content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def logoutUser(request): """[summary] Args: request ([Logout]): [Metodo herado de logout de django para cerrar sesión] Returns: [Redirect template]: [Retorna el template del login] """ logout(request) return redirect('/accounts/login/')
67684fb4dfafd0c5f8671553566dd7f6940b4f6c
17,600
def sin_wave(freq, duration=1, offset=0): """Makes a sine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = SinSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave
f0f0e58d0a864a114aafa24f68b683ac4ec2f419
17,601
def assign_lpvs(lat): """ Given lattice type return 3 lattice primitive vectors""" lpv = zeros((3,3)) if lat=='FCC': lpv[0,1]=1./sqrt(2) lpv[0,2]=1./sqrt(2) lpv[1,0]=1./sqrt(2) lpv[1,2]=1./sqrt(2) lpv[2,0]=1./sqrt(2) lpv[2,1]=1./sqrt(2) elif lat=='SC': lpv[0,0]=1 lpv[1,1]=1 lpv[2,2]=1 elif lat=='SH': lpv[0,0]=1./2 lpv[0,1]=-sqrt(3)/2 lpv[1,0]=1./2 lpv[1,1]=sqrt(3)/2 lpv[2,2]=1. return lpv
ecf599a661446e19e4155f170c41b5ac8271c8cb
17,602
import torch def flatten_and_batch_shift_indices(indices: torch.LongTensor, sequence_length: int) -> torch.Tensor: """``indices`` of size ``(batch_size, d_1, ..., d_n)`` indexes into dimension 2 of a target tensor, which has size ``(batch_size, sequence_length, embedding_size)``. This function returns a vector that correctly indexes into the flattened target. The sequence length of the target must be provided to compute the appropriate offset. Args: indices (torch.LongTensor): """ if torch.max(indices) >= sequence_length or torch.min(indices) < 0: raise ValueError("All the elements should be in range (0, {}), but found ({}, {})".format( sequence_length - 1, torch.min(indices).item(), torch.max(indices).item())) offsets = get_range_vector(indices.size(0), indices.device) * sequence_length for _ in range(len(indices.size()) - 1): offsets = offsets.unsqueeze(1) # (batch_size, d_1, ..., d_n) + (batch_size, 1, ..., 1) offset_indices = indices + offsets # (batch_size * d_1 * ... * d_n) offset_indices = offset_indices.view(-1) return offset_indices
6b283f3baaa4fde17af194f996b7f2dec409fc0b
17,603
def raveled_affinity_watershed( image_raveled, marker_coords, offsets, mask, output ): """Compute affinity watershed on raveled arrays. Parameters ---------- image_raveled : 2D array of float(32), shape (npixels, ndim) The z, y, and x affinities around each pixel. marker_coords : 1D array of int The location of each marker along the pixels dimension of ``image_raveled``. offsets : 1D array of int The signed offsets to each neighboring pixel. mask : 1D array of bool, shape (npixels,) True for pixels to which the watershed should spread. output : 1D array of int The output array for markers. """ n_neighbors = offsets.shape[0] age = 0 marker_coords = marker_coords.astype(np.intp) offsets = offsets.astype(np.intp) aff_offsets = offsets.copy().astype(np.intp) aff_offsets[:int(len(offsets) / 2), 1] = 0 heap = [ Element( image_raveled[0, 0], age, marker_coords[0], marker_coords[0] ) ] _ = heappop(heap) # add each seed to the stack for i in range(marker_coords.shape[0]): index = marker_coords[i] value = np.float32(0.) source = index index = index elem = Element(value, age, index, source) heappush(heap, elem) # remove from stack until empty while len(heap) > 0: elem = heappop(heap) for i in range(n_neighbors): # get the flattened address of the neighbor # offsets are 2d (size, 2) with columns 0 and 1 corresponding to # affinities (ie axis) and image neighbour indices respectively neighbor_index = elem.index + offsets[i, 1] if not mask[neighbor_index]: # neighbor is not in mask, move on to next neighbor continue if output[neighbor_index]: # if there is a non-zero value in output, move on to next # neighbor continue # if the neighbor is in the mask and not already labeled, # label it then add it to the queue output[neighbor_index] = output[elem.index] value = image_raveled[aff_offsets[i, 0], aff_offsets[i, 1] + elem.index] age += 1 new_elem = Element(value, age, neighbor_index, elem.source) heappush(heap, new_elem) return output
bc109b59bec4389a851cfc46a8e02648e1809c60
17,604
def get_spike_times(units: pynwb.misc.Units, index, in_interval): """Use bisect methods to efficiently retrieve spikes from a given unit in a given interval Parameters ---------- units: pynwb.misc.Units index: int in_interval: start and stop times Returns ------- """ st = units['spike_times'] unit_start = 0 if index == 0 else st.data[index - 1] unit_stop = st.data[index] start_time, stop_time = in_interval ind_start = bisect_left(st.target, start_time, unit_start, unit_stop) ind_stop = bisect_right(st.target, stop_time, ind_start, unit_stop) return np.asarray(st.target[ind_start:ind_stop])
c121747deec1fcc9b5e317f6ec5e57349604ebc3
17,605
def _make_hours(store_hours): """Store hours is a dictionary that maps a DOW to different open/close times Since it's easy to represent disjoing hours, we'll do this by default Such as, if a store is open from 11am-2pm and then 5pm-10pm We'll slice the times in to a list of floats representing 30 minute intevals So for monday, let's assume we have the store hours from 10am - 3pm We represent this as monday = [10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5] """ week_hrs = {} for dow in store_hours.keys(): dow_hours = [] for hour_set in store_hours[dow]: if len(hour_set) < 2: open_hr = 0.0 close_hr = 24.0 else: open_hr = float(hour_set[0]) close_hr = float(hour_set[1]) if close_hr < open_hr: tmp = close_hr close_hr = open_hr open_hr = tmp current_hr_it = open_hr while((close_hr - current_hr_it) >= .5): dow_hours.append(current_hr_it) current_hr_it += .5 week_hrs[dow] = dow_hours return week_hrs
4845594e59e5dba2790ac1a3c376ddb8e8290995
17,606
def mul_time(t1, factor): """Get the product of the original Time and the number time: Time factor: number returns: Time """ assert valid_time(t1) secods = time_to_int(t1) * factor return int_to_time(secods)
43d9c3a52670b8755590693fe6886748665d81ee
17,607
def create_pmf_from_samples( t_samples_list, t_trunc=None, bin_width=None, num_bins=None): """ Compute the probability distribution of the waiting time from the sampled data. Parameters ---------- t_samples_list : array-like 1-D Samples of the waiting time. t_trunc: int The truncation time. bin_width: int The width of the bins for the histogram. num_binms: int The number of bins for the histogram. If num_bins and bin_width are both given, bin_width has priority. Returns ------- pmf: array-like 1-D The probability distribution also the normalized histogram of waiting time. bin_edges: array-like 1-D The edge of each bins from ``numpy.histogram``. """ if t_trunc is None: t_trunc = max(t_samples_list) if bin_width is None: if num_bins is None: bin_width = int(np.ceil(t_trunc/200)) else: bin_width = int(np.ceil(t_trunc/num_bins)) start = np.min(t_samples_list) pmf, bin_edges = np.histogram( t_samples_list, bins=np.arange(start, t_trunc+1, bin_width)) return pmf/len(t_samples_list), bin_edges
ce14c169ee719979284b01584b7e0523b19f256a
17,608
def box_corner_to_center(boxes): """从(左上,右下)转换到(中间,宽度,高度)""" x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = paddle.stack((cx, cy, w, h), axis=-1) return boxes
c07ef637576e5b9ebd8ba43795535e630ccf8b09
17,609
def irrelevant(condition=None, library=None, weblog_variant=None, reason=None): """ decorator, allow to mark a test function/class as not relevant """ skip = _should_skip(library=library, weblog_variant=weblog_variant, condition=condition) def decorator(function_or_class): if not skip: return function_or_class full_reason = "not relevant" if reason is None else f"not relevant: {reason}" return _get_skipped_item(function_or_class, full_reason) return decorator
7d2633247569c4ca5bc20d5249e0b49991ae1047
17,610
def get_all_approved(self) -> list: """Get all appliances currently approved .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - appliance - GET - /appliance/approved :return: Returns approved appliances :rtype: list """ return self._get("/appliance/discovered")
4c8c00cce144cf73b2a7b63d1e82a13f28de383c
17,611
import os def get_project_root() -> str: """Get the path to the project root. Returns: str: the path to the project root. """ return os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
afe45a30910049264fbe55551415c7897310ec63
17,612
def bokeh_hover_tooltip( label=False, text=False, image=False, audio=False, coords=True, index=True, custom=None, ): """ ???+ note "Create a Bokeh hover tooltip from a template." - param label: whether to expect and show a "label" field. - param text: whether to expect and show a "text" field. - param image: whether to expect and show an "image" (url/path) field. - param audio: whether to expect and show an "audio" (url/path) field. - param coords: whether to show xy-coordinates. - param index: whether to show indices in the dataset. - param custom: {display: column} mapping of additional (text) tooltips. """ # initialize mutable default value custom = custom or dict() # prepare encapsulation of a div box and an associated script divbox_prefix = """<div class="out tooltip">\n""" divbox_suffix = """</div>\n""" script_prefix = """<script>\n""" script_suffix = """</script>\n""" # dynamically add contents to the div box and the script divbox = divbox_prefix script = script_prefix if label: divbox += """ <div> <span style="font-size: 16px; color: #966;"> Label: @label </span> </div> """ if text: divbox += """ <div style="word-wrap: break-word; width: 95%; text-overflow: ellipsis; line-height: 90%"> <span style="font-size: 11px;"> Text: @text </span> </div> """ if image: divbox += """ <div> <span style="font-size: 10px;"> Image: @image </span> <img src="@image" height="60" alt="@image" width="60" style="float: left; margin: 0px 0px 0px 0px;" border="2" ></img> </div> """ if audio: divbox += """ <div> <span style="font-size: 10px;"> Audio: @audio </span> <audio autoplay preload="auto" src="@audio"> </audio> </div> """ if coords: divbox += """ <div> <span style="font-size: 12px; color: #060;"> Coordinates: ($x, $y) </span> </div> """ if index: divbox += """ <div> <span style="font-size: 12px; color: #066;"> Index: [$index] </span> </div> """ for _key, _field in custom.items(): divbox += f""" <div> <span style="font-size: 12px; color: #606;"> {_key}: @{_field} </span> </div> """ divbox += divbox_suffix script += script_suffix return divbox + script
198e76e29d62c12c891c0fe51e947d16f39d65bb
17,613
import math def constant_xavier_initializer(shape, dtype=tf.float32, uniform=True): """Initializer function.""" if not dtype.is_floating: raise TypeError('Cannot create initializer for non-floating point type.') # Estimating fan_in and fan_out is not possible to do perfectly, but we try. # This is the right thing for matrix multiply and convolutions. if shape: fan_in = float(shape[-2]) if len(shape) > 1 else float(shape[-1]) fan_out = float(shape[-1]) else: fan_in = 1.0 fan_out = 1.0 for dim in shape[:-2]: fan_in *= float(dim) fan_out *= float(dim) # Average number of inputs and output connections. n = (fan_in + fan_out) / 2.0 if uniform: # To get stddev = math.sqrt(factor / n) need to adjust for uniform. limit = math.sqrt(3.0 * 1.0 / n) return tf.random_uniform(shape, -limit, limit, dtype, seed=None) else: # To get stddev = math.sqrt(factor / n) need to adjust for truncated. trunc_stddev = math.sqrt(1.3 * 1.0 / n) return tf.truncated_normal(shape, 0.0, trunc_stddev, dtype, seed=None)
f11403932f04327b77f38930a8a7a235633449da
17,614
from typing import Dict from typing import Tuple from typing import Any def upload_script(name: str, permission_type: str, content: str, entry_id: str) -> Dict: """ Uploads a script by either given content or file :param name: Script name to upload :param permission_type: Permissions type of script to upload :param content: PowerShell script content :param entry_id: Script file to upload :return: Response JSON which contains errors (if exist) and how many resources were affected """ endpoint_url = '/real-time-response/entities/scripts/v1' body: Dict[str, Tuple[Any, Any]] = { 'name': (None, name), 'permission_type': (None, permission_type) } temp_file = None try: if content: body['content'] = (None, content) else: # entry_id was provided file_ = demisto.getFilePath(entry_id) file_name = file_.get('name') # pylint: disable=E1101 temp_file = open(file_.get('path'), 'rb') # pylint: disable=E1101 body['file'] = (file_name, temp_file) headers = { 'Authorization': HEADERS['Authorization'], 'Accept': 'application/json' } response = http_request('POST', endpoint_url, files=body, headers=headers) return response finally: if temp_file: temp_file.close()
d33aa3a4f19cfac08d8ee5cb559c0088c6f577bb
17,615
def create_orthogonal(left, right, bottom, top, znear, zfar): """Create a Mat4 orthographic projection matrix.""" width = right - left height = top - bottom depth = zfar - znear sx = 2.0 / width sy = 2.0 / height sz = 2.0 / -depth tx = -(right + left) / width ty = -(top + bottom) / height tz = -(zfar + znear) / depth return Mat4((sx, 0.0, 0.0, 0.0, 0.0, sy, 0.0, 0.0, 0.0, 0.0, sz, 0.0, tx, ty, tz, 1.0))
3f10bcabe0d95a9832956a7edcef1719c7db0d15
17,616
def update_image_version(name: str, new_version: str): """returns the passed image name modified with the specified version""" parts = name.rsplit(':', 1) return f'{parts[0]}:{new_version}'
cde798361a6c74d22f979fe013e963c46028a7e6
17,617
def compute_entanglement(theta): """Computes the second Renyi entropy of circuits with and without a tardigrade present. Args: - theta (float): the angle that defines the state psi_ABT Returns: - (float): The entanglement entropy of qubit B with no tardigrade initially present - (float): The entanglement entropy of qubit B where the tardigrade was initially present """ dev = qml.device("default.qubit", wires=3) # QHACK # @qml.qnode(dev) def circuits(theta, tartigrade): if not tartigrade: qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) qml.PauliX(wires=0) return qml.density_matrix(wires=[0]) def partial_trace(rho, qubit_2_keep): # Credits: GitHub @neversakura. num_qubit = int(np.log2(rho.shape[0])) qubit_axis = [(i, num_qubit + i) for i in range(num_qubit) if i not in qubit_2_keep] minus_factor = [(i, 2 * i) for i in range(len(qubit_axis))] minus_qubit_axis = [(q[0] - m[0], q[1] - m[1]) for q, m in zip(qubit_axis, minus_factor)] rho_res = np.reshape(rho, [2, 2] * num_qubit) qubit_left = num_qubit - len(qubit_axis) for i, j in minus_qubit_axis: rho_res = np.trace(rho_res, axis1=i, axis2=j) if qubit_left > 1: rho_res = np.reshape(rho_res, [2 ** qubit_left] * 2) return rho_res psi_0 = np.array([1, 0]) psi_1 = np.array([0, 1]) g_bt = np.kron(psi_0, psi_0) e_bt=np.cos(theta/2)*np.kron(psi_1,psi_0)+np.sin(theta/2)*np.kron(psi_0,psi_1) psi_abt = 1/np.sqrt(2)*(np.kron(psi_0, e_bt)+np.kron(psi_1, g_bt)) rho_abt = np.outer(psi_abt, np.conj(psi_abt)) rho_b = partial_trace(rho_abt, [1]) mu_b = circuits(theta, 0) s_mub = second_renyi_entropy(mu_b) s_rhob = second_renyi_entropy(rho_b) return s_mub, s_rhob # QHACK #
bc6d70f1ef76666fa3b4d753f13dc04a8a368374
17,618
import logging def parse_CDS_info(CDS_info): """ Args: CDS_info (python d): 'aliases' (list<alias_list (multiple)>): alias_list list<'locus_tag', str> AND/OR list<'old_locus_tag', str> AND/OR list<'protein_id', str> 'dna_sequence' (str): The actual DNA sequence 'functions' (list<str>): First object of list is the function 'location' (list<scaffold (str), bp (int), strand ("+/-"), length (nt)>) Returns: gene_table_list_d (dict): "locusId":str "sysName": ?str "type": 1 "scaffoldId": str "begin": int "end": int "strand": str ("+"/"-") "name": str (always "unknown" in this case) "desc": str "GC": float "nTA": int "AA_seq": Amino Acid sequence of gene """ gene_table_list_d = {} #Getting locusId aliases_l = CDS_info["aliases"] locusId_obj = aliases_l[0] if locusId_obj[0] != "locus_tag": locus_tag_found = False for i in range(1, len(aliases_l)): if aliases_l[i][0] == "locus_tag": locus_tag_found = True locusId_obj = aliases_l[i] break logging.critical(f"Found locus_tag at different loc of list: {i}") else: locus_tag_found = True if not locus_tag_found: raise Exception("Expecting locus_tag from genome object, did not find it.") else: gene_table_list_d["locusId"] = locusId_obj[1] gene_table_list_d["sysName"] = locusId_obj[1] # Getting scaffold, location, strand scaffold, bp_loc, strand, nt_len = get_location_info(CDS_info["location"][0]) gene_table_list_d["scaffoldId"] = scaffold gene_table_list_d["begin"] = bp_loc gene_table_list_d["end"] = bp_loc + nt_len gene_table_list_d["strand"] = strand # Getting description gene_table_list_d["desc"] = CDS_info["functions"][0] # Getting GC and nTA DNA_seq = CDS_info["dna_sequence"].upper() gene_table_list_d["GC"] = (DNA_seq.count("G") + DNA_seq.count("C"))/float(len(DNA_seq)) gene_table_list_d["nTA"] = DNA_seq.count("TA") # Undecidable parts (from the data object) gene_table_list_d["type"] = 1 gene_table_list_d["name"] = "unknown" # Adding protein sequence gene_table_list_d["AA_seq"] = CDS_info["protein_translation"].upper() return gene_table_list_d
d55e5b2c56b42c89c9abeba63cb7c68213688945
17,619
import re def recover_original_schema_name(sql: str, schema_name: str) -> str: """Postgres truncates identifiers to 63 characters at parse time and, as pglast uses bits of PG to parse queries, image names like noaa/climate:64_chars_of_hash get truncated which can cause ambiguities and issues in provenance. We can't get pglast to give us back the full identifier, but we can try and figure out what it used to be and patch the AST to have it again. """ if len(schema_name) < POSTGRES_MAX_IDENTIFIER: return schema_name candidates = list(set(re.findall(r"(" + re.escape(schema_name) + r"[^.\"]*)[.\"]", sql))) # Us finding more than one candidate schema is pretty unlikely to happen: # we'd have to have a truncated schema name that's 63 characters long # (of kind some_namespace/some_repo:abcdef1234567890....) # which also somehow features in this query as a non-identifier. Raise an error here if # this does happen. assert len(candidates) == 1 return str(candidates[0])
041c747e8722dc1e81a94b29b76ee0eded88992c
17,620
def on_method_not_allowed(error): """Override the HTML 405 default.""" content = {"msg": "Method not allowed"} return jsonify(content), 405
a174592834952beca21c683890ab94c9583544f9
17,621
def dir_name(dir_path): """ 转换零时文件夹、输入文件夹路径 :param dir_path: 主目录路径 :return:[tmp_dir, input_dir, res_dir] """ tmp_dir = dir_path + "tmp\\" input_dir = dir_path + "input\\" res_dir = dir_path + "result\\" return tmp_dir, input_dir, res_dir
9f775b4ace14b178fd7bc0dfa94e5df13e583557
17,622
def profile_binning( r, z, bins, z_name="pm", z_clip=None, z_quantile=None, return_bin=True, plot=True, ): """Bin the given quantity z in r. Parameters ---------- r: 1d array, binned x values z: 1d array, binned y values bins: 1d array, bins Returns -------- r_rbin : 1d array, mean r in bins z_rbin : 1d array, mean z in bins z_bins : dict, numbers for bins """ if z_clip is None: clip = clip_quantile_1d(z, z_quantile, return_func=True) else: clip = lambda z_: (z_ > z_clip[0]) & (z_ < z_clip[1]) z_bins = {} if plot: fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Clip by bins for k, b in enumerate(bins[:-1]): in_bin = (bins[k] <= r) & (r < bins[k + 1]) clipped = clip(z[in_bin]) z_in_bin = z[in_bin][clipped] r_in_bin = r[in_bin][clipped] z_bin = {z_name: z_in_bin, "r": r_in_bin} z_bins[k] = z_bin if plot: lab = "{0:.2f}<r<{1:.2f}".format(bins[k], bins[k + 1]) sns.distplot( z_in_bin, hist=False, kde_kws={"lw": 2, "alpha": 0.9}, label=lab, ) r_rbin, z_rbin = get_mean_rbins(z_bins, z_name=z_name) z_bins = z_bins if return_bin else None return r_rbin, z_rbin, z_bins
f040fe7c7505e628978faf733a91578cb1a04709
17,623
def sequence_to_synergy_sims(inputs, params): """same as sequence to synergy, but prep some other tensors first """ # set up orig seq tensor inputs[DataKeys.ORIG_SEQ] = inputs[DataKeys.FEATURES] # set up thresholds tensor num_interpretation_tasks = len(params["importance_task_indices"]) thresholds_shape = [ inputs[DataKeys.FEATURES].get_shape().as_list()[0], num_interpretation_tasks, 1, 1] inputs[DataKeys.WEIGHTED_SEQ_THRESHOLDS] = tf.zeros(thresholds_shape) # move inputs to outputs outputs = dict(inputs) # and then run sequence to synergy outputs, params = sequence_to_synergy(outputs, params) return outputs, params
6abb659be6d1977e7d8a3c7b47f2f60997faf951
17,624
import os def create_invalid_points_feature_class(access_feature_class, invalid_reach_table, invalid_points_feature_class): """ Create a feature class of centroid points for the invalid reaches. :param access_feature_class: Point feature class of all accesses. :param invalid_reach_table: Table of reaches not passing validation. :return: Path to invalid points feature class. """ # get the reach coordinates for the putin and takeout if they exist def get_reach_centroid(access_feature_class, reach_id): # initialize variables to store coordinate pairs as nonetype putin_coords = None takeout_coords = None # attempt to get the coordinates for the putin and takeout for row in arcpy.da.SearchCursor(access_feature_class, ('reach_id', 'SHAPE@XY'), "type = 'putin'"): if row[0] == reach_id: putin_coords = row[1] break for row in arcpy.da.SearchCursor(access_feature_class, ('reach_id', 'SHAPE@XY'), "type = 'takeout'"): if row[0] == reach_id: takeout_coords = row[1] break # return coordinates for the best location for the reach available if putin_coords is None and takeout_coords is None: return None elif putin_coords is None: return takeout_coords elif takeout_coords is None: return putin_coords else: return ( min([putin_coords[0], takeout_coords[0]]) + abs(putin_coords[0] - takeout_coords[0]) / 2, min([putin_coords[1], takeout_coords[1]]) + abs(putin_coords[1] - takeout_coords[1]) / 2 ) # create the output feature class out_fc = arcpy.CreateFeatureclass_management( out_path=os.path.dirname(invalid_points_feature_class), out_name=os.path.basename(invalid_points_feature_class), geometry_type='POINT', spatial_reference=arcpy.Describe(access_feature_class).spatialReference )[0] # add the fields arcpy.AddField_management( in_table=out_fc, field_name='reach_id', field_type='TEXT', field_length=10, field_alias='Reach ID' ) arcpy.AddField_management( in_table=out_fc, field_name='reason', field_type='TEXT', field_length=200, field_alias='Reason' ) # create a list of invalid reach id's and invalid reasons invalid_list = [(row[0], row[1]) for row in arcpy.da.SearchCursor(invalid_reach_table, ('reach_id', 'reason'))] # use an insert cursor to add records to the feature class with arcpy.da.InsertCursor(out_fc, ('reach_id', 'reason', 'SHAPE@XY')) as cursor: # for every invalid reach for invalid_reach in invalid_list: # get the reach centroid centroid = get_reach_centroid(access_feature_class, invalid_reach[0]) # insert a new record cursor.insertRow([invalid_reach[0], invalid_reach[1], centroid]) # return the path to the output feature class return out_fc
3d1a0a73efdb34599c261cf6151c2aa29cb2e004
17,625
def _gen_roi_func_constant(constant_roi): """ Return a RoI function which returns a constant radius. See :py:func:`map_to_grid` for a description of the parameters. """ def roi(zg, yg, xg): """ constant radius of influence function. """ return constant_roi return roi
c7c69cf32fb289d5e9c9497474989aa873a231ba
17,626
def less_important_function(num: int) -> str: """ Example which is documented in the module documentation but not highlighted on the main page. :param num: A thing to pass :return: A return value """ return f'{num}'
d6ba0644fc8f4582fb63ceb722b05e824d63312a
17,627
def weth_asset_data(): # pylint: disable=redefined-outer-name """Get 0x asset data for Wrapped Ether (WETH) token.""" return asset_data_utils.encode_erc20( NETWORK_TO_ADDRESSES[NetworkId.GANACHE].ether_token )
0341c1f5c46e05a316c99154be82399145ae9d1a
17,628
def match_known_module_name(pattern): """ Matching with know module name. Args: pattern (Pattern): To be replaced pattern. Returns: str, matched module name, return None if not matched. """ matched_result = [] for ptn, module_name in BUILT_IN_MODULE_NAME.items(): if pattern.in_degree == ptn.in_degree and pattern.out_degree == ptn.out_degree and \ ptn.head == pattern.head and ptn.tail == pattern.tail: is_matched, score = pattern_fuzzy_matching(pattern.ptn_items, ptn.ptn_items) if is_matched: matched_result.append((module_name, score)) if matched_result: module_name = (matched_result if len(matched_result) == 1 else sorted(matched_result, key=lambda x: x[1], reverse=True))[0][0] if pattern.pattern not in used_module_name: used_module_name[pattern.pattern] = 1 else: module_name = f"{module_name}{used_module_name[pattern.pattern]}" used_module_name[pattern.pattern] += 1 return module_name return None
0d76e22517d4fc435101702591e095a96cc5faf7
17,629
def _get_jones_types(name, numba_ndarray_type, corr_1_dims, corr_2_dims): """ Determine which of the following three cases are valid: 1. The array is not present (None) and therefore no Jones Matrices 2. single (1,) or (2,) dual correlation 3. (2, 2) full correlation Parameters ---------- name: str Array name numba_ndarray_type: numba.type Array numba type corr_1_dims: int Number of `numba_ndarray_type` dimensions, including correlations (first option) corr_2_dims: int Number of `numba_ndarray_type` dimensions, including correlations (second option) Returns ------- int Enumeration describing the Jones Matrix Type - 0 -- Not Present - 1 -- (1,) or (2,) - 2 -- (2, 2) """ if is_numba_type_none(numba_ndarray_type): return JONES_NOT_PRESENT if numba_ndarray_type.ndim == corr_1_dims: return JONES_1_OR_2 elif numba_ndarray_type.ndim == corr_2_dims: return JONES_2X2 else: raise ValueError("%s.ndim not in (%d, %d)" % (name, corr_1_dims, corr_2_dims))
8a9d6f3441c488e2bf1059dd6fcb506a2285d291
17,630
def editing_passport_serial_handler(update: Update, context: CallbackContext) -> int: """Get and save passport serial.""" new_state = editing_pd(update, context, validator=validators.passport_serial_validator, attribute='passport_serial', state=PASSPORT_SERIAL, ) return new_state
81c86bffa07376f17dd2c013f5eab42856fa4cea
17,631
import requests def get_overview(ticker: str) -> pd.DataFrame: """Get alpha vantage company overview Parameters ---------- ticker : str Stock ticker Returns ------- pd.DataFrame Dataframe of fundamentals """ # Request OVERVIEW data from Alpha Vantage API s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" result = requests.get(s_req, stream=True) # If the returned data was successful if result.status_code == 200: # Parse json data to dataframe if "Note" in result.json(): console.print(result.json()["Note"], "\n") return pd.DataFrame() df_fa = pd.json_normalize(result.json()) # Keep json data sorting in dataframe df_fa = df_fa[list(result.json().keys())].T df_fa.iloc[5:] = df_fa.iloc[5:].applymap(lambda x: long_number_format(x)) clean_df_index(df_fa) df_fa = df_fa.rename( index={ "E b i t d a": "EBITDA", "P e ratio": "PE ratio", "P e g ratio": "PEG ratio", "E p s": "EPS", "Revenue per share t t m": "Revenue per share TTM", "Operating margin t t m": "Operating margin TTM", "Return on assets t t m": "Return on assets TTM", "Return on equity t t m": "Return on equity TTM", "Revenue t t m": "Revenue TTM", "Gross profit t t m": "Gross profit TTM", "Diluted e p s t t m": "Diluted EPS TTM", "Quarterly earnings growth y o y": "Quarterly earnings growth YOY", "Quarterly revenue growth y o y": "Quarterly revenue growth YOY", "Trailing p e": "Trailing PE", "Forward p e": "Forward PE", "Price to sales ratio t t m": "Price to sales ratio TTM", "E v to revenue": "EV to revenue", "E v to e b i t d a": "EV to EBITDA", } ) return df_fa return pd.DataFrame()
ddc87f05c8e67f84f2327cf0f06aded0e31e5e8c
17,632
def effective_sample_size(samples): """ Calculates ESS for a matrix of samples. """ try: n_samples, n_params = samples.shape except (ValueError, IndexError): raise ValueError('Samples must be given as a 2d array.') if n_samples < 2: raise ValueError('At least two samples must be given.') return [ess_single_param(samples[:, i]) for i in range(0, n_params)]
7a31d4a2c2bee133ab264dc793f16d0d6bd866f2
17,633
def get_credentials(credentials_path): """ Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid it returns None. Returns: Credentials, the obtained credential or None """ store = Storage(credentials_path) credentials = store.get() if not credentials or credentials.invalid: return None return credentials
b6a6fcd20f8def88c554d276e8f07aae3dc1f536
17,634
def setup(hass, config): """Set up this component.""" conf_track = config[DOMAIN][CONF_TRACK] _LOGGER.info('version %s is starting, if you have ANY issues with this, please report' ' them here: https://github.com/custom-components/custom_updater', __version__) ha_conf_dir = str(hass.config.path()) card_controller = CustomCards(hass, ha_conf_dir) components_controller = CustomComponents(hass, ha_conf_dir) def check_all_service(call): """Set up service for manual trigger.""" if not conf_track: card_controller.cache_versions(call) components_controller.cache_versions(call) elif 'cards' in conf_track and 'components' in conf_track: card_controller.cache_versions(call) components_controller.cache_versions(call) elif 'cards' in conf_track: card_controller.cache_versions(call) elif 'components' in conf_track: components_controller.cache_versions(call) def update_all_service(call): """Set up service for manual trigger.""" if not conf_track: card_controller.update_all() components_controller.update_all() elif 'cards' in conf_track and 'components' in conf_track: card_controller.update_all() components_controller.update_all() elif 'cards' in conf_track: card_controller.update_all() elif 'components' in conf_track: components_controller.update_all() if not conf_track or 'cards' in conf_track: def upgrade_card_service(call): """Set up service for manual trigger.""" card_controller.upgrade_single(call.data.get(ATTR_CARD)) hass.services.register(DOMAIN, 'upgrade_single_card', upgrade_card_service) if not conf_track or 'components' in conf_track: def upgrade_component_service(call): """Set up service for manual trigger.""" components_controller.upgrade_single(call.data.get(ATTR_COMPONENT)) hass.services.register(DOMAIN, 'upgrade_single_component', upgrade_component_service) track_time_interval(hass, card_controller.cache_versions, INTERVAL) track_time_interval(hass, components_controller.cache_versions, INTERVAL) hass.services.register(DOMAIN, 'check_all', check_all_service) hass.services.register(DOMAIN, 'update_all', update_all_service) return True
d0a18b4c2c3e2c94f19afb66e2e9d2a3d18fea07
17,635
def coset_enumeration_r(fp_grp, Y, max_cosets=None): """ This is easier of the two implemented methods of coset enumeration. and is often called the HLT method, after Hazelgrove, Leech, Trotter The idea is that we make use of ``scan_and_fill`` makes new definitions whenever the scan is incomplete to enable the scan to complete; this way we fill in the gaps in the scan of the relator or subgroup generator, that's why the name relator-based method. # TODO: complete the docstring See Also ======== scan_and_fill, References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r >>> F, x, y = free_group("x, y") # Example 5.1 from [1] >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) >>> C = coset_enumeration_r(f, [x]) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 1, 2] [1, 1, 2, 0] [2, 2, 0, 1] >>> C.p [0, 1, 2, 1, 1] # Example from exercises Q2 [1] >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> C = coset_enumeration_r(f, []) >>> C.compress(); C.standardize() >>> C.table [[1, 2, 3, 4], [5, 0, 6, 7], [0, 5, 7, 6], [7, 6, 5, 0], [6, 7, 0, 5], [2, 1, 4, 3], [3, 4, 2, 1], [4, 3, 1, 2]] # Example 5.2 >>> f = FpGroup(F, [x**2, y**3, (x*y)**3]) >>> Y = [x*y] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [1, 1, 2, 1] [0, 0, 0, 2] [3, 3, 1, 0] [2, 2, 3, 3] # Example 5.3 >>> f = FpGroup(F, [x**2*y**2, x**3*y**5]) >>> Y = [] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [1, 3, 1, 3] [2, 0, 2, 0] [3, 1, 3, 1] [0, 2, 0, 2] # Example 5.4 >>> F, a, b, c, d, e = free_group("a, b, c, d, e") >>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1]) >>> Y = [a] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # example of "compress" method >>> C.compress() >>> C.table [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # Exercises Pg. 161, Q2. >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> Y = [] >>> C = coset_enumeration_r(f, Y) >>> C.compress() >>> C.standardize() >>> C.table [[1, 2, 3, 4], [5, 0, 6, 7], [0, 5, 7, 6], [7, 6, 5, 0], [6, 7, 0, 5], [2, 1, 4, 3], [3, 4, 2, 1], [4, 3, 1, 2]] # John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson # Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490 # from 1973chwd.pdf # Table 1. Ex. 1 >>> F, r, s, t = free_group("r, s, t") >>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2]) >>> C = coset_enumeration_r(E1, [r]) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 0, 0, 0, 0] Ex. 2 >>> F, a, b = free_group("a, b") >>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5]) >>> C = coset_enumeration_r(Cox, [a]) >>> index = 0 >>> for i in range(len(C.p)): ... if C.p[i] == i: ... index += 1 >>> index 500 # Ex. 3 >>> F, a, b = free_group("a, b") >>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \ (a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4]) >>> C = coset_enumeration_r(B_2_4, [a]) >>> index = 0 >>> for i in range(len(C.p)): ... if C.p[i] == i: ... index += 1 >>> index 1024 """ # 1. Initialize a coset table C for < X|R > C = CosetTable(fp_grp, Y, max_cosets=max_cosets) R = fp_grp.relators A_dict = C.A_dict A_dict_inv = C.A_dict_inv p = C.p for w in Y: C.scan_and_fill(0, w) alpha = 0 while alpha < C.n: if p[alpha] == alpha: for w in R: C.scan_and_fill(alpha, w) # if α was eliminated during the scan then break if p[alpha] < alpha: break if p[alpha] == alpha: for x in A_dict: if C.table[alpha][A_dict[x]] is None: C.define(alpha, x) alpha += 1 return C
ada1991a732c29c3d14aa5b2a74e54ce57036fc0
17,636
def get_model(**kwargs): """ Returns the model. """ model = ShuffleNetV2(**kwargs) return model
6b226b56fe603a0b703267bc35e2b92f2c6dda7c
17,637
import torch def absolute_filter_change(baseline_state_dict, target_state_dict): """ Calculate sum(abs(K2 - K1) / sum(K1)) Args: baseline_state_dict (dict): state_dict of ori_net target_state_dict (dict): state_dict of finetune_net Returns: sorted_diff (list): sorted values sorted_index (list): sorted index of kernel """ # save all weight to list baseline_weight_list = [] for key, value in baseline_state_dict.items(): if key.find('weight') != -1: weight = value.reshape(-1, 3, 3) baseline_weight_list.append(weight) # [-1, 3, 3] baseline_weight_list = torch.cat(baseline_weight_list, dim=0) target_weight_list = [] for key, value in target_state_dict.items(): if key.find('weight') != -1: weight = value.reshape(-1, 3, 3) target_weight_list.append(weight) # [-1, 3, 3] target_weight_list = torch.cat(target_weight_list, dim=0) sum_baseline_weight = torch.sum(torch.sum(abs(baseline_weight_list), dim=1), dim=1) sum_baseline_weight = sum_baseline_weight.unsqueeze(1).unsqueeze(1) diff = torch.sum(torch.sum(abs(target_weight_list - baseline_weight_list) / sum_baseline_weight, dim=1), dim=1) return diff.cpu().numpy()
ad4616a03ef80f5a5430a87fd07d70d6bb10f7b7
17,638
import ctypes import sys def run_as_admin(argv=None, debug=False): """ Helper function to run Python script with admin privileges """ shell32 = ctypes.windll.shell32 if argv is None and shell32.IsUserAnAdmin(): return True if argv is None: argv = sys.argv if hasattr(sys, '_MEIPASS'): # Support pyinstaller wrapped program. arguments =argv[1:] else: arguments = argv argument_line = u' '.join(arguments) executable = sys.executable ret = shell32.ShellExecuteW(None, u"runas", executable, argument_line, None, 1) if int(ret) <= 32: return False return None
fe6e029d47ef5c486ee2e1c7850c95f36443acc4
17,639
import torch def load_checkpoints(checkpoint_name): """ Load a pretrained checkpoint. :param checkpoint_name: checkpoint filename :return: model.state_dict, source_vocabulary, target_vocabulary, """ # Get checkpoint from file checkpoint = torch.load(checkpoint_name, map_location=torch.device('cpu')) # The epoch when training has been left epoch = checkpoint['epoch'] # The time elapsed during training time_elapsed = checkpoint['time_elapsed'] # Get state_dict of the model model_state_dict = checkpoint['model_state_dict'] # Get the state_dict of the optimizer optimizer_state_dict = checkpoint['optimizer_state_dict'] # Get source language vocabulary src_vocabulary = checkpoint['src_vocabulary'] tgt_vocabulary = checkpoint['tgt_vocabulary'] return model_state_dict, optimizer_state_dict, epoch, time_elapsed, src_vocabulary, tgt_vocabulary
e81f094c811d497504fd1f93a8ee537e6b122bd6
17,640
def _extract_data(prices, n_markets): """ Extract the open, close, high and low prices from the price matrix. """ os = prices[:, :, :n_markets] cs = prices[:, :, n_markets:2*n_markets] hs = prices[:, :, 2*n_markets:3*n_markets] ls = prices[:, :, 3*n_markets:4*n_markets] return os, cs, hs, ls
154af0c8270fbe664b3dd5d07a724b753ff02040
17,641
def make_screen(): """creates the code for a new screen""" return pygame.display.set_mode((800,600))
ca0e23f5583e652207f0297e7363dacaa5a7f085
17,642
import os def listFiles(sDir,ext="_du.mpxml"): """ return 1 list of files """ lsFile = sorted([_fn for _fn in os.listdir(sDir) if _fn.lower().endswith(ext) or _fn.lower().endswith(ext) ]) return lsFile
873f331db44a96fe9d826dbc926354ce4ded6542
17,643
def flip_vert(r, c, row, col, reversed): """1번 연산""" if reversed: row, col = col, row return row - 1 - r, c, reversed
053f6a354e5f6387a528af4ce07290cba370830c
17,644
def get_orders(self, **kwargs): """ | | **Current All Open Orders (USER_DATA)** | *Get all open orders on a symbol. Careful when accessing this with no symbol.* | *If the symbol is not sent, orders for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/openOrders`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#current-all-open-orders-user_data :parameter symbol: string :parameter recvWindow: optional int, the value cannot be greater than 60000 | """ url_path = "/dapi/v1/openOrders" params = { **kwargs } return self.sign_request("GET", url_path, params)
0561fdeb4863ea08b1644a7695ca7f4ed0622fd9
17,645
def update_amount(amount_id: int): """This function update a data of amount Args: amount_id (int): id of amount Returns: Response: description of amount """ current_app.logger.debug('In PUT /api/amounts/<int:amount_id>') response = None try: # Load data data = request.get_json() if 'id_ma' not in data: data['id_ma'] = amount_id # Validate fields to update AmountValidationService.validate(data) # Checks amount exist AmountDBService.get_amount_by_id(amount_id) # Check project not solde AmountDBService.is_project_solde(receipt_id = data['id_r']) # Check year unique by receipt AmountDBService.check_unique_amount_by_year_and_receipt_id(data['annee_ma'], data['id_r'], amount_id) # Check sum amount value AmountDBService.check_sum_value(data, amount_id) response = AmountDBService.update(data) response = jsonify(response), 200 except ValueError as error: current_app.logger.error(error) response = jsonify(error.args[0]), error.args[1] except Exception as e: current_app.logger.error(e) response = jsonify({'message': 'Une erreur est survenue lors de la modification du montant affecté'}), 500 finally: return response
7f85609ab152f22fbcc4aff3f4fb9856bf98d2c7
17,646
def en_13757(data: bytes) -> int: """ Compute a CRC-16 checksum of data with the en_13757 algorithm. :param bytes data: The data to be computed :return: The checksum :rtype: int :raises TypeError: if the data is not a bytes-like object """ _ensure_bytes(data) return _crc_16_en_13757(data)
85a7793f475f04cca2d7dcf92eeba523fde9b1c2
17,647
def get_agent_supported_features_list_for_extensions(): """ List of features that the GuestAgent currently supports (like Extension Telemetry Pipeline, etc) needed by Extensions. We need to send this list as environment variables when calling extension commands to inform Extensions of all the features the agent supports. :return: Dict containing all Extension supported features with the key as their names and the AgentFeature object as the value if the feature is supported by the Agent. Eg: { CRPSupportedFeatureNames.ExtensionTelemetryPipeline: _ETPFeature() } """ return dict((name, feature) for name, feature in __EXTENSION_ADVERTISED_FEATURES.items() if feature.is_supported)
8a453286c433b3ecaed2fc402c5d557b335f3935
17,648
def GCMV(image, mask=None): """ :param image: input image, color (3 channels) or gray (1 channel); :param mask: calc gamma value in the mask area, default is the whole image; :return: gamma, and output """ # Step 1. Check the inputs: image if np.ndim(image) == 3 and image.shape[-1] == 3: # color image hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) img = hsv[:, :, 2] color_flag = True elif np.ndim(image) == 2: # gray image img = image color_flag = False else: print("ERROR:check the input image of AGT function...") return 1, None if mask is not None: mask = mask<255 else: mask = np.ones_like(img) # Step 2. Main steps of GCMV n_img = img/255.0 mean = np.mean(n_img) gamma_list = np.arange(0.01,1.01,0.01) if mean<=0.5 else np.arange(1.1,10.1,0.1) score = np.zeros_like(gamma_list) for k, gamma in enumerate(gamma_list): t_img = np.power(n_img, gamma) m1, v1 = np.mean(t_img, axis=0), np.var(t_img, axis=0) m2, v2 = np.mean(t_img, axis=1), np.var(t_img, axis=1) score[k] = np.mean(np.power(m1-0.5077,2)) + np.mean(np.power(m2-0.5077,2))+np.mean(np.power(v1-0.0268,2)) + np.mean(np.power(v2-0.0268,2)) # grid search for the optimal gamma ind = np.argmin(score) best_gamma =gamma_list[ind] # print(best_gamma) # Step 2.4 apply gamma transformation n_img = (img+0.5)/256 output = np.power(n_img, best_gamma) # Step 3.0 stretch back and post-process # if mask is not None: # output = (output * 256 - 0.5) * mask / 255.0 # else: output = (output * 256 - 0.5) output = output.round().astype(np.uint8) if color_flag: hsv[:, :, 2] = output output = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return best_gamma, output
47070fdda8dcb2507fefd6a5aa922d21481c0896
17,649
from typing import Union def downloadStaffFile(request: HttpRequest, filename: str) -> Union[HttpResponse, FileResponse]: """Serves the specified 'filename' validating the user is logged in and a staff user""" return _downloadFileFromStorage(storages.StaffStorage(), filename)
0e0137f5b5e4140c2d9ff300ed97b7a3e3c37602
17,650
def get_view_renderer_type(*args): """ get_view_renderer_type(v) -> tcc_renderer_type_t Get the type of renderer currently in use in the given view ( 'ui_get_renderer_type' ) @param v (C++: TWidget *) """ return _ida_kernwin.get_view_renderer_type(*args)
e35269d7b77196ebd8ea325db3d6301ffdb63908
17,651
async def create(req): """ Add a new label to the labels database. """ data = req["data"] async with AsyncSession(req.app["pg"]) as session: label = Label( name=data["name"], color=data["color"], description=data["description"] ) session.add(label) try: await session.flush() document = label.to_dict() await session.commit() except IntegrityError: raise HTTPBadRequest(text="Label name already exists") document = await apply_transforms(document, [SampleCountTransform(req.app["db"])]) headers = {"Location": f"/labels/{document['id']}"} return json_response(document, status=201, headers=headers)
1d7de257f0a3bc1259168821e1fcd6358d4c31c6
17,652
def process_radial_velocity(procstatus, dscfg, radar_list=None): """ Estimates the radial velocity respect to the radar from the wind velocity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : string. Dataset keyword The input data type latitude, longitude : float arbitrary coordinates [deg] from where to compute the radial velocity. If any of them is None it will be the radar position altitude : float arbitrary altitude [m MSL] from where to compute the radial velocity. If None it will be the radar altitude radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None v_speed_field = None h_speed_field = None h_dir_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'wind_vel_v': v_speed_field = get_fieldname_pyart(datatype) if datatype == 'WIND_SPEED': h_speed_field = get_fieldname_pyart(datatype) if datatype == 'WIND_DIRECTION': h_dir_field = get_fieldname_pyart(datatype) if h_speed_field is None or h_dir_field is None: warn('Horizontal wind speed and direction fields required' ' to estimate radial velocity') return None, None ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if h_speed_field not in radar.fields or h_dir_field not in radar.fields: warn('Unable to estimate radial velocity. ' 'Missing horizontal wind') return None, None h_speed = radar.fields[h_speed_field]['data'] h_dir = radar.fields[h_dir_field]['data'] if v_speed_field is None or v_speed_field not in radar.fields: warn('Unknown vertical wind speed. Assumed 0') if v_speed_field is None: v_speed_field == 'vertical_wind_component' v_speed = np.ma.zeros((radar.nrays, radar.ngates)) else: v_speed = radar.fields[v_speed_field]['data'] # user defined parameters lat = dscfg.get('latitude', None) lon = dscfg.get('longitude', None) alt = dscfg.get('altitude', None) # get u and v wind components h_dir_rad = np.deg2rad(h_dir) speed_h_u = h_speed*np.sin(h_dir_rad) # eastward component speed_h_v = h_speed*np.cos(h_dir_rad) # northward component if lat is not None or lon is not None or alt is not None: # get antenna coordinates respect to new radar location if lat is None: lat = radar.latitude['data'][0] if lon is None: lon = radar.longitude['data'][0] if alt is None: alt = radar.altitude['data'][0] x, y = pyart.core.geographic_to_cartesian_aeqd( radar.gate_longitude['data'], radar.gate_latitude['data'], lon, lat) z = radar.gate_altitude['data'] - alt _, azimuths, elevations = pyart.core.cartesian_to_antenna( x, y, z) azi_2D_rad = np.deg2rad(azimuths) ele_2D_rad = np.deg2rad(elevations) else: azi_2D_rad = np.broadcast_to( np.deg2rad(radar.azimuth['data'])[:, np.newaxis], (radar.nrays, radar.ngates)) ele_2D_rad = np.broadcast_to( np.deg2rad(radar.elevation['data'])[:, np.newaxis], (radar.nrays, radar.ngates)) r_speed = pyart.config.get_metadata('velocity') # assuming no vertical velocity # r_speed['data'] = h_speed*np.cos(h_dir_rad-azi_2D_rad)*np.cos(ele_2D_rad) # with vertical velocity included r_speed['data'] = ( (speed_h_u*np.sin(azi_2D_rad)+speed_h_v*np.cos(azi_2D_rad)) * np.cos(ele_2D_rad)+np.sin(ele_2D_rad)*v_speed) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field('velocity', r_speed) return new_dataset, ind_rad
2114cf4f5524662f80cac69dab45a00729053192
17,653
def brute_force_diagonalize(answers, wordlist=WORDS, quiet=False): """ Find the most cromulent diagonalization for a set of answers, trying all possible orders. See README.md for a cool example of this with 10 answers. As a somewhat artificial example, let's suppose we have these seven answers from the 2000 metas, but don't remember their order: >>> metas = ['benjamins', 'billgates', 'donors', 'luxor', 'mansion', 'miserly', 'realty'] >>> brute_force_diagonalize(metas)[0] # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS Cromulence Text Info 9.5 RUN EAST 9.2 MIX LAST 9.1 MAX LAST 9.1 BE NOISY 8.8 LINE TO I ... (9.5, 'RUN EAST', None) Of course we were looking for the famous red herring "BE NOISY", but "RUN EAST" sounds like a good way to find the coin also. """ results = [] seen = set() answers = [parse_cell(word) for word in answers] for i, permutation in enumerate(permutations(answers)): if not quiet and i > 0 and i % 10000 == 0: print("Tried %d permutations" % i) try: diag = diagonalize(permutation) except IndexError: continue found = wordlist.search(diag, count=1, use_cromulence=True) if found: logprob, text = found[0] slug = slugify(text) if slug not in seen: results.append((logprob, text, None)) seen.add(slug) return wordlist.show_best_results(results)
25725e34dc328cc605cc5dc147547c84de803873
17,654
def train(): """ MNIST training set creator. It returns a reader creator, each sample in the reader is image pixels in [-1, 1] and label in [0, 9]. :return: Training reader creator :rtype: callable """ return reader_creator( paddle.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5), paddle.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5), 100)
b7008aa61ce49822838c4b30709537396a93f453
17,655
import base64 import hmac import hashlib def sign_v2(key, msg): """ AWS version 2 signing by sha1 hashing and base64 encode. """ return base64.b64encode(hmac.new(key, msg.encode("utf-8"), hashlib.sha1).digest())
1aa54cc2cd3ce20ad5222a889754efda2f4632c3
17,656
def graph_apply(fun, *args): """Currying wrapper around APP(-,-).""" result = fun for arg in args: arg = as_graph(arg) result = APP(result, arg) return result
709306884b37b41c9a7289ad6a372d2b43ede6a9
17,657
def find_hcf(a, b) : """ Finds the Highest Common Factor among two numbers """ #print('HCF : ', a, b) if b == 0 : return a return find_hcf(b, a%b)
818bbc05ab9262e8fd1e8975daf68ca3e0fa6a8b
17,658
def GAU_pdf(x: np.ndarray, mu: float, var: float) -> np.ndarray: """ Probability function of Guassian distribution :param x: ndarray input parameters :param mu: float mean of the distribution :param var: float variance of the distribution :return: ndarray probability of each sample """ k = (1 / (np.sqrt(2 * np.pi * var))) up = -np.power(x - mu, 2) / (2 * var) return k * np.exp(up)
9810da4a05d86ac7895a2947a1890fe111faeae4
17,659
def version_compare(a, b): # real signature unknown; restored from __doc__ """ version_compare(a: str, b: str) -> int Compare the given versions; return a strictly negative value if 'a' is smaller than 'b', 0 if they are equal, and a strictly positive value if 'a' is larger than 'b'. """ return 0
97b3fd3bbd542d776b75327c88f9e80d776ba248
17,660
def line_status(): """ 设备线路详情 :return: """ device_id = request.args.get("device_id") lines = Line.objects(device_id=device_id).all() result = Monitor.device_status(device_id, lines) result.pop(0) return Success(result)
47ca3cfef469c346ad85b701339941707e2084ea
17,661
import sys import inspect import warnings def namedPositionals(func, args): """Given a function, and a sequence of positional arguments destined for that function, identifies the name for each positional argument. Variable positional arguments are given an automatic name. :arg func: Function which will accept ``args`` as positionals. :arg args: Tuple of positional arguments to be passed to ``func``. """ # Current implementation will # result in naming collisions # for something like this: # # def func(args0, *args): # ... # because of automatic vararg # naming. But who would write # a function like that anyway? # Remove any decorators # from the function func = _unwrap(func) # getargspec is the only way to # get the names of positional # arguments in Python 2.x. if sys.version_info[0] < 3: spec = inspect.getargspec(func) argnames = spec.args varargs = spec.varargs # But getargspec is deprecated # in python 3.x else: # getfullargspec is deprecated in # python 3.5, but not in python 3.6. with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) spec = inspect.getfullargspec(func) argnames = spec.args varargs = spec.varargs # we only care about the arguments # that are being passed in argnames = argnames[:len(args)] # make up names for varargs nvarargs = len(args) - len(argnames) if varargs is not None and nvarargs > 0: argnames += ['{}{}'.format(varargs, i) for i in range(nvarargs)] return argnames
1d36efd6ad98d6c21b2d75ea54f42dc84a9e52b0
17,662
def _hist_fig(df, pred, c): """ """ bins = np.linspace(0, 1, 15) unlabeled = pred[c][pd.isnull(df[c])].values fig, (ax1, ax2) = plt.subplots(2,1) # top plot: training data pos_labeled = pred[c][(df[c] == 1)&(df["validation"] == False)].values neg_labeled = pred[c][(df[c] == 0)&(df["validation"] == False)].values train_auc = _auc(pos_labeled, neg_labeled) if len(pos_labeled) > 0: ax1.hist(pos_labeled, bins=bins, alpha=0.5, label="labeled positive (train)", density=True) if len(neg_labeled) > 0: ax1.hist(neg_labeled, bins=bins, alpha=0.5, label="labeled negative (train)", density=True) if len(unlabeled) > 0: ax1.hist(unlabeled, bins=bins, alpha=1., label="unlabeled", density=True, histtype="step", lw=2) # bottom plot: validation data pos_labeled = pred[c][(df[c] == 1)&(df["validation"] == True)].values neg_labeled = pred[c][(df[c] == 0)&(df["validation"] == True)].values test_auc = _auc(pos_labeled, neg_labeled) if len(pos_labeled) > 0: ax2.hist(pos_labeled, bins=bins, alpha=0.5, label="labeled positive (val)", density=True) if len(neg_labeled) > 0: ax2.hist(neg_labeled, bins=bins, alpha=0.5, label="labeled negative (val)", density=True) if len(unlabeled) > 0: ax2.hist(unlabeled, bins=bins, alpha=1., label="unlabeled", density=True, histtype="step", lw=2) for a in [ax1, ax2]: a.legend(loc="upper left") a.set_xlabel("assessed probability", fontsize=14) a.set_ylabel("frequency", fontsize=14) title = "model outputs for '%s'\nAUC train %s, test AUC %s"%(c, train_auc, test_auc) ax1.set_title(title, fontsize=14) plt.close(fig) return fig
6836c0228f2db705642e5f5fa4da6d318674fd55
17,663
import requests def is_responsive(url, code=200): """Check if something responds to ``url`` syncronously""" try: response = requests.get(url) if response.status_code == code: return True except requests.exceptions.RequestException as _e: pass return False
1ed307d7be468157c880bf7e481f255bac449c34
17,664
def fit_and_report(model, X, y, X_valid, y_valid): """ It fits a model and returns train and validation scores. Parameters: model (sklearn classifier model): The sklearn model X (numpy.ndarray): The X part of the train set y (numpy.ndarray): The y part of the train set X_valid (numpy.ndarray): The X part of the validation set y_valid (numpy.ndarray): The y part of the validation set Returns: scores (list): The list of scores of train and validation """ model.fit(X, y) lr_probs = model.predict_proba(X) lr_probs = lr_probs[:, 1] lr_probs_val = model.predict_proba(X_valid) lr_probs_val = lr_probs_val[:, 1] # calculate scores lr_auc = roc_auc_score(y, lr_probs) lr_auc_val = roc_auc_score(y_valid, lr_probs_val) scores = [lr_auc, lr_auc_val] return scores
f993a5410248e5303995f37b5464cb4a57928bcf
17,665
def move_all_generation_to_high_voltage(data): """Move all generation sources to the high voltage market. Uses the relative shares in the low voltage market, **ignoring transmission losses**. In theory, using the production volumes would be more correct, but these numbers are no longer updated since ecoinvent 3.2. Empties out the medium and low voltage mixes.""" MIXES = {low_voltage_mix, medium_voltage_mix, high_voltage_mix} mix_filter = lambda ds: ds['name'] in MIXES for group in toolz.groupby("location", filter(mix_filter, data)).values(): assert len(group) == 3 high, low, medium = sorted(group, key=lambda x: x['name']) medium_in_low = [ex for ex in low['exchanges'] if ex['name'] == medium_voltage_transformation][0]['amount'] high_in_low = [ex for ex in medium['exchanges'] if ex['name'] == high_voltage_transformation][0]['amount'] * \ medium_in_low for exc in high['exchanges']: if (exc['name'] in high_voltage_providers or ( "electricity" in exc['name'] and "import from" in exc['name'])): rescale_exchange(exc, high_in_low) high['exchanges'].extend([rescale_exchange(exc, medium_in_low) for exc in medium['exchanges'] if exc['name'] in medium_voltage_providers]) high['exchanges'].extend([exc for exc in low['exchanges'] if exc['name'] in low_voltage_providers]) data = empty_medium_voltage_markets(data) data = empty_low_voltage_markets(data) return data
ed9b1fcf60bb1b5645dbd6946fe2e98e6e73ccf3
17,666
from typing import Union def parser_first_text_or_content_if_could(html: etree._Element, query_path: str) -> Union[str, None]: """ 如果解析出的内容是一个数组,默认取的第一个 """ nodes = html.xpath(query_path) if not nodes: return None if len(nodes) > 0: desc = nodes[0] if hasattr(desc, 'text'): return str(desc.text) return str(desc) return None
8410280ca71083986af0aa89a312d5082ff36d8d
17,667
from typing import List import os import logging def get_file_paths_from(dir: Text) -> List[Text]: """ list all file paths inside a directory. :param dir: a directory path that need to list. :return: a string list of file paths. """ if not os.path.exists(dir): logging.info('{} does not exist.'.format(dir)) return None file_paths = ["{}/{}".format(dir, x) for x in os.listdir(dir)] return file_paths
e9e26d01baf7f20802b63f3ebcbfd0b3aac1191c
17,668
def get_all_quantity(results, q_func=None): """ """ quantities = [] for res_name in results: if q_func is not None: # We change the quantity function results[res_name].q_func = q_func min_quantity = results[res_name].min_quantity quantities.append(min_quantity) return quantities
56d50cacab2dcd7cb1554798a11bb1937436c73e
17,669
import random def generate_example_type_2a(problem, one_step_inferences): """Generates a type 2a training example. Args: problem: a lib.InferenceProblem instance. one_step_inferences: the list of one step inferences that can be reahced form the premises. Returns: An instance of "Example", or None if any issue was found. """ premises = problem.premises example_type = "2a" name_rule = random.choice([True, False]) inputs = ("What can be inferred from the following premises in a single " "inference step (ignoring inferences that add new predicates or " "constants)? ") if name_rule: inputs += "Name the inference rule being used: " inputs += (". ".join([rules.render_logic_clause(x) for x in premises])) + "." inferences_str = [] for [rule_inference, rule] in one_step_inferences: rule_name = rule.rule_name inference_str = rules.render_logic_clause(rule_inference) if name_rule: inference_str += f" can be inferred via the {rule_name} rule" inferences_str.append(inference_str) targets = (". ".join(inferences_str)) + "." if not inferences_str: example_type = "2a-empty" targets = "Nothing can be inferred from these premises." elif problem.contains_contradiction: example_type = "2a-cont" targets = ("Since the premises are contradictory, we can infer anything " "from them.") return lib.Example(inputs, targets, example_type, problem)
fafc05b70c7b2a84a2c1476e51fa783f240f2bd5
17,670
import types import sys def name_has_type_hint(name: str, frame: types.FrameType) -> str: """Identifies if a variable name has a type hint associated with it. This can be useful if a user write something like:: name : something use(name) instead of:: name = something use(name) and sees a NameError. HOWEVER, when an exception is raised, it seems that the only type hints that are picked up correctly are those found in the global scope. """ type_hint_found_in_scope = _( "A type hint found for `{name}` in the {scope} scope.\n" "Perhaps you had used a colon instead of an equal sign and wrote\n\n" " {name} : {hint}\n\n" "instead of\n\n" " {name} = {hint}\n" ) nonlocals = get_variables_in_frame_by_scope(frame, "nonlocal") scopes = ( ("local", frame.f_locals), ("global", frame.f_globals), ("nonlocal", nonlocals), ) for scope, scope_dict in scopes: if "__annotations__" in scope_dict and name in scope_dict["__annotations__"]: hint = scope_dict["__annotations__"][name] # For Python 3.10+, all type hints are strings if ( isinstance(hint, str) and sys.version_info.major == 3 and sys.version_info.minor < 10 ): hint = repr(hint) return type_hint_found_in_scope.format(name=name, scope=scope, hint=hint) return ""
1f572d6547e6e66cb499e511a24f8eb3c5c9371b
17,671
import os import yaml def user_input(address, interface=None, name=None, filename='config.yaml'): """ Gather user input for adding an instrument to the YAML configuration file Parameters ---------- address : dict The interface as dict key (i.e. 'pyvisa') and the address as the value name : str Instrument name (as the top node) used in the YAML Returns ------- dict The configuration dictionary that will be used to append the YAML """ # read current YAML yaml_config = open(os.path.join(home, filename), 'r+') current_configs = yaml.safe_load(yaml_config) ok = False if name is None: while not ok: name = input('Enter your desired name for the instrument:') if len(name) == 0 or not isinstance(name, str): print('Bad input, try again') else: ok = True config = {name: {}} if interface is None: interface = 'pyvisa' config[name] = {'address': {interface: address}} # determine the class to assign instrument_classes = find_instrument_classes() print('What class to assign to this instrument?') for num, ic in enumerate(instrument_classes): print('({}) {}'.format(num, ic)) class_num = int(input(' Enter the number associated with the class: ')) if not isinstance(class_num, int) or (class_num > len(instrument_classes)): print('Bad selection of class') return {} config[name]['python_class'] = instrument_classes[class_num] # get location of CSV files print('The instrument command CSV files are within:\n {}/'.format(current_configs['csv_directory'])) print('Enter where (within the directory above) this instruments CSV files are') csv_loc = input(' An example is keysight/oscilloscope/MSOX3000 : ') print(current_configs['csv_directory']) csv_dir = os.path.join(current_configs['csv_directory'], csv_loc) if not os.path.isdir(csv_dir): print('Directory {} does not exist. Exiting'.format(csv_dir)) return {} config[name]['csv_folder'] = csv_loc return config
3b518a0dd8bcdb54ece2abbb847e585764158c7e
17,672
def query_title_bar_text(shared_state): """return text for title bar, updated when screen changes.""" coll_name = shared_state["active_collection"].name str_value = f"QUERY SOURCE: {coll_name}" return str_value
2ce051cc8d6a87d3c964fba1abb502125b227717
17,673
def input_handler2(): """Run the wx event loop by processing pending events only. This is like inputhook_wx1, but it keeps processing pending events until stdin is ready. After processing all pending events, a call to time.sleep is inserted. This is needed, otherwise, CPU usage is at 100%. This sleep time should be tuned though for best performance. """ app = wx.GetApp() global POLLTIME, ON_INTERRUPT if app is not None: if not wx.Thread_IsMain(): raise Exception('wx thread is not the main thread') evtloop = wx.EventLoop() activator = wx.EventLoopActivator(evtloop) while not stdin_ready(): while evtloop.Pending(): evtloop.Dispatch() app.ProcessIdle() try: sleep(POLLTIME) except KeyboardInterrupt: if hasattr(ON_INTERRUPT, '__call__'): ON_INTERRUPT() activator = None # del activator return 0
d9b3887f82b2a9ef19449d58e40ca18b642a2bf4
17,674
import requests def create_upload_record(env, source_id, headers, cookies): """Creates an upload resource via the G.h Source API.""" post_api_url = f"{get_source_api_url(env)}/sources/{source_id}/uploads" print(f"Creating upload via {post_api_url}") res = requests.post(post_api_url, json={"status": "IN_PROGRESS", "summary": {}}, cookies=cookies, headers=headers) if res and res.status_code == 201: res_json = res.json() return res_json["_id"] e = RuntimeError( f"Error creating upload record, status={res.status_code}, response={res.text}") complete_with_error(e)
7d8bcebec30be7ccba5406f1afc6a1b267e8e398
17,675
def get_versions(sys): """Import stuff and get versions if module Parameters ---------- sys : module The sys module object. Returns ------- module_versions : dict The module names and corresponding versions. """ module_versions = {} for name, module in sys.modules.items(): if '.' in name: continue if isinstance(name, str) and len(name) and name[0] == '_': continue module_version = LooseVersion(getattr(module, '__version__', None)) module_version = getattr(module_version, 'vstring', None) if module_version is None: module_version = None elif 'git' in module_version or '.dev' in module_version: git_path = op.dirname(op.realpath(module.__file__)) head = _get_git_head(git_path) module_version += '-HEAD:{}'.format(head) module_versions[name] = module_version return module_versions
172103da6d6f476080a1c1a33b34ebb4d028df05
17,676
def day05_part1(file: str) -> int: """ Solves advent of code: day05 part1 """ with open(file) as fid: seats = [Seat(line.strip()) for line in fid] highest_seat_num = max(seat.number for seat in seats) return highest_seat_num
5ba399053d3a7e855ded402cea60f59c9d79d9a4
17,677
def GetInput(): """Get player inputs and lower-case the input""" Input = str(input("{:>20s}".format(""))) print("\n \n \n \n \n") return Input.lower()
9d8626a9c9f0615a0453d0804b6b37244ec373c3
17,678
def ldns_fskipcs_l(*args): """LDNS buffer.""" return _ldns.ldns_fskipcs_l(*args)
44e357adf381e11aaccb78441c543438abe75ba1
17,679
def specific_parser(parser, log=False, run_folder=None, mode=None, tot_epochs=None, restoring_rep_path=None, start_from_epoch=None, pretrained_GAN=None, GAN_epoch=None, data_dir_train=None, data_dir_train2=None, data_dir_test=None, data_dir_test2=None, images_log_freq=None, batch_size=None, batch_size_SN=None, acc_log_freq=None, loss_log_freq=None, experiment_name=None, run_description=None, prc_train=None, prc_test=None, prc_val=None, sar_c=None, optical_c=None, N_classes=None, patch_size=None, SN_log_freq=None, save_model_freq=None, lambda_identity=None, D_training_ratio=None, lambda_A=None, loss_type=None, lambda_gp=None, res_block_N=None, pool_prc_O=None, pool_prc_S=None, buff_dim=None, th_low=None, th_high=None, pool=None, conditioned=None, dropping=None, th_b_h_ratio=None, th_b_l_ratio=None, th_b_h_pool=None, th_b_l_pool=None, drop_prc=None, seed=None): """ This is an intermediate layer between the general parser and the config routine to allow who use this code to easily access parameters and change them when building his experiment :param parser: :param log: decide if print or not :param run_folder: new value for run folder :param mode: train mode :param tot_epochs: :param restoring_rep_path: :param start_from_epoch: :param pretrained_GAN: :param GAN_epoch: :param data_dir_train: :param data_dir_train2: :param data_dir_test: :param data_dir_test2: :param images_log_freq: :param batch_size: :param batch_size_SN: :param acc_log_freq: :param loss_log_freq: :param experiment_name: :param run_description: :param prc_train: :param prc_test: :param prc_val: :param sar_c: :param optical_c: :param N_classes: :param patch_size: :param SN_log_freq: :param save_model_freq: :param lambda_identity: :param D_training_ratio: :param lambda_A: :param loss_type: :param lambda_gp: :param res_block_N: :param pool_prc_O: :param pool_prc_S: :param buff_dim: :param th_low: :param th_high: :param pool: :param conditioned: :param dropping: :param th_b_h_ratio: :param th_b_l_ratio: :param th_b_h_pool: :param th_b_l_pool: :param drop_prc: :return: args """ args = parser.parse_args() print('SPECIFIC CONFIG') args.log_dir = update_arg(args.log_dir, run_folder, 'log_dir', log) args.tot_epochs = update_arg(args.tot_epochs, tot_epochs, 'tot_epochs', log) args.mode = update_arg(args.mode, mode, 'mode', log) args.restoring_rep_path = update_arg(args.restoring_rep_path, restoring_rep_path, 'restoring_rep_path', log) args.start_from_epoch = update_arg(args.start_from_epoch, start_from_epoch, 'start_from_epoch', log) args.pretrained_GAN = update_arg(args.pretrained_GAN, pretrained_GAN, 'pretrained_GAN', log) args.GAN_epoch = update_arg(args.GAN_epoch, GAN_epoch, 'GAN_epoch', log) args.data_dir_train = update_arg(args.data_dir_train, data_dir_train, 'data_dir_train', log) args.data_dir_train2 = update_arg(args.data_dir_train2, data_dir_train2, 'data_dir_train2', log) args.data_dir_test = update_arg(args.data_dir_test, data_dir_test, 'data_dir_test', log) args.data_dir_test2 = update_arg(args.data_dir_test2, data_dir_test2, 'data_dir_test2', log) args.images_log_freq = update_arg(args.images_log_freq, images_log_freq, 'images_log_freq', log) args.batch_size = update_arg(args.batch_size, batch_size, 'batch_size', log) args.batch_size_SN = update_arg(args.batch_size_SN, batch_size_SN, 'batch_size_SN', log) args.acc_log_freq = update_arg(args.acc_log_freq, acc_log_freq, 'acc_log_freq', log) args.loss_log_freq = update_arg(args.loss_log_freq, loss_log_freq, 'loss_log_freq', log) args.experiment_name = update_arg(args.experiment_name, experiment_name, 'experiment_name', log) args.run_description = update_arg(args.run_description, run_description, 'run_description', log) args.prc_train = update_arg(args.prc_train, prc_train, 'prc_train', log) args.prc_test = update_arg(args.prc_test, prc_test, 'prc_test', log) args.prc_val = update_arg(args.prc_val, prc_val, 'prc_val', log) args.sar_c = update_arg(args.sar_c, sar_c, 'sar_c', log) args.optical_c = update_arg(args.optical_c, optical_c, 'optical_c', log) args.N_classes = update_arg(args.N_classes, N_classes, 'N_classes', log) args.patch_size = update_arg(args.patch_size, patch_size, 'patch_size', log) args.SN_log_freq = update_arg(args.SN_log_freq, SN_log_freq, 'SN_log_freq', log) args.save_model_freq = update_arg(args.save_model_freq, save_model_freq, 'save_model_freq', log) args.lambda_identity = update_arg(args.lambda_identity, lambda_identity, 'lambda_identity', log) args.D_training_ratio = update_arg(args.D_training_ratio, D_training_ratio, 'D_training_ratio', log) args.lambda_A = update_arg(args.lambda_A, lambda_A, 'lambda_A', log) args.loss_type = update_arg(args.loss_type, loss_type, 'loss_type', log) args.lambda_gp = update_arg(args.lambda_gp, lambda_gp, 'lambda_gp', log) args.res_block_N = update_arg(args.res_block_N, res_block_N, 'res_block_N', log) args.pool_prc_O = update_arg(args.pool_prc_O, pool_prc_O, 'pool_prc_O', log) args.pool_prc_S = update_arg(args.pool_prc_S, pool_prc_S, 'pool_prc_S', log) args.buff_dim = update_arg(args.buff_dim, buff_dim, 'buff_dim', log) args.th_low = update_arg(args.th_low, th_low, 'th_low', log) args.th_high = update_arg(args.th_high, th_high, 'th_high', log) args.pool = update_arg(args.pool, pool, 'pool', log) args.conditioned = update_arg(args.conditioned, conditioned, 'conditioned', log) args.dropping = update_arg(args.dropping, dropping, 'dropping', log) args.th_b_h_ratio = update_arg(args.th_b_h_ratio, th_b_h_ratio, 'th_b_h_ratio', log) args.th_b_l_ratio = update_arg(args.th_b_l_ratio, th_b_l_ratio, 'th_b_l_ratio', log) args.th_b_h_pool = update_arg(args.th_b_h_pool, th_b_h_pool, 'th_b_h_pool', log) args.th_b_l_pool = update_arg(args.th_b_l_pool, th_b_l_pool, 'th_b_l_pool', log) args.drop_prc = update_arg(args.drop_prc, drop_prc, 'drop_prc', log) args.seed = update_arg(args.seed, seed, 'seed', log) return args
cbce4c086da986a3232d40ae2d917b921ff64ff2
17,680
import re def to_identifier(text): """Converts text to a valid Python identifier by replacing all whitespace and punctuation and adding a prefix if starting with a digit""" if text[:1].isdigit(): text = '_' + text return re.sub('_+', '_', str(text).translate(TRANS_TABLE))
8c8ca0c52c13a7d78aa9ec2288ef86ec7e10f84a
17,681
def estimate_next_pos(measurement, OTHER = None): """Estimate the next (x, y) position of the wandering Traxbot based on noisy (x, y) measurements.""" if OTHER is None: # Setup Kalman Filter [u, P, H, R] = setup_kalman_filter() # OTHER = {'x': x, 'P': P, 'u': u, 'matrices':[H, R]} x = matrix([[measurement[0]], [measurement[1]], [0], [0], [0]]) OTHER = {'z_list': deque([]), 'x': x, 'P': P, 'u': u, 'matrices': [H, R], 'step': 1 # 'zx': [measurement[0]] } OTHER['z_list'].append(np.array(measurement)) # return measurement, OTHER # elif OTHER['step'] == 1: # # Use first three measurements to seed the filter # OTHER['step'] = 2 # OTHER['z_list'].append(np.array(measurement)) # # OTHER['zx'].append(measurement[0]) # # OTHER['x_list'].append(measurement) # return measurement, OTHER # elif OTHER['step'] == 2: # OTHER['step'] = 3 # # Get last 3 measurements # OTHER['z_list'].append(np.array(measurement)) # # OTHER['zx'].append(measurement[0]) # # Get initial estimate of state from the three measurements # OTHER['x'] = state_from_measurements(OTHER['z_list']) # # # Initialization complete # OTHER['step'] = -1 # # # Use last 20 measurements only # num_z = 1000 # # OTHER['x_list'] = deque(maxlen=num_z) # # OTHER['z_list'] = deque(maxlen=num_z+1) # # # Predict next position of robot using the dynamics and current state # next_state = robot_x_fn(OTHER['x']) # # OTHER['x_list'].append(next_state) # return (next_state.value[0][0], next_state.value[1][0]), OTHER OTHER['z_list'].append(np.array(measurement)) x, P = extended_kalman_filter(measurement, OTHER['x'], OTHER['u'], OTHER['P'], robot_F_fn, robot_x_fn, *OTHER['matrices']) # OTHER['x_list'].append(x) OTHER['x'] = x OTHER['P'] = P # print('Trace of P : '+str(P.trace())) # Predict next position of robot next_state = robot_x_fn(x) est_xy = (next_state.value[0][0], next_state.value[1][0]) # You must return xy_estimate (x, y), and OTHER (even if it is None) # in this order for grading purposes. # xy_estimate = (3.2, 9.1) # return z, OTHER return est_xy, OTHER
a6b6eba0aa7e71a986bc5bed68cc6fb955c02383
17,682
def AutoBusList(*args): """List of Buses or (File=xxxx) syntax for the AutoAdd solution mode.""" # Getter if len(args) == 0: return get_string(lib.Settings_Get_AutoBusList()) # Setter Value, = args if type(Value) is not bytes: Value = Value.encode(codec) lib.Settings_Set_AutoBusList(Value)
aab4ae15dd7b12c46eb5a75bb780ac78609273ae
17,683
from typing import Tuple from typing import Optional def validate_inputs(*, input_data: pd.DataFrame) -> Tuple[pd.DataFrame, Optional[dict]]: """Check model inputs for unprocessable values.""" # convert syntax error field names (beginning with numbers) # input_data.rename(columns=config.model_config.variables_to_rename, inplace=True) input_data["TotalCharges"] = pd.to_numeric( input_data["TotalCharges"], errors="coerce" ) relevant_data = input_data[config.model_config.features].copy() validated_data = drop_na_inputs(input_data=relevant_data) errors = None try: # replace numpy nans so that pydantic can validate MultipleChurnDataInputs( inputs=validated_data.replace({np.nan: None}).to_dict(orient="records") ) except ValidationError as error: errors = error.json() return validated_data, errors
b03e616dc10c734af282d71a650da822e961e93f
17,684
def create_env(n_envs, eval_env=False, no_log=False): """ Create the environment and wrap it if necessary :param n_envs: (int) :param eval_env: (bool) Whether is it an environment used for evaluation or not :param no_log: (bool) Do not log training when doing hyperparameter optim (issue with writing the same file) :return: (Union[gym.Env, VecEnv]) """ global hyperparams global env_kwargs # Do not log eval env (issue with writing the same file) log_dir = None if eval_env or no_log else save_path if n_envs == 1: env = DummyVecEnv([make_env(env_id, 0, args.seed, wrapper_class=env_wrapper, log_dir=log_dir, env_kwargs=env_kwargs)]) else: # env = SubprocVecEnv([make_env(env_id, i, args.seed) for i in range(n_envs)]) # On most env, SubprocVecEnv does not help and is quite memory hungry env = DummyVecEnv([make_env(env_id, i, args.seed, log_dir=log_dir, env_kwargs=env_kwargs, wrapper_class=env_wrapper) for i in range(n_envs)]) if normalize: # Copy to avoid changing default values by reference local_normalize_kwargs = normalize_kwargs.copy() # Do not normalize reward for env used for evaluation if eval_env: if len(local_normalize_kwargs) > 0: local_normalize_kwargs['norm_reward'] = False else: local_normalize_kwargs = {'norm_reward': False} if args.verbose > 0: if len(local_normalize_kwargs) > 0: print(f"Normalization activated: {local_normalize_kwargs}") else: print("Normalizing input and reward") env = VecNormalize(env, **local_normalize_kwargs) # Optional Frame-stacking if hyperparams.get('frame_stack', False): n_stack = hyperparams['frame_stack'] env = VecFrameStack(env, n_stack) print(f"Stacking {n_stack} frames") if is_image_space(env.observation_space): if args.verbose > 0: print("Wrapping into a VecTransposeImage") env = VecTransposeImage(env) return env
c0d1355cb1ea4446370a71cb49bfb6855799b4b3
17,685
def ellipse(pts, pc=None, ab=None): """ Distance function for the ellipse centered at pc = [xc, yc], with a, b = [a, b] """ if pc is None: pc = [0, 0] if ab is None: ab = [1., 2.] return dist((pts - pc)/ab) - 1.0
7ff99b98aa09d86223afe97a987176f4dc0e0f3d
17,686
def _transform( parsed_date_data: ParsedDate, parsed_output_format_data: ParsedTargetFormat, output_format: str, output_timezone: str, ) -> str: """ This function transform parsed result into target format Parameters ---------- parsed_date_data generated year, month, day, hour, minute, second parsed_output_format_data generated year token, month token, day token, hour token, minute token, second token of target format output_format target format string output_timezone target timezone string """ result = deepcopy(output_format) if output_timezone != "": parsed_date_data = _change_timezone(parsed_date_data, output_timezone) # Handle year result = _transform_year( result, parsed_output_format_data.ymd_token["year_token"], parsed_date_data.ymd["year"] ) # Handle day result = _transform_day( result, parsed_output_format_data.ymd_token["day_token"], parsed_date_data.ymd["day"] ) # Handle hours result = _transform_hms( result, str(parsed_output_format_data.hms_token["hour_token"]), bool(parsed_output_format_data.hms_token["ispm"]), parsed_date_data.hms["hour"], ) # Handle minutes result = _transform_hms( result, str(parsed_output_format_data.hms_token["minute_token"]), False, parsed_date_data.hms["minute"], ) # Handle seconds result = _transform_hms( result, str(parsed_output_format_data.hms_token["second_token"]), False, parsed_date_data.hms["second"], ) # Handle month result = _transform_month( result, parsed_output_format_data.ymd_token["month_token"], parsed_date_data.ymd["month"] ) # Handle weekday result = _transform_weekday( result, parsed_output_format_data.weekday_token, parsed_date_data.weekday ) # Handle timezone result = _transform_timezone( result, parsed_output_format_data.timezone_token, str(parsed_date_data.tzinfo["timezone"]), str(parsed_date_data.tzinfo["utc_add"]), int(parsed_date_data.tzinfo["utc_offset_hours"]), int(parsed_date_data.tzinfo["utc_offset_minutes"]), ) return result
cc51f2776165bf05af1d97bcc6eb70bd6f03702f
17,687
import logging import uuid def volunteer_dict_from_request(request: flask.Request, actor: str) -> dict: """Creates and returns a dict of volunteer info from the request. `actor` is the ID/email of the person or entity that is triggering this. """ logging.debug('gapps.volunteer_dict_from_request: %s', list(request.values.items())) # Make sure the user/form/request isn't trying to mess with fields that it # shouldn't be. for name, field in _S.volunteer.fields._asdict().items(): if not field.form_field and request.values.get(name) is not None: # This causes the request processing to stop flask.abort(400, description='invalid field') if field.values is not None and request.values.get(name) is not None \ and not set(request.values.get(name).split(config.MULTIVALUE_DIVIDER)).issubset(field.values): # This causes the request processing to stop flask.abort(400, description='invalid field value') volunteer = config.validate_volunteer(request.values) if not volunteer: logging.warning('gapps.volunteer_dict_from_request: config.validate_volunteer failed') # This causes the request processing to stop flask.abort(400, description='invalid input') # We didn't validate the geoposition above, so do it now geoposition = request.values.get(_GEOPOSITION_VALUE_KEY, '') geoposition_required = _S.volunteer.fields.joined_latlong.required if not utils.latlong_validator(geoposition, geoposition_required): logging.warning('gapps.volunteer_dict_from_request: utils.latlong_validator failed') flask.abort(400, description='invalid input') geoaddress = helpers.address_from_latlong(geoposition) # Set the GUID field volunteer[_S.volunteer.fields.id.name] = str(uuid.uuid4()) # Set the timestamps volunteer[_S.volunteer.fields.joined.name] = utils.current_datetime() volunteer[_S.volunteer.fields.joined_by.name] = actor volunteer[_S.volunteer.fields.joined_latlong.name] = geoposition volunteer[_S.volunteer.fields.joined_address.name] = geoaddress volunteer[_S.volunteer.fields.address_latlong.name] = \ helpers.latlong_for_record(_S.volunteer.fields, volunteer) return volunteer
832a9e01dd4873d3781e82f5fc8d8063c1aefa13
17,688
def stop_next_turn(): """ Dirty way to stop the MCTS in a clean way (without SIGINT or SIGTERM)... the mcts finish current turn save data and stop (if you are using dft it can take some time...) write "stop" in the file MCTS/stop_mcts :return: None """ with open(p.f_stop) as f: stop = f.read() if "stop" in stop: print("MCTS stopped with signal 'stop' in '%s' file" % p.f_stop) return True return False
eb76187f25f49ae674fefe7969277122bd18e5c8
17,689
from datetime import datetime def pull_request_average_time_between_responses(self, repo_group_id, repo_id=None, group_by='month', time_unit='hours', begin_date=None, end_date=None): """ Avegage time between responeses with merged_status and the time frame :param repo_group_id: The repository's repo_group_id :param repo_id: The repository's repo_id, defaults to None :param group_by: The time frame the data is grouped by, options are: 'day', 'week', 'month' or 'year', defaults to 'month' :param time_unit: Unit of time for data, options are: 'minutes', or 'hours', defaults to 'hours' :param begin_date: Specifies the begin date, defaults to '1970-1-1 00:00:00' :param end_date: Specifies the end date, defaults to datetime.now() :return: DataFrame of average time beteen responses ======= @register_metric() def pull_request_merged_status_counts(self, repo_group_id, repo_id=None, begin_date='1970-1-1 00:00:01', end_date=None, group_by='week'): >>>>>>> Stashed changes """ if not begin_date: begin_date = '1970-1-1' if not end_date: end_date = datetime.datetime.now().strftime('%Y-%m-%d') unit_options = ['year', 'month', 'week', 'day'] time_group_bys = [] for unit in unit_options.copy(): if group_by not in unit_options: continue time_group_bys.append('closed_{}'.format(unit)) del unit_options[0] if not repo_id: pr_all_SQL = s.sql.text(""" SELECT repo_id, repo_name, repo_group_id, rg_name AS repo_group_name, date_part( 'year', pr_closed_at :: DATE ) AS closed_year, date_part( 'month', pr_closed_at :: DATE ) AS closed_month, date_part( 'week', pr_closed_at :: DATE ) AS closed_week, date_part( 'day', pr_closed_at :: DATE ) AS closed_day, (EXTRACT(epoch FROM average_time_between_responses)/3600) AS average_hours_between_responses, (EXTRACT(epoch FROM average_time_between_responses)/60) AS average_minutes_between_responses, CASE WHEN pr_merged_at IS NULL THEN 'Rejected' ELSE 'Merged' END AS merged_status, count(*) AS num_pull_requests FROM ( SELECT repo_name, repo_groups.repo_group_id, rg_name, pull_requests.repo_id, pull_requests.pull_request_id, pr_closed_at, pr_created_at, pr_merged_at, (MAX(message.msg_timestamp) - MIN(message.msg_timestamp)) / COUNT(DISTINCT message.msg_timestamp) AS average_time_between_responses FROM pull_request_message_ref, message, repo_groups, pull_requests JOIN repo ON pull_requests.repo_id = repo.repo_id WHERE pull_requests.repo_id IN (SELECT repo_id FROM repo WHERE repo_group_id = :repo_group_id) AND repo.repo_id = pull_requests.repo_id AND pull_requests.pull_request_id = pull_request_message_ref.pull_request_id AND pull_request_message_ref.msg_id = message.msg_id AND repo_groups.repo_group_id = repo.repo_group_id AND pr_created_at::DATE >= :begin_date ::DATE AND pr_closed_at::DATE <= :end_date ::DATE GROUP BY pull_requests.pull_request_id, repo.repo_id, repo.repo_name, repo_groups.repo_group_id, repo_groups.rg_name ) time_between_responses GROUP BY closed_year, closed_month, merged_status, time_between_responses.pr_closed_at, time_between_responses.average_time_between_responses, time_between_responses.repo_id, time_between_responses.repo_name, time_between_responses.repo_group_id, time_between_responses.rg_name """) else: pr_all_SQL = s.sql.text(""" SELECT date_part( 'year', pr_closed_at :: DATE ) AS closed_year, date_part( 'month', pr_closed_at :: DATE ) AS closed_month, date_part( 'week', pr_closed_at :: DATE ) AS closed_week, date_part( 'day', pr_closed_at :: DATE ) AS closed_day, (EXTRACT(epoch FROM average_time_between_responses)/3600) AS average_hours_between_responses, (EXTRACT(epoch FROM average_time_between_responses)/60) AS average_minutes_between_responses, CASE WHEN pr_merged_at IS NULL THEN 'Rejected' ELSE 'Merged' END AS merged_status, count(*) AS num_pull_requests FROM ( SELECT pull_requests.pull_request_id, pr_closed_at, pr_created_at, pr_merged_at, (MAX(message.msg_timestamp) - MIN(message.msg_timestamp)) / COUNT(DISTINCT message.msg_timestamp) AS average_time_between_responses FROM pull_requests, repo, pull_request_message_ref, message WHERE repo.repo_id = :repo_id AND repo.repo_id = pull_requests.repo_id AND pull_requests.pull_request_id = pull_request_message_ref.pull_request_id AND pull_request_message_ref.msg_id = message.msg_id AND pr_created_at::DATE >= :begin_date ::DATE AND pr_closed_at::DATE <= :end_date ::DATE GROUP BY pull_requests.pull_request_id ) time_between_responses GROUP BY closed_year, closed_month, merged_status, time_between_responses.pr_closed_at, time_between_responses.average_time_between_responses """) pr_all = pd.read_sql(pr_all_SQL, self.database, params={'repo_id': repo_id, 'repo_group_id':repo_group_id, 'begin_date': begin_date, 'end_date': end_date}) if not repo_id: pr_avg_time_between_responses = pr_all.groupby(['merged_status', 'repo_id', 'repo_name', 'repo_group_id', 'repo_group_name'] + time_group_bys).mean().reset_index()[['merged_status', 'repo_id', 'repo_name', 'repo_group_id', 'repo_group_name'] + time_group_bys + ['average_{}_between_responses'.format(time_unit)]] else: pr_avg_time_between_responses = pr_all.groupby(['merged_status'] + time_group_bys).mean().reset_index()[time_group_bys + ['merged_status', 'average_{}_between_responses'.format(time_unit)]] return pr_avg_time_between_responses
8834586b1e761c8ba6033140f753a3ac99780da7
17,690
def create_money(request): """Create money object.""" if request.method == 'POST': form = MoneyForm(request.POST, request.FILES) if form.is_valid(): money = form.save(commit=False) money.owner = request.user money.save() return redirect(money) else: return render(request, 'nec_bank/create_money.html', {'money_form': form}) else: request.GET._mutable = True request.GET['created_date'] = timezone.now().astimezone().strftime('%Y-%m-%d %H:%M:%S') request.GET._mutable = False form = MoneyForm(request.GET) return render(request, 'nec_bank/create_money.html', {'money_form': form})
483eea12a1c2f49dd63fe2a37a529dafe3a4c6c3
17,691
def stripper(reply: str, prefix=None, suffix=None) -> str: """This is a helper function used to strip off reply prefix and terminator. Standard Python str.strip() doesn't work reliably because it operates on character-by-character basis, while prefix/terminator is usually a group of characters. Args: reply: String to be stripped. prefix: Substring to remove from the beginning of the line. suffix: Substring to remove from the end of the line. Returns: (str): Naked reply. """ if prefix is not None and reply.startswith(prefix): reply = reply[len(prefix):] if suffix is not None and reply.endswith(suffix): reply = reply[:-len(suffix)] return reply
b48281a0dedd5d7f3d476943f12ac49720e67476
17,692
def resnet_50_generator(block_fn, lst_layers, num_classes, pruning_method=None, data_format='channels_first', name=None): """Generator for ResNet v1 models. Args: block_fn: String that defines whether to use a `residual_block` or `bottleneck_block`. lst_layers: list of Ints that denotes number of blocks to include in each block group. Each group consists of blocks that take inputs of the same resolution. num_classes: Int number of possible classes for image classification. pruning_method: String that specifies the pruning method used to identify which weights to remove. data_format: String either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. name: String that specifies name for model layer. Returns: Model `function` that takes in `inputs` and `is_training` and returns the output `Tensor` of the ResNet model. """ def model(inputs, is_training): """Creation of the model graph.""" with tf.variable_scope(name, 'resnet_model'): inputs = conv2d_fixed_padding( inputs=inputs, filters=64, kernel_size=7, strides=2, pruning_method=pruning_method, data_format=data_format, name='initial_conv') inputs = tf.identity(inputs, 'initial_conv') inputs = batch_norm_relu(inputs, is_training, data_format=data_format) inputs = tf.layers.max_pooling2d( inputs=inputs, pool_size=3, strides=2, padding='SAME', data_format=data_format, name='initial_max_pool') inputs = tf.identity(inputs, 'initial_max_pool') inputs = block_group( inputs=inputs, filters=64, block_fn=block_fn, blocks=lst_layers[0], strides=1, is_training=is_training, name='block_group1', pruning_method=pruning_method, data_format=data_format) inputs = block_group( inputs=inputs, filters=128, block_fn=block_fn, blocks=lst_layers[1], strides=2, is_training=is_training, name='block_group2', pruning_method=pruning_method, data_format=data_format) inputs = block_group( inputs=inputs, filters=256, block_fn=block_fn, blocks=lst_layers[2], strides=2, is_training=is_training, name='block_group3', pruning_method=pruning_method, data_format=data_format) inputs = block_group( inputs=inputs, filters=512, block_fn=block_fn, blocks=lst_layers[3], strides=2, is_training=is_training, name='block_group4', pruning_method=pruning_method, data_format=data_format) pool_size = (inputs.shape[1], inputs.shape[2]) inputs = tf.layers.average_pooling2d( inputs=inputs, pool_size=pool_size, strides=1, padding='VALID', data_format=data_format, name='final_avg_pool') inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.reshape(inputs, [-1, 2048]) inputs = tf.layers.dense( inputs=inputs, units=num_classes, kernel_initializer=tf.random_normal_initializer(stddev=.01), name='final_dense') inputs = tf.identity(inputs, 'final_dense') return inputs model.default_image_size = 224 return model
5f471b7cc3608c11515d0efb088c3c9bee0e20e6
17,693
def bracketBalanced(expression): """Check if an expression is balanced. An expression is balanced if all the opening brackets(i.e. '(, {, [') have a corresponding closing bracket(i.e. '), }, ]'). Args: expression (str) : The expression to be checked. Returns: bool: True if expression is balanced. False if not balanced. """ bracket_dict = {'(': ')', '{': '}', '[': ']'} stack = Stack() for i in range(len(expression)): if expression[i] in bracket_dict.keys(): stack.push(expression[i]) elif expression[i] in bracket_dict.values(): if stack.isEmpty() or expression[i] != bracket_dict[stack.peek()]: return False else: stack.pop() if stack.isEmpty(): return True else: return False
bb6ebeb681fb9425c923a4fdcc41c6158ece332a
17,694
def Leq(pressure, reference_pressure=REFERENCE_PRESSURE, axis=-1): """ Time-averaged sound pressure level :math:`L_{p,T}` or equivalent-continious sound pressure level :math:`L_{p,eqT}` in dB. :param pressure: Instantaneous sound pressure :math:`p`. :param reference_pressure: Reference value :math:`p_0`. :param axis: Axis. .. math:: L_{p,T} = L_{p,eqT} = 10.0 \\log_{10}{ \\left( \\frac{\\frac{1}{T} \\int_{t_1}^{t_2} p^2 (t) \\mathrm{d} t }{p_0^2} \\right)} See section 2.3. """ return 10.0 * np.log10((pressure**2.0).mean(axis=axis) / reference_pressure**2.0)
bf7c640a361f3c07aef70310a213f2603a441664
17,695
import re def trimBody(body): """ Quick function for trimming away the fat from emails """ # Cut away "On $date, jane doe wrote: " kind of texts body = re.sub( r"(((?:\r?\n|^)((on .+ wrote:[\r\n]+)|(sent from my .+)|(>+[ \t]*[^\r\n]*\r?\n[^\n]*\n*)+)+)+)", "", body, flags=re.I | re.M, ) # Crop out quotes lines = body.split("\n") body = "\n".join([x for x in lines if not x.startswith(">")]) # Remove hyperlinks body = re.sub(r"[a-z]+://\S+", "", body) # Remove email addresses body = re.sub(r"(<[^>]+>\s*\S+@\S+)", "", body) body = re.sub(r"(\S+@\S+)", "", body) return body
19fcb7313e66d7e710781cf195a7550d050b4848
17,696
def check_host_arp_table_deleted(host, asic, neighs): """ Verifies the ARP entry is deleted. Args: host: instance of SonicHost to run the arp show. neighbor_ip: IP address of the neighbor to verify. arptable: Optional arptable output, if not provided it will be fetched from host. """ if host.is_multi_asic: arptable = host.switch_arptable(namespace=asic.namespace)['ansible_facts'] else: arptable = host.switch_arptable()['ansible_facts'] neighs_present = [] for neighbor_ip in neighs: if ':' in neighbor_ip: table = arptable['arptable']['v6'] else: table = arptable['arptable']['v4'] if neighbor_ip in table: neighs_present.append(neighbor_ip) logger.debug("On host {} asic {}, found neighbors {} that were supposed to be deleted".format(host, asic.asic_index, neighs_present)) return len(neighs_present) == 0
378ff5983e8cc856748daa3509844d194f18476f
17,697
def fit_ellipses(contours): """ Fit ellipses to contour(s). Parameters ---------- contours : ndarray or list Contour(s) to fit ellipses to. Returns ------- ellipses : ndarray or list An array or list corresponding to dimensions to ellipses fitted. """ if isinstance(contours, list): ret = [cv2.fitEllipse(c) for c in contours] else: ret = cv2.fitEllipse(contours) return ret
9246182a1f96ca1691bcddf34271586be93dcf41
17,698
def get_argument_parser() -> ArgumentParser: """ Get command line arguments. """ parser = ArgumentParser( description="Say Hello") subparsers = parser.add_subparsers(title="subcommands") parser_count_above_below = subparsers.add_parser("say-hello") parser_count_above_below.add_argument('-n', '--name', help="a name") parser_count_above_below.set_defaults(func=do_say_hello) return parser
f799991025283bf4ce2dbcceed845662312cd6d0
17,699