foreign_rates_groupid, seriesid=id) for id in rates.split(';')] #print(series) query = dict(languageid='en', min=False, max=True, ultimo=False, aggregateMethod='D', avg=True, dateto=date.today(), datefrom=date.today() - timedelta(days=7), searchGroupSeries=series) result = client.service.getInterestAndExchangeRates(searchRequestParameters=query) #print(result) def avg(s): vals = list(filter(lambda x: x is not None, [x['value'] for x in s['resultrows']])) return '{0:.4f}'.format(sum(vals)/len(vals)) print (";".join(["{}={}".format(str(s['seriesid']).strip(),avg(s)) for s in result['groups'][0]['series']]))
64cefe54afe6fdb47496923a3bab9bc33b93cd3a
20,498
def extract_rfc2822_addresses(text): """Returns a list of valid RFC2822 addresses that can be found in ``source``, ignoring malformed ones and non-ASCII ones. """ if not text: return [] candidates = address_pattern.findall(tools.ustr(text).encode('utf-8')) return filter(try_coerce_ascii, candidates)
b256bd585a30900e09a63f0cc29889044da8e0e0
20,499