content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import warnings def disable_warnings_temporarily(func): """Helper to disable warnings for specific functions (used mainly during testing of old functions).""" def inner(*args, **kwargs): warnings.filterwarnings("ignore") func(*args, **kwargs) warnings.filterwarnings("default") return inner
5e19b8f51ca092709a1e1a5d6ff0b2543a41e5e1
17,200
def progress_bar(progress): """ Generates a light bar matrix to display volume / brightness level. :param progress: value between 0..1 """ dots = list(" " * 81) num_dots = ceil(round(progress, 3) * 9) while num_dots > 0: dots[81 - ((num_dots - 1) * 9 + 5)] = "*" num_dots -= 1 return "".join(dots)
88986ecc505cf786e197d8ad55cd70b21fa3aa27
17,201
def get_context_command_parameter_converters(func): """ Parses the given `func`'s parameters. Parameters ---------- func : `async-callable` The function used by a ``SlasherApplicationCommand``. Returns ------- func : `async-callable` The converted function. parameter_converters : `tuple` of ``ParameterConverter`` Parameter converters for the given `func` in order. Raises ------ TypeError - If `func` is not async callable, neither cannot be instanced to async. - If `func` accepts keyword only parameters. - If `func` accepts `*args`. - If `func` accepts `**kwargs`. ValueError - If any parameter is not internal. """ analyzer, real_analyzer, should_instance = check_command_coroutine(func) parameters = real_analyzer.get_non_reserved_positional_parameters() parameter_converters = [] target_converter_detected = False for parameter in parameters: parameter_converter = create_internal_parameter_converter(parameter) if (parameter_converter is None): if target_converter_detected: raise TypeError(f'`{real_analyzer.real_function!r}`\'s `{parameter.name}` do not refers to any of the ' f'expected internal parameters. Context commands do not accept any additional parameters.') else: parameter_converter = create_target_parameter_converter(parameter) target_converter_detected = True parameter_converters.append(parameter_converter) parameter_converters = tuple(parameter_converters) if should_instance: func = analyzer.instance() return func, parameter_converters
294706230f95745dbd50681cafc066a5d226880d
17,202
def norm(x): """Normalize 1D tensor to unit norm""" mu = x.mean() std = x.std() y = (x - mu)/std return y
ea8546da2ea478edb0727614323bba69f6af288d
17,203
def honest_propose(validator, known_items): """ Returns an honest `SignedBeaconBlock` as soon as the slot where the validator is supposed to propose starts. Checks whether a block was proposed for the same slot to avoid slashing. Args: validator: Validator known_items (Dict): Known blocks and attestations received over-the-wire (but perhaps not included yet in `validator.store`) Returns: Optional[SignedBeaconBlock]: Either `None` if the validator decides not to propose, otherwise a `SignedBeaconBlock` containing attestations """ # Not supposed to propose for current slot if not validator.data.current_proposer_duties[validator.data.slot % SLOTS_PER_EPOCH]: return None # Already proposed for this slot if validator.data.last_slot_proposed == validator.data.slot: return None # honest propose return honest_propose_base(validator, known_items)
c6b0403b15154e3e3b19547770a162e2ac05501b
17,204
import re def formatKwargsKey(key): """ 'fooBar_baz' -> 'foo-bar-baz' """ key = re.sub(r'_', '-', key) return key
24c79b37fdd1cd6d73ab41b0d2234b1ed2ffb448
17,205
import dateutil def mktimestamp(dt): """ Prepares a datetime for sending to HipChat. """ if dt.tzinfo is None: dt = dt.replace(tzinfo=dateutil.tz.tzutc()) return dt.isoformat(), dt.tzinfo.tzname(dt)
2f444d0ea27a3afbed68742bade8833a49e191e4
17,206
import os def load_and_assign_npz_dict(name='model.npz', sess=None): """Restore the parameters saved by ``tl.files.save_npz_dict()``. Parameters ---------- name : a string The name of the .npz file. sess : Session """ assert sess is not None if not os.path.exists(name): print("[!] Load {} failed!".format(name)) return False params = np.load(name) if len(params.keys()) != len(set(params.keys())): raise Exception("Duplication in model npz_dict %s" % name) ops = list() for key in params.keys(): try: # tensor = tf.get_default_graph().get_tensor_by_name(key) # varlist = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=key) varlist = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=key) if len(varlist) > 1: raise Exception("[!] Multiple candidate variables to be assigned for name %s" % key) elif len(varlist) == 0: raise KeyError else: ops.append(varlist[0].assign(params[key])) print("[*] params restored: %s" % key) except KeyError: print("[!] Warning: Tensor named %s not found in network." % key) sess.run(ops) print("[*] Model restored from npz_dict %s" % name)
b5c2a0d1878117cb7e6461e0615457ee92501823
17,207
def build_accuracy(logits, labels, name_scope='accuracy'): """ Builds a graph node to compute accuracy given 'logits' a probability distribution over the output and 'labels' a one-hot vector. """ with tf.name_scope(name_scope): correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) return tf.reduce_mean(correct_prediction)
53f5f78a8c07c691e20d14c416c1fe21a2547bc6
17,208
import json import os def generate_markdown_files(domain, mitigations, side_nav_data, side_nav_mobile_data, notes): """Responsible for generating shared data between all mitigation pages and begins mitigation markdown generation """ data = {} if mitigations: data['domain'] = domain.split("-")[0] data['mitigation_list_len'] = str(len(mitigations)) data['side_menu_data'] = side_nav_data data['side_menu_mobile_view_data'] = side_nav_mobile_data data['mitigation_table'] = get_mitigation_table_data(mitigations) subs = mitigations_config.mitigation_domain_md.substitute(data) subs = subs + json.dumps(data) with open(os.path.join(mitigations_config.mitigation_markdown_path, data['domain'] + "-mitigations.md"), "w", encoding='utf8') as md_file: md_file.write(subs) # Generates the markdown files to be used for page generation for mitigation in mitigations: generate_mitigation_md(mitigation, domain, side_nav_data, side_nav_mobile_data, notes) return True else: return False
8a30af0868b541c8771019c57d42d33a842050bc
17,209
def compute_mp_av(mp, index, m, df, k): """ Given a matrix profile, a matrix profile index, the window size and the DataFrame that contains the timeseries. Create a matrix profile object and add the corrected matrix profile after applying the complexity av. Uses an extended version of the apply_av function from matrixprofile foundation that is compatible with multi-dimensional timeseries. The implementation can be found here (https://github.com/MORE-EU/matrixprofile/blob/master/matrixprofile/transform.py) Args: mp: A matrix profile. index: The matrix profile index that accompanies the matrix profile. window: The subsequence window size. df: The timeseries that was used to calculate the matrix profile. Return: Updated profile with an annotation vector """ # Apply the annotation vector m = m # window size mp = np.nan_to_num(mp, np.nanmax(mp)) # remove nan values profile = to_mpf(mp, index, m, df) av_type = 'complexity' profile = mpf.transform.apply_av(profile, av_type) return profile
cc89d34dd145339c99d1ded8ced9af853c061124
17,210
import logging def read_burris(fh): """ Read Burris formatted file, from given open file handle. Accepts comma or tab-separated files. Parameters ---------- fh : TextIOWrapper open file handle Returns ------- ChannelList """ all_survey_data = ChannelList() for i, orig_line in enumerate(fh, 1): try: line = orig_line.strip() if line.find(",") != -1: vals_temp = line.split(",") if vals_temp[0] == "Station ID" or vals_temp[0] == "Station": continue elif line.find("\t") != -1: vals_temp = line.split("\t") else: vals_temp = line.split() if vals_temp[0] == "Station ID" or vals_temp[0] == "Station": continue if len(vals_temp) == 15: # no meter operator specified ( c_station, c_meter, c_date, c_time, c_grav, c_dial, c_feedback, c_tide, c_tilt, _, _, c_height, c_elev, c_lat, c_long, ) = range( 15 ) # 0 - 15 all_survey_data.oper.append("None") else: # 16 values, includes meter operator. # Numbers are columns in the imported file ( c_station, c_oper, c_meter, c_date, c_time, c_grav, c_dial, c_feedback, c_tide, c_tilt, _, _, c_height, c_elev, c_lat, c_long, ) = range( 16 ) # 0 - 14 all_survey_data.oper.append(vals_temp[c_oper]) if line.find("/") != -1: date_temp = vals_temp[c_date].split("/") elif line.find("-") != -1: date_temp = vals_temp[c_date].split("-") else: date_temp = [] if int(date_temp[2]) > 999: date_temp = [date_temp[2], date_temp[0], date_temp[1]] elif int(date_temp[0]) > 999: date_temp = [date_temp[0], date_temp[1], date_temp[2]] # Else raise date error time_temp = vals_temp[c_time].split(":") # fill object properties: all_survey_data.station.append(vals_temp[c_station].strip()) all_survey_data.elev.append(float(vals_temp[c_elev])) all_survey_data.height.append(float(vals_temp[c_height])) all_survey_data.lat.append(float(vals_temp[c_lat])) all_survey_data.long.append(float(vals_temp[c_long])) # remove Earth tide correction; it's added in using the @grav property all_survey_data.raw_grav.append( float(vals_temp[c_grav]) * 1000.0 - float(vals_temp[c_tide]) * 1000.0 ) all_survey_data.tare.append(0) all_survey_data.etc.append(float(vals_temp[c_tide]) * 1000.0) all_survey_data.meter_etc.append(float(vals_temp[c_tide]) * 1000.0) all_survey_data.dial.append(float(vals_temp[c_dial])) all_survey_data.feedback.append(float(vals_temp[c_feedback])) all_survey_data.sd.append(-999) # Burris doesn't ouput SD, tiltx, tilty all_survey_data.meter.append(vals_temp[c_meter]) all_survey_data.tiltx.append(float(vals_temp[c_tilt]) * 1000.0) all_survey_data.tilty.append(0.0) all_survey_data.temp.append(0.0) all_survey_data.dur.append(5) all_survey_data.rej.append(5) all_survey_data.t.append( date2num( dt.datetime( int(date_temp[0]), int(date_temp[1]), int(date_temp[2]), int(time_temp[0]), int(time_temp[1]), int(time_temp[2]), ) ) ) all_survey_data.keepdata.append(1) except (IndexError, ValueError) as e: logging.exception("Error loading Burris file at line %d", i) logging.info("LINE: %s", line) e.i = i e.line = orig_line raise e all_survey_data.meter_type = "Burris" return all_survey_data
4519cf73be5663a70e76e083aa9f735f427248a6
17,211
import re def _remove_invalid_characters(file_name): """Removes invalid characters from the given file name.""" return re.sub(r'[/\x00-\x1f]', '', file_name)
49a9f668e8142855ca4411921c0180977afe0370
17,212
def get_ops(): """ Builds an opcode name <-> value dictionary """ li = ["EOF","ADD","SUB","MUL","DIV","POW","BITAND","BITOR","CMP","GET", \ "SET","NUMBER","STRING","GGET","GSET","MOVE","DEF","PASS", \ "JUMP","CALL","RETURN","IF","DEBUG","EQ","LE","LT","DICT", \ "LIST","NONE","LEN","LINE","PARAMS","IGET","FILE","NAME", \ "NE","HAS","RAISE","SETJMP","MOD","LSH","RSH","ITER","DEL", \ "REGS","BITXOR", "IFN", "NOT", "BITNOT"] dic = {} for i in li: dic[i] = li.index(i) return dic
6cd9e4014a124faa6be6dfc36b9f77a22df1ccfb
17,213
def load_actions( file_pointer, file_metadata, target_adim, action_mismatch, impute_autograsp_action ): """Load states from a file given metadata and hyperparameters Inputs: file_pointer : file object file_metadata : file metadata row (Pandas) target_adim : dimensionality of action vector action_mismatch : indicator variable (ACTION_MISMATCH) to handle action length mismatches impute_autograsp_action : boolean flag indicating to impute action dim if missing in primative:"autograsp" Outputs: actions : np.array((T-1, action_dims)) """ a_T, adim = file_metadata["action_T"], file_metadata["adim"] if target_adim == adim: return file_pointer["policy"]["actions"][:] elif ( target_adim == adim + 1 and impute_autograsp_action and file_metadata["primitives"] == "autograsp" ): action_append, old_actions = ( np.zeros((a_T, 1)), file_pointer["policy"]["actions"][:], ) next_state = file_pointer["env"]["state"][:][1:, -1] high_val, low_val = ( file_metadata["high_bound"][-1], file_metadata["low_bound"][-1], ) midpoint = (high_val + low_val) / 2.0 for t, s in enumerate(next_state): if s > midpoint: action_append[t, 0] = high_val else: action_append[t, 0] = low_val return np.concatenate((old_actions, action_append), axis=-1) elif adim < target_adim and (action_mismatch & ACTION_MISMATCH.PAD_ZERO): pad = np.zeros((a_T, target_adim - adim), dtype=np.float32) return np.concatenate((file_pointer["policy"]["actions"][:], pad), axis=-1) elif adim > target_adim and (action_mismatch & ACTION_MISMATCH.CLEAVE): return file_pointer["policy"]["actions"][:][:, :target_adim] else: raise ValueError( "file adim - {}, target adim - {}, pad behavior - {}".format( adim, target_adim, action_mismatch ) )
0b8b5dc259fa0645069cc57b4510355ec6897ab6
17,214
def send_message(hookurl: str, text: str) -> int: """ Send a message on the channel of the Teams. The HTTP status is returned. parameters ---------- hookurl : str URL for the hook to the Teams' channel. text : str text to send. returns ------- int HTTP status from the sent message. """ msg = pymsteams.connectorcard(hookurl) msg.text(text) msg.send() return msg.last_http_status.status_code
8ffef50d745fafd125b556e9fb1ceff2cb438a4e
17,215
def np_fft_irfftn(a, *args, **kwargs): """Numpy fft.irfftn wrapper for Quantity objects. Drop dimension, compute result and add it back.""" res = np.fft.irfftn(a.value, *args, **kwargs) return Quantity(res, a.dimension)
fbfdfe470f09106e9589709ebae5fa19ba8a2732
17,216
def get_codec_options() -> CodecOptions: """ Register all flag type registry and get the :class:`CodecOptions` to be used on ``pymongo``. :return: `CodecOptions` to be used from `pymongo` """ return CodecOptions(type_registry=TypeRegistry(type_registry))
a0acd3e719ae0a4be463c71cba5eb86914348248
17,217
def get_frame_lims(x_eye, y_eye, x_nose, y_nose, view, vertical_align='eye'): """Automatically compute the crop parameters of a view using the eye and nose and reference. Note that horizontal/vertical proportions are currently hard-coded. Parameters ---------- x_eye : float x position of the eye y_eye : float y position of the eye x_nose : float x position of the nose y_nose : float y position of the nose view : str 'left' | 'right' vertical_align : str defines which feature controls the vertical alignment 'eye' | 'nose' Returns ------- tuple - xmin (float) - xmax (float) - ymin (float) - ymax (float) """ # horizontal proportions edge2nose = 0.02 nose2eye = 0.33 eye2edge = 0.65 # vertical proportions eye2top = 0.10 eye2bot = 0.90 nose2top = 0.25 nose2bot = 0.75 # horizontal calc nose2eye_pix = np.abs(x_eye - x_nose) edge2nose_pix = edge2nose / nose2eye * nose2eye_pix eye2edge_pix = eye2edge / nose2eye * nose2eye_pix total_x_pix = np.round(nose2eye_pix + edge2nose_pix + eye2edge_pix) if view == 'left': xmin = int(x_nose - edge2nose_pix) xmax = int(x_eye + eye2edge_pix) elif view == 'right': xmin = int(x_eye - eye2edge_pix) xmax = int(x_nose + edge2nose_pix) else: raise Exception # vertical calc (assume we want a square image out) if vertical_align == 'eye': # based on eye eye2top_pix = eye2top * total_x_pix eye2bot_pix = eye2bot * total_x_pix ymin = int(y_eye - eye2top_pix) ymax = int(y_eye + eye2bot_pix) else: # based on nose nose2top_pix = nose2top * total_x_pix nose2bot_pix = nose2bot * total_x_pix ymin = int(y_nose - nose2top_pix) ymax = int(y_nose + nose2bot_pix) return xmin, xmax, ymin, ymax
20b3c5d74b7d4dd4b2b63c9d32f7325a199d3dee
17,218
import os def write_curies(filepaths: dict, ontoid: str, prefix_map: dict, pref_prefix_map: dict) -> bool: """ Update node id field in an edgefile and each corresponding subject/object node in the corresponding edges to have a CURIE, where the prefix is the ontology ID and the class is inferred from the IRI. :param in_path: str, path to directory :param ontoid: the Bioportal ID of the ontology :return: True if complete, False otherwise """ success = False nodepath = filepaths["nodelist"] edgepath = filepaths["edgelist"] outnodepath = nodepath + ".tmp" outedgepath = edgepath + ".tmp" update_these_nodes = {} try: with open(nodepath,'r') as innodefile, \ open(edgepath, 'r') as inedgefile: with open(outnodepath,'w') as outnodefile, \ open(outedgepath, 'w') as outedgefile: for line in innodefile: updated_node = False line_split = (line.rstrip()).split("\t") node_iri = line_split[0] if ontoid in prefix_map: for prefix in prefix_map[ontoid]["prefixes"]: if node_iri.startswith(prefix[0]): split_iri = node_iri.rsplit(prefix[1],1) if ontoid in pref_prefix_map: ontoid = pref_prefix_map[ontoid] if len(split_iri) == 2: new_curie = f"{ontoid}:{split_iri[1]}" else: new_curie = f"{ontoid}:" line_split[0] = new_curie update_these_nodes[node_iri] = new_curie updated_node = True continue # If we don't have a native prefix OR this is a foreign prefix # then look at other ontologies if ontoid not in prefix_map or not updated_node: for prefix_set in prefix_map: for prefix in prefix_map[prefix_set]["prefixes"]: if node_iri.startswith(prefix[0]): split_iri = node_iri.rsplit(prefix[1],1) if prefix_set in pref_prefix_map: prefix_set = pref_prefix_map[prefix_set] if len(split_iri) == 2: new_curie = f"{prefix_set}:{split_iri[1]}" else: new_curie = f"{prefix_set}:" line_split[0] = new_curie update_these_nodes[node_iri] = new_curie continue outnodefile.write("\t".join(line_split) + "\n") for line in inedgefile: line_split = (line.rstrip()).split("\t") # Check for edges containing nodes to be updated if line_split[1] in update_these_nodes: line_split[1] = update_these_nodes[line_split[1]] if line_split[3] in update_these_nodes: line_split[3] = update_these_nodes[line_split[3]] outedgefile.write("\t".join(line_split) + "\n") os.replace(outnodepath,nodepath) os.replace(outedgepath,edgepath) success = True except (IOError, KeyError) as e: print(f"Failed to write CURIES for {nodepath} and/or {edgepath}: {e}") success = False return success
d574142a634b9a4998f8b887e4bc309661c5625e
17,219
def split(time: list, value: list, step, group_hours, region=None, whole_group=False): """ Split and group 'step' number of averaged values 'hours' apart :param time: time per value (hour apart) :param value: values corresponding to time :param step: number of group times set for each index :param group_hours: group times into 'hours' hours :param region: region of indices to be considered :param whole_group: include the aggregated value of whole time group for each of its members not just until that member :return: """ splits = list() # step group times per index size = len(time) if size != len(value): return -1 # direction is the sign of step direction = np.sign(step) # indices to be considered region = (0, size - 1) if region is None else region region = (max(region[0], 0), size - 1 if region[1] < 0 else region[1]) # Running group average of each index either forward (when step < 0) # or backward (when step > 0), when whole_group = False if not whole_group: run_average = running_average(time, value, group_hours=group_hours, direction=-np.sign(step), whole_group=False) else: run_average = [] group_time, average, group_lookup, _ = group_average(time, value, group_hours=group_hours) group_size = len(group_time) # init first 'steps' (for forward) # or duplication o first (for backward) [whole/partial] group average as array of step values group_time = pre_group_time = round_hour(time[region[0]], group_hours) group_index = group_lookup[group_time] last_index = group_index + step - direction if step > 0: initial_values = average[group_index:min(last_index + 1, group_size)] if len(initial_values) != abs(step): # duplicate the last group average to reach 'step' values initial_values += [[average[-1] * (group_size - last_index)]] else: initial_values = average[max(last_index, 0):group_index + 1] if len(initial_values) != abs(step): # duplicate the first group average to reach 'step' values initial_values = ([average[0]] * (-last_index)) + initial_values step_values = deque(initial_values) cur_step = 0 for i in range(region[0], region[1] + 1): group_time = round_hour(time[i], group_hours) if group_time != pre_group_time: group_index = group_lookup[group_time] last_index = group_index + step - direction cur_step = min(step, cur_step + 1) step_values.rotate(-1) # shift right to go toward end of groups # duplicate the second to last value if group size is passed # otherwise set the last value from group averages if step > 0: step_values[-1] = average[last_index] if last_index < group_size else step_values[-2] else: step_values[-1] = average[group_index] pre_group_time = group_time # replace the group average with partial average if the whole group is not required if not whole_group: if cur_step == step or step > 0: step_values[0 if step > 0 else -1] = run_average[i] elif group_index == 0: # this branch is executed only for the first group for backward (few times) step_values = deque([run_average[i]] * abs(step)) splits.append(list(step_values)) return splits
a8f8cf51d241a532e6a925d4323abb281215f543
17,220
def launch_ebs_affinity_process(instanceid, instance_infos, ebs_configs): """ Manage the ebs affinity process. :param instanceid string The instance id :param instance_infos dict Informations about the instance :param ebs_config dict The EBS parameters :return None """ if not check_if_ebs_already_attached(instanceid, ebs_configs['mount_point'], instance_infos): if manage_ebs_volume(ebs_configs, instanceid, instance_infos): logger.info("EBS: {0} has been attached on the Instance-id: {1}" .format(ebs_configs['mount_point'], instanceid)) else: logger.error("Error during the management of the EBS volume: {0}. Disk not attached to the instance: {1} " .format(ebs_configs['mount_point'], instanceid)) return False return True else: logger.info("A disk is already attached on the target mount point: {0}" .format(ebs_configs['mount_point'])) return True
ec30f4748417cee8f9fe96c2c47cf78dd10be59f
17,221
def get_all(isamAppliance, check_mode=False, force=False): """ Retrieve a list of mapping rules """ return isamAppliance.invoke_get("Retrieve a list of mapping rules", "/iam/access/v8/mapping-rules")
e48aa65f5212ea32e84c40e326633cf2971d378a
17,222
def get_oyente(test_subject=None, mutation=None): """ Run the Oyente test suite on a provided script """ is_request = False if not test_subject: test_subject = request.form.get('data') is_request = True o = Oyente(test_subject) info, errors = o.oyente(test_subject) if len(errors) > 0: errors = [{'lineno':e[0].split(':')[1],'code':"\n".join(e[1].split('\n')[1:]),'description':e[1].split('\n')[0]} for e in errors] if len(info) > 0: info = [{x[0]:x[1] for x in info}] output = {"info":info, "issues": errors, 'error':[]} if mutation: output['mutation'] = mutation if is_request: return jsonify(output) return output
f264262c22314ac26b56369f4d7741effb4cf09e
17,223
def search_for_example(search_string: str) -> tuple: """Get the Example for a Particular Function""" function = match_string(search_string) if function: function = function.strip() sql = f"SELECT example, comment FROM example WHERE function='{function}'" data = execute(sql) return function, data else: return None, (())
16eb034369954017b1b51a206d48af40f5768ef6
17,224
def WildZumba(x,c1=20,c2=0.2,c3=2*np.pi) : """ A separable R**n==>R function, assumes a real-valued numpy vector as input """ return -c1 * np.exp(-c2*np.sqrt(np.mean(x**2))) - np.exp(np.mean(np.cos(c3*x))) + c1 + np.exp(1)
589f90f174d61269c2c019ef678f51c498c68ff8
17,225
def import_xlsx(filename, skip_variation=False): """Импортирует параметры пиков, хроматограммы и варьируемых параметров, если они указаны. Parameters ---------- filename : str Имя xlsx файла. skip_variation : bool, default = False Пропустить блок Variation даже если он есть. Returns ------- Tuple[List[Peak], Chromatogram, dict, int, np.ndarray] Если в xlsx файле есть блок Variation, то вернется кортеж, в который входит список из экземпляров класса Peak, экземпляр класса Chromatogram, словарь варьируемых параметров со списками сигм, количество файлов и массив с долями файлов в которых будут пропущенны пики. Tuple[List[Peak], Chromatogram] Если же блок Variation отсутствует, то вернется кортеж только из списка экземпляров класса Peak и экземпляра класса Chromatogram. """ wb = ox.load_workbook(filename, data_only=True) sheet_ranges = wb['input'] max_row = sheet_ranges.max_row rows = list(sheet_ranges.rows) wb.close() def get_row(row, key): return list(map(lambda x: x.value, rows[row][d_xl[key]['start_idx']: d_xl[key]['end_idx']])) def get_col(col, start_row, nn): res = [] for i_cell in range(start_row, start_row + nn): res.append(sheet_ranges.cell(i_cell, col).value) return res d_xl = {} # читаем первую строку for cell in rows[0]: cell_value = cell.value if cell_value is not None: d_xl.update({cell_value: {}}) # обработка объединенных ячеек (Chromatogram, Peaks, Variation) mcr = sheet_ranges.merged_cells.ranges for cr in mcr: name = cr.start_cell.value if name in d_xl: start_idx = cr.start_cell.col_idx - 1 cols = cr.size['columns'] end_idx = start_idx + cols d_xl[name].update({'start_idx': start_idx, 'cols': cols, 'end_idx': end_idx}) # Chromatogram names, values = map(lambda x: get_row(x, 'Chromatogram'), (1, 2)) d_xl['Chromatogram'].update(zip(names, values)) chrom = Chromatogram(**d_xl['Chromatogram']) # Peaks head_peaks = get_row(1, 'Peaks') params_peak = {} sep_mz_i = ';' sep_into_mz_i = ' ' peak_list = [] for i in range(2, max_row): params_peak.update(zip(head_peaks, get_row(i, 'Peaks'))) mz_i = np.fromstring(params_peak['mass_spect'].replace('\n', ''). replace(sep_mz_i, ''), sep=sep_into_mz_i).reshape((-1, 2)) del params_peak['mass_spect'] mz_list = mz_i[:, 0].astype(np.int16) peak_list.append(Peak(mz_list=mz_list, intensity_list=mz_i[:, 1], **params_peak)) # Variation if 'Variation' in d_xl and not skip_variation: head_variation = get_row(1, 'Variation') params_variation = {} for par in head_variation: params_variation.update({par: []}) for i in range(2, max_row): for key, value in zip(head_variation, get_row(i, 'Variation')): params_variation[key].append(value) num_files = 0 for n, i in enumerate(rows[0]): if i.value in ('Num_files', 'Num files'): num_files = rows[1][n].value break # Missing miss = np.zeros(max_row) for n, i in enumerate(rows[0]): if i.value in ('Missing', 'missing', 'miss'): miss = np.array(get_col(n + 1, 3, len(peak_list))) break return peak_list, chrom, params_variation, num_files, miss return peak_list, chrom
75b32618274fb2ab7ede9f525856fdc13e8c97ee
17,226
from typing import Union from typing import Optional def _get_dataset_builder( dataset: Union[str, tfds.core.DatasetBuilder], data_dir: Optional[str] = None) -> tfds.core.DatasetBuilder: """Returns a dataset builder.""" if isinstance(dataset, str): dataset_builder = tfds.builder(dataset, data_dir=data_dir) elif isinstance(dataset, tfds.core.DatasetBuilder): dataset_builder = dataset else: raise ValueError("`dataset` must be a string or tfds.core.DatasetBuilder. " f"Received {dataset} instead.") return dataset_builder
0f17169541604e69a614ddfeee4c8a963834ed8e
17,227
def write_bbox(scene_bbox, out_filename): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ def convert_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type="ply") return
c7504260306495e6252569a3cb83f61ca084de26
17,228
def label_rotate(annot, rotate): """ anti-clockwise rotate the occ order annotation by rotate*90 degrees :param annot: (H, W, 9) ; [-1, 0, 1] :param rotate: value in [0, 1, 2, 3] :return: """ rotate = int(rotate) if rotate == 0: return annot else: annot_rot = np.rot90(annot, rotate) orientation = annot_rot[:, :, 1:].copy() if rotate == 1: mapping = [2, 4, 7, 1, 6, 0, 3, 5] elif rotate == 2: mapping = [7, 6, 5, 4, 3, 2, 1, 0] else: mapping = [5, 3, 0, 6, 1, 7, 4, 2] annot_rot[:, :, 1:] = orientation[:, :, mapping] return annot_rot
e37a2e9dddc5f19898691fe22d02978d1954d435
17,229
def allocate_available_excess(region): """ Allocate available excess capital (if any). """ difference = region['total_revenue'] - region['total_cost'] if difference > 0: region['available_cross_subsidy'] = difference region['deficit'] = 0 else: region['available_cross_subsidy'] = 0 region['deficit'] = abs(difference) return region
19a3d7fbc776ae5b5b47ecfc32db14bf4abd949e
17,230
def items(dic): """Py 2/3 compatible way of getting the items of a dictionary.""" try: return dic.iteritems() except AttributeError: return iter(dic.items())
2664567765efe172591fafb49a0efa36ab9fcca8
17,231
import json import binascii def new_settingsresponse_message(loaded_json, origin): """ takes in a request - executes search for settings and creates a response as bytes :param loaded_json: :param origin: is this a response of drone or groundstation :return: a complete response packet as bytes """ complete_response = {} complete_response['destination'] = 4 complete_response['type'] = DBCommProt.DB_TYPE_SETTINGS_RESPONSE.value complete_response['response'] = loaded_json['request'] complete_response['origin'] = origin complete_response['id'] = loaded_json['id'] if loaded_json['request'] == DBCommProt.DB_REQUEST_TYPE_DB.value: if 'settings' in loaded_json: complete_response = read_dronebridge_settings(complete_response, origin, True, loaded_json['settings']) else: complete_response = read_dronebridge_settings(complete_response, origin, False, None) elif loaded_json['request'] == DBCommProt.DB_REQUEST_TYPE_WBC.value: if 'settings' in loaded_json: complete_response = read_wbc_settings(complete_response, True, loaded_json['settings']) else: complete_response = read_wbc_settings(complete_response, False, None) response = json.dumps(complete_response) crc32 = binascii.crc32(str.encode(response)) return response.encode() + crc32.to_bytes(4, byteorder='little', signed=False)
812444353a50ffeb468398d8681e81a74cb9d7e9
17,232
def list_icmp_block(zone, permanent=True): """ List ICMP blocks on a zone .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' firewlld.list_icmp_block zone """ cmd = "--zone={0} --list-icmp-blocks".format(zone) if permanent: cmd += " --permanent" return __firewall_cmd(cmd).split()
9f0f8c2e7a688263ddd31c8384babba25e2300e6
17,233
def dependencies_found(analysis_id, execution_id): """ Installation data from buildbot. Requires a JSON list of objects with the following keys: * installer: The system used to install the dependency. * spec: The full specification used by the user to request the package. * source: Entity providing the artifact. * name: The real package name. * version: The installed version of the package. .. note:: Internal API """ installations = bottle.request.json if installations: # Create database objects returning a list of scanneable artifacts. artifacts = register_installations(analysis_id, execution_id, installations) analysis_needed = {a for a in artifacts if a.analysis_needed()} # Launch dependency scan and mark done when finished. analysis_task = ( providers.analyze_artifacts(analysis_needed) # <- group of tasks | tasks.mark_task_done.si(analysis_id)).delay() return {'task_id': analysis_task.id, 'scanning': len(analysis_needed)} else: return {'task_id': None, 'scanning': 0}
8983e53dd558b42272d4886412e918e7b192754e
17,234
def set_augmentor(): """ Set the augmentor. 1. Select the operations and create the config dictionary 2. Pass it to the Augmentor class with any other information that requires 3. Return the instance of the class. :return: """ config = {'blur': {'values': ('gaussian', 0.7, 1.0), 'prob': 0.3}, 'brightness': {'values': (0.6, 1.0), 'prob': 0.1}, 'brightness1': {'values': (1.0, 1.5), 'prob': 0.1}, 'flip': {'values': ('hor',), 'prob': 0.5}, 'grid_mask': {'values': (0, 0.2, 0, 0.2, 0.01, 0.1, 0.01, 0.1, 0.1, 0.2, 0.1, 0.2), 'prob': 0.4}, 'illumination': {'values': ('blob_negative', 0.1, 0.2, 100, 150), 'prob': 0.2}, 'noise': {'values': (2, 10), 'use_gray_noise': True, 'prob': 1}, 'rotate': {'values': (-45, 45), 'prob': 0.4}, 'translate': {'values': ('RANDOM', -0.2, 0.2), 'prob': 0.2, 'use_replication': True}, 'zoom': {'values': (0.5, 1.5), 'prob': 0.9, 'use_replication': True}} augmentor = Augmentor(config, no_repetition=True) return augmentor
77c64cec87af2d41a4cc6dc55600ab5eaedad247
17,235
def get_global_event_logger_instance(): """Get an event logger with prefilled fields for the collection. This returns an options configured event logger (proxy) with prefilled fields. This is almost CERTAINLY the event logger that you want to use in zaza test functions. :returns: a configured LoggerInstance with prefilled collection and unit fields. :rtype: LoggerInstance """ return get_global_events_logging_manager().get_event_logger_instance()
66228b15dd4d1ac9468834124e4ba073a846580f
17,236
def plot_market_entry(cat_entry_and_exit_df, cat_entry_and_exit_df_2): """ returns a plot with the entry and exit of firms per category """ # get the limits so everything is on the same scale df = pd.concat([cat_entry_and_exit_df, cat_entry_and_exit_df_2]) limits = [-df.exit.max() - 0.3, df.entry.max() + 0.3] fig = tools.make_subplots(rows=1, cols=2) xs = cat_entry_and_exit_df.index new_per_cat = cat_entry_and_exit_df.entry.astype(int) dead_per_cat = cat_entry_and_exit_df.exit.astype(int) fig.append_trace( go.Bar(y=xs, x=new_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} entries in category {}'.format(x, y) for x, y in zip(new_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[0]}), 1, 1) fig.append_trace( go.Bar(y=xs, x=-dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} exits in category {}'.format(x, y) for x, y in zip(dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[0]}), 1, 1) fig.append_trace( go.Bar(y=xs, x=new_per_cat - dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} net entries in category {}'.format(x, y) for x, y in zip(new_per_cat - dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': dark_scen_colours[0]}), 1, 1) xs = cat_entry_and_exit_df_2.index new_per_cat = cat_entry_and_exit_df_2.entry.astype(int) dead_per_cat = cat_entry_and_exit_df_2.exit.astype(int) fig.append_trace( go.Bar(y=xs, x=new_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} entries in category {}'.format(x, y) for x, y in zip(new_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[1]}), 1, 2) fig.append_trace( go.Bar(y=xs, x=-dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} exits in category {}'.format(x, y) for x, y in zip(dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[1]}), 1, 2) fig.append_trace( go.Bar(y=xs, x=new_per_cat - dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} net entries in category {}'.format(x, y) for x, y in zip(new_per_cat - dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': dark_scen_colours[1]}), 1, 2) fig['layout']['xaxis2'].update(title="Number of companies", range=limits) fig['layout']['xaxis1'].update(title="Number of companies", range=limits) fig['layout']['yaxis1'].update(title="Product category") fig['layout'].update(title='Market entry and exit per product category') fig['layout']['font'].update(family='HelveticaNeue') fig['layout'].update(barmode='overlay') return fig
c1b1ad00c1dbdde804e4d594dda4ae6525c7779f
17,237
import io def find_elements_by_image(self, filename): """ Locate all the occurence of an image in the webpage. :Args: - filename: The path to the image to search (image shall be in PNG format). :Returns: A list of ImageElement. """ template = cv2.imread(filename, cv2.IMREAD_UNCHANGED) template_height, template_width, _ = template.shape webpage_png = self.get_screenshot_as_png() webpage_img = Image.open(io.BytesIO(webpage_png)) webpage = np.asarray(webpage_img, dtype=np.float32).astype(np.uint8) webpage = cv2.cvtColor(webpage, cv2.COLOR_BGR2RGB) return [ ImageElement(self, loc[0], loc[1], template_width, template_height) for loc in match_template(webpage, template) ]
23137766b68068c8cb78bb57127bfa6040bace70
17,238
from typing import Set from typing import Sequence def compile_tf_signature_def_saved_model( saved_model_dir: str, saved_model_tags: Set[str], module_name: str, exported_name: str, input_names: Sequence[str], output_names: Sequence[str]) -> Modules: """Compiles a SignatureDef SavedModel to each backend that we test. Args: saved_model_dir: Directory of the saved model. saved_model_tags: Optional set of tags to use when loading the model. module_name: A name for this compiled module. backend_info: BackendInfo with the details for compiling the saved model. exported_name: A str representing the signature on the saved model to compile. input_names: A sequence of kwargs to feed to the saved model. output_names: A sequence of named outputs to extract from the saved model. Returns: A 'Modules' dataclass containing the reference module, target modules and artifacts directory. """ global _global_modules if _global_modules is not None: return _global_modules # Setup the directory for saving compilation artifacts and traces. artifacts_dir = _setup_artifacts_dir(module_name) # Get the backend information for this test. ref_backend_info = module_utils.BackendInfo(FLAGS.reference_backend, f"{FLAGS.reference_backend}_ref") tar_backend_infos = get_target_backends() compile_backend = ( lambda backend_info: backend_info.compile_signature_def_saved_model( saved_model_dir, saved_model_tags, module_name, exported_name, input_names, output_names, artifacts_dir)) ref_module = compile_backend(ref_backend_info) tar_modules = [ compile_backend(backend_info) for backend_info in tar_backend_infos ] _global_modules = Modules(ref_module, tar_modules, artifacts_dir) return _global_modules
ed1a1efc28c9ae473d76c700ab7781f141fc3765
17,239
def origtime2float(time): """ converts current datetime to float >>> import datetime >>> t = datetime.datetime(2010, 8, 5, 14, 45, 41, 778877) >>> origtime2float(t) 53141.778876999997 """ t3fmt = time.strftime("%H:%M:%S:%f") return time2float(t3fmt)
03cadf1f686fde1dd46cbb52fd71adcc2f06585c
17,240
def discrete_fourier_transform1(freq, tvec, dvec, log=False): """ Calculate the Discrete Fourier transform (slow scales with N^2) The DFT is normalised to have the mean value of the data at zero frequency :param freq: numpy array, frequency grid calculated from the time vector :param tvec: numpy array or list, input time(independent) vector, normalised by the mean of the time vector :param dvec: numpy array or list, input dependent vector, normalised by the mean of the data vector :return wfn: numpy array of complex numbers, spectral window function :return dft: numpy array of complex numbers, "dirty" discrete Fourier transform :param log: boolean, if True prints progress to standard output if False silent """ # deal with logging if log: print('\n\t Calculating Discrete Fourier Transform...') # ------------------------------------------------------------------------- # Code starts here # ------------------------------------------------------------------------- wfn = np.zeros(len(freq), dtype=complex) dft = np.zeros(int(len(freq)/2), dtype=complex) for i in __tqdmlog__(range(len(freq)), log): phase = -2*np.pi*freq[i]*tvec phvec = np.array(np.cos(phase) + 1j * np.sin(phase)) if i < int(len(freq)/2): wfn[i] = np.sum(phvec)/len(tvec) dft[i] = np.sum(dvec*phvec)/len(tvec) # complete the spectral window function else: wfn[i] = np.sum(phvec)/len(tvec) return wfn, dft
b5e1bafe1ba2b8863ac97bb95c204ca84877b8fd
17,241
from typing import List def ngram_overlaps(a: List[str], b: List[str], threshold: int = 3) -> List[int]: """ Compute the set over overlapping strings in each set based on n-gram overlap where 'n' is defined by the passed in threshold. """ def get_ngrams(text): """ Get a set of all the ngrams in the text """ return set(" ".join(g) for g in grouper(text.split(), threshold)) overlaps = [] remaining = set(range(len(b))) for text in a: best_idx = -1 best_overlap = 0 ngrams = get_ngrams(text) for idx in remaining: ngram_overlap = len(ngrams & get_ngrams(b[idx])) if ngram_overlap > best_overlap: best_idx = idx best_overlap = ngram_overlap if best_idx >= 0: overlaps.append(best_idx) remaining.remove(best_idx) return overlaps
87621e28a4a5d2cba5bb66c6bfa9834c711a7ecf
17,242
def ssq_cwt(x, wavelet='morlet', scales='log', nv=None, fs=None, t=None, ssq_freqs=None, padtype='symmetric', squeezing='sum', difftype='direct', difforder=None, gamma=None): """Calculates the synchrosqueezed Continuous Wavelet Transform of `x`. Implements the algorithm described in Sec. III of [1]. # Arguments: x: np.ndarray Vector of signal samples (e.g. x = np.cos(20 * np.pi * t)) wavelet: str / tuple[str, dict] / `wavelets.Wavelet` Wavelet sampled in Fourier frequency domain. - str: name of builtin wavelet. `ssqueezepy.wavs()` - tuple[str, dict]: name of builtin wavelet and its configs. E.g. `('morlet', {'mu': 5})`. - `wavelets.Wavelet` instance. Can use for custom wavelet. scales: str['log', 'linear'] / np.ndarray CWT scales. - 'log': exponentially distributed scales, as pow of 2: `[2^(1/nv), 2^(2/nv), ...]` - 'linear': linearly distributed scales. !!! EXPERIMENTAL; default scheme for len(x)>2048 performs poorly (and there may not be a good non-piecewise scheme). nv: int / None Number of voices (CWT only). Suggested >= 32 (default=32). fs: float / None Sampling frequency of `x`. Defaults to 1, which makes ssq frequencies range from 1/dT to 0.5, i.e. as fraction of reference sampling rate up to Nyquist limit; dT = total duration (N/fs). Overridden by `t`, if provided. Relevant on `t` and `dT`: https://dsp.stackexchange.com/a/71580/50076 t: np.ndarray / None Vector of times at which samples are taken (eg np.linspace(0, 1, n)). Must be uniformly-spaced. Defaults to `np.linspace(0, len(x)/fs, len(x), endpoint=False)`. Overrides `fs` if not None. ssq_freqs: str['log', 'linear'] / np.ndarray / None Frequencies to synchrosqueeze CWT scales onto. Scale-frequency mapping is only approximate and wavelet-dependent. If None, will infer from and set to same distribution as `scales`. padtype: str Pad scheme to apply on input. One of: ('zero', 'symmetric', 'replicate'). 'zero' is most naive, while 'symmetric' (default) partly mitigates boundary effects. See `padsignal`. squeezing: str['sum', 'lebesgue'] - 'sum' = standard synchrosqueezing using `Wx`. - 'lebesgue' = as in [4], setting `Wx=ones()/len(Wx)`, which is not invertible but has better robustness properties in some cases. Not recommended unless you know what you're doing. difftype: str['direct', 'phase', 'numerical'] Method by which to differentiate Wx (default='direct') to obtain instantaneous frequencies: w(a,b) = Im( (1/2pi) * (1/Wx(a,b)) * d/db[Wx(a,b)] ) - 'direct': use `dWx`, obtained via frequency-domain differentiation (see `cwt`, `phase_cwt`). - 'phase': differentiate by taking forward finite-difference of unwrapped angle of `Wx` (see `phase_cwt`). - 'numerical': first-, second-, or fourth-order (set by `difforder`) numeric differentiation (see `phase_cwt_num`). difforder: int[1, 2, 4] Order of differentiation for difftype='numerical' (default=4). gamma: float / None CWT phase threshold. Sets `w=inf` for small values of `Wx` where phase computation is unstable and inaccurate (like in DFT): w[abs(Wx) < beta] = inf This is used to zero `Wx` where `w=0` in computing `Tx` to ignore contributions from points with indeterminate phase. Default = sqrt(machine epsilon) = np.sqrt(np.finfo(np.float64).eps) # Returns: Tx: np.ndarray [nf x n] Synchrosqueezed CWT of `x`. (rows=~frequencies, cols=timeshifts) (nf = len(ssq_freqs); n = len(x)) `nf = na` by default, where `na = len(scales)`. ssq_freqs: np.ndarray [nf] Frequencies associated with rows of `Tx`. Wx: np.ndarray [na x n] Continuous Wavelet Transform of `x` L2-normed (see `cwt`); to L1-norm, `Wx /= np.sqrt(scales)` scales: np.ndarray [na] Scales associated with rows of `Wx`. w: np.ndarray [na x n] Phase transform for each element of `Wx`. # References: 1. The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. G. Thakur, E. Brevdo, N.-S. Fučkar, and H.-T. Wu. https://arxiv.org/abs/1105.0010 2. A Nonlinear squeezing of the CWT Based on Auditory Nerve Models. I. Daubechies, S. Maes. https://services.math.duke.edu/%7Eingrid/publications/DM96.pdf 3. Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition. I. Daubechies, J. Lu, H.T. Wu. https://arxiv.org/pdf/0912.2437.pdf 4. Synchrosqueezing-based Recovery of Instantaneous Frequency from Nonuniform Samples. G. Thakur and H.-T. Wu. https://arxiv.org/abs/1006.2533 5. Synchrosqueezing Toolbox, (C) 2014--present. E. Brevdo, G. Thakur. https://github.com/ebrevdo/synchrosqueezing/blob/master/synchrosqueezing/ synsq_cwt_fw.m """ def _process_args(N, fs, t, nv, difftype, difforder, squeezing): if difftype not in ('direct', 'phase', 'numerical'): raise ValueError("`difftype` must be one of: direct, phase, numerical" " (got %s)" % difftype) if difforder is not None: if difftype != 'numerical': WARN("`difforder` is ignored if `difftype != 'numerical'") elif difforder not in (1, 2, 4): raise ValueError("`difforder` must be one of: 1, 2, 4 " "(got %s)" % difforder) elif difftype == 'numerical': difforder = 4 if squeezing not in ('sum', 'lebesgue'): raise ValueError("`squeezing` must be one of: sum, lebesgue " "(got %s)" % squeezing) dt, fs, t = _process_fs_and_t(fs, t, N) nv = nv or 32 return dt, fs, difforder, nv def _phase_transform(Wx, dWx, N, dt, gamma, difftype, difforder): if difftype == 'direct': # calculate instantaneous frequency directly from the # frequency-domain derivative w = phase_cwt(Wx, dWx, difftype, gamma) elif difftype == 'phase': # !!! bad; yields negatives, and forcing abs(w) doesn't help # calculate inst. freq. from unwrapped phase of CWT w = phase_cwt(Wx, None, difftype, gamma) elif difftype == 'numerical': # !!! tested to be very inaccurate for small `a` # calculate derivative numerically _, n1, _ = p2up(N) Wx = Wx[:, (n1 - 4):(n1 + N + 4)] w = phase_cwt_num(Wx, dt, difforder, gamma) return Wx, w N = len(x) dt, fs, difforder, nv = _process_args(N, fs, t, nv, difftype, difforder, squeezing) scales, cwt_scaletype, *_ = process_scales(scales, N, nv=nv, get_params=True) # l1_norm=False to spare a multiplication; for SSWT L1 & L2 are exactly same # anyway since we're inverting CWT over time-frequency plane rpadded = (difftype == 'numerical') Wx, scales, _, dWx = cwt(x, wavelet, scales=scales, fs=fs, l1_norm=False, derivative=True, padtype=padtype, rpadded=rpadded) gamma = gamma or np.sqrt(EPS) Wx, w = _phase_transform(Wx, dWx, N, dt, gamma, difftype, difforder) if ssq_freqs is None: # default to same scheme used by `scales` ssq_freqs = cwt_scaletype Tx, ssq_freqs = ssqueeze(Wx, w, scales=scales, fs=fs, ssq_freqs=ssq_freqs, transform='cwt', squeezing=squeezing) if difftype == 'numerical': Wx = Wx[:, 4:-4] w = w[:, 4:-4] Tx = Tx[:, 4:-4] return Tx, ssq_freqs, Wx, scales, w
8af5caea64e9a861f7702f52c50681e61322658c
17,243
import random import logging import time def request_retry_decorator(fn_to_call, exc_handler): """A generic decorator for retrying cloud API operations with consistent repeatable failure patterns. This can be API rate limiting errors, connection timeouts, transient SSL errors, etc. Args: fn_to_call: the function to call and wrap around exc_handler: a bool return function to check if the passed in exception is retriable """ def wrapper(*args, **kwargs): MAX_ATTEMPTS = 10 SLEEP_SEC_MIN = 5 SLEEP_SEC_MAX = 15 for i in range(1, MAX_ATTEMPTS + 1): try: return fn_to_call(*args, **kwargs) except Exception as e: if i < MAX_ATTEMPTS and exc_handler(e): sleep_duration_sec = \ SLEEP_SEC_MIN + random.random() * (SLEEP_SEC_MAX - SLEEP_SEC_MIN) logging.warn( "API call failed, waiting for {} seconds before re-trying (this was attempt" " {} out of {}).".format(sleep_duration_sec, i, MAX_ATTEMPTS)) time.sleep(sleep_duration_sec) continue raise e return wrapper
0813cc19d9826275917c9eb701683a73bfe597f9
17,244
import logging import os def lambda_handler(event, context): """ 1. Receive from data from the lambda event. 2. DynamoDB: Stores incomming form data 3. Discord: Posts notification to a channel 4. Mailgun: sends notification args: - event: Event data that has trigged the lambda function - context: """ logging.info(f'OS.environ: {os.environ}') logging.info(f'lambda_handler: event {event}') # store form data for key, value in event["data"].items(): logging.info(f'lambda_handler: {key}: {value}') data = event["data"] db_put_success = dynamo_put(data=data) if not db_put_success: payload = create_payload( is_success=False, data=data, method="DynamoDB") notification.post_message_to_channel(payload=payload) return { 'statusCode': 500, 'body': 'There was a problem uploading your data to DynamoDB.', } em_send_success = send_mailgun_message(data=data) if not em_send_success: payload = create_payload( is_success=False, data=data, method="Mailgun") notification.post_message_to_channel(payload=payload) return { 'statusCode': 500, 'body': 'There was a problem sending your email via the Mailgun API.', } payload = create_payload(is_success=True, data=data, method="Lambda") notification.post_message_to_channel(payload=payload) return { 'statusCode': 200, 'headers': { 'Access-Control-Allow-Headers': 'Content-Type', 'Access-Control-Allow-Origin': f'{settings.company_url}', 'Access-Control-Allow-Methods': 'OPTIONS,POST' }, 'body': 'success', }
1cecfe77c6d845976372003d1f465c5d9e5ad2a1
17,245
import json async def establish_async_connection(config: json, logger: AirbyteLogger) -> AsyncConnection: """ Creates an async connection to Firebolt database using the parameters provided. This connection can be used for parallel operations. :param config: Json object containing db credentials. :param logger: AirbyteLogger instance to print logs. :return: PEP-249 compliant database Connection object. """ logger.debug("Connecting to Firebolt.") connection = await async_connect(**parse_config(config, logger)) logger.debug("Connection to Firebolt established.") return connection
696334cdce9e04ef8f5d42ceafbf1031b063b074
17,246
def _wrap_with_before(action, responder, resource=None, is_method=False): """Execute the given action function before a responder method. Args: action: A function with a similar signature to a resource responder method, taking (req, resp, resource, params) responder: The responder method to wrap resource: The resource affected by `action` (default None). If None, `is_method` MUST BE True, so that the resource can be derived from the `self` param that is passed into the wrapper is_method: Whether or not `responder` is an unbound method (default False) """ # NOTE(swistakm): introspect action function to guess if it can handle # additional resource argument without breaking backwards compatibility action_spec = _get_argspec(action) # NOTE(swistakm): create shim before checking what will be actually # decorated. This allows to avoid excessive nesting if len(action_spec.args) == (5 if _has_self(action_spec) else 4): shim = action else: # TODO(kgriffs): This decorator does not work on callable # classes in Python vesions prior to 3.4. # # @wraps(action) def shim(req, resp, resource, kwargs): # NOTE(kgriffs): Don't have to pass "self" even if has_self, # since method is assumed to be bound. action(req, resp, kwargs) # NOTE(swistakm): method must be decorated differently than # normal function if is_method: @wraps(responder) def do_before(self, req, resp, **kwargs): shim(req, resp, self, kwargs) responder(self, req, resp, **kwargs) else: assert resource is not None @wraps(responder) def do_before(req, resp, **kwargs): shim(req, resp, resource, kwargs) responder(req, resp, **kwargs) return do_before
96d4e6640f85bf920a5cc35ed02926ca5f3be7e9
17,247
from datetime import datetime def last_day_of_month(d): """ From: https://stackoverflow.com/a/43088/6929343 """ if d.month == 12: return d.replace(day=31) return d.replace(month=d.month+1, day=1) - datetime.timedelta(days=1)
a97ce3bdbcd9d5cb707919750ecc818de04deb7e
17,248
def plot_landscape(landscape): """ Plot all landscapes for a given (set of) diagrams Inputs: ------- landscape (list): Output of one iteration of persim.to_landscape() Outputs: -------- Plots for each landscape in the list Returns: -------- None """ # TODO: Integrate more complex plotting args and kwargs for more precise control for i in range(len(landscape)): pts, ls = landscape[i] plt.figure() for j in range(len(ls)): plt.plot(pts, ls[j], label = f'$\lambda_{{{j}}}$') plt.title(f'$H_{{{i}}}$ Landscape') plt.legend() plt.show() return None
0583f3d8c25079720e586d297396d04ab39dc7f5
17,249
import google def get_access_token(): """Return access token for use in API request. Raises: requests.exceptions.ConnectionError. """ credentials, _ = google.auth.default(scopes=[ 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/cloud-platform.read-only' ]) request = google.auth.transport.requests.Request() credentials.refresh(request) return credentials.token
907aacd6d9976390b2896149179c84ea9bd3d0fc
17,250
from typing import List from typing import Dict def _singleInstrumentParametersToJson(instrument: InstrumentBase, get: bool = False, addPrefix: str = '', includeMeta: List[str] = [], excludeParameters: List[str] = [], simpleFormat: bool = True) -> Dict: """Create a dictionary that holds the parameters of an instrument.""" if "IDN" not in excludeParameters: excludeParameters.append("IDN") ret = {} snap = instrument.snapshot(update=get) for name, param in instrument.parameters.items(): if name not in excludeParameters: if len(includeMeta) == 0 and simpleFormat: ret[addPrefix + name] = snap['parameters'][name].get('value', None) else: ret[addPrefix + name] = dict() for k, v in snap['parameters'][name].items(): if k in (['value'] + includeMeta): ret[addPrefix + name][k] = v else: logger.debug(f"excluded: {addPrefix + name}") for name, submod in instrument.submodules.items(): ret.update(_singleInstrumentParametersToJson( submod, get=get, addPrefix=f"{addPrefix + name}.", simpleFormat=simpleFormat, includeMeta=includeMeta)) return ret
44b5b77f261a5774438aaeda25b7576d9b9b9274
17,251
def unknown_action(player: Player, table: dynamodb.Table) -> ActionResponse: """ Do nothing because the action could not be resolved. In the message list, returns a message saying the action was bad. :return: Original inputs matching updated inputs, and a message """ message = ["Action could not be resolved, type better next time"] return player, player, {}, {}, message
ea2a03d140eea2853b77da492ea0f403fc9c6ad9
17,252
def forecast_marginal_bindglm(mod, n, k, X=None, nsamps=1, mean_only=False): """ Marginal forecast function k steps ahead for a binomial DGLM """ # Plug in the correct F values F = update_F(mod, X, F=mod.F.copy()) # F = np.copy(mod.F) # if mod.nregn > 0: # F[mod.iregn] = X.reshape(mod.nregn,1) # Evolve to the prior for time t + k a, R = forecast_aR(mod, k) # Mean and variance ft, qt = mod.get_mean_and_var(F, a, R) # Choose conjugate prior, match mean and variance param1, param2 = mod.get_conjugate_params(ft, qt, mod.param1, mod.param2) if mean_only: return mod.get_mean(n, param1, param2) # Simulate from the forecast distribution return mod.simulate(n, param1, param2, nsamps)
dc8c82fc17465c4a22e7bc5d46cf9b5abd9abd54
17,253
def import_file(isamAppliance, id, filename, check_mode=False, force=False): """ Importing a file in the runtime template files directory. """ warnings = [] check_file = _check(isamAppliance, id) if check_file != None and force == False: warnings.append("File {0} exist.".format(id)) if force is True or _check_import(isamAppliance, id, filename, check_mode=check_mode): if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_post_files( "Importing a file in the runtime template files directory", "/mga/template_files/{0}".format(id), [ { 'file_formfield': 'file', 'filename': filename, 'mimetype': 'application/octet-stream' } ], { 'type': 'file', 'force': force }) return isamAppliance.create_return_object(warnings=warnings)
3978e5476a7344ef4c92d2cec3852a57850380df
17,254
def get_func_from_attrdict(func_name : str, attrdict : AttrDict) -> ObjectiveFunction1D: """ Given a string func_name, attempts to find the corresponding entry from attrdict. :param func_name :param attrdict :returns Objective Function """ for key, val in attrdict.items(): if val.name == func_name: return val
bb4b03371d5fbb642864d7c9e77d4172fee92315
17,255
from fdk import runner import io def event_handle(handle_code): """ Performs HTTP request-response procedure :param handle_code: customer's code :type handle_code: fdk.customer_code.Function :return: None """ async def pure_handler(request): log.log("in pure_handler") headers = dict(request.headers) log_frame_header(headers) func_response = await runner.handle_request( handle_code, constants.HTTPSTREAM, headers=headers, data=io.BytesIO(request.body)) log.log("request execution completed") headers = func_response.context().GetResponseHeaders() status = func_response.status() if status not in constants.FN_ENFORCED_RESPONSE_CODES: status = constants.FN_DEFAULT_RESPONSE_CODE return response.HTTPResponse( headers=headers, status=status, content_type=headers.get(constants.CONTENT_TYPE), body_bytes=func_response.body_bytes(), ) return pure_handler
03ca9cff4b7993e92c146565cb697a080d40c5ef
17,256
import torch def load_precomputed_embeddings(det_df, seq_info_dict, embeddings_dir, use_cuda): """ Given a sequence's detections, it loads from disk embeddings that have already been computed and stored for its detections Args: det_df: pd.DataFrame with detection coordinates seq_info_dict: dict with sequence meta info (we need frame dims) embeddings_dir: name of the directory where embeddings are stored Returns: torch.Tensor with shape (num_detects, embeddings_dim) """ # Retrieve the embeddings we need from their corresponding locations embeddings_path = osp.join( seq_info_dict["seq_path"], "processed_data", "embeddings", seq_info_dict["det_file_name"], embeddings_dir, ) # print("EMBEDDINGS PATH IS ", embeddings_path) frames_to_retrieve = sorted(det_df.frame.unique()) embeddings_list = [ torch.load(osp.join(embeddings_path, f"{frame_num}.pt")) for frame_num in frames_to_retrieve ] embeddings = torch.cat(embeddings_list, dim=0) # First column in embeddings is the index. Drop the rows of those that are not present in det_df ixs_to_drop = list( set(embeddings[:, 0].int().numpy()) - set(det_df["detection_id"]) ) embeddings = embeddings[ ~np.isin(embeddings[:, 0], ixs_to_drop) ] # Not so clean, but faster than a join assert_str = "Problems loading embeddings. Indices between query and stored embeddings do not match. BOTH SHOULD BE SORTED!" assert (embeddings[:, 0].numpy() == det_df["detection_id"].values).all(), assert_str embeddings = embeddings[:, 1:] # Get rid of the detection index return embeddings.to( torch.device("cuda" if torch.cuda.is_available() and use_cuda else "cpu") )
685eb63ca23d634345304575a148e72a8172567e
17,257
def _model_gpt(size=0, dropout_rate=0.0, attention_dropout_rate=0.0): """Configs for a variety of Transformer model sizes.""" num_layers = [1, 3, 6, 12, 24, 36, 48][size] dim = [64, 128, 512, 768, 1024, 1280, 1600][size] num_heads = int(dim / 64) # Always dim 64 per head return _transformer( emb_dim=dim, num_heads=num_heads, num_layers=num_layers, qkv_dim=dim, mlp_dim=dim * 4, dropout_rate=dropout_rate, attention_dropout_rate=attention_dropout_rate)
7bc9eab929b8c48ca4b8ff671e9e0885c0d2bc44
17,258
def test_module(client, demisto_args: dict): """ Test the OMWS Client connection by attempting to query a common username """ d = client.query_profile_data("maneenus") if d: return 'ok' else: raise DemistoException("Incorrect or empty API response")
59e653c8fb5c40ee84a5945e5e4b0410418248ec
17,259
def as_string(raw_data): """Converts the given raw bytes to a string (removes NULL)""" return bytearray(raw_data[:-1])
6610291bb5b71ffc0be18b4505c95653bdac4c55
17,260
import seaborn import matplotlib def plot_series_statistics(observed=None, expected=None, total_stdev=None, explained_stdev=None, color_set='Set2', xscale="linear", yscale="linear", xlabel="feature", ylabel="value", y_cutoff=None, sort_by='expected', sort_ascending=True, despine=True, legend_enable=True, legend_title=None, legend_loc='best', alpha=None, markersize=1.0, linewdith=1.2, fontsize=8, ax=None, title=None, return_handles=False, return_indices=False): """ This function can plot 2 comparable series, and the scale are represented in 2 y-axes (major axis - left) and the right one Parameters ---------- xcale, yscale : {"linear", "log", "symlog", "logit", ...} text or instance in `matplotlib.scale` despine : bool (default: True) if True, remove the top and right spines from plot, otherwise, only remove the top spine Example ------- >>> import numpy as np >>> from matplotlib import pyplot as plt >>> np.random.seed(1234) >>> x = np.random.randn(8000) >>> y = np.random.randn(8000) ... >>> z = np.random.rand(8000) + 3 >>> w = np.random.rand(8000) + 3 ... >>> ax, handles1 = V.plot_series_statistics(observed=x, expected=y, ... explained_stdev=np.std(x), ... total_stdev=np.std(y), ... color_set='Set1', ... legend_enable=False, legend_title="Series_1", ... return_handles=True) >>> _, handles2 = V.plot_series_statistics(observed=z, expected=w, ... explained_stdev=np.std(z), ... total_stdev=np.std(w), ... color_set='Set2', ... legend_enable=False, legend_title="Series_2", ... return_handles=True, ... ax=ax.twinx(), alpha=0.2) >>> plt.legend(handles=handles1 + handles2, loc='best', fontsize=8) """ ax = to_axis2D(ax) observed, expected, total_stdev, explained_stdev = _preprocess_series( observed, expected, total_stdev, explained_stdev) # ====== color palette ====== # if isinstance(color_set, (tuple, list)): observed_color, expected_color, \ expected_total_standard_deviations_color, \ expected_explained_standard_deviations_color = color_set else: standard_palette = seaborn.color_palette(color_set, 8) observed_color = standard_palette[0] expected_palette = seaborn.light_palette(standard_palette[1], 5) expected_color = expected_palette[-1] expected_total_standard_deviations_color = expected_palette[1] expected_explained_standard_deviations_color = expected_palette[3] # ====== prepare ====== # sort_indices = _get_sort_indices(observed, expected, sort_by, sort_ascending) # ====== plotting expected and observed ====== # indices = np.arange( len(observed) if observed is not None else len(expected)) + 1 handles = [] # ====== series title ====== # if legend_title is not None: _, = ax.plot([], marker='None', linestyle='None', label="$%s$" % legend_title) handles.append(_) # ====== plotting expected and observed ====== # if observed is not None: _, = ax.plot(indices, observed[sort_indices], label="Observations", color=observed_color, linestyle="", marker="o", zorder=2, markersize=markersize) handles.append(_) if expected is not None: _, = ax.plot(indices, expected[sort_indices], label="Expectation", color=expected_color, linestyle="-", marker="", zorder=3, linewidth=linewdith) handles.append(_) # ====== plotting stdev ====== # if total_stdev is not None: lower = expected - total_stdev upper = expected + total_stdev ax.fill_between( indices, lower[sort_indices], upper[sort_indices], color=expected_total_standard_deviations_color, zorder=0, alpha=alpha, ) _ = matplotlib.patches.Patch(label="Stdev(Total)", color=expected_total_standard_deviations_color) handles.append(_) if explained_stdev is not None: lower = expected - explained_stdev upper = expected + explained_stdev ax.fill_between( indices, lower[sort_indices], upper[sort_indices], color=expected_explained_standard_deviations_color, zorder=1, alpha=alpha, ) _ = matplotlib.patches.Patch( label="Stdev(Explained)", color=expected_explained_standard_deviations_color) handles.append(_) # ====== legend ====== # if legend_enable: ax.legend(handles=handles, loc=legend_loc, fontsize=fontsize) # ====== adjusting ====== # if bool(despine): seaborn.despine(top=True, right=True) else: seaborn.despine(top=True, right=False) ax.set_yscale(yscale, nonposy="clip") ax.set_ylabel('[%s]%s' % (yscale, ylabel), fontsize=fontsize) ax.set_xscale(xscale) ax.set_xlabel('[%s]%s%s' % (xscale, xlabel, ' (sorted by "%s")' % str(sort_by).lower() if sort_by is not None else ''), fontsize=fontsize) # ====== set y-cutoff ====== # y_min, y_max = ax.get_ylim() if y_cutoff is not None: if yscale == "linear": y_max = y_cutoff elif yscale == "log": y_min = y_cutoff ax.set_ylim(y_min, y_max) ax.tick_params(axis='both', labelsize=fontsize) # ====== title ====== # if title is not None: ax.set_title(title, fontsize=fontsize, fontweight='bold') ret = [ax] if return_handles: ret.append(handles) if return_indices: ret.append(sort_indices) return ax if len(ret) == 1 else tuple(ret)
0e940011e2a00b41bf1303604ff13c6d8c152327
17,261
import math def generate_trapezoid_profile(max_v, time_to_max_v, dt, goal): """Creates a trapezoid profile with the given constraints. Returns: t_rec -- list of timestamps x_rec -- list of positions at each timestep v_rec -- list of velocities at each timestep a_rec -- list of accelerations at each timestep Keyword arguments: max_v -- maximum velocity of profile time_to_max_v -- time from rest to maximum velocity dt -- timestep goal -- final position when the profile is at rest """ t_rec = [0.0] x_rec = [0.0] v_rec = [0.0] a_rec = [0.0] a = max_v / time_to_max_v time_at_max_v = goal / max_v - time_to_max_v # If profile is short if max_v * time_to_max_v > goal: time_to_max_v = math.sqrt(goal / a) time_from_max_v = time_to_max_v time_total = 2.0 * time_to_max_v profile_max_v = a * time_to_max_v else: time_from_max_v = time_to_max_v + time_at_max_v time_total = time_from_max_v + time_to_max_v profile_max_v = max_v while t_rec[-1] < time_total: t = t_rec[-1] + dt t_rec.append(t) if t < time_to_max_v: # Accelerate up a_rec.append(a) v_rec.append(a * t) elif t < time_from_max_v: # Maintain max velocity a_rec.append(0.0) v_rec.append(profile_max_v) elif t < time_total: # Accelerate down decel_time = t - time_from_max_v a_rec.append(-a) v_rec.append(profile_max_v - a * decel_time) else: a_rec.append(0.0) v_rec.append(0.0) x_rec.append(x_rec[-1] + v_rec[-1] * dt) return t_rec, x_rec, v_rec, a_rec
5851cfab06e20a9e79c3a321bad510d33639aaca
17,262
import logging def main(args): """ Main function of PyGalGen generator Parameters ---------- args : list of command line arguments: Returns ------- Error code """ logging.basicConfig(level=logging.DEBUG) parser = define_default_params() pipeline = PipelineExecutor(parser) logging.info("Created pipeline executor") path_to_default = res.files(pygalgen.generator.default_plugins) default_plugins = discover_plugins(path_to_default) logging.info(f"Discovered {len(default_plugins)} default" f" plugin{'' if len(default_plugins) == 1 else 's'}") plugin_path = obtain_plugins_path(args) custom_plugins = discover_plugins(plugin_path) logging.info(f"Discovered {len(custom_plugins)} custom" f" plugin{'' if len(default_plugins) == 1 else 's'}") result = pipeline.execute_pipeline(default_plugins + custom_plugins) return result
4ee6dcfb0b2897b34e36966256e8b7990dbc2760
17,263
def query_pypi(spec_pk): """ Query one spec of package on PyPI""" spec = Spec.objects.get(pk=spec_pk) logger.debug('[PYPI] Fetching data for %s' % spec) pkg_data = PyPI().get_info(spec.name, spec.version) if not pkg_data: logger.debug('[PYPI] Errored %s ' % spec) spec.status = 'error' spec.save(update_fields=['status', 'updated_at']) return {} spec.release_date = pkg_data['last_release_date'] spec.python_versions = pkg_data['py3_versions'] spec.save(update_fields=['release_date', 'python_versions', 'updated_at']) logger.debug('[PYPI] Finished %s ' % spec) return pkg_data
e306ac77792653a3c106d8094c00e06994329952
17,264
import logging def get_logger(name: str, format_str: str = aps_logger_format, date_format: str = aps_time_format, file: bool = False) -> logging.Logger: """ Get logger instance Args: name: logger name format_str|date_format: to configure logging format file: if true, treat name as the name of the logging file """ def get_handler(handler): handler.setLevel(logging.INFO) formatter = logging.Formatter(fmt=format_str, datefmt=date_format) handler.setFormatter(formatter) return handler logger = logging.getLogger(name) logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) # both stdout & file if file: logger.addHandler(get_handler(logging.FileHandler(name))) return logger
06d673473c7014d6373003bf924fdf2dc9965baf
17,265
import torch def to_tensor(args, device=None): """Convert an arg or sequence of args to torch Tensors """ singleton = not isinstance(args, (list, tuple)) if singleton: args = [args] tensor_args = [] for arg in args: if isinstance(arg, torch.Tensor): tensor_args.append(arg) elif _is_numeric(arg): if isinstance(arg, np.ndarray) and arg.dtype == np.float64: tensor_args.append( torch.tensor(arg, dtype=torch.float32, device=device) ) else: tensor_args.append(torch.tensor(arg, device=device)) else: raise ValueError("Received non-numeric argument ", arg) return tensor_args[0] if singleton else tensor_args
d85d842c095aa3c942f94e61c79d2bbeb49bc41d
17,266
def main(self): """ to run: kosmos 'j.data.bcdb.test(name="meta_test")' """ bcdb, _ = self._load_test_model() assert len(bcdb.get_all()) == 0 assert len(bcdb.meta._data["url"]) == 7 s = list(j.data.schema._url_to_md5.keys()) assert "despiegk.test" in s m = bcdb.model_get(url="despiegk.test") schema_text = """ @url = jumpscale.schema.test.a category**= "" txt = "" i = 0 """ s = bcdb.schema_get(schema=schema_text) assert s.properties_unique == [] bcdb.meta._schema_set(s) assert len(bcdb.meta._data["url"]) == 8 assert "jumpscale.schema.test.a" in j.data.schema._url_to_md5 assert "jumpscale.bcdb.circle.2" in j.data.schema._url_to_md5 schema = bcdb.model_get(url="jumpscale.schema.test.a") o = schema.new() assert "jumpscale.schema.test.a" in j.data.schema._url_to_md5 assert "jumpscale.bcdb.circle.2" in j.data.schema._url_to_md5 s0 = bcdb.schema_get(url="jumpscale.schema.test.a") s0md5 = s0._md5 + "" model = bcdb.model_get(schema=s0) assert bcdb.get_all() == [] # just to make sure its empty assert len(bcdb.meta._data["url"]) == 8 a = model.new() a.category = "acat" a.txt = "data1" a.i = 1 a.save() a2 = model.new() a2.category = "acat2" a2.txt = "data2" a2.i = 2 a2.save() assert len([i for i in model.index.model.find()]) == 2 myid = a.id + 0 assert a._model.schema._md5 == s0md5 # lets upgrade schema to float s_temp = bcdb.schema_get(schema=schema_text) assert len(bcdb.meta._data["url"]) == 8 # should be same because is same schema, should be same md5 assert s_temp._md5 == s0._md5 # lets upgrade schema to float s2 = bcdb.schema_get(schema=schema_text) model2 = bcdb.model_get(schema=s2) assert len(bcdb.meta._data["url"]) == 8 # acl, user, circle, despiegktest and the 1 new one a3 = model2.new() a3.category = "acat3" a3.txt = "data3" a3.i = 3 a3.save() assert a3.i == 3.0 assert a2.i == 2 # int assert len(model2.find()) == 3 # needs to be 3 because model is for all of them assert len(model.find()) == 3 # needs to be 3 because model is for all of them all = model2.find() print(all) a4 = model2.get(all[0].id) a4_ = model.get(all[0].id) assert a4_ == a4 a5 = model2.get(all[1].id) a6 = model.get(all[2].id) a6_ = model.get(all[2].id) assert a6_ == a6 assert a6.id == a3.id assert a6.i == a3.i self._log_info("TEST META DONE") return "OK"
7f88d33bd6cc2df5284201d859718a8a06e6a4e4
17,267
def snake_head_only(): """ |===========| |···········| |···········| |···········| |···········| |···········| |···········| |·······o···| |···········| |···········| |···········| |···········| |===========| """ return Snake.from_dict( **{ "body": [ {"x": 7, "y": 4}, ], } )
c08ffd0a86ec9d5a40d2649dd63a2b60019a6791
17,268
import six def str_to_bool(s): """Convert a string value to its corresponding boolean value.""" if isinstance(s, bool): return s elif not isinstance(s, six.string_types): raise TypeError('argument must be a string') true_values = ('true', 'on', '1') false_values = ('false', 'off', '0') if s.lower() in true_values: return True elif s.lower() in false_values: return False else: raise ValueError('not a recognized boolean value: %s'.format(s))
c228321872f253ce3e05c6af9284ec496dea8dcf
17,269
def id_feat_pred_mz_rt(cursor, mz, rt, ccs, tol_mz, tol_rt, tol_ccs, esi_mode, norm='l2'): """ id_feat_pred_mz_rt description: identifies a feature on the basis of predicted m/z and retention time parameters: cursor (sqlite3.Cursor) -- cursor for querying lipids.db mz (float) -- m/z to match rt (float) -- retention time to match ccs (float) -- CCS to match tol_mz (float) -- tolerance for m/z tol_rt (float) -- tolerance for retention time tol_ccs (float) -- tolerance for CCS esi_mode (str) -- filter results by ionization mode: 'neg', 'pos', or None for unspecified [norm (str)] -- specify l1 or l2 norm for computing scores [optional, default='l2'] returns: (str or list(str)), (str) -- putative identification(s) (or '' for no matches), identification level """ qry = 'SELECT name, adduct, mz, rt FROM predicted_mz JOIN predicted_rt ON ' \ + 'predicted_mz.t_id=predicted_rt.t_id WHERE mz BETWEEN ? AND ? AND rt BETWEEN ? and ?' if esi_mode == 'pos': qry += ' AND adduct LIKE "%+"' elif esi_mode == 'neg': qry += ' AND adduct LIKE "%-"' mz_min = mz - tol_mz mz_max = mz + tol_mz rt_min = rt - tol_rt rt_max = rt + tol_rt putative_ids, putative_scores = [], [] for name, adduct, mz_x, rt_x in cursor.execute(qry, (mz_min, mz_max, rt_min, rt_max)).fetchall(): putative_ids.append('{}_{}'.format(name, adduct)) putative_scores.append(get_score(tol_mz, tol_rt, tol_ccs, mz_q=mz, rt_q=rt, mz_x=mz_x, rt_x=rt_x)) if putative_ids: return putative_ids, 'pred_mz_rt', putative_scores else: return '', '', []
72818a631b155e1c50d53b26c1749bf8f68767f7
17,270
import os import re import sys def help(user_display_name, module_file_fullpath, module_name): """Generate help message for all actions can be used in the job""" my_path = os.path.dirname(module_file_fullpath) my_fname = os.path.basename(module_file_fullpath) my_package = module_name.rsplit(u'.')[-2] # ex: sayhello my_package_path = module_name.rsplit(u'.', 1)[-2] # ex: wechatbot.sayhello help_msg = u'Actions in "%s":\n========\n' % (my_package) for action_py in os.listdir(my_path): action_name = u'' action_desc = u'' # Skip non-file if not os.path.isfile(os.path.join(my_path, action_py)): continue # Skip self if action_py == my_fname: continue # Folders start with "__" if re.findall(u'^__.+', action_py): continue # Folders start with "." if re.findall(u'^\..*', action_py): continue action_name = re.sub(u'\.py$', u'', action_py) # Load action module action_module_path = u'%s.%s' % (my_package_path, action_name) action_from_path = my_package_path # Import the "help" module try: action_module = __import__( action_module_path, fromlist = [action_from_path]) except: print(u"Cannot import %s." % (action_module_path), file = sys.stderr) continue # Get Job description try: action_desc = action_module._help_desc except: action_desc = u'[no description]' print(u"No _help_desc for %s." % (action_module_path), file = sys.stderr) # Arrange action_name and action_desc in help_msg help_msg += u'> %s\n\t%s\n' % (action_name, action_desc) # Tail messages help_msg += u'========\nTo get detailed usage for\neach action, try:\n' if user_display_name: help_msg += u'@%s\u2005%s <action> -h' % (user_display_name, my_package) else: help_msg += u'%s <action> -h' % (my_package) return help_msg
d76d0a2c07f7d60d1f9409281dc699d402fa1dd7
17,271
def Arrow_bg(self): """ The function that will create the background for the dropdown arrow button. For internal use only. This function is therefore also not imported by __init__.py """ #Just leave the making of the buttons background to the default function. Not gonna bother re-doing that here (because why would I?) if not self.func_data: surface = self.Make_background_surface(None) elif self.value: surface = self.Make_background_surface(self.func_data["__accent_bg"]) else: surface = self.Make_background_surface(self.func_data["__bg"]) #Draw the arrow so characteristic to dropdown boxes if not self.value: arrow_coords = ( (self.scaled(self.width * 1/6), self.scaled(self.height * 1/3)), #Top left (self.scaled(self.width * 1/2), self.scaled(self.height * 2/3)), #Bottom (self.scaled(self.width * 5/6), self.scaled(self.height * 1/3)), #Top right ) else: arrow_coords = ( (self.scaled(self.width * 1/6), self.scaled(self.height * 2/3)), #Bottom left (self.scaled(self.width * 1/2), self.scaled(self.height * 1/3)), #Top (self.scaled(self.width * 5/6), self.scaled(self.height * 2/3)), #Bottom right ) pygame.draw.polygon(surface, self.border[0] if self.border else (63, 63, 63), arrow_coords) return surface
4b09c197666aa5ea15713d98ae7c38e1b0ffa0e0
17,272
def _is_debugging(ctx): """Returns `True` if the current compilation mode produces debug info. rules_apple specific implementation of rules_swift's `is_debugging`, which is not currently exported. See: https://github.com/bazelbuild/rules_swift/blob/44146fccd9e56fe1dc650a4e0f21420a503d301c/swift/internal/api.bzl#L315-L326 """ return ctx.var["COMPILATION_MODE"] in ("dbg", "fastbuild")
f2468f394d4cb6ef545df06af5e78e0f4f1c1525
17,273
def get_bounds_5km_to_1km( itk_5km, isc_5km ) : """ return the 1km pixel indexes limits in the 5km pixel [ itk_5km, isc_5km ] footprint """ # set the (track,scan) indexes of the 5km pixel in the 5km grid itk_1km = itk_5km_to_1km ( itk_5km ) isc_1km = isc_5km_to_1km ( isc_5km ) # set the 1km indexes of pixels to interpolate along track itk_1km_min = itk_1km - 2 itk_1km_max = itk_1km + 2 # general case : 2 interpolations done along scan : [isc-1, isc] then [isc, isc+1] isc_1km_min = isc_1km - 2 isc_1km_max = isc_1km + 2 # if last 5km pixel along scan, only 4 1km pixels in the 5km footprint in this direction if ( isc_5km == sz_sc_5km - 1 ) : isc_1km_max = isc_1km + 6 return itk_1km_min, itk_1km_max, isc_1km_min, isc_1km_max
7fd175787f075d7ed9b3e8ed04565f38877de1e4
17,274
import torch def batch_hard_triplet_loss(labels, embeddings, margin, squared=False): """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: triplet_loss: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = _pairwise_distances(embeddings, squared=squared) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = _get_anchor_positive_triplet_mask(labels).float() # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = torch.multiply(mask_anchor_positive, pairwise_dist) # shape (batch_size, 1) hardest_positive_dist = torch.max(anchor_positive_dist, dim=1, keepdim=True).values # print("hardest_positive_dist", hardest_positive_dist.mean()) # For each anchor, get the hardest negative # First, we need to get a mask for every valid negative (they should have different labels) mask_anchor_negative = _get_anchor_negative_triplet_mask(labels).float() # We add the maximum value in each row to the invalid negatives (label(a) == label(n)) max_anchor_negative_dist = torch.max(pairwise_dist, dim=1, keepdim=True).values anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative) # shape (batch_size,) hardest_negative_dist = torch.min(anchor_negative_dist, dim=1, keepdim=True).values # print("hardest_negative_dist", hardest_negative_dist.mean()) # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss triplet_loss = torch.relu(hardest_positive_dist - hardest_negative_dist + margin) # Get final mean triplet loss triplet_loss = torch.mean(triplet_loss) return triplet_loss
37d20237580463e668cee77c96f732f2d0211aef
17,275
def categorical_sample_logits(logits): """ Samples (symbolically) from categorical distribution, where logits is a NxK matrix specifying N categorical distributions with K categories specifically, exp(logits) / sum( exp(logits), axis=1 ) is the probabilities of the different classes Cleverly uses gumbell trick, based on https://github.com/tensorflow/tensorflow/issues/456 """ U = tf.random_uniform(tf.shape(logits)) return tf.argmax(logits - tf.log(-tf.log(U)), dimension=1, name='sample_once')
f93752b11de02b1b61f60b3ff5c12dd9c15f7d8f
17,276
def sort_results(boxes): """Returns the top n boxes based on score given DenseCap results.json output Parameters ---------- boxes : dictionary output from load_output_json n : integer number of boxes to return Returns ------- sorted dictionary """ return sorted(results[k], key=lambda x : x['score'], reverse=True)
20f30e5846de4ce46073c3d32573d283576489e0
17,277
from datetime import datetime def get_date(d : str) -> datetime.datetime: """A helper function that takes a ModDB string representation of time and returns an equivalent datetime.datetime object. This can range from a datetime with the full year to second to just a year and a month. Parameters ----------- d : str String representation of a datetime Returns ------- datetime.datetime The datetime object for the given string """ try: return datetime.datetime.strptime(d[:-3] + d[-2:], '%Y-%m-%dT%H:%M:%S%z') except ValueError: pass try: return datetime.datetime.strptime(d, '%Y-%m-%d') except ValueError: pass return datetime.datetime.strptime(d, '%Y-%m')
44fb951ecb96102c631f88dc888aac11d11c8bad
17,278
def var_policer(*args): """Returns a variable policer object built from args.""" return VarPolicer(args)
a346e041118f1be2ed6b0acd2c9e3d04603031df
17,279
def winner(board): """ Returns the winner of the game, if there is one. """ #looking horizontal winner i = 0 while i < len(board): j = 1 while j <len(board): if board[i][j-1]==board[i][j] and board[i][j] == board[i][j+1]: return board[i][j] j += 2 i += 1 #looking vertical winner i = 1 while i < len(board): j = 0 while j <len(board): if board[i-1][j]==board[i][j] and board[i][j] == board[i+1][j]: return board[i][j] j += 1 i += 2 #looking diagonal winner if board[1][1] ==board[0][0] and board[1][1] == board[2][2]: return board[1][1] elif board[1][1] ==board[0][2] and board[1][1] == board[2][0]: return board[1][1] else: return None
31ab2cf04dfe269598efdd073762505643563a96
17,280
import signal def freqz_resp_list(b, a=np.array([1]), mode='dB', fs=1.0, n_pts=1024, fsize=(6, 4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) Parameters ---------- b : ndarray of numerator coefficients a : ndarray of denominator coefficents mode : display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz n_pts : number of points to plot; default is 1024 fsize : figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) else: return None f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w, H = signal.freqz(b[n], a[n], 2 * np.pi * f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f * fs, 20 * np.log10(np.abs(H))) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f * fs, np.angle(H)) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2 * theta) / 2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2) / np.diff(w) # For gain almost zero set groupdelay = 0 idx = pylab.find(20 * np.log10(H[:-1]) < -400) Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) # print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1] * fs, Tg / fs) plt.ylim([0, 1.2 * max_Tg]) else: plt.plot(f[:-1] * fs, Tg) plt.ylim([0, 1.2 * max_Tg]) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2)
207ad7ad59a3260df9d5df80c1b8e1bee4c33a3e
17,281
import socket def _nslookup(ipv4): """Lookup the hostname of an IPv4 address. Args: ipv4: IPv4 address Returns: hostname: Name of host """ # Initialize key variables hostname = None # Return result try: ip_results = socket.gethostbyaddr(ipv4) if len(ip_results) > 1: hostname = ip_results[0] except: hostname = None return (ipv4, hostname)
7771887dbfcd60e73b8fce0ce4029fcd7058a7d1
17,282
def get_service_node(service): """ Returns the name of the node that is providing the given service, or empty string """ node = rosservice_get_service_node(service) if node == None: node = "" return node
7a8df548e119e8197f92340d228fdc7855494670
17,283
import warnings from io import StringIO def _download_nasdaq_symbols(timeout): """ @param timeout: the time to wait for the FTP connection """ try: ftp_session = FTP(_NASDAQ_FTP_SERVER, timeout=timeout) ftp_session.login() except all_errors as err: raise RemoteDataError('Error connecting to %r: $s' % (_NASDAQ_FTP_SERVER, err)) lines = [] try: ftp_session.retrlines('RETR ' + _NASDAQ_TICKER_LOC, lines.append) except all_errors as err: raise RemoteDataError('Error downloading from %r: $s' % (_NASDAQ_FTP_SERVER, err)) finally: ftp_session.close() # Sanity Checking if not lines[-1].startswith('File Creation Time:'): raise RemoteDataError('Missing expected footer. Found %r' % lines[-1]) # Convert Y/N to True/False. converter_map = dict((col, _bool_converter) for col, t in _TICKER_DTYPE if t is bool) # For pandas >= 0.20.0, the Python parser issues a warning if # both a converter and dtype are specified for the same column. # However, this measure is probably temporary until the read_csv # behavior is better formalized. with warnings.catch_warnings(record=True): data = read_csv(StringIO('\n'.join(lines[:-1])), '|', dtype=_TICKER_DTYPE, converters=converter_map, index_col=1) # Properly cast enumerations for cat in _CATEGORICAL: data[cat] = data[cat].astype('category') return data
9b34571086ac3e738e29b3ed130ab2d0c7303657
17,284
def sessions(request): """ Cookies prepeocessor """ context = {} return context
562f4e9da57d3871ce780dc1a0661a34b3279ec5
17,285
import logging def dynamax_mnn(src: nb.typed.Dict, trg: nb.typed.Dict, src_emb: np.ndarray, trg_emb: np.ndarray, src_k: np.ndarray, trg_k: np.ndarray) -> np.ndarray: """ Run Dynamax-Jaccard in both directions and infer mutual neighbors. :param src nb.typed.Dict: src_id2pointers dictionary :param trg nb.typed.Dict: trg_id2pointers dictionary :param src_emb np.ndarray: unnormalized word embeddings matrix for src lang :param trg_emb np.ndarray: unnormalized word embeddings matrix for trg lang :param src_k np.ndarray: preranked target candidates for source lanaguage :param trg_k np.ndarray: preranked source candidates for target lanaguage """ logging.info('DynaMax: commencing first loop') src_argmax = dynamax_loop(src, trg, src_emb, trg_emb, src_k) logging.info('DynaMax: commencing second loop') trg_argmax = dynamax_loop(trg, src, trg_emb, src_emb, trg_k) logging.info('DynaMax: inferring mutual nearest neighbors') mnn = mutual_nn(src_argmax, trg_argmax) return mnn
174f603df09cbe7a8ee91de29de48ccaf2573b31
17,286
def resnet152(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', DistillerBottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
5e3435eea1a18c028d422abef57d9e88d88e609f
17,287
import torch def _load_model(featurizer_path): """Load the featurization model Parameters ---------- featurizer_path: str Path to the saved model file Returns ------- The loaded PyTorch model """ # load in saved model pth = torch.load(featurizer_path) model_args = pth['model_args'] model_state = pth['model_state'] model = UNet(**model_args) model.load_state_dict(model_state) # remove last layer and activation model.segment = layers.Identity() model.activate = layers.Identity() model.eval() return model
21c29c9320b482bb33e82f97723d04bb53364ba1
17,288
def grid0_baseline(num_runs, render=True): """Run script for the grid0 baseline. Parameters ---------- num_runs : int number of rollouts the performance of the environment is evaluated over render : bool, optional specifies whether to use the gui during execution Returns ------- flow.core.experiment.Experiment class needed to run simulations """ exp_tag = flow_params['exp_tag'] sim_params = flow_params['sim'] vehicles = flow_params['veh'] env_params = flow_params['env'] net_params = flow_params['net'] initial_config = flow_params.get('initial', InitialConfig()) # define the traffic light logic tl_logic = TrafficLightParams(baseline=False) phases = [{"duration": "31", "minDur": "8", "maxDur": "45", "state": "GrGr"}, {"duration": "6", "minDur": "3", "maxDur": "6", "state": "yryr"}, {"duration": "31", "minDur": "8", "maxDur": "45", "state": "rGrG"}, {"duration": "6", "minDur": "3", "maxDur": "6", "state": "ryry"}] for i in range(N_ROWS * N_COLUMNS): tl_logic.add('center'+str(i), tls_type='actuated', phases=phases, programID=1) # modify the rendering to match what is requested sim_params.render = render # set the evaluation flag to True env_params.evaluate = True # import the network class module = __import__('flow.networks', fromlist=[flow_params['network']]) network_class = getattr(module, flow_params['network']) # create the network object network = network_class( name=exp_tag, vehicles=vehicles, net_params=net_params, initial_config=initial_config, traffic_lights=tl_logic ) # import the environment class module = __import__('flow.envs', fromlist=[flow_params['env_name']]) env_class = getattr(module, flow_params['env_name']) # create the environment object env = env_class(env_params, sim_params, network) exp = Experiment(env) results = exp.run(num_runs, env_params.horizon) total_delay = np.mean(results['returns']) return total_delay
8cb8a01309bb8ea3aae467d8a6c8a81ce295ab94
17,289
def read_aims(filename): """Method to read FHI-aims geometry files in phonopy context.""" lines = open(filename, 'r').readlines() cell = [] is_frac = [] positions = [] symbols = [] magmoms = [] for line in lines: fields = line.split() if not len(fields): continue if fields[0] == "lattice_vector": vec = lmap(float, fields[1:4]) cell.append(vec) elif fields[0][0:4] == "atom": if fields[0] == "atom": frac = False elif fields[0] == "atom_frac": frac = True pos = lmap(float, fields[1:4]) sym = fields[4] is_frac.append(frac) positions.append(pos) symbols.append(sym) magmoms.append(None) # implicitly assuming that initial_moments line adhere to FHI-aims geometry.in specification, # i.e. two subsequent initial_moments lines do not occur # if they do, the value specified in the last line is taken here - without any warning elif fields[0] == "initial_moment": magmoms[-1] = float(fields[1]) for (n,frac) in enumerate(is_frac): if frac: pos = [ sum( [ positions[n][l] * cell[l][i] for l in range(3) ] ) for i in range(3) ] positions[n] = pos if None in magmoms: atoms = Atoms(cell=cell, symbols=symbols, positions=positions) else: atoms = Atoms(cell=cell, symbols=symbols, positions=positions, magmoms=magmoms) return atoms
bcf5f00e57ed249c10667ad0b883986cb1b36865
17,290
def test(model, issue_batches): """ return accuracy on test set """ session = tf.get_default_session() num_correct = 0 num_predict = 0 for epoch, step, eigens, labels in issue_batches: feeds = { model['eigens']: eigens, } guess = session.run(model['guess'], feed_dict=feeds) num_predict += guess.shape[0] num_correct += \ np.sum(np.argmax(labels, axis=1) == np.argmax(guess, axis=1)) return float(num_correct) / float(num_predict)
0d8ae672766567a6665089c2d7d5004e25d80755
17,291
def evaluate_sample(ResNet50_model, X_train, Y_train, X_val_b,Y_val_b,X_data,Y_data,checkpoint_path): """ A function that accepts a labeled-unlabeled data split and trains the relevant model on the labeled data, returning the model and it's accuracy on the test set. """ # shuffle the training set: perm = np.random.permutation(X_train.shape[0]) X_train = X_train[perm] Y_train = Y_train[perm] X_validation = X_val_b Y_validation=to_categorical(Y_val_b) # train and evaluate the model: model = train_disease_classification_model(ResNet50_model,X_train, Y_train, X_validation, Y_validation, checkpoint_path) acc = model.evaluate(X_data, Y_data, verbose=0) return acc, model
c5f86feede372f078e9c88bac688c790de6578d6
17,292
import six import base64 def Base64WSEncode(s): """ Return Base64 web safe encoding of s. Suppress padding characters (=). Uses URL-safe alphabet: - replaces +, _ replaces /. Will convert s of type unicode to string type first. @param s: string to encode as Base64 @type s: string @return: Base64 representation of s. @rtype: string NOTE: Taken from keyczar (Apache 2.0 license) """ if isinstance(s, six.text_type): # Make sure input string is always converted to bytes (if not already) s = s.encode("utf-8") return base64.urlsafe_b64encode(s).decode("utf-8").replace("=", "")
cb28001bddec215b763936fde4652289cf6480c0
17,293
def onlyWikipediaURLS(urls): """Some example HTML page data is from wikipedia. This function converts relative wikipedia links to full wikipedia URLs""" wikiURLs = [url for url in urls if url.startswith('/wiki/')] return ["https://en.wikipedia.org"+url for url in wikiURLs]
df9ecbb73dfc9a764e4129069a4317517830307a
17,294
def get_image_filename_index(): """ Obtain a mapping of filename -> filepath for images :return: """ index_path = osp.join(SEG_ROOT, 'privacy_filters', 'cache', 'fname_index.pkl') if osp.exists(index_path): print 'Found cached index. Loading it...' return pickle.load(open(index_path, 'rb')) else: print 'Creating filename index ...' fname_index = dict() images_dir = osp.join(SEG_ROOT, 'images') for fold in os.listdir(images_dir): for img_filename in os.listdir(osp.join(images_dir, fold)): image_path = osp.join(images_dir, fold, img_filename) fname_index[img_filename] = image_path pickle.dump(fname_index, open(index_path, 'wb')) return fname_index
002b6fd4dea1b00bb758377e71de0e67f5d979d3
17,295
def merge_coordinates(coordinates, capture_size): """Merge overlapping coordinates for MIP targets. Parameters ---------- coordinates: python dictionary Coordinates to be merged in the form {target-name: {chrom: chrx, begin: start-coordinate, end: end-coordinate}, ..} capture_size: int Anticipated MIP capture size. If two regions are as close as 2 times this value, they will be merged. Returns ------- target_coordinates: python dictionary merged coordinates dictionary target_names: python dictionary names of included targets in each merged region. """ # create target regions to cover all snps # start by getting snps on same chromosome together chroms = {} for c in coordinates: chrom = coordinates[c]["chrom"] try: chroms[chrom].append([coordinates[c]["begin"], coordinates[c]["end"]]) except KeyError: chroms[chrom] = [[coordinates[c]["begin"], coordinates[c]["end"]]] # merge snps that are too close to get separate regions # the length should be twice the capture size merged_chroms = {} for c in chroms: merged_chroms[c] = merge_overlap(chroms[c], 2 * capture_size) # create regions for alignment # create target coordinate for each region target_coordinates = {} target_names = {} for c in merged_chroms: regions = merged_chroms[c] for reg in regions: targets_in_region = [] for co in coordinates: if (coordinates[co]["chrom"] == c and reg[0] <= coordinates[co]["begin"] <= coordinates[co]["end"] <= reg[1]): targets_in_region.append(co) region_name = targets_in_region[0] target_names[region_name] = targets_in_region r_start = reg[0] r_end = reg[1] target_coordinates[region_name] = [c, r_start, r_end] return target_coordinates, target_names
8af4a34fc8ce1a01ddcd4d4f257815ef5f852911
17,296
def Emojify_V2(input_shape, word_to_vec_map, word_to_index): """ Function creating the Emojify-v2 model's graph. Arguments: input_shape -- shape of the input, usually (max_len,) word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words) Returns: model -- a model instance in Keras """ # Define sentence_indices as the input of the graph, # it should be of shape input_shape and dtype 'int32' (as it contains indices). sentence_indices = Input(shape=input_shape, dtype=np.int32) # Create the embedding layer pretrained with GloVe Vectors (≈1 line) embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index) # Propagate sentence_indices through your embedding layer, you get back the embeddings embeddings = embedding_layer(sentence_indices) # Propagate the embeddings through an LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a batch of sequences. X = LSTM(128, return_sequences=True)(embeddings) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X trough another LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a single hidden state, not a batch of sequences. X = LSTM(128)(X) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X through a Dense layer with softmax activation to get back a batch of 5-dimensional vectors. X = Dense(5, activation='softmax')(X) # Add a softmax activation X = Activation('softmax')(X) # Create Model instance which converts sentence_indices into X. model = Model(sentence_indices, X) return model
111a0c97e9a8c75aa6a7191ee89cbda69a84794c
17,297
import fcntl import os def SetFdBlocking(fd, is_blocking): """Set a file descriptor blocking or nonblocking. Please note that this may affect more than expected, for example it may affect sys.stderr when called for sys.stdout. Returns: The old blocking value (True or False). """ if hasattr(fd, 'fileno'): fd = fd.fileno() old = fcntl.fcntl(fd, fcntl.F_GETFL) if is_blocking: value = old & ~os.O_NONBLOCK else: value = old | os.O_NONBLOCK if old != value: fcntl.fcntl(fd, fcntl.F_SETFL, value) return bool(old & os.O_NONBLOCK)
58d1496152cc752b59e8abc0ae3b42387a2f8926
17,298
def de_parser(lines): """return a dict of {OfficalName: str, Synonyms: str, Fragment: bool, Contains: [itemdict,], Includes: [itemdict,]} from DE lines The DE (DEscription) lines contain general descriptive information about the sequence stored. This information is generally sufficient to identify the protein precisely. The description always starts with the proposed official name of the protein. Synonyms are indicated between brackets. Examples below If a protein is known to be cleaved into multiple functional components, the description starts with the name of the precursor protein, followed by a section delimited by '[Contains: ...]'. All the individual components are listed in that section and are separated by semi-colons (';'). Synonyms are allowed at the level of the precursor and for each individual component. If a protein is known to include multiple functional domains each of which is described by a different name, the description starts with the name of the overall protein, followed by a section delimited by '[Includes: ]'. All the domains are listed in that section and are separated by semi-colons (';'). Synonyms are allowed at the level of the protein and for each individual domain. In rare cases, the functional domains of an enzyme are cleaved, but the catalytic activity can only be observed, when the individual chains reorganize in a complex. Such proteins are described in the DE line by a combination of both '[Includes:...]' and '[Contains:...]', in the order given in the following example: If the complete sequence is not determined, the last information given on the DE lines is '(Fragment)' or '(Fragments)'. Example: DE Dihydrodipicolinate reductase (EC 1.3.1.26) (DHPR) (Fragment). DE Arginine biosynthesis bifunctional protein argJ [Includes: Glutamate DE N-acetyltransferase (EC 2.3.1.35) (Ornithine acetyltransferase) DE (Ornithine transacetylase) (OATase); Amino-acid acetyltransferase DE (EC 2.3.1.1) (N-acetylglutamate synthase) (AGS)] [Contains: Arginine DE biosynthesis bifunctional protein argJ alpha chain; Arginine DE biosynthesis bifunctional protein argJ beta chain] (Fragment). Trouble maker: DE Amiloride-sensitive amine oxidase [copper-containing] precursor(EC DE 1.4.3.6) (Diamine oxidase) (DAO). """ labeloff_lines = labeloff(lines) joined = join_parser(labeloff_lines, chars_to_strip="). ") keys = ["Includes", "Contains", "Fragment"] fragment_label = "(Fragment" contains_label = "[Contains:" includes_label = "[Includes:" # Process Fragment fragment = False if joined.endswith(fragment_label): fragment = True joined = joined.rsplit("(", 1)[0] # Process Contains contains = [] if contains_label in joined: joined, contains_str = joined.split(contains_label) contains_str = contains_str.strip(" ]") contains = list(map(de_itemparser, contains_str.split("; "))) # Process Includes includes = [] if includes_label in joined: joined, includes_str = joined.split(includes_label) includes_str = includes_str.strip(" ]") includes = list(map(de_itemparser, includes_str.split("; "))) # Process Primary primary = de_itemparser(joined) result = dict(list(zip(keys, (includes, contains, fragment)))) result.update(primary) return result
d22158e365c52976ed638c27a0a85d8a047d743d
17,299