content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def wpr(c_close, c_high, c_low, period): """ William %R :type c_close: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period: int :rtype: (np.ndarray, np.ndarray) """ size = len(c_close) out = np.array([np.nan] * size) for i in range(period - 1, size): e = i + 1 s = e - period mh = np.max(c_high[s:e]) out[i] = ((mh - c_close[i]) / (mh - np.min(c_low[s:e]))) * -100 return out
0f1d8d46464be81daa6308df97a7a8d12a90274b
17,400
def delete_action_log(request, log_id): """ View for delete the action log. This view can only access by superuser and staff. """ action = get_object_or_404(ActionLog, id=log_id) if action.status == 0 or action.status == 1: messages.error(request, "Cannot delete the Action log that is running or in idle state!") return redirect('actions') action.delete() messages.success(request, "Delete action log successfully!") return redirect('actions')
8560e5280a57ddc8158b811fac29763bbaa8ef37
17,401
def hsla_to_rgba(h, s, l, a): """ 0 <= H < 360, 0 <= s,l,a < 1 """ h = h % 360 s = max(0, min(1, s)) l = max(0, min(1, l)) a = max(0, min(1, a)) c = (1 - abs(2*l - 1)) * s x = c * (1 - abs(h/60%2 - 1)) m = l - c/2 if h<60: r, g, b = c, x, 0 elif h<120: r, g, b = x, c, 0 elif h<180: r, g, b = 0, c, x elif h<240: r, g, b = 0, x, c elif h<300: r, g, b = x, 0, c else: r, g, b = c, 0, x return (int((r+m)*255), int((g+m)*255), int((b+m)*255), int(a*255))
55e546756d4dd2a49581a5f950beb286dd73f3f9
17,402
from typing import Dict from pathlib import Path from typing import Optional def prioritize(paths: Dict[int, Path], purpose: str) -> Optional[Path]: """Returns highest-priority and existing filepath from ``paths``. Finds existing configuration or data file in ``paths`` with highest priority and returns it, otherwise returns ``None``. """ for key in sorted(paths.keys(), reverse=True): if purpose == "config": if paths[key].exists(): return paths[key] if purpose == "data": return paths[key]
2c00d0bfe696040c2c19dc1d8b3393b7be124e11
17,403
def traverse(d, path): """Return the value at the given path from the given nested dict/list""" for k in path.split('.'): if k.isdigit(): k = int(k) d = d[k] return d
ba832a008073da5d97ba0a237a8e0ded17e4694e
17,404
def _bundle_name_with_extension(ctx): """Returns the name of the bundle with its extension. Args: ctx: The Skylark context. Returns: The bundle name with its extension. """ return _bundle_name(ctx) + _bundle_extension(ctx)
51f9c84fa2dd0ef9c5736a59ca2cd3c2d76aa108
17,405
import subprocess def call(args): """ Call args in a subprocess and display output on the fly. Return or raise stdout, stderr, returncode """ if TRACE: print('Calling:', ' '.join(args)) with subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, encoding='utf-8' ) as process: while True: line = process.stdout.readline() if not line and process.poll() is not None: break if TRACE: print(line.rstrip(), flush=True) stdout, stderr = process.communicate() returncode = process.returncode if returncode == 0: return returncode, stdout, stderr else: raise Exception(returncode, stdout, stderr)
7837a8e807bc7e3cda56b1f5e8625f936cc4bee0
17,406
def cvt_axisang_t_o2i(axisang, trans): """-correction: t_r, R_rt_r. outer to inner""" trans -= get_offset(axisang) return axisang, trans
ef263052e91ecc2fb8e668bca89a9d5622b75ff2
17,407
import pytz import numpy import dateutil def processData(dict, valuename, timename='Aika', multiplier=1.0): """Process "raw" OData dict and strip only the time and value. Also convert time to UTC and hydrodynamics model (COHERENS) format. Parameters ---------- dict: dictionary Data dictionary as received from OData fetcher valuename: string Value nameto process timename: string Time field name multiplier: float Multiply value with this number. Useful in e.g. unit conversions. Returns dictionary with processed data. """ # Gets valuename field from dict of sites along with timefield and multiplies values by multiplier # Returns dict of sites with list of values: time, coherenstime, value tz = pytz.timezone('Europe/Helsinki') # Default data timezone in case it doesn't exist if numpy.isnan(multiplier): print("Warning: multiplier ignored (NaN)") multiplier = 1.0 newdict = {} for site in dict: newdata = [] for meas in dict[site]: time = dateutil.parser.parse(meas[timename]) # If timezone not present, assume local (Finland) timezone if time.tzinfo is None or time.tzinfo.utcoffset(time) is None: time = tz.localize(time) # If timezone is not UTC, convert time to UTC if time.tzname() != 'UTC': time = time.astimezone(pytz.utc) # Convert time from datetime object to COHERENS ASCII format coherenstime = time.strftime("%Y/%m/%d;%H:%M:%S,000") value = float(meas[valuename])*multiplier newdata.append([time, coherenstime, value]) newdict[site] = newdata return newdict
df452a703a3afface12dc76abb647a5e38b808c3
17,408
from datetime import datetime def get_current_year(): """Returns current year """ return str(datetime.date.today().year)
f019e7f2462a4d8db0db294fade6ca737e87a24c
17,409
def parse_ans(text): """ Parses the given text as an answer set, i.e., a sequence of predicate statements. Returns a (possibly empty) tuple of Predicate objects. """ return parser.parse_completely( text, parser.Rep(PredicateStatement), devour=devour_asp )
44479668629b142115c27476242cbdf23b6657cc
17,410
def get_xyz(data): """ :param data: 3D data :return: 3D data coordinates 第1,2,3维数字依次递增 """ nim = data.ndim if nim == 3: size_x, size_y, size_z = data.shape x_arange = np.arange(1, size_x+1) y_arange = np.arange(1, size_y+1) z_arange = np.arange(1, size_z+1) [xx, yy, zz] = np.meshgrid(x_arange, y_arange, z_arange, indexing='ij') xyz = np.column_stack([zz.flatten(), yy.flatten(), xx.flatten()]) else: """ :param data: 2D data :return: 2D data coordinates 第1,2维数字依次递增 """ size_x, size_y = data.shape x_arange = np.arange(1, size_x + 1) y_arange = np.arange(1, size_y + 1) [xx, yy] = np.meshgrid(x_arange, y_arange, indexing='ij') xyz = np.column_stack([yy.flatten(), xx.flatten()]) return xyz
b1bd78fee6ca4a8fc2a33430c4ea5e922d696381
17,411
def wc_proximal_gradient(L, mu, gamma, n, verbose=1): """ Consider the composite convex minimization problem .. math:: F_\\star \\triangleq \\min_x \\{F(x) \\equiv f_1(x) + f_2(x)\\}, where :math:`f_1` is :math:`L`-smooth and :math:`\\mu`-strongly convex, and where :math:`f_2` is closed convex and proper. This code computes a worst-case guarantee for the **proximal gradient** method (PGM). That is, it computes the smallest possible :math:`\\tau(n, L, \\mu)` such that the guarantee .. math :: \\|x_n - x_\\star\\|^2 \\leqslant \\tau(n, L, \\mu) \\|x_0 - x_\\star\\|^2, is valid, where :math:`x_n` is the output of the **proximal gradient**, and where :math:`x_\\star` is a minimizer of :math:`F`. In short, for given values of :math:`n`, :math:`L` and :math:`\\mu`, :math:`\\tau(n, L, \\mu)` is computed as the worst-case value of :math:`\\|x_n - x_\\star\\|^2` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: Proximal gradient is described by .. math:: \\begin{eqnarray} y_t & = & x_t - \\gamma \\nabla f_1(x_t), \\\\ x_{t+1} & = & \\arg\\min_x \\left\\{f_2(x)+\\frac{1}{2\gamma}\|x-y_t\|^2 \\right\\}, \\end{eqnarray} for :math:`t \in \\{ 0, \\dots, n-1\\}` and where :math:`\\gamma` is a step-size. **Theoretical guarantee**: It is well known that a **tight** guarantee for PGM is provided by .. math :: \\|x_n - x_\\star\\|^2 \\leqslant \\max\\{(1-L\\gamma)^2,(1-\\mu\\gamma)^2\\}^n \\|x_0 - x_\\star\\|^2, which can be found in, e.g., [1, Theorem 3.1]. It is a folk knowledge and the result can be found in many references for gradient descent; see, e.g.,[2, Section 1.4: Theorem 3], [3, Section 5.1] and [4, Section 4.4]. **References**: `[1] A. Taylor, J. Hendrickx, F. Glineur (2018). Exact worst-case convergence rates of the proximal gradient method for composite convex minimization. Journal of Optimization Theory and Applications, 178(2), 455-476. <https://arxiv.org/pdf/1705.04398.pdf>`_ [2] B. Polyak (1987). Introduction to Optimization. Optimization Software New York. `[1] E. Ryu, S. Boyd (2016). A primer on monotone operator methods. Applied and Computational Mathematics 15(1), 3-43. <https://web.stanford.edu/~boyd/papers/pdf/monotone_primer.pdf>`_ `[4] L. Lessard, B. Recht, A. Packard (2016). Analysis and design of optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization 26(1), 57–95. <https://arxiv.org/pdf/1408.3595.pdf>`_ Args: L (float): the smoothness parameter. mu (float): the strong convexity parameter. gamma (float): proximal step-size. n (int): number of iterations. verbose (int): Level of information details to print. - 1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + CVXPY details. Returns: pepit_tau (float): worst-case value. theoretical_tau (float): theoretical value. Example: >>> pepit_tau, theoretical_tau = wc_proximal_gradient(L=1, mu=.1, gamma=1, n=2, verbose=1) (PEPit) Setting up the problem: size of the main PSD matrix: 7x7 (PEPit) Setting up the problem: performance measure is minimum of 1 element(s) (PEPit) Setting up the problem: initial conditions (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 2 function(s) function 1 : 6 constraint(s) added function 2 : 6 constraint(s) added (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (solver: SCS); optimal value: 0.6560999999942829 *** Example file: worst-case performance of the Proximal Gradient Method in function values*** PEPit guarantee: ||x_n - x_*||^2 <= 0.6561 ||x0 - xs||^2 Theoretical guarantee: ||x_n - x_*||^2 <= 0.6561 ||x0 - xs||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function and a closed convex proper function f1 = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) f2 = problem.declare_function(ConvexFunction) func = f1 + f2 # Start by defining its unique optimal point xs = x_* xs = func.stationary_point() # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run the proximal gradient method starting from x0 x = x0 for _ in range(n): y = x - gamma * f1.gradient(x) x, _, _ = proximal_step(y, f2, gamma) # Set the performance metric to the distance between x and xs problem.set_performance_metric((x - xs) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = max((1 - mu*gamma)**2, (1 - L*gamma)**2)**n # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of the Proximal Gradient Method in function values***') print('\tPEPit guarantee:\t ||x_n - x_*||^2 <= {:.6} ||x0 - xs||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||x_n - x_*||^2 <= {:.6} ||x0 - xs||^2 '.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method ( and the reference theoretical value) return pepit_tau, theoretical_tau
ff8b67b963a2301e9b49870ffa9b6736a23420a4
17,412
import re import os def basic_output_filter( filtered_prefixes=None, filtered_patterns=None, ): """ Create a line filtering function to help output testing. :param filtered_prefixes: A list of byte strings representing prefixes that will cause output lines to be ignored if they start with one of the prefixes. By default lines starting with the process ID (`'pid'`) and return code (`'rc'`) will be ignored. :param filtered_patterns: A list of byte strings representing regexes that will cause output lines to be ignored if they match one of the regexes. """ if filtered_prefixes is None: filtered_prefixes = get_default_filtered_prefixes() if filtered_patterns is None: filtered_patterns = get_default_filtered_patterns() filtered_patterns = map(re.compile, filtered_patterns) def _filter(output): filtered_output = [] for line in output.splitlines(): # Filter out stdout that comes from underlying DDS implementation # Note: we do not currently support matching filters across multiple stdout lines. if any(line.startswith(prefix) for prefix in filtered_prefixes): continue if any(pattern.match(line) for pattern in filtered_patterns): continue filtered_output.append(line) if output.endswith(os.linesep): filtered_output.append(os.linesep) return os.linesep.join(filtered_output) return _filter
8db044d7d9d94ad7c4137762336d7a4b80f7a53c
17,413
def all_asset_types_for_shot(shot, client=default): """ Args: shot (str / dict): The shot dict or the shot ID. Returns: list: Asset types from assets casted in given shot. """ path = "shots/%s/asset-types" % shot["id"] return sort_by_name(raw.fetch_all(path, client=client))
a7d06e49d564dbd294636e29f488703f5027026e
17,414
from typing import Iterable def train(x_mat: ndarray, k: int, *, max_iters: int = 10, initial_centroids: Iterable = None, history: bool = False): """ 进行k均值训练 :param x_mat: 特征向量组,行数 m 表示样本数,列数 n 表示特征数 :param k: 聚类数目 :param max_iters: 最大迭代次数 :param initial_centroids: 初始聚类中心,不提供别的话将随机挑选聚类中心 :param history: 是否返回历史信息 :return: 计算好的聚类中心;包含每个样本所属聚类中心下标的行向量;包含每一次迭代计算的聚类中心列表(history为True的话) """ x_mat = __t.r2m(x_mat) m, n = x_mat.shape if initial_centroids is None: rand_indices = np.arange(0, m) np.random.shuffle(rand_indices) initial_centroids = x_mat[rand_indices[:k], :] if not isinstance(initial_centroids, ndarray): initial_centroids = np.asarray(initial_centroids) idx = None centroids_history = None if history: centroids_history = [initial_centroids] for i in range(max_iters): idx = find_closest(x_mat, initial_centroids) initial_centroids = compute_centroids(x_mat, idx) if history: centroids_history.append(initial_centroids) if history: return initial_centroids, idx, centroids_history else: return initial_centroids, idx
3a27cb709d6b267c8da19312f634f6003e2ba9a3
17,415
def download4(url, user_agent='wswp', num_retries=2): """Download function that includes user agent support""" # wswp: web scraping with python print 'Downloading:', url headers = {'User-agent': user_agent} request = urllib2.Request(url, headers=headers) try: html = urllib2.urlopen(request).read() except urllib2.URLError as e: print 'Download error:', e.reason html = None if num_retries > 0: if hasattr(e, 'code') and 500 <= e.code < 600: # retry 5XX HTTP errors html = download4(url, user_agent, num_retries-1) return html
1381e64e93b373e68a1a07eaab1688462f905374
17,416
import unittest def testv1(): """Runs the unit tests without test coverage.""" tests = unittest.TestLoader().discover('./tests/api/v1', pattern='test*.py') result = unittest.TextTestRunner(verbosity=2).run(tests) if result.wasSuccessful(): return 0 return 1
519835d59ce7d370e8099e94a48b1e7309274d99
17,417
def get_third_order_displacements(cell, symmetry, is_plusminus='auto', is_diagonal=False): """Create dispalcement dataset Note ---- Atoms 1, 2, and 3 are defined as follows: Atom 1: The first displaced atom. Third order force constant between Atoms 1, 2, and 3 is calculated. Atom 2: The second displaced atom. Second order force constant between Atoms 2 and 3 is calculated. Atom 3: Force is mesuared on this atom. Parameters ---------- cell : PhonopyAtoms Supercell symmetry : Symmetry Symmetry of supercell is_plusminus : str or bool, optional Type of displacements, plus only (False), always plus and minus (True), and plus and minus depending on site symmetry ('auto'). is_diagonal : bool, optional Whether allow diagonal displacements of Atom 2 or not Returns ------- dict Data structure is like: {'natom': 64, 'cutoff_distance': 4.000000, 'first_atoms': [{'number': atom1, 'displacement': [0.03, 0., 0.], 'second_atoms': [ {'number': atom2, 'displacement': [0., -0.03, 0.], 'distance': 2.353}, {'number': ... }, ... ] }, {'number': atom1, ... } ]} """ positions = cell.get_scaled_positions() lattice = cell.get_cell().T # Least displacements of first atoms (Atom 1) are searched by # using respective site symmetries of the original crystal. # 'is_diagonal=False' below is made intentionally to expect # better accuracy. disps_first = get_least_displacements(symmetry, is_plusminus=is_plusminus, is_diagonal=False) symprec = symmetry.get_symmetry_tolerance() dds = [] for disp in disps_first: atom1 = disp[0] disp1 = disp[1:4] site_sym = symmetry.get_site_symmetry(atom1) dds_atom1 = {'number': atom1, 'direction': disp1, 'second_atoms': []} # Reduced site symmetry at the first atom with respect to # the displacement of the first atoms. reduced_site_sym = get_reduced_site_symmetry(site_sym, disp1, symprec) # Searching orbits (second atoms) with respect to # the first atom and its reduced site symmetry. second_atoms = get_least_orbits(atom1, cell, reduced_site_sym, symprec) for atom2 in second_atoms: dds_atom2 = get_next_displacements(atom1, atom2, reduced_site_sym, lattice, positions, symprec, is_diagonal) min_vec = get_equivalent_smallest_vectors(atom1, atom2, cell, symprec)[0] min_distance = np.linalg.norm(np.dot(lattice, min_vec)) dds_atom2['distance'] = min_distance dds_atom1['second_atoms'].append(dds_atom2) dds.append(dds_atom1) return dds
6ae03dbd10ffec75bc274b4a4115b81d28cefc40
17,418
def get_result_type(action): """Gets the corresponding ROS action result type. Args: action: ROS action name. Returns: Result message type. None if not found. """ msg_type = rostopic.get_topic_type("{}/result".format(action))[0] # Replace 'ActionResult' with 'Result'. return msg_type[:-12] + "Result"
f5612ac116357000106f7ff24f0d2bebb6789547
17,419
import statistics import math def get_turbulence(sequence): """ Computes turbulence for a given sequence, based on `Elzinga & Liefbroer's 2007 definition <https://www.researchgate.net/publication/225402919_De-standardization_of_Family-Life_Trajectories_of_Young_Adults_A_Cross-National_Comparison_Using_Sequence_Analysis>`_ which is also implemented in the `TraMineR <http://traminer.unige.ch/doc/seqST.html>`_ sequence analysis library. Example -------- >>> sequence = [1,1,2,2,3] >>> ps.get_turbulence(sequence) 5.228... """ phi = get_ndistinct_subsequences(sequence) #print('phi', phi) state_durations = [value for key, value in get_spells(sequence)] #print('durations', state_durations) #print('mean duration', statistics.mean(state_durations)) variance_of_state_durations = statistics.variance(state_durations) #print('variance', variance_of_state_durations) tbar = statistics.mean(state_durations) maximum_state_duration_variance = (len(sequence) - 1) * (1 - tbar) ** 2 #print('smax', maximum_state_duration_variance) top_right = maximum_state_duration_variance + 1 bot_right = variance_of_state_durations + 1 turbulence = math.log2(phi * (top_right / bot_right)) #print('turbulence', turbulence) return turbulence
9900d377240b609de1cb7a5284752457947ef6c3
17,420
def reflect(array, holder=1): """ Reflects a np array across the y-axis Args: array: array to be reflected holder: a holder variable so the function can be used in optimization algorithms. If <0.5, does not reflect. Returns: Reflected array """ c = array.copy() if holder > 0.5: c[:, 0] = -c[:, 0] return c
c39cbf0bb3a949254e4f0c35b20bdf84766d2084
17,421
import os from datetime import datetime import time import logging import sys def create_and_return_logger(logger_name, filename="log"): """ Function to create a custom logger that will print to terminal as well as write to a log file Accepts: Logger name for script that is calling logger, and filename for log. Returns: Logger object and Log file path. """ LOG_FILE_DIR = os.getcwd() + "/logs" if not os.path.exists(LOG_FILE_DIR): os.makedirs(LOG_FILE_DIR) LOG_FILE = f"{LOG_FILE_DIR}/{filename}_{datetime.fromtimestamp(time.time()).strftime('%Y_%m_%d_%H_%M_%S')}.log" logger = logging.getLogger(logger_name) logger.setLevel(logging.DEBUG) logFormatter = logging.Formatter( "%(levelname)s %(asctime)s %(processName)s %(message)s" ) sh = logging.StreamHandler(sys.stdout) sh.setFormatter(logFormatter) logger.handlers.clear() logger.addHandler(sh) fileHandler = logging.FileHandler(f"{LOG_FILE}") fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) return logger, LOG_FILE
5860e00fe3fd52e11afd4daa27554c2e070afe06
17,422
from sys import path def _get_all_entries(entry_list, keep_top_dir): """ Returns a list of all entries (files, directories) that should be copied. The main purpose of this function is to evaluate 'keep_top_dir' and in case it should not be kept use all the entries below the top-level directories. """ all_files = [] entry_list = [path.local(entry) for entry in entry_list] if keep_top_dir: all_files = entry_list else: for entry in entry_list: if entry.isdir(): all_files.extend(entry.listdir()) else: all_files.append(entry) return all_files
fbd12ef87cdc21307908ad7013167559da6fc051
17,423
import os def process_exclude_items(exclude_items=[]): """ Process the exclude items to get list of directories to NOT be scanned :return: a list of directories to not be scanned if any, otherwise an empty list """ logger.debug("Parsing exclude items ...") parsed_list = [] for item in exclude_items: item = item.strip() if not item or item.startswith('#'): continue exclude_item = os.path.normpath(item).replace('//', '/') if os.path.exists(exclude_item): # ignore the exclude_item if its not a full directory path if exclude_item == '/': # Found / in exclude list. No need to get the other items because / trumps all logger.debug("Found root directory in the exclude list. Expanding it to all toplevel directories ...") parsed_list = get_toplevel_dirs() break elif not exclude_item.startswith('/'): logger.debug("Skipping partial directory path '%s' ...", exclude_item) continue else: parsed_list.append(exclude_item) else: logger.debug("Skipping missing item '%s' ...", exclude_item) if not parsed_list: logger.debug("No items specified to be excluded") else: # Remove any duplicates and any children of parent directories before returning parsed_list = remove_child_items(sorted(list(set(parsed_list)))) logger.debug("Exclude items: %s", parsed_list) return parsed_list
36374faa3182aa1db0ba0d12b6a4f3ce23a69a95
17,424
def absolute_name_scope(scope, reuse=tf.AUTO_REUSE): """Builds an absolute tf.name_scope relative to the current_scope. This is helpful to reuse nested name scopes. E.g. The following will happen when using regular tf.name_scope: with tf.name_scope('outer'): with tf.name_scope('inner'): print(tf.constant(1)) # Will print outer/inner/Const:0 with tf.name_scope('outer'): with tf.name_scope('inner'): print(tf.constant(1)) # Will print outer/inner_1/Const:0 With absolute_name_scope: with absolute_name_scope('outer'): with absolute_name_scope('inner'): print(tf.constant(1)) # Will print outer/inner/Const:0 with absolute_name_scope('outer'): with absolute_name_scope('inner'): print(tf.constant(1)) # Will print outer/inner/Const_1:0 """ current_scope = tf.get_default_graph().get_name_scope() if not current_scope: if scope.endswith('/'): scope = tf.variable_scope(scope, reuse=reuse) else: scope = tf.variable_scope('{}/'.format(scope), reuse=reuse) else: scope = tf.variable_scope('{}/{}/'.format(current_scope, scope), reuse=reuse) return scope
b9bd9e801603472c3e7e1db7a8768387b9942f3c
17,425
def regina_edge_orientation_agrees(tet, vert_pair): """ Given tet and an ordered pair of (regina) vert nums of that tet, does this ordering agree with regina's ordering of the verts of that edge of the triangulation """ edge_num = vert_pair_to_edge_num[tuple(vert_pair)] mapping = tet.faceMapping(1, edge_num) map_order = [mapping[0], mapping[1]] assert set(map_order) == set(vert_pair) return map_order == vert_pair
a70f08f56754eee24b9c4c71d5b6b537388a4ca4
17,426
from typing import Optional from datetime import datetime async def populate_challenge( challenge_status: str = "process", is_public: bool = True, user_id: Optional[UUID] = USER_UUID, challenge_id: UUID = POPULATE_CHALLENGE_ID, ) -> Challenge: """Populate challenge for routes testings.""" if not user_id: user_id = uuid4() user: User = await populate_user(user_id=user_id) track, _ = await Track.get_or_create(test_track_info) await populate_playlist() challenge_end = datetime.utcnow() + timedelta(days=1) vote_end = datetime.utcnow() + timedelta(days=2) if challenge_status == "vote": challenge_end = datetime.utcnow() - timedelta(days=1) vote_end = datetime.utcnow() + timedelta(days=2) if challenge_status == "end": challenge_end = datetime.utcnow() - timedelta(days=2) vote_end = datetime.utcnow() - timedelta(days=1) challenge, _ = await Challenge.get_or_create( id=challenge_id, name="test", challenge_end=challenge_end, vote_end=vote_end, is_public=is_public, owner=user, track=track, ) await challenge.participants.add(user) return challenge
fa47e65c7615af8dfebed4dd66fd92141d50e130
17,427
from typing import List def is_common_prefix(words: List[str], length: int) -> bool: """Binary Search""" word: str = words[0][:length] for next_word in words[1:]: if not next_word.startswith(word): return False return True
f57c7309f725baba0b65c92181a6f1ab2827558a
17,428
def freq_upsample(s, upsample): """ padding in frequency domain, should be used with ifft so that signal is upsampled in time-domain. Args: s : frequency domain signal upsample : an integer indicating factor of upsampling. Returns: padded signal """ if upsample == 1: return s assert isinstance(upsample, int) and upsample > 1 l = len(s) if l % 2 == 0: h = l / 2 return upsample * np.concatenate( (s[:h], np.array([s[h] / 2.0]), np.zeros(l * (upsample - 1) - 1), np.array([s[h] / 2.0]), s[h+1:])) else: h = l / 2 + 1 return upsample * np.concatenate( (s[:h], np.zeros(l * (upsample - 1)), s[h:]))
78377f6c552fe4f6d764a33b3e6ee555b4aabe71
17,429
def streaming_parsing_covering(groundtruth_categories, groundtruth_instances, predicted_categories, predicted_instances, num_classes, max_instances_per_category, ignored_label, offset, normalize_by_image_size=True, name=None): """Aggregates the covering across calls with different input tensors. See tf.metrics.* functions for comparable functionality and usage. Args: groundtruth_categories: A 2D uint16 tensor of groundtruth category labels. groundtruth_instances: A 2D uint16 tensor of groundtruth instance labels. predicted_categories: A 2D uint16 tensor of predicted category labels. predicted_instances: A 2D uint16 tensor of predicted instance labels. num_classes: Number of classes in the dataset as an integer. max_instances_per_category: The maximum number of instances for each class as an integer or integer tensor. ignored_label: The class id to be ignored in evaluation as an integer or integer tensor. offset: The maximum number of unique labels as an integer or integer tensor. normalize_by_image_size: Whether to normalize groundtruth region areas by image size. If True, groundtruth instance areas and weighted IoUs will be divided by the size of the corresponding image before accumulated across the dataset. name: An optional variable_scope name. Returns: coverings: A tensor of shape `[3, num_classes]`, where (1) per class coverings, (2) per class sum of weighted IoUs, and (3) per class sum of groundtruth region areas are saved in the perspective rows. update_ops: List of operations that update the running overall parsing covering. Raises: RuntimeError: If eager execution is enabled. """ if tf.executing_eagerly(): raise RuntimeError('Cannot aggregate when eager execution is enabled.') input_args = [ tf.convert_to_tensor(groundtruth_categories, tf.uint16), tf.convert_to_tensor(groundtruth_instances, tf.uint16), tf.convert_to_tensor(predicted_categories, tf.uint16), tf.convert_to_tensor(predicted_instances, tf.uint16), tf.convert_to_tensor(num_classes, tf.int32), tf.convert_to_tensor(max_instances_per_category, tf.int32), tf.convert_to_tensor(ignored_label, tf.int32), tf.convert_to_tensor(offset, tf.int32), tf.convert_to_tensor(normalize_by_image_size, tf.bool), ] return_types = [ tf.float64, tf.float64, ] with tf.variable_scope(name, 'streaming_parsing_covering', input_args): covering_results = tf.py_func( _parsing_covering_helper, input_args, return_types, stateful=False) weighted_iou_per_class, gt_area_per_class = tuple(covering_results) total_weighted_iou_per_class, updated_weighted_iou_per_class = ( _running_total( weighted_iou_per_class, [num_classes], name='weighted_iou_per_class_total')) total_gt_area_per_class, updated_gt_area_per_class = _running_total( gt_area_per_class, [num_classes], name='gt_area_per_class_total') covering_per_class = _realdiv_maybe_zero(total_weighted_iou_per_class, total_gt_area_per_class) coverings = tf.stack([ covering_per_class, total_weighted_iou_per_class, total_gt_area_per_class, ], axis=0) update_ops = [updated_weighted_iou_per_class, updated_gt_area_per_class] return coverings, update_ops
7c41f5b0c1111287759cc03cdc2a0c8a932aba11
17,430
from typing import Union def get_rxn_lookup(medObj:Union[m.Medication, m.LocalMed, m.NDC]): """ DEPRECATED Lookup RxCUI for codes from a different source :param medObj: :return: """ if isinstance(medObj, m.RxCUI): smores_error('TBD') return 0, [] success_count, errors = 0, [] non_rxc_dict = medObj.get_cui_all(omit=['PARENT', 'RXNORM'], inc_obj=True) _e = {} if len(non_rxc_dict) > 0: for src in non_rxc_dict: _src_e = [] _src_s = 0 for medC, medO in non_rxc_dict[src].items(): rxc_l = medO.get_linked_cui('RXNORM') for _o in rxc_l: if _o is None: _src_e.append(medC) else: _src_s += 1 medObj.add_cui(_o) success_count += 1 if _src_s > 0 else 0 if len(_src_e) > 0: _e[src] = _src_e if len(_e) > 0: errors = _e return success_count, errors
bba03aa380666b13db89497c720a62570a2918d0
17,431
def identity(dims): """ Create an identity linear operator :param dims: array of dimensions """ dims = expand_dims(dims) return identity_create(dims)
4d57c5a0da628c8f24de4f621728176714a4ab54
17,432
def _gen_samples_2d(enn_sampler: testbed_base.EpistemicSampler, x: chex.Array, num_samples: int, categorical: bool = False) -> pd.DataFrame: """Generate posterior samples at x (not implemented for all posterior).""" # Generate the samples data = [] rng = hk.PRNGSequence(jax.random.PRNGKey(seed=0)) for seed in range(num_samples): net_out = enn_sampler(x, next(rng)) y = jax.nn.softmax(net_out)[:, 1] if categorical else net_out[:, 0] df = pd.DataFrame({'x0': x[:, 0], 'x1': x[:, 1], 'y': y, 'seed': seed}) data.append(df) return pd.concat(data)
19fc06700ae42b015694fc9389c05ad0caebf54d
17,433
def rules(r_index, c_index, lives, some_board, duplicate_board): """Apply Conway's Rules to a board Args: r_index (int): Current row index c_index (int): Current column index lives (int): Number of ALIVE cells around current position some_board (List of lists of strings): Board used to determine rule duplicate_board (List of lists of strings): Board used to apply rule Returns: [List of lists of strings]: Board used to apply rule (modified board) """ if some_board[r_index][c_index] == ALIVE: if lives < 2 or lives > 3: duplicate_board[r_index][c_index] = DEAD else: if lives == 3: duplicate_board[r_index][c_index] = ALIVE return duplicate_board
f654a134be3eccad122720cd58f577a2d7e580d8
17,434
def get_describe_tasks(cluster_name, tasks_arns): """Get information about a list of tasks.""" return ( ecs_client() .describe_tasks(cluster=cluster_name, tasks=tasks_arns) .get("tasks", []) )
663cc2d2241aa3d75c8f2de35780ebe9a5d4ae31
17,435
def make_bcc110(latconst=1.0): """ Make a cell of bcc structure with z along [110]. """ s= NAPSystem(specorder=_default_specorder) #...lattice a1= np.array([ 1.0, 0.0, 0.0 ]) a2= np.array([ 0.0, 1.414, 0.0 ]) a3= np.array([ 0.0, 0.0, 1.414 ]) s.set_lattice(latconst,a1,a2,a3) symbol = _default_specorder[0] symbols = [ symbol, symbol, symbol, symbol] poss = [[0.00, 0.00, 0.00], [0.00, 0.50, 0.50], [0.50, 0.50, 0.00], [0.50, 0.00, 0.50]] vels = [ [0., 0., 0.] for i in range(4) ] frcs = [ [0., 0., 0.] for i in range(4) ] s.add_atoms(symbols, poss, vels, frcs) return s
187556e30b4e89718d4c8d1179579ba498062d26
17,436
def mode_mods_to_int(mode: str) -> int: """Converts mode_mods (str) to mode_mods (int).""" # NOTE: This is a temporary function to convert the leaderboard mode to an int. # It will be removed when the site is fully converted to use the new # stats table. for mode_num, mode_str in enumerate(( 'vn_std', 'vn_taiko', 'vn_catch', 'vn_mania', 'rx_std', 'rx_taiko', 'rx_catch', 'ap_std' )): if mode == mode_str: return mode_num else: return 0
0bfaa8cf04bcee9395dff719067be9753be075c4
17,437
def ntu_tranform_skeleton(test): """ :param test: frames of skeleton within a video sample """ remove_frame = False test = np.asarray(test) transform_test = [] d = test[0, 0:3] v1 = test[0, 1 * 3:1 * 3 + 3] - test[0, 0 * 3:0 * 3 + 3] v1 = v1 / np.linalg.norm(v1) v2_ = test[0, 12 * 3:12 * 3 + 3] - test[0, 16 * 3:16 * 3 + 3] if np.equal(np.sum(v2_), 0): v2_ += 1e-6 proj_v2_v1 = np.dot(v1.T, v2_) * v1 / np.linalg.norm(v1) v2 = v2_ - np.squeeze(proj_v2_v1) v2 = v2 / np.linalg.norm(v2) v3 = np.cross(v2, v1) / np.linalg.norm(np.cross(v2, v1)) v1 = np.reshape(v1, (3, 1)) v2 = np.reshape(v2, (3, 1)) v3 = np.reshape(v3, (3, 1)) R = np.hstack([v2, v3, v1]) for i in range(test.shape[0]): xyzs = [] for j in range(25): if test[i][j * 3:j * 3 + 3].all() == 0: remove_frame = True break xyz = np.squeeze(np.matmul(np.linalg.inv(R), np.reshape(test[i][j * 3:j * 3 + 3] - d, (3, 1)))) xyzs.append(xyz) if not remove_frame: xyzs = np.reshape(np.asarray(xyzs), (-1, 75)) transform_test.append(xyzs) else: remove_frame = False transform_test = np.squeeze(np.asarray(transform_test)) return transform_test.tolist()
6f8e9e3ff0b6fa95b5f3b8c22aef2de05730a78c
17,438
import random import time import requests def request_to_dataframe(UF): """Recebe string do estado, retona DataFrame com faixa de CEP do estado""" #Try to load the proxy list. If after several attempts it still doesn't work, raise an exception and quit. proxy_pool = proxy_list_to_cycle() #Set initial values for post request's parameters. pagini = 1 pagfim = 50 count = 1 while True: #random sleep times to decrease the chances of being blocked. num1 = random.randint(2,5) time.sleep(num1) try: #select_proxy from proxy pool. proxy = next(proxy_pool) print(f"Proxy atual: {proxy}") #Define o post Field de acordo com a página Atual. Para a primeira página os campos "Bairro", "qtdrow", "pagini", "pagfim" não são considerados. if count == 1: post_fields = {"UF":UF, "Localidade":""} full_dataframe = pd.DataFrame() else: post_fields = {"UF": UF, "Localidade":"**", "Bairro":"", "qtdrow":"50", "pagini":str(pagini),"pagfim": str(pagfim)} #Makes the post request request = make_post_request(post_fields, proxy) #Extrai tabela com as faixas de CEP do HTML. Se estivermos na primeira página, o conteúdo se encontra no primeiro index do page content, caso o contrário, se encontra no próximo index. if count == 1: UF_table = request_text_to_table(request = request, page_content_index = 1) else: UF_table = request_text_to_table(request = request, page_content_index = 0) except requests.exceptions.ProxyError: print("") print(f"Error with the proxy: {proxy}") print(f"Proxies left: {proxy_pool}") print("Tentando novamente") print("") continue except (requests.exceptions.Timeout, requests.exceptions.ConnectionError) as err: print("") print('Servidor demorando muito') print("Tentando novamente") print("") continue except Exception as e: print("") print(e) proxy_pool = proxy_list_to_cycle() continue #Turning the table into a dataframe. current_page_df = table_to_df(UF_table) #Concat DataFrames for each page into one DataFrame full_dataframe = pd.concat([full_dataframe, current_page_df]) print(f"Total de dados coletados sobre o Estado {UF}: {full_dataframe.shape[0]} ") #Sair do loop de post requests para o estado atual se chegamos na última página. if current_page_df.shape[0] < 49: print(f"Última página do estado:{UF}") break #Incrementa o número da página e o contador de página. pagini += 50 pagfim += 50 count = count + 1 return full_dataframe
f71de0ec169f375fff1fba87d55aa8021b851990
17,439
import csv def read_sto_mot_file(filename): """ Read sto or mot file from Opensim ---------- filename: path Path of the file witch have to be read Returns ------- Data Dictionary with file informations """ data = {} data_row = [] first_line = () end_header = False with open(f"{filename}", "rt") as f: reader = csv.reader(f) for idx, row in enumerate(reader): if len(row) == 0: pass elif row[0][:9] == "endheader": end_header = True first_line = idx + 1 elif end_header is True and row[0][:9] != "endheader": row_list = row[0].split("\t") if idx == first_line: names = row_list else: data_row.append(row_list) for r in range(len(data_row)): for col in range(len(names)): if r == 0: data[f"{names[col]}"] = [float(data_row[r][col])] else: data[f"{names[col]}"].append(float(data_row[r][col])) return data
584cff26cb217d5fadfcea025ad58e431f46676a
17,440
def verify_cef_labels(device, route, expected_first_label, expected_last_label=None, max_time=90, check_interval=10): """ Verify first and last label on route Args: device ('obj'): Device object route ('str'): Route address expected_first_label ('str'): Expected first label expected_last_label ('str'): Expected last label max_time ('int'): Max time in seconds checking output check_interval ('int'): Interval in seconds of each checking Return: True/False Raises: None """ reqs = R( [ 'vrf', '(.*)', 'address_family', '(.*)', 'prefix', '(.*{}.*)'.format(route), 'nexthop', '(.*)', 'outgoing_interface', '(.*)', '(?P<val>.*)' ] ) timeout = Timeout(max_time, check_interval) while timeout.iterate(): result = True out = None try: out = device.parse('show ip cef {}'.format(route)) except SchemaEmptyParserError: out = None if not out: result = False log.info('Could not get information about show ip cef {}'.format(route)) timeout.sleep() continue found = find([out], reqs, filter_=False, all_keys=True) if found: keys = GroupKeys.group_keys(reqs=reqs.args, ret_num={}, source=found) for item in keys: first_label = item.get('val',{}).get('outgoing_label', None) if first_label and str(expected_first_label) not in str(first_label): result = False if expected_last_label: sid = item.get('val',{}).get('sid', None) if str(expected_last_label) != str(sid): result = False if result: return True timeout.sleep() return False
c082920d0c93ec0c2897dc5a06c9d9d9452151af
17,441
def fcat(*fs): """Concatenate a sequence of farrays. The variadic *fs* input is a homogeneous sequence of functions or arrays. """ items = list() for f in fs: if isinstance(f, boolfunc.Function): items.append(f) elif isinstance(f, farray): items.extend(f.flat) else: raise TypeError("expected Function or farray") return farray(items)
440a850ed17b8fc844cafaa765b24620a29fa0fd
17,442
def get_path_to_spix( name: str, data_directory: str, thermal: bool, error: bool = False, file_ending: str = "_6as.fits", ) -> str: """Get the path to the spectral index Args: name (str): Name of the galaxy data_directory (str): dr2 data directory thermal (bool): non thermal data error (bool): path to error file_ending (str, optional): File ending. Defaults to ".fits". Returns: str: [description] """ return f"{data_directory}/magnetic/{name}/{name}_spix{'_non_thermal' if thermal else ''}{'_error' if error else ''}{file_ending}"
bf8fdff001049ed0738ed856e8234c43ce4511b7
17,443
def hexpos (nfibres,diam) : """ Returns a list of [x,y] positions for a classic packed hex IFU configuration. """ positions = [[np.nan,np.nan] for i in range(nfibres)] # FIND HEX SIDE LENGTH nhex = 1 lhex = 1 while nhex < nfibres : lhex += 1 nhex = 3*lhex**2-3*lhex+1 if nhex != nfibres: lhex -= 1 nhex = 3*lhex**2-3*lhex+1 nextra = nfibres-nhex n = 0 khex = 2*lhex-1 # NUMBER OF FIBRES IN THE CENTRAL ROW xhex = (-khex//2)*diam for i in range(khex) : # CENTRAL ROW x = xhex+diam*i positions[n] = [int(x*100)/100,0.] n += 1 dx = 0.5*diam dy = diam*np.sqrt(3./4.) for i in range(1,lhex,1) : # FOR ALL ROWS PAIRS i khex -= 1 # EACH ROW HAS 1 LESS THAN THE PREVIOUS xhex += dx for j in range(khex) : # FOR ALL FIBRES j IN ROWS i x = xhex+diam*j y = dy*i positions[n] = [int(x*100)/100, int(y*100)/100] positions[n+1] = [int(x*100)/100,-int(y*100)/100] n += 2 return positions
4dbf1209d7021c6a4defd1c58e420b362bdbf84c
17,444
from bs4 import BeautifulSoup def parse_object_properties(html): """ Extract key-value pairs from the HTML markup. """ if isinstance(html, bytes): html = html.decode('utf-8') page = BeautifulSoup(html, "html5lib") propery_ps = page.find_all('p', {'class': "list-group-item-text"}) obj_props_dict = {} for p in propery_ps: if 'data-name' in p.attrs: key = p.attrs['data-name'] value = p.get_text().strip() obj_props_dict[key] = value return obj_props_dict
8eb2d15cb5f46075ec44ff61265a8f70123a8646
17,445
def rgb2hex(r, g, b, normalised=False): """Convert RGB to hexadecimal color :param: can be a tuple/list/set of 3 values (R,G,B) :return: a hex vesion ofthe RGB 3-tuple .. doctest:: >>> from colormap.colors import rgb2hex >>> rgb2hex(0,0,255, normalised=False) '#0000FF' >>> rgb2hex(0,0,1, normalised=True) '#0000FF' .. seealso:: :func:`hex2web`, :func:`web2hex`, :func:`hex2rgb` , :func:`rgb2hsv`, :func:`hsv2rgb`, :func:`rgb2hls`, :func:`hls2rgb` """ if normalised: r, g, b = _denormalise(r, g, b, mode="rgb") r = int(r) g = int(g) b = int(b) check_range(r, 0, 255) check_range(g, 0, 255) check_range(b, 0, 255) return '#%02X%02X%02X' % (r, g, b)
03afd09cc280d7731ca6b28098cf3f5605fddda7
17,446
def test_hookrelay_registry(pm): """Verify hook caller instances are registered by name onto the relay and can be likewise unregistered.""" class Api: @hookspec def hello(self, arg): "api hook 1" pm.add_hookspecs(Api) hook = pm.hook assert hasattr(hook, "hello") assert repr(hook.hello).find("hello") != -1 class Plugin: @hookimpl def hello(self, arg): return arg + 1 plugin = Plugin() pm.register(plugin) out = hook.hello(arg=3) assert out == [4] assert not hasattr(hook, "world") pm.unregister(plugin) assert hook.hello(arg=3) == []
5f7733efbdbaf193b483c108838d2571ff686e52
17,447
def model_choices_from_protobuf_enum(protobuf_enum): """Protobufs Enum "items" is the opposite order djagno requires""" return [(x[1], x[0]) for x in protobuf_enum.items()]
d3f5431293a9ab3fdf9a92794b1225a0beec40cc
17,448
import os def load_boxes_and_labels(cfg, mode): """ Loading boxes and labels from csv files. Args: cfg (CfgNode): config. mode (str): 'train', 'val', or 'test' mode. Returns: all_boxes (dict): a dict which maps from `video_name` and `frame_sec` to a list of `box`. Each `box` is a [`box_coord`, `box_labels`] where `box_coord` is the coordinates of box and 'box_labels` are the corresponding labels for the box. """ gt_lists = cfg.AVA.TRAIN_GT_BOX_LISTS if mode == "train" else [] pred_lists = ( cfg.AVA.TRAIN_PREDICT_BOX_LISTS if mode == "train" else cfg.AVA.TEST_PREDICT_BOX_LISTS ) ann_filenames = [ os.path.join(cfg.AVA.ANNOTATION_DIR, filename) for filename in gt_lists + pred_lists ] ann_is_gt_box = [True] * len(gt_lists) + [False] * len(pred_lists) detect_thresh = cfg.AVA.DETECTION_SCORE_THRESH all_boxes = {} count = 0 unique_box_count = 0 for filename, is_gt_box in zip(ann_filenames, ann_is_gt_box): with PathManager.open(filename, "r") as f: for line in f: row = line.strip().split(",") # When we use predicted boxes to train/eval, we need to # ignore the boxes whose scores are below the threshold. if not is_gt_box: score = float(row[7]) if score < detect_thresh: continue video_name, frame_sec = row[0], int(row[1]) # Only select frame_sec % 4 = 0 samples for validation if not # set FULL_TEST_ON_VAL. if ( mode == "val" and not cfg.AVA.FULL_TEST_ON_VAL and frame_sec % 4 != 0 ): continue # Box with format [x1, y1, x2, y2] with a range of [0, 1] as float. box_key = ",".join(row[2:6]) box = list(map(float, row[2:6])) label = -1 if row[6] == "" else int(row[6]) if video_name not in all_boxes: all_boxes[video_name] = {} for sec in AVA_VALID_FRAMES: all_boxes[video_name][sec] = {} if box_key not in all_boxes[video_name][frame_sec]: all_boxes[video_name][frame_sec][box_key] = [box, []] unique_box_count += 1 all_boxes[video_name][frame_sec][box_key][1].append(label) if label != -1: count += 1 for video_name in all_boxes.keys(): for frame_sec in all_boxes[video_name].keys(): # Save in format of a list of [box_i, box_i_labels]. all_boxes[video_name][frame_sec] = list( all_boxes[video_name][frame_sec].values() ) logger.info( "Finished loading annotations from: %s" % ", ".join(ann_filenames) ) logger.info("Detection threshold: {}".format(detect_thresh)) logger.info("Number of unique boxes: %d" % unique_box_count) logger.info("Number of annotations: %d" % count) return all_boxes
9ea7f476474f834fcfb70700cc269b4abf8d5c33
17,449
def kmeans(boxes, k): """ Group into k clusters the BB in boxes. http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans :param boxes: The BB in format Nx4 where (x1,y1,x2,y2) :param k: the number of clusters. :return: k clusters with the element indexes of each clusters. """ model = KMeans(n_clusters=k).fit(boxes) pred = model.labels_ indexes = [[]] * k for i, v in enumerate(pred): indexes[v] = indexes[v] + [i] return indexes
0d2bcfb2fb7d5639f95db92ac5aa5e73b1b27498
17,450
def observation_min_max_in_hex_grid_json(request: HttpRequest): """Return the min, max observations count per hexagon, according to the zoom level. JSON format. This can be useful to dynamically color the grid according to the count """ zoom = extract_int_request(request, "zoom") species_ids, datasets_ids, start_date, end_date, area_ids = filters_from_request( request ) sql_template = readable_string( Template( """ WITH grid AS ($jinjasql_fragment_aggregated_grid) SELECT MIN(count), MAX(count) FROM grid; """ ).substitute( jinjasql_fragment_aggregated_grid=JINJASQL_FRAGMENT_AGGREGATED_GRID ) ) sql_params = { "hex_size_meters": ZOOM_TO_HEX_SIZE[zoom], "grid_extent_viewport": False, "species_ids": species_ids, "datasets_ids": datasets_ids, "area_ids": area_ids, } if start_date: sql_params["start_date"] = start_date.strftime(DB_DATE_EXCHANGE_FORMAT_PYTHON) if end_date: sql_params["end_date"] = end_date.strftime(DB_DATE_EXCHANGE_FORMAT_PYTHON) j = JinjaSql() query, bind_params = j.prepare_query(sql_template, sql_params) with connection.cursor() as cursor: cursor.execute(query, bind_params) r = cursor.fetchone() return JsonResponse({"min": r[0], "max": r[1]})
24a3f4846aceea2df0b724d6bada88315b815ee2
17,451
import os def is_path(value, default="", expand=None): """Parse a value as a path Parameters ---------- expand: expandvars and expandhome on loaded path **Warning: expand currently can't work with interpolation** """ # TODO: fix interpolation and expand ! if str(value) == "None": return None if value == "": value = default if expand and isinstance(value, str): return os.path.expandvars(os.path.expanduser(value)) return value
d2d369f35e6cc71dbdc3cd955456aeecb375fee6
17,452
import subprocess import os def find_suites(): """ Return a dict of suitename and path, e.g. {"heat_equation": /home/safl/bechpress/suites/cpu/heat_equation.py"} """ p = subprocess.Popen( ["bp-info", "--suites"], stdout = subprocess.PIPE, stderr = subprocess.PIPE ) out, err = p.communicate() suitesdir = out.strip() if err: raise Exception("Error when trying to find suites-dir.") suites = {} for root, dirs, files in os.walk(suitesdir): for filename in files: if "__init__" in filename: continue if not filename.endswith(".py"): continue suitepath = os.sep.join([root, filename]) suitename = os.path.splitext(filename)[0] suites[suitename] = suitepath return (suitesdir, suites)
f3303f48b79d3ca4d172f272b7243629557bb9cc
17,453
from bs4 import BeautifulSoup def parseHtml(html): """ BeautifulSoup でパースする Parameters ---------- html : str HTML ソース文字列 Returns ------- soup : BeautifulSoup BeautifulSoup オブジェクト """ soup = BeautifulSoup(html, 'html.parser') return soup
e8d7a39a9881606d1dfee810ab1c2cecd11eaba2
17,454
def am_score(probs_data, probs_gen): """ Calculate AM Score """ mean_data = np.mean(probs_data, axis=0) mean_gen = np.mean(probs_gen, axis=0) entropy_gen = np.mean(entropy(probs_gen, axis=1)) am_score = entropy(mean_data, mean_gen) + entropy_gen return am_score
5e3c3f42ed2402dd2e48ab1ff4f9ff13754d5c31
17,455
import torch def load_image(path_image, size=None, bgr_mean=[103.939, 116.779, 123.68]): """ Loads and pre-process the image for SalGAN model. args: path_image: abs path to image size: size to input to the network (it not specified, uses SalGAN predifined) bgr_mean: mean values (BGR) to extract from images returns: torch tensor with processed image original size of the image """ # image = cv2.imread(path_image) image = cv2.imread(path_image) # BGR format H, W, C = image.shape if size is None: size = SALGAN_RESIZE image = cv2.resize(image, (size[1], size[0]), interpolation=cv2.INTER_AREA) image = image.astype(np.float32) bgr_mean=np.array(bgr_mean) image -= bgr_mean # convert to torch Tensor image = torch.FloatTensor(image) # swap channel dimensions image = image.permute(2,0,1) return image, (H, W)
3a9ca220bb48f26d76ae35fd58897c8e59cdae0c
17,456
def GetWsdlNamespace(version): """ Get wsdl namespace from version """ return "urn:" + serviceNsMap[version]
bc75fa0e45c4ce4750898db75571de84aa302fc2
17,457
def is_PC(parcels): """ Dummy for Pinal County. """ return (parcels.county == 'PC').astype(int)
60aa7dcc7adaefee177406c7e6bb963a5a4567d9
17,458
import hashlib import requests def check_password(password: str) -> int: """Use Have I Been Pwned to determine whether a password is bad. If the request fails, this function will assume the password is fine, but log an error so that administrators can diagnose it later. :param password: The password to validate. :return: A positive integer indicating the number of times the password has been found in a breach. Zero is good, >0 is bad. """ sha1_hash = hashlib.sha1() sha1_hash.update(password.encode("utf-8")) digest = sha1_hash.hexdigest() digest = digest.upper() response = requests.get("https://api.pwnedpasswords.com/range/" + digest[0:5]) if response.status_code != 200: # The docs say this shouldn't happen, but just in case. return 0 return suffix_in_text(digest[5:], response.text)
609dd29ee2b252452e31d64b18e835a39e1cbf22
17,459
def rqpos(A): """ RQ decomp. of A, with phase convention such that R has only positive elements on the main diagonal. If A is an MPS tensor (d, chiL, chiR), it is reshaped and transposed appropriately before the throughput begins. In that case, Q will be a tensor of the same size, while R will be a chiL x chiL matrix. """ Ashp = A.shape if len(Ashp) == 2: return rqmat(A) elif len(Ashp) != 3: print("A had invalid dimensions, ", A.shape) A = fuse_right(A) #chiL, d*chiR R, Q = qrmat(A, mode="economic") Q = unfuse_right(Q, Ashp) return (Q, R)
026629b6638265daee83e8d8b5ab5b47b61e64d8
17,460
import torch from typing import OrderedDict def load_checkpoint(model, filename, map_location=None, strict=False, logger=None, show_model_arch=True, print_keys=True): """ Note that official pre-trained models use `GroupNorm` in backbone. """ if not osp.isfile(filename): raise IOError('{} is not a checkpoint file'.format(filename)) checkpoint = torch.load(filename, map_location=map_location) # get state_dict from checkpoint if isinstance(checkpoint, OrderedDict): state_dict = checkpoint elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: raise RuntimeError( 'No state_dict found in checkpoint file {}'.format(filename)) # strip prefix of state_dict if list(state_dict.keys())[0].startswith('backbone.'): state_dict = {} for k, v in checkpoint['state_dict'].items(): new_k = k if 'bbox_head.' in new_k: if 'deconv_layers' in new_k: new_k = new_k.replace("conv_offset_mask.", "conv_offset.") new_k = new_k.replace("bbox_head.deconv_layers.", "neck.upsamples.") if '.0.0.' in new_k: new_k = new_k.replace(".0.0.", ".0.dcn.") if '.0.1.' in new_k: new_k = new_k.replace(".0.1.", ".0.dcn_bn.") if '.1.0.' in new_k: new_k = new_k.replace(".1.0.", ".1.dcn.") if '.1.1.' in new_k: new_k = new_k.replace(".1.1.", ".1.dcn_bn.") if '.2.0.' in new_k: new_k = new_k.replace(".2.0.", ".2.dcn.") if '.2.1.' in new_k: new_k = new_k.replace(".2.1.", ".2.dcn_bn.") if '.shortcut_layers.' in new_k: new_k = new_k.replace("bbox_head.shortcut_layers.", "neck.shortcuts.") new_k = new_k.replace(".layers.", ".") if '.hm.' in new_k: new_k = new_k.replace(".hm.", ".ct_hm_head.") if '.wh.' in new_k: new_k = new_k.replace(".wh.", ".ct_wh_head.") if print_keys: print('> key = ', k, ' -> ', new_k) state_dict[new_k] = v if show_model_arch: print('> model = ', model) # load state_dict if hasattr(model, 'module'): load_state_dict(model.module, state_dict, strict, logger) else: load_state_dict(model, state_dict, strict, logger) return checkpoint
1d948f45f81c93af73394c891dc7e692c24378b3
17,461
def basic_image_2(): """ A 10x10 array with a square (3x3) feature Equivalent to results of rasterizing basic_geometry with all_touched=True. Borrowed from rasterio/tests/conftest.py Returns ------- numpy ndarray """ image = np.zeros((20, 20), dtype=np.uint8) image[2:5, 2:5] = 1 return image
8e83070721b38f2a886c7affb4aadc9a053f1748
17,462
def download(url, verbose, user_agent='wswp', num_retries=2, decoding_format='utf-8', timeout=5): """ Function to download contents from a given url Input: url: str string with the url to download from user_agent: str Default 'wswp' num_retries: int Number of times to retry downloading if there is an error verbose: bool Print out url and errors decoding: "utf-8" Output: returns: str string with contents of given url """ # html_error = False if verbose: print('Downloading:', url) headers = {'User-agent': user_agent} request_obj = request.Request(url, headers=headers) try: with request.urlopen(request_obj, timeout=timeout) as response: html = response.read() except error.URLError as e: if verbose: print('Download error:', e.reason) # html = None # if num_retries > 0: # if hasattr(e, 'code') and 500 <= e.code < 600: # # retry 5XX HTTP errors # return download(url, user_agent, num_retries - 1)[0] # # elif hasattr(e, 'code') and e.code == 404: # else: # html_error = True raise IOError(e.reason) return html.decode(decoding_format)
31592018b6f6f62154444dfc44b723efc1bd7f47
17,463
from typing import Union from typing import List def _write_deform(model: Union[BDF, OP2Geom], name: str, loads: List[AEROS], ncards: int, op2_file, op2_ascii, endian: bytes, nastran_format: str='nx') -> int: """ (104, 1, 81) NX 2019.2 Word Name Type Description 1 SID I Deformation set identification number 2 EID I Element number 3 D RS Deformation """ key = (104, 1, 81) nfields = 3 structi = Struct(endian + b'iif') nbytes = write_header(name, nfields, ncards, key, op2_file, op2_ascii) for load in loads: data = [load.sid, load.eid, load.deformation] #flutter = model.loads[flutter_id] # type: FLUTTER #print(flutter.get_stats()) assert None not in data, data op2_ascii.write(f' DEFORM data={data}\n') op2_file.write(structi.pack(*data)) return nbytes
55f2cb18336a940c550ee68bd5148c8d74f5bb93
17,464
def polygonize(geometries, **kwargs): """Creates polygons formed from the linework of a set of Geometries. Polygonizes an array of Geometries that contain linework which represents the edges of a planar graph. Any type of Geometry may be provided as input; only the constituent lines and rings will be used to create the output polygons. Lines or rings that when combined do not completely close a polygon will result in an empty GeometryCollection. Duplicate segments are ignored. This function returns the polygons within a GeometryCollection. Individual Polygons can be obtained using ``get_geometry`` to get a single polygon or ``get_parts`` to get an array of polygons. MultiPolygons can be constructed from the output using ``pygeos.multipolygons(pygeos.get_parts(pygeos.polygonize(geometries)))``. Parameters ---------- geometries : array_like An array of geometries. axis : int Axis along which the geometries are polygonized. The default is to perform a reduction over the last dimension of the input array. A 1D array results in a scalar geometry. **kwargs For other keyword-only arguments, see the `NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- GeometryCollection or array of GeometryCollections See Also -------- get_parts, get_geometry polygonize_full Examples -------- >>> lines = [ ... Geometry("LINESTRING (0 0, 1 1)"), ... Geometry("LINESTRING (0 0, 0 1)"), ... Geometry("LINESTRING (0 1, 1 1)"), ... ] >>> polygonize(lines) <pygeos.Geometry GEOMETRYCOLLECTION (POLYGON ((1 1, 0 0, 0 1, 1 1)))> """ return lib.polygonize(geometries, **kwargs)
20b883734a1acedb1df3241e1815687640cac8cd
17,465
def slerp(input_latent1, input_latent2, interpolation_frames=100): """Spherical linear interpolation ("slerp", amazingly enough). Parameters ---------- input_latent1, input_latent2 : NumPy arrays Two arrays which will be interpolated between. interpolation_frames : int, optional Number of frame returned during interpolation. Returns ------- list List of vectors of size interpolation_frames """ output_latents = [] for idx in range(interpolation_frames): val = float(idx) / interpolation_frames if np.allclose(input_latent1, input_latent2): output_latents += [input_latent2] continue omega = np.arccos(np.dot(input_latent1 / np.linalg.norm(input_latent1), input_latent2 / np.linalg.norm(input_latent2))) so = np.sin(omega) output_latents += [np.sin((1.0 - val) * omega) / so * input_latent1 + np.sin(val * omega) / so * input_latent2] return output_latents
392b2e61f3369cf1e4038fac4240dca36f848dce
17,466
from datetime import datetime def parent_version_config(): """Return a configuration for an experiment.""" config = dict( _id="parent_config", name="old_experiment", version=1, algorithms="random", metadata={ "user": "corneauf", "datetime": datetime.datetime.utcnow(), "user_args": ["--x~normal(0,1)"], }, ) backward.populate_space(config) return config
ff1f123ce06d687eb3b0031d6bc82c808918c46e
17,467
import re def sanitize_k8s_name(name): """From _make_kubernetes_name sanitize_k8s_name cleans and converts the names in the workflow. """ return re.sub('-+', '-', re.sub('[^-0-9a-z]+', '-', name.lower())).lstrip('-').rstrip('-')
edaf6dc3083f0b57aeb1d95a66b5a7f8c1347b55
17,468
def main(): """ Process command line arguments and run x86 """ run = X86Run() result = run.Run() return result
7de61875207aa17bcf2ef87ff138540626fc7d2b
17,469
def gen_key(uid, section='s'): """ Generate store key for own user """ return f'cs:{section}:{uid}'.encode()
5e6386650f6bbaef681636424fd813f2df93fe58
17,470
def convert_atom_to_voxel(coordinates: np.ndarray, atom_index: int, box_width: float, voxel_width: float) -> np.ndarray: """Converts atom coordinates to an i,j,k grid index. This function offsets molecular atom coordinates by (box_width/2, box_width/2, box_width/2) and then divides by voxel_width to compute the voxel indices. Parameters ----------- coordinates: np.ndarray Array with coordinates of all atoms in the molecule, shape (N, 3). atom_index: int Index of an atom in the molecule. box_width: float Size of the box in Angstroms. voxel_width: float Size of a voxel in Angstroms Returns ------- indices: np.ndarray A 1D numpy array of length 3 with `[i, j, k]`, the voxel coordinates of specified atom. """ indices = np.floor( (coordinates[atom_index] + box_width / 2.0) / voxel_width).astype(int) if ((indices < 0) | (indices >= box_width / voxel_width)).any(): logger.warning('Coordinates are outside of the box (atom id = %s,' ' coords xyz = %s, coords in box = %s' % (atom_index, coordinates[atom_index], indices)) return indices
6f08b594f2012aa0ba4a7985d5f4e2049c4629d3
17,471
import platform import sys def get_toolset_url(): """URL of a platform specific Go toolset archive.""" # TODO(vadimsh): Support toolset for cross-compilation. arch = { 'amd64': 'x86-64', 'x86_64': 'x86-64', 'i386': 'x86-32', 'x86': 'x86-32', }.get(platform.machine().lower()) variant = TOOLSET_VARIANTS.get((sys.platform, arch)) if not variant: # TODO(vadimsh): Compile go lang from source. raise Failure('Unrecognized platform') return '%s/%s.%s' % (DOWNLOAD_URL_PREFIX, TOOLSET_VERSION, variant)
d88d8407775e9d0ca1ee80fee076046ae7ca7e44
17,472
def plot_det_curve(y_true_arr, y_pred_proba_arr, labels_arr, pos_label=None, plot_thres_for_idx=None, log_wandb=False): """Function for plotting DET curve Args: y_true_arr (list/np.array): list of all GT arrays y_pred_proba_arr (list/np.array): list of all predicted probabilities labels_arr (list/np.array): list of labels pos_label (str, optional): What is the label of the positive class. Defaults to 'Yes'. plot_thres_for_idx (int, optional): If true, best threshold (F1) is plotted for the DET curve corresponding to this index. Defaults to None. log_wandb (bool, optional): If true, figure is logged to W&B. Defaults to False. Returns: plt.Figure, plt.Axes: The tuple of figure and axes """ fig, ax = plt.subplots(figsize=(12, 8)) for i, (y_true, y_pred_proba) in enumerate(zip(y_true_arr, y_pred_proba_arr)): fpr, fnr, _ = det_curve( y_true, y_pred_proba[:, 1], pos_label=pos_label) auc_score = auc(fpr, fnr) ax.plot(norm.ppf(fpr), norm.ppf(fnr), label=f'{labels_arr[i]} (AUC - {round(auc_score, 3)})') if plot_thres_for_idx is not None: y_true = y_true_arr[plot_thres_for_idx] y_pred_proba = y_pred_proba_arr[plot_thres_for_idx] _, idx = get_best_threshold_gmean( y_true, y_pred_proba, pos_label=pos_label) fpr, fnr, _ = det_curve( y_true, y_pred_proba[:, 1], pos_label=pos_label) ax.plot([norm.ppf(fpr[idx])], [norm.ppf(fnr[idx])], '-o', c=ax.lines[plot_thres_for_idx].get_color(), label=f'Best {labels_arr[plot_thres_for_idx]} Threshold (GMean)') ax.set_xlabel('False Positive Rate') ax.set_ylabel('False Negative Rate') ax.set_title('DET Curve') ax.legend() ax.grid() ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999] tick_locations = norm.ppf(ticks) tick_labels = [ '{:.0%}'.format(s) if (100*s).is_integer() else '{:.1%}'.format(s) for s in ticks ] ax.set_xticks(tick_locations) ax.set_xticklabels(tick_labels) ax.set_yticks(tick_locations) ax.set_yticklabels(tick_labels) if log_wandb: wandb.log({"det_curve": [wandb.Image(fig)]}) plt.close(fig) return fig, ax
0437d700a9555b48b84cbb6e225bc88f1a57e34d
17,473
def harmonic_separation(audio, margin=3.0): """ Wraps librosa's `harmonic` function, and returns a new Audio object. Note that this folds to mono. Parameters --------- audio : Audio The Audio object to act on. margin : float The larger the margin, the larger the separation. The default is `3.0`. """ harmonic = librosa.effects.harmonic( librosa.to_mono(audio.raw_samples), margin=margin ) harmonic_audio = Audio(raw_samples=harmonic, sample_rate=audio.sample_rate) return harmonic_audio
3ac3e0d87f719814ca021f594a21dde08e9fd02f
17,474
def merge( left, right, how: str = "inner", on=None, left_on=None, right_on=None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes=("_x", "_y"), copy: bool = True, indicator: bool = False, validate=None, ): # noqa: PR01, RT01, D200 """ Merge DataFrame or named Series objects with a database-style join. """ if isinstance(left, Series): if left.name is None: raise ValueError("Cannot merge a Series without a name") else: left = left.to_frame() if not isinstance(left, DataFrame): raise TypeError( f"Can only merge Series or DataFrame objects, a {type(left)} was passed" ) return left.merge( right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, )
da07b44fb80ee28cc8320c071876ef6ad573d974
17,475
def generate_modal(title, callback_id, blocks): """ Generate a modal view object using Slack's BlockKit :param title: Title to display at the top of the modal view :param callback_id: Identifier used to help determine the type of modal view in future responses :param blocks: Blocks to add to the modal view :return: View object (Dictionary) """ modal = { "type": "modal", "callback_id": callback_id, "title": { "type": "plain_text", "text": title, "emoji": False }, "submit": { "type": "plain_text", "text": "Submit", "emoji": False }, "close": { "type": "plain_text", "text": "Cancel", "emoji": False }, "blocks": blocks } return modal
e0caeec1ab1cf82ed6f02ec77a984dcb25e329f5
17,476
def dir_thresh(img, sobel_kernel=3, thresh=(0.7, 1.3)): """ #--------------------- # This function applies Sobel x and y, # then computes the direction of the gradient, # and then applies a threshold. # """ # Take the gradient in x and y separately sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Take the absolute value of the x and y gradients # and calculate the direction of the gradient absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx)) # Create a binary mask where direction thresholds are met binary_output = np.zeros_like(absgraddir) binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 255 # Return the binary image return binary_output.astype(np.uint8)
0f5aefdbc9ffbe8e3678145e2926a4fbd7e01629
17,477
from datetime import datetime, timedelta def seconds_to_time( time ): """ Get a datetime object or a int() Epoch timestamp and return a pretty string like 'an hour ago', 'Yesterday', '3 months ago', 'just now', etc """ if not time: return "0s" if isinstance( time, timedelta ) or isinstance( time, datetime ): if time.days < 0: diff = timedelta( ) else: diff = time else: diff = timedelta( seconds = int(time if time >= 0 else 0) ) second_diff = diff.seconds if second_diff < 0: second_diff = 0 if second_diff > 60: return "%sm%ss" % ( str( second_diff / 60 ), ( second_diff % 60 ) ) else: return "%ss" % second_diff
407fa93f782c8cff142be1ab721969d3e4c2b42f
17,478
import os def bq_use_legacy_sql(): """ Returns BIGQUERY_LEGACY_SQL if env is set """ return os.environ.get('BIGQUERY_LEGACY_SQL', 'TRUE')
53d51c5eb1caa9b6041e9b2d29bde068199bba52
17,479
def load_txt_into_set(path, skip_first_line=True): """Load a txt file (one value per line) into a set.""" result = set() file = open_file_dir_safe(path) with file: if skip_first_line: file.readline() for line in file: line = line.strip() result.add(line) return result
17ad3c15820595b72254dbe4c9097a8857511599
17,480
def failed(obj): """Returns True if ``obj`` is an instance of ``Fail``.""" return isinstance(obj, Fail)
715fe3ae1154e3e5712b6f4535021b44e8020146
17,481
def linkCount(tupleOfLists, listNumber, lowerBound, upperBound): """Counts the number of links in one of the lists passed. This function is a speciality function to aid in calculating statistics involving the number of links that lie in a given range. It is primarily intended as a private helper function. The parameters are: tupleOfLists -- usually a linkograph entry. listNumber -- a list of the indicies in entry that should be considered. lowerBound -- the lowest index that should be considered. upperBound -- the highest index that should be considered. Example: a typical tupleOfLists is ({'A', 'B'}, {1,2}, {4,5}) a listNumber of [1] would only consider the links in {1,2}, a listNumber of [2] would only consider the links in {4,5} and a listNumber of [1,2] would consider the links in both {1,2}, and {4,5}. """ summation = 0 for index in listNumber: summation += len({link for link in tupleOfLists[index] if link >= lowerBound and link <= upperBound}) return summation
239fd8d3c01fe6c88444cfa7369459e3c76005dc
17,482
def encode_md5(plain_text): """ Encode the plain text by md5 :param plain_text: :return: cipher text """ plain_text = plain_text + EXT_STRING encoder = md5() encoder.update(plain_text.encode('utf-8')) return encoder.hexdigest()
ad88ebc12334c9438c38719cd7c836edb9736d3c
17,483
import warnings def delta(x, y, assume_normal=True, percentiles=[2.5, 97.5], min_observations=20, nruns=10000, relative=False, x_weights=1, y_weights=1): """ Calculates the difference of means between the samples (x-y) in a statistical sense, i.e. with confidence intervals. NaNs are ignored: treated as if they weren't included at all. This is done because at this level we cannot determine what a NaN means. In some cases, a NaN represents missing data that should be completely ignored, and in some cases it represents inapplicable (like PCII for non-ordering customers) - in which case the NaNs should be replaced by zeros at a higher level. Replacing with zeros, however, would be completely incorrect for return rates. Computation is done in form of treatment minus control, i.e. x-y Args: x (array_like): sample of a treatment group y (array_like): sample of a control group assume_normal (boolean): specifies whether normal distribution assumptions can be made percentiles (list): list of percentile values for confidence bounds min_observations (integer): minimum number of observations needed nruns (integer): only used if assume normal is false relative (boolean): if relative==True, then the values will be returned as distances below and above the mean, respectively, rather than the absolute values. In this case, the interval is mean-ret_val[0] to mean+ret_val[1]. This is more useful in many situations because it corresponds with the sem() and std() functions. x_weights (list): weights for the x vector, in order to calculate the weighted mean and confidence intervals, which is equivalent to the overall metric. This weighted approach is only relevant for ratios. y_weights (list): weights for the y vector, in order to calculate the weighted mean and confidence intervals, which is equivalent to the overall metric. This weighted approach is only relevant for ratios. Returns: tuple: * mu (float): mean value of the difference * c_i (dict): percentile levels (index) and values * ss_x (int): size of x excluding NA values * ss_y (int): size of y excluding NA values * _x (float): absolute mean of x * _y (float): absolute mean of y """ # Checking if data was provided if x is None or y is None: raise ValueError('Please provide two non-None samples.') # Coercing missing values to right format _x = np.array(x, dtype=float) * x_weights _y = np.array(y, dtype=float) * y_weights x_nan = np.isnan(_x).sum() y_nan = np.isnan(_y).sum() if x_nan > 0: warnings.warn('Discarding ' + str(x_nan) + ' NaN(s) in the x array!') if y_nan > 0: warnings.warn('Discarding ' + str(y_nan) + ' NaN(s) in the y array!') ss_x = sample_size(_x) ss_y = sample_size(_y) # Checking if enough observations are left after dropping NaNs if min(ss_x, ss_y) < min_observations: # Set mean to nan mu = np.nan # Create nan dictionary c_i = dict(list(zip(percentiles, np.empty(len(percentiles)) * np.nan))) else: # Computing the mean mu = _delta_mean(_x, _y) # Computing the confidence intervals if assume_normal: c_i = normal_sample_difference(x=_x, y=_y, percentiles=percentiles, relative=relative) else: c_i, _ = bootstrap(x=_x, y=_y, percentiles=percentiles, nruns=nruns, relative=relative) # Return the result structure return mu, c_i, ss_x, ss_y, np.nanmean(_x), np.nanmean(_y)
37b742775777b5a0bd26f7e8fdf7a189a69b199f
17,484
def CircleCircumference(curve_id, segment_index=-1): """Returns the circumference of a circle curve object Parameters: curve_id = identifier of a curve object segment_index [opt] = identifies the curve segment if curve_id identifies a polycurve Returns: The circumference of the circle if successful. """ return circle.Circumference
7a9200b089cebab93cbea387a4dd92590157dc45
17,485
def generate_handshake(info_hash, peer_id): """ The handshake is a required message and must be the first message transmitted by the client. It is (49+len(pstr)) bytes long in the form: <pstrlen><pstr><reserved><info_hash><peer_id> Where: pstrlen: string length of <pstr>, as a single raw byte pstr: string identifier of the protocol reserved: eight (8) reserved bytes. All current implementations use all zeroes. Each bit in these bytes can be used to change the behavior of the protocol. info_hash: 20-byte SHA1 hash of the info key in the meta info file. This is the same info_hash that is transmitted in tracker requests. peer_id: 20-byte string used as a unique ID for the client. This is usually the same peer_id that is transmitted in tracker requests In version 1.0 of the BitTorrent protocol: pstrlen = 19 and pstr = "BitTorrent protocol". :param info_hash: :param peer_id: :return: """ pstr = b"BitTorrent protocol" pstrlen = bytes(chr(len(pstr))) reserved = b"\x00" * 8 # 8 zeroes handshake = pstrlen + pstr + reserved + info_hash + peer_id assert len(handshake) == 49 + len(pstr) assert pstrlen == bytes(chr(19)) return handshake
ae13462608f3e2ec47abdb12e87a3bc08faa1cba
17,486
def tokenizer_decorator(func, **kwargs): """ This decorator wraps around a tokenizer function. It adds the token to the info dict and removes the found token from the given name. """ if not callable(func): raise TypeError(f"func {func} not callable") @wraps(func) def wrapper(name, info, **kwargs): try: if ("patterns" and "token_name") in kwargs: token = func(name, **kwargs) elif "reference_date" in kwargs: token = func(name, reference_date=kwargs.get("reference_date", None)) elif "template_file_found" in kwargs: token = func( name, template_file_found=kwargs.get("template_file_found", None) ) else: token = func(name) except TypeError as ex: logger.error(f"func: {func.__name__}, name: {name}\n{kwargs}") raise TokenizerError(ex) from ex # return name, info except Exception as ex: logger.error(f"func: {func.__name__}, name: {name}\n{kwargs}") raise TokenizerError(ex) from ex # return name, info if not token: # logger.warning(f'Wrapper no token found for {func}, {name}') return name, info str_token_values = [i for i in token.values() if isinstance(i, str)] str_token_values_in_name = [i for i in str_token_values if i in name] if str_token_values: for val in str_token_values_in_name: val_is_subset = [ i for i in str_token_values_in_name if val in i and len(i) > len(val) ] if not val_is_subset: name = replace_and_strip(name, val, **kwargs) info.update(**token) # print("wrapper token:",info,'\nname',name) return name, info return wrapper
d1827ab75a12f923c6da69927323d9c5013124c0
17,487
def reverse_complement( seq ): """ Biological reverse complementation. Case in sequences are retained, and IUPAC codes are supported. Code modified from: http://shootout.alioth.debian.org/u32/program.php?test=revcomp&lang=python3&id=4 """ return seq.translate(_nt_comp_table)[::-1]
86229dfeceecb7e0d2e1215b25074c35fbd38792
17,488
def computeLPS(s, n): """ Sol with better comle """ prev = 0 # length of the previous longest prefix suffix lps = [0]*(n) i = 1 # the loop calculates lps[i] for i = 1 to n-1 while i < n: if s[i] == s[prev]: prev += 1 lps[i] = prev i += 1 else: # This is tricky. Consider the example. # AAACAAAA and i = 7. The idea is similar # to search step. if prev != 0: prev = lps[prev-1] # Also, note that we do not increment i here else: lps[i] = 0 i += 1 print(lps) return lps[n-1]
8b4374c9ac29f59cf1f4b0e6e07628776828c11a
17,489
def roundedCorner(pc, p1, p2, r): """ Based on Stackoverflow C# rounded corner post https://stackoverflow.com/questions/24771828/algorithm-for-creating-rounded-corners-in-a-polygon """ def GetProportionPoint(pt, segment, L, dx, dy): factor = float(segment) / L if L != 0 else segment return PVector((pt.x - dx * factor), (pt.y - dy * factor)) # Vector 1 dx1 = pc.x - p1.x dy1 = pc.y - p1.y # Vector 2 dx2 = pc.x - p2.x dy2 = pc.y - p2.y # Angle between vector 1 and vector 2 divided by 2 angle = (atan2(dy1, dx1) - atan2(dy2, dx2)) / 2 # The length of segment between angular point and the # points of intersection with the circle of a given radius tng = abs(tan(angle)) segment = r / tng if tng != 0 else r # Check the segment length1 = sqrt(dx1 * dx1 + dy1 * dy1) length2 = sqrt(dx2 * dx2 + dy2 * dy2) min_len = min(length1, length2) if segment > min_len: segment = min_len max_r = min_len * abs(tan(angle)) else: max_r = r # Points of intersection are calculated by the proportion between # length of vector and the length of the segment. p1Cross = GetProportionPoint(pc, segment, length1, dx1, dy1) p2Cross = GetProportionPoint(pc, segment, length2, dx2, dy2) # Calculation of the coordinates of the circle # center by the addition of angular vectors. dx = pc.x * 2 - p1Cross.x - p2Cross.x dy = pc.y * 2 - p1Cross.y - p2Cross.y L = sqrt(dx * dx + dy * dy) d = sqrt(segment * segment + max_r * max_r) circlePoint = GetProportionPoint(pc, d, L, dx, dy) # StartAngle and EndAngle of arc startAngle = atan2(p1Cross.y - circlePoint.y, p1Cross.x - circlePoint.x) endAngle = atan2(p2Cross.y - circlePoint.y, p2Cross.x - circlePoint.x) # Sweep angle sweepAngle = endAngle - startAngle # Some additional checks if sweepAngle < 0: startAngle, endAngle = endAngle, startAngle sweepAngle = -sweepAngle if sweepAngle > PI: startAngle, endAngle = endAngle, startAngle sweepAngle = TWO_PI - sweepAngle # Draw result using graphics # noStroke() with pushStyle(): noStroke() beginShape() vertex(p1.x, p1.y) vertex(p1Cross.x, p1Cross.y) vertex(p2Cross.x, p2Cross.y) vertex(p2.x, p2.y) endShape(CLOSE) line(p1.x, p1.y, p1Cross.x, p1Cross.y) line(p2.x, p2.y, p2Cross.x, p2Cross.y) arc(circlePoint.x, circlePoint.y, 2 * max_r, 2 * max_r, startAngle, startAngle + sweepAngle, OPEN)
e77497918025deba211469616d210c23483e2152
17,490
def synthetic_data(n_points=1000, noise=0.05, random_state=None, kind="unit_cube", n_classes=None, n_occur=1, legacy_labels=False, **kwargs): """Make a synthetic dataset A sample dataset generators in the style of sklearn's `sample_generators`. This adds other functions found in the Matlab toolkit for Dimensionality Reduction Parameters ---------- kind: {'unit_cube', 'swiss_roll', 'broken_swiss_roll', 'twinpeaks', 'difficult'} The type of synthetic dataset legacy_labels: boolean If True, try and reproduce the labels from the Matlab Toolkit for Dimensionality Reduction. (overrides any value in n_classes) This usually only works if algorithm-specific coefficient choices (e.g. `height` for swiss_roll) are left at their default values n_points : int, optional (default=1000) The total number of points generated. n_classes: None or int If None, target vector is based on underlying manifold coordinate If int, the manifold coordinate is bucketized into this many classes. n_occur: int Number of occurrences of a given class (along a given axis) ignored if n_classes = None noise : double or None (default=0.05) Standard deviation of Gaussian noise added to the data. If None, no noise is added. random_state : int, RandomState instance or None (default) Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls. Additional Parameters --------------------- difficult: n_dims: int (default 5) Number of dimensions to embed swiss_roll: broken_swiss_roll: height: float (default 30.) scaling to apply to y dimension Returns ------- X : array of shape [n_points, 2] The generated samples. y : array of shape [n_points] The labels for class membership of each point. """ generator = check_random_state(random_state) metadata = { "synthetic_type": kind, "n_points": n_points, "noise": noise } if kind == 'unit_cube': x = 2 * (generator.rand(n_points) - 0.5) y = 2 * (generator.rand(n_points) - 0.5) z = 2 * (generator.rand(n_points) - 0.5) X = np.column_stack((x, y, z)) shift = np.array([1.]) scale = np.array([2.]) labels = checkerboard(X, shift_factors=shift, scale_factors=scale, n_occur=n_occur, n_classes=n_classes) metadata['manifold_coords'] = np.concatenate((x,y,z), axis=0).T elif kind == 'twinpeaks': inc = 1.5 / np.sqrt(n_points) x = np.arange(-1, 1, inc) xy = 1 - 2 * generator.rand(2, n_points) z = np.sin(np.pi * xy[0, :]) * np.tanh(3 * xy[1, :]) X = np.vstack([xy, z * 10.]).T # + noise * generator.randn(n_points, 3) t = xy.T metadata['manifold_coords'] = t if legacy_labels is True: labels = np.remainder(np.sum(np.round((X + np.tile(np.min(X, axis=0), (X.shape[0], 1))) / 10.), axis=1), 2) elif n_classes is None: labels = 1-z else: shift = np.array([1.]) scale = np.array([2.]) labels = checkerboard(t, shift_factors=shift, scale_factors=scale, n_classes=n_classes, n_occur=n_occur) elif kind == 'swiss_roll': height = kwargs.pop('height', 30.) t = 1.5 * np.pi * (1.0 + 2.0 * generator.rand(n_points)) y = height * generator.rand(*t.shape) manifold_coords = np.column_stack((t, y)) X = _parameterized_swiss_roll(manifold_coords) metadata['manifold_coords'] = manifold_coords if legacy_labels is True: labels = np.remainder(np.round(t / 2.) + np.round(height / 12.), 2) else: scale = np.array([3*np.pi]) shift = np.array([-1.5*np.pi]) labels = checkerboard(t, shift_factors=shift, scale_factors=scale, n_classes=n_classes, n_occur=n_occur) elif kind == 'broken_swiss_roll': height = kwargs.pop('height', 30.) np1 = int(np.ceil(n_points / 2.0)) t1 = 1.5 * np.pi * (1.0 + 2.0 * (generator.rand(np1) * 0.4)) t2 = 1.5 * np.pi * (1.0 + 2.0 * (generator.rand(n_points - np1) * 0.4 + 0.6)) t = np.concatenate((t1, t2)) y = height * generator.rand(*t.shape) manifold_coords = np.column_stack((t, y)) X = _parameterized_swiss_roll(manifold_coords) metadata['manifold_coords'] = manifold_coords if legacy_labels is True: labels = np.remainder(np.round(t / 2.) + np.round(height / 12.), 2) else: scale = np.array([3*np.pi]) shift = np.array([-1.5*np.pi]) labels = checkerboard(t, shift_factors=shift, scale_factors=scale, n_classes=n_classes, n_occur=n_occur) elif kind == 'difficult': n_dims = kwargs.pop("n_dims", 5) points_per_dim = int(np.round(float(n_points ** (1.0 / n_dims)))) l = np.linspace(0, 1, num=points_per_dim) t = np.array(list(_combn(l, n_dims))) X = np.vstack((np.cos(t[:,0]), np.tanh(3 * t[:,1]), t[:,0] + t[:,2], t[:,3] * np.sin(t[:,1]), np.sin(t[:,0] + t[:,4]), t[:,4] * np.cos(t[:,1]), t[:,4] + t[:,3], t[:,1], t[:,2] * t[:,3], t[:,0])).T tt = 1 + np.round(t) # Generate labels for dataset (2x2x2x2x2 checkerboard pattern) labels = np.remainder(tt.sum(axis=1), 2) metadata['n_dims'] = n_dims metadata['manifold_coords'] = t else: raise Exception(f"Unknown synthetic dataset type: {kind}") if noise is not None: X += noise * generator.randn(*X.shape) return X, labels, metadata
740b5d2f708e177ce703f2124806ab7bd0079a09
17,491
import argparse def parse_args(): """ Argument Parser """ parser = argparse.ArgumentParser(description="Wiki Text Extractor") parser.add_argument("-i", "--input_dir", dest="input_dir", type=str, metavar="PATH", default="./extracted",help="Input directory path ") parser.add_argument("-o", "--output_dir", dest="output_dir", type=str, metavar="PATH", default="./wiki_text",help="Output directory path") parser.add_argument("-t", "--output_type", dest="output_type", type=int, metavar="INT", default=1, choices=[1,2], help="Output in a single file or multiple file") args = parser.parse_args() return args
af9149f893bb652c7e86a731749b3e2a5e4c1c8f
17,492
def _load_default_profiles(): # type: () -> Dict[str, Any] """Load all the profiles installed on the system.""" profiles = {} for path in _iter_default_profile_file_paths(): name = _get_profile_name(path) if _is_abstract_profile(name): continue definition = _read_profile_definition(path) try: recursively_expand_base_profiles(definition) except Exception: logger.error("Could not expand base profile %s", path) raise profiles[name] = {'definition': definition} return profiles
b53411dce6bdf3baba876a626b023a2b93e48c99
17,493
import torch def train_model(model, train_loader, valid_loader, learning_rate, device, epochs): """Trains a model with train_loader and validates it with valid_loader Arguments: model -- Model to train train_loader -- Data to train valid_loader -- Data to validate the training learning_rate -- Learning rate device -- Device where the computations will be executed epochs -- Number of epochs to train Returns: The trained model """ # Our loss function will be 'negative log likelihood' criterion = nn.NLLLoss() # We only want to optimize our classifier parameters optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate) # makes PyTorch use 'device' to compute model.to(device) criterion.to(device) print_every = 25 step = 0 for epoch in range(epochs): # for each epoch running_loss = 0 print("Epoch: {}/{}".format(epoch+1, epochs)) print("==========") for inputs, labels in train_loader: # for each batch of data / label step += 1 inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() # resets gradients to zero output = model.forward(inputs) # feed forward loss = criterion(output, labels) # calculate the loss loss.backward() # back propagate the loss optimizer.step() # do gradient descent (update weights) running_loss += loss.item() if step % print_every == 0: model.eval() # Turn off dropout to make the validation pass # Turn off gradients for the validation pass with torch.no_grad(): valid_loss, accuracy = validate_model(model, valid_loader, criterion, device) print("Training Loss: {:.3f}.. ".format( running_loss/print_every), "Validation Loss: {:.3f}.. ".format( valid_loss/len(valid_loader)), "Validation Accuracy: {:.3f}".format( accuracy/len(valid_loader))) running_loss = 0 model.train() # enable dropout back model.eval() # Turn off dropout to make the validation pass with torch.no_grad(): # Turn off gradients for the validation pass valid_loss, accuracy = validate_model( model, valid_loader, criterion, device) print("\nEpoch: {}/{}.. ".format(epoch+1, epochs), "Validation Loss: {:.3f}.. ".format( valid_loss/len(valid_loader)), "Validation Accuracy: {:.3f}\n".format( accuracy/len(valid_loader))) model.train() # enable dropout back return model
3addd258adddcbb43d846dae09d943d9a7016b69
17,494
def get_weapon_techs(fighter=None): """If fighter is None, return list of all weapon techs. If fighter is given, return list of weapon techs fighter has.""" if fighter is None: return weapon_tech_names else: return [t for t in fighter.techs if get_tech_obj(t).is_weapon_tech]
bbda76e55fdbe80e9883ff05746256fb56767136
17,495
def xml_to_values(l): """ Return a list of values from a list of XML data potentially including null values. """ new = [] for element in l: if isinstance(element, dict): new.append(None) else: new.append(to_float(element)) return new
30b6af4101f45697e0f074ddedcd051aba37cb99
17,496
def _get_options(raw_options, apply_config): """Return parsed options.""" if not raw_options: return parse_args([''], apply_config=apply_config) if isinstance(raw_options, dict): options = parse_args([''], apply_config=apply_config) for name, value in raw_options.items(): if not hasattr(options, name): raise ValueError("No such option '{}'".format(name)) # Check for very basic type errors. expected_type = type(getattr(options, name)) if not isinstance(expected_type, (str, unicode)): if isinstance(value, (str, unicode)): raise ValueError( "Option '{}' should not be a string".format(name)) setattr(options, name, value) else: options = raw_options return options
e88014f0f5497e72973afbdf669cf14bf4537051
17,497
def csvdir_equities(tframes=None, csvdir=None): """ Generate an ingest function for custom data bundle This function can be used in ~/.zipline/extension.py to register bundle with custom parameters, e.g. with a custom trading calendar. Parameters ---------- tframes: tuple, optional The data time frames, supported timeframes: 'daily' and 'minute' csvdir : string, optional, default: CSVDIR environment variable The path to the directory of this structure: <directory>/<timeframe1>/<symbol1>.csv <directory>/<timeframe1>/<symbol2>.csv <directory>/<timeframe1>/<symbol3>.csv <directory>/<timeframe2>/<symbol1>.csv <directory>/<timeframe2>/<symbol2>.csv <directory>/<timeframe2>/<symbol3>.csv Returns ------- ingest : callable The bundle ingest function Examples -------- This code should be added to ~/.zipline/extension.py .. code-block:: python from zipline.data.bundles import csvdir_equities, register register('custom-csvdir-bundle', csvdir_equities(["daily", "minute"], '/full/path/to/the/csvdir/directory')) """ return CSVDIRBundle(tframes, csvdir).ingest
6dc4b76e52f7512074eb044d5505c904a323eb69
17,498
def normalize_skeleton(joints): """Normalizes joint positions (NxMx2 or NxMx3, where M is 14 or 16) from parent to child order. Each vector from parent to child is normalized with respect to it's length. :param joints: Position of joints (NxMx2) or (NxMx3) :type joints: numpy.ndarray :return: Normalzed position of joints (NxMx2) or (NxMx3) :rtype: numpy.ndarray """ assert len(joints.shape) == 3 assert joints.shape[1] == 14 or joints.shape[1] == 16 assert joints.shape[-1] == 2 or joints.shape[-1] == 3 hip = 0 if joints.shape[1] == 14: names = NAMES_14 else: names = NAMES_16 neck = names.index('Neck') joints_ = joints.copy() joints_ -= joints_[:, :1, :] spine = joints_[:, neck, :] - joints_[:, hip, :] spine_norm = np.linalg.norm(spine, axis=1).reshape(-1, 1) adjacency = adjacency_list(joints_.shape[1]) queue = [] queue.append(0) while len(queue) > 0: current = queue.pop(0) for child in adjacency[current]: queue.append(child) prnt_to_chld = joints[:, child, :] - joints[:, current, :] prnt_to_chld_norm = np.linalg.norm(prnt_to_chld, axis=1).reshape(-1, 1) prnt_to_chld_unit = prnt_to_chld / prnt_to_chld_norm joints_[:, child, :] = joints_[:, current, :] + (prnt_to_chld_unit * (prnt_to_chld_norm / (spine_norm + 1e-8))) return joints_
579862d05814eaa9b04f3e1a4812e727b02175aa
17,499