content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import os
def data_static(filename):
"""
Get files
:param filename:
:return:
"""
_p, _f = os.path.split(filename)
# print(_p, _f)
return flask.send_from_directory(os.path.join(config['path']['path_data'], _p), _f) | 1b603a8adb7bc384985cd0571d8ed2323ae32a73 | 17,100 |
def target(x, seed, instance):
"""A target function for dummy testing of TA
perform x^2 for easy result calculations in checks.
"""
# Return x[i] (with brackets) so we pass the value, not the
# np array element
return x[0] ** 2, {'key': seed, 'instance': instance} | 131560778f51ebd250a3077833859f7e5addeb6e | 17,101 |
def generate(fspec, count, _fuel=None):
"""Generate <count> number of random passwords/passphrases.
The passphrases are formated according to <fspec>.
Returned value is (list, json_data),
where list is a <count>-element sequence of
pair of (password, reading hint for password).
json_data is a dict at least containing the following keys:
key 'diag': (str) message for diagnostics,
key 'entropy': (float) estimated entropy of generated passphrases,
key 'elements': list of sequences of elements of generated passphrases.
Raises BadFormatError if fspec is either bad or not able to be satisfied.
"""
diag = []
fspec, entropy = _parse_fspec(fspec, diag=diag, _fuel=_fuel)
if count < 1:
raise BadFormatError('bad count of passwords specified')
fspec, entropy = _resolve_entropy(fspec, entropy, diag=diag, _fuel=_fuel)
elements = []
result = []
for ncount in range(count):
o = []
def elem(e, f, o, h, c=None, ct=1):
d = {'entropy': e, 'separator': f, 'password': o, 'hint': h}
if c != None:
d['corpus_source'] = str(c)
if not f:
d['repeat_count'] = ct
return d
def proc(filling, i, sep, wl, ct):
initial = not filling and i == 0
e1 = wl.entropy()
if wl.is_words:
intersep = sep if sep != None else " "
presep = "" if initial else sep if sep != None else " "
for c in range(0, ct):
w = wl.get_randomly()
s = presep if c == 0 else intersep
sh = " " if (s == "" and c != 0) else s
if sh: o.append(elem(0.0, True, s, sh, None))
o.append(elem(e1, False, w.word, w.hint, wl))
else:
if ct != 0:
intersep = ""
presep = "" if initial else sep
if presep: o.append(elem(0.0, True, presep, presep, None))
ow = []
oh = []
for c in range(0, ct):
w = wl.get_randomly()
ow.append(w.word)
oh.append(w.hint)
o.append(elem(ct * e1, False, "".join(ow), "".join(oh), wl, ct=ct))
for i, s in enumerate(fspec):
proc(False, i, *s)
o_word = "".join(x['password'] for x in o)
o_hint = "".join(x['hint'] for x in o)
elements.append(o)
result.append((o_word, o_hint))
return result, {'passwords': result, 'elements': elements, 'diag': "\n".join(diag), 'entropy': entropy} | aad44a80a648d192c696ebdd44ceefadd21d88cd | 17,102 |
def convert_to_valid_einsum_chars(einsum_str):
"""Convert the str ``einsum_str`` to contain only the alphabetic characters
valid for numpy einsum.
"""
# partition into valid and invalid sets
valid, invalid = set(), set()
for x in einsum_str:
(valid if is_valid_einsum_char(x) else invalid).add(x)
# get replacements for invalid chars that are not already used
available = gen_unused_symbols(valid, len(invalid))
# map invalid to available and replace in the inputs
replacer = dict(zip(invalid, available))
return "".join(replacer.get(x, x) for x in einsum_str) | 2cdd67bc967a12bd3dcb80f323f093cd9eff7213 | 17,103 |
def prop_GAC(csp, newVar=None):
"""
Do GAC propagation. If newVar is None we do initial GAC enforce
processing all constraints. Otherwise we do GAC enforce with
constraints containing newVar on GAC Queue
"""
constraints = csp.get_cons_with_var(newVar) if newVar else csp.get_all_cons()
pruned = []
# NOTE: although <constraints> is a list, the order is unimportant and acts like a set.
# See page 209 of RN textbook
while constraints != []:
constraint = constraints.pop(0) # grab the first constraint
for var in constraint.get_unasgn_vars(): # get_scope()?
for val in var.cur_domain():
if not constraint.has_support(var, val):
# Check if we have already pruned (var, val)
if (var, val) not in pruned:
var.prune_value(val)
pruned.append((var, val))
# We have modified var's domain, so add back all constraints
# that have var in it's scope
for c in csp.get_cons_with_var(var):
if c not in constraints:
constraints.append(c)
# Check if var's domain is empty
if var.cur_domain_size() == 0:
return False, pruned
return True, pruned | a1c576cfd9920a51eb9b9884bd49b4e8f4194d02 | 17,104 |
import io
import shutil
import os
def clone( # pylint: disable=R0913,R0912,R0914
source, target, branch="main", depth=None, delete_git_dir=False,
username=None, password=None, key_filename=None, key_data=None,
track_branch_upstream=True,
):
""" Clone repository """
# Prepare auth args
auth_args = dict()
if username is not None:
auth_args["username"] = username
if password is not None:
auth_args["password"] = password
if key_filename is not None:
auth_args["key_filename"] = key_filename
if key_data is not None:
key_obj = io.StringIO(key_data.replace("|", "\n"))
pkey = paramiko.RSAKey.from_private_key(key_obj)
auth_args["key_filename"] = pkey
# Clone repository
log.info("Cloning repository %s into %s", source, target)
repository = porcelain.clone(
source, target, checkout=False, depth=depth,
errstream=log.DebugLogStream(),
**auth_args
)
# Get current HEAD tree (default branch)
try:
head_tree = repository[b"HEAD"]
except: # pylint: disable=W0702
head_tree = None
# Get target tree (requested branch)
branch_b = branch.encode("utf-8")
try:
target_tree = repository[b"refs/remotes/origin/" + branch_b]
except: # pylint: disable=W0702
target_tree = None
# Checkout branch
branch_to_track = None
if target_tree is not None:
log.info("Checking out branch %s", branch)
repository[b"refs/heads/" + branch_b] = repository[b"refs/remotes/origin/" + branch_b]
repository.refs.set_symbolic_ref(b"HEAD", b"refs/heads/" + branch_b)
repository.reset_index(repository[b"HEAD"].tree)
#
branch_to_track = branch
elif head_tree is not None:
try:
default_branch_name = repository.refs.follow(b"HEAD")[0][1]
if default_branch_name.startswith(refs.LOCAL_BRANCH_PREFIX):
default_branch_name = default_branch_name[len(refs.LOCAL_BRANCH_PREFIX):]
default_branch_name = default_branch_name.decode("utf-8")
#
log.warning(
"Branch %s was not found. Checking out default branch %s",
branch, default_branch_name
)
#
branch_to_track = default_branch_name
except: # pylint: disable=W0702
log.warning("Branch %s was not found. Trying to check out default branch", branch)
#
try:
repository.reset_index(repository[b"HEAD"].tree)
except: # pylint: disable=W0702
log.exception("Failed to checkout default branch")
else:
log.error("Branch %s was not found and default branch is not set. Skipping checkout")
# Add remote tracking
if track_branch_upstream and branch_to_track is not None:
log.info("Setting '%s' to track upstream branch", branch_to_track)
#
branch_to_track_b = branch_to_track.encode("utf-8")
#
config = repository.get_config()
config.set(
(b"branch", branch_to_track_b),
b"remote", b"origin",
)
config.set(
(b"branch", branch_to_track_b),
b"merge", b"refs/heads/" + branch_to_track_b,
)
config.write_to_path()
# Delete .git if requested
if delete_git_dir:
log.info("Deleting .git directory")
shutil.rmtree(os.path.join(target, ".git"))
# Return repo object
return repository | 6fe55e808bfe2758e82859772d3d2e063d9c5add | 17,105 |
def submit_only_kwargs(kwargs):
"""Strip out kwargs that are not used in submit"""
kwargs = kwargs.copy()
for key in ['patience', 'min_freq', 'max_freq', 'validation',
"max_epochs", "epoch_boost", "train_size", "valid_size"]:
_ = kwargs.pop(key, None)
return kwargs | e93a4b8921c5b80bb487caa6057c1ff7c1701305 | 17,106 |
def make_simple_boundary(outline_edge_group: UniqueEdgeList, all_edges: UniqueEdgeList):
"""
Step 3 recursive
:param outline_edge_group: A list of edges, grouped by connectivity between edges.
:param all_edges:
:return: ???
"""
while len(all_edges.edge_list) > 0:
current_edge = all_edges.edge_list[0]
work = False
neighbors = all_edges.get_neighbor_indices_for_edge(current_edge)
# Loop against all neighboring edges, gobble up the neighbors.
for neighbor in neighbors:
neighbor_edge = all_edges.edge_list[neighbor]
if not Edge.same_edge(current_edge, neighbor_edge):
shared_vertex = Edge.has_shared_vertex(current_edge, neighbor_edge)
parallel = Edge.are_parallel_or_anti_parallel(current_edge, neighbor_edge)
if shared_vertex is not None and parallel:
# Case 1.
start_vertex = [neighbor_edge.x1, neighbor_edge.y1, neighbor_edge.z1]
# Case 2.
if (neighbor_edge.x1 == shared_vertex[0] and
neighbor_edge.y1 == shared_vertex[1] and
neighbor_edge.z1 == shared_vertex[2]):
start_vertex = [neighbor_edge.x2, neighbor_edge.y2, neighbor_edge.z2]
# Case 3.
end_vertex = [current_edge.x1, current_edge.y1, current_edge.z1]
# Case 4.
if (current_edge.x1 == shared_vertex[0] and
current_edge.y1 == shared_vertex[1] and
current_edge.z1 == shared_vertex[2]):
end_vertex = [current_edge.x2, current_edge.y2, current_edge.z2]
new_edge = Edge(start_vertex[0], start_vertex[1], start_vertex[2], # Edge Start
end_vertex[0], end_vertex[1], end_vertex[2]) # Edge end
all_edges.remove(current_edge)
all_edges.remove(neighbor_edge)
all_edges.add(new_edge)
work = True
break
if not work and len(all_edges.edge_list) > 0:
outline_edge_group.add(current_edge)
all_edges.remove(current_edge)
return outline_edge_group | fd3dfd40302d2f01126032c9420fd7b990d30cc6 | 17,107 |
import os
def convert_rscape_svg_to_one_line(rscape_svg, destination):
"""
Convert R-scape SVG into SVG with 1 line per element.
"""
output = os.path.join(destination, 'rscape-one-line.svg')
cmd = (r"perl -0777 -pe 's/\n +fill/ fill/g' {rscape_svg} | "
r"perl -0777 -pe 's/\n d=/ d=/g' | "
r"perl -0777 -pe 's/\n +<tspan/ <tspan/g' | "
r"perl -0777 -pe 's/\n<\/text>/<\/text>/g' "
r"> {output}").format(rscape_svg=rscape_svg, output=output)
os.system(cmd)
return output | 7f561dcd1b9c6e540bb96fab363781dad73db566 | 17,108 |
import subprocess
import tempfile
import scipy
def getDSSImage(ra,dec,radius=1.0,xsize=800,**kwargs):
"""
Download Digitized Sky Survey images
https://archive.stsci.edu/cgi-bin/dss_form
https://archive.stsci.edu/cgi-bin/dss_search
Image is in celestial orientation (RA increases to the right)
https://archive.stsci.edu/dss/script_usage.html
ra (r) - right ascension
dec (d) - declination
equinox (e) - equinox (B1950 or J2000; default: J2000)
height (h) - height of image (arcminutes; default: 15.0)
width (w) - width of image (arcminutes; default: 15.0)
format (f) - image format (FITS or GIF; default: FITS)
compression (c) - compression (UNIX, GZIP, or NONE; default: NONE; compression
applies to FITS only)
version (v) - Which version of the survey to use:
1 - First Generation survey (garden variety)
2 - Second generation survey (incomplete)
3 - Check the 2nd generation; if no image is available,
then go to the 1st generation.
4 - The Quick V survey (whence came the Guide Stars Catalog;
used mostly for Phase II proposal submission)
save (s) - Save the file to disk instead of trying to display.
(ON (or anything) or not defined; default: not defined.)
"""
url="https://archive.stsci.edu/cgi-bin/dss_search?"
scale = 2.0 * radius * 60.
params=dict(ra='%.3f'%ra,dec='%.3f'%dec,width=scale,height=scale,
format='gif',version=1)
#v='poss2ukstu_red'
query='&'.join("%s=%s"%(k,v) for k,v in params.items())
tmp = tempfile.NamedTemporaryFile(suffix='.gif')
cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query)
subprocess.call(cmd,shell=True)
im = pylab.imread(tmp.name)
tmp.close()
if xsize: im = scipy.misc.imresize(im,size=(xsize,xsize))
return im | 338b0a5e4b54656f7fc763e0af55a1877b514712 | 17,109 |
async def async_attach_trigger(
hass: HomeAssistant,
config: ConfigType,
action: AutomationActionType,
automation_info: dict,
) -> CALLBACK_TYPE:
"""Attach a trigger."""
job = HassJob(action)
if config[CONF_TYPE] == "turn_on":
entity_id = config[CONF_ENTITY_ID]
@callback
def _handle_event(event: Event):
if event.data[ATTR_ENTITY_ID] == entity_id:
hass.async_run_hass_job(
job,
{"trigger": {**config, "description": f"{DOMAIN} - {entity_id}"}},
event.context,
)
return hass.bus.async_listen(EVENT_TURN_ON, _handle_event)
return lambda: None | 5cf362c7dc0b82f562164141ccf76f30dd1a0169 | 17,110 |
import pathlib
def imread(image_path, as_uint8=True):
"""Read an image as numpy array.
Args:
image_path (str or pathlib.Path):
File path (including extension) to read image.
as_uint8 (bool):
Read an image in uint8 format.
Returns:
:class:`numpy.ndarray`:
Image array of dtype uint8, MxNx3.
Examples:
>>> from tiatoolbox import utils
>>> img = utils.misc.imread('ImagePath.jpg')
"""
if isinstance(image_path, pathlib.Path):
image_path = str(image_path)
if pathlib.Path(image_path).suffix == ".npy":
image = np.load(image_path)
else:
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if as_uint8:
return image.astype(np.uint8)
return image | 30050f63e43d862cf512994f0e9d21c187b1ac0a | 17,111 |
def pk(obj):
"""
A helper that gets the primary key of a model instance if one is passed in.
If not, this returns the parameter itself.
This allows functions to have parameters that accept either a primary key
or model instance. For example:
``` python
def get_translations(target_locale):
return Translation.objects.filter(target_locale=pk(target_locale))
# Both of these would be valid calls
get_translations(Locale.objects.get(id=1))
get_translations(1)
```
Args:
obj (Model | any): A model instance or primary key value.
Returns:
any: The primary key of the model instance, or value of `obj` parameter.
"""
if isinstance(obj, models.Model):
return obj.pk
else:
return obj | 431f518fe6d53e979543e4588a1d7389d7100d69 | 17,112 |
import requests
import json
def get_dataset(id):
"""Query for existence of dataset by ID."""
uu = UrlUtils()
es_url = uu.rest_url
#es_index = "{}_{}_s1-ifg".format(uu.grq_index_prefix, version)
es_index = "grq"
# query
query = {
"query": {
"wildcard": {
"_id": id
}
}
}
logger.info(query)
if es_url.endswith('/'):
search_url = '%s%s/_search' % (es_url, es_index)
else:
search_url = '%s/%s/_search' % (es_url, es_index)
logger.info("search_url : %s" %search_url)
r = requests.post(search_url, data=json.dumps(query))
if r.status_code != 200:
logger.info("Failed to query %s:\n%s" % (es_url, r.text))
logger.info("query: %s" % json.dumps(query, indent=2))
logger.info("returned: %s" % r.text)
r.raise_for_status()
result = r.json()
logger.info(result['hits']['total'])
return result | cfb31da0e23b7e197af1919fa34fa3f2d4fa1dfe | 17,113 |
def bags_with_gold( parents_of, _ ):
"""
Starting from leaf = 'gold', find recursively its parents upto the root and add them to a set
Number of bags that could contain gold = length of the set
"""
contains_gold = set()
def find_roots( bag ):
for outer_bag in parents_of[ bag ]:
contains_gold.add( outer_bag )
find_roots( outer_bag )
find_roots('shiny gold')
return len(contains_gold) | 3fd2b1c260d41867a5787a14f0c50a9b5d1a2f08 | 17,114 |
def process_file(file_path):
"""
This function processes the submitted file
:return: A dictionary of errors found in the file. If there are no errors,
then only the error report headers will in the results.
"""
enc = detect_bom_encoding(file_path)
if enc is None:
with open(file_path, 'r') as f:
result = run_checks(file_path, f)
else:
with open(file_path, 'r', encoding=enc) as f:
result = run_checks(file_path, f)
print('Finished processing %s\n' % file_path)
return result | 29b25b9a1ac950b2b0d051a6748ebc78b31bad10 | 17,115 |
import requests
def get_request_body(text, api_key, *args):
"""
send a request and return the response body parsed as dictionary
@param text: target text that you want to detect its language
@type text: str
@type api_key: str
@param api_key: your private API key
"""
if not api_key:
raise Exception("you need to get an API_KEY for this to work. "
"Get one for free here: https://detectlanguage.com/documentation")
if not text:
raise Exception("Please provide an input text")
else:
try:
headers = config['headers']
headers['Authorization'] = headers['Authorization'].format(api_key)
response = requests.post(config['url'],
json={'q': text},
headers=headers)
body = response.json().get('data')
return body
except HTTPError as e:
print("Error occured while requesting from server: ", e.args)
raise e | e21e8733eec00bc78616b18a8d93c18dc2b20449 | 17,116 |
def generate_sample_task(project):
""" Generate task example for upload and check it with serializer validation
:param project: project with label config
:return: task dict
"""
task = generate_sample_task_without_check(project.label_config)
# check generated task
'''if project:
try:
TaskSerializer.check_data(project, task)
except ValidationError as e:
raise ValidationError(str(e) + ': task example = ' + json.dumps(task) +
', project config = ' + project.label_config +
', project data_types = ' + json.dumps(project.data_types))'''
return task | 1e3259b320e46a938139b0dde8ed5b999290d6cd | 17,117 |
def serializable_value(self, field_name):
"""
Returns the value of the field name for this instance. If the field is
a foreign key, returns the id value, instead of the object. If there's
no Field object with this name on the model, the model attribute's
value is returned directly.
Used to serialize a field's value (in the serializer, or form output,
for example). Normally, you would just access the attribute directly
and not use this method.
"""
try:
field = self._admin_opts.get_field_by_name(field_name)[0]
except FieldDoesNotExist:
return getattr(self, field_name)
return getattr(self, field.name) | 839d59e92c4249359367d07700bd55f80eafe98b | 17,118 |
import pandas
def fetch_fi2010(normalization=None) -> pandas.DataFrame:
"""
Load the FI2010 dataset with no auction.
Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine
Learning Methods. A Ntakaris, M Magris, J Kanniainen, M Gabbouj, A Iosifidis.
arXiv:1705.03233 [cs.CE]. https://arxiv.org/abs/1705.03233
Parameters
----------
normalization : {"zscore", None}
Normalization method.
"""
if normalization is None:
url = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data.csv"
return pandas.read_csv(url, index_col=0)
if normalization == "zscore":
url1 = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data_zscore1.csv"
url2 = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data_zscore2.csv"
return pandas.concat([pandas.read_csv(url1, index_col=0), pandas.read_csv(url2, index_col=0)]) | bb6e6e484d6d3d3d1d831a9194fe4f629b820db8 | 17,119 |
def get_netcdf_filename(batch_idx: int) -> str:
"""Generate full filename, excluding path."""
assert 0 <= batch_idx < 1e6
return f"{batch_idx:06d}.nc" | 5d916c4969eb96653ea9f0a21ab8bec93ebcfafa | 17,120 |
def CreateBoardConfigs(site_config, boards_dict, ge_build_config):
"""Create mixin templates for each board."""
# Extract the full list of board names from GE data.
separate_board_names = set(config_lib.GeBuildConfigAllBoards(ge_build_config))
unified_builds = config_lib.GetUnifiedBuildConfigAllBuilds(ge_build_config)
unified_board_names = set([b[config_lib.CONFIG_TEMPLATE_REFERENCE_BOARD_NAME]
for b in unified_builds])
board_names = separate_board_names | unified_board_names
# TODO(crbug.com/648473): Remove these, after GE adds them to their data set.
board_names = board_names.union(boards_dict['all_boards'])
result = dict()
for board in board_names:
board_config = config_lib.BuildConfig(boards=[board])
if board in _brillo_boards:
board_config.apply(site_config.templates.brillo)
if board in _lakitu_boards:
board_config.apply(site_config.templates.lakitu)
if board in _lassen_boards:
board_config.apply(site_config.templates.lassen)
if board in ['x30evb']:
board_config.apply(site_config.templates.x30evb)
if board in _loonix_boards:
board_config.apply(site_config.templates.loonix)
if board in _moblab_boards:
board_config.apply(site_config.templates.moblab)
if board in _accelerator_boards:
board_config.apply(site_config.templates.accelerator)
if board in _termina_boards:
board_config.apply(site_config.templates.termina)
if board in _nofactory_boards:
board_config.apply(factory=False,
factory_toolkit=False,
factory_install_netboot=False,
images=remove_images(['factory_install']))
if board in _toolchains_from_source:
board_config.apply(usepkg_toolchain=False)
if board in _noimagetest_boards:
board_config.apply(image_test=False)
if board in _nohwqual_boards:
board_config.apply(hwqual=False)
if board in _norootfs_verification_boards:
board_config.apply(rootfs_verification=False)
if board in _base_layout_boards:
board_config.apply(disk_layout='base')
if board in _no_unittest_boards:
board_config.apply(site_config.templates.no_unittest_builder)
if board in _beaglebone_boards:
board_config.apply(site_config.templates.beaglebone)
if board == 'moblab-generic-vm':
board_config.apply(site_config.templates.moblab_vm_tests)
result[board] = board_config
return result | 7d0dfeca13015c6fa5b75d10106476f347de0cbb | 17,121 |
def area_calc(radius, point_in, total_points):
"""Calculates the partial area of ball
:param radius: radius of ball
:param point_in: points of the total points to include
:param total_points: number of sampled points
:return: area
"""
return (4 * pi * radius ** 2) * (point_in / total_points) | a660776a4f4a1d2d04a28255b7ee0892ddc5d136 | 17,122 |
import gettext
import math
def results_framework_export(request, program):
"""Returns .XLSX containing program's results framework"""
program = Program.rf_aware_objects.get(pk=program)
wb = openpyxl.Workbook()
wb.remove(wb.active)
ws = wb.create_sheet(gettext("Results Framework"))
get_font = lambda attrs: styles.Font(**{**{'name': 'Calibri', 'size': 12}, **attrs})
ws.cell(row=2, column=2).value = gettext("Results Framework")
ws.cell(row=2, column=2).font = get_font({'size': 18, 'bold': True})
ws.cell(row=3, column=2).value = program.name
ws.cell(row=3, column=2).font = get_font({'size': 18})
level_span_style = styles.NamedStyle(name='level_span')
level_span_style.font = get_font({})
level_span_style.alignment = styles.Alignment(wrap_text=True, vertical='center', horizontal='center')
level_span_style.fill = styles.PatternFill('solid', 'E5E5E5')
wb.add_named_style(level_span_style)
level_single_style = styles.NamedStyle(name='level_no_span')
level_single_style.font = get_font({})
level_single_style.alignment = styles.Alignment(wrap_text=True, vertical='top', horizontal='left')
level_single_style.fill = styles.PatternFill('solid', 'E5E5E5')
wb.add_named_style(level_single_style)
bottom_tier = program.level_tiers.count()
def row_height_getter(cell):
lines_of_text = str(cell.value).splitlines()
row = cell.row
def get_row_height_decorated(w):
lines = sum([math.ceil(len(s)/w) or 1 for s in lines_of_text])
height = 26 + lines * 15
if lines == 1:
height = 30
return max(height, ws.row_dimensions[row].height or 0, 30)
return get_row_height_decorated
def write_level(parent, start_row, start_column):
levels = program.levels.filter(parent=parent).order_by('customsort')
column = start_column
row = start_row
if not levels:
return column + 2
for level in levels:
current_column = column
cell = ws.cell(row=row, column=column)
cell.value = level.display_name
get_row_height = row_height_getter(cell)
if level.level_depth == bottom_tier:
cell.style = 'level_no_span'
row = row + 2
ws.row_dimensions[cell.row].height = get_row_height(24)
else:
column = write_level(level, row+2, column)
if column - 2 <= current_column:
cell.style = 'level_no_span'
ws.row_dimensions[cell.row].height = get_row_height(24)
else:
cell.style = 'level_span'
ws.merge_cells(start_row=row, end_row=row, start_column=current_column, end_column=column-2)
width = 24 + 29 * ((column - 2 - current_column) / 2)
ws.row_dimensions[cell.row].height = get_row_height(width)
if parent and parent.level_depth == bottom_tier-1:
column = column + 2
if parent is None:
for column in range(column):
width = 24.5 if (column + 1) % 2 == 0 else 3
ws.column_dimensions[utils.get_column_letter(column + 1)].width = width
for r in range(3, ws.max_row+2):
if r % 2 == 0:
ws.row_dimensions[r].height = 10
return column
write_level(None, 5, 2)
filename = "Results Framework.xlsx"
response = HttpResponse(content_type='application/ms-excel')
response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename)
wb.save(response)
return response | 79cf9f84243f089dd463909f9f64d13a1bb39444 | 17,123 |
import copy
def generate_subwindow(pc, sample_bb, scale, offset=2, oriented=True):
"""
generating the search area using the sample_bb
:param pc:
:param sample_bb:
:param scale:
:param offset:
:param oriented: use oriented or axis-aligned cropping
:return:
"""
rot_mat = np.transpose(sample_bb.rotation_matrix)
trans = -sample_bb.center
if oriented:
new_pc = PointCloud(pc.points.copy())
box_tmp = copy.deepcopy(sample_bb)
# transform to the coordinate system of sample_bb
new_pc.translate(trans)
box_tmp.translate(trans)
new_pc.rotate(rot_mat)
box_tmp.rotate(Quaternion(matrix=rot_mat))
new_pc = crop_pc_axis_aligned(new_pc, box_tmp, scale=scale, offset=offset)
else:
new_pc = crop_pc_axis_aligned(pc, sample_bb, scale=scale, offset=offset)
# transform to the coordinate system of sample_bb
new_pc.translate(trans)
new_pc.rotate(rot_mat)
return new_pc | af86fdd4409f98ccd503a9587a6e4b19b0763a31 | 17,124 |
def tsfigure(num=None, figsize=None, dpi=None, facecolor=None,
edgecolor=None, frameon=True, subplotpars=None,
FigureClass=TSFigure):
"""
Creates a new :class:`TimeSeriesFigure` object.
Parameters
----------
num : {None, int}, optional
Number of the figure.
If None, a new figure is created and ``num`` is incremented.
%(figsize)s
%(dpi)s
%(facecolor)s
%(edgecolor)s
%(frameon)s
%(subplotpars)s
FigureClass : FigureClass
Class of the figure to create
"""
figargs = dict(num=num, figsize=figsize, dpi=dpi, facecolor=facecolor,
frameon=frameon, FigureClass=FigureClass,
subplotpars=subplotpars)
fig = pylab.figure(**figargs)
return fig | 578b8299ea8b7b8eb05a1f0e68ce4b1f1dca4682 | 17,125 |
import zipfile
import json
def load_predict_result(predict_filename):
"""Loads the file to be predicted"""
predict_result = {}
ret_code = SUCCESS
try:
predict_file_zip = zipfile.ZipFile(predict_filename)
except:
ret_code = FILE_ERROR
return predict_result, ret_code
for predict_file in predict_file_zip.namelist():
for line in predict_file_zip.open(predict_file):
try:
line = line.decode('utf8').strip()
except:
ret_code = ENCODING_ERROR
return predict_result, ret_code
try:
json_info = json.loads(line)
except:
ret_code = JSON_ERROR
return predict_result, ret_code
if 'text' not in json_info or 'spo_list' not in json_info:
ret_code = SCHEMA_ERROR
return predict_result, ret_code
sent = json_info['text']
spo_set = set()
for spo_item in json_info['spo_list']:
if type(spo_item) is not dict or 'subject' not in spo_item \
or 'predicate' not in spo_item \
or 'object' not in spo_item or \
not isinstance(spo_item['subject'], basestring) or \
not isinstance(spo_item['object'], basestring):
ret_code = SCHEMA_ERROR
return predict_result, ret_code
s = del_bookname(spo_item['subject'].lower())
o = del_bookname(spo_item['object'].lower())
spo_set.add((s, spo_item['predicate'], o))
predict_result[sent] = spo_set
return predict_result, ret_code | c26cc24fcdcaa774d05ed6963f66cae346617f46 | 17,126 |
import os
def localize_all(roi, ignore_exception=True, **kwargs):
""" localize all variable local sources in the roi, make TSmaps and associations if requested
ignore if extended -- has 'spatial_model'
kwargs can have prefix to select subset with name starting with the prefix, e.g. 'SEED'
"""
tsmin = kwargs.pop('tsmin',10)
prefix = kwargs.pop('prefix', None)
source_name = kwargs.pop('source_name', None)
update = kwargs.pop('update', False)
def filt(s):
ok = s.skydir is not None\
and isinstance(s, sources.PointSource) \
and np.any(s.spectral_model.free)
if not ok: return False
if not hasattr(s,'ts'):
s.ts = roi.TS(s.name)
return ok and s.ts>tsmin
if source_name is not None:
vpsources=[roi.get_source(source_name)]
else:
vpsources = filter(filt, roi.sources)
tsmap_dir = kwargs.pop('tsmap_dir', None)
if tsmap_dir is not None:
if tsmap_dir[0]=='$':
tsmap_dir = os.path.expandvars(tsmap_dir)
if not os.path.exists(tsmap_dir):
os.makedirs(tsmap_dir)
associator = kwargs.pop('associator', None)
tsfits = kwargs.pop('tsfits', True)
if len(kwargs.keys())>0:
print ('Warning: unrecognized args to localize_all: %s' %kwargs)
initw = roi.log_like()
for source in vpsources:
if prefix is not None and not source.name.startswith(prefix): continue
full_localization(roi, source.name, ignore_exception=ignore_exception,
update=update, associator=associator, tsmap_dir=tsmap_dir, tsfits=tsfits)
curw= roi.log_like()
if abs(initw-curw)>1.0 and not update:
print ('localize_all: unexpected change in roi state after localization, from %.1f to %.1f (%+.1f)'\
%(initw, curw, curw-initw))
return False
else: return True | 0bf5c056ebc23a448954884ca06a3e29fd71de34 | 17,127 |
def convert_post_to_VERB(request, verb):
"""
Force Django to process the VERB.
"""
if request.method == verb:
if hasattr(request, '_post'):
del(request._post)
del(request._files)
try:
request.method = "POST"
request._load_post_and_files()
request.method = verb
except AttributeError:
request.META['REQUEST_METHOD'] = 'POST'
request._load_post_and_files()
request.META['REQUEST_METHOD'] = verb
setattr(request, verb, request.POST)
return request | 3c304d07ab04950ac65f58405acc3103a3b64dcf | 17,128 |
def close(x, y, rtol, atol):
"""Returns True if x and y are sufficiently close.
Parameters
----------
rtol
The relative tolerance.
atol
The absolute tolerance.
"""
# assumes finite weights
return abs(x-y) <= atol + rtol * abs(y) | bd2597c0c94f2edf686d0dc9772288312cb36d83 | 17,129 |
import warnings
def plot_precip_field(
precip,
ptype="intensity",
ax=None,
geodata=None,
units="mm/h",
bbox=None,
colorscale="pysteps",
probthr=None,
title=None,
colorbar=True,
axis="on",
cax=None,
map_kwargs=None,
**kwargs,
):
"""
Function to plot a precipitation intensity or probability field with a
colorbar.
.. _Axes: https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
.. _SubplotSpec: https://matplotlib.org/api/_as_gen/matplotlib.gridspec.SubplotSpec.html
Parameters
----------
precip: array-like
Two-dimensional array containing the input precipitation field or an
exceedance probability map.
ptype: {'intensity', 'depth', 'prob'}, optional
Type of the map to plot: 'intensity' = precipitation intensity field,
'depth' = precipitation depth (accumulation) field,
'prob' = exceedance probability field.
geodata: dictionary or None, optional
Optional dictionary containing geographical information about
the field. Required is map is not None.
If geodata is not None, it must contain the following key-value pairs:
.. tabularcolumns:: |p{1.5cm}|L|
+-----------------+---------------------------------------------------+
| Key | Value |
+=================+===================================================+
| projection | PROJ.4-compatible projection definition |
+-----------------+---------------------------------------------------+
| x1 | x-coordinate of the lower-left corner of the data |
| | raster |
+-----------------+---------------------------------------------------+
| y1 | y-coordinate of the lower-left corner of the data |
| | raster |
+-----------------+---------------------------------------------------+
| x2 | x-coordinate of the upper-right corner of the |
| | data raster |
+-----------------+---------------------------------------------------+
| y2 | y-coordinate of the upper-right corner of the |
| | data raster |
+-----------------+---------------------------------------------------+
| yorigin | a string specifying the location of the first |
| | element in the data raster w.r.t. y-axis: |
| | 'upper' = upper border, 'lower' = lower border |
+-----------------+---------------------------------------------------+
units : {'mm/h', 'mm', 'dBZ'}, optional
Units of the input array. If ptype is 'prob', this specifies the unit of
the intensity threshold.
bbox : tuple, optional
Four-element tuple specifying the coordinates of the bounding box. Use
this for plotting a subdomain inside the input grid. The coordinates are
of the form (lower left x, lower left y ,upper right x, upper right y).
If 'geodata' is not None, the bbox is in map coordinates, otherwise
it represents image pixels.
colorscale : {'pysteps', 'STEPS-BE', 'BOM-RF3'}, optional
Which colorscale to use. Applicable if units is 'mm/h', 'mm' or 'dBZ'.
probthr : float, optional
Intensity threshold to show in the color bar of the exceedance
probability map.
Required if ptype is "prob" and colorbar is True.
title : str, optional
If not None, print the title on top of the plot.
colorbar : bool, optional
If set to True, add a colorbar on the right side of the plot.
axis : {'off','on'}, optional
Whether to turn off or on the x and y axis.
cax : Axes_ object, optional
Axes into which the colorbar will be drawn. If no axes is provided
the colorbar axes are created next to the plot.
Other parameters
----------------
map_kwargs: dict
Optional parameters that need to be passed to
:py:func:`pysteps.visualization.basemaps.plot_geography`.
Returns
-------
ax : fig Axes_
Figure axes. Needed if one wants to add e.g. text inside the plot.
"""
if map_kwargs is None:
map_kwargs = {}
if "type" in kwargs:
warnings.warn(
"The 'type' keyword use to indicate the type of plot will be "
"deprecated in version 1.6. Use 'ptype' instead."
)
ptype = kwargs.get("type")
if ptype not in PRECIP_VALID_TYPES:
raise ValueError(
f"Invalid precipitation type '{ptype}'."
f"Supported: {str(PRECIP_VALID_TYPES)}"
)
if units not in PRECIP_VALID_UNITS:
raise ValueError(
f"Invalid precipitation units '{units}."
f"Supported: {str(PRECIP_VALID_UNITS)}"
)
if ptype == "prob" and colorbar and probthr is None:
raise ValueError("ptype='prob' but probthr not specified")
if len(precip.shape) != 2:
raise ValueError("The input is not two-dimensional array")
# Assumes the input dimensions are lat/lon
nlat, nlon = precip.shape
x_grid, y_grid, extent, regular_grid, origin = get_geogrid(
nlat, nlon, geodata=geodata
)
ax = get_basemap_axis(extent, ax=ax, geodata=geodata, map_kwargs=map_kwargs)
precip = np.ma.masked_invalid(precip)
# plot rainfield
if regular_grid:
im = _plot_field(precip, ax, ptype, units, colorscale, extent, origin=origin)
else:
im = _plot_field(
precip, ax, ptype, units, colorscale, extent, x_grid=x_grid, y_grid=y_grid
)
plt.title(title)
# add colorbar
if colorbar:
# get colormap and color levels
_, _, clevs, clevs_str = get_colormap(ptype, units, colorscale)
if ptype in ["intensity", "depth"]:
extend = "max"
else:
extend = "neither"
cbar = plt.colorbar(
im, ticks=clevs, spacing="uniform", extend=extend, shrink=0.8, cax=cax
)
if clevs_str is not None:
cbar.ax.set_yticklabels(clevs_str)
if ptype == "intensity":
cbar.set_label(f"Precipitation intensity [{units}]")
elif ptype == "depth":
cbar.set_label(f"Precipitation depth [{units}]")
else:
cbar.set_label(f"P(R > {probthr:.1f} {units})")
if geodata is None or axis == "off":
ax.xaxis.set_ticks([])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticks([])
ax.yaxis.set_ticklabels([])
if bbox is not None:
ax.set_xlim(bbox[0], bbox[2])
ax.set_ylim(bbox[1], bbox[3])
return ax | 7e9429310ffdfdb38ac2b6e03b4c846d017060f5 | 17,130 |
def get_for_repo(repo, name, default=None):
"""Gets a configuration setting for a particular repository. Looks for a
setting specific to the repository, then falls back to a global setting."""
NOT_FOUND = [] # a unique sentinel distinct from None
value = get(name, NOT_FOUND, repo)
if value is NOT_FOUND:
value = get(name, default, '*')
return value | 5848e4da859f26788ab02b733bc61135c1ea3b80 | 17,131 |
from typing import AnyStr
def new_user(tenant: AnyStr, password: AnyStr) -> bool:
"""Return a boolean containing weither a new tenant is created or no."""
if not query.get_tenant_id(tenant):
return True
return False | ac1bc45213c76712d1ec3553a8545fac5ab67f3a | 17,132 |
def home():
"""
Home page control code
:return Rendered page:
"""
error = request.args.get("error", None)
state, code = request.args.get("state", None), request.args.get("code", None)
if code and not has_user() and 'state' in session and session['state'] == state:
tok = reddit_get_access_token(code)
username = reddit_get_username(tok)
session['user'] = username
session['token'] = tok
session.modified = True
session['state'] = str(uuid4())
session.modified = True
return render_template('home.html', user=get_user(),
error=False, redirect=whisky_recommender.config.REDDIT_REDIRECT,
client_id=whisky_recommender.config.REDDIT_CLIENT, state=session['state']) | 280f17feff363fa73decfa15bc615aa0c320d3d9 | 17,133 |
from datetime import datetime
import pytz
def get_date_list(num_days):
"""
For an integer number of days (num_days), get an ordered list of
DateTime objects to report on.
"""
local_tz = tzlocal.get_localzone()
local_start_date = local_tz.localize(datetime.datetime.now()).replace(hour=0, minute=0, second=0, microsecond=0) - datetime.timedelta(seconds=1)
logger.debug("local_start_date={d}".format(d=local_start_date.strftime("%Y-%m-%d %H:%M:%S%z %Z")))
start_date = local_start_date.astimezone(pytz.utc)
logger.debug("start_date={d}".format(d=start_date.strftime("%Y-%m-%d %H:%M:%S%z %Z")))
end_date = (start_date - datetime.timedelta(days=num_days)) + datetime.timedelta(seconds=1)
logger.debug("end_date={d}".format(d=end_date.strftime("%Y-%m-%d %H:%M:%S%z %Z")))
dates = [start_date - datetime.timedelta(n) for n in range(num_days)]
return dates | 5f338cf6ffcbb10569cfd7878a91f6a2d60831ca | 17,134 |
def is_even(val):
"""
Confirms if a value if even.
:param val: Value to be tested.
:type val: int, float
:return: True if the number is even, otherwise false.
:rtype: bool
Examples:
--------------------------
.. code-block:: python
>>> even_numbers = list(filter(is_even, range(20)))
>>> print(even_numbers)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> print(is_even(9))
False
>>> print(is_even(-2))
True
>>> print([value for value in range(20) if is_even(value)])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> print([is_even(value) for value in range(4)])
[True, False, True, False]
"""
return (val % 2) == 0 | 1ef0716e1e86ff77b3234bbd664c6b973352c3ea | 17,135 |
import os
def get_fremont_data(filename = "Fremont.csv", url = URL, force_download = False):
""" Download and cache the fremont data
Parameters
----------
csv file Fremont.csv
url URL
force download
Returns
-------
data : pandas dataframe
"""
if force_download or not os.path.exists(filename):
urlretrieve(URL, "Fremont.csv")
data = pd.read_csv("Fremont.csv", index_col = "Date", parse_dates = True)
data.columns = ["Total", "East", "West"]
return data | c61683423585e52c42bb96c21bcd6dd21ed9edc8 | 17,136 |
def min_spacing(mylist):
"""
Find the minimum spacing in the list.
Args:
mylist (list): A list of integer/float.
Returns:
int/float: Minimum spacing within the list.
"""
# Set the maximum of the minimum spacing.
min_space = max(mylist) - min(mylist)
# Iteratively find a smaller spacing.
for item in mylist:
spaces = [abs(item - item2) for item2 in mylist if item != item2]
min_space = min(min_space, min(spaces))
# Return the answer.
return min_space | b8ce0a46bacb7015c9e59b6573bc2fec0252505d | 17,137 |
import re
import os
def extract_dawn_compiler_options() -> list:
"""Generate options_info for the Dawn compiler options struct."""
options_info = []
regex = re.compile(r"OPT\(([^,]+), ?(\w+)")
DAWN_CPP_SRC_ROOT = os.path.join(
os.path.dirname(__file__), os.pardir, os.pardir, "src", "dawn"
)
# Extract info from .cpp files
for name in [
os.path.join(DAWN_CPP_SRC_ROOT, "Compiler", "Options.inc"),
os.path.join(DAWN_CPP_SRC_ROOT, "Optimizer", "OptimizerOptions.inc"),
]:
options_cpp = []
with open(name, "r") as f:
for line in f:
line = line.strip()
if not (line.startswith("//") or line.startswith("#")):
if line.startswith("OPT("):
m = regex.match(line)
type_str, name_str = m.group(1), m.group(2)
line = re.sub(regex, f'{name_str} = ("{type_str}" ', line)
options_cpp.append(line)
elif line:
if options_cpp[-1].endswith('"'):
options_cpp[-1] += " + " + line
else:
options_cpp[-1] += line
# OPT(TYPE, NAME, DEFAULT_VALUE, OPTION, OPTION_SHORT, HELP, VALUE_NAME, HAS_VALUE, F_GROUP)
options_cpp = "\n".join(options_cpp)
for old, new in [("false", "'false'"), ("true", "'true'")]:
options_cpp = options_cpp.replace(old, new)
defs = {}
exec(options_cpp, defs)
for key, value in defs.items():
if not key.startswith("__"):
py_type = pythonize_type(value[0])
py_default = pythonize_value(value[1], as_type=py_type)
options_info.append(
MemberInfo(
py_name=pythonize_name(key),
cpp_name=key,
py_type=py_type,
cpp_type=value[0],
py_default=py_default,
cpp_default=value[1],
const=False,
help=value[4],
)
)
return options_info | a79f9700f1d0b5c512a5b77b04a16c7fd4c8c105 | 17,138 |
def sign(x):
"""Return the mathematical sign of the particle."""
if x.imag:
return x / sqrt(x.imag ** 2 + x.real ** 2)
return 0 if x == 0 else -1 if x < 0 else 1 | 0dca727afbc9c805a858c027a8a4e38d59d9d218 | 17,139 |
def wrap_strings(lines: [str], line_width: int):
"""Return a list of strings, wrapped to the specified length."""
i = 0
while i < len(lines):
# if a line is over the limit
if len(lines[i]) > line_width:
# (try to) find the rightmost occurrence of a space in the first 80 chars
try:
split_index = lines[i][:line_width].rindex(" ")
except ValueError:
return None
# split the line by the found space and add it to the next one
lines.insert(i + 1, lines[i][split_index + 1 :])
lines[i] = lines[i][:split_index]
i += 1
return lines | 0a6fa989fd6d27276d2e7d8c91cf8be37f6a3aff | 17,140 |
def has_even_parity(message: int) -> bool:
""" Return true if message has even parity."""
parity_is_even: bool = True
while message:
parity_is_even = not parity_is_even
message = message & (message - 1)
return parity_is_even | 8982302840318f223e9c1ab08c407d585a725f97 | 17,141 |
def is_primitive(structure):
"""
Checks if a structure is primitive or not,
:param structure: AiiDA StructureData
:return: True if the structure can not be anymore refined.
prints False if the structure can be futher refined.
"""
refined_cell = find_primitive_cell(structure)
prim = False
if all(x in structure.cell for x in refined_cell.cell):
prim = True
return prim | 9f7034bb92d3fdd0505a56bc7d53d1528846ef76 | 17,142 |
def mock_mkdir(monkeypatch):
"""Mock the mkdir function."""
def mocked_mkdir(path, mode=0o755):
return True
monkeypatch.setattr("charms.layer.git_deploy.os.mkdir", mocked_mkdir) | e4e78ece1b8e60719fe11eb6808f0f2b99a933c3 | 17,143 |
import zipfile
import os
def zip_dir_recursively(base_dir, zip_file):
"""Zip compresses a base_dir recursively."""
zip_file = zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED)
root_len = len(os.path.abspath(base_dir))
for root, _, files in os.walk(base_dir):
archive_root = os.path.abspath(root)[root_len:]
for f in files:
fullpath = os.path.join(root, f)
archive_name = os.path.join(archive_root, f)
zip_file.write(fullpath, archive_name, zipfile.ZIP_DEFLATED)
zip_file.close()
return zip_file | 79dc58f508b2f1e78b2cc32208471f75c6a3b15c | 17,144 |
def saferepr(obj, maxsize=240):
"""return a size-limited safe repr-string for the given object.
Failing __repr__ functions of user instances will be represented
with a short exception info and 'saferepr' generally takes
care to never raise exceptions itself. This function is a wrapper
around the Repr/reprlib functionality of the standard 2.6 lib.
"""
# review exception handling
srepr = SafeRepr()
srepr.maxstring = maxsize
srepr.maxsize = maxsize
srepr.maxother = 160
return srepr.repr(obj) | d02f68581867e64a6586548ab627b6893328c42a | 17,145 |
from typing import Callable
from re import A
def filter(pred : Callable[[A], bool], stream : Stream[A]) -> Stream[A]:
"""Filter a stream of type `A`.
:param pred: A predicate on type `A`.
:type pred: `A -> bool`
:param stream: A stream of type `A` to be filtered.
:type stream: `Stream[A]`
:return: A stream of type `A`.
:rtype: `Stream[A]`
"""
def _thunk() -> StreamResult[A]:
next_stream : Stream[A] = stream
while True:
next_value, next_stream = next_stream()
if not pred(next_value): continue
return next_value, filter(pred, next_stream)
return _thunk | 93b3d4c30d4295b2be73200451436c6a4e9ab5cd | 17,146 |
def _get_kernel_size_numel(kernel_size):
"""Determine number of pixels/voxels. ``kernel_size`` must be an ``N``-tuple."""
if not isinstance(kernel_size, tuple):
raise ValueError(f"kernel_size must be a tuple. Got {kernel_size}.")
return _get_numel_from_shape(kernel_size) | fb004817950ece275fc10b4824ee83a1d1b9a6a9 | 17,147 |
import uuid
def random():
"""Get a random UUID."""
return str(uuid.uuid4()) | 411aeb5254775473b43d3ac4153a27a2f15014cb | 17,148 |
def reautorank(reaumur):
""" This function converts Reaumur to rankine, with Reaumur as parameter."""
rankine = (reaumur * 2.25) + 491.67
return rankine | aec2299999e9798530272939125cb42476f095c3 | 17,149 |
def list_pets():
"""Shows list of all pets in db"""
pets = Pet.query.all()
return render_template('list.html', pets=pets) | 60df575932d98ab04e949d6ef6f1fdfa6734ba92 | 17,150 |
import os
import glob
def BundleFpmcuUnittests(chroot, sysroot, output_directory):
"""Create artifact tarball for fingerprint MCU on-device unittests.
Args:
chroot (chroot_lib.Chroot): The chroot containing the sysroot.
sysroot (sysroot_lib.Sysroot): The sysroot whose artifacts are being
archived.
output_directory (str): The path were the completed archives should be put.
Returns:
str|None - The archive file path if created, None otherwise.
"""
fpmcu_unittests_root = os.path.join(chroot.path, sysroot.path.lstrip(os.sep),
'firmware', 'chromeos-fpmcu-unittests')
files = [os.path.relpath(f, fpmcu_unittests_root)
for f in glob.iglob(os.path.join(fpmcu_unittests_root, '*'))]
if not files:
return None
archive_file = os.path.join(output_directory,
constants.FPMCU_UNITTESTS_ARCHIVE_NAME)
cros_build_lib.CreateTarball(
archive_file, fpmcu_unittests_root, compression=cros_build_lib.COMP_BZIP2,
chroot=chroot.path, inputs=files)
return archive_file | ee737c5a938e069d36d7f1c963aec8ae7dd2b81a | 17,151 |
import glob
def get_lif_list(path):
"""
Returns a list of files ending in *.lif in provided folder
:param: path
:return: list -- filenames
"""
path += '/*.lif'
return glob.glob(path) | 8a26d65fc2c69b1007a40ded82225038ead67783 | 17,152 |
import argparse
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Single image depth estimation')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='custom', type=str)
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=NUM_EPOCHS, type=int)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--bs', dest='bs',
help='batch_size',
default=16, type=int)
parser.add_argument('--num_workers', dest='num_workers',
help='num_workers',
default=1, type=int)
parser.add_argument('--disp_interval', dest='disp_interval',
help='display interval',
default=10, type=int)
parser.add_argument('--output_dir', dest='output_dir',
help='output directory',
default='saved_models', type=str)
# config optimization
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=1e-3, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# set training session
parser.add_argument('--s', dest='session',
help='training session',
default=1, type=int)
parser.add_argument('--eval_epoch', dest='eval_epoch',
help='number of epoch to evaluate',
default=2, type=int)
# resume trained model
parser.add_argument('--r', dest='resume',
help='resume checkpoint or not',
default=False, type=bool)
parser.add_argument('--start_at', dest='start_epoch',
help='epoch to start with',
default=0, type=int)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load model',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=0, type=int)
# training parameters
parser.add_argument('--gamma_sup', dest='gamma_sup',
help='factor of supervised loss',
default=1., type=float)
parser.add_argument('--gamma_unsup', dest='gamma_unsup',
help='factor of unsupervised loss',
default=1., type=float)
parser.add_argument('--gamma_reg', dest='gamma_reg',
help='factor of regularization loss',
default=10., type=float)
args = parser.parse_args()
return args | 62fd1a807d662253d41c65d9b6add2822fdacca9 | 17,153 |
def compute_distance_matrix(users, basestations):
"""Distances between all users and basestations is calculated.
Args:
users: (obj) list of users!
basestations: (obj) list of basestations!
Returns:
(list of) numpy arrays containing the distance between a user and all basestations in km!.
"""
coords_list_ue = [getattr(ele, 'coordinates') for ele in users]
coords_list_bs = [getattr(ele, 'coordinates') for ele in basestations]
distance_matrix = []
count = 0
for _ in coords_list_ue:
element = [coords_list_ue[count]]
coords = element + coords_list_bs
dist = distance.cdist(coords, coords, 'euclidean')
new_dist = np.delete(dist[0], 0)
distance_matrix.append(new_dist)
count += 1
return np.array(distance_matrix) | 07b6175047d7602288436d163f838077e54054fc | 17,154 |
from .core import resolver
def __getattr__(name):
"""Lazy load the global resolver to avoid circular dependencies with plugins."""
if name in _SPECIAL_ATTRS:
res = resolver.Resolver()
res.load_plugins_from_environment()
_set_default_resolver(res)
return globals()[name]
else:
raise AttributeError(f"module {__name__!r} has no attribute {name!r}") | 20dd678be2b9d3f08513912a40098dc8b436ac81 | 17,155 |
def img_newt(N, xran=(-3, 3), yran=(-3, 3), tol=1e-5, niter=100):
"""
Add colors to a matrix according to the fixed point
of the given equation.
"""
sol = [-(np.sqrt(3.0)*1j - 1.0)/2.0,
(np.sqrt(3.0)*1j + 1.0)/2.0,
-1.0]
col_newt = np.zeros((N, N, 3))
Y, X = np.mgrid[yran[0]:yran[1]:N*1j,
xran[0]:xran[1]:N*1j]
for row in range(N):
for col in range(N):
x = X[row, col]
y = Y[row, col]
xf = newt(x + y*1j, fun, der, tol=tol, niter=niter)
if abs(xf - sol[0])<1e-6:
col_newt[row, col, :] = colors[0]
if abs(xf - sol[1])<1e-6:
col_newt[row, col, :] = colors[1]
if abs(xf - sol[2])<1e-6:
col_newt[row, col, :] = colors[2]
if abs(xf - 1000) < 1e-6:
col_newt[row, col, :] = colors[3]
return col_newt | 166aa3c5e144972f7ec825f973885f9b528047f0 | 17,156 |
def pack_block_header(hdr: block.BlockHeader,
abbrev: bool = False,
pretty: bool = False,
) -> str:
"""Pack blockchain to JSON string with b64 for bytes."""
f = get_b2s(abbrev)
hdr_ = {'timestamp': f(hdr['timestamp']),
'previous_hash': f(hdr['previous_hash']),
'nonce': f(hdr['nonce']),
'merkle_root': f(hdr['merkle_root']),
'this_hash': f(hdr['this_hash'])
}
return json_dumps(hdr_, pretty) | a6df547918ab82bc990ca915d956730cb6a62b87 | 17,157 |
def get_datasets(recipe):
"""Get dataset instances from the recipe.
Parameters
----------
recipe : dict of dict
The specifications of the core datasets.
Returns
-------
datasets : dict of datasets
A dictionary of dataset instances, compatible with torch's
DataLoader objects.
"""
# "datasets"
return {dataset: get_instance(**par) for dataset, par in recipe.items()} | f525cf379f13069a1f5255798d963af3389dd5ed | 17,158 |
import re
def is_sedol(value):
"""Checks whether a string is a valid SEDOL identifier.
Regex from here: https://en.wikipedia.org/wiki/SEDOL
:param value: A string to evaluate.
:returns: True if string is in the form of a valid SEDOL identifier."""
return re.match(r'^[0-9BCDFGHJKLMNPQRSTVWXYZ]{6}\d$', value) | 207ff94a4df99e7a546440cef1242f9a48435118 | 17,159 |
def create_substrate(dim):
"""
The function to create two-sheets substrate configuration with specified
dimensions of each sheet.
Arguments:
dim: The dimensions accross X, Y axis of the sheet
"""
# Building sheet configurations of inputs and outputs
inputs = create_sheet_space(-1, 1, dim, -1)
outputs = create_sheet_space(-1, 1, dim, 0)
substrate = NEAT.Substrate( inputs,
[], # hidden
outputs)
substrate.m_allow_input_output_links = True
substrate.m_allow_input_hidden_links = False
substrate.m_allow_hidden_hidden_links = False
substrate.m_allow_hidden_output_links = False
substrate.m_allow_output_hidden_links = False
substrate.m_allow_output_output_links = False
substrate.m_allow_looped_hidden_links = False
substrate.m_allow_looped_output_links = False
substrate.m_hidden_nodes_activation = NEAT.ActivationFunction.SIGNED_SIGMOID
substrate.m_output_nodes_activation = NEAT.ActivationFunction.UNSIGNED_SIGMOID
substrate.m_with_distance = True
substrate.m_max_weight_and_bias = 3.0
return substrate | 9a47bf213d796aecec4b6f630ae30b04dc035d63 | 17,160 |
def remove_artefacts(signal: np.array, low_limit: int = 40, high_limit: int = 210) -> np.array:
"""
Replace artefacts [ultra-low and ultra-high values] with zero
Args:
signal: (np.array) 1D signal
low_limit: (int) filter values below it
high_limit: (int) filter values above it
Output: (np.array) filtered signal
"""
# replace artefacts with zero
signal_new = signal.astype('float')
signal_new[signal < low_limit] = 0 #replace ultra-zmall values with 0
signal_new[signal > high_limit] = 0 #replace ultra-large values with 0
return signal_new | 0b85e929588bd5895a9a84c5d03fce88c4f9f7cb | 17,161 |
def normalizedBGR(im, display=True):
""" Generate Opponent color space. O3 is just the intensity """
im = img.norm(im)
B, G, R = np.dsplit(im, 3)
b = (B - np.mean(B)) / np.std(B)
g = (G - np.mean(G)) / np.std(G)
r = (R - np.mean(R)) / np.std(R)
out = cv2.merge((np.uint8(img.normUnity(b) * 255),
np.uint8(img.normUnity(g) * 255),
np.uint8(img.normUnity(r) * 255)))
if display:
cv2.imshow('norm bgr', np.hstack((np.uint8(img.normUnity(b) * 255),
np.uint8(img.normUnity(g) * 255),
np.uint8(img.normUnity(r) * 255))))
cv2.waitKey(0)
return out, b, g, r | 810b4a1ee4d9b5d7f68072c72379fa182b7f34fe | 17,162 |
def feeds(url):
"""
Tries to find feeds
for a given URL.
"""
url = _full_url(url)
data = _get(url)
# Check if the url is a feed.
if _is_feed(url):
return [url]
# Try to get feed links from markup.
try:
feed_links = [link for link in _get_feed_links(data, url) if _is_feed(link)]
except:
feed_links = []
if feed_links:
return feed_links
# Try 'a' links.
try:
links = _get_a_links(data)
except:
links = []
if links:
# Filter to only local links.
local_links = [link for link in links if link.startswith(url)]
# Try to find feed links.
feed_links.extend(_filter_feed_links(local_links))
# If still nothing has been found...
if not feed_links:
# Try to find feed-looking links.
feed_links.extend(_filter_feedish_links(local_links))
# If still nothing has been found...
if not feed_links:
# BRUTE FORCE IT!
guesses = [
'atom.xml', # Blogger, TypePad
'index.atom', # MoveableType
'index.rdf', # MoveableType
'rss.xml', # Dave Winer/Manila
'index.xml', # MoveableType
'index.rss', # Slash
'feed' # WordPress
]
tries = [parse.urljoin(url, g) for g in guesses]
feed_links.extend([link for link in tries if _is_feed(link)])
# If *still* nothing has been found,
# just try all the links.
if links and not feed_links:
feed_links.extend(_filter_feed_links(links))
feed_links.extend(_filter_feedish_links(links))
# Filter out duplicates.
return list(set(feed_links)) | dd16dc751f34fbbf496c9b0142fa5d58372538b2 | 17,163 |
def getlog(name):
"""Create logger object with predefined stream handler & formatting
Parameters
----------
name : str
module __name__
Returns
-------
logging.logger
Examples
--------
>>> from smseventlog import getlog
>>> log = getlog(__name__)
"""
name = '.'.join(str(name).split('.')[1:])
# cant set name to nothing or that calls the ROOT logger
if name == '':
name = 'base'
return Logger(name) | cd5e0dd4589757e3c8d05614f117b7ce46fe4fb9 | 17,164 |
import sys
def read_new_probe_design(path: str, reference_type: str = 'genome') -> pd.DataFrame:
"""
Read amplimap probes.csv file and return pandas dataframe.
"""
try:
design = pd.read_csv(path)
log.info('Read probe design table from %s -- found %d probes', path, len(design))
if list(design.columns) == mipgen_columns:
# NB: smmip data seems to be in F2R1 orientation (second read = fwd in genomic coordinates) for fwd probes
# but F1R2 orientation (second read = rev) for rev probes.
# cs-tag data seems to be in F1R2 orientation for fwd targets. unclear for rev targets, but presumably F2R1?
# in other words, CS-tag is in gene orientation, while smMIP is in opposite
# so both are swapped for MIPs.
# is this why sequences in probes.csv are currently so confusing?
log.info('Detected old MIPGEN format, converting...')
# read the probes file again in old mipgen format and convert
design = read_and_convert_mipgen_probes(path)
design = process_probe_design(design, reference_type)
except Exception as e:
raise AmplimapReaderException(e, filename = path, should_have_header = True).with_traceback(sys.exc_info()[2])
return design | e8e8ccfffe514e13af26a7cc7ddd59eb51328c7d | 17,165 |
import numpy as np
def replace_nan(x):
"""
Replaces NaNs in 1D array with nearest finite value.
Usage: y = replace_nan(x)
Returns filled array y without altering input array x.
Assumes input is numpy array.
3/2015 BWB
"""
#
x2 = np.zeros(len(x))
np.copyto(x2,x)
#
bads = find(np.isnan(x)) # indices of NaNs
if bads.size == 0:
return x2
else:
fins = find(np.isfinite(x)) # indices for all finites
for ii in np.arange(0,bads.size): # for all NaNs
# locate index of nearest finite
diffs = np.abs(fins-bads[ii])
idx = diffs.argmin()
# replace NaN with nearest finite
x2[bads[ii]] = x[fins[idx]]
return x2 | 9100a33dcb7d00b38e7a6a53132db8d13682e499 | 17,166 |
def handson_table(request, query_sets, fields):
"""function to render the scoresheets as part of the template"""
return excel.make_response_from_query_sets(query_sets, fields, 'handsontable.html')
# content = excel.pe.save_as(source=query_sets,
# dest_file_type='handsontable.html',
# dest_embed=True)
# content.seek(0)
# return render(
# request,
# 'custom-handson-table.html',
# {
# 'handsontable_content': content.read()
# })
# return Response({'handsontable_content': render(content)}, template_name='custom-handson-table.html') | 93c1471c142917f5b0492ddb27fdd6c278e9976d | 17,167 |
from functools import reduce
def is_periodic(G):
"""
https://stackoverflow.com/questions/54030163/periodic-and-aperiodic-directed-graphs
Own function to test, whether a given Graph is aperiodic:
"""
if not nx.is_strongly_connected(G):
print("G is not strongly connected, periodicity not defined.")
return False
cycles = list(nx.algorithms.cycles.simple_cycles(G))
cycles_sizes = [len(c) for c in cycles] # Find all cycle sizes
cycles_gcd = reduce(gcd, cycles_sizes) # Find greatest common divisor of all cycle sizes
is_periodic = cycles_gcd > 1
return is_periodic | 6671a1bf57ef6ec973c7d283cb447d890cbd93e2 | 17,168 |
def Sphere(individual):
"""Sphere test objective function.
F(x) = sum_{i=1}^d xi^2
d=1,2,3,...
Range: [-100,100]
Minima: 0
"""
#print(individual)
return sum(x**2 for x in individual) | 349b732e931fc5acf8a52213d9ddf88335479b90 | 17,169 |
def find_names_for_google(df_birth_names):
"""
:param df_birth_names: 所有的birth data from the data given by Lu
:return 1: df_country_found,
返回一个dataframe 里面有国家了
先通过country list过滤,有些国家可能有问题(如有好几个名字的(e.g. 荷兰),有些含有特殊符号,如刚果布,刚果金,朝鲜,南朝鲜北朝鲜是三个“国家”,
再比如说南奥塞梯,一些太平洋岛国归属有问题,还就是香港台湾这样的。。。。暂时算是国家)
而后看看是不是美国的一个州。
而后看城市,city在city list里面,citylist 参考 worldcities 数据库。 城市重名了就取人口多的那个城市。如Valencia
:return 2: df_need_google_search,
返回一个dataframe 里面都是不在“国家列表”里面的,也不是美国的州,并且“worldcities database”里面找不到的
"""
whitelist = set('abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ')
# teststr = " happy t00o go 129.129$%^&*("
# answer = ''.join(filter(whitelist.__contains__, teststr))
dirty_list = []
need_searching_list = []
for index, row in df_birth_names.head(30).iterrows():
item = ''.join(filter(whitelist.__contains__, row['birth'])).strip()
# item = row['birth'].replace("'","").strip()
if item is "":# null
dirty_list.append(np.nan)
print(item, " is null")
continue
if item in COUNTRY_LIST: # known countries
dirty_list.append(item)
print(item, " is a country")
continue
if item in US_STATES_LIST: # add us states as United States
dirty_list.append("United States")
print(item, " is a state in the US")
continue
if item in NATIONALITY_LIST: # add national from nationality information e.g. Chinese -> China
nation_from_nationality = NATIONALITY_TO_COUNTRY.loc[item]["Country/entity name"]
dirty_list.append(nation_from_nationality)
print(item, " is a national of a certain country")
continue
if item in CITY_LIST: # known city to country e.g. London -> UK
country_from_city = CITY_TO_COUNTRY.loc[item]["country"]
dirty_list.append(country_from_city)
print(item, " is a city and it has been transformed")
continue
flag1=0 # known city to country e.g. London -> UK
for i in COUNTRY_LIST:
if i in item:
dirty_list.append(i)
print(i, " maybe a country")
flag1 = 1
break
if flag1 == 1:
continue
flag2 = 0
for i in US_STATES_LIST:
if i in item:
dirty_list.append("United States")
print(i, "maybe a state in the US")
flag2 = 1
break
if flag2 == 1:
continue
flag3 = 0
for i in CITY_LIST:
if i in item:
country_from_city = CITY_TO_COUNTRY.loc[i]["country"]
dirty_list.append(country_from_city)
print(i, " maybe a city, and we are attempting to transform it")
flag3 = 1
break
if flag3 == 1:
continue
need_searching_list.append(item)
print("this item: ", item, " is not added")
need_searching_list = list(dict.fromkeys(need_searching_list))# remove duplicates
df_country_found = pd.DataFrame(dirty_list)
df_need_google_search = pd.DataFrame(need_searching_list)
return df_country_found, df_need_google_search | 6358fd692784389530ebf4c3a2059c3923104d2f | 17,170 |
def make_address_mask(universe, sub=0, net=0, is_simplified=True):
"""Returns the address bytes for a given universe, subnet and net.
Args:
universe - Universe to listen
sub - Subnet to listen
net - Net to listen
is_simplified - Whether to use nets and subnet or universe only,
see User Guide page 5 (Universe Addressing)
Returns:
bytes - byte mask for given address
"""
address_mask = bytearray()
if is_simplified:
# Ensure data is in right range
universe = clamp(universe, 0, 32767)
# Make mask
msb, lsb = shift_this(universe) # convert to MSB / LSB
address_mask.append(lsb)
address_mask.append(msb)
else:
# Ensure data is in right range
universe = clamp(universe, 0, 15)
sub = clamp(sub, 0, 15)
net = clamp(net, 0, 127)
# Make mask
address_mask.append(sub << 4 | universe)
address_mask.append(net & 0xFF)
return address_mask | d360dde7ecc4ecc99e32df53f2f0806d5d396f1f | 17,171 |
def get_offline_target(featureset, start_time=None, name=None):
"""return an optimal offline feature set target"""
# todo: take status, start_time and lookup order into account
for target in featureset.status.targets:
driver = kind_to_driver[target.kind]
if driver.is_offline and (not name or name == target.name):
return get_target_driver(target, featureset)
return None | 6297f26e188ae31df3cf76b8e49229876cae23f6 | 17,172 |
def get_img_size(src_size, dest_size):
"""
Возвращает размеры изображения в пропорции с оригиналом исходя из того,
как направлено изображение (вертикально или горизонтально)
:param src_size: размер оригинала
:type src_size: list / tuple
:param dest_size: конечные размеры
:type dest_size: list / tuple
:rtype: tuple
"""
width, height = dest_size
src_width, src_height = src_size
if height >= width:
return (int(float(width) / height * src_height), src_height)
return (src_width, int(float(height) / width * src_width)) | 133dab529cd528373a1c7c6456a34cf8fd22dac9 | 17,173 |
def laxnodeset(v):
"""\
Return a nodeset with elements from the argument. If the argument is
already a nodeset, it self will be returned. Otherwise it will be
converted to a nodeset, that can be mutable or immutable depending on
what happens to be most effectively implemented."""
if not isinstance(v, NodeSet):
v = immnodeset(v)
return v | 3210f8d1c1d47c8871d0ba82c793b6cd85069566 | 17,174 |
def load_config():
"""
Loads the configuration file.
Returns:
- (json) : The configuration file.
"""
return load_json_file('config.json') | 05099118414d371ebc521e498503be1798c39066 | 17,175 |
import subprocess
def dtm_generate_footprint(tile_id):
"""
Generates a footprint file using gdal.
:param tile_id: tile id in the format "rrrr_ccc" where rrrr is the row number and ccc is the column number
:return execution status
"""
# Initiate return value and log output
return_value = ''
log_file = open('log.txt', 'a')
try:
cmd = settings.gdaltlindex_bin + \
settings.dtm_footprint_folder + '/DTM_1km_' + tile_id + '_footprint.shp ' + \
settings.dtm_folder + '/DTM_1km_' + tile_id + '.tif'
cmd_return = subprocess.check_output(cmd, shell=False, stderr=subprocess.STDOUT)
log_file.write( '\n' + tile_id + ' footprint generation... \n' +
cmd_return + \
'\n' + tile_id + ' successful.\n\n')
return_value = 'success'
except:
log_file.write('\n' + tile_id + ' footprint generation failed. \n')
return_value = 'gdalError'
# Close log file
log_file.close()
return return_value | da8526a61b75b4ec3ce22e052ba75d9ecee84f62 | 17,176 |
def favicon(request):
"""
best by tezar tantular from the Noun Project
"""
if settings.DEBUG:
image_data = open("static/favicon-dev.ico", "rb").read()
else:
image_data = open("static/favicon.ico", "rb").read()
# TODO add cache headers
return HttpResponse(image_data, content_type="image/x-icon") | 8824d8e6ff313c3773b3c6dddc0833eca3847fba | 17,177 |
from bs4 import BeautifulSoup
def text_from_html(body):
"""
Gets all raw text from html, removing all tags.
:param body: html
:return: str
"""
soup = BeautifulSoup(body, "html.parser")
texts = soup.findAll(text=True)
visible_texts = filter(tag_visible, texts)
return " ".join(t.strip() for t in visible_texts) | 313a5f404120c17290b726cb00b05e2276a07895 | 17,178 |
def alert_history():
"""
Alert History: RESTful CRUD controller
"""
return s3_rest_controller(rheader = s3db.cap_history_rheader) | 34a2b6bf90ab0b73eae3b64c83ffebc918e2f1a3 | 17,179 |
def chat():
"""
Chat room. The user's name and room must be stored in
the session.
"""
if 'avatar' not in session:
session['avatar'] = avatars.get_avatar()
data = {
'user_name': session.get('user_name', ''),
'avatar': session.get('avatar'),
'room_key': session.get('room_key', ''),
'password': session.get('password', '')
}
if data['user_name'] == '' or data['room_key'] == '':
return redirect(url_for('.index'))
return render_template('chat.html', **data) | d7024960ac8a03082deb696e0c0e6009dfe8e349 | 17,180 |
def _get_split_idx(N, blocksize, pad=0):
"""
Returns a list of indexes dividing an array into blocks of size blocksize
with optional padding. Padding takes into account that the resultant block
must fit within the original array.
Parameters
----------
N : Nonnegative integer
Total array length
blocksize : Nonnegative integer
Size of each block
pad : Nonnegative integer
Pad to add on either side of each index
Returns
-------
split_idx : List of 2-tuples
Indices to create splits
pads_used : List of 2-tuples
Pads that were actually used on either side
Examples
--------
>>> split_idx, pads_used = _get_split_idx(5, 2)
>>> print split_idx
[(0, 2), (2, 4), (4, 5)]
>>> print pads_used
[(0, 0), (0, 0), (0, 0)]
>>> _get_split_idx(5, 2, pad=1)
>>> print split_idx
[(0, 3), (1, 5), (3, 5)]
>>> print pads_used
[(0, 1), (1, 1), (1, 0)]
"""
num_fullsplits = N // blocksize
remainder = N % blocksize
split_idx = []
pads_used = []
for i in range(num_fullsplits):
start = max(0, i * blocksize - pad)
end = min(N, (i + 1) * blocksize + pad)
split_idx.append((start, end))
leftpad = i * blocksize - start
rightpad = end - (i + 1) * blocksize
pads_used.append((leftpad, rightpad))
# Append the last split if there is a remainder
if remainder:
start = max(0, num_fullsplits * blocksize - pad)
split_idx.append((start, N))
leftpad = num_fullsplits * blocksize - start
pads_used.append((leftpad, 0))
return split_idx, pads_used | 21935190de4c42fa5d7854f6608387dd2f004fbc | 17,181 |
def buydown_loan(amount, nrate, grace=0, dispoints=0, orgpoints=0, prepmt=None):
"""
In this loan, the periodic payments are recalculated when there are changes
in the value of the interest rate.
Args:
amount (float): Loan amount.
nrate (float, pandas.Series): nominal interest rate per year.
grace (int): numner of grace periods without paying the principal.
dispoints (float): Discount points of the loan.
orgpoints (float): Origination points of the loan.
prepmt (pandas.Series): generic cashflow representing prepayments.
Returns:
A object of the class ``Loan``.
>>> nrate = interest_rate(const_value=10, start='2016Q1', periods=11, freq='Q', chgpts={'2017Q2':20})
>>> buydown_loan(amount=1000, nrate=nrate, dispoints=0, orgpoints=0, prepmt=None) # doctest: +NORMALIZE_WHITESPACE
Amount: 1000.00
Total interest: 200.99
Total payment: 1200.99
Discount points: 0.00
Origination points: 0.00
<BLANKLINE>
Beg_Ppal_Amount Nom_Rate Tot_Payment Int_Payment Ppal_Payment \\
2016Q1 1000.000000 10.0 0.000000 0.000000 0.000000
2016Q2 1000.000000 10.0 114.258763 25.000000 89.258763
2016Q3 910.741237 10.0 114.258763 22.768531 91.490232
2016Q4 819.251005 10.0 114.258763 20.481275 93.777488
2017Q1 725.473517 10.0 114.258763 18.136838 96.121925
2017Q2 629.351591 20.0 123.993257 31.467580 92.525677
2017Q3 536.825914 20.0 123.993257 26.841296 97.151961
2017Q4 439.673952 20.0 123.993257 21.983698 102.009559
2018Q1 337.664393 20.0 123.993257 16.883220 107.110037
2018Q2 230.554356 20.0 123.993257 11.527718 112.465539
2018Q3 118.088816 20.0 123.993257 5.904441 118.088816
<BLANKLINE>
End_Ppal_Amount
2016Q1 1.000000e+03
2016Q2 9.107412e+02
2016Q3 8.192510e+02
2016Q4 7.254735e+02
2017Q1 6.293516e+02
2017Q2 5.368259e+02
2017Q3 4.396740e+02
2017Q4 3.376644e+02
2018Q1 2.305544e+02
2018Q2 1.180888e+02
2018Q3 1.136868e-13
>>> pmt = cashflow(const_value=0, start='2016Q1', periods=11, freq='Q')
>>> pmt['2017Q4'] = 200
>>> buydown_loan(amount=1000, nrate=nrate, dispoints=0, orgpoints=0, prepmt=pmt) # doctest: +NORMALIZE_WHITESPACE
Amount: 1000.00
Total interest: 180.67
Total payment: 1180.67
Discount points: 0.00
Origination points: 0.00
<BLANKLINE>
Beg_Ppal_Amount Nom_Rate Tot_Payment Int_Payment Ppal_Payment \\
2016Q1 1000.000000 10.0 0.000000 0.000000 0.000000
2016Q2 1000.000000 10.0 114.258763 25.000000 89.258763
2016Q3 910.741237 10.0 114.258763 22.768531 91.490232
2016Q4 819.251005 10.0 114.258763 20.481275 93.777488
2017Q1 725.473517 10.0 114.258763 18.136838 96.121925
2017Q2 629.351591 20.0 123.993257 31.467580 92.525677
2017Q3 536.825914 20.0 123.993257 26.841296 97.151961
2017Q4 439.673952 20.0 323.993257 21.983698 302.009559
2018Q1 137.664393 20.0 50.551544 6.883220 43.668324
2018Q2 93.996068 20.0 50.551544 4.699803 45.851741
2018Q3 48.144328 20.0 50.551544 2.407216 48.144328
<BLANKLINE>
End_Ppal_Amount
2016Q1 1.000000e+03
2016Q2 9.107412e+02
2016Q3 8.192510e+02
2016Q4 7.254735e+02
2017Q1 6.293516e+02
2017Q2 5.368259e+02
2017Q3 4.396740e+02
2017Q4 1.376644e+02
2018Q1 9.399607e+01
2018Q2 4.814433e+01
2018Q3 4.263256e-14
"""
if not isinstance(nrate, pd.Series):
TypeError('nrate must be a pandas.Series object.')
if prepmt is None:
prepmt = nrate.copy()
prepmt[:] = 0
else:
verify_period_range([nrate, prepmt])
life = len(nrate) - grace - 1
begppalbal = nrate.copy()
intpmt = nrate.copy()
ppalpmt = nrate.copy()
totpmt = nrate.copy()
endppalbal = nrate.copy()
begppalbal[:] = 0
intpmt[:] = 0
ppalpmt[:] = 0
totpmt[:] = 0
endppalbal[:] = 0
##
## balance calculation
##
pyr = getpyr(nrate)
for time in range(grace + life + 1):
if time == 0:
#
begppalbal[time] = amount
endppalbal[time] = amount
totpmt[time] = amount * (dispoints + orgpoints) / 100
### intpmt[time] = amount * dispoints / 100
#
else:
#
# periodic payment per period
#
if time <= grace:
begppalbal[time] = endppalbal[time - 1]
intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100
totpmt[time] = intpmt[time]
endppalbal[time] = begppalbal[time]
else:
pmt = -pvpmt(nrate=nrate[time], nper=grace+life-time+1,
pval=endppalbal[time-1], pmt=None, pyr=pyr)
totpmt[time] = pmt + prepmt[time]
# balance
begppalbal[time] = endppalbal[time - 1]
intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100
ppalpmt[time] = totpmt[time] - intpmt[time]
endppalbal[time] = begppalbal[time] - ppalpmt[time]
data = {'Beg_Ppal_Amount':begppalbal}
result = Loan(life=life, amount=amount, grace=grace, nrate=nrate,
dispoints=dispoints, orgpoints=orgpoints,
data=data)
result['Nom_Rate'] = nrate
result['Tot_Payment'] = totpmt
result['Int_Payment'] = intpmt
result['Ppal_Payment'] = ppalpmt
result['End_Ppal_Amount'] = endppalbal
return result | 46eb6bbaaa940b5cf1abd702ee5d9e2e20c6dab3 | 17,182 |
from typing import Optional
def ffill(array: np.ndarray, value: Optional[int] = 0) -> np.ndarray:
"""Forward fills an array.
Args:
array: 1-D or 2-D array.
value: Value to be filled. Default is 0.
Returns:
ndarray: Forward-filled array.
Examples:
>>> x = np.array([0, 5, 0, 0, 2, 0])
>>> ffill(x)
[0, 5, 5, 5, 2, 2]
Notes:
Works only in axis=1 direction.
"""
ndims = len(array.shape)
ran = np.arange(array.shape[ndims - 1])
idx = np.where((array != value), ran, 0)
idx = np.maximum.accumulate(idx, axis=ndims-1) # pylint: disable=E1101
if ndims == 2:
return array[np.arange(idx.shape[0])[:, None], idx]
return array[idx] | f5774c3e50ddbf2ffa9cf84df5cb57b135d1549a | 17,183 |
def svn_stringbuf_from_file(*args):
"""svn_stringbuf_from_file(char const * filename, apr_pool_t pool) -> svn_error_t"""
return _core.svn_stringbuf_from_file(*args) | b375a43bf8e050aa5191f387d930077680e9b019 | 17,184 |
def poly4(x, b, b0):
"""
Defines a function with polynom 4 to fit the curve
Parameters
----------
x: numpy.ndarray:
x of f(x)
b: float
Parameter to fit
b0 : int
y-intercept of the curve
Returns
-------
f : numpy.ndarray
Result of f(x)
"""
return b * np.array(x) ** 4 + b0 | aed3603640400488219f2cca82e57268f32de000 | 17,185 |
from teospy.tests.tester import Tester
def chkiapws06table6(printresult=True,chktol=_CHKTOL):
"""Check accuracy against IAPWS 2006 table 6.
Evaluate the functions in this module and compare to reference
values of thermodynamic properties (e.g. heat capacity, lapse rate)
in IAPWS 2006, table 6.
:arg bool printresult: If True (default) and any results are outside
of the given tolerance, then the function name, reference value,
result value, and relative error are printed.
:arg float chktol: Tolerance to use when choosing to print results
(default _CHKTOL).
:returns: :class:`~teospy.tests.tester.Tester` instances containing
the functions, arguments, reference values, results, and
relative errors from the tests. The first instance involves
derivatives of ice_g whereas the second tests the other
thermodynamic functions.
"""
fargs0 = (273.16,611.657)
fargs1 = (273.152519,101325.)
fargs2 = (100.,1e8)
propfargs = [fargs0,fargs1,fargs2]
ders = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)]
# Tester instance for derivatives of ice_g
derfuns = _ice_g
derfnames = 'ice_g'
# Derivatives change before arguments do here
derfargs = [(der+fargs) for fargs in propfargs for der in ders]
derargfmt = '({0:1g},{1:1g},{2:7.3f},{3:7g})'
derrefs = [0.611784135,0.122069433940e+4,0.109085812737e-2,
-0.767602985875e+1,0.174387964700e-6,-0.128495941571e-12,
0.10134274069e+3,0.122076932550e+4,0.109084388214e-2,-0.767598233365e+1,
0.174362219972e-6,-0.128485364928e-12,-0.222296513088e+6,
0.261195122589e+4,0.106193389260e-2,-0.866333195517e+1,
0.274505162488e-7,-0.941807981761e-13]
header = 'Ice Gibbs energy derivatives'
dertest = Tester(derfuns,derfargs,derrefs,derfnames,derargfmt,header=header)
# Tester instance for other ice properties
propfuns = [enthalpy,helmholtzenergy,internalenergy,entropy,cp,density,
expansion,pcoefficient,kappa_t,kappa_s]
propfnames = ['enthalpy','helmholtzenergy','internalenergy','entropy','cp',
'density','expansion','pcoefficient','kappa_t','kappa_s']
propargfmt = '({0:7.3f},{1:7g})'
proprefs = [
[-0.333444253966e+6,-0.333354873637e+6,-0.483491635676e+6],
[-0.55446875e-1,-0.918701567e+1,-0.328489902347e+6],
[-0.333444921197e+6,-0.333465403393e+6,-0.589685024936e+6],
[-0.122069433940e+4,-0.122076932550e+4,-0.261195122589e+4],
[0.209678431622e+4,0.209671391024e+4,0.866333195517e+3],
[0.916709492200e+3,0.916721463419e+3,0.941678203297e+3],
[0.159863102566e-3,0.159841589458e-3,0.258495528207e-4],
[0.135714764659e+7,0.135705899321e+7,0.291466166994e+6],
[0.117793449348e-9,0.117785291765e-9,0.886880048115e-10],
[0.114161597779e-9,0.114154442556e-9,0.886060982687e-10]
]
header = 'Ice thermodynamic properties'
proptest = Tester(propfuns,propfargs,proprefs,propfnames,propargfmt,
header=header)
# Run Tester instances and print results
dertest.run()
proptest.run()
if printresult:
dertest.printresults(chktol=chktol)
proptest.printresults(chktol=chktol)
return dertest, proptest | c0fce67d3a268ec0b67ff845f5671c67aa394846 | 17,186 |
def flat(arr):
"""
Finds flat things (could be zeros)
___________________________
"""
arr = np.array(arr)
if arr.size == 0:
return False
mean = np.repeat(np.mean(arr), arr.size)
nonzero_residuals = np.nonzero(arr - mean)[0]
return nonzero_residuals.size < arr.size/100 | ce2697d95165b46cec477265df6ccb337cb89af1 | 17,187 |
def sensitive_fields(*paths, **typed_paths):
"""
paths must be a path like "password" or "vmInfo.password"
"""
def ret(old_init):
def __init__(self, *args, **kwargs):
if paths:
ps = ["obj['" + p.replace(".", "']['") + "']" for p in paths]
setattr(self, SENSITIVE_FIELD_NAME, ps)
old_init(self)
return __init__
return ret | e174519c253d4676ae7c07c1b11eb18e532d5f61 | 17,188 |
from datetime import datetime
import time
def get_timestamp_diff(diff):
"""获取前后diff天对应的时间戳(毫秒)"""
tmp_str = (datetime.today() + timedelta(diff)).strftime("%Y-%m-%d %H:%M:%S")
tmp_array = time.strptime(tmp_str, "%Y-%m-%d %H:%M:%S")
return int(time.mktime(tmp_array)) * 1000 | 61ca093471103376ee44d940552db6337a4e65f5 | 17,189 |
def can_delete(account, bike):
""" Check if an account can delete a bike.
Account must be a team member and bike not borrowed in the future.
"""
return (team_control.is_member(account, bike.team)
and not has_future_borrows(bike)) | f962e465b6a5eb62feea2683cdd8328b5591fb43 | 17,190 |
import os
def config_file():
"""
Returns the config file ($HOME/.config/python-pulseaudio-profiles-trayicon/config.json).
:return: the directory for the configurations
:rtype: str
"""
return os.path.join(config_dir(), "config.json") | 2841d6b52f2b95a194b2858ee1522f0516efbd9d | 17,191 |
def get_node_types(nodes, return_shape_type = True):
"""
Get the maya node types for the nodes supplied.
Returns:
dict: dict[node_type_name] node dict of matching nodes
"""
found_type = {}
for node in nodes:
node_type = cmds.nodeType(node)
if node_type == 'transform':
if return_shape_type:
shapes = get_shapes(node)
if shapes:
node_type = cmds.nodeType(shapes[0])
if not node_type in found_type:
found_type[node_type] = []
found_type[node_type].append(node)
return found_type | 7867f97f7228ac77ae44fda04672a8224aa7c1f4 | 17,192 |
import csv
from typing import OrderedDict
def updateDistances(fileName):
"""
Calculate and update the distance on the given CSV file.
Parameters
----------
fileName: str
Path and name of the CSV file to process.
Returns
-------
ret: bool
Response indicating if the update was successful or not.
"""
# Read the face data from the CSV file
try:
file = open(fileName, 'r+', newline='')
except:
return False
reader = csv.reader(file, delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)
writer = csv.writer(file, delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)
# Read the face data from the CSV file and recalculate the distances,
# also building a list to later recalculate the distance gradients
frames = []
distances = []
faces = OrderedDict()
prevDist = 0
for row in reader:
if row[0] != 'frame':
# Read the face data from the CSV file
frameNum = int(row[0])
face = FaceData()
face.fromList(row[1:])
face.gradient = 0.0
face.calculateDistance()
faces[frameNum] = face
# In case the face has been detected but the distance calculation
# failed, assume the same distance as the previous detected face
if not face.isEmpty():
if face.distance == 0:
face.distance = prevDist
prevDist = face.distance
# Consider for the calculation of the gradients only the non-empty
# faces (i.e. the frames where a face was detected)
if not face.isEmpty():
frames.append(frameNum)
distances.append(face.distance)
# Calculate the gradients from the helper list of distances
gradients = np.gradient(distances)
for i, frameNum in enumerate(frames):
faces[frameNum].gradient = gradients[i]
# Save the face data back to the CSV file
file.truncate(0)
file.seek(0)
writer.writerow(['frame'] + FaceData.header())
for frameNum, face in faces.items():
writer.writerow([frameNum] + face.toList())
file.close()
return True | c19e0adcf731f9fd1af87f5dfe3a61889d395457 | 17,193 |
def hr(*args, **kwargs):
"""
The HTML <hr> element represents a thematic break between
paragraph-level elements (for example, a change of scene in a
story, or a shift of topic with a section). In previous versions
of HTML, it represented a horizontal rule. It may still be
displayed as a horizontal rule in visual browsers, but is now
defined in semantic terms, rather than presentational terms.
"""
return void_el('hr', *args, **kwargs) | 959106dc2c71334b5a88045f8a26a9f42a2d2fdb | 17,194 |
def as_linker_option(p):
"""Return as an ld library path argument"""
if p:
return '-Wl,' + p
return '' | 452c06034be5c3c2525eb2bfad011e468daef02b | 17,195 |
def split_backbone(options):
"""
Split backbone fasta file into chunks.
Returns dictionary of backbone -> id.
"""
backbone_to_id = {}
id_counter = 0
# Write all backbone files to their own fasta file.
pf = ParseFasta(options.backbone_filename)
tuple = pf.getRecord()
while tuple is not None:
print tuple[0]
split_backbone = open(options.output_dir + '/' + options.prefix + '-' + str(id_counter) + '.fasta', 'w')
split_backbone.write('>' + tuple[0] + '\n' + tuple[1])
split_backbone.close()
backbone_to_id[tuple[0]] = options.prefix + '-' + str(id_counter)
id_counter += 1
tuple = pf.getRecord()
return backbone_to_id | 6446e90a1aa2e38ca01ebb8a86b8cd1dbd3abd75 | 17,196 |
import pkg_resources
def _get_highest_tag(tags):
"""Find the highest tag from a list.
Pass in a list of tag strings and this will return the highest
(latest) as sorted by the pkg_resources version parser.
"""
return max(tags, key=pkg_resources.parse_version) | 8d2580f6f6fbb54108ee14d6d4834d376a65c501 | 17,197 |
def add_comment(request, pk):
"""
Adds comment to the image - POST.
Checks the user and assigns it to the comment.posted_by
"""
form = PhotoCommentForm(request.POST)
if form.is_valid():
comment = form.save(commit=False)
comment.user = request.user
comment.save()
else:
text = 'You have used forbidden word!'
messages.warning(request, text)
return redirect('photo comments', pk) | 4488a183ca7786c65d355991cec38fed01864ab1 | 17,198 |
import os
def predict():
"""
runs the three models and displays results view
"""
filename = request.form['filename']
file_root = os.path.splitext(filename)[0]
full_filename = os.path.join(app.config['STATIC_MATRIX_PATH'],
filename)
# run YOLOv5 model
os.system(f'python models/yolov5/detect.py '
f'--weights models/yolov5/best-2.pt '
f'--source {app.config["STATIC_MATRIX_FOLDER"]} '
f'--out {app.config["TEMP_FOLDER"]} '
f'--img 416 --conf 0.4 --save-txt')
# run toLatex model
latex = results_to_latex(
os.path.join(app.config['TEMP_PATH'], file_root + '.txt'), CLASSES)
latex_filename = os.path.join(app.config['STATIC_MATRIX_PATH'],
file_root)
# run renderLatex model
displaylatex(latex.replace('\n', ''), latex_filename)
# delete temporary folder
os.system('rm -r temp')
return render_template('results.html', latex=latex,
matrix_image=full_filename,
image_filename=filename,
latex_pdf=latex_filename+'.pdf') | 5eeb7452228562b0881105f2e991a781f26921ef | 17,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.