content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def station_suffix(station_type): """ Simple switch, map specific types on to single letter. """ suffix = ' (No Dock)' if 'Planetary' in station_type and station_type != 'Planetary Settlement': suffix = ' (P)' elif 'Starport' in station_type: suffix = ' (L)' elif 'Asteroid' in station_type: suffix = ' (AB)' elif 'Outpost' in station_type: suffix = ' (M)' elif 'Carrier' in station_type: suffix = ' (C)' return suffix
c28c4d3f0da8401ffc0721a984ec2b2e2cd50b24
13,200
def temperatures_equal(t1, t2): """Handle 'off' reported as 126.5, but must be set as 0.""" if t1 == settings.TEMPERATURE_OFF: t1 = 0 if t2 == settings.TEMPERATURE_OFF: t2 = 0 return t1 == t2
5c054d23317565e474f6c8d30b7d87c0b832fe9f
13,201
import os def calc_cf(fname, standard='GC',thickness=1.0,plot=False,xmin=None,xmax=None,interpolation_type='linear'): """ Calculates the calibration factor by using different chosen standards like fname : filename containing the experimental data done on standard sample standard : 'GC' or 'Water' for (Glassy Carbon with thickness 0.1055cm from NIST) or (Water with the the known thickness as the samples) thickness : Thickness of Standard sample in cm. It should be 0.1055 for NIST GC standard. interpolation_type : 'linear','quadratic'or 'cubic' plot : True or False for plotting or not plotting to view the goodness of fit xmin,xmax : minimum and maximum Q-value between which the experimental data will be fitted with the standard data available """ if os.path.exists(fname): if standard=='GC': std_dat=np.loadtxt('./SetupData/glassy_carbon_saxs_std.txt') elif standard=='Water': qst=np.linspace(0.003,1.0,1000) std_dat=np.vstack((qst,np.ones_like(qst)*1.68e-2)).T tmp_dat=np.loadtxt(fname) fh=open(fname,'r') lines=fh.readlines() for line in lines: if line[0]=='#': try: header,value=line[1:].split('=') if header=='Energy': energy=float(value) except: pass #Checking the data for zeros exp_dat=[] for i in range(tmp_dat.shape[0]): if tmp_dat[i,1]>1e-20: exp_dat.append(tmp_dat[i,:]) exp_dat=np.array(exp_dat) if xmin is None: xmin=np.max([np.min(std_dat[:,0]),np.min(exp_dat[:,0])]) if xmax is None: xmax=np.min([np.max(std_dat[:,0]),np.max(exp_dat[:,0])]) istdmin=np.argwhere(std_dat[:,0]>=xmin)[0][0] istdmax=np.argwhere(std_dat[:,0]<=xmax)[-1][0] expdmin=np.argwhere(exp_dat[:,0]>=xmin)[0][0] expdmax=np.argwhere(exp_dat[:,0]<=xmax)[-1][0] xmin=np.max([std_dat[istdmin,0],exp_dat[expdmin,0]]) xmax=np.min([std_dat[istdmax,0],exp_dat[expdmax,0]]) x=np.linspace(1.05*xmin,0.95*xmax,100) istdf=interp1d(std_dat[:,0],std_dat[:,1],kind=interpolation_type) expdf=interp1d(exp_dat[:,0],exp_dat[:,1],kind=interpolation_type) param=Parameters() param.add('cf',value=1.0,vary=True) res=minimize(fun,param,args=(x,istdf,expdf,thickness)) cf=res.params['cf'].value #print(cf,qoff) #cf=np.mean(istdf(x)/expdf(x)) if plot: pylab.loglog(std_dat[:,0],std_dat[:,1],'r-',lw=3,label='NIST std') pylab.loglog(x,istdf(x)-res.residual,'g-',lw=3,label='15IDD data') pylab.xlabel(u'Q, \u212B$^{-1}$',fontsize=fs) pylab.ylabel(u'I, cm$^{-1}$',fontsize=fs) pylab.legend(loc='best',prop={'size':fs*0.6}) pylab.xticks(fontsize=fs) pylab.yticks(fontsize=fs) pylab.tight_layout() pylab.show() return energy,cf,x,istdf(x) else: print('%s doesnot exist!'%fname)
68d6366d8b9d0be35509b0d4c0d65dc8c22d5668
13,202
import csv def import_capitals_from_csv(path): """Imports a dictionary that maps country names to capital names. @param string path: The path of the CSV file to import this data from. @return dict: A dictionary of the format {"Germany": "Berlin", "Finland": "Helsinki", ...} """ capitals = {} with open(path) as capitals_file: reader = csv.reader(capitals_file) for row in reader: country, capital = row[0], row[1] capitals[country] = capital return capitals
3c6a9c91df455cb8721371fe40b248fb7af8d866
13,203
import os import configparser def read_config(config_file='config.ini'): """ Read the configuration file. :param str config_file: Path to the configuration file. :return: """ if os.path.isfile(config_file) is False: raise NameError(config_file, 'not found') config = configparser.ConfigParser() config.read(config_file) return config
0cafb2f280e30467e833d404ac86a8cea03f050a
13,204
def deg_to_qcm2(p, deg): """Return the center-of-momentum momentum transfer q squared, in MeV^2. Parameters ---------- p_rel = float relative momentum given in MeV. degrees = number angle measure given in degrees """ return (p * np.sqrt( 2 * (1 - np.cos(np.radians(deg))) ))**(2)
4b1840a8c672b443ac1954c0bde0a81a01338862
13,205
from django.conf import settings def i18n(request): """ Set client language preference, lasts for one month """ next = request.META.get('HTTP_REFERER', None) if not next: next = settings.SITE_ROOT lang = request.GET.get('lang', 'en') res = HttpResponseRedirect(next) res.set_cookie(settings.LANGUAGE_COOKIE_NAME, lang, max_age=30*24*60*60) return res
a56289c03b14b76719fc31bcee7e0e4e590f47ef
13,206
def replace_suffix(input_filepath, input_suffix, output_suffix, suffix_delimiter=None): """ Replaces an input_suffix in a filename with an output_suffix. Can be used to generate or remove suffixes by leaving one or the other option blank. TODO: Make suffixes accept regexes. Can likely replace suffix_delimiter after this. TODO: Decide whether suffixes should extend across multiple directory levels. Parameters ---------- input_filepath: str The filename to be transformed. input_suffix: str The suffix to be replaced output_suffix: str The suffix to replace with. suffix_delimiter: str Optional, overrides input_suffix. Replaces whatever comes after suffix_delimiter with output_suffix. Returns ------- output_filepath: str The transformed filename """ split_filename = nifti_splitext(input_filepath) if suffix_delimiter is not None: input_suffix = str.split(split_filename[0], suffix_delimiter)[-1] if input_suffix not in os.path.basename(input_filepath): print 'ERROR!', input_suffix, 'not in input_filepath.' return [] else: if input_suffix == '': prefix = split_filename[0] else: prefix = input_suffix.join(str.split(split_filename[0], input_suffix)[0:-1]) prefix = prefix + output_suffix output_filepath = prefix + split_filename[1] return output_filepath
6bc899c3ed2bcf86d085972ad6b2cd90f77269aa
13,207
import random def normal222(startt,endt,money2,first,second,third,forth,fifth,sixth,seventh,zz1,zz2,bb1,bb2,bb3,aa1,aa2): """ for source and destination id generation """ """ for type of banking work,label of fraud and type of fraud """ idvariz=random.choice(bb3) idgirande=random.choice(zz2) first.append("transfer") second.append(idvariz) third.append(idgirande) sixth.append("0") seventh.append("none") """ for amount of money generation """ numberofmoney=random.randrange(50000,money2) forth.append(numberofmoney) """ for date and time generation randomly between two dates """ final=randomDate(startt,endt, random.random()) fifth.append(final) return (first,second,third,forth,fifth,sixth,seventh)
5d0a4cfbd5e7ef3223cc67c4759967e86c4081c8
13,208
def _convert_to_coreml(tf_model_path, mlmodel_path, input_name_shape_dict, output_names): """ Convert and return the coreml model from the Tensorflow """ model = tf_converter.convert(tf_model_path=tf_model_path, mlmodel_path=mlmodel_path, output_feature_names=output_names, input_name_shape_dict=input_name_shape_dict) return model
b7266a1afe0f03717a8e710f9099a0349cc5b085
13,209
def _tavella_randell_nonuniform_grid(x_min, x_max, x_star, num_grid_points, alpha, dtype): """Creates non-uniform grid clustered around a specified point. Args: x_min: A real `Tensor` of shape `(dim,)` specifying the lower limit of the grid. x_max: A real `Tensor` of same shape and dtype as `x_min` specifying the upper limit of the grid. x_star: A real `Tensor` of same shape and dtype as `x_min` specifying the location on the grid around which higher grid density is desired. num_grid_points: A scalar integer `Tensor` specifying the number of points on the grid. alpha: A scalar parameter which controls the degree of non-uniformity of the grid. The smaller values of `alpha` correspond to greater degree of clustering around `x_star`. dtype: The default dtype to use when converting values to `Tensor`s. Returns: A real `Tensor` of shape `(dim, num_grid_points+1)` containing the non-uniform grid. """ c1 = tf.math.asinh((x_min - x_star) / alpha) c2 = tf.math.asinh((x_max - x_star) / alpha) i = tf.expand_dims(tf.range(0, num_grid_points + 1, 1, dtype=dtype), axis=-1) grid = x_star + alpha * tf.math.sinh(c2 * i / num_grid_points + c1 * (1 - i / num_grid_points)) # reshape from (num_grid_points+1, dim) to (dim, num_grid_points+1) return tf.transpose(grid)
6c209871b3a8aba291b00a513056d5e1ebe111f8
13,210
import functools import logging def node(func): """Decorator for functions which should get currentIndex node if no arg is passed""" @functools.wraps(func) def node_wrapper(self, *a, **k): n = False keyword = True # Get node from named parameter if 'node' in k: n = k['node'] # Or from the first unnamed argument elif len(a) >= 1: n = a[0] keyword = False # If node was not specified, get from currentIndex if n in (None, False): n = self.model().data(self.currentIndex(), role=QtUserRole) logging.debug('@node not specified: got selected', n) elif isDataset(n): n = docname(n) logging.debug('@node was a dataset: found path', n) # If node was expressed as/converted to string, get its corresponding # tree entry if isinstance(n, str) or isinstance(n, unicode): logging.debug('traversing node', n) n = str(n) n = self.model().tree.traverse(n) if keyword: k['node'] = n else: a = list(a) a[0] = n a = tuple(a) logging.debug('@node returning', n, type(n), isinstance(n, unicode)) return func(self, *a, **k) return node_wrapper
d86a6a9e15314905cacc184f5939399f7b481f49
13,211
import uuid def tourme_details(): """ Display Guides loan-details """ return render_template('tourme_details.html', id=str(uuid.uuid4()))
e332546257670bd26d08be8baf4122f93feab170
13,212
import json def gen_dot_ok(notebook_path, endpoint): """ Generates .ok file and return its name Args: notebook_path (``pathlib.Path``): the path to the notebook endpoint (``str``): an endpoint specification for https://okpy.org Returns: ``str``: the name of the .ok file """ assert notebook_path.suffix == '.ipynb', notebook_path ok_path = notebook_path.with_suffix('.ok') name = notebook_path.stem src = [notebook_path.name] with open(ok_path, 'w') as out: json.dump({ "name": name, "endpoint": endpoint, "src": src, "tests": { "tests/q*.py": "ok_test" }, "protocols": [ "file_contents", "grading", "backup" ] }, out) return ok_path.name
850827a3da476cc64bd50c40c2504d9765b25dfe
13,213
def sarig_methods_wide( df: pd.DataFrame, sample_id: str, element_id: str, ) -> pd.DataFrame: """Create a corresponding methods table to match the pivoted wide form data. .. note:: This requires the input dataframe to already have had methods mapping applied by running ``pygeochemtools.geochem.create_dataset.add_sarig_chem_method`` function. Args: df (pd.DataFrame): Dataframe containing long form data. sample_id (str): Name of column containing sample ID's. element_id (str): Name of column containing geochemical element names. Returns: pd.DataFrame: Dataframe with mapped geochemical methods converted to wide form with one method per sample. """ ... df = df # grab duplicate values duplicate_df = df[df.duplicated(subset=[sample_id, element_id], keep="last")] df = df.drop_duplicates(subset=[sample_id, element_id]) method_code = ( df.pivot(index=[sample_id], columns=element_id, values=["CHEM_METHOD_CODE"],) .add_suffix("_METHOD_CODE") .droplevel(0, axis=1) ) determination = ( df.pivot(index=[sample_id], columns=element_id, values=["DETERMINATION"],) .add_suffix("_DETERMINATION") .droplevel(0, axis=1) ) digestion = ( df.pivot(index=[sample_id], columns=element_id, values=["DIGESTION"],) .add_suffix("_DIGESTION") .droplevel(0, axis=1) ) fusion = ( df.pivot(index=[sample_id], columns=element_id, values=["FUSION"],) .add_suffix("_FUSION") .droplevel(0, axis=1) ) assert ( method_code.columns.size == determination.columns.size # noqa: W503 == digestion.columns.size # noqa: W503 == fusion.columns.size # noqa: W503 ), "pivoted column lengths aren't equal" c = np.empty( ( method_code.columns.size + determination.columns.size # noqa: W503 + digestion.columns.size # noqa: W503 + fusion.columns.size, # noqa: W503 ), dtype=object, ) c[0::4], c[1::4], c[2::4], c[3::4] = ( method_code.columns, determination.columns, digestion.columns, fusion.columns, ) df_wide = pd.concat([method_code, determination, digestion, fusion], axis=1)[c] if not duplicate_df.empty: try: dup_method_code = ( duplicate_df.pivot( index=[sample_id], columns=element_id, values=["CHEM_METHOD_CODE"], ) .add_suffix("_METHOD_CODE") .droplevel(0, axis=1) ) dup_determination = ( duplicate_df.pivot( index=[sample_id], columns=element_id, values=["DETERMINATION"], ) .add_suffix("_DETERMINATION") .droplevel(0, axis=1) ) dup_digestion = ( duplicate_df.pivot( index=[sample_id], columns=element_id, values=["DIGESTION"], ) .add_suffix("_DIGESTION") .droplevel(0, axis=1) ) dup_fusion = ( duplicate_df.pivot( index=[sample_id], columns=element_id, values=["FUSION"], ) .add_suffix("_FUSION") .droplevel(0, axis=1) ) except ValueError as e: print( "There were duplicate duplicates in the method list. \ So no duplicates have been included in the output", e, ) else: assert ( dup_method_code.columns.size == dup_determination.columns.size # noqa: W503 == dup_digestion.columns.size # noqa: W503 == dup_fusion.columns.size # noqa: W503 ), "pivoted column lengths aren't equal" d = np.empty( ( dup_method_code.columns.size + dup_determination.columns.size # noqa: W503 + dup_digestion.columns.size # noqa: W503 + dup_fusion.columns.size, # noqa: W503 ), dtype=object, ) d[0::4], d[1::4], d[2::4], d[3::4] = ( dup_method_code.columns, dup_determination.columns, dup_digestion.columns, dup_fusion.columns, ) dup_df_wide = pd.concat( [dup_method_code, dup_determination, dup_digestion, dup_fusion], axis=1 )[d] df_wide = df_wide.append(dup_df_wide).sort_values(by=sample_id) return df_wide
95d969213de0702f3a6666e8e13ae2d37e404e3a
13,214
def scan_torsion(resolution, unique_conformers=[]): """ """ # Load the molecule sdf_filename = "sdf/pentane.sdf" suppl = Chem.SDMolSupplier(sdf_filename, removeHs=False, sanitize=True) mol = next(suppl) # Get molecule information # n_atoms = mol.GetNumAtoms() atoms = mol.GetAtoms() # atoms = [atom.GetAtomicNum() for atom in atoms] atoms = [atom.GetSymbol() for atom in atoms] # Origin conformer = mol.GetConformer() origin = conformer.GetPositions() origin -= rmsd.centroid(origin) # Dihedral angle a = 0 b = 1 c = 5 d = 8 # Origin angle origin_angle = Chem.rdMolTransforms.GetDihedralDeg(conformer, a, b, c, d) # Setup forcefield mp = ChemicalForceFields.MMFFGetMoleculeProperties(mol) ff = ChemicalForceFields.MMFFGetMoleculeForceField(mol, mp) # Define all angles to scan angles = get_angles(resolution) debug_file = "test.xyz" debug_file = open(debug_file, 'a+') if len(unique_conformers) == 0: xyz = rmsd.calculate_rmsd.set_coordinates(atoms, origin) debug_file.write(xyz) debug_file.write("\n") unique_conformers = [origin] for angle in angles: # Reset position for i, pos in enumerate(origin): conformer.SetAtomPosition(i, pos) # Set clockwork angle Chem.rdMolTransforms.SetDihedralDeg(conformer, a, b, c, d, origin_angle + angle) # Setup constrained ff ffc = ChemicalForceFields.MMFFGetMoleculeForceField(mol, mp) ffc.MMFFAddTorsionConstraint(a, b, c, d, False, origin_angle+angle, origin_angle + angle, 1.0e10) ffc.Minimize(maxIts=1000, energyTol=1e-2, forceTol=1e-3) # angle1 = Chem.rdMolTransforms.GetDihedralDeg(conformer, a, b, c, d) ff.Minimize(maxIts=1000, energyTol=1e-2, forceTol=1e-4) # angle2 = Chem.rdMolTransforms.GetDihedralDeg(conformer, a, b, c, d) pos = conformer.GetPositions() pos -= rmsd.centroid(pos) print("debug", len(unique_conformers)) unique = compare_positions(pos, unique_conformers) if not unique: continue pos = align(pos, origin) unique_conformers.append(pos) xyz = rmsd.calculate_rmsd.set_coordinates(atoms, pos) debug_file.write(xyz) debug_file.write("\n") print(angle, unique) debug_file.close() return unique_conformers
8dfd6e0443ef83361aa993be4e9613435f78bf14
13,215
def vflip_box(box: TensorOrArray, image_center: TensorOrArray) -> TensorOrArray: """Flip boxes vertically, which are specified by their (cx, cy, w, h) norm coordinates. Reference: https://blog.paperspace.com/data-augmentation-for-bounding-boxes/ Args: box (TensorOrArray[B, 4]): Boxes to be flipped. image_center (TensorOrArray[4]): Center of the image. Returns: box (TensorOrArray[B, 4]): Flipped boxes. """ box[:, [1, 3]] += 2 * (image_center[[0, 2]] - box[:, [1, 3]]) box_h = abs(box[:, 1] - box[:, 3]) box[:, 1] -= box_h box[:, 3] += box_h return box
99128e7b6d928c1b58457fc6d51b971c109cc77e
13,216
import pathlib def example_data(): """Example data setup""" tdata = ( pathlib.Path(__file__).parent.absolute() / "data" / "ident-example-support.txt" ) return tdata
a8c9a88f8850fecc7cc05fb8c9c18e03778f3365
13,217
def add_ending_slash(directory: str) -> str: """add_ending_slash function Args: directory (str): directory that you want to add ending slash Returns: str: directory name with slash at the end Examples: >>> add_ending_slash("./data") "./data/" """ if directory[-1] != "/": directory = directory + "/" return directory
2062a55b59707dd48e5ae56d8d094c806d8a2c1d
13,218
import scipy def antenna_positions(): """ Generate antenna positions for a regular rectangular array, then return baseline lengths. - Nx, Ny : No. of antennas in x and y directions - Dmin : Separation between neighbouring antennas """ # Generate antenna positions on a regular grid x = np.arange(Nx) * Dmin y = np.arange(Ny) * Dmin xx, yy = np.meshgrid(x, y) # Calculate baseline separations xy = np.column_stack( (xx.flatten(), yy.flatten()) ) d = scipy.spatial.distance.pdist(xy) return d
f47a0c887489987d8fc95205816459db55bbaa19
13,219
from typing import Union from typing import List def folds_to_list(folds: Union[list, str, pd.Series]) -> List[int]: """ This function formats string or either list of numbers into a list of unique int Args: folds (Union[list, str, pd.Series]): Either list of numbers or one string with numbers separated by commas or pandas series Returns: List[int]: list of unique ints Examples: >>> folds_to_list("1,2,1,3,4,2,4,6") [1, 2, 3, 4, 6] >>> folds_to_list([1, 2, 3.0, 5]) [1, 2, 3, 5] Raises: ValueError: if value in string or array cannot be casted to int """ if isinstance(folds, str): folds = folds.split(",") elif isinstance(folds, pd.Series): folds = list(sorted(folds.unique())) return list({int(x) for x in folds})
f499cce7992b77867fc3a7d95c8dd6efc83c3c79
13,220
import gc def predict_all(x, model, config, spline): """ Predict full scene using average predictions. Args: x (numpy.array): image array model (tf h5): image target size config (Config): spline (numpy.array): Return: prediction scene array average probabilities ---------- Example ---------- predict_all(x, model, config, spline) """ for i in range(8): if i == 0: # reverse first dimension x_seg = predict_windowing( x[::-1, :, :], model, config, spline=spline ).transpose([2, 0, 1]) elif i == 1: # reverse second dimension temp = predict_windowing( x[:, ::-1, :], model, config, spline=spline ).transpose([2, 0, 1]) x_seg = temp[:, ::-1, :] + x_seg elif i == 2: # transpose(interchange) first and second dimensions temp = predict_windowing( x.transpose([1, 0, 2]), model, config, spline=spline ).transpose([2, 0, 1]) x_seg = temp.transpose(0, 2, 1) + x_seg gc.collect() elif i == 3: temp = predict_windowing( np.rot90(x, 1), model, config, spline=spline ) x_seg = np.rot90(temp, -1).transpose([2, 0, 1]) + x_seg gc.collect() elif i == 4: temp = predict_windowing( np.rot90(x, 2), model, config, spline=spline ) x_seg = np.rot90(temp, -2).transpose([2, 0, 1]) + x_seg elif i == 5: temp = predict_windowing( np.rot90(x, 3), model, config, spline=spline ) x_seg = np.rot90(temp, -3).transpose(2, 0, 1) + x_seg elif i == 6: temp = predict_windowing( x, model, config, spline=spline ).transpose([2, 0, 1]) x_seg = temp + x_seg elif i == 7: temp = predict_sliding( x, model, config, spline=spline ).transpose([2, 0, 1]) x_seg = temp + x_seg gc.collect() del x, temp # delete arrays x_seg /= 8.0 return x_seg.argmax(axis=0)
6e5888b1d97c3a0924a67500c4b731fd00654cb2
13,221
def pre_arrange_cols(dataframe): """ DOCSTRING :param dataframe: :return: """ col_name = dataframe.columns.values[0] dataframe.loc[-1] = col_name dataframe.index = dataframe.index + 1 dataframe = dataframe.sort_index() dataframe = dataframe.rename(index=str, columns={col_name: 'all'}) return dataframe
522c0f4ca29b10d4a736d27f07d8e9dc80cafba5
13,222
import numpy def wDot(x,y,h): """ Compute the parallel weighted dot product of vectors x and y using weight vector h. The weighted dot product is defined for a weight vector :math:`\mathbf{h}` as .. math:: (\mathbf{x},\mathbf{y})_h = \sum_{i} h_{i} x_{i} y_{i} All weight vector components should be positive. :param x,y,h: numpy arrays for vectors and weight :return: the weighted dot product """ return globalSum(numpy.sum(x*y*h))
e9bcc295517060f95004aec581055950358c9521
13,223
def dataframify(transform): """ Method which is a decorator transforms output of scikit-learn feature normalizers from array to dataframe. Enables preservation of column names. Args: transform: (function), a scikit-learn feature selector that has a transform method Returns: new_transform: (function), an amended version of the transform method that returns a dataframe """ @wraps(transform) def new_transform(self, df): arr = transform(self, df.values) return pd.DataFrame(arr, columns=df.columns, index=df.index) return new_transform
cf21bb7aea90e742c83fb5e1abb41c5d01cddf4e
13,224
def plot_map(self, map, update=False): """ map plotting Parameters ---------- map : ndarray map to plot update : Bool updating the map or plotting from scratch """ if update: empty=np.empty(np.shape(self.diagnostics[self.diagnostic])) empty[:]=np.nan self.map.set_data(empty) return self.map_window.imshow(map, origin='lower', interpolation='nearest',cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) else: return self.map_window.imshow(map, origin='lower', interpolation='nearest',cmap=self.cmap, vmin=self.vmin, vmax=self.vmax)
a4effd8c7e958b694f2c01afdaa861455c855a0b
13,225
def definition_activate(connection, args): """Activate Business Service Definition""" activator = sap.cli.wb.ObjectActivationWorker() activated_items = ((name, sap.adt.ServiceDefinition(connection, name)) for name in args.name) return sap.cli.object.activate_object_list(activator, activated_items, count=len(args.name))
61dd5de0d8e24339c67363e904628390cc79b1da
13,226
import re def extractCompositeFigureStrings(latexString): """ Returns a list of latex figures as strings stripping out captions. """ # extract figures figureStrings = re.findall(r"\\begin{figure}.*?\\end{figure}", latexString, re.S) # filter composite figures only and remove captions (preserving captions in subfigures) figureStrings = [ re.findall(r"\\begin{figure}.*(?=\n.*\\caption)", figureString, re.S)[0] + "\n\\end{figure}" for figureString in figureStrings if "\\begin{subfigure}" in figureString ] return figureStrings
83a80c91890d13a6a0247745835e1ffb97d579f7
13,227
import time def osm_net_download( polygon=None, north=None, south=None, east=None, west=None, network_type="all_private", timeout=180, memory=None, date="", max_query_area_size=50 * 1000 * 50 * 1000, infrastructure='way["highway"]', ): """ Download OSM ways and nodes within some bounding box from the Overpass API. Parameters ---------- polygon : shapely Polygon or MultiPolygon geographic shape to fetch the street network within north : float northern latitude of bounding box south : float southern latitude of bounding box east : float eastern longitude of bounding box west : float western longitude of bounding box network_type : string {'walk', 'bike', 'drive', 'drive_service', 'all', 'all_private'} what type of street network to get timeout : int the timeout interval for requests and to pass to API memory : int server memory allocation size for the query, in bytes. If none, server will use its default allocation size date : string query the database at a certain timestamp max_query_area_size : float max area for any part of the geometry, in the units the geometry is in: any polygon bigger will get divided up for multiple queries to API (default is 50,000 * 50,000 units [ie, 50km x 50km in area, if units are meters]) infrastructure : string download infrastructure of given type. default is streets, ie, 'way["highway"]') but other infrastructures may be selected like power grids, ie, 'way["power"~"line"]' Returns ------- response_jsons : list """ # check if we're querying by polygon or by bounding box based on which # argument(s) where passed into this function by_poly = polygon is not None by_bbox = not ( north is None or south is None or east is None or west is None ) if not (by_poly or by_bbox): raise ValueError( "You must pass a polygon or north, south, east, and west" ) # create a filter to exclude certain kinds of ways based on the requested # network_type osm_filter = ox.get_osm_filter(network_type) response_jsons = [] # pass server memory allocation in bytes for the query to the API # if None, pass nothing so the server will use its default allocation size # otherwise, define the query's maxsize parameter value as whatever the # caller passed in if memory is None: maxsize = "" else: maxsize = "[maxsize:{}]".format(memory) # define the query to send the API # specifying way["highway"] means that all ways returned must have a highway # key. the {filters} then remove ways by key/value. the '>' makes it recurse # so we get ways and way nodes. maxsize is in bytes. if by_bbox: # turn bbox into a polygon and project to local UTM polygon = Polygon( [(west, south), (east, south), (east, north), (west, north)] ) geometry_proj, crs_proj = ox.project_geometry(polygon) # subdivide it if it exceeds the max area size (in meters), then project # back to lat-long geometry_proj_consolidated_subdivided = ox.consolidate_subdivide_geometry( geometry_proj, max_query_area_size=max_query_area_size ) geometry, _ = ox.project_geometry( geometry_proj_consolidated_subdivided, crs=crs_proj, to_latlong=True, ) log( "Requesting network data within bounding box from API in {:,} request(s)".format( len(geometry) ) ) start_time = time.time() # loop through each polygon rectangle in the geometry (there will only # be one if original bbox didn't exceed max area size) for poly in geometry: # represent bbox as south,west,north,east and round lat-longs to 8 # decimal places (ie, within 1 mm) so URL strings aren't different # due to float rounding issues (for consistent caching) west, south, east, north = poly.bounds query_template = ( date + "[out:json][timeout:{timeout}]{maxsize};" + "({infrastructure}{filters}" + "({south:.8f},{west:.8f},{north:.8f},{east:.8f});>;);out;" ) query_str = query_template.format( north=north, south=south, east=east, west=west, infrastructure=infrastructure, filters=osm_filter, timeout=timeout, maxsize=maxsize, ) response_json = ox.overpass_request( data={"data": query_str}, timeout=timeout ) response_jsons.append(response_json) log( "Got all network data within bounding box from API in {:,} request(s) and {:,.2f} seconds".format( len(geometry), time.time() - start_time ) ) elif by_poly: # project to utm, divide polygon up into sub-polygons if area exceeds a # max size (in meters), project back to lat-long, then get a list of # polygon(s) exterior coordinates geometry_proj, crs_proj = ox.project_geometry(polygon) geometry_proj_consolidated_subdivided = ox.consolidate_subdivide_geometry( geometry_proj, max_query_area_size=max_query_area_size ) geometry, _ = ox.project_geometry( geometry_proj_consolidated_subdivided, crs=crs_proj, to_latlong=True, ) polygon_coord_strs = ox.get_polygons_coordinates(geometry) log( "Requesting network data within polygon from API in {:,} request(s)".format( len(polygon_coord_strs) ) ) start_time = time.time() # pass each polygon exterior coordinates in the list to the API, one at # a time for polygon_coord_str in polygon_coord_strs: query_template = ( date + '[out:json][timeout:{timeout}]{maxsize};({infrastructure}{filters}(poly:"{polygon}");>;);out;' ) query_str = query_template.format( polygon=polygon_coord_str, infrastructure=infrastructure, filters=osm_filter, timeout=timeout, maxsize=maxsize, ) response_json = ox.overpass_request( data={"data": query_str}, timeout=timeout ) response_jsons.append(response_json) log( "Got all network data within polygon from API in {:,} request(s) and {:,.2f} seconds".format( len(polygon_coord_strs), time.time() - start_time ) ) return response_jsons
faf949e015c365c3822131634f55c73e2e9fef0c
13,228
import os import logging def _find_results_files(source_path: str, search_depth: int = 2) -> list: """Looks for results.json files in the path specified Arguments: source_path: the path to use when looking for result files search_depth: the maximum folder depth to search Return: Returns a list containing found files Notes: A search depth of less than 2 will not recurse into sub-folders; a search depth of 2 will only recurse into immediate sub-folders and no deeper; a search depth of 3 will recurse into the sub-folders of sub-folders; and so on """ res_name = 'results.json' res_name_len = len(res_name) # Common expression declared once outside of recursion # Checks that the file name matches exactly the testing string (res_name) name_check_passes = lambda name: name.endswith(res_name) and os.path.isdir(name[:-res_name_len]) if not source_path: return [] # Declare embedded function to do the work def perform_recursive_find(path: str, depth: int) -> list: """Recursively finds results files Arguments: path: the path to check for results files depth: the maximum folder depth to recurse (starting at 1) Return: Returns a list of found files """ return_list = [] # Basic checks if os.path.isfile(path): if name_check_passes(path): logging.debug("Result file check specified result file: '%s'", path) return [path] logging.debug("Result file check name is not valid: '%s'", path) return return_list # We only process folders after the above checks if not os.path.isdir(path): logging.debug("Error: result file check path is not a file or folder: '%s'", path) return return_list # Loop over current folder looking for other folders and for a results file for one_name in os.listdir(path): check_name = os.path.join(path, one_name) if name_check_passes(check_name): logging.debug("Found result file: '%s'", check_name) return_list.append(check_name) elif depth > 1 and os.path.isdir(check_name): logging.debug("Searching folder for result files: '%s'", check_name) found_results = perform_recursive_find(check_name, depth - 1) if found_results: return_list.extend(found_results) return return_list # Find those files! return perform_recursive_find(source_path, search_depth)
1116ff41301754e79a43a0d25462eddeee3bafa3
13,229
from re import S def rubi_integrate(expr, var, showsteps=False): """ Rule based algorithm for integration. Integrates the expression by applying transformation rules to the expression. Returns `Integrate` if an expression cannot be integrated. Parameters ========== expr : integrand expression var : variable of integration Returns Integral object if unable to integrate. """ rubi = LoadRubiReplacer().load() expr = expr.replace(sym_exp, rubi_exp) expr = process_trig(expr) expr = rubi_powsimp(expr) if isinstance(expr, (int, Integer, float, Float)): return S(expr)*var if isinstance(expr, Add): results = 0 for ex in expr.args: results += rubi.replace(Integral(ex, var)) return process_final_integral(results) results = util_rubi_integrate(Integral(expr, var)) return process_final_integral(results)
25eccde81fe0425fbf35c522b24e79195684f537
13,230
def daily_price_read(sheet_name): """ 读取股票名称和股票代码 :param sheet_name: :return: """ sql = "SELECT * FROM public.%s limit 50000" % sheet_name resultdf = pd.read_sql(sql, engine_postgre) resultdf['trade_date'] = resultdf['trade_date'].apply(lambda x: x.strftime('%Y-%m-%d')) resultdf['code'] = resultdf[['code', 'exchangeCD']].apply(lambda x: str(x[0]).zfill(6) + '.'+x[1], axis=1) return resultdf
d68c326604c21b6375e77fb012a9776d87be617f
13,231
def _isfloat(string): """ Checks if a string can be converted into a float. Parameters ---------- value : str Returns ------- bool: True/False if the string can/can not be converted into a float. """ try: float(string) return True except ValueError: return False
74ae50761852d8b22ac86f6b6332bd70e42bf623
13,232
def get(url, **kwargs): """ get json data from API :param url: :param kwargs: :return: """ try: result = _get(url, **kwargs) except (rq.ConnectionError, rq.ReadTimeout): result = {} return result
a3c17ce6ab383373e7215dd0e5b3e63130739126
13,233
def sample_indep(p, N, T, D): """Simulate an independent sampling mask.""" obs_ind = np.full((N, T, D), -1) for n in range(N): for t in range(T): pi = np.random.binomial(n=1, p=p, size=D) ind = np.where(pi == 1)[0] count = ind.shape[0] obs_ind[n, t, :count] = ind return obs_ind
69a469d45040ed1598f7d946b6706f70f23dc580
13,234
def _relabel_targets(y, s, ranks, n_relabels): """Compute relabelled targets based on predicted ranks.""" demote_ranks = set(sorted(ranks[(s == 0) & (y == 1)])[:n_relabels]) promote_ranks = set(sorted(ranks[(s == 1) & (y == 0)])[-n_relabels:]) return np.array([ _relabel(_y, _s, _r, promote_ranks, demote_ranks) for _y, _s, _r in zip(y, s, ranks)])
e8c06364a717210da6c0c60c883fee05d61ed3eb
13,235
def exp(x): """Take exponetial of input x. Parameters ---------- x : Expr Input argument. Returns ------- y : Expr The result. """ return call_pure_intrin(x.dtype, "exp", x)
9ec31c0b9928108680c2818d1fe110d36c81b08d
13,236
def check_table(words_in_block, block_width, num_lines_in_block): """ Check if a block is a block of tables or of text.""" # average_words_per_line=24 # total_num_words = 0 ratio_threshold = 0.50 actual_num_chars = 0 all_char_ws = [] cas = [] # total_num_words += len(line) if num_lines_in_block > 0: for word in words_in_block: if word['word']: actual_num_chars += len(word['word']) char_w = float(word['r']-word['l'])/len(word['word']) cas.append(round(char_w, 2)) all_char_ws.extend(cas) average_char_width = np.mean(all_char_ws) expected_num_chars = (float(block_width)/average_char_width)*num_lines_in_block # expected_word_count = average_words_per_line*num_lines_in_block ratio = actual_num_chars/expected_num_chars if ratio < ratio_threshold: return True else: return False else: return False
46c785eefc7694a88d1814b9ca01f41fffa9d1f8
13,237
def defaultSampleFunction(xy1, xy2): """ The sample function compares how similar two curves are. If they are exactly the same it will return a value of zero. The default function returns the average error between each sample point in two arrays of x/y points, xy1 and xy2. Parameters ---------- xy1 : array The first input 2D x/y array of points. xy2 : array The second input 2D x/y array of points. Returns ------- float The average "distance" between each point on the curve. The output quantity is unitless. """ x1 = xy1[:,0] x2 = xy2[:,0] y1 = xy1[:,1] y2 = xy2[:,1] diff = ((x1 - x2)**2 + (y1 - y2)**2)**(0.5) return np.sum(diff)/len(x1)
5654145e9a2d3701d289094ababc94d9ed972def
13,238
from re import S def makesubs(formula,intervals,values=None,variables=None,numden=False): """Generates a new formula which satisfies this condition: for all positive variables new formula is nonnegative iff for all variables in corresponding intervals old formula is nonnegative. >>> newproof() >>> makesubs('1-x^2','[0,1]') Substitute $x\to 1 - \frac{1}{a + 1}$ #depend on shiro.display (2*a + 1)/(a**2 + 2*a + 1) >>> makesubs('1-x^2','[0,1]',values='1/2') Substitute $x\to 1 - \frac{1}{b + 1}$ #depend on shiro.display ((2*b + 1)/(b**2 + 2*b + 1), [1]) >>> makesubs('1-x^2','[0,1]',values='1/2',numden=True) Substitute $x\to 1 - \frac{1}{c + 1}$ #depend on shiro.display (2*c + 1, c**2 + 2*c + 1, [1]) """ formula=S(formula) addsymbols(formula) intervals=_smakeiterable2(intervals) if variables: variables=_smakeiterable(variables) else: variables=sorted(formula.free_symbols,key=str) if values!=None: values=_smakeiterable(values) equations=[var-value for var,value in zip(variables,values)] else: equations=[] newvars=[] warn=0 usedvars=set() for var,interval in zip(variables,intervals): end1,end2=interval z=newvar() newvars+=[z] usedvars|={var} if (end1.free_symbols|end2.free_symbols)&usedvars: warn=1 if end1 in {S('-oo'),S('oo')}: end1,end2=end2,end1 if {end1,end2}=={S('-oo'),S('oo')}: sub1=sub2=(z-1/z) elif end2==S('oo'): sub1=sub2=(end1+z) elif end2==S('-oo'): sub1=sub2=end1-z else: sub1=end2+(end1-end2)/z sub2=end2+(end1-end2)/(1+z) formula=formula.subs(var,sub1) shiro.display(shiro.translation['Substitute']+" $"+latex(var)+'\\to '+latex(sub2)+'$') equations=[equation.subs(var,sub1) for equation in equations] num,den=fractioncancel(formula) for var,interval in zip(newvars,intervals): if {interval[0],interval[1]} & {S('oo'),S('-oo')}==set(): num=num.subs(var,var+1) den=den.subs(var,var+1) equations=[equation.subs(var,var+1) for equation in equations] if values: values=ssolve(equations,newvars) if len(values): values=values[0] num,den=expand(num),expand(den) #shiro.display(shiro.translation["Formula after substitution:"],"$$",latex(num/den),'$$') if warn: shiro.warning(shiro.translation[ 'Warning: intervals contain backwards dependencies. Consider changing order of variables and intervals.']) if values and numden: return num,den,values elif values: return num/den,values elif numden: return num,den else: return num/den
238923ac5e6e9e577f90091b61b6182323fdee75
13,239
def generateKey(accountSwitchKey=None,keytype=None): """ Generate Key""" genKeyEndpoint = '/config-media-live/v2/msl-origin/generate-key' if accountSwitchKey: params = {'accountSwitchKey': accountSwitchKey} params["type"] = keytype key = prdHttpCaller.getResult(genKeyEndpoint, params) else: parms = {'type':keytype} key = prdHttpCaller.getResult(genKeyEndpoint,params) return key
5da825d809fbb03b5929bcc14f0da0451eaf639a
13,240
def positions_count_for_one_ballot_item_doc_view(request): """ Show documentation about positionsCountForOneBallotItem """ url_root = WE_VOTE_SERVER_ROOT_URL template_values = positions_count_for_one_ballot_item_doc.positions_count_for_one_ballot_item_doc_template_values( url_root) template_values['voter_api_device_id'] = get_voter_api_device_id(request) return render(request, 'apis_v1/api_doc_page.html', template_values)
3c56d186560fa8fae6117b6b656ee0c8d40a8728
13,241
def atcab_sign_base(mode, key_id, signature): """ Executes the Sign command, which generates a signature using the ECDSA algorithm. Args: mode Mode determines what the source of the message to be signed (int) key_id Private key slot used to sign the message. (int) signature Signature is returned here. Format is R and S integers in big-endian format. 64 bytes for P256 curve (Expects bytearray) Returns: Stauts code """ if not isinstance(signature, bytearray): status = Status.ATCA_BAD_PARAM else: c_signature = create_string_buffer(64) status = get_cryptoauthlib().atcab_sign_base(mode, key_id, byref(c_signature)) signature[0:] = bytes(c_signature.raw) return status
87c9770d6ba456947206ea1abb46b10a3f413811
13,242
from typing import List def load_gs( gs_path: str, src_species: str = None, dst_species: str = None, to_intersect: List[str] = None, ) -> dict: """Load the gene set file (.gs file). Parameters ---------- gs_path : str Path to the gene set file with the following two columns, separated by tab: - 'TRAIT' - 'GENESET': (1) <gene1>,<gene2>,... each gene will be weighted uniformly or (2) <gene1>:<weight1>,<gene2>:<weight2>,... each gene will be weighted by its weight. src_species : str, default=None Source species, must be either 'mmusculus' or 'hsapiens' if not None dst_species : str, default=None Destination species, must be either 'mmusculus' or 'hsapiens' if not None to_intersect : List[str], default None. Gene list to intersect with the input .gs file. Returns ------- dict_gs : dict Dictionary of gene sets: { trait1: (gene_list, gene_weight_list), trait2: (gene_list, gene_weight_list), ... } """ assert (src_species is None) == ( dst_species is None ), "src_species and dst_species must be both None or not None" # Load homolog map dict_map; only needed when src_species and dst_species # are not None and different. if ((src_species is not None) & (dst_species is not None)) and ( src_species != dst_species ): dict_map = load_homolog_mapping(src_species, dst_species) # type: ignore else: dict_map = None # type: ignore # Load gene set file dict_gs = {} df_gs = pd.read_csv(gs_path, sep="\t") for i, (trait, gs) in df_gs.iterrows(): gs_info = [g.split(":") for g in gs.split(",")] if np.all([len(g) == 1 for g in gs_info]): # if all genes are weighted uniformly dict_weights = {g[0]: 1.0 for g in gs_info} elif np.all([len(g) == 2 for g in gs_info]): # if all genes are weighted by their weights dict_weights = {g[0]: float(g[1]) for g in gs_info} else: raise ValueError(f"gene set {trait} contains genes with invalid format") # Convert species if needed # convert gene list to homologs, if gene can not be mapped, remove it # in both gene list and gene weight if dict_map is not None: dict_weights = { dict_map[g]: w for g, w in dict_weights.items() if g in dict_map } # Intersect with other gene sets if to_intersect is not None: to_intersect = set(to_intersect) dict_weights = {g: w for g, w in dict_weights.items() if g in to_intersect} gene_list = list(dict_weights.keys()) dict_gs[trait] = ( gene_list, [dict_weights[g] for g in gene_list], ) return dict_gs
0e13c355b1a3bd7e88785844262a01c6963ef0ee
13,243
from .points import remove_close def sample_surface_even(mesh, count, radius=None): """ Sample the surface of a mesh, returning samples which are VERY approximately evenly spaced. This is accomplished by sampling and then rejecting pairs that are too close together. Parameters --------- mesh : trimesh.Trimesh Geometry to sample the surface of count : int Number of points to return radius : None or float Removes samples below this radius Returns --------- samples : (count, 3) float Points in space on the surface of mesh face_index : (count,) int Indices of faces for each sampled point """ # guess radius from area if radius is None: radius = np.sqrt(mesh.area / (3 * count)) # get points on the surface points, index = sample_surface(mesh, count * 3) # remove the points closer than radius points, mask = remove_close(points, radius) # we got all the samples we expect if len(points) >= count: return points[:count], index[mask][:count] # warn if we didn't get all the samples we expect util.log.warning('only got {}/{} samples!'.format( len(points), count)) return points, index[mask]
9dd9c4aa27f4811511d81ef0c8dabe3097026061
13,244
def allocate_probabilities(results, num_substations, probabilities): """ Allocate cumulative probabilities. Parameters ---------- results : list of dicts All iterations generated in the simulation function. num_substations : list The number of electricity substation nodes we wish to select for each scenario. probabilities : list Contains the cumulative probabilities we wish to use. Returns ------- output : list of dicts Contains all generated results. """ output = [] for nodes in num_substations: ranked_data = add_cp(results, nodes, probabilities) for probability in probabilities: scenario = min( ranked_data, key=lambda x: abs(float(x["cum_probability"]) - probability) ) output.append(scenario) return output
5692517aa55776c94c7f4027f175eab985000fe1
13,245
def import_one_record_sv01(r, m): """Import one ODK Site Visit 0.1 record into WAStD. Arguments r The record as dict, e.g. { "instanceID": "uuid:cc7224d7-f40f-4368-a937-1eb655e0203a", "observation_start_time": "2017-03-08T07:10:43.378Z", "reporter": "florianm", "photo_start": { "filename": "1488957113670.jpg", "type": "image/jpeg", "url": "https://..." }, "transect": "-31.9966142 115.88456594 0.0 0.0;", "photo_finish": { "filename": "1488957172832.jpg", "type": "image/jpeg", "url": "https://..." }, "comments": null, "observation_end_time": "2017-03-08T07:13:23.317Z" } m The mapping of ODK to WAStD choices All existing records will be updated. Make sure to skip existing records which should be retained unchanged. Creates a Survey, e.g. { 'started_on': datetime.datetime(2017, 1, 31, 16, 0, tzinfo=<UTC>), 'finished_on': datetime.datetime(2017, 2, 4, 16, 0, tzinfo=<UTC>), 'site_id': 17, 'source': 'direct', 'source_id': None, 'transect': None, 'comments': '', } """ src_id = r["instanceID"] new_data = dict( source="odk", source_id=src_id, site_id=17, # TODO: reconstruct site on Survey if not given transect=read_odk_linestring(r["transect"]), started_on=parse_datetime(r["observation_start_time"]), finished_on=parse_datetime(r["observation_end_time"]), # m["users"][r["reporter"]], comments=r["comments"] ) if Survey.objects.filter(source_id=src_id).exists(): logger.debug("Updating unchanged existing record {0}...".format(src_id)) Survey.objects.filter(source_id=src_id).update(**new_data) e = Survey.objects.get(source_id=src_id) else: logger.debug("Creating new record {0}...".format(src_id)) e = Survey.objects.create(**new_data) e.save() # MediaAttachments handle_media_attachment(e, r["photo_start"], title="Site conditions at start of suvey") handle_media_attachment(e, r["photo_finish"], title="Site conditions at end of suvey") logger.info(" Saved {0}\n".format(e)) e.save() return e
ac6cbd8c743241000adbc3395da48b926f71ee78
13,246
def delete_page_groups(request_ctx, group_id, url, **request_kwargs): """ Delete a wiki page :param request_ctx: The request context :type request_ctx: :class:RequestContext :param group_id: (required) ID :type group_id: string :param url: (required) ID :type url: string :return: Delete page :rtype: requests.Response (with Page data) """ path = '/v1/groups/{group_id}/pages/{url}' url = request_ctx.base_api_url + path.format(group_id=group_id, url=url) response = client.delete(request_ctx, url, **request_kwargs) return response
d9802d66e87eb0ef9e9fe5bee98686caade3e79d
13,247
import os def envset(name): """Return True if the given environment variable is set An environment variable is considered set if it is assigned to a value other than 'no', 'n', 'false', 'off', '0', or '0.0' (case insensitive) """ return os.environ.get(name, 'no').lower() not in ['no', 'n', 'false', 'off', '0', '0.0']
cb501aa5e106e342d7c8e02bc46f5f0a2621dc00
13,248
def solver(f, p_e, mesh, degree=1): """ Solving the Darcy flow equation on a unit square media with pressure boundary conditions. """ # Creating mesh and defining function space V = FunctionSpace(mesh, 'P', degree) # Defining Dirichlet boundary p_L = Constant(1.0) def boundary_L(x, on_boundary): return on_boundary and near(x[0], 0) bc_L = DirichletBC(V, p_L, boundary_L) p_R = Constant(0.0) def boundary_R(x, on_boundary): return on_boundary and near(x[0], 1) bc_R = DirichletBC(V, p_R, boundary_R) bcs = [bc_L, bc_R] # If p = p_e on the boundary, then use:- #def boundary(x, on_boundary): #return on_boundary #bc = DirichletBC(V, p_e, boundary) # Defining variational problem p = TrialFunction(V) v = TestFunction(V) d = 2 I = Identity(d) M = Expression('fmax(0.10, exp(-pow(10.0*x[1]-1.0*sin(10.0*x[0])-5.0, 2)))', degree=2, domain=mesh) K = M*I a = dot(K*grad(p), grad(v))*dx L = inner(f, v)*dx # Computing Numerical Pressure p = Function(V) solve(a == L, p, bcs) return p
0630b1199f064044976c24d825332aa2d879dab2
13,249
def set_stretchmatrix(coefX=1.0, coefY=1.0): """Stretching matrix Args: coefX: coefY:coefficients (float) for the matrix [coefX 0 0 coefY] Returns: strectching_matrix: matrix """ return np.array([[coefX, 0],[0, coefY]])
cd11bf0351a205e52b1f99893fe43709636978d3
13,250
def set_bit(v, index, x): """Set the index:th bit of v to 1 if x is truthy, else to 0, and return the new value.""" mask = 1 << index # Compute mask, an integer with just bit 'index' set. v &= ~mask # Clear the bit indicated by the mask (if x is False) if x: v |= mask # If x was True, set the bit indicated by the mask. return v
627744c06709eecec18f0c5956f1af4c57a57b8a
13,251
def test_credentials() -> (str, str): """ Read ~/.synapseConfig and retrieve test username and password :return: endpoint, username and api_key """ config = _get_config() return config.get(DEFAULT_CONFIG_AUTH_SECTION, DEFAULT_CONFIG_USERNAME_OPT),\ config.get(DEFAULT_CONFIG_AUTH_SECTION, DEFAULT_CONFIG_PASSWORD_OPT)
2ceb441b338b5ea8b1154c19406af9b1e21ed85e
13,252
import re def BCA_formula_from_str(BCA_str): """ Get chemical formula string from BCA string Args: BCA_str: BCA ratio string (e.g. 'B3C1A1') """ if len(BCA_str)==6 and BCA_str[:3]=='BCA': # format: BCAxyz. suitable for single-digit integer x,y,z funits = BCA_str[-3:] else: # format: BxCyAz. suitable for multi-digit or non-integer x,y,z funits = re.split('[BCA]',BCA_str) funits = [u for u in funits if len(u) > 0] funits components = ['BaO','CaO','Al2O3'] formula = ''.join([f'({c}){n}' for c,n in zip(components, funits)]) return formula
36375e62d70995628e253ba68ba8b777eb88d728
13,253
import numpy def get_strongly_connected_components(graph): """ Get strongly connected components for a directed graph The returned list of components is in reverse topological order, i.e., such that the nodes in the first component have no dependencies on other components. """ nodes = list(graph.keys()) node_index_by_node = {node: index for index, node in enumerate(nodes)} row_indexes = [] col_indexes = [] for node, targets in graph.items(): row_indexes += [node_index_by_node[node]] * len(targets) col_indexes += [node_index_by_node[target] for target in targets] data = numpy.ones((len(row_indexes)), dtype=int) n_nodes = len(nodes) csgraph = csr_matrix((data, (row_indexes, col_indexes)), shape=(n_nodes, n_nodes)) n_components, labels = connected_components(csgraph, directed=True, connection='strong') sccs = [[] for i in range(n_components)] for index, label in enumerate(labels): sccs[label] += [nodes[index]] return [frozenset(scc) for scc in sccs]
42783756d8fdada032e2d0ca8a306f10d4977e16
13,254
def dot(a, b): """ Computes a @ b, for a, b of the same rank (both 2 or both 3). If the rank is 2, then the innermost dimension of `a` must match the outermost dimension of `b`. If the rank is 3, the first dimension of `a` and `b` must be equal and the function computes a batch matmul. Supports both dense and sparse multiplication (including sparse-sparse). :param a: Tensor or SparseTensor with rank 2 or 3. :param b: Tensor or SparseTensor with same rank as b. :return: Tensor or SparseTensor with rank 2 or 3. """ a_ndim = K.ndim(a) b_ndim = K.ndim(b) assert a_ndim == b_ndim, "Expected equal ranks, got {} and {}" "".format( a_ndim, b_ndim ) a_is_sparse = K.is_sparse(a) b_is_sparse = K.is_sparse(b) # Handle cases: rank 2 sparse-dense, rank 2 dense-sparse # In these cases we can use the faster sparse-dense matmul of tf.sparse if a_ndim == 2: if a_is_sparse and not b_is_sparse: return tf.sparse.sparse_dense_matmul(a, b) if not a_is_sparse and b_is_sparse: return ops.transpose( tf.sparse.sparse_dense_matmul(ops.transpose(b), ops.transpose(a)) ) # Handle cases: rank 2 sparse-sparse, rank 3 sparse-dense, # rank 3 dense-sparse, rank 3 sparse-sparse # In these cases we can use the tfsp.CSRSparseMatrix implementation (slower, # but saves memory) if a_is_sparse: a = tfsp.CSRSparseMatrix(a) if b_is_sparse: b = tfsp.CSRSparseMatrix(b) if a_is_sparse or b_is_sparse: out = tfsp.matmul(a, b) if hasattr(out, "to_sparse_tensor"): return out.to_sparse_tensor() else: return out # Handle case: rank 2 dense-dense, rank 3 dense-dense # Here we use the standard dense operation return tf.matmul(a, b)
789c9d045d82eb048ff5319d5a7ae99ffb02376d
13,255
def unreshuffle_2d(x, i0, shape): """Undo the reshuffle_2d operation.""" x_flat = unreshuffle_1d(x, i0) x_rev = np.reshape(x_flat, shape) x_rev[1::2, :] = x_rev[1::2, ::-1] # reverse all odd rows return x_rev
72cf59b9e547cf2eb516fca33e9eea7d01c1702b
13,256
def findNodeJustBefore(target, nodes): """ Find the node in C{nodes} which appeared immediately before C{target} in the input document. @type target: L{twisted.web.microdom.Element} @type nodes: C{list} of L{twisted.web.microdom.Element} @return: An element from C{nodes} """ result = None for node in nodes: if comparePosition(target, node) < 0: return result result = node return result
85d435a2c10dbaabb544c81d440e2110a6083dd7
13,257
def _format_line(submission, position, rank_change, total_hours): """ Formats info about a single post on the front page for logging/messaging. A single post will look like this: Rank Change Duration Score Flair Id User Slug 13. +1 10h 188 [Episode](gkvlja) <AutoLovepon> <arte_episode_7_discussion> """ line = "{:3}".format(f"{position}.") if rank_change is None: line += " (new) " elif rank_change != 0: line += " {:7}".format(f"{rank_change:+d} {total_hours}h") else: line += " {:7}".format(f"-- {total_hours}h") line += f" {submission.score:>5}" line += " {:>24}".format(f"[{submission.link_flair_text}]({submission.id})") line += f" <{submission.author.name}>" line += f" <{reddit_utils.slug(submission)}>" return line
70840d0e57194b43fbaf0352ebecdfefa74bd4d7
13,258
from typing import List from typing import Dict from typing import Any from typing import Tuple def run_erasure( # pylint: disable = too-many-arguments privacy_request: PrivacyRequest, policy: Policy, graph: DatasetGraph, connection_configs: List[ConnectionConfig], identity: Dict[str, Any], access_request_data: Dict[str, List[Row]], ) -> Dict[str, int]: """Run an erasure request""" traversal: Traversal = Traversal(graph, identity) with TaskResources(privacy_request, policy, connection_configs) as resources: def collect_tasks_fn( tn: TraversalNode, data: Dict[CollectionAddress, GraphTask] ) -> None: """Run the traversal, as an action creating a GraphTask for each traversal_node.""" if not tn.is_root_node(): data[tn.address] = GraphTask(tn, resources) env: Dict[CollectionAddress, Any] = {} traversal.traverse(env, collect_tasks_fn) def termination_fn(*dependent_values: int) -> Tuple[int, ...]: """The dependent_values here is an int output from each task feeding in, where each task reports the output of 'task.rtf(access_request_data)', which is the number of records updated. The termination function just returns this tuple of ints.""" return dependent_values dsk: Dict[CollectionAddress, Any] = { k: (t.erasure_request, access_request_data[str(k)]) for k, t in env.items() } # terminator function waits for all keys dsk[TERMINATOR_ADDRESS] = (termination_fn, *env.keys()) v = dask.delayed(get(dsk, TERMINATOR_ADDRESS)) update_cts: Tuple[int, ...] = v.compute() # we combine the output of the termination function with the input keys to provide # a map of {collection_name: records_updated}: erasure_update_map: Dict[str, int] = dict( zip([str(x) for x in env], update_cts) ) return erasure_update_map
2b9579ca1c4960da46ee7bb1388ab667dc808f40
13,259
from .build_helper import get_script_module import sys import os def write_module_scripts(folder, platform=sys.platform, blog_list=None, default_engine_paths=None, command=None): """ Writes a couple of scripts which allow a user to be faster on some tasks or to easily get information about the module. @param folder where to write the script @param platform platform @param blog_list blog list to follow, should be attribute ``__blog__`` of the module @param command None to generate scripts for all commands or a value in *[blog, doc]*. @param default_engine_paths default engines (or python distributions) @return list of written scripts The function produces the following files: * *auto_rss_list.xml*: list of rss stream to follow * *auto_rss_database.db3*: stores blog posts * *auto_rss_server.py*: runs a server which updates the scripts and runs a server. It also open the default browser. * *auto_rss_server.(bat|sh)*: run *auto_run_server.py*, the file on Linux might be missing if there is an equivalent python script .. faqref:: :title: How to generate auto_rss_server.py? The following code generates the script *auto_rss_local.py* which runs a local server to read blog posts included in the documentation (it uses module `pyrsslocal <http://www.xavierdupre.fr/app/pyrsslocal/helpsphinx/index.html>`_):: from pyquickhelper.pycode import write_module_scripts, __blog__ write_module_scripts(".", blog_list=__blog__, command="blog") """ # delayed import default_set = {"blog", "doc"} if command is not None: if command not in default_set: raise ValueError( # pragma: no cover "command {0} is not available in {1}".format(command, default_set)) commands = {command} else: commands = default_set res = [] for c in commands: sc = get_script_module( c, platform=sys.platform, blog_list=blog_list, default_engine_paths=default_engine_paths) if sc is None: continue # pragma: no cover tobin = os.path.join(folder, "bin") if not os.path.exists(tobin): os.mkdir(tobin) for item in sc: if isinstance(item, tuple): name = os.path.join(folder, "bin", item[0]) with open(name, "w", encoding="utf8") as f: f.write(item[1]) res.append(name) else: # pragma: no cover name = os.path.join( folder, "bin", "auto_run_%s.%s" % (c, get_script_extension())) with open(name, "w") as f: f.write(item) res.append(name) return res
fe8921b4440b78f6788fe4a41874da1f9fb8228d
13,260
def RichTextBuffer_FindHandlerByName(*args, **kwargs): """RichTextBuffer_FindHandlerByName(String name) -> RichTextFileHandler""" return _richtext.RichTextBuffer_FindHandlerByName(*args, **kwargs)
1122822db4885b6d745f4e893522fb01b988ee3f
13,261
def likelihood(tec, phase, tec_conversion, lik_sigma, K = 2): """ Get the likelihood of the tec given phase data and lik_var variance. tec: tensor B, 1 phase: tensor B, Nf tec_conversion: tensor Nf lik_sigma: tensor B, 1 (Nf) Returns: log_prob: tensor (B,1) """ mu = wrap(tec*tec_conversion[None,:])# B, Nf phase = wrap(phase) #K, B, Nf d = tf.stack([tf.distributions.Normal(mu + tf.convert_to_tensor(k*2*np.pi,float_type), lik_sigma).log_prob(phase) for k in range(-K,K+1,1)], axis=0) #B, Nf -> B log_lik = tf.reduce_sum(tf.reduce_logsumexp(d, axis=0), axis=1) # B, 1 # tec_mu = tf.gather(tec, neighbour) # tec_std = 0.001 * tf.exp(-0.25*neighbour_dist**2) # tec_prior = tf.distributions.Normal(tec_mu, tec_std).log_prob(tec) # sigma_priors = log_normal_solve(0.2,0.1) # #B, 1 # sigma_prior = tf.distributions.Normal( # tf.convert_to_tensor(sigma_priors[0],dtype=float_type), # tf.convert_to_tensor(sigma_priors[1],dtype=float_type)).log_prob(tf.log(lik_sigma)) - tf.log(lik_sigma) #B, 1 log_prob = log_lik[:,None]# + tec_prior # + sigma_prior return -log_prob
c5f566484ee8f8cbc48e5302365f0e06c81f49e3
13,262
def angle_between(v1, v2): """Returns the angle in radians between vectors 'v1' and 'v2':: >>> angle_between((1, 0, 0), (0, 1, 0)) 1.5707963267948966 >>> angle_between((1, 0, 0), (1, 0, 0)) 0.0 >>> angle_between((1, 0, 0), (-1, 0, 0)) 3.141592653589793 """ # https://stackoverflow.com/a/13849249/782170 v1_u = unit_vector(v1) v2_u = unit_vector(v2) cos_theta = np.clip(np.dot(v1_u, v2_u), -1.0, 1.0) if cos_theta > 0: return np.arccos(cos_theta) else: return np.arccos(cos_theta) - np.pi / 2.0
fc2246c9d3fb55a0c2f692c1533e821a187599b8
13,263
from aiida.engine import ExitCode from ase.lattice.cubic import FaceCenteredCubic from ase.lattice.cubic import BodyCenteredCubic def create_substrate_bulk(wf_dict_node): """ Calcfunction to create a bulk structure of a substrate. :params wf_dict: AiiDA dict node with at least keys lattice, host_symbol and latticeconstant (If they are not there, raises KeyError) Lattice key supports only fcc and bcc raises ExitCode 380, ERROR_NOT_SUPPORTED_LATTICE """ wf_dict = wf_dict_node.get_dict() lattice = wf_dict['lattice'] if lattice == 'fcc': structure_factory = FaceCenteredCubic elif lattice == 'bcc': structure_factory = BodyCenteredCubic else: return ExitCode(380, 'ERROR_NOT_SUPPORTED_LATTICE', message='Specified substrate has to be bcc or fcc.') directions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] host_symbol = str(wf_dict['host_symbol']) latticeconstant = float(wf_dict['latticeconstant']) size = (1, 1, 1) structure = structure_factory(directions=directions, symbol=host_symbol, pbc=(1, 1, 1), latticeconstant=latticeconstant, size=size) return StructureData(ase=structure)
cb232093c3f6866bd14d2b19115ef988f279bf2f
13,264
def run_Net_on_multiple(patchCreator, input_to_cnn_depth=1, cnn = None, str_data_selection="all", save_file_prefix="", apply_cc_filtering = False, output_filetype = 'h5', save_prob_map = False): """ run runNetOnSlice() on neighbouring blocks of data. if opt_cnn is not none, it should point to a CNN / Net that will be used. if patchCreator contains a list of 3D data blocks (patchCreator.second_input_data) then it will be used as second input to cnn.output() """ assert str_data_selection in ["all", "train", "test"] MIN = 0 if str_data_selection in ["all", "train"] else patchCreator.training_set_size MAX = patchCreator.training_set_size if str_data_selection =="train" else len(patchCreator.data) second_input_data = None DATA = patchCreator.data timings=[] # if hasattr(patchCreator,"second_input_data"): # second_input_data = patchCreator.second_input_data[opt_list_index] for opt_list_index in range(MIN, MAX): print "-"*30 print "@",opt_list_index+1,"of max.",len(patchCreator.data) postfix = "" if opt_list_index==None else "_" + utilities.extract_filename(patchCreator.file_names[opt_list_index])[1] if isinstance(patchCreator.file_names[0], str) else str(patchCreator.file_names[opt_list_index]) if not isinstance(patchCreator.file_names[opt_list_index], tuple) else utilities.extract_filename(patchCreator.file_names[opt_list_index][0])[1] if opt_list_index is not None: is_training = "_train" if (opt_list_index < patchCreator.training_set_size) else "_test" else: is_training="" this_save_name = save_file_prefix+"prediction"+postfix+"_"+is_training t0 = time.clock() sav = run_Net_on_Block(cnn, DATA[opt_list_index], patchCreator, bool_predicts_on_softmax=1, second_input_data = second_input_data) #this one does all the work t1 = time.clock() timings.append(t1-t0) if apply_cc_filtering: sav = remove_small_conneceted_components(sav) sav = 1 - remove_small_conneceted_components(1 - sav) save_pred(sav, this_save_name, output_filetype, save_prob_map) print 'timings (len',len(timings),')',np.mean(timings),'+-',np.std(timings) return None
9d4c9c2fa3248258299243e3d7585362f47776a2
13,265
def user_to_janrain_capture_dict(user): """Translate user fields into corresponding Janrain fields""" field_map = getattr(settings, 'JANRAIN', {}).get('field_map', None) if not field_map: field_map = { 'first_name': {'name': 'givenName'}, 'last_name': {'name': 'familyName'}, 'email': {'name': 'email'}, 'username': {'name': 'displayName'}, } result = {} for field in user._meta.fields: if field.name in field_map: fm = field_map[field.name] value = getattr(user, field.name) func = fm.get('function', None) if func: value = func(value) # Plurals are dot delimited parts = fm['name'].split('.') key = parts[0] if len(parts) == 1: result[key] = value else: result.setdefault(key, {}) result[key][parts[1]] = value return result
767b7003a282e481c1d1753f4c469fec42a5002a
13,266
from typing import Callable from typing import Optional from typing import Generator def weighted(generator: Callable, directed: bool = False, low: float = 0.0, high: float = 1.0, rng: Optional[Generator] = None) -> Callable: """ Takes as input a graph generator and returns a new generator function that outputs weighted graphs. If the generator is dense, the output will be the weighted adjacency matrix. If the generator is sparse, the new function will return a tuple (adj_list, weights). Parameters ---------- generator : Callable A callable that generates graphs directed: bool Whether to generate weights for directed graphs low : float, optional Lower boundary of the sampling distribution interval, i.e., interval in [low, high), by default 0.0 high : float, optional Upper boundary of the sampling distribution interval, i.e., interval in [low, high), by default 1.0 rng : Generator, optional Numpy random number generator, by default None Returns ------- Callable A callable that generates weighted graphs Examples -------- >> weighted(erdos_renyi)(num_nodes=100, prob=0.5) """ if rng is None: rng = default_rng() def weighted_generator(*args, **kwargs): adj = generator(*args, **kwargs) if adj.shape[0] == adj.shape[1]: num_nodes = adj.shape[0] weights = rng.uniform(low=low, high=high, size=(num_nodes, num_nodes)) if not directed: weights = np.triu(weights) weights = weights + weights.T adj = adj.astype(float) * weights return adj weights = rng.uniform(low=low, high=high, size=(adj.shape[0], 1)) return adj, weights return weighted_generator
d4c4d0b93784ca7bee22ecaffc3e8005315aa631
13,267
import argparse import os def arg_parse(dataset, view, num_shots=2, cv_number=5): """ arguments definition method """ parser = argparse.ArgumentParser(description='Graph Classification') parser.add_argument('--mode', type=str, default='train', choices=['train', 'test']) parser.add_argument('--v', type=str, default=1) parser.add_argument('--data', type=str, default='Sample_dataset', choices = [ f.path[5:] for f in os.scandir("data") if f.is_dir() ]) parser.add_argument('--dataset', type=str, default=dataset, help='Dataset') parser.add_argument('--view', type=int, default=view, help = 'view index in the dataset') parser.add_argument('--num_epochs', type=int, default=1, #50 help='Training Epochs') parser.add_argument('--num_shots', type=int, default=num_shots, #100 help='number of shots') parser.add_argument('--cv_number', type=int, default=cv_number, help='number of validation folds.') parser.add_argument('--NormalizeInputGraphs', default=False, action='store_true', help='Normalize Input adjacency matrices of graphs') parser.add_argument('--evaluation_method', type=str, default='model assessment', help='evaluation method, possible values : model selection, model assessment') parser.add_argument('--threshold', dest='threshold', default='mean', help='threshold the graph adjacency matrix. Possible values: no_threshold, median, mean') parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') parser.add_argument('--num-classes', dest='num_classes', type=int, default=2, help='Number of label classes') parser.add_argument('--lr', type=float, default=0.001, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=8, help='Number of hidden units.') parser.add_argument('--nb_heads', type=int, default=8, help='Number of head attentions.') parser.add_argument('--dropout', type=float, default=0.8, help='Dropout rate (1 - keep probability).') parser.add_argument('--alpha', type=float, default=0.2, help='Alpha for the leaky_relu.') return parser.parse_args()
4758fb939584f0433fb669fd03939d54c498f375
13,268
def generate_sampled_graph_and_labels(triplets, sample_size, split_size, num_rels, adj_list, degrees, negative_rate,tables_id, sampler="uniform"): """Get training graph and signals First perform edge neighborhood sampling on graph, then perform negative sampling to generate negative samples """ # perform edge neighbor sampling if sampler == "uniform": edges = sample_edge_uniform(adj_list, degrees, len(triplets), sample_size) elif sampler == "neighbor": edges = sample_edge_neighborhood(adj_list, degrees, len(triplets), sample_size,tables_id) else: raise ValueError("Sampler type must be either 'uniform' or 'neighbor'.") # relabel nodes to have consecutive node ids edges = triplets[edges] src, rel, dst = edges.transpose() # my_graph = nx.Graph() # edges_to_draw = list(set(list(zip(dst, src, rel)))) # edges_to_draw = sorted(edges_to_draw) # # my_graph.add_edges_from(edges_to_draw[:10]) # # for item in edges_to_draw: # my_graph.add_edge(item[1], item[0], weight=item[2]*10) # pos = nx.spring_layout(my_graph) # labels = nx.get_edge_attributes(my_graph, 'weight') # plt.figure() # nx.draw(my_graph, pos, edge_color='black', width=1, linewidths=1, arrows=True, # node_size=100, node_color='red', alpha=0.9, # labels={node: node for node in my_graph.nodes()}) # nx.draw_networkx_edge_labels(my_graph, pos, edge_labels=labels, font_color='red') # plt.axis('off') # plt.show() uniq_v, edges = np.unique((src, dst), return_inverse=True) src, dst = np.reshape(edges, (2, -1)) relabeled_edges = np.stack((src, rel, dst)).transpose() # negative sampling samples, labels = negative_sampling(relabeled_edges, len(uniq_v), negative_rate) #samples, labels = negative_relations(relabeled_edges, len(uniq_v), # negative_rate) # further split graph, only half of the edges will be used as graph # structure, while the rest half is used as unseen positive samples split_size = int(sample_size * split_size) graph_split_ids = np.random.choice(np.arange(sample_size), size=split_size, replace=False) src = src[graph_split_ids] dst = dst[graph_split_ids] rel = rel[graph_split_ids] # build DGL graph print("# sampled nodes: {}".format(len(uniq_v))) print("# sampled edges: {}".format(len(src) * 2)) #g, rel, norm,_ = build_graph_from_triplets_modified(len(uniq_v), num_rels, # (src, rel, dst)) g, rel, norm=build_graph_directly(len(uniq_v), (src, rel, dst)) return g, uniq_v, rel, norm, samples, labels
7386eada0e0aa70478c063aa4525c62cbc997b2e
13,269
import optparse def ParseArgs(): """Parses command line options. Returns: An options object as from optparse.OptionsParser.parse_args() """ parser = optparse.OptionParser() parser.add_option('--android-sdk', help='path to the Android SDK folder') parser.add_option('--android-sdk-tools', help='path to the Android SDK platform tools folder') parser.add_option('--R-package', help='Java package for generated R.java') parser.add_option('--R-dir', help='directory to hold generated R.java') parser.add_option('--res-dir', help='directory containing resources') parser.add_option('--crunched-res-dir', help='directory to hold crunched resources') (options, args) = parser.parse_args() if args: parser.error('No positional arguments should be given.') # Check that required options have been provided. required_options = ('android_sdk', 'android_sdk_tools', 'R_package', 'R_dir', 'res_dir', 'crunched_res_dir') for option_name in required_options: if getattr(options, option_name) is None: parser.error('--%s is required' % option_name.replace('_', '-')) return options
492894d0cb4faf004f386ee0f4285180d0a6c37d
13,270
def get_interface_from_model(obj: Base) -> str: """ Transform the passed model object into an dispatcher interface name. For example, a :class:``Label`` model will result in a string with the value `labels` being returned. :param obj: the model object :return: the interface string """ try: return obj.__tablename__ except AttributeError: raise TypeError("Not a transformable model: ", obj)
2ee8d1ac86b0d8d6433ace8d58483dbf91af997b
13,271
import codecs def get_text(string, start, end, bom=True): """This method correctly accesses slices of strings using character start/end offsets referring to UTF-16 encoded bytes. This allows for using character offsets generated by Rosette (and other softwares) that use UTF-16 native string representations under Pythons with UCS-4 support, such as Python 3.3+ (refer to https://www.python.org/dev/peps/pep-0393/). The offsets are adjusted to account for a UTF-16 byte order mark (BOM) (2 bytes) and also that each UTF-16 logical character consumes 2 bytes. 'character' in this context refers to logical characters for the purpose of character offsets; an individual character can consume up to 4 bytes (32 bits for so-called 'wide' characters) and graphemes can consume even more. """ if not isinstance(string, str): raise ValueError('expected string to be of type str') if not any(((start is None), isinstance(start, int))): raise ValueError('expected start to be of type int or NoneType') if not any(((end is None), isinstance(end, int))): raise ValueError('expected end to be of type int or NoneType') if start is not None: start *= 2 if bom: start += 2 if end is not None: end *= 2 if bom: end += 2 utf_16, _ = codecs.utf_16_encode(string) sliced, _ = codecs.utf_16_decode(utf_16[start:end]) return sliced
ffe3c74a248215a82b0e0a5b105f5e4c94c8c2a8
13,272
import math def init_distance(graph: dict, s: str) -> dict: """ 初始化其他节点的距离为正无穷 防止后面字典越界 """ distance = {s: 0} for vertex in graph: if vertex != s: distance[vertex] = math.inf return distance
dd8ceda3ca7435b5f02b7b47a363f017f796bc36
13,273
def read_cry_data(path): """ Read a cry file and extract the molecule's geometry. The format should be as follows:: U_xx U_xy U_xz U_yx U_yy U_yz U_zx U_zy U_zz energy (or comment, this is ignored for now) ele0 x0 y0 z0 ele1 x1 y1 z1 ... elen xn yn zn Where the U matrix is made of the unit cell basis vectors as column vectors. Parameters ---------- path : str A path to a file to read Returns ------- val : LazyValues An object storing all the data """ unit = [] coords = [] elements = [] with open(path, 'r') as f: for line in f: parts = line.strip().split() if len(parts) == 3: unit.append([float(x) for x in parts]) if len(parts) == 4: elements.append(parts[0]) coords.append([float(x) for x in parts[1:]]) return LazyValues(elements=elements, coords=coords, unit_cell=unit)
3a7a88e9d70c5f7499ad219602062ad2d852139b
13,274
import torch def get_camera_wireframe(scale: float = 0.3): """ Returns a wireframe of a 3D line-plot of a camera symbol. """ a = 0.5 * torch.tensor([-2, 1.5, 4]) b = 0.5 * torch.tensor([2, 1.5, 4]) c = 0.5 * torch.tensor([-2, -1.5, 4]) d = 0.5 * torch.tensor([2, -1.5, 4]) C = torch.zeros(3) F = torch.tensor([0, 0, 3]) camera_points = [a, b, d, c, a, C, b, d, C, c, C, F] lines = torch.stack([x.float() for x in camera_points]) * scale return lines
65bb8fa078f2f6f3edb38ac86da0603073fd413f
13,275
def read_input(file): """ Args: file (idx): binary input file. Returns: numpy: arrays for our dataset. """ with open(file, 'rb') as file: z, d_type, d = st.unpack('>HBB', file.read(4)) shape = tuple(st.unpack('>I', file.read(4))[0] for d in range(d)) return np.frombuffer(file.read(), dtype=np.uint8).reshape(shape)
91b10314a326380680898efdb8a7d15aa7a84f24
13,276
from typing import List def maximum_segment_sum(input_list: List): """ Return the maximum sum of the segments of a list Examples:: >>> from pyske.core import PList, SList >>> maximum_segment_sum(SList([-5 , 2 , 6 , -4 , 5 , -6 , -4 , 3])) 9 >>> maximum_segment_sum(PList.from_seq([-33 , 22 , 11 , -44])) 33 >>> maximum_segment_sum(PList.from_seq([-33 , 22 , 0, 1, -3, 11 , -44, 30, -5, -13, 12])) 31 :param input_list: a PySke list of numbers :return: a number, the maximum sum of the segments of a list """ best_sum, _ = input_list.map(int_to_tuple).reduce(max_and_sum, (0, 0)) return best_sum
a42b41f3a3b020e0bcba80b557c628b2a0805caf
13,277
def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files Notes ----- Called by pysat. Not intended for direct use by user. """ if data_path is not None: if tag == '': # files are by month, going to add date to monthly filename for # each day of the month. The load routine will load a month of # data and use the appended date to select out appropriate data. if format_str is None: format_str = 'kp{year:2d}{month:02d}.tab' out = pysat.Files.from_os(data_path=data_path, format_str=format_str, two_digit_year_break=94) if not out.empty: out.ix[out.index[-1]+pds.DateOffset(months=1)- pds.DateOffset(days=1)] = out.iloc[-1] out = out.asfreq('D', 'pad') out = out + '_' + out.index.strftime('%Y-%m-%d') return out elif tag == 'forecast': format_str = 'kp_forecast_{year:04d}-{month:02d}-{day:02d}.txt' files = pysat.Files.from_os(data_path=data_path, format_str=format_str) # pad list of files data to include most recent file under tomorrow if not files.empty: files.ix[files.index[-1]+pds.DateOffset(days=1)] = files.values[-1] files.ix[files.index[-1]+pds.DateOffset(days=1)] = files.values[-1] return files elif tag == 'recent': format_str = 'kp_recent_{year:04d}-{month:02d}-{day:02d}.txt' files = pysat.Files.from_os(data_path=data_path, format_str=format_str) # pad list of files data to include most recent file under tomorrow if not files.empty: files.ix[files.index[-1]+pds.DateOffset(days=1)] = files.values[-1] files.ix[files.index[-1]+pds.DateOffset(days=1)] = files.values[-1] return files else: raise ValueError('Unrecognized tag name for Space Weather Index Kp') else: raise ValueError ('A data_path must be passed to the loading routine ' + 'for Kp')
a302202b7a12534186cfabe66a788df5c29b3266
13,278
def has_bookmark(uri): """ Returns true if the asset with given URI has been bookmarked by the currently logged in user. Returns false if there is no currently logged in user. """ if is_logged_in(): mongo.db.bookmarks.ensure_index('username') mongo.db.bookmarks.ensure_index('asset.uri') return mongo.db.bookmarks.find_one({ 'username': current_user.username, 'asset.uri': uri }) is not None return False
8571c8b50c28a0e8829a143b1d33fd549cfad213
13,279
import six import tqdm def evaluate(f, K, dataiter, num_steps): """Evaluates online few-shot episodes. Args: model: Model instance. dataiter: Dataset iterator. num_steps: Number of episodes. """ if num_steps == -1: it = six.moves.xrange(len(dataiter)) else: it = six.moves.xrange(num_steps) it = tqdm(it, ncols=0) results = [] for i, batch in zip(it, dataiter): # Get features. h = f(batch['x_s'], batch['y_s']) if type(h) is tuple: h, (beta, gamma, beta2, gamma2, count) = h print('beta/count', np.stack([beta, count], axis=-1)) batch['beta'] = beta.numpy() batch['gamma'] = gamma.numpy() batch['beta2'] = beta2.numpy() batch['gamma2'] = gamma2.numpy() batch['count'] = count.numpy() batch['h'] = h.numpy() results.append(batch) return results
a6feebd96907f01789dd74bfb22e5a5306010bf9
13,280
def find_period_of_function(eq,slopelist,nroots): """This function finds the Period of the function. It then makes a list of x values that are that period apart. Example Input: find_period_of_function(eq1,[0.947969,1.278602]) """ global tan s1 = slopelist[0] s2 = slopelist[1] if tan == 1: T = 3.14159265359 else: T = s2-s1 periodlist = [] for i in range(nroots): periodlist.append(s1+T*i) return periodlist
491d853aa99a31348a3acce1c29cc508e7ab3b69
13,281
def merge_date_tags(path, k): """called when encountering only tags in an element ( no text, nor mixed tag and text) Arguments: path {list} -- path of the element containing the tags k {string} -- name of the element containing the tags Returns: whatever type you want -- the value of the element note : if you want """ l=k['#alldata'] #2015/01/01 12:10:30 # if "PubMedPubDate" in path[-1]: if "date" in path[-1].lower(): month=None year=None day=None hour=None minute=None r="" # it should always be a dict with one key, and a subdict as value, containing an "#alldata" key # {'month': {'#alldata': ['09']}} for i in l: # month k = next(iter(i)) # ['09'] ad = i[k]['#alldata'] if k == "Year" and len(ad) == 1 and isinstance (ad[0], str): year=ad[0] elif k == "Month" and len(ad) == 1 and isinstance (ad[0], str): month=ad[0] elif k == "Day" and len(ad) == 1 and isinstance (ad[0], str): day=ad[0] elif k == "Hour" and len(ad) == 1 and isinstance (ad[0], str): hour=ad[0] if len(hour) == 1: hour = "0"+hour elif k == "Minute" and len(ad) == 1 and isinstance (ad[0], str): minute=ad[0] if len(minute) == 1: minute = "0"+minute if year is not None: r=r+year if month is not None: r=r+"/"+month if day is not None: r=r+"/"+day if hour is not None: r=r+ " "+hour if minute is not None: r=r+":"+minute #retrun only if at least "year" is present return r return k
2ae3bd0dada288b138ee450103c0b4412a841336
13,282
def ocp_play(): """Decorator for adding a method as an common play search handler.""" def real_decorator(func): # Store the flag inside the function # This will be used later to identify the method if not hasattr(func, 'is_ocp_playback_handler'): func.is_ocp_playback_handler = True return func return real_decorator
9e96fe81b331820bf7485501e458cbb4efba4328
13,283
def _scatter(x_arr, y_arr, attributes, xlabel=None, xlim=None, xlog=False, ylabel=None, ylim=None, ylog=False, show=True, save=None): """Private plotting utility function.""" # initialise figure and axis settings fig = plt.figure() ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(True) ax.spines['left'].set_visible(True) # plotting of a histogram plt.scatter(x_arr, y_arr, color=attributes['color'], alpha=attributes['opacity'], label=attributes['label']) # ax.set_xticks(bins + 0.5) # final axis setting ax.set_xlim(xlim) ax.set_xlabel(xlabel, color="black") ax.set_xscale('log' if xlog==True else 'linear') ax.set_ylim(ylim) ax.set_ylabel(ylabel, color="black") ax.set_yscale('log' if ylog==True else 'linear') # add legend if not attributes['label']==None: legend = ax.legend(loc=0) legend.get_frame().set_facecolor('white') legend.get_frame().set_edgecolor('lightgrey') # save/show figure if save!=None: plt.savefig(save, bbox_inches='tight') if show: plt.show(fig, block=False) return fig, fig.axes
8494f9398ea0e5d197a58ea341c626e03d47b028
13,284
def first_item(iterable, default=None): """ Returns the first item of given iterable. Parameters ---------- iterable : iterable Iterable default : object Default value if the iterable is empty. Returns ------- object First iterable item. """ if not iterable: return default for item in iterable: return item
f5ebbaea7cf4152382fb4b2854f68a3320d21fdc
13,285
def stratification(n_subjects_per_strata, n_groups, block_length=4, seed=None): """ Create a randomization list for each strata using Block Randomization. If a study has several strata, each strata is seperately randomized using block randomization. Args: n_subjects_per_strata: A list of the number of subjects for each strata. n_groups: The number of groups to randomize subjects to. block_length: The length of the blocks. seed: (optional) The seed to provide to the RNG. Returns: list: a list of length `len(n_subjects_per_strata)` of lists of length `n_subjects_per_strata`. Each sublist is the strata specific randomization list. Notes: The value of `block_length` should be a multiple of `n_groups` to ensure proper balance. Todo: Allow for multiple randomization techniques to be used. """ groups = [] for n_subjects_per_stratum in n_subjects_per_strata: # Adding 52490, a dummy value, to the seed ensures a different list # per strata. The use of a 'magic number' here allows for # reproducibility if seed is not None: seed = seed + 52490 groups.append(block(n_subjects_per_stratum, n_groups, block_length, seed)) return groups
22675c178b389e6d22586fb6640fb1adc1169996
13,286
def ensure_binary(s, encoding='utf-8', errors='strict'): """Coerce **s** to six.binary_type. For Python 2: - `unicode` -> encoded to `str` - `str` -> `str` For Python 3: - `str` -> encoded to `bytes` - `bytes` -> `bytes` """ if isinstance(s, text_type): return s.encode(encoding, errors) elif isinstance(s, binary_type): return s else: raise TypeError("not expecting type '%s'" % type(s))
086d2e50b083a869fff2c06b4da7c04975b19fa3
13,287
def FileDialog(prompt='ChooseFile', indir=''): """ opens a wx dialog that allows you to select a single file, and returns the full path/name of that file """ dlg = wx.FileDialog(None, message = prompt, defaultDir = indir) if dlg.ShowModal() == wx.ID_OK: outfile = dlg.GetPath() else: outfile = None dlg.Destroy() return outfile
cef7816a40297a5920359b2dba3d7e3e6f6d11ec
13,288
def my_account(): """ Allows a user to manage their account """ user = get_user(login_session['email']) if request.method == 'GET': return render_template('myAccount.html', user=user) else: new_password1 = request.form.get('userPassword1') new_password2 = request.form.get('userPassword2') if new_password1 != new_password2: flash("Passwords do not match!") return render_template('myAccount.html', user=user) user.hash_password(new_password1) # set the new password hash session.add(user) session.commit() flash("Your password has been changed.") return redirect(url_for('index'))
f3e762931201ed82fa07c7b08c8bc9913c3729dd
13,289
from typing import List def __pad_assertwith_0_array4D(grad: 'np.ndarray', pad_nums) -> 'np.ndarray': """ Padding arrary with 0 septally. :param grad: :param pad_nums: :return: """ gN, gC, gH, gW = grad.shape init1 = np.zeros((gN, gC, gH + (gH - 1) * pad_nums, gW), dtype = grad.dtype) init2 = np.zeros((gN, gC, gH + (gH - 1) * pad_nums, gW + (gW - 1) * pad_nums), dtype = grad.dtype) boolean: List[int] = [(pad_nums + 1) * i for i in range(grad.shape[2])] init1[:, :, boolean, :] = grad boolean: List[int] = [(pad_nums + 1) * i for i in range(grad.shape[3])] init2[:, :, :, boolean] = init1 return init2
3562e42800c25a059f82a0d163e239badefdcfd3
13,290
def islist(data): """Check if input data is a list.""" return isinstance(data, list)
98769191b0215f8f863047ccc0c37e4d0af0a444
13,291
def spatial_mean(xr_da, lon_name="longitude", lat_name="latitude"): """ Perform averaging on an `xarray.DataArray` with latitude weighting. Parameters ---------- xr_da: xarray.DataArray Data to average lon_name: str, optional Name of x-coordinate lat_name: str, optional Name of y-coordinate Returns ------- xarray.DataArray Spatially averaged xarray.DataArray. """ weights = da.cos(da.deg2rad(xr_da[lat_name])) res = xr_da.weighted(weights).mean(dim=[lon_name, lat_name]) return res
5afb6cb9e9a6b88cc3368da4f3544ea9b7c217be
13,292
def rank(value_to_be_ranked, value_providing_rank): """ Returns the rank of ``value_to_be_ranked`` in set of values, ``values``. Works even if ``values`` is a non-orderable collection (e.g., a set). A binary search would be an optimized way of doing this if we can constrain ``values`` to be an ordered collection. """ num_lesser = [v for v in value_providing_rank if v < value_to_be_ranked] return len(num_lesser)
18c2009eb59b62a2a3c63c69d55f84a6f51e5953
13,293
def Characteristics(aVector): """ Purpose: Compute certain characteristic of data in a vector Inputs: aVector an array of data Initialize: iMean mean iMed median iMin minimum iMax maximum iKurt kurtosis iSkew skewness iStd standard deviation Return value: aResults an array with calculated characteristics """ iMin = aVector.min().values[0] iMax = aVector.max().values[0] iMean = np.mean(aVector).values[0] iMed = np.median(aVector) iKurt = st.kurtosis(aVector)[0] iSkew = st.skew(aVector)[0] iStd = aVector.std().values[0] aResults = np.array([iMin,iMax, iMean,iMed,iKurt,iSkew,iStd]) return aResults
228ba375a7fca9a4e13920e6eadd0dab83b0847c
13,294
def loglik(alpha,gamma_list,M,k): """ Calculate $L_{[\alpha]}$ defined in A.4.2 """ psi_sum_gamma=np.array(list(map(lambda x: psi(np.sum(x)),gamma_list))).reshape((M,1)) # M*1 psi_gamma=psi(np.array(gamma_list)) # M*k matrix L=M*gammaln(np.sum(alpha)-np.sum(gammaln(alpha)))+np.sum((psi_gamma-psi_sum_gamma)*(alpha.reshape((1,k))-1)) return L
233307f7ef4e350bec162199a5d0cd8c773b4151
13,295
from gum.indexer import indexer, NotRegistered def handle_delete(sender_content_type_pk, instance_pk): """Async task to delete a model from the index. :param instance_pk: :param sender_content_type_pk: """ try: sender_content_type = ContentType.objects.get(pk=sender_content_type_pk) sender = sender_content_type.model_class() instance = sender.objects.get(pk=instance_pk) except ObjectDoesNotExist: logger.warning("Object ({}, {}) not found".format(sender_content_type_pk, instance_pk)) return None try: mapping_type = indexer.get_mapping_type(sender) mapping_type.delete_document(instance) except NotRegistered: return None return sender_content_type_pk, instance_pk
049af2041e3ea33bdfddf81c72aeb95b04e5f60c
13,296
import os def get_file_hashes(directory_path): """Returns hashes of all files in directory tree, excluding files with extensions in FILE_EXTENSIONS_TO_IGNORE or files that should not be built. Args: directory_path: str. Root directory of the tree. Returns: dict(str, str). Dictionary with keys specifying file paths and values specifying file hashes. """ file_hashes = dict() python_utils.PRINT( 'Computing hashes for files in %s' % os.path.join(os.getcwd(), directory_path)) for root, _, filenames in os.walk( os.path.join(os.getcwd(), directory_path)): for filename in filenames: filepath = os.path.join(root, filename) if should_file_be_built(filepath) and not any( filename.endswith(p) for p in FILE_EXTENSIONS_TO_IGNORE): # The path in hashes.json file is in posix style, # see the comment above HASHES_JSON_FILENAME for details. complete_filepath = common.convert_to_posixpath( os.path.join(root, filename)) relative_filepath = common.convert_to_posixpath(os.path.relpath( complete_filepath, directory_path)) file_hashes[relative_filepath] = generate_md5_hash( complete_filepath) return file_hashes
95c9e4c3ff0455b784cca083838e3a4b7a0dd496
13,297
def fixedcase_word(w, truelist=None): """Returns True if w should be fixed-case, None if unsure.""" if truelist is not None and w in truelist: return True if any(c.isupper() for c in w[1:]): # tokenized word with noninitial uppercase return True if len(w) == 1 and w.isupper() and w not in {'A', 'K', 'N'}: # single uppercase letter return True if len(w) == 2 and w[1] == '.' and w[0].isupper(): # initial with period return True
9047866f7117e8b1e4090c8e217c3063cfd37c38
13,298
import torch import types def linspace( start, stop, num=50, endpoint=True, retstep=False, dtype=None, split=None, device=None, comm=None, ): """ Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start: scalar, scalar-convertible The starting value of the sample interval, maybe a sequence if convertible to scalar stop: scalar, scalar-convertible The end value of the sample interval, unless is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num: int, optional Number of samples to generate, defaults to 50. Must be non-negative. endpoint: bool, optional If True, stop is the last sample, otherwise, it is not included. Defaults to True. retstep: bool, optional If True, return (samples, step), where step is the spacing between samples. dtype: dtype, optional The type of the output array. split: int, optional The axis along which the array is split and distributed, defaults to None (no distribution). device : str, ht.Device or None, optional Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device). comm: Communication, optional Handle to the nodes holding distributed parts or copies of this tensor. Returns ------- samples: ht.DNDarray There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False). step: float, optional Size of spacing between samples, only returned if retstep is True. Examples -------- >>> ht.linspace(2.0, 3.0, num=5) tensor([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> ht.linspace(2.0, 3.0, num=5, endpoint=False) tensor([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> ht.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) """ # sanitize input parameters start = float(start) stop = float(stop) num = int(num) if num <= 0: raise ValueError( "number of samples 'num' must be non-negative integer, but was {}".format(num) ) step = (stop - start) / max(1, num - 1 if endpoint else num) # sanitize device and comm device = devices.sanitize_device(device) comm = sanitize_comm(comm) # infer local and global shapes gshape = (num,) split = sanitize_axis(gshape, split) offset, lshape, _ = comm.chunk(gshape, split) balanced = True # compose the local tensor start += offset * step stop = start + lshape[0] * step - step data = torch.linspace(start, stop, lshape[0], device=device.torch_device) if dtype is not None: data = data.type(types.canonical_heat_type(dtype).torch_type()) # construct the resulting global tensor ht_tensor = dndarray.DNDarray( data, gshape, types.canonical_heat_type(data.dtype), split, device, comm, balanced ) if retstep: return ht_tensor, step return ht_tensor
0597835fae9658f65553496b1272d786678919c2
13,299