content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import numpy as np from collections import OrderedDict import vigra import os import ilastik_main from ilastik.applets.dataSelection import DatasetInfo from ilastik.workflows.pixelClassification import PixelClassificationWorkflow def classify_pixel(input_data, classifier, threads=8, ram=4000): """ Runs a pre-trained ilastik classifier on a volume of data Adapted from Stuart Berg's example here: https://github.com/ilastik/ilastik/blob/master/examples/example_python_client.py Arguments: input_data: data to be classified - 3D numpy array classifier: ilastik trained/classified file threads: number of thread to use for classifying input data ram: RAM to use in MB Returns: pixel_out: The raw trained classifier """ # Before we start ilastik, prepare these environment variable settings. os.environ["LAZYFLOW_THREADS"] = str(threads) os.environ["LAZYFLOW_TOTAL_RAM_MB"] = str(ram) # Set the command-line arguments directly into argparse.Namespace object # Provide your project file, and don't forget to specify headless. args = ilastik_main.parser.parse_args([]) args.headless = True args.project = classifier # Instantiate the 'shell', (an instance of ilastik.shell.HeadlessShell) # This also loads the project file into shell.projectManager shell = ilastik_main.main(args) assert isinstance(shell.workflow, PixelClassificationWorkflow) # Obtain the training operator opPixelClassification = shell.workflow.pcApplet.topLevelOperator # Sanity checks assert len(opPixelClassification.InputImages) > 0 assert opPixelClassification.Classifier.ready() # For this example, we'll use random input data to "batch process" print("input_data.shape", input_data.shape) # In this example, we're using 2D data (extra dimension for channel). # Tagging the data ensures that ilastik interprets the axes correctly. input_data = vigra.taggedView(input_data, 'xyz') # In case you're curious about which label class is which, # let's read the label names from the project file. label_names = opPixelClassification.LabelNames.value label_colors = opPixelClassification.LabelColors.value probability_colors = opPixelClassification.PmapColors.value print("label_names, label_colors, probability_colors", label_names, label_colors, probability_colors) # Construct an OrderedDict of role-names -> DatasetInfos # (See PixelClassificationWorkflow.ROLE_NAMES) role_data_dict = OrderedDict([("Raw Data", [DatasetInfo(preloaded_array=input_data)])]) # Run the export via the BatchProcessingApplet # Note: If you don't provide export_to_array, then the results will # be exported to disk according to project's DataExport settings. # In that case, run_export() returns None. predictions = shell.workflow.batchProcessingApplet.\ run_export(role_data_dict, export_to_array=True) predictions = np.squeeze(predictions) print("predictions.dtype, predictions.shape", predictions.dtype, predictions.shape) print("DONE.") return predictions
7a9aaa137e64d3bc7db49404eeaec7bb8c83d9d1
20,300
def invite_accepted_candidates(): """Invites accepted candidates to create an account and set their own password.""" form = InviteAcceptedCandidatesForm() if form.validate_on_submit(): selected = [ Candidate.query.filter_by(id=c).first() for c in form.selected_candidates.data.split(',') ] user_role = Role.query.filter_by(name='User').first() # for each selected candidate create a new user account for candidate in selected: user = User.query.filter_by(email=candidate.email).first() if user is None: user = User( role=user_role, first_name=candidate.first_name, last_name=candidate.last_name, email=candidate.email, candidate=candidate) db.session.add(user) db.session.commit() token = user.generate_confirmation_token() invite_link = url_for( 'account.join_from_invite', user_id=user.id, token=token, _external=True) get_queue().enqueue( send_email, recipient=user.email, subject='You Are Invited To Join', template='account/email/invite', user=user, invite_link=invite_link) str = '' for c in selected: str += c.first_name + ' ' + c.last_name + ', ' str = str[:-2] flash('Candidates {} successfully invited'.format(str), 'form-success') return render_template('admin/invite_accepted_candidates.html', form=form, all_terms=Term.query.order_by(Term.end_date.desc()).all(), accepted_candidates=Candidate.query.filter_by(status=Status.ASSIGNED).all())
7e4165f774f4594afa52cc97420c8b212175c6c9
20,301
def ramp_overlap(x0, y0, w0, h0, angle0, x1, y1, w1, h1, angle1): """Calculates the overlap area between two ramps.""" # Check if bounding spheres do not intersect. dw0 = _rect_diagonal(w0, h0) dw1 = _rect_diagonal(w1, h1) if not bounding_circles_overlap(x0, y0, dw0, x1, y1, dw1): return 0. # Check if bounging boxes do not intersect. x0_begin, x0_end, y0_begin, y0_end = rect_bounding_frame( x0, y0, w0, h0, angle0) x1_begin, x1_end, y1_begin, y1_end = rect_bounding_frame( x1, y1, w1, h1, angle1) if not bounding_box_overlap(x0_begin, x0_end, y0_begin, y0_end, x1_begin, x1_end, y1_begin, y1_end): return 0. # Otherwise, calculate proper intersection. rect_1 = _build_shapely_ramp(x0, y0, w0, h0, angle0) rect_2 = _build_shapely_ramp(x1, y1, w1, h1, angle1) return rect_1.intersection(rect_2).area
78b261bacc4d90d40e2fc80e9f665d80de6b7574
20,302
def url_external(path, query): """Generate external URLs with HTTPS (if configured).""" try: api_url = request.url_root if settings.URL_SCHEME is not None: parsed = urlparse(api_url) parsed = parsed._replace(scheme=settings.URL_SCHEME) api_url = parsed.geturl() if query is not None: path = path + query_string(query) return urljoin(api_url, path) except RuntimeError: return None
27e73834e47a08b4e22fe89587974da386826627
20,303
def get_bucket_metadata(bucket, user_settings=None, access=ServiceAccount.STORAGE): """ Retrieves metadata about the given bucket. :param str bucket: name of the Google cloud storage bucket :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :param access: must be 'storage'. Other values are for internal use only :return: Returns the response obtained from the API by uploading the object """ if access == ServiceAccount.STORAGE: service = CredentialManager.get_client_storage_service(user_settings) elif access == ServiceAccount.EARTH_ENGINE: service = CredentialManager.get_earth_engine(user_settings) else: service = CredentialManager.get_server_storage_service(user_settings) # Make a request to buckets.get to retrieve a list of objects in the # specified bucket. req = service.buckets().get(bucket=bucket) return req.execute(num_retries=3)
9a587cf4ebba94499d21b7b734586dfd9228aa23
20,304
import re def remove_conjunction(conjunction: str, utterance: str) -> str: """Remove the specified conjunction from the utterance. For example, remove the " and" left behind from extracting "1 hour" and "30 minutes" from "for 1 hour and 30 minutes". Leaving it behind can confuse other intent parsing logic. Args: conjunction: translated conjunction (like the word "and") to be removed from utterance utterance: Full request, e.g. "set a 30 second timer" Returns: The same utterance with any dashes replaced by spaces. """ pattern = r"\s\s{}".format(conjunction) remaining_utterance = re.sub(pattern, "", utterance, flags=re.IGNORECASE) return remaining_utterance
67313565c7da2eadc4411854d6ee6cb467ee7159
20,305
def othertitles(hit): """Split a hit.Hit_def that contains multiple titles up, splitting out the hit ids from the titles.""" id_titles = hit.Hit_def.text.split('>') titles = [] for t in id_titles[1:]: fullid, title = t.split(' ', 1) hitid, id = fullid.split('|', 2)[1:3] titles.append(dict(id = id, hitid = hitid, fullid = fullid, title = title)) return titles
fa5bbb47d26adbc61817e78e950e81cc05eca4a6
20,306
import subprocess def unlock_device(password=None, device=None) -> bool: """ Unlocks a device given a device name and the password :param password: :param device: :return: True is sucess, False if error """ command_input = ["adb", "-s", device, "shell", "input", "text", password] command_submit = ["adb", "-s", device, "shell", "input", "keyevent", 66] if device is None and len(get_connected_devices()) != 1: print("No device was specified and/or multiple devices are connected") return False if device is None: command_input.pop(1) command_input.pop(1) command_submit.pop(1) command_submit.pop(1) p = subprocess.Popen(command_input, stdout=None) p.wait() p.terminate() p1 = subprocess.Popen(command_submit, stdout=None) p1.wait() p1.terminate() return True
cd591ccaeb49045845dbeb5152fdbb7d4846c63c
20,307
from ..preprocessing.windowers import _check_windowing_arguments def create_from_mne_epochs(list_of_epochs, window_size_samples, window_stride_samples, drop_last_window): """Create WindowsDatasets from mne.Epochs Parameters ---------- list_of_epochs: array-like list of mne.Epochs window_size_samples: int window size window_stride_samples: int stride between windows drop_last_window: bool whether or not have a last overlapping window, when windows do not equally divide the continuous signal Returns ------- windows_datasets: BaseConcatDataset X and y transformed to a dataset format that is compativle with skorch and braindecode """ # Prevent circular import _check_windowing_arguments(0, 0, window_size_samples, window_stride_samples) list_of_windows_ds = [] for epochs in list_of_epochs: event_descriptions = epochs.events[:, 2] original_trial_starts = epochs.events[:, 0] stop = len(epochs.times) - window_size_samples # already includes last incomplete window start starts = np.arange(0, stop + 1, window_stride_samples) if not drop_last_window and starts[-1] < stop: # if last window does not end at trial stop, make it stop there starts = np.append(starts, stop) fake_events = [[start, window_size_samples, -1] for start in starts] for trial_i, trial in enumerate(epochs): metadata = pd.DataFrame({ 'i_window_in_trial': np.arange(len(fake_events)), 'i_start_in_trial': starts + original_trial_starts[trial_i], 'i_stop_in_trial': starts + original_trial_starts[ trial_i] + window_size_samples, 'target': len(fake_events) * [event_descriptions[trial_i]] }) # window size - 1, since tmax is inclusive mne_epochs = mne.Epochs( mne.io.RawArray(trial, epochs.info), fake_events, baseline=None, tmin=0, tmax=(window_size_samples - 1) / epochs.info["sfreq"], metadata=metadata) mne_epochs.drop_bad(reject=None, flat=None) windows_ds = WindowsDataset(mne_epochs) list_of_windows_ds.append(windows_ds) return BaseConcatDataset(list_of_windows_ds)
42c7671f7b353db165a41403b760362c0ca15d74
20,308
def definstance(name, ty, expr): """ Arguments: - `name`: a string - `ty`: a type of the form ClassName(t1,...,tn) """ root, _ = root_app(root_clause(ty)) if root.info.is_class: class_name = root.name c = defexpr(name, expr, type=ty, unfold=[class_name]) conf.current_ctxt().class_instances[name] = c.type conf.current_ctxt().hyps[name] = c.type return c else: raise Exception("Error in definition of {0!s}:"\ "expected {1!s} to be a class name"\ .format(name, root))
1b692a9ac49bc6a68568ee232e6e516f83b64adf
20,309
import traceback def do(*args, **kwargs): """ Function to perform steps defined under ``nornir:actions`` configuration section at: * Minion's configuration * Minion's grains * Minion's pillar data * Master configuration (requires ``pillar_opts`` to be set to True in Minion config file in order to work) * File on master file system To retrieve actions content Salt ``nr.do`` uses ``config.get`` execution module function with ``merge`` key set to ``True``. Each step definition requires these keywords to be defined: * ``function`` - mandatory, name of any execution module function to run * ``args`` - optional, any arguments to use with function * ``kwargs`` - optional, any keyword arguments to use with function * ``description`` - optional, used by ``dir`` to list action description Any other keywords defined inside the step are ignored. :param stop_on_error: (bool) if True (default) stops execution on error in step, continue execution in error if False :param filepath: (str) path to file with actions steps :param default_renderer: (str) shebang string to render file using ``slsutil.renderer`, default ``jinja|yaml`` :param describe: (bool) if True, returns action content without executing it, default is False :param kwargs: (any) additional ``kwargs`` to use with actions steps, ``kwargs`` override ``kwargs`` dictionary defined within each step, for example, in command ``salt nrp1 nr.do configure_ntp FB="*core*"``, ``FB`` argument will override ``FB`` arguments defined within steps. :param tf: (bool) if True, ``ToFileProcessor`` saves each step results in file named after step name if no ``tf`` argument provided within step, default is False :param diff: (bool) if True, ``DiffProcessor`` runs diff for each step result using files named after step name if no ``diff`` argument provided within step, default is False :returns: dictionary with keys: ``failed`` bool, ``result`` list; ``result`` key contains a list of results for steps; If ``stop_on_error`` set to ``True`` and error happens, ``failed`` key set to ``True`` Special action names ``dir`` and ``dir_list`` used to list all actions available for proxy minion where ``dir`` returns table and ``dir_list`` produces a list of actions. .. note:: if ``filepath`` argument provided, actions defined in other places are ignored; file loaded using Saltstack ``slsutil.renderer`` execution module function, as a result file can contain any of Saltstack supported renderers content and can be located at any url supported by ``cp.get_url`` execution module function. File content must render to a dictionary keyed by actions names. Sample actions steps definition using proxy minion pillar:: nornir: actions: awr: function: nr.cli args: ["wr"] kwargs: {"FO": {"platform": "arista_eos"}} description: "Save Arista devices configuration" configure_ntp: - function: nr.cfg args: ["ntp server 1.1.1.1"] kwargs: {"FB": "*"} - function: nr.cfg args: ["ntp server 1.1.1.2"] kwargs: {"FB": "*"} - function: nr.cli args: ["show run | inc ntp"] kwargs: {"FB": "*"} Sample actions steps definition using text file under ``filepath``:: awr: function: nr.cli args: ["wr"] kwargs: {"FO": {"platform": "arista_eos"}} description: "Save Arista devices configuration" configure_ntp: - function: nr.cfg args: ["ntp server 1.1.1.1"] kwargs: {"FB": "*"} description: "1. Configure NTP server 1.1.1.1" - function: nr.cfg args: ["ntp server 1.1.1.2"] kwargs: {"FB": "*"} description: "2. Configure NTP server 1.1.1.2" - function: nr.cli args: ["show run | inc ntp"] kwargs: {"FB": "*"} description: "3. Cllect ntp configuration" Action name ``awr`` has single step defined, while ``configure_ntp`` action has multiple steps defined, each executed in order. Multiple actions names can be supplied to ``nr.do`` call. .. warning:: having column ``:`` as part of action name not premitted, as ``:`` used by Salt ``config.get`` execution module function to split arguments on path items. Sample usage:: salt nrp1 nr.do dir salt nrp1 nr.do dir_list salt nrp1 nr.do awr salt nrp1 nr.do configure_ntp awr stop_on_error=False salt nrp1 nr.do configure_ntp FB="*core*" add_details=True salt nrp1 nr.do awr filepath="salt://actions/actions_file.txt" Sample Python API usage from Salt-Master:: import salt.client client = salt.client.LocalClient() task_result = client.cmd( tgt="nrp1", fun="nr.do", arg=["configure_ntp", "awr"], kwarg={"FB": "R[12]"}, ) """ ret = {"failed": False, "result": []} kwargs = {k: v for k, v in kwargs.items() if not k.startswith("__")} stop_on_error = kwargs.pop("stop_on_error", True) filepath = kwargs.pop("filepath", None) default_renderer = kwargs.pop("default_renderer", "jinja|yaml") describe = kwargs.pop("describe", False) tf = kwargs.pop("tf", False) diff = kwargs.pop("diff", False) # load file if filepath provided if filepath: file_content_dict = __salt__["slsutil.renderer"]( path=filepath, default_renderer=default_renderer, ) if not file_content_dict: ret["failed"] = True ret["result"].append({filepath: "Failed loading filepath content."}) return ret # check if need to list all actions if "dir" in args or "dir_list" in args: actions_config = ( __salt__["config.get"](key="nornir:actions", merge="recurse") if not filepath else file_content_dict ) # iterate over actions and form brief list of them for action_name, data in actions_config.items(): ret["result"].append( { "action name": action_name, "description": data.get("description", "") if isinstance(data, dict) else "\n".join([i.get("description", "") for i in data]).strip(), } ) if "dir" in args: ret["result"] = TabulateFormatter( ret["result"], tabulate={"tablefmt": "grid"}, headers=["action name", "description"], ) return ret # run actions for action_name in args: try: if filepath: action_config = file_content_dict.get(action_name) else: action_config = __salt__["config.get"]( key="nornir:actions:{}".format(action_name), merge="recurse" ) if not action_config: raise CommandExecutionError( "'{}' action not loaded, content: '{}'".format( action_name, action_config ) ) elif describe: ret["result"].append({action_name: action_config}) continue elif isinstance(action_config, dict): action_config = [action_config] # run steps for step in action_config: # form step kwargs merged_kwargs = step.get("kwargs", {}) merged_kwargs.update(kwargs) # add tf ToFileProcessor name if tf_each is True if tf is True: merged_kwargs.setdefault("tf", action_name) # add diff for DiffProcessor if diff: merged_kwargs.setdefault("diff", action_name) # get fun name fun_name = step["function"].split(".")[1].strip() # run step log.debug( "salt_nornir:nr.do running step {}, args {}, kwargs {}".format( fun_name, step.get("args", []), merged_kwargs ) ) result = globals()[fun_name](*step.get("args", []), **merged_kwargs) ret["result"].append({action_name: result}) except: tb = traceback.format_exc() log.error( "nr.do error while running '{}' action:\n{}".format(action_name, tb) ) ret["result"].append({action_name: tb}) if stop_on_error: ret["failed"] = True break return ret
69ebb7939c1b8450935dd2e1fcdc14de40cebc0d
20,310
from typing import List def read_plaintext_inputs(path: str) -> List[str]: """Read input texts from a plain text file where each line corresponds to one input""" with open(path, 'r', encoding='utf8') as fh: inputs = fh.read().splitlines() print(f"Done loading {len(inputs)} inputs from file '{path}'") return inputs
27b00f4dfcdf4d76e04f08b6e74c062f2f7374d0
20,311
def extract_tool_and_dsname_from_name(row): """ Extract Basecall (MB1.6K) into Basecall and MB1.6K, and 1600 three fields :param instr: :return: """ try: toolname, dsname = row['name'].strip().split(' ') dsname = dsname[1:-1] except: # No tag process toolname = row['name'].strip() dsname = 'None' if not dsname.startswith('MB'): # not tagged with MB dsname = 'None' reads = 0 else: reads = float(dsname[2:-1]) duration = parse_string_time_to_seconds(row['duration']) realtime = parse_string_time_to_seconds(row['realtime']) cpu = float(row['%cpu'][:-1]) peak_rss = parse_mem_str_to_gbsize(row['peak_rss']) peak_vmem = parse_mem_str_to_gbsize(row['peak_vmem']) rchar = parse_mem_str_to_gbsize(row['rchar']) wchar = parse_mem_str_to_gbsize(row['wchar']) return toolname, dsname, reads, duration, realtime, cpu, peak_rss, peak_vmem, rchar, wchar
f02b106da47544c522499af1ee8670870749fb20
20,312
def pyramid_pooling(inputs, layout='cna', filters=None, kernel_size=1, pool_op='mean', pyramid=(0, 1, 2, 3, 6), flatten=False, name='psp', **kwargs): """ Pyramid Pooling module. """ shape = inputs.get_shape().as_list() data_format = kwargs.get('data_format', 'channels_last') static_shape = np.array(shape[1: -1] if data_format == 'channels_last' else shape[2:]) dynamic_shape = tf.shape(inputs)[1: -1] if data_format == 'channels_last' else tf.shape(inputs)[2:] axis = -1 if data_format == 'channels_last' else 1 num_channels = shape[axis] if filters is None: filters = num_channels // len(pyramid) with tf.variable_scope(name): layers = [] for level in pyramid: if level == 0: x = inputs else: # Pooling if None not in static_shape: x = _static_pyramid_pooling(inputs, static_shape, level, pool_op, name='pool-%d' % level) upsample_shape = static_shape else: x = _dynamic_pyramid_pooling(inputs, level, pool_op, num_channels, data_format) upsample_shape = dynamic_shape # Conv block to set number of feature maps x = ConvBlock(layout=layout, filters=filters, kernel_size=kernel_size, name='conv-%d' % level, **kwargs)(x) # Output either vector with fixed size or tensor with fixed spatial dimensions if flatten: x = tf.reshape(x, shape=(-1, level*level*filters), name='reshape-%d' % level) concat_axis = -1 else: x = Upsample(layout='b', shape=upsample_shape, name='upsample-%d' % level, **kwargs)(x) concat_axis = axis layers.append(x) x = tf.concat(layers, axis=concat_axis, name='concat') return x
1484a686791cd017a53d182994e19b333ffc00b3
20,313
def df(r, gamma): """ divergence-free function """ eta = soft_threshold(r, gamma) return eta - np.mean(eta != 0) * r
bf4d0a5d8bcbb5fa80b66d1dd555f15a44117319
20,314
def clip_3d_liang_barsky(zmin, zmax, p0, p1): """Clips the three-dimensional line segment in the canonial view volume by the algorithm of Liang and Barsky. Adapted from James D. Foley, ed., __Computer Graphics: Principles and Practice__ (Reading, Mass. [u.a.]: Addison-Wesley, 1998), 274 as well as http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-688.pdf. Parameters ---------- zmin, zmax : float p0, p1 : array (size 3) of float the endpoints to be clipped (in-place operation) Returns ------- is_visible : bool """ x0, y0, z0 = p0 x1, y1, z1 = p1 # test for a trivial reject if (x0 > z0 and x1 > z1) or (y0 > z0 and y1 > z1) or \ (x0 < -z0 and x1 < -z1) or (y0 < -z0 and y1 < -z1) or \ (z0 < zmin) and (z1 < zmin) or (z0 > zmax and z1 > zmax): return False tmin_tmax = np.array((0.0, 1.0)) dx = x1 - x0 dz = z1 - z0 if clip_t(-dx - dz, x0 + z0, tmin_tmax): # right side if clip_t(dx - dz, -x0 + z0, tmin_tmax): # left side # if we got this far, part of the line is in -z <= x <= z dy = y1 - y0 if clip_t(dy - dz, -y0 + z0, tmin_tmax): # bottom if clip_t(-dy - dz, y0 + z0, tmin_tmax): # top # line is in -z <= x <= z, -z <= y <= z if clip_t(-dz, z0 - zmin, tmin_tmax): # front if clip_t(dz, zmax - z0, tmin_tmax): # back # part of the line is visible in -z <= x <= z, # -z <= y <= z, -1 <= z <= zmin tmin, tmax = tmin_tmax if tmax < 1: p1[0] = x0 + tmax * dx p1[1] = y0 + tmax * dy p1[2] = z0 + tmax * dz if tmin > 0: p0[0] += tmin * dx p0[1] += tmin * dy p0[2] += tmin * dz return True return False
2ffcb60a4b2b13344f2255f5d5d1816199c666a4
20,315
def RunLatencyTest(sending_vm, receiving_vm, use_internal_ip=True): """Run the psping latency test. Uses a TCP request-response time to measure latency. Args: sending_vm: the vm to send the tcp request. receiving_vm: the vm acting as the server. use_internal_ip: whether or not to use the private IP or the public IP. Returns: list of samples representing latency between the two VMs. """ server_ip = (receiving_vm.internal_ip if use_internal_ip else receiving_vm.ip_address) client_command = ( 'cd {psping_exec_dir}; ' 'sleep 2;' # sleep to make sure the server starts first. '.\\psping.exe /accepteula -l {packet_size} -i 0 -q ' '-n {rr_count} -h {bucket_count} {ip}:{port}' ' > {out_file}').format( psping_exec_dir=sending_vm.temp_dir, packet_size=FLAGS.psping_packet_size, rr_count=FLAGS.psping_rr_count, bucket_count=FLAGS.psping_bucket_count, ip=server_ip, port=TEST_PORT, out_file=PSPING_OUTPUT_FILE) # PSPing does not have a configurable timeout. To get around this, start the # server as a background job, then kill it after 10 seconds server_command = ( '{psping_exec_dir}\\psping.exe /accepteula -s 0.0.0.0:{port};').format( psping_exec_dir=sending_vm.temp_dir, port=TEST_PORT) process_args = [(_RunPsping, (receiving_vm, server_command), {}), (_RunPsping, (sending_vm, client_command), {})] background_tasks.RunParallelProcesses(process_args, 200, 1) cat_command = 'cd {psping_exec_dir}; cat {out_file}'.format( psping_exec_dir=sending_vm.temp_dir, out_file=PSPING_OUTPUT_FILE) output, _ = sending_vm.RemoteCommand(cat_command) return ParsePspingResults(output, sending_vm, receiving_vm, use_internal_ip)
5f235f0adefe988be564f8e6dce7edfd4f292be4
20,316
def get_descriptor_list(stackdriver): """Return a list of all the stackdriver custom metric descriptors.""" type_map = stackdriver.descriptor_manager.fetch_all_custom_descriptors( stackdriver.project) descriptor_list = type_map.values() descriptor_list.sort(compare_descriptor_types) return descriptor_list
9b4b16f3d3b0330a786db0310f889f8ac132cb32
20,317
def dankerize(string: str, upper_case_ratio=0.2) -> str: """ Transform a string to lower case, and randomly set some characters to upper case and return the result. string: the string to dankerize upper_case_ratio: the upper_case/letter ratio """ ret = "" for i in range(len(string)): if uniform(0, 1.0) <= upper_case_ratio: ret += string[i].upper() else: ret += string[i].lower() return ret
55f186104166b0804cadae2df5fa19deaf36473b
20,318
def distance_constraints_too_complex(wordConstraints): """ Decide if the constraints on the distances between pairs of search terms are too complex, i. e. if there is no single word that all pairs include. If the constraints are too complex and the "distance requirements are strict" flag is set, the query will find some invalid results, so further (slow) post-filtering is needed. """ if wordConstraints is None or len(wordConstraints) <= 0: return False commonTerms = None for wordPair in wordConstraints: if commonTerms is None: commonTerms = set(wordPair) else: commonTerms &= set(wordPair) if len(commonTerms) <= 0: return True return False
43429fd64dbf5fa118e2cbf1e381686e1a8518c9
20,319
def greedy_search(model, decoding_function, initial_ids, initial_memories, int_dtype, float_dtype, max_prediction_length, batch_size, eos_id, do_sample, time_major): """ Greedily decodes the target sequence conditioned on the output of the encoder and the current output prefix. """ # Declare time-dimension time_dim = int(not time_major) # i.e. 0 if time_major, 1 if batch_major # Define the 'body for the tf.while_loop() call def _decoding_step(current_time_step, all_finished, next_ids, decoded_ids, decoded_score, memories): """ Defines a single step of greedy decoding. """ # Propagate through decoder step_logits, memories = decoding_function(next_ids, current_time_step, memories) step_logits = model.sampling_utils.adjust_logits(step_logits) # Calculate log probabilities for token prediction at current time-step step_scores = tf.nn.log_softmax(step_logits) # Determine next token to be generated, next_ids has shape [batch_size] if do_sample: next_ids = tf.squeeze(tf.multinomial(step_scores, num_samples=1, output_dtype=int_dtype), axis=1) else: # Greedy decoding next_ids = tf.argmax(step_scores, -1, output_type=int_dtype) # Collect scores associated with the selected tokens score_coordinates = tf.stack([tf.range(batch_size, dtype=int_dtype), next_ids], axis=1) decoded_score += tf.gather_nd(step_scores, score_coordinates) # Concatenate newly decoded token ID with the previously decoded ones decoded_ids = tf.concat([decoded_ids, tf.expand_dims(next_ids, 1)], 1) # Extend next_id's dimensions to be compatible with input dimensionality for the subsequent step next_ids = tf.expand_dims(next_ids, time_dim) # Check if generation has concluded with <EOS> # all_finished |= tf.equal(tf.squeeze(next_ids, axis=time_dim), eos_id) all_finished |= tf.equal(tf.reduce_prod(decoded_ids - eos_id, axis=time_dim), eos_id) return current_time_step + 1, all_finished, next_ids, decoded_ids, decoded_score, memories # Define the termination condition for the tf.while_loop() call def _continue_decoding(_current_time_step, _all_finished, *_): """ Returns 'False' if all of the sequences in the generated sequence batch exceeded the maximum specified length or terminated with <EOS>, upon which the while loop is exited. """ continuation_check = \ tf.logical_and(tf.less(_current_time_step, max_prediction_length), tf.logical_not(tf.reduce_all(_all_finished))) return continuation_check # Initialize decoding-relevant variables and containers current_time_step = tf.constant(1) all_finished = tf.fill([batch_size], False) # None of the sequences is marked as finished next_ids = initial_ids decoded_ids = tf.zeros([batch_size, 0], dtype=int_dtype) # Sequence buffer is empty decoded_score = tf.zeros([batch_size], dtype=float_dtype) memories = initial_memories # Execute the auto-regressive decoding step via while loop _, _, _, decoded_ids, log_scores, memories = \ tf.while_loop(cond=_continue_decoding, body=_decoding_step, loop_vars=[current_time_step, all_finished, next_ids, decoded_ids, decoded_score, memories], shape_invariants=[tf.TensorShape([]), tf.TensorShape([None]), tf.TensorShape([None, None]), tf.TensorShape([None, None]), tf.TensorShape([None]), get_memory_invariants(memories)], parallel_iterations=10, swap_memory=False, back_prop=False) # Should return logits also, for training return decoded_ids, log_scores
3324a45ce13181ea55c8588e497864526272475d
20,320
import time def database_mostcited(response: Response, request: Request=Query(None, title=opasConfig.TITLE_REQUEST, description=opasConfig.DESCRIPTION_REQUEST), morethan: int=Query(15, title=opasConfig.TITLE_CITED_MORETHAN, description=opasConfig.DESCRIPTION_CITED_MORETHAN), period: str=Query('5', title="Period (5, 10, 20, or all)", description=opasConfig.DESCRIPTION_MOST_CITED_PERIOD), pubperiod: int=Query(None, title=opasConfig.TITLE_PUBLICATION_PERIOD, description=opasConfig.DESCRIPTION_PUBLICATION_PERIOD), author: str=Query(None, title=opasConfig.TITLE_AUTHOR, description=opasConfig.DESCRIPTION_AUTHOR), title: str=Query(None, title=opasConfig.TITLE_TITLE, description=opasConfig.DESCRIPTION_TITLE), sourcename: str=Query(None, title=opasConfig.TITLE_SOURCENAME, description=opasConfig.DESCRIPTION_SOURCENAME), sourcecode: str=Query(None, title=opasConfig.TITLE_SOURCECODE, description=opasConfig.DESCRIPTION_SOURCECODE), sourcetype: str=Query(None, title=opasConfig.TITLE_SOURCETYPE, description=opasConfig.DESCRIPTION_PARAM_SOURCETYPE), abstract:bool=Query(False, title="Return an abstract with each match", description="True to return an abstract"), stat:bool=Query(False, title="Return minimal information", description="True to return minimal information for statistical tables"), limit: int=Query(10, title=opasConfig.TITLE_LIMIT, description=opasConfig.DESCRIPTION_LIMIT), offset: int=Query(0, title=opasConfig.TITLE_OFFSET, description=opasConfig.DESCRIPTION_OFFSET) ): """ ## Function <b>Return a list of documents for a SourceCode source (and optional year specified in query params).</b> If you don't request abstracts returned, document permissions will not be checked or returned. This is intended to speed up retrieval, especially for returning large numbers of articles (e.g., for downloads.) Note: The GVPi implementation does not appear to support the limit and offset parameter ## Return Type models.DocumentList ## Status This endpoint is working. ## Sample Call /v1/Database/MostCited/ ## Notes ## Potential Errors """ time.sleep(.25) ocd, session_info = opasAPISupportLib.get_session_info(request, response) # session_id = session_info.session_id #print ("in most cited") # return documentList ret_val, ret_status = opasAPISupportLib.database_get_most_cited( period=period, more_than=morethan, publication_period=pubperiod, author=author, title=title, source_name=sourcename, source_code=sourcecode, source_type=sourcetype, # see VALS_SOURCE_TYPE (norm_val applied in opasCenralDBLib) abstract_requested=abstract, req_url=request.url, limit=limit, offset=offset, session_info=session_info ) if isinstance(ret_val, models.ErrorReturn): raise HTTPException( status_code=ret_val.httpcode, detail = ret_val.error + " - " + ret_val.error_description ) else: status_message = opasCentralDBLib.API_STATUS_SUCCESS status_code = 200 # Don't record in final build - (ok for now during testing) ocd, session_info = opasAPISupportLib.get_session_info(request, response) ocd.record_session_endpoint(api_endpoint_id=opasCentralDBLib.API_DATABASE_MOSTCITED, session_info=session_info, params=request.url._url, return_status_code = status_code, status_message=status_message ) #print ("out mostcited") return ret_val
b18d3a3674cb5a52b7d3ea05db985774d7d25a4c
20,321
def format_event_leef(event): """Format an event as QRadar / LEEF""" syslog_header = f'<13>1 {event["actionTime"]} {hostname}' leef_header = f'LEEF:2.0|TrinityCyber|PTI|1|{event.pop("id")}|xa6|' fields = dict() fields["devTime"] = event.pop("actionTime") fields[ "devTimeFormat" ] = "yyyy-MM-dd'T'HH:mm:ss.SSSXXX" # (e.g. 2022-04-25T00:01:19.109+00:00) # LEEF-standard fields if "source" in event: fields["src"] = event.pop("source") if "destination" in event: fields["dst"] = event.pop("destination") if "sourcePort" in event: fields["srcPort"] = event.pop("sourcePort") if "destinationPort" in event: fields["dstPort"] = event.pop("destinationPort") if "transportProtocol" in event: fields["proto"] = event.pop("transportProtocol") # Formula-related metadata formula_metadata = event.pop("formula") fields["tcFormulaId"] = formula_metadata["formulaId"] fields["tcFormulaTitle"] = formula_metadata["title"] for key, value in formula_metadata["tags"].items(): key = "tcFormula" + key.title().replace(" ", "") fields[key] = value # Application / protocol related data for app_fields in event.pop("applicationData"): for key, value in app_fields.items(): if value is None: continue if isinstance(value, str): # Escape delimiter value = value.replace("\xa6", "\\\xa6") fields[key] = value # Add any extra information from the query fields.update(event) fields_formatted = "\xa6".join([f"{key}={value}" for key, value in fields.items()]) return f"{syslog_header} {leef_header}{fields_formatted}"
ca463c9e86d6b7880e992aa11cd4b6ae7592dab4
20,322
def _file_path(ctx, val): """Return the path of the given file object. Args: ctx: The context. val: The file object. """ return val.path
7c930f2511a0950e29ffc327e85cf9b2b3077c02
20,323
def Mapping_Third(Writelines, ThirdClassDict): """ :param Writelines: 将要写入的apk的method :param ThirdClassDict: 每一个APK对应的第三方的字典 :return: UpDateWritelines """ UpDateWriteLines = [] for l in Writelines: if l.strip() in list(ThirdClassDict.keys()): UpDateWriteLines.extend(ThirdClassDict[l.strip()]) else: UpDateWriteLines.extend([l]) return UpDateWriteLines
eb94db36d06104007cbbacf8884cf6d45fee46b5
20,324
def rotate_points_around_origin(points, origin, angle): """ Rotate a 2D array of points counterclockwise by a given angle around a given origin. The angle should be given in degrees. """ angle = angle * np.pi / 180 ox, oy = origin.tolist() new_points = np.copy(points) new_points[:, 0] = ox + np.cos(angle) * ( points[:, 0] - ox) - np.sin(angle) * (points[:, 1] - oy) new_points[:, 1] = oy + np.sin(angle) * ( points[:, 0] - ox) + np.cos(angle) * (points[:, 1] - oy) return new_points
0e21c2a9d6c870202935f8dbd9e725d9586670c3
20,325
def get_names_to_aliases(inp) -> dict: """ Returns pair, - out[0] = dictionary of names to sets of aliases - out[1] = erros when calling names_to_links, i.e., when file-reading @param inp: string vault directory or names_to_links dictionary if string then get_names_to_links method is used """ if type(inp) is str: inp = get_names_to_links(inp) # now inp must be names_to_links_pair out = dict() for filename, dict_links_to_aliases in inp[0].items(): for link_filename, set_of_aliases in dict_links_to_aliases.items(): try: out[link_filename].update(set_of_aliases) except KeyError: out[link_filename] = set(set_of_aliases) return [out,inp[1]]
9648099dc8422abceb5c095191e90f3dad14c4fb
20,326
def length(vec): """ Length of a given vector. If vec is an scalar, its length is 1. Parameters ---------- vec: scalar or arr Input vector Returns ------- length: int Length of vec. If vec is an scalar, its length is 1. """ if np.ndim(vec)==0: length=1 else: length=len(vec) return length
d8baea0b5f5e0bdc30b9e5a5d76b06cd876c87ba
20,327
def build_eval_infeeds(params): """Create the TPU infeed ops.""" eval_size = get_eval_size(params) num_eval_steps = eval_size // params.eval_batch_size dev_assign = params.device_assignment host_to_tpus = {} for replica_id in range(params.num_replicas): host_device = dev_assign.host_device(replica=replica_id, logical_core=0) tpu_ordinal = dev_assign.tpu_ordinal(replica=replica_id, logical_core=0) if host_device not in host_to_tpus: host_to_tpus[host_device] = [tpu_ordinal] else: assert tpu_ordinal not in host_to_tpus[host_device] host_to_tpus[host_device].append(tpu_ordinal) infeed_ops = [] infeed_graphs = [] num_inputs = len(host_to_tpus) for i, (host, tpus) in enumerate(host_to_tpus.items()): infeed_graph = tf.Graph() infeed_graphs.append(infeed_graph) with infeed_graph.as_default(): def enqueue_fn(host_device=host, input_index=i, device_ordinals=tpus): """Docs.""" worker_infeed_ops = [] with tf.device(host_device): dataset = build_eval_dataset( params, batch_size=params.eval_batch_size // num_inputs, num_workers=num_inputs, worker_index=input_index) inputs = tf.data.make_one_shot_iterator(dataset).get_next() if params.use_xla_sharding and params.num_cores_per_replica > 1: inputs, partition_dims = pad_inputs_for_xla_sharding(params, inputs) num_splits = len(device_ordinals) if len(device_ordinals) > 1: inputs = [tf.split(v, num_splits, 0) for v in inputs] else: inputs = [[v] for v in inputs] q = tpu_feed._PartitionedInfeedQueue( number_of_tuple_elements=len(inputs), host_id=int(host_device.split('/task:')[-1].split('/')[0]), input_partition_dims=partition_dims, device_assignment=dev_assign) inputs = [[v[i] for v in inputs] for i in range(num_splits)] worker_infeed_ops.extend(q.generate_enqueue_ops(inputs)) else: num_splits = len(device_ordinals) if len(device_ordinals) > 1: inputs = [tf.split(v, num_splits, 0) for v in inputs] else: inputs = [[v] for v in inputs] input_shapes = [v[0].shape for v in inputs] for j, device_ordinal in enumerate(device_ordinals): worker_infeed_ops.append(tf.raw_ops.InfeedEnqueueTuple( inputs=[v[j] for v in inputs], shapes=input_shapes, device_ordinal=device_ordinal)) return worker_infeed_ops def _body(i): with tf.control_dependencies(enqueue_fn()): return i+1 infeed_op = tf.while_loop( lambda step: tf.less(step, tf.cast(num_eval_steps, step.dtype)), _body, [0], parallel_iterations=1, name='eval_infeed').op infeed_ops.append(infeed_op) return infeed_ops, infeed_graphs, eval_size
e62586dd8fe6358eaed9a0a2eaf43fd607c0323b
20,328
import json def get_featured_parks(request): """ Returns recommended parks as JSON """ featured_parks = Park.objects.filter(featured=True).prefetch_related('images') response = { 'featured_parks': [{'id': n.pk, 'name': n.name, 'image': n.thumbnail} for n in featured_parks] } return HttpResponse(json.dumps(response), mimetype='application/json')
a3b45fa5b467434bf375a46f420538e5d5d78688
20,329
def plot_accuracy(raw_all_grids_df, option=None): """ Input: raw condition df facets: None, 'subjects', Output: figure(s) that visualize the difference in accuracy btw. el and pl """ # Rearrange columns for better readability in temporal order of the experiment condition_list = raw_all_grids_df['condition'].value_counts().index.tolist() condition_list_sorted = ['GRID', 'SMALLGRID_BEFORE', 'SMALLGRID_AFTER'] if not set(condition_list).issubset(set(condition_list_sorted)) : raise ValueError('are you sure everything is okay with the condition reordering?') # Create a categorical type condition_cat = CategoricalDtype(categories=condition_list_sorted, ordered=True) # Cast the existing categories into the new category. Due to a bug in pandas we need to do this via a string. raw_all_grids_df['condition'] = raw_all_grids_df['condition'].astype(str).astype(condition_cat) # Get the x and y position of the 13 elements shown in the small Grid condition element_pairs = raw_all_grids_df.query('condition=="SMALLGRID_BEFORE"').loc[:,['posx', 'posy']] only_13_elements = pd.merge(raw_all_grids_df, element_pairs, on=['posx', 'posy'], how='inner') # specify aggregators for different levels # element level - - block level - - (subject level) # mean median (mean) agg_level=[winmean, winmean] # aggregate data of only_13_elements mean_over_elements = only_13_elements.groupby(['condition', 'block','subject','et'], as_index=False).agg(agg_level[0]) winmean_over_elements_winmean_over_blocks = mean_over_elements.groupby(['condition', 'subject','et'], as_index=False).agg(agg_level[1]) if option is None: # compare accuracy values btw eyetrackers. Taking the mean over the subjects (ggplot(winmean_over_elements_winmean_over_blocks, aes(x='et', y='accuracy',color='condition')) + # TODO or points or violins?? geom_boxplot(data=winmean_over_elements_winmean_over_blocks, position=position_dodge(width=0.9)) + ggtitle('Comparing accuracy of conditions')).draw() elif option == 'facet_subjects': # plot mean accuracy over all blocks for each subject (ggplot(winmean_over_elements_winmean_over_blocks, aes(x='et', y='accuracy',color='condition')) + geom_point(alpha=0.1,data=winmean_over_elements_winmean_over_blocks, position=position_dodge(width=0.5)) + geom_point(position=position_dodge(width=0.5)) + geom_line(aes(group='condition'),alpha=0.6, position=position_dodge(width=0.5)) + facet_grid('.~subject') + ggtitle('Comparing accuracy of conditions')).draw() elif option == 'show_variance_for_blocks': # plot mean accuracy over all blocks for each subject and show range by plotting the mean accuracy for each block (ggplot(winmean_over_elements_winmean_over_blocks, aes(x='et', y='accuracy',color='condition')) + # get the mean for each block geom_point(alpha=0.1,data=raw_all_grids_df.groupby(['et', 'subject','condition','block']).mean().reset_index(level=['et','subject','condition','block']),position=position_dodge(width=0.5)) + geom_point(position=position_dodge(width=0.5))+ geom_line(aes(group='condition'),position=position_dodge(width=0.5)) + facet_grid('.~subject') + ggtitle('Comparing accuracy of conditions')).draw() elif option == 'final_figure': # save old theme and set the one for fixation plotting old_theme = theme_get() theme_set(mythemes.before_after_grid_theme) # simple: eyetracker vs mean accuracy over all blocks and subjects return (ggplot(winmean_over_elements_winmean_over_blocks,aes(x='condition', y='accuracy', fill='et',group='et', color='et')) + stat_summary(fun_y=winmean, geom='line',position=position_dodge(width=0.1)) + # pointrange makes a 0.95 bootstrap CI stat_summary(fun_data=winmean_cl_boot, geom='pointrange', position=position_dodge(width=0.1)) + #geom_point(aes(group="subject"),data=winmean_over_elements_winmean_over_blocks.query("et=='Pupil Labs'"),alpha=0.5,color='blue')+ #geom_point(aes(group="subject"),data=winmean_over_elements_winmean_over_blocks.query("et=='EyeLink'"),alpha=0.5,color='red')+ ylab("Accuracy [$^\circ$]") + labs(title='Course of Accuracy')) # restore old theme theme_set(old_theme) elif option == 'subjectvariance': mean_over_elements.loc[:,'group'] = mean_over_elements.et + mean_over_elements.block return (ggplot(mean_over_elements,aes(x='condition', y='accuracy', fill='et',group='group', color='et')) + geom_point(alpha=0.5)+ geom_line()+ ylab("Accuracy [$^\circ$]") + labs(title='Course of Accuracy'))+facet_wrap('subject',scales='free') else: raise ValueError('You must set facets to a valid option. See documentation.')
fcb269c9bb0f97ac2df5914d1f26837125501d00
20,330
from typing import Sequence from typing import Any def make_data_output(structures: Sequence[Artefact[bytes]]) -> Artefact[list[Any]]: """Take xyz structure from xtb and parse them to a list of dicts.""" def to_dict(xyz: bytes) -> dict[str, Any]: as_str = xyz.decode().strip() energy = float(as_str.splitlines()[1].split()[1]) return {"structure": as_str, "energy": energy} def sort_by_energy(*elements: dict[str, Any]) -> list[dict[str, Any]]: out = [el for el in elements] out = sorted(out, key=lambda x: x["energy"]) # type:ignore return out out = [] for s in structures: out += [f.morph(to_dict, s, out=Encoding.json)] # elements to dicts return f.reduce(sort_by_energy, *out)
ca9e7fd187ff98a9c9c5146e12f9bc8b0e1c0466
20,331
def total_angular_momentum(particles): """ Returns the total angular momentum of the particles set. >>> from amuse.datamodel import Particles >>> particles = Particles(2) >>> particles.x = [-1.0, 1.0] | units.m >>> particles.y = [0.0, 0.0] | units.m >>> particles.z = [0.0, 0.0] | units.m >>> particles.vx = [0.0, 0.0] | units.ms >>> particles.vy = [-1.0, 1.0] | units.ms >>> particles.vz = [0.0, 0.0] | units.ms >>> particles.mass = [1.0, .5] | units.kg >>> particles.total_angular_momentum() quantity<[0.0, 0.0, 1.5] m**2 * kg * s**-1> """ # equivalent to: # lx=(m*(y*vz-z*vy)).sum() # ly=(m*(z*vx-x*vz)).sum() # lz=(m*(x*vy-y*vx)).sum() return (particles.mass.reshape((-1,1)) *particles.position.cross(particles.velocity)).sum(axis=0)
8eca23b7b1a8fc8a7722543f9193f0e4a3397f24
20,332
def svn_repos_get_logs3(*args): """ svn_repos_get_logs3(svn_repos_t repos, apr_array_header_t paths, svn_revnum_t start, svn_revnum_t end, int limit, svn_boolean_t discover_changed_paths, svn_boolean_t strict_node_history, svn_repos_authz_func_t authz_read_func, svn_log_message_receiver_t receiver, apr_pool_t pool) -> svn_error_t """ return _repos.svn_repos_get_logs3(*args)
1dab074e8112e2be0d51709d5d3d93bfc11c8c7d
20,333
def insertTimerOnOutput (signal, type): """ Plug the signal sout of the return entity instead of `signal` to input signal to enable the timer. - param signal an output signal. - return an Timer entity. """ Timer = getTimerType (type) timer = Timer ("timer_of_" + signal.name) plug(signal, timer.sin) return timer
c8914227e112916ac67faf532babb0119abc502f
20,334
from typing import List def anomaly_metrics(contended_task_id: TaskId, contending_task_ids: List[TaskId]): """Helper method to create metric based on anomaly. uuid is used if provided. """ metrics = [] for task_id in contending_task_ids: uuid = _create_uuid_from_tasks_ids(contending_task_ids + [contended_task_id]) metrics.append(Metric( name='anomaly', value=1, labels=dict( contended_task_id=contended_task_id, contending_task_id=task_id, resource=ContendedResource.MEMORY_BW, uuid=uuid, type='contention' ), type=MetricType.COUNTER )) return metrics
df67e16af8b0c018da347c47a430fbe137a8c353
20,335
import logging import json def alarm(): """.""" if request.method == 'POST': response = {'message': 'POST Accepted'} logging.info('alarm POSTED!') data = request.data logging.info(data) string = json.dumps(data) producer.send('SIP-alarms', string.encode()) return response return ""
a4444c4bc3f761cfdeb98485c745b77e8227817e
20,336
def train_net(solver_prototxt, roidb, output_dir, pretrained_model=None, detection_pretrained_model =None, max_iters=40000): """Train a TD-CNN network.""" roidb = filter_roidb(roidb) sw = SolverWrapper(solver_prototxt, roidb, output_dir, pretrained_model=pretrained_model, detection_pretrained_model=detection_pretrained_model) print 'Solving...' model_paths = sw.train_model(max_iters) print 'done solving' return model_paths
af85a78e4a477ab55e949fa0d6f6d44400d1f62f
20,337
def get_druminst_order(x): """helper function to determine order of drum instruments relies on standard sequence defined in settings """ y = shared.get_inst_name(x + shared.octave_length + shared.note2drums) return shared.standard_printseq.index(y)
8cad6cd10487d51b6edd74444115d63b7e599641
20,338
def find_nearest_idx(array, value): """ Find index of value nearest to value in an array :param np.ndarray array: Array of values in which to look :param float value: Value for which the index of the closest value in `array` is desired. :rtype: int :return: The index of the item in `array` nearest to `value` """ return (np.abs(array - value)).argmin()
3eb48426bf01c625419bbf87893b7e877fd0538d
20,339
def hard_tanh(x): """Hard tanh function Arguments: x: Input value hard_tanh(x) = {-1, for x < -2, tanh(x), for x > -2 and x < 2 1, for x > 2 } returns value according to hard tanh function """ return tf.maximum( tf.cast(-1, tf.float32), tf.minimum(tf.cast(1, tf.float32), tf.cast(keras.backend.tanh(x) * 1.05, tf.float32)) )
3c93f09aaeb57ee9bf4d3ccdb2ebe790333f8f67
20,340
async def get_publications(publication_id: str, embedded: bool = False): """ Given a Publication ID, get the Publication record from metadata store. """ publication = await get_publication(publication_id, embedded) return publication
8c4c81776abc1d8268192c23b1dee6c8c10bcfb0
20,341
def RandomNormal(inp): """ Random normally distributed weight initialization. """ return np.random.randn(inp)
d6922748ece8ec880eec6ba1b701424cd6fdd149
20,342
def get_transceiver_description(sfp_type, if_alias): """ :param sfp_type: SFP type of transceiver :param if_alias: Port alias name :return: Transceiver decsription """ return "{} for {}".format(sfp_type, if_alias)
ccb29d937495e37bc41e6f2cf35747d2acfe0d47
20,343
def find_contiguous_set(target_sum: int, values: list[int]) -> list[int]: """Returns set of at least 2 contiguous values that add to target sum.""" i = 0 set_ = [] sum_ = 0 while sum_ <= target_sum: sum_ += values[i] set_.append(values[i]) if sum_ == target_sum and len(set_) >= 2: return set_ i += 1 return []
64b6c1f99946856a33a79fed3d43395a5a9c1000
20,344
def nesoni_report_to_JSON(reportified): """ Convert a nesoni nway.any file that has been reportified to JSON See: tables.rst for info on what is stored in RethinkDB :param reportified: the reportified nway.any file (been through nway_reportify()). This is essentially a list of tuples :returns: a list of JSON """ stats = {} parsed_list = [] for position in reportified: for elem in position: skip = False ref_id, pos, strain, old, ftype, new, evidence, cons, uncalled = elem ref_id = '.'.join(ref_id.split('.')[:-1]) # Initialise the stats... if strain not in stats: stats[strain] = 0 if new == old: # Have no change #dat = ["conserved"]+[None]*9 skip = True elif new == 'N': # Have an uncalled base #dat = ["uncalled"]+[None]*9 skip = True # Check for mixtures... elif ftype == "substitution" and new.find('-') != -1: # Deletion hidden in substitution ftype = 'deletion' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 elif ftype == "substitution" and len(new) > 1: # Insertion hidden in substitution ftype = 'insertion' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 elif ftype == "deletion" and new.find('-') == -1 and len(new) == 1: # Substitution hidden in deletions ftype = 'substitution' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 elif ftype == "deletion" and new.find('-') == -1 and len(new) > 1: # Insertion hidden in deletions ftype = 'insertion' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 elif ftype == "insertion" and new.find('-') != -1: # Deletion hidden in insertions ftype = 'deletion' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 elif ftype == "insertion" and new.find('-') == -1 and len(new) == 1: # Substitution hidden in insertions ftype = 'substitution' dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 # We have the same change state across all strains else: dat = extract_consequences(cons, ftype) stats[strain] = stats[strain]+1 obs_count = parsers.parse_evidence(evidence) # Some simple tests the_classes = ['insertion', 'deletion', 'substitution'] if not skip: assert dat[0] in the_classes json = {"id": strain+'_'+ref_id+'_'+str(pos), "StrainID": strain, "Position": pos, "LocusTag": dat[2], "Class": dat[0], "SubClass": dat[1], "RefBase": old, "ChangeBase": new, "CDSBaseNum": dat[3], "CDSAANum": dat[4], "CDSRegion": dat[5], "RefAA": dat[6], "ChangeAA": dat[7], "Product": dat[8], "CorrelatedChange": dat[9], "Evidence": obs_count, "UncalledBlock": uncalled } parsed_list.append(json) return parsed_list, stats
b78d9e9c124104a4e4c634e8fc2926804a06629d
20,345
def DeferredLightInfoEnd(builder): """This method is deprecated. Please switch to End.""" return End(builder)
f2bad6ffea3170c53a13206ab43d8b7193ccb89d
20,346
import configparser from pathlib import Path import os def qiita_get_config(): """設定ファイルを読む.""" config = configparser.ConfigParser() path = Path(os.getenv('HOME'), '.qiita.ini') config.read_file(open(path)) return config
5464253eff2e2abe4f895d0eab679c00096b1bb3
20,347
def move_character(character: dict, direction_index=None, available_directions=None) -> tuple: """ Change character's coordinates. :param character: a dictionary :param direction_index: a non-negative integer, optional :param available_directions: a list of strings, optional :precondition: character keys must contain "X-coordinate" and "Y-coordinate" :precondition: character values must be integers :precondition: direction_index must be a non-negative integer validated by validate_option function or None :precondition: availabe_directions each item must be either "north", "south", "east" or "west", or None :postcondition: updates character X or Y coordinate based on direction choice if availabe_directions is not None :postcondition: makes character X or Y coordinate be equal to the previous coordinates :return: new character's coordinates as a tuple >>> protagonist = {"Y-coordinate": 1, "X-coordinate": 1, "Previous coordinates": (0, 1)} >>> move_character(protagonist, 0, ["south", "west"]) (2, 1) >>> protagonist = {"Y-coordinate": 1, "X-coordinate": 1, "Previous coordinates": (0, 1)} >>> move_character(protagonist) (0, 1) """ directions_dictionary = {"north": -1, "south": 1, "west": -1, "east": 1} if available_directions is not None: direction = available_directions[direction_index] character["Previous coordinates"] = character["Y-coordinate"], character["X-coordinate"] if direction in "north south": character["Y-coordinate"] += directions_dictionary[direction] else: character["X-coordinate"] += directions_dictionary[direction] else: character["Y-coordinate"] = character["Previous coordinates"][0] character["X-coordinate"] = character["Previous coordinates"][1] return character["Y-coordinate"], character["X-coordinate"]
cc5cc3115437d0dc4e9b7ba7845565ee8147be30
20,348
def expandednodeid_to_str(exnode): """SOPC_ExpandedNodeId or SOPC_ExpandedNodeId* to its str representation in the OPC-UA XML syntax.""" a = '' if exnode.ServerIndex: a += 'srv={};'.format(exnode.ServerIndex) nsu = string_to_str(ffi.addressof(exnode.NamespaceUri)) if nsu: a += 'nsu={};'.format(nsu) b = ffi.string(libsub.SOPC_NodeId_ToCString(ffi.addressof(exnode.NodeId))).decode() return a + b
062012a11128a42bbaeb8d7ff316a2a29a31928b
20,349
def scrap_insta_description(inst) -> str: """ Scrap description from instagram account HTML. """ description = inst.body.div.section.main.div.header.section.find_all( 'div')[4].span.get_text() return description
898fa0d1cb44606374b131b8b471178a22ab74ed
20,350
import time def merge_by_sim(track_sim_list, track_data_dic, track_list, reid_th): """ Merge by sim. Ref: https://stackoverflow.com/questions/30089675/clustering-cosine-similarity-matrix """ print('start clustering') merge_start_time = time.time() cost_matrix = get_cost_matrix(track_sim_list, track_data_dic, track_list) cluster_labels = AgglomerativeClustering(n_clusters=None, distance_threshold=reid_th, affinity='precomputed', linkage='average').fit_predict(cost_matrix) labels = get_match(cluster_labels) # print(merged_index_list) print('we have %d global tracks after merge, time for merge %.4f s' % (len(labels), time.time()-merge_start_time)) # get real data valid_global_list = [] valid_count = 0 for person_track_list in labels: temp = [] for index in person_track_list: record_name = track_list[index] temp.append(record_name) if len(temp) > 1: cameras = set([t[0] for t in temp]) if len(cameras) > 1: valid_count += 1 valid_global_list.append(temp) #clustered_list.append(temp) print(f'after merge, %d valid global ids are created: {valid_global_list}' % valid_count) return valid_global_list
68478cb1367dcd2ef8a2550c54ea57e265bbbdf5
20,351
import os def get_ros_hostname(): """ Try to get ROS_HOSTNAME environment variable. returns: a ROS compatible hostname, or None. """ ros_hostname = os.environ.get('ROS_HOSTNAME') return ros_hostname if is_legal_name(ros_hostname) else None
fb34753b98d657e0db727bffee269125901e9d0d
20,352
def cycle(*args, **kargs): """ Returns the next cycle of the given list Everytime ``cycle`` is called, the value returned will be the next item in the list passed to it. This list is reset on every request, but can also be reset by calling ``reset_cycle()``. You may specify the list as either arguments, or as a single list argument. This can be used to alternate classes for table rows:: # In Myghty... % for item in items: <tr class="<% cycle("even", "odd") %>"> ... use item ... </tr> % #endfor You can use named cycles to prevent clashes in nested loops. You'll have to reset the inner cycle, manually:: % for item in items: <tr class="<% cycle("even", "odd", name="row_class") %> <td> % for value in item.values: <span style="color:'<% cycle("red", "green", "blue", name="colors") %>'"> item </span> % #endfor <% reset_cycle("colors") %> </td> </tr> % #endfor """ if len(args) > 1: items = args else: items = args[0] name = kargs.get('name', 'default') cycles = request_config().environ.setdefault('railshelpers.cycles', {}) cycle = cycles.setdefault(name, iterdict(items)) if cycles[name].get('items') != items: cycle = cycles[name] = iterdict(items) return cycle['iter'].next()
6a1606d5fc65eb690c4ccbad3c662dc671219502
20,353
def calc_rmsd(struct1, struct2): """ Basic rmsd calculator for molecules and molecular clusters. """ geo1 = struct1.get_geo_array() ele1 = struct1.elements geo2 = struct2.get_geo_array() ele2 = struct2.elements dist = cdist(geo1,geo2) idx1,idx2 = linear_sum_assignment(dist) geo1 = geo1[idx1] geo2 = geo2[idx2] rmsd = np.mean(np.linalg.norm(geo1 - geo2,axis=-1)) return rmsd
cb368f6e4edaf223194f1e965a0f926f33e72330
20,354
def validate_flat_dimension(d): """Return strue if a 'key:value' dimension is valid.""" key, _, val = d.partition(':') return validate_dimension_value(val) and validate_dimension_key(key)
ee663bbdc62dab3d247c09ee5950dc63dafcad15
20,355
import six import os def file_size(f): """ Returns size of file in bytes. """ if isinstance(f, (six.string_types, six.text_type)): return os.path.getsize(f) else: cur = f.tell() f.seek(0, 2) size = f.tell() f.seek(cur) return size
f999382958a972abbcf593c02e8e8e3609d8f44a
20,356
def __get_from_imports(import_tuples): """ Returns import names and fromlist import_tuples are specified as (name, fromlist, ispackage) """ from_imports = [(tup[0], tup[1]) for tup in import_tuples if tup[1] is not None and len(tup[1]) > 0] return from_imports
28df8225ad9440386342c38657944cfe7ac3d3ca
20,357
def change_dt_utc_to_local(dt): """ change UTC date time to local time zone Europe/Paris """ return convert_utctime_to_timezone(dt,'%Y%m%dT%H%M%SZ','Europe/Paris','%Y%m%dT%H%M%S')
09b52fd15a4fd9512e05f0a2801927b7f8be385f
20,358
import logging import warnings def sarimax_ACO_PDQ_search(endo_var, exog_var_matrix, PDQS, searchSpace, options_ACO, low_memory=False, verbose=False): """ Searchs SARIMAX PDQ parameters. endo_var: is the principal variable. exog_var_matrix: is the matrix of exogenous variables. PDQS: list of pdqs parameters. EG: [1, 1, 1, 24]. searchSpace: is the space of search for the particles. E.G.: p = d = q = range(0, 2) searchSpace = [p, d, q] pso_particles: is the number of particles. pso_interations: is the number of interations. options_ACO: parametrization for ACO algorithm. E.G.: {'antNumber':2, 'antTours':1, 'alpha':2, 'beta':2, 'rho':0.5, 'Q':2} """ def SARIMAX_AICc(X, *args): endo = args[0][0] exog = args[0][1] param_seasonal = args[0][2] param = X[0:3] if param_seasonal[-1] < 0: param_seasonal[-1] = 1 mod = SARIMAX(endo, exog=exog, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) aicc = np.inf try: results = mod.fit(disp=False, low_memory=low_memory) aicc = results.aicc except: pass return aicc antNumber = options_ACO['antNumber'] antTours = options_ACO['antTours'] alpha = options_ACO['alpha'] beta = options_ACO['beta'] rho = options_ACO['rho'] Q = options_ACO['Q'] if verbose: logging.info("Original search Space: {0}".format(searchSpace)) warnings.filterwarnings("ignore") # specify to ignore warning messages ACOsearch = ACO(alpha, beta, rho, Q) best_result, _ = ACOsearch.optimize(antNumber, antTours, dimentionsRanges=searchSpace, function=SARIMAX_AICc, functionArgs=[endo_var, exog_var_matrix, PDQS], verbose=verbose) logging.info("BEST result: {0}.".format(best_result)) param = best_result param_seasonal = PDQS mod = SARIMAX(endo_var, exog=exog_var_matrix, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit(disp=False) return results.aicc, best_result
acae883a3aaeb501646f121753924fb321f471e5
20,359
from typing import Any def convert_vue_i18n_format(locale: str, po_content: Any) -> str: """ done: will markdown be parsed to html in this method? Or should we do that on the fly, everywhere... It seems the logical place will be to parse it here. Otherwise the rest of the application becomes more complex. Using markdown will have the benefit of the output being a single html string with proper formatting. todo: change parameters {{ param }} to hello: '%{msg} world' see: http://kazupon.github.io/vue-i18n/guide/formatting.html#list-formatting The change is very large we don't need to do that, as we don't need those sentences. The content is added to the 'internet_nl' key, like this: const internet_nl_messages = { en: { internet_nl: { key: 'value', key: 'value' }, }, } There is a slight challenge that translations in vue are based on javascript properties, meaning, no quotes. :return: """ content: str = _vue_format_start() content += _vue_format_locale_start(locale) for entry in po_content: # to save a boatload of data, we're not storing the 'content' from the pages of internet.nl # we'll just have to point to this content. if entry.msgid.endswith('content'): continue content += f" {_js_safe_msgid(entry.msgid)}: '{_js_safe_msgstr(entry.msgstr)}',\n" content += _vue_format_locale_end() content += _vue_format_end() return content
93d7351335cbfbc9407954a352aefceea54b84c0
20,360
def get_index(x, value, closest=True): """Get the index of an array that corresponds to a given value. If closest is true, get the index of the value closest to the value entered. """ if closest: index = np.abs(np.array(x) - value).argsort()[0] else: index = list(x).index(value) return index
19dc68407d576492f25235fc1efcc79895d8cb3f
20,361
def process_spawn(window, args): """ Spawns a child process with its stdin/out/err wired to a PTY in `window`. `args` should be a list where the first item is the executable and the remaining will be passed to it as command line arguments. Returns a process object. """ return (yield Trap.PROCESS_SPAWN, window, args)
979599c767f3e391541e8fd02a168cd29659bcea
20,362
import json import re def insertTaskParams(taskParams, verbose=False, properErrorCode=False, parent_tid=None): """Insert task parameters args: taskParams: a dictionary of task parameters verbose: True to see verbose messages properErrorCode: True to get a detailed error code parent_tid: ID of the parent task returns: status code 0: communication succeeded to the panda server 255: communication failure tuple of return code, message from the server, and taskID if successful, or error message if failed 0: request is processed 1: duplication in DEFT 2: duplication in JEDI 3: accepted for incremental execution 4: server error """ # serialize taskParamsStr = json.dumps(taskParams) # instantiate curl curl = _Curl() curl.sslCert = _x509() curl.sslKey = _x509() curl.verbose = verbose # execute url = baseURLSSL + '/insertTaskParams' data = {'taskParams':taskParamsStr, 'properErrorCode':properErrorCode} if parent_tid: data['parent_tid'] = parent_tid status,output = curl.post(url,data) try: loaded_output = list(pickle_loads(output)) # extract taskID try: m = re.search('jediTaskID=(\d+)', loaded_output[-1]) taskID = int(m.group(1)) except Exception: taskID = None loaded_output.append(taskID) return status, loaded_output except Exception as e: errStr = dump_log("insertTaskParams", e, output) return EC_Failed, output+'\n'+errStr
baa9f0c783361cec17cec9f6259e4f856aa0121d
20,363
def pref_infos(): """ to update user infos """ form = UserParametersForm() # print current_user if request.method == 'POST' : print log_cis.info("updating an user - POST \n") # for debugging purposes for f_field in form : log_cis.info( "form name : %s / form data : %s ", f_field.name, f_field.data ) if form.validate_on_submit(): existing_user = mongo_users.find_one({"_id" : ObjectId(form.userOID.data)} ) log_cis.debug("existing_user : %s", pformat(existing_user) ) ### check if new email is already used by someone else is_new_email_taken = False existing_email = mongo_users.find_one( {"userEmail" : form.userEmail.data} ) log_cis.debug("existing_email : %s", pformat(existing_email) ) if existing_email is not None : if existing_user["_id"] != existing_email["_id"] : is_new_email_taken = True if existing_user is None : flash(u"Erreur : utilisateur inexistant", category='warning') return redirect(url_for('pref_infos')) if is_new_email_taken : flash(u"Erreur : cet email déjà utilisé", category='warning') return redirect(url_for('pref_infos')) else : ### saving updated infos in user user_obj = User() user_obj.populate_from_dict(dict_input=existing_user) # # update visitor to user in db --> function from ModelMixin log_cis.warning("updating new_user in mongo_users" ) user_obj.populate_from_form( form=form ) user_obj.update_document_in_mongo( document=existing_user, coll=mongo_users ) ### relog user login_user( user_obj, remember=existing_user['userRememberMe'] ) flash(u"Vos informations ont bien été mises à jour", category='primary') return redirect(url_for('pref_infos')) else : log_cis.error("form was not validated : form.errors : %s", form.errors ) flash(u"Erreur : formulaire invalide", category='warning') return redirect(url_for('pref_infos')) elif request.method == 'GET' : log_cis.info("updating an user - GET \n") print current_user.__dict__ # prepopulate input fields form.userOID.data = str(current_user.userOID) form.userName.data = current_user.userName.capitalize() form.userSurname.data = current_user.userSurname.capitalize() form.userEmail.data = current_user.userEmail form.userOtherStructure.data = current_user.userOtherStructure # prepopulate select fields form.userProfile.process_data(current_user.userProfile) form.userPartnerStructure.process_data(current_user.userPartnerStructure) form.userStructureProfile.process_data(current_user.userStructureProfile) # prepopulate boolean fields form.userHaveProjects.process_data(current_user.userHaveProjects) form.userJoinCollective.process_data(current_user.userJoinCollective) form.userNewsletter.process_data(current_user.userNewsletter) return render_template('user_preferences/user_parameters.html', config_name = config_name, # prod or default... app_metas = app_metas, language = "fr" , languages_dict = app_languages_dict , site_section = "preferences", site_subsection = "infos", form = form, user_infos = current_user.get_public_infos # cf model_user.py )
afe57314da056187b60e3a2ac365a27bbef73d2b
20,364
def read_domains(file_name): """ 读取域名存储文件,获取要探测的域名,以及提取出主域名 注意:若是不符合规范的域名,则丢弃 """ domains = [] main_domains = [] no_fetch_extract = tldextract.TLDExtract(suffix_list_urls=None) file_path = './unverified_domain_data/' with open(file_path+file_name,'r') as fp: for d in fp.readlines(): domain_tld = no_fetch_extract(d.strip()) tld, reg_domain = domain_tld.suffix, domain_tld.domain # 提取出顶级域名和主域名部分 if tld and reg_domain: main_domains.append(reg_domain+'.'+tld) domains.append(d.strip()) else: logger.logger.warning('域名%s不符合规范,不进行探测' % d.strip()) return domains, main_domains
856a7e7d93023bf59981d51a6210b988236a14a9
20,365
def determine_last_contact_incomplete(end_time_skyfield, events, times, antenna): """ gibt letzten Kontakt vervollständigt und Anzahl der an events in unvollständiger Folge zurück :param end_time_skyfield: skyfield time :param events: array of int :param times: array of skyfield times :param antenna: Antenna object :return: Contact object, int """ incomplete_event_sequence_end = list() # letztes Kontakt bei Ende des Analysezeitraums enden lassen incomplete_event_sequence_end.append(end_time_skyfield) # falls letztes Event Höchststand, dieses zu ende hinzufügen if events[-1] == int(SkyfieldEventTypes.Culminate): incomplete_event_sequence_end.append(times[-1]) # falls letztes Event in Liste Aufgehen, dieses zu Ende hinzufügen if events[-1 - len(incomplete_event_sequence_end)] == int(SkyfieldEventTypes.Rise): incomplete_event_sequence_end.append(times[-1 - len(incomplete_event_sequence_end)]) # Invertieren der Liste für chronologisch korrekte Reihenfolge incomplete_event_sequence_end.reverse() incomplete_contact_end = Contact(antenna) for time in incomplete_event_sequence_end: incomplete_contact_end.add_relative_position_by_skyfield_time(time) return incomplete_contact_end, len(incomplete_event_sequence_end)
8a234bed084fa829c7649de99b933a59c89cba5b
20,366
def lam_est(data, J, B, Q, L = 3, paras = [3, 20], n_trees = 200, include_reward = 0, fixed_state_comp = None, method = "QRF"): """ construct the pointwise cov lam (for both test stat and c.v.), by combine the two parts (estimated and observed) Returns ------- lam: (Q-1)-len list of four lam matrices (n * T-q * B) """ dx, da = data[0][0].shape[1], data[0][1].shape[1] if fixed_state_comp is not None: dx += 1 # generate uv rseed(0); npseed(0) if include_reward: uv = [randn(B, dx + 1), randn(B, dx + da)] else: uv = [randn(B, dx), randn(B, dx + da)] # estimate characteristic values (cross-fitting): phi_R, psi_R, phi_I, # psi_I estimated = cond_char_vaule_est(data = data, uv = uv, paras = paras, n_trees = n_trees, L = L, J = J, include_reward = include_reward, fixed_state_comp = fixed_state_comp, method = method) # ,obs_ys if paras == "CV_once": CV_paras = estimated return CV_paras else: estimated_cond_char = estimated # cos and sin in batch. (n*T*dx) * (dx* B) = n * T * B: # c_X,s_X,c_XA,s_XA observed_cond_char = obs_char(data = data, uv = uv, include_reward = include_reward, fixed_state_comp = fixed_state_comp) # combine the above two parts to get cond. corr. estimation. lam = lam_formula(estimated_cond_char, observed_cond_char, J, Q) return lam
3a1637f2e522e414e7ddc5c470310c1f2c460ce0
20,367
import os import csv def read_training_data(rootpath): """ Function for reading the images for training. :param rootpath: path to the traffic sign data :return: list of images, list of corresponding image information: width, height, class, track """ images = [] # images img_info = [] # corresponding labels # loop over all classes for img_class in os.listdir(rootpath): prefix = rootpath + '/' + img_class + '/' # subdirectory for class gt_file = open(prefix + 'GT-' + img_class + '.csv') # annotations file gt_reader = csv.reader(gt_file, delimiter=';') # csv parser for annotations file next(gt_reader) # skip header # loop over all images in current annotations file for row in gt_reader: images.append(plt.imread(prefix + row[0])) # numpy array representation of image img_info.append([int(row[1]), int(row[2]), img_class, row[0][:5]]) # width, height, class, track gt_file.close() return images, img_info
e1bbe3d239f93d5daa4e0127ca7bb3f1f7bfd44e
20,368
def initialize_all(y0, t0, t1, n): """ An initialization routine for the different ODE solving methods in the lab. This initializes Y, T, and h. """ if isinstance(y0, np.ndarray): Y = np.empty((n, y.size)).squeeze() else: Y = np.empty(n) # print y0 # print Y Y[0] = y0 T = np.linspace(t0, t1, n) h = float(t1 - t0) / (n - 1) return Y, T, h
552a92dd50aca926b1cb6c9e6aaafd1c1401b5c3
20,369
import random def _sequence_event(values, length, verb): """Returns sequence (finite product) event. Args: values: List of values to sample from. length: Length of the sequence to generate. verb: Verb in infinitive form. Returns: Instance of `probability.FiniteProductEvent`, together with a text description. """ del verb # unused samples = [random.choice(values) for _ in range(length)] events = [probability.DiscreteEvent([sample]) for sample in samples] event = probability.FiniteProductEvent(events) sequence = ''.join(str(sample) for sample in samples) event_description = 'sequence {sequence}'.format(sequence=sequence) return event, event_description
1addd21c6c39451ac29f9bcf7551f070884e9328
20,370
def ndarrayToQImage(img): """ convert numpy array image to QImage """ if img.dtype != 'uint8': raise ValueError('Only support 8U data') if img.dim == 3: t = QtGui.QImage.Format_RGB888 elif img.dim == 2: t = QtGui.QImage.Format_Grayscale8 else: raise ValueError('Only support 1 and 3 channel image') qimage = QtGui.QImage(img.data, img.shape[1], img.shape[0], img.strides[0], t) return qimage
a08207266b03adff2dd66421572a0905f9525844
20,371
from datetime import datetime import re import base64 import uuid def object_hook(dct, compile_re=False, ensure_tzinfo=True, encoding=None): """ Object hook used by hoplite_loads. This object hook can encode the dictionary in the right text format. For example, json.loads by default will decode '{'hey':'hey'}' into {u'hey':u'hey'} rather than {'hey':'hey'}. If encoding is set to utf-8, this object_hook can make '{'hey':'hey'}' decode to {'hey':'hey'} This object hook also decodes extended json types such as objectId and datetime objects. Datetime objects also have the option to be decoded with or without timezone information. :param dct: Dictionary this object hook is to operate on. :param ensure_tzinfo: Boolean deciding if timezone info should be added to decoded datetime objects :param encoding: choice of text decoding(unicode/utf-8, perhaps others) :return: """ if encoding: # Converts all keys and unicode values in the top layer of the current # dictionary to the desired encoding type. new_dct = {} for key, value in dct.iteritems(): if isinstance(key, unicode): key = key.encode(encoding) if isinstance(value, unicode): value = value.encode(encoding) new_dct[key] = value dct = new_dct if "$oid" in dct: return ObjectId(str(dct["$oid"])) if "$ref" in dct: return DBRef(dct["$ref"], dct["$id"], dct.get("$db", None)) if "$date" in dct: secs = float(dct["$date"]) / 1000.0 if ensure_tzinfo: return EPOCH_AWARE + datetime.timedelta(seconds=secs) else: # Avoid adding time zone info by default, unlike # bson.json_util.loads. If the developer really wants this, they # will have to specify it. return EPOCH_NAIVE + datetime.timedelta(seconds=secs) if "$regex" in dct: flags = 0 # PyMongo always adds $options but some other tools may not. for opt in dct.get("$options", ""): flags |= _RE_OPT_TABLE.get(opt, 0) if compile_re: return re.compile(dct["$regex"], flags) else: return Regex(dct["$regex"], flags) if "$minKey" in dct: return MinKey() if "$maxKey" in dct: return MaxKey() if "$binary" in dct: if isinstance(dct["$type"], int): dct["$type"] = "%02x" % dct["$type"] subtype = int(dct["$type"], 16) if subtype >= 0xffffff80: # Handle mongoexport values subtype = int(dct["$type"][6:], 16) return Binary(base64.b64decode(dct["$binary"].encode()), subtype) if "$code" in dct: return Code(dct["$code"], dct.get("$scope")) if "$uuid" in dct: return uuid.UUID(dct["$uuid"]) if "$undefined" in dct: return None if "$numberLong" in dct: return Int64(dct["$numberLong"]) if "$timestamp" in dct: tsp = dct["$timestamp"] return Timestamp(tsp["t"], tsp["i"]) return dct
bfe93f67813bda8e77e93a7ee33b6dc3bcbfe16a
20,372
import uuid import os import shutil def grade_submissions(course_name, assignment_name): """Grade all submissions for a particular assignment. A .zip archive should be uploaded as part of the POST request to this endpoint. The archive should contain a single directory 'Submissions', which should contain a directory for each student's submission. See the grade_assignment module for the implementation of the actual testing logic - this function is merely the endpoint to receive the request and return the response. The respose returned has an identifier to allow the client to request a CSV of grade results, as well as some JSON of results to be displayed to the user on the page.""" try: course = find_course(course_name) assignment = course.assignments.filter_by(name=assignment_name).one() except NoResultFound: return abort(404) submissions_archive = request.files['submissions'] csv_id= str(uuid.uuid4()) csvfile, final_results, unittest_stats = grade_assignment(assignment, submissions_archive) os.makedirs(assignment.grades_dir, exist_ok=True) shutil.copy(csvfile.name, os.path.join(assignment.grades_dir, csv_id)) csvfile.close() grade_response = {'csv_id': csv_id, 'results': final_results, 'stats': unittest_stats} if assignment.problems: grade_response["problems_max"] = {p.problem_name: p.score for p in assignment.problems} grade_response["max_score"] = sum(p.score for p in assignment.problems) else: grade_response["max_score"] = assignment.max_score return jsonify(grade_response)
20d38a30683c09c1a4e438da5b694774dcc71681
20,373
import requests import pickle def scrape_sp500_tickers(): """Scrape the wikipedia page for the latest list of sp500 companies Returns: [pickle]: [list of sp500 companies] """ #set get file to look at wikipedia's list of sp500 companies resp = requests.get('http://en.wikipedia.org/wiki/List_of_S%26P_500_companies') soup = bs.BeautifulSoup(resp.text, 'lxml') table = soup.find('table', {'class': 'wikitable sortable'}) tickers = [] #cycle through wiki table to find get all of the stock tickers for row in table.findAll('tr')[1:]: ticker = row.findAll('td')[0].text tickers.append(ticker) #save to pickle to speed up process with open("sp500tickers.pickle","wb") as f: pickle.dump(tickers,f) print ('Scraping Complete') return tickers
0c318e84f488c93254256394b1fe5d57d58c81a5
20,374
def get_top_k_recs(user_reps, item_reps, k): """ For each user compute the `n` topmost-relevant items Args: user_reps (dict): representations for all `m` unique users item_reps (:obj:`np.array`): (n, d) `d` latent features for all `n` items k (int): no. of most relevant items Returns: item_recs ([[int]]): list of personalized recommendations for each user as lists of item IDs """ n_user = len(user_reps) item_recs = [] for u in range(n_user): user_embed = user_reps[u]['embed'] user_item_scores = np.dot(item_reps, user_embed) item_recs.append(list(np.argsort(user_item_scores)[::-1][:k])) return item_recs
e209b8794fe3d8f8002dbbe48d858b335171c2f5
20,375
import logging import os import sys def logger(): """ Setting upp root and zeep logger :return: root logger object """ root_logger = logging.getLogger() level = logging.getLevelName(os.environ.get('logLevelDefault', 'INFO')) root_logger.setLevel(level) stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setLevel(level) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') stream_handler.setFormatter(formatter) root_logger.addHandler(stream_handler) zeep_logger = logging.getLogger('proarc') zeep = logging.getLevelName(os.environ.get('logLevelZeep', 'CRITICAL')) zeep_logger.setLevel(zeep) return root_logger
b7f3af5555eae953825c42aed18869deafa9f38d
20,376
def some_function(t): """Another silly function.""" return t + " python"
2bd8adc315e97409758f13b0f777ccd17eb4b820
20,377
def build_model(args): """ Function: Build a deep learning model Input: args: input parameters saved in the type of parser.parse_args Output: """ if args['debug_mode'] is True: print("BUILDING MODEL......") model = Sequential() # Normalize model.add(Lambda(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))) # Add a layer to crop images model.add(Cropping2D(cropping=((70, 25), (0, 0)))) # remaining size: 65,320,3 # Add three 5x5 convolution layers model.add(Convolution2D(24, 5, 5, activation='elu', subsample=(2, 2))) model.add(Convolution2D(36, 5, 5, activation='elu', subsample=(2, 2))) model.add(Convolution2D(48, 5, 5, activation='elu', subsample=(2, 2))) # Add two 3x3 convolution layers model.add(Convolution2D(64, 3, 3, activation='elu')) model.add(Convolution2D(64, 3, 3, activation='elu')) # Add a flatten layer model.add(Flatten()) # Add a dropout to overcome overfitting model.add(Dropout(args['keep_prob'])) # Add three fully connected layers model.add(Dense(100, activation='elu')) model.add(Dense(50, activation='elu')) model.add(Dense(10, activation='elu')) # Add a fully connected output layer model.add(Dense(1)) # Summary model.summary() return model
3008918f1319b235c4bdf575f7df84251337ec65
20,378
def add_context_for_join_form(context, request): """ Helper function used by view functions below """ # If the client has already joined a market if 'trader_id' in request.session: # If trader is in database if Trader.objects.filter(id=request.session['trader_id']).exists(): trader = Trader.objects.get(id=request.session['trader_id']) # If trader has been removed from market if trader.removed_from_market: request.session['removed_from_market'] = True # If trader has been deleted from database else: request.session['removed_from_market'] = True # We add this market to the context to notify the client market = get_object_or_404( Market, market_id=request.session['market_id']) context['market'] = market return context
aad1b592c6d28d9a69ec97a8be9d46f942cb3d7b
20,379
def create_list(inner_type_info: CLTypeInfo) -> CLTypeInfoForList: """Returns CL type information for a list. :param CLTypeInfo inner_type_info: Type information pertaining to each element within list. """ return CLTypeInfoForList( typeof=CLType.LIST, inner_type_info=inner_type_info )
e74731984cc83172c60a79e1b1efe05d90a32342
20,380
def get_baseline(baseline_filename, plugin_filenames=None): """ :type baseline_filename: string :param baseline_filename: name of the baseline file :type plugin_filenames: tuple :param plugin_filenames: list of plugins to import :raises: IOError :raises: ValueError """ if not baseline_filename: return raise_exception_if_baseline_file_is_unstaged(baseline_filename) return SecretsCollection.load_baseline_from_string( _get_baseline_string_from_file( baseline_filename, ), plugin_filenames=plugin_filenames, )
f4318ee676e0c670f152feef0884a220eb1a38ac
20,381
def del_ind_purged(*args): """ del_ind_purged(ea) """ return _ida_nalt.del_ind_purged(*args)
80133af5acff0a9c284ec7894abd10bafa2671a1
20,382
import random import hmac def hash_password(password, salthex=None, reps=1000): """Compute secure (hash, salthex, reps) triplet for password. The password string is required. The returned salthex and reps must be saved and reused to hash any comparison password in order for it to match the returned hash. The salthex string will be chosen randomly if not provided, and if provided must be an even-length string of hexadecimal digits, recommended length 16 or greater. E.g. salt="([0-9a-z][0-9a-z])*" The reps integer must be 1 or greater and should be a relatively large number (default 1000) to slow down brute-force attacks.""" if not salthex: salthex = ''.join([ "%02x" % random.randint(0, 0xFF) for d in range(0,8) ]) salt = [] for p in range(0, len(salthex), 2): salt.append(int(salthex[p:p+2], 16)) salt = bytes(salt) if reps < 1: reps = 1 msg = password.encode() for r in range(0,reps): msg = hmac.HMAC(salt, msg, digestmod='MD5').hexdigest().encode() return (msg.decode(), salthex, reps)
cac468818560ed52b415157dde71d5416c34478c
20,383
from typing import Dict def create_scheduled_job_yaml_spec( descriptor_contents: Dict, executor_config: ExecutorConfig, job_id: str, event: BenchmarkEvent ) -> str: """ Creates the YAML spec file corresponding to a descriptor passed as parameter :param event: event that triggered this execution :param descriptor_contents: dict containing the parsed descriptor :param executor_config: configuration for the transpiler :param job_id: str :return: Tuple with (yaml string for the given descriptor, job_id) """ descriptor = BenchmarkDescriptor.from_dict(descriptor_contents, executor_config.descriptor_config) bai_k8s_builder = create_scheduled_benchmark_bai_k8s_builder( descriptor, executor_config.bai_config, job_id, event=event ) return bai_k8s_builder.dump_yaml_string()
48e19b6637eafee72b0b3b04a1e31c8e6c163971
20,384
import argparse def _parse_args(): """ Parse arguments for the CLI """ parser = argparse.ArgumentParser() parser.add_argument( '--fovs', type=str, required=True, help="Path to the fov data", ) parser.add_argument( '--exp', type=str, required=True, help="Path to experiment file", ) return parser.parse_args()
ecea45baba3c89e3fd81613a256c5be300e01051
20,385
def ArgMin(iterable, key=None, default=None, retvalue=False): """ iterable >> ArgMin(key=None, default=None, retvalue=True) Return index of first minimum element (and minimum) in input (transformed or extracted by key function). >>> [1, 2, 0, 2] >> ArgMin() 2 >>> ['12', '1', '123'] >> ArgMin(key=len, retvalue=True) (1, '1') >>> ['12', '1', '123'] >> ArgMin(key=len) 1 >>> [] >> ArgMin(default=0) 0 >>> [] >> ArgMin(default=(None, 0), retvalue=True) (None, 0) >>> data = [(3, 10), (2, 20), (1, 30)] >>> data >> ArgMin(key=0) 2 >>> data >> ArgMin(1) 0 :param iterable iterable: Iterable over numbers :param int|tuple|function|None key: Key function to extract or transform elements. None = identity function. :param object default: Value returned if iterable is empty. :param bool retvalue: If True the index and the value of the minimum element is returned. :return: index of smallest element according to key function and the smallest element itself if retvalue==True. :rtype: object | tuple """ try: f = colfunc(key) i, v = min(enumerate(iterable), key=lambda i_e1: f(i_e1[1])) return (i, v) if retvalue else i except Exception: return default
9c2515c3a37ab82e2b5df6b5d8dcf5ded6ad15ad
20,386
import scipy def localize_peaks_monopolar_triangulation(traces, local_peak, contact_locations, neighbours_mask, nbefore, nafter, max_distance_um): """ This method is from Julien Boussard see spikeinterface.toolki.postprocessing.unit_localization """ peak_locations = np.zeros(local_peak.size, dtype=dtype_localize_by_method['monopolar_triangulation']) for i, peak in enumerate(local_peak): chan_mask = neighbours_mask[peak['channel_ind'], :] chan_inds, = np.nonzero(chan_mask) local_contact_locations = contact_locations[chan_inds, :] # wf is (nsample, nchan) - chann is only nieghboor wf = traces[peak['sample_ind']-nbefore:peak['sample_ind']+nafter, :][:, chan_inds] wf_ptp = wf.ptp(axis=0) x0, bounds = make_initial_guess_and_bounds(wf_ptp, local_contact_locations, max_distance_um) args = (wf_ptp, local_contact_locations) output = scipy.optimize.least_squares(estimate_distance_error, x0=x0, bounds=bounds, args = args) peak_locations[i] = tuple(output['x']) return peak_locations
c751ec223423007b170ce0020f6c21c72cff3cc2
20,387
def format_dict_with_indention(data): """Return a formatted string of key value pairs :param data: a dict :rtype: a string formatted to key='value' """ if data is None: return None return jsonutils.dumps(data, indent=4)
085ac029aa73e5049eeec12e021997a5067966ce
20,388
import logging def get_logger(name, info_file, error_file, raw=False): """ Get a logger forwarding message to designated places :param name: The name of the logger :param info_file: File to log information less severe than error :param error_file: File to log error and fatal :param raw: If the output should be log in raw format :return: Generated logger """ # Generate or get the logger object if isinstance(name, str): logger = logging.getLogger(name) else: logger = name logger.setLevel(logging.DEBUG) # Config info level logger handler # If the file argument is None, forward the log to standard output if info_file: info_handler = logging.handlers.TimedRotatingFileHandler(info_file, when='midnight', interval=1) else: info_handler = logging.StreamHandler() info_handler.setLevel(logging.DEBUG) info_handler.setFormatter(logging.Formatter(RAW_FORMAT if raw else LOG_FORMAT)) # Config error level logger handler if error_file: error_handler = logging.FileHandler(error_file) else: error_handler = logging.StreamHandler() error_handler.setLevel(logging.ERROR) error_handler.setFormatter(logging.Formatter(RAW_FORMAT if raw else LOG_FORMAT)) # Add handlers to loggers logger.addHandler(info_handler) logger.addHandler(error_handler) return logger
ea4abed032c201cdac9489ded4c195287106e6b2
20,389
def _Rx(c, s): """Construct a rotation matrix around X-axis given cos and sin. The `c` and `s` MUST satisfy c^2 + s^2 = 1 and have the same shape. See https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations. """ o = np.zeros_like(c) i = np.ones_like(o) return _tailstack2([[i, o, o], [o, c, -s], [o, s, c]])
01d436bee07458ede0484ed745ccf72568214240
20,390
def is_fraud(data): """ Identifies if the transaction was fraud :param data: the data in the transaction :return: true if the transaction was fraud, false otherwise """ return data[1] == 1
115e45a10f3429b9c33bc81fd94c24eff712f618
20,391
import scipy def EvalBinomialPmf(k, n, p): """Evaluates the binomial pmf. Returns the probabily of k successes in n trials with probability p. """ return scipy.stats.binom.pmf(k, n, p)
0720359be48b514465eb3a10d3f271ac3c25dfb9
20,392
def add_prospect(site_id, fname, lname, byear, bmonth, bday, p_type, id_type='all'): """ Looks up a prospets prospect_id given their first name (fname) last name (lname), site id (site_id), site (p_type), and birthdate (byear, bmonth, bday). If no prospect is found, adds the player to the professional_prospects table and returns the newly created prospect_id. """ fname_search = fname_lookup(fname) if id_type == 'all': qry_add = """((mlb_id = "%s" AND mlb_id != 0) OR (mlb_draft_id = "%s" AND mlb_draft_id IS NOT NULL) OR (mlb_international_id = "%s" AND mlb_international_id IS NOT NULL) OR (fg_minor_id = "%s" AND fg_minor_id IS NOT NULL) OR (fg_major_id = "%s" AND fg_major_id IS NOT NULL) OR (fg_temp_id = "%s" AND fg_temp_id IS NOT NULL))""" % (site_id, site_id, site_id, site_id, site_id, site_id) else: qry_add = """(%s = "%s" AND (%s != 0 OR %s IS NOT NULL))""" % (id_type, site_id, id_type, id_type) check_qry = """SELECT prospect_id FROM professional_prospects WHERE 1 AND %s ; """ check_query = check_qry % (qry_add) check_val = db.query(check_query) if check_val != (): prospect_id = check_val[0][0] return prospect_id else: check_other_qry = """SELECT prospect_id FROM professional_prospects WHERE birth_year = %s AND birth_month = %s AND birth_day = %s AND ( ( REPLACE(REPLACE(REPLACE(REPLACE(mlb_lname, ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE("%%%s%%", ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE("%s",".",""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE(CONCAT("%%",mlb_lname,"%%"), ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE(fg_lname, ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE("%%%s%%", ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE("%s", ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE(CONCAT("%%",fg_lname,"%%"), ".", ""),"'",""),"-","")," ","") ) ) AND ( ( REPLACE(REPLACE(REPLACE(REPLACE(mlb_fname, ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE("%%%s%%", ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE("%s",".",""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE(CONCAT("%%",mlb_fname,"%%"), ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE(fg_fname, ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE("%%%s%%", ".", ""),"'",""),"-","")," ","") ) OR ( REPLACE(REPLACE(REPLACE(REPLACE("%s", ".", ""),"'",""),"-","")," ","") LIKE REPLACE(REPLACE(REPLACE(REPLACE(CONCAT("%%",fg_fname,"%%"), ".", ""),"'",""),"-","")," ","") ) ) ;""" check_other_query = check_other_qry % (byear, bmonth, bday, lname, lname, lname, lname, fname_search, fname_search, fname_search, fname_search) check_other_val = db.query(check_other_query) if check_other_val != (): prospect_id = check_other_val[0][0] f_name = "mlb_fname" l_name = "mlb_lname" if p_type == "professional": id_column = "mlb_id" elif p_type == "draft": id_column = "mlb_draft_id" elif p_type in ("int", "international"): id_column = "mlb_international_id" elif p_type == "fg": if "_" in site_id: id_column = "fg_temp_id" elif site_id[0] == "s": id_column = "fg_minor_id" else: id_column = "fg_major_id" f_name = "fg_fname" l_name = "fg_lname" print "\n\n\t\t\tadding", fname, lname, id_column, site_id, '\n\n' for col, val in {f_name:fname, l_name:lname, id_column:site_id}.items(): set_str = 'SET %s = "%s"' % (col,val) set_str2 = "# AND (%s IS NULL OR %s IS NULL)" % (col, col) update_qry = """UPDATE professional_prospects %s WHERE prospect_id = %s %s;""" update_query = update_qry % (set_str, prospect_id, set_str2) print update_query db.query(update_query) db.conn.commit() return prospect_id else: entry = {"birth_year":int(byear), "birth_month":int(bmonth), "birth_day":int(bday)} if p_type == "fg": if "_" in site_id: entry["fg_temp_id"] = site_id elif site_id[0] == "s": entry["fg_minor_id"] = site_id else: entry["fg_major_id"] = site_id entry["fg_fname"] = fname entry["fg_lname"] = lname else: entry["mlb_fname"] = fname entry["mlb_lname"] = lname if p_type == "professional": entry["mlb_id"] = site_id elif p_type == "draft": entry["mlb_draft_id"] = site_id elif p_type in ("int", "international"): entry["mlb_international_id"] = site_id db.insertRowDict(entry, "professional_prospects", debug=1) db.conn.commit() print '\n\n\n\n', check_other_query, '\n\n\n\n\n', check_query, '\n\n\n\n' recheck_val = db.query(check_query) prospect_id = recheck_val[0][0] return prospect_id
da53dd73cddf1fd08d3bf2ca237c460f83d9a66b
20,393
def reformat_icd_code(icd_code: str, is_diag: bool = True) -> str: """Put a period in the right place because the MIMIC-III data files exclude them. Generally, procedure ICD codes have dots after the first two digits, while diagnosis ICD codes have dots after the first three digits. Adopted from: https://github.com/jamesmullenbach/caml-mimic """ icd_code = "".join(icd_code.split(".")) if is_diag: if icd_code.startswith("E"): if len(icd_code) > 4: icd_code = icd_code[:4] + "." + icd_code[4:] else: if len(icd_code) > 3: icd_code = icd_code[:3] + "." + icd_code[3:] else: icd_code = icd_code[:2] + "." + icd_code[2:] return icd_code
4992886b257dab5361f84dd0c7774f677466437f
20,394
def parse_parent(self): """Parse enclosing arglist of self""" gtor_left = tokens_leftwards(self.begin) gtor_right = tokens_rightwards(self.end) enc = Arglist() enc.append_subarglist_right(self) # _left could have worked equally well try: parse_left(enc, gtor_left) parse_right(enc, gtor_right) except StopIteration: return None return enc.complete()
aeae5b7d56614299d0d95d52a1cd7e8cecd036ff
20,395
def dump_annotation(ribo_handle): """ Returns annotation of a ribo file in bed format in string form. Parameters ---------- ribo_handle : h5py.File hdf5 handle for the ribo file Returns ------- A string that can be output directly as a bed file. """ boundaries = get_region_boundaries(ribo_handle) names = get_reference_names(ribo_handle) bed_rows = list() for ref_name, ref_boundaries in zip(names, boundaries): for region_name, region_boundaries in zip(REGION_names, ref_boundaries ): if region_boundaries[1] <= region_boundaries[0]: continue bed_entries = tuple( map( str, [ref_name, region_boundaries[0], region_boundaries[1], region_name, 0, "+"] ) ) bed_rows.append( "\t".join(bed_entries) ) return "\n".join(bed_rows)
54c98527d02ad5a136c0bc29bc794c3819fe5426
20,396
def encode_snippets_with_states(snippets, states): """ Encodes snippets by using previous query states instead. Inputs: snippets (list of Snippet): Input snippets. states (list of dy.Expression): Previous hidden states to use. TODO: should this by dy.Expression or vector values? """ for snippet in snippets: snippet.set_embedding(dy.concatenate([states[snippet.startpos], states[snippet.endpos]])) return snippets
1352ddb5ed745bae00d34cd23a43595f2c7ecc7b
20,397
import subprocess def get_openshift_console_url(namespace: str) -> str: """Get the openshift console url for a namespace""" cmd = ( "oc get route -n openshift-console console -o jsonpath='{.spec.host}'", ) ret = subprocess.run(cmd, shell=True, check=True, capture_output=True) if ret.returncode != 0: raise UMBNotificationError( "Could not detect the location of openshift console url: {ret.stdout.decode()}" ) return f"https://{ret.stdout.decode()}/k8s/ns/{namespace}/tekton.dev~v1beta1~PipelineRun/"
71c85926c5ca368eac615f7433c7dccca5780a19
20,398
def calculate_ani(blast_results, fragment_length): """ Takes the input of the blast results, and calculates the ANI versus the reference genome """ sum_identity = float(0) number_hits = 0 # Number of hits that passed the criteria total_aligned_bases = 0 # Total of DNA bases that passed the criteria total_unaligned_fragments = 0 total_unaligned_bases = 0 conserved_dna_bases = 0 for query in blast_results: identity = blast_results[query][2] queryEnd = blast_results[query][7] queryStart = blast_results[query][6] perc_aln_length = (float(queryEnd) - float(queryStart)) / fragment_length[query] if float(identity) > float(69.9999) and float(perc_aln_length) > float(0.69999): sum_identity += float(identity) number_hits += 1 total_aligned_bases += fragment_length[query] else: total_unaligned_fragments += 1 total_unaligned_bases += fragment_length[query] if float(identity) > float(89.999): conserved_dna_bases += fragment_length[query] return sum_identity, number_hits, total_aligned_bases, total_unaligned_fragments, total_unaligned_bases
09b649dda337d2b812f5c5fd9ec75b34737e3f15
20,399