content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _search(self, *query): """Search for a match between the query terms and a tensor's Id, Tag, or Description. https://github.com/OpenMined/PySyft/issues/2609 Note that the query is an AND query meaning that every item in the list of strings (query*) must be found somewhere on the tensor in order for it to be included in the results. Args: query: A list of strings to match against. me: A reference to the worker calling the search. Returns: A list of PointerTensors. """ results = list() for key, obj in self._objects.items(): found_something = True for query_item in query: # If deserialization produced a bytes object instead of a string, # make sure it's turned back to a string or a fair comparison. if isinstance(query_item, bytes): query_item = query_item.decode("ascii") match = False if query_item == str(key): match = True if isinstance(obj, FrameworkTensor): if obj.tags is not None: if query_item in obj.tags: match = True if obj.description is not None: if query_item in obj.description: match = True if not match: found_something = False if found_something: # set garbage_collect_data to False because if we're searching # for a tensor we don't own, then it's probably someone else's # decision to decide when to delete the tensor. ptr = obj.create_pointer(garbage_collect_data=False, owner=sy.local_worker) results.append(ptr) return results
8ffd9ae2fc0eb9f5f01c9cd3d27123a316bad655
13,100
def _FindLockNames(locks): """ Finds the ids and descriptions of locks that given locks can block. @type locks: dict of locking level to list @param locks: The locks that gnt-debug delay is holding. @rtype: dict of string to string @return: The lock name to entity name map. For a given set of locks, some internal locks (e.g. ALL_SET locks) can be blocked even though they were not listed explicitly. This function has to take care and list all locks that can be blocked by the locks given as parameters. """ lock_map = {} if locking.LEVEL_NODE in locks: node_locks = locks[locking.LEVEL_NODE] if node_locks == locking.ALL_SET: # Empty list retrieves all info name_uuid_map = _GetNodeUUIDMap([]) else: name_uuid_map = _GetNodeUUIDMap(node_locks) for name in name_uuid_map: lock_map["node/%s" % name_uuid_map[name]] = name # If ALL_SET was requested explicitly, or there is at least one lock # Note that locking.ALL_SET is None and hence the strange form of the if if node_locks == locking.ALL_SET or node_locks: lock_map["node/[lockset]"] = "joint node lock" #TODO add other lock types here when support for these is added return lock_map
9e98eb03a4a27d8af95b734453a0a2add8248fab
13,101
import time import subprocess def runtime(command: list, show=True, env=None): """Runs the command and returns the runtime.""" print('START:', *command) t_start = time() if show: r = subprocess.run(command, env=env) else: r = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) t_end = time() if r.returncode != 0: raise Exception(r.stderr.decode()) t = t_end - t_start print('END: runtime =', round(t, 3), 'seconds') return t
eae28156c04e99fd8c7868f2e6b123d6d6f8ce41
13,102
def val2str(val): """Writes values to a string. Args: val (any): Any object that should be represented by a string. Returns: valstr (str): String representation of `val`. """ # Return the input if it's a string if isinstance(val,str ): valstr=val # Handle types where spaces are added elif isinstance(val,tuple): valstr=repr(val).replace(', ',',') elif isinstance(val,list ): valstr=repr(val).replace(', ',',') elif isinstance(val,dict ): valstr=repr(val).replace(', ',',').replace(': ',':') # Otherwise use repr() else: valstr=repr(val) # Return output return valstr
c8f26553ceeeef841239c534815f86293f91086a
13,103
def showItems(category_name): """Pulls all the Categories, the specific Category selected by the user from the home page, all the items within that specific Category, and then counts the number of items. All this information is displayed on the items.html page. """ categories = session.query(Category).order_by(asc(Category.name)) category = session.query(Category).filter_by(name=category_name).one() items = session.query(Item).filter_by(category_name=category_name).all() itemscount = session.query(Item). \ filter_by(category_name=category_name). \ count() return render_template('items.html', categories=categories, items=items, category=category, itemscount=itemscount)
0ef0c8dfca16a9f16a9d4a46c3d796e817710165
13,104
from datetime import datetime import math import calendar def date_ranges(): """Build date ranges for current day, month, quarter, and year. """ today = datetime.date.today() quarter = math.floor((today.month - 1) / 3) cycle = current_cycle() return { 'month': ( today.replace(day=1), today.replace(day=calendar.monthrange(today.year, today.month)[1]), ), 'quarter': ( today.replace(day=1, month=quarter * 3 + 1), today.replace( day=calendar.monthrange(today.year, quarter * 3 + 3)[1], month=quarter * 3 + 3, ), ), 'year': ( today.replace(day=1, month=1), today.replace( day=calendar.monthrange(today.year, 12)[1], month=12, ), ), 'cycle': ( datetime.date( year=cycle - 1, month=1, day=1, ), datetime.date( year=cycle, month=12, day=calendar.monthrange(cycle, 12)[1], ), ), }
08feb47fe09d5a0d1c9e5e16bdcbd65d3e211e1e
13,105
def FiskJohnsonDiscreteFuncBCKWD(r,F0,T): """Compute reverse Fourier-Bessel transformation via Fisk Johnson procedure. Compute reverse Fourier-Bessel transform (i.e. 0th order reverse Hankel transform) using a rapidly convergent summation of a Fourier-Bessel expansion following the metod introduced in Ref. [1] and further detailed in Ref. [2]. Args: r (numpy array, ndim=1): equispaced 1D grid of target coordinates. F0 (numpy array, ndim=1): Fourier-Bessel transformed function at discrete coordinates given by its scaled bessel zeros. T (float): truncation threshold for objective function. Returns: f (numpy array, ndim=1): reverse Fourier-Bessel transform of input function. Notes: - Fisk Johnson procedure for reverse Fourier-Bessel transformation. - Implements Eq. (10) of Ref. [1]. - above truncation threshold it holds that f(r>T) = 0. - on input F0 = F0[jm/T] for m = 0...N-1 where jm are the first N zeros of the 0th order Bessel function in ascending order. Refs: [1] An Improved Method for Computing a Discrete Hankel Transform H. Fisk Johnson Comp. Phys. Commun. 43 (1987) 181-202 [2] Theory and operational rules for the discrete Hankel transform N. Baddour, U. Chouinard J. Opt. Soc. Am. A 32 (2015) 611 """ # INITIALIZE EMPTY ARRAY FOR REVESE TRANSFORM f = np.zeros(r.size) # COMPUTE FIRST N ZEROS OF 0TH ORDER BESSEL FUNCTION IN ASCENDING ORDER jm = scs.jn_zeros(0,F0.size) # REVERSE TRANSFORM YIELDING ARBITRARY FUNCTION VALUES f(xT) FROM ITS # FOURIER BESSEL TRANSFORM F(j[m]/T) m=0...N-1 AT SCALED BESSEL ZEROS # j[m]/T. SEE EQ. (10) OF REF. [1]. x = r/T f[x<1] = 2.0/T**2*np.sum( F0*scs.j0(jm*x[x<1,np.newaxis])/scs.j1(jm)**2, axis=1) return f
f950323bcad980f8b0af94d5848b59cd3522adfc
13,106
def make_waterfall_horizontal(data, layout): """Function used to flip the figure from vertical to horizontal. """ h_data = list(data) h_data = [] for i_trace, trace in enumerate(list(data)): h_data.append(trace) prov_x = h_data[i_trace]['x'] h_data[i_trace]['x'] = list(h_data[i_trace]['y'])[::-1] h_data[i_trace]['y'] = list(prov_x)[::-1] h_data[i_trace]['orientation'] = 'h' h_data[i_trace]['hoverinfo'] = hoverinfo_horizontal_( h_data[i_trace]['hoverinfo']) h_annotations = [] for i_ann, annotation in enumerate(list(layout['annotations'])): h_annotations.append(annotation) prov_x = h_annotations[i_ann]['x'] h_annotations[i_ann]['x'] = h_annotations[i_ann]['y'] h_annotations[i_ann]['y'] = prov_x h_annotations.reverse() h_layout = layout h_layout['annotations'] = h_annotations h_layout['xaxis'] = go.layout.XAxis({'title': 'Prediction score'}) h_layout['yaxis'] = go.layout.YAxis({'title': ''}) return h_data, h_layout
0dacdefc4e36d10dea3404e1fc5e92ce6f7326be
13,107
def parse_file(producer): """ Given a producer name, return appropriate parse function. :param producer: NMR machine producer. :return: lambda function that reads file according to producer. """ global path_to_directory return { "Agilent": (lambda: ng.agilent.read(dir=path_to_directory)), "Bruker": (lambda: ng.bruker.read(dir=path_to_directory)), "Varian": (lambda: ng.varian.read(dir=path_to_directory)), }.get(producer)
cdb8e5e6f506b6d393eeefc13e982f246ea527b6
13,108
from typing import Union from typing import Optional def get_lon_dim_name_impl(ds: Union[xr.Dataset, xr.DataArray]) -> Optional[str]: """ Get the name of the longitude dimension. :param ds: An xarray Dataset :return: the name or None """ return _get_dim_name(ds, ['lon', 'longitude', 'long'])
7f063690d8835b7cdd3298e14a5c35bd32025acc
13,109
def logout(): """Log out user.""" session.pop('eventbrite_token', None) return redirect(url_for('index'))
449690645fc19d72ef85636776f8d853ca65f4f8
13,110
def search(query="", casesense=False, filterout=[], subscribers=0, nsfwmode=2, doreturn=False, sort=None): """ Search for a subreddit by name *str query = The search query "query" = results where "query" is in the name "*query" = results where "query" is at the end of the name "query*" = results where "query" is at the beginning of the name "*query*" = results where "query" is in the middle of the name bool casesense = is the search case sensitive list filterout = [list, of, words] to omit from search. Follows casesense int subscribers = minimum number of subscribers int nsfwmode = 0 - Clean only 1 - Dirty only 2 - All int sort = The integer representing the sql column to sort by. Defaults to no sort. """ querys = ''.join([c for c in query if c in GOODCHARS]) queryx = '%%%s%%' % querys if '!' in query: cur.execute('SELECT * FROM subreddits WHERE name LIKE ?', [querys]) return cur.fetchone() if nsfwmode in [0,1]: cur.execute('SELECT * FROM subreddits WHERE name LIKE ? AND subscribers > ? AND nsfw=?', [queryx, subscribers, nsfwmode]) else: cur.execute('SELECT * FROM subreddits WHERE name LIKE ? AND subscribers > ?', [queryx, subscribers]) results = [] if casesense is False: querys = querys.lower() filterout = [x.lower() for x in filterout] if '*' in query: positional = True front = query[-1] == '*' back = query[0] == '*' if front and back: mid = True front = False back = False else: mid = False else: positional = False lenq = len(querys) for item in fetchgenerator(cur): name = item[SQL_NAME] if casesense is False: name = name.lower() if querys not in name: #print('%s not in %s' % (querys, name)) continue if (positional and front) and (name[:lenq] != querys): #print('%s not front %s (%s)' % (querys, name, name[:lenq])) continue if (positional and back) and (name[-lenq:] != querys): #print('%s not back %s (%s)' % (querys, name, name[-lenq:])) continue if (positional and mid) and (querys not in name[1:-1]): #print('%s not mid %s (%s)' % (querys, name, name[1:-1])) continue if any(filters in name for filters in filterout): #print('%s not filter %s' % (querys, name)) continue results.append(item) if sort is not None: results.sort(key=lambda x: x[sort], reverse=True) if doreturn is True: return results else: for item in results: print(item)
c623ee11d507dbd7de84b109c2aa40866bb06dda
13,111
def is_xh(filename): """ Detects if the given file is an XH file. :param filename: The file to check. :type filename: str """ info = detect_format_version_and_endianness(filename) if info is False: return False return True
f0c33e5eed11522210dbc64a556e77f1c68d63c1
13,112
import os import psutil def is_parent_process_alive(): """Return if the parent process is alive. This relies on psutil, but is optional.""" parent_pid = os.getppid() if psutil is None: try: os.kill(parent_pid, 0) except OSError: return False else: return True else: try: return psutil.pid_exists(parent_pid) except (AttributeError, KeyboardInterrupt, Exception): return False
35ea736de6e5aec32a300c52745ad760723ba314
13,113
from typing import Tuple from typing import List from typing import Union from typing import Callable from typing import Any def validate_func_kwargs( kwargs: dict, ) -> Tuple[List[str], List[Union[str, Callable[..., Any]]]]: """ Validates types of user-provided "named aggregation" kwargs. `TypeError` is raised if aggfunc is not `str` or callable. Parameters ---------- kwargs : dict Returns ------- columns : List[str] List of user-provied keys. func : List[Union[str, callable[...,Any]]] List of user-provided aggfuncs Examples -------- >>> validate_func_kwargs({'one': 'min', 'two': 'max'}) (['one', 'two'], ['min', 'max']) """ tuple_given_message = "func is expected but received {} in **kwargs." columns = list(kwargs) func = [] for col_func in kwargs.values(): if not (isinstance(col_func, str) or callable(col_func)): raise TypeError(tuple_given_message.format(type(col_func).__name__)) func.append(col_func) if not columns: no_arg_message = "Must provide 'func' or named aggregation **kwargs." raise TypeError(no_arg_message) return columns, func
81475f1467546f31a63a021c05a0c5f1adfd28a8
13,114
def mni152_to_fslr(img, fslr_density='32k', method='linear'): """ Projects `img` in MNI152 space to fsLR surface Parameters ---------- img : str or os.PathLike or niimg_like Image in MNI152 space to be projected fslr_density : {'32k', '164k'}, optional Desired output density of fsLR surface. Default: '32k' method : {'nearest', 'linear'}, optional Method for projection. Specify 'nearest' if `img` is a label image. Default: 'linear' Returns ------- fsLR : (2,) tuple-of-nib.GiftiImage Projected `img` on fsLR surface """ if fslr_density in ('4k', '8k'): raise NotImplementedError('Cannot perform registration fusion to ' f'fsLR {fslr_density} space yet.') return _vol_to_surf(img, 'fsLR', fslr_density, method)
07129a79bc51e4655516573f517c4270d89800ed
13,115
def parse_record(raw_record, _mode, dtype): """Parse CIFAR-10 image and label from a raw record.""" # Convert bytes to a vector of uint8 that is record_bytes long. record_vector = tf.io.decode_raw(raw_record, tf.uint8) # The first byte represents the label, which we convert from uint8 to int32 # and then to one-hot. label = tf.cast(record_vector[0], tf.int32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape(record_vector[1:_RECORD_BYTES], [_NUM_CHANNELS, _HEIGHT, _WIDTH]) # Convert from [depth, height, width] to [height, width, depth], and cast # as float32. image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32) # normalise images to range 0-1 image = image/255.0 image = tf.cast(image, dtype) return image, image
278998f8ee1a126c6c248d8124bba1a4abdf7621
13,116
def makeSSHTTPClient(paramdict): """Creates a SingleShotHTTPClient for the given URL. Needed for Carousel.""" # get the "url" and "postbody" keys from paramdict to use as the arguments of SingleShotHTTPClient return SingleShotHTTPClient(paramdict.get("url", ""), paramdict.get("postbody", ""), extraheaders = paramdict.get("extraheaders", None), method = paramdict.get('method', None) )
e7172d849e9c97baf07b9d97b914bf3e05551026
13,117
import glob def getFiles(regex, camera, mjdToIngest = None, mjdthreshold = None, days = None, atlasroot='/atlas/', options = None): """getFiles. Args: regex: camera: mjdToIngest: mjdthreshold: days: atlasroot: options: """ # If mjdToIngest is defined, ignore mjdThreshold. If neither # are defined, grab all the files. # Don't use find, use glob. It treats the whole argument as a regex. # e.g. directory = "/atlas/diff/" + camera "/5[0-9][0-9][0-9][0-9]", regex = *.ddc if mjdToIngest: if options is not None and options.difflocation is not None: directory = options.difflocation.replace('CAMERA', camera).replace('MJD', str(mjdToIngest)) else: directory = atlasroot + "diff/" + camera + "/" + str(mjdToIngest) fileList = glob.glob(directory + '/' + regex) else: if mjdthreshold and days: fileList = [] for day in range(days): if options is not None and options.difflocation is not None: directory = options.difflocation.replace('CAMERA', camera).replace('MJD', str(mjdthreshold + day)) else: directory = atlasroot + "diff/" + camera + "/%d" % (mjdthreshold + day) files = glob.glob(directory + '/' + regex) if files: fileList += files else: if options is not None and options.difflocation is not None: directory = options.difflocation.replace('CAMERA', camera).replace('MJD', '/[56][0-9][0-9][0-9][0-9]') else: directory = atlasroot + "diff/" + camera + "/[56][0-9][0-9][0-9][0-9]" fileList = glob.glob(directory + '/' + regex) fileList.sort() return fileList
8d61d2e1900413d55e2cfc590fb6c969dd31b441
13,118
from typing import Sequence from typing import Tuple def chain(*args: GradientTransformation) -> GradientTransformation: """Applies a list of chainable update transformations. Given a sequence of chainable transforms, `chain` returns an `init_fn` that constructs a `state` by concatenating the states of the individual transforms, and returns an `update_fn` which chains the update transformations feeding the appropriate state to each. Args: *args: a sequence of chainable (init_fn, update_fn) tuples. Returns: A single (init_fn, update_fn) tuple. """ init_fns, update_fns = zip(*args) def init_fn(params: Params) -> Sequence[OptState]: return [fn(params) for fn in init_fns] def update_fn(updates: Updates, state: OptState, params: Params = None ) -> Tuple[Updates, Sequence[OptState]]: new_state = [] for s, fn in zip(state, update_fns): # pytype: disable=wrong-arg-types updates, new_s = fn(updates, s, params) new_state.append(new_s) return updates, new_state return GradientTransformation(init_fn, update_fn)
089b30a4daec8be0033567da147be6dc4fab9990
13,119
def fibonacci_mult_tuple(fib0=2, fib1=3, count=10): """Returns a tuple with a fibonacci sequence using * instead of +.""" return tuple(fibonacci_mult_list(fib0, fib1, count))
a43d1bd5bd2490ecbf85b305cc99929ac64a4908
13,120
import logging def execute_in_process(f): """ Decorator. Execute the function in thread. """ def wrapper(*args, **kwargs): logging.info("Se ha lanzado un nuevo proceso") process_f = Process(target=f, args=args, kwargs=kwargs) process_f.start() return process_f return wrapper
2a002ce48e07ec4b31066c1fad51cd271eaa6230
13,121
import copy def castep_spectral_dispersion(computer, calc_doc, seed): """ Runs a dispersion interpolation on top of a completed SCF calculation, optionally running orbitals2bands and OptaDOS projected dispersion. Parameters: computer (:obj:`matador.compute.ComputeTask`): the object that will be calling CASTEP. calc_doc (dict): the structure to run on. seed (str): root filename of structure. """ LOG.info('Performing CASTEP spectral dispersion calculation...') disp_doc = copy.deepcopy(calc_doc) disp_doc['task'] = 'spectral' disp_doc['spectral_task'] = 'bandstructure' # disable checkpointing for BS/DOS by default, leaving just SCF disp_doc['write_checkpoint'] = 'none' disp_doc['pdos_calculate_weights'] = True disp_doc['write_cell_structure'] = True disp_doc['continuation'] = 'default' required = [] forbidden = ['spectral_kpoints_mp_spacing'] computer.validate_calc_doc(disp_doc, required, forbidden) success = computer.run_castep_singleshot(disp_doc, seed, keep=True, intermediate=True) if disp_doc.get('write_orbitals'): LOG.info('Planning to call orbitals2bands...') _cache_executable = copy.deepcopy(computer.executable) _cache_core = copy.deepcopy(computer.ncores) computer.ncores = 1 computer.executable = 'orbitals2bands' try: success = computer.run_generic(intermediate=True, mv_bad_on_failure=False) except Exception as exc: computer.executable = _cache_executable computer.ncores = _cache_core LOG.warning('Failed to call orbitals2bands, with error: {}'.format(exc)) computer.ncores = _cache_core computer.executable = _cache_executable return success
0f84e9b4d7a044fd50512093b51ec20425c98cbd
13,122
def return_limit(x): """Returns the standardized values of the series""" dizionario_limite = {'BENZENE': 5, 'NO2': 200, 'O3': 180, 'PM10': 50, 'PM2.5': 25} return dizionario_limite[x]
92d40eaef7b47c3a20b9bcf1f7fd72510a05d9b2
13,123
def npaths(x, y): """ Count paths recursively. Memoizing makes this efficient. """ if x>0 and y>0: return npaths(x-1, y) + npaths(x, y-1) if x>0: return npaths(x-1, y) if y>0: return npaths(x, y-1) return 1
487a1f35b1bf825ffaf6bbf1ed86eb51f6cf18e9
13,124
from datetime import datetime def sqlify(obj): """ converts `obj` to its proper SQL version >>> sqlify(None) 'NULL' >>> sqlify(True) "'t'" >>> sqlify(3) '3' """ # because `1 == True and hash(1) == hash(True)` # we have to do this the hard way... if obj is None: return 'NULL' elif obj is True: return "'t'" elif obj is False: return "'f'" elif datetime and isinstance(obj, datetime.datetime): return repr(obj.isoformat()) else: return repr(obj)
6342a4fc1b4450181cee5a6287036b1f4ed38883
13,125
def create_results_dataframe( list_results, settings, result_classes=None, abbreviate_name=False, format_number=False, ): """ Returns a :class:`pandas.DataFrame`. If *result_classes* is a list of :class:`Result`, only the columns from this result classes will be returned. If ``None``, the columns from all results will be returned. """ list_series = [] for results in list_results: builder = SeriesBuilder(settings, abbreviate_name, format_number) for result in results: prefix = result.getname().lower() + " " if result_classes is None: # Include all results builder.add_entity(result, prefix) elif type(result) in result_classes: if len(result_classes) == 1: builder.add_entity(result) else: builder.add_entity(result, prefix) list_series.append(builder.build()) return pd.DataFrame(list_series)
638328936ee9207777fab504021efd83379ec93c
13,126
def get_first_model_each_manufacturer(cars=cars): """return a list of matching models (original ordering)""" first = [] for key,item in cars.items(): first.append(item[0]) return(first)
c6ec531ccc7a9bc48b404df34ec9c33066cd8717
13,127
def white(*N, mean=0, std=1): """ White noise. :param N: Amount of samples. White noise has a constant power density. It's narrowband spectrum is therefore flat. The power in white noise will increase by a factor of two for each octave band, and therefore increases with 3 dB per octave. """ return std * np.random.randn(*N) + mean
874dd75b3cd735f6b5642cd5567d7d0218af615b
13,128
import random def random_size_crop(src, size, min_area=0.25, ratio=(3.0/4.0, 4.0/3.0)): """Randomly crop src with size. Randomize area and aspect ratio""" h, w, _ = src.shape area = w*h for _ in range(10): new_area = random.uniform(min_area, 1.0) * area new_ratio = random.uniform(*ratio) new_w = int(new_area*new_ratio) new_h = int(new_area/new_ratio) if random.uniform(0., 1.) < 0.5: new_w, new_h = new_h, new_w if new_w > w or new_h > h: continue x0 = random.randint(0, w - new_w) y0 = random.randint(0, h - new_h) out = fixed_crop(src, x0, y0, new_w, new_h, size) return out, (x0, y0, new_w, new_h) return random_crop(src, size)
76c64b91e03cb5cf65b164c10771bd78d13945ee
13,129
import tqdm def analyze_subject(subject_id, A, B, spheres, interpolate, mask, data_dir=None): """ Parameters ---------- subject_id : int unique ID of the subject (index of the fMRI data in the input dataset) A : tuple tuple of (even_trials, odd_trials) for the first condition (A); even/odd_trials is the subject's mean fMRI data for that trial, and should be either a 3D niimg or path (string) to a NIfTI file B : tuple tuple of (even_trials, odd_trials) for the second condition (B); formatted the same as A spheres : list TODO interpolate : bool whether or not to skip every other sphere and interpolate the results; used to speed up the analysis mask : Niimg-like object boolean image giving location of voxels containing usable signals data_dir : string path to directory where MVPA results should be stored Returns ------- score_map_fpath : str path to NIfTI file with values indicating the significance of each voxel for condition A; same shape as the mask """ A_even, A_odd = A B_even, B_odd = B if all(isinstance(img, str) for img in [A_even, A_odd, B_even, B_odd]): A_even, A_odd = load_img(A_even), load_img(A_odd) B_even, B_odd = load_img(B_even), load_img(B_odd) A_even, A_odd = get_data(A_even), get_data(A_odd) B_even, B_odd = get_data(B_even), get_data(B_odd) _mask = get_data(mask) scores = np.zeros_like(_mask, dtype=np.float64) X, y = [], [] for (x0, y0, z0), sphere in tqdm(spheres): _A_even, _A_odd = A_even[sphere].flatten(), A_odd[sphere].flatten() _B_even, _B_odd = B_even[sphere].flatten(), B_odd[sphere].flatten() AA_sim = atanh(np.corrcoef(np.vstack((_A_even, _A_odd)))[0, 1]) BB_sim = atanh(np.corrcoef(np.vstack((_B_even, _B_odd)))[0, 1]) AB_sim = atanh(np.corrcoef(np.vstack((_A_even, _B_odd)))[0, 1]) BA_sim = atanh(np.corrcoef(np.vstack((_B_even, _A_odd)))[0, 1]) scores[x0][y0][z0] = AA_sim + BB_sim - AB_sim - BA_sim X.append(np.array([x0, y0, z0])) y.append(scores[x0][y0][z0]) if interpolate: interp = NearestNDInterpolator(np.vstack(X), y) for indices in np.transpose(np.nonzero(_mask)): x, y, z = indices if not scores[x][y][z]: scores[x][y][z] = interp(indices) score_map_fpath = score_map_filename(data_dir, subject_id) scores = new_img_like(mask, scores) scores.to_filename(score_map_fpath) return score_map_fpath
9596de830bd554990dc286ea08c1ea967deb20a7
13,130
import re def joinAges(dataDict): """Merges columns by county, dropping ages""" popColumns = list(dataDict.values())[0].columns.tolist() popColumns = [re.sub("[^0-9]", "", column) for column in popColumns] dictOut = dict() for compartmentName, table in dataDict.items(): table.columns = popColumns dictOut[compartmentName] = table.sum(axis=1, level=0) return dictOut
d83ee4883ba58f7090141c131c4e111a4805f15d
13,131
def plot_graph_route(G, route, bbox=None, fig_height=6, fig_width=None, margin=0.02, bgcolor='w', axis_off=True, show=True, save=False, close=True, file_format='png', filename='temp', dpi=300, annotate=False, node_color='#999999', node_size=15, node_alpha=1, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=1, use_geom=True, origin_point=None, destination_point=None, route_color='r', route_linewidth=4, route_alpha=0.5, orig_dest_node_alpha=0.5, orig_dest_node_size=100, orig_dest_node_color='r', orig_dest_point_color='b'): """ Plot a route along a networkx spatial graph. Parameters ---------- G : networkx multidigraph route : list the route as a list of nodes bbox : tuple bounding box as north,south,east,west - if None will calculate from spatial extents of data. if passing a bbox, you probably also want to pass margin=0 to constrain it. fig_height : int matplotlib figure height in inches fig_width : int matplotlib figure width in inches margin : float relative margin around the figure axis_off : bool if True turn off the matplotlib axis bgcolor : string the background color of the figure and axis show : bool if True, show the figure save : bool if True, save the figure as an image file to disk close : bool close the figure (only if show equals False) to prevent display file_format : string the format of the file to save (e.g., 'jpg', 'png', 'svg') filename : string the name of the file if saving dpi : int the resolution of the image file if saving annotate : bool if True, annotate the nodes in the figure node_color : string the color of the nodes node_size : int the size of the nodes node_alpha : float the opacity of the nodes node_edgecolor : string the color of the node's marker's border node_zorder : int zorder to plot nodes, edges are always 2, so make node_zorder 1 to plot nodes beneath them or 3 to plot nodes atop them edge_color : string the color of the edges' lines edge_linewidth : float the width of the edges' lines edge_alpha : float the opacity of the edges' lines use_geom : bool if True, use the spatial geometry attribute of the edges to draw geographically accurate edges, rather than just lines straight from node to node origin_point : tuple optional, an origin (lat, lon) point to plot instead of the origin node destination_point : tuple optional, a destination (lat, lon) point to plot instead of the destination node route_color : string the color of the route route_linewidth : int the width of the route line route_alpha : float the opacity of the route line orig_dest_node_alpha : float the opacity of the origin and destination nodes orig_dest_node_size : int the size of the origin and destination nodes orig_dest_node_color : string the color of the origin and destination nodes orig_dest_point_color : string the color of the origin and destination points if being plotted instead of nodes Returns ------- fig, ax : tuple """ # plot the graph but not the route fig, ax = plot_graph(G, bbox=bbox, fig_height=fig_height, fig_width=fig_width, margin=margin, axis_off=axis_off, bgcolor=bgcolor, show=False, save=False, close=False, filename=filename, dpi=dpi, annotate=annotate, node_color=node_color, node_size=node_size, node_alpha=node_alpha, node_edgecolor=node_edgecolor, node_zorder=node_zorder, edge_color=edge_color, edge_linewidth=edge_linewidth, edge_alpha=edge_alpha, use_geom=use_geom) # the origin and destination nodes are the first and last nodes in the route origin_node = route[0] destination_node = route[-1] if origin_point is None or destination_point is None: # if caller didn't pass points, use the first and last node in route as # origin/destination origin_destination_lats = (G.nodes[origin_node]['y'], G.nodes[destination_node]['y']) origin_destination_lons = (G.nodes[origin_node]['x'], G.nodes[destination_node]['x']) else: # otherwise, use the passed points as origin/destination origin_destination_lats = (origin_point[0], destination_point[0]) origin_destination_lons = (origin_point[1], destination_point[1]) orig_dest_node_color = orig_dest_point_color # scatter the origin and destination points ax.scatter(origin_destination_lons, origin_destination_lats, s=orig_dest_node_size, c=orig_dest_node_color, alpha=orig_dest_node_alpha, edgecolor=node_edgecolor, zorder=4) # plot the route lines edge_nodes = list(zip(route[:-1], route[1:])) lines = [] for u, v in edge_nodes: # if there are parallel edges, select the shortest in length data = min(G.get_edge_data(u, v).values(), key=lambda x: x['length']) # if it has a geometry attribute (ie, a list of line segments) if 'geometry' in data and use_geom: # add them to the list of lines to plot xs, ys = data['geometry'].xy lines.append(list(zip(xs, ys))) else: # if it doesn't have a geometry attribute, the edge is a straight # line from node to node x1 = G.nodes[u]['x'] y1 = G.nodes[u]['y'] x2 = G.nodes[v]['x'] y2 = G.nodes[v]['y'] line = [(x1, y1), (x2, y2)] lines.append(line) # add the lines to the axis as a linecollection lc = LineCollection(lines, colors=route_color, linewidths=route_linewidth, alpha=route_alpha, zorder=3) ax.add_collection(lc) # save and show the figure as specified fig, ax = save_and_show(fig, ax, save, show, close, filename, file_format, dpi, axis_off) return fig, ax
19483338300d2f0fe9426942b5e0a196178cc036
13,132
from typing import Dict def random_polynomialvector( secpar: int, lp: LatticeParameters, distribution: str, dist_pars: Dict[str, int], num_coefs: int, bti: int, btd: int, const_time_flag: bool = True ) -> PolynomialVector: """ Generate a random PolynomialVector with bounded Polynomial entries. Essentially just instantiates a PolynomialVector object with a list of random Polynomial objects as entries, which are in turn generated by random_polynomial :param secpar: Input security parameter :type secpar: int :param lp: Lattice parameters :type lp: LatticeParameters :param distribution: String code describing which distribution to use :type distribution: str :param dist_pars: Distribution parameters :type dist_pars: dict :param num_coefs: Number of coefficients to generate :type num_coefs: int :param bti: Number of bits required to unbiasedly sample indices without replacement. :type bti: int :param btd: Number of bits required to unbiasedly sample an integer modulo the modulus in lp :type btd: int :param const_time_flag: Indicates whether arithmetic should be constant time. :type const_time_flag: bool :return: :rtype: PolynomialVector """ if secpar < 1: raise ValueError('Cannot random_polynomialvector without an integer security parameter.') elif distribution == UNIFORM_INFINITY_WEIGHT: return random_polynomial_vector_inf_wt_unif( secpar=secpar, lp=lp, dist_pars=dist_pars, num_coefs=num_coefs, bti=bti, btd=btd, const_time_flag=const_time_flag ) raise ValueError('Tried to random_polynomialvector with a distribution that is not supported.')
43d059c69f74f2ba91fec690cc6d9a86ca51cf2a
13,133
def parse_module(file_name, file_reader): """Parses a module, returning a module-level IR. Arguments: file_name: The name of the module's source file. file_reader: A callable that returns either: (file_contents, None) or (None, list_of_error_detail_strings) Returns: (ir, debug_info, errors), where ir is a module-level intermediate representation (IR), debug_info is a ModuleDebugInfo containing the tokenization, parse tree, and original source text of all modules, and errors is a list of tokenization or parse errors. If errors is not an empty list, ir will be None. Raises: FrontEndFailure: An error occurred while reading or parsing the module. str(error) will give a human-readable error message. """ source_code, errors = file_reader(file_name) if errors: location = parser_types.make_location((1, 1), (1, 1)) return None, None, [ [error.error(file_name, location, "Unable to read file.")] + [error.note(file_name, location, e) for e in errors] ] return parse_module_text(source_code, file_name)
d7c7bc55e3020444473c7b1fd66214a9a2451cb5
13,134
def get_glare_value(gray): """ :param gray: cv2.imread(image_path) grayscale image gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) :return: numrical value between 0-256 which tells the glare value """ blur = cv2.blur(gray, (3, 3)) # With kernel size depending upon image size mean_blur = cv2.mean(blur) return mean_blur[0]
c019d79f47949a061e74129b56bfb3d413d03314
13,135
import torch def makeCrops(image, stepSize, windowSize, true_center): """ """ image = image.type(torch.FloatTensor) crops = [] truths = [] c_x, c_y, orient = true_center # TODO: look into otdering, why it's y,x ! margin = 15 # --> is x, but is the column # to slide horizontally, y must come first for y in range(0, image.shape[0] - windowSize[0] + 1, stepSize): for x in range(0, image.shape[1] - windowSize[1] + 1, stepSize): end_x, end_y = x + windowSize[1], y + windowSize[0] hasRect = (x + margin < c_x < end_x - margin) and ( y + margin < c_y < end_y - margin ) truths.append(hasRect) crops.append(image[y:end_y, x:end_x]) crops = torch.stack(crops) print("shape of crops", crops.shape) return crops, truths
26c813741c799a6f13c0afee3969a6a669064974
13,136
def generate_n_clusters(object_generator, n_clusters, n_objects_per_cluster, *, rng=None): """ Creates n_clusters of random objects """ rng = np.random.default_rng(rng) object_clusters = [] for i in range(n_clusters): cluster_objects = generate_random_object_cluster(n_objects_per_cluster, object_generator, max_cluster_trans=0.5, max_cluster_rot=np.pi / 16, rng=rng) object_clusters.append(cluster_objects) all_objects = [item for sublist in object_clusters for item in sublist] return all_objects, object_clusters
1de8c3793abaf635e182b6b4640ddd8bd7d1ed28
13,137
def disp2vel(wrange, velscale): """ Returns a log-rebinned wavelength dispersion with constant velocity. This code is an adaptation of pPXF's log_rebin routine, simplified to deal with the wavelength dispersion only. Parameters ---------- wrange: list, np.array or astropy.Quantity Input wavelength dispersion range with two elements. velscale: float or astropy.Quantity Desired output velocity scale. Units are assumed to be km/s unless specified as an astropy.Quantity. """ c = 299792.458 # Speed of light in km/s if isinstance(wrange, list): wrange = np.array(wrange) wunits = wrange.unit if hasattr(wrange, "unit") else 1 if hasattr(velscale, "unit"): velscale = velscale.to(u.km/u.s).value veldiff = np.log(np.max(wrange) / np.min(wrange)) * c n = veldiff / velscale m = int(n) dv = 0.5 * (n-m) * velscale v = np.arange(0, m * velscale, velscale) + dv w = wrange[0] * np.exp(v / c) return w * wunits
c15d5cf8dc3f26969f38e4f678441adeae710e77
13,138
def relabel(labels): """ Remaps integer labels based on who is most frequent """ uni_labels, uni_inv, uni_counts = np.unique( labels, return_inverse=True, return_counts=True ) sort_inds = np.argsort(uni_counts)[::-1] new_labels = range(len(uni_labels)) uni_labels_sorted = uni_labels[sort_inds] relabel_map = dict(zip(uni_labels_sorted, new_labels)) new_labels = np.array(itemgetter(*labels)(relabel_map)) return new_labels
bc809781968387ec9de9de05f8d5cd990ede4c62
13,139
from typing import List from typing import Tuple def precision_at_threshold( weighted_actual_names: List[Tuple[str, float, int]], candidates: np.ndarray, threshold: float, distances: bool = False, ) -> float: """ Return the precision at a threshold for the given weighted-actuals and candidates :param weighted_actual_names: list of [name, weight, ?] - weight and ? are ignored :param candidates: array of [name, score] :param threshold: threshold :param distances: if True, score must be <= threshold; if False, score must be >= threshold; defaults to False """ matches = _get_matches(candidates, threshold, distances) num_matches = len(matches) if num_matches == 0: return 1.0 return len(set(name for name, weight, _ in weighted_actual_names).intersection(matches)) / num_matches
40c99830339418acee59c5364f1a70dc5639a475
13,140
def alias(*alias): """Select a (list of) alias(es).""" valias = [t for t in alias] return {"alias": valias}
b2ff51f33b601468b1ba4d371bd5abd6d013a188
13,141
def create_blueprint(request_manager): """ Creates an instance of the blueprint. """ blueprint = Blueprint('requests', __name__, url_prefix='/requests') # pylint: disable=unused-variable @blueprint.route('<request_id>/state') def get_state(request_id): """ Retrieves the state of the specified request. --- parameters: - name: request_id description: id of the request in: path type: string required: true definitions: RequestResponse: description: Object containing the URL of a requests state type: object properties: stateUrl: description: URL the requests state can be retrieved from type: string StateResponse: description: Object describing request state and result url type: object properties: done: description: whether the processing of the request is done type: boolean resultUrl: description: URL the requests result can be retrieved from type: string responses: 200: application/json: schema: $ref: '#/definitions/StateResponse' """ # TODO 404 on invalid request_id or no futures return jsonify({ 'done': request_manager.request_processed(request_id), 'resultUrl': url_for('requests.get_result', request_id=request_id, _external=USE_EXTERNAL_URLS) }) @blueprint.route('<request_id>/result') def get_result(request_id): """ Retrieves the result of the specified request. --- parameters: - name: request_id description: id of the request in: path type: string required: true responses: 200: application/json: schema: description: object defined by the type of request type: object """ if not request_manager.request_processed(request_id): log.info('request "%s" not done or result already retrieved', request_id) abort(404) result = request_manager.get_result(request_id) log.debug(result) if not result: return jsonify({}) return jsonify(result) return blueprint
f31e386357dba3e890ea6c6acada4ef6f1bee143
13,142
import pathlib import traceback def parse_smyle(file): """Parser for CESM2 Seasonal-to-Multiyear Large Ensemble (SMYLE)""" try: with xr.open_dataset(file, chunks={}, decode_times=False) as ds: file = pathlib.Path(file) parts = file.parts # Case case = parts[-6] # Extract the component from the file string component = parts[-5] # Extract the frequency frequency = parts[-2] date_regex = r'\d{10}-\d{10}|\d{8}-\d{8}|\d{6}-\d{6}|\d{4}-\d{4}' date_range = extract_attr_with_regex(parts[-1], date_regex) # Pull out the start and end time start_time, end_time = date_range.split('-') # Extract variable and stream y = parts[-1].split(date_range)[0].strip('.').split('.') variable = y[-1] stream = '.'.join(y[-3:-1]) # Extract init_year, init_month, member_id z = extract_attr_with_regex(case, r'\d{4}-\d{2}.\d{3}').split('.') inits = z[0].split('-') init_year = int(inits[0]) init_month = int(inits[1]) member_id = z[-1] x = case.split(z[0])[0].strip('.').split('.') experiment = x[-2] grid = x[-1] # Get the long name from dataset long_name = ds[variable].attrs.get('long_name') # Grab the units of the variable units = ds[variable].attrs.get('units') # Set the default of # of vertical levels to 1 vertical_levels = 1 try: vertical_levels = ds[ds.cf['vertical'].name].size except (KeyError, AttributeError, ValueError): pass # Use standard region names regions = { 'atm': 'global', 'ocn': 'global_ocean', 'lnd': 'global_land', 'ice': 'global', } spatial_domain = regions.get(component, 'global') return { 'component': component, 'case': case, 'experiment': experiment, 'variable': variable, 'long_name': long_name.lower(), 'frequency': frequency, 'stream': stream, 'member_id': member_id, 'init_year': init_year, 'init_month': init_month, 'vertical_levels': vertical_levels, 'units': units, 'spatial_domain': spatial_domain, 'grid': grid, 'start_time': parse_date(start_time), 'end_time': parse_date(end_time), 'path': str(file), } except Exception: return {INVALID_ASSET: file, TRACEBACK: traceback.format_exc()}
791ecf41e4bc1b44ababbf35a021b4a48b46bc24
13,143
def get_shape(grid, major_ticks=False): """ Infer shape from grid Parameters ---------- grid : ndarray Minor grid nodes array major_ticks : bool, default False If true, infer shape of majr grid nodes Returns ------- shape : tuple Shape of grid ndarray """ shape = tuple(len(np.unique(g)) for g in grid.T) if major_ticks: shape = tuple(np.max(grid + 1, axis=0).astype(int)) return shape
57f487260ca19257bd3f9891ce87c52c1eafe3bc
13,144
def lorentz_force_derivative(t, X, qm, Efield, Bfield): """ Useful when using generic integration schemes, such as RK4, which can be compared to Boris-Bunemann """ v = X[3:] E = Efield(X) B = Bfield(X) # Newton-Lorentz acceleration a = qm*E + qm*np.cross(v,B) ydot = np.concatenate((v,a)) return ydot
7a7aade5ece2363e177002bac0c18c4a0b59174f
13,145
def copy_rate(source, target, tokenize=False): """ Compute copy rate :param source: :param target: :return: """ if tokenize: source = toktok(source) target = toktok(target) source_set = set(source) target_set = set(target) if len(source_set) == 0 or len(target_set) == 0: return 0. return set_overlap(source_set, target_set)
80b94e90ab43df2f33869660f4b83f41721826f0
13,146
import json def read_json_info(fname): """ Parse info from the video information file. Returns: Dictionary containing information on podcast episode. """ with open(fname) as fin: return json.load(fin)
1eed945ce2917cbca1fb807a807ab57229622374
13,147
def check_subman_version(required_version): """ Verify that the command 'subscription-manager' isn't too old. """ status, _ = check_package_version('subscription-manager', required_version) return status
33e14fd5cf68e170f5804ae393cb2a45878d19a6
13,148
import os def create_output_directory(input_directory): """Creates new directory and returns its path""" output_directory = '' increment = 0 done_creating_directory = False while not done_creating_directory: try: if input_directory.endswith('/'): output_directory = input_directory + 'converted' else: output_directory = input_directory + '/converted' if increment is not 0: output_directory += str(increment) os.makedirs(output_directory, exist_ok=False) done_creating_directory = True except FileExistsError: increment += 1 return output_directory
b2496045e8c9fbd627c32ea40a7b77181b7f4c1d
13,149
import random def bigsegment_twocolor(rows, cols, seed=None): """ Form a map from intersecting line segments. """ if seed is not None: random.seed(seed) possible_nhseg = [3,5] possible_nvseg = [1,3,5] gap_probability = random.random() * 0.10 maxdim = max(rows, cols) nhseg = 0 nvseg = 0 while (nhseg == 0 and nvseg == 0) or (nhseg % 2 != 0 and nvseg == 0): nhseg = random.choice(possible_nhseg) nvseg = random.choice(possible_nvseg) jitterx = 15 jittery = 15 team1_pattern, team2_pattern = segment_pattern( rows, cols, seed, colormode="classic", nhseg=nhseg, nvseg=nvseg, jitterx=jitterx, jittery=jittery, gap_probability=gap_probability, ) pattern1_url = pattern2url(team1_pattern) pattern2_url = pattern2url(team2_pattern) return pattern1_url, pattern2_url
1df4861434b19d6bdebe926baad57e3a11f6a64b
13,150
def first_order_smoothness_loss( image, flow, edge_weighting_fn): """Computes a first-order smoothness loss. Args: image: Image used for the edge-aware weighting [batch, height, width, 2]. flow: Flow field for with to compute the smoothness loss [batch, height, width, 2]. edge_weighting_fn: Function used for the edge-aware weighting. Returns: Average first-order smoothness loss. """ img_gx, img_gy = image_grads(image) weights_x = edge_weighting_fn(img_gx) weights_y = edge_weighting_fn(img_gy) # Compute second derivatives of the predicted smoothness. flow_gx, flow_gy = image_grads(flow) # Compute weighted smoothness return ((tf.reduce_mean(input_tensor=weights_x * robust_l1(flow_gx)) + tf.reduce_mean(input_tensor=weights_y * robust_l1(flow_gy))) / 2.)
92e0eb047bb9d5d67a32c8ba7a601e4b7c0333b8
13,151
def where_is_my_birthdate_in_powers_of_two(date: int) -> int: """ >>> where_is_my_birthdate_in_powers_of_two(160703) <BLANKLINE> Dans la suite des <BLANKLINE> 0 1 3 765 2 , 2 , 2 , …, 2 <BLANKLINE> Ta date de naissance apparaît ici!: <BLANKLINE> …5687200260623819378316070394980560315787 ^~~~~~ <BLANKLINE> À la position #88532 <BLANKLINE> 765 """ date = str(date) located = False sequence = "" sequence_index = 0 while not located: sequence_index += 1 sequence += str(2 ** sequence_index) found_at = sequence.find(date) if found_at != -1: print(f""" Dans la suite des 0 1 3 {sequence_index} 2 , 2 , 2 , …, 2 Ta date de naissance apparaît ici!: …{numbers_around(sequence, at=found_at, lookaround=20)} {20 * ' '}^{(len(date)-1) * '~'} À la position #{sequence.find(date)} """) return sequence_index
656e7c76c849ba4348a5499a1c5cbd02574db011
13,152
def make_df_health_all(datadir): """ Returns full dataframe from health data at specified location """ df_health_all = pd.read_csv(str(datadir) + '/health_data_all.csv') return df_health_all
c9fe0efe65f4455bc9770aa621bed5aaa54fb47f
13,153
def lothars_in_cv2image(image, lothars_encoders,fc): """ Given image open with opencv finds lothars in the photo and the corresponding name and encoding """ # init an empty list for selfie and corresponding name lothar_selfies=[] names=[] encodings=[] # rgb image rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #convert image to Greyscale for HaarCascade gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # cycle angles to until cv find a faces found=False angles=rotation_angles(5) for angle in angles: r_gray=rotate_image(gray,angle) faces = fc.detectMultiScale(r_gray, scaleFactor=1.3, minNeighbors=6, minSize=(30, 40), flags=cv2.CASCADE_SCALE_IMAGE) # cycle all faces found for i,face in enumerate(faces): # define the face rectangle (x,y,w,h) = face height, width = image.shape[:2] extra_h=((1+2*extra)/ratio-1)/2 x=int(max(0,x-w*extra)) y=int(max(0,y-h*extra_h)) w=int(min(w+2*w*extra,width)) h=int(min(h+2*h*extra_h,height)) #print('w/h=',w/h) # rotate colored image rotated_image=rotate_image(image,angle) # Save just the rectangle faces in SubRecFaces (no idea of meaning of 255) #cv2.rectangle(rotated_image, (x,y), (x+w,y+h), (255,255,255)) sub_face = rotated_image[y:y+h, x:x+w] index, name, encoding = lothars_in_selfies([subface], lothars_encoders, [x,y,w,h], num_jitters=2,keep_searching=False) if (len(name)>0): lothar_selfies.append(sub_face) names.append(which_lothar_is) encodings.append(encoding) found=True # break angle changes if a lothar was found if (found): break return lothar_selfies, names, encodings
be869c922299178dd3f4835a6fd547c779c4e11a
13,154
def approx_nth_prime_upper(n): """ approximate upper limit for the nth prime number. """ return ceil(1.2 * approx_nth_prime(n))
9cfebe3c1dbac176fe917f97664b287b8024c5d4
13,155
def wavelength_to_velocity(wavelengths, input_units, center_wavelength=None, center_wavelength_units=None, velocity_units='m/s', convention='optical'): """ Conventions defined here: http://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html * Radio V = c (c/l0 - c/l)/(c/l0) f(V) = (c/l0) ( 1 - V/c ) * Optical V = c ((c/l0) - f)/f f(V) = (c/l0) ( 1 + V/c )^-1 * Redshift z = ((c/l0) - f)/f f(V) = (c/l0) ( 1 + z )-1 * Relativistic V = c ((c/l0)^2 - f^2)/((c/l0)^2 + f^2) f(V) = (c/l0) { 1 - (V/c)2}1/2/(1+V/c) """ if input_units in velocity_dict: print "Already in velocity units (%s)" % input_units return wavelengths if center_wavelength is None: raise ValueError("Cannot convert wavelength to velocity without specifying a central wavelength.") if center_wavelength_units not in wavelength_dict: raise ValueError("Bad wavelength units: %s" % (center_wavelength_units)) if velocity_units not in velocity_dict: raise ValueError("Bad velocity units: %s" % (velocity_units)) wavelength_m = wavelengths / wavelength_dict['meters'] * wavelength_dict[input_units] center_wavelength_m = center_wavelength / wavelength_dict['meters'] * wavelength_dict[center_wavelength_units] frequency_hz = speedoflight_ms / wavelength_m center_frequency_hz = speedoflight_ms / center_wavelength_m # the order is very ugly because otherwise, if scalar, the spectroscopic axis attributes won't be inherited if convention == 'radio': velocity = ( frequency_hz - center_frequency_hz ) / center_frequency_hz * speedoflight_ms * -1 elif convention == 'optical': velocity = ( frequency_hz - center_frequency_hz ) / frequency_hz * speedoflight_ms * -1 elif convention == 'relativistic': velocity = ( frequency_hz**2 - center_frequency_hz**2 ) / ( center_frequency_hz**2 + frequency_hz )**2 * speedoflight_ms * -1 else: raise ValueError('Convention "%s" is not allowed.' % (convention)) velocities = velocity * velocity_dict['m/s'] / velocity_dict[velocity_units] return velocities
ffa1c1bb69a7f6767efcd2f5494da43847a80d3b
13,156
import json def gen_api_json(api): """Apply the api literal object to the template.""" api = json.dumps( api, cls=Encoder, sort_keys=True, indent=1, separators=(',', ': ') ) return TEMPLATE_API_DEFINITION % (api)
d9acea9483199746a9c97d905f06b17f20bff18c
13,157
import copy from bs4 import BeautifulSoup import re def get_massage(): """ Provide extra data massage to solve HTML problems in BeautifulSoup """ # Javascript code in ths page generates HTML markup # that isn't parsed correctly by BeautifulSoup. # To avoid this problem, all document.write fragments are removed my_massage = copy(BeautifulSoup.MARKUP_MASSAGE) my_massage.append((re.compile(u"document.write(.+);"), lambda match: "")) my_massage.append((re.compile(u'alt=".+">'), lambda match: ">")) return my_massage
b2a7555b48f4a208545ffb75a4cc36c8c43a1eb7
13,158
def generate_test_images(): """Generate all test images. Returns ------- results: dict A dictionary mapping test case name to xarray images. """ results = {} for antialias, aa_descriptor in antialias_options: for canvas, canvas_descriptor in canvas_options: for func in (generate_test_001, generate_test_002, generate_test_003, generate_test_004, generate_test_005, generate_test_007, ): points, name = func() aggregators = draw_lines(canvas, points, antialias) img = shade(aggregators, cmap=cmap01) description = "{}_{}_{}".format( name, aa_descriptor, canvas_descriptor) results[description] = img for func in (generate_test_006, ): points, name = func() aggregator = draw_multi_segment_line(canvas, points, antialias) img = shade(aggregator, cmap=cmap01) description = "{}_{}_{}".format( name, aa_descriptor, canvas_descriptor) results[description] = img return results
d4de85956dfae0cc7d5405b55c21a5063c4dc2c6
13,159
from typing import Dict from typing import Type import copy def registered_metrics() -> Dict[Text, Type[Metric]]: """Returns standard TFMA metrics.""" return copy.copy(_METRIC_OBJECTS)
0311def576648d6e621d35e6ac89f8cda1302029
13,160
import os def get_pcap_path(name): """Given a pcap's name in the test directory, returns its full path.""" return os.path.join(PCAPS_DIR, name)
5c42a96a375202b042c41f546012084665d62371
13,161
def text_dataset_construction(train_or_test, janossy_k, task, janossy_k2, sequence_len, all_data_size=0): """ Data Generation """ janossy_k = 1 janossy_k2 = 1 args = parse_args() task = str(args.task).lower() X = np.load('../data_'+str(task)+str(sequence_len)+'.npy') output_X = np.load('../label_'+str(task)+str(sequence_len)+'.npy') output_X = np.reshape(output_X,(output_X.shape[0],1)) total_len = X.shape[0] if (all_data_size > 0): total_len = all_data_size train_len = int(total_len*0.4) valid_len = int(total_len*0.2) NUM_TRAINING_EXAMPLES = train_len NUM_VALIDATION_EXAMPLES = valid_len NUM_TEST_EXAMPLES = total_len - train_len - valid_len #pdb.set_trace() if train_or_test == 1: X = X[0:train_len] output_X = output_X[0:train_len] num_examples = NUM_TRAINING_EXAMPLES elif train_or_test == 2: X = X[train_len:train_len+valid_len] output_X = output_X[train_len:train_len+valid_len] num_examples = NUM_VALIDATION_EXAMPLES elif train_or_test == 0: X = X[train_len+valid_len:] output_X = output_X[train_len+valid_len:] num_examples = NUM_TEST_EXAMPLES set_numbers = X.shape[1] train_length = X.shape[0] if janossy_k == 1 and janossy_k2 == 1: return X, output_X else: X_janossy = janossy_text_input_construction(X, janossy_k,janossy_k2) return X_janossy, output_X
d55cdade5e2b9bd8a4a2d3ee1e80f0e15f390fc8
13,162
def neo_vis(task_id): """ Args: task_id: Returns: """ project = get_project_detail(task_id, current_user.id) return redirect( url_for( "main.neovis_page", port=project["remark"]["port"], pwd=project["remark"]["password"], ) )
cb0af50364e857d8febb8771abd0222a6d993b2e
13,163
def getfont( fontname=None, fontsize=None, sysfontname=None, bold=None, italic=None, underline=None): """Monkey-patch for ptext.getfont(). This will use our loader and therefore obey our case validation, caching and so on. """ fontname = fontname or ptext.DEFAULT_FONT_NAME fontsize = fontsize or ptext.DEFAULT_FONT_SIZE key = ( fontname, fontsize, sysfontname, bold, italic, underline ) if key in ptext._font_cache: return ptext._font_cache[key] if fontname is None: font = ptext._font_cache.get(key) if font: return font font = pygame.font.Font(fontname, fontsize) else: font = fonts.load(fontname, fontsize) if bold is not None: font.set_bold(bold) if italic is not None: font.set_italic(italic) if underline is not None: font.set_underline(underline) ptext._font_cache[key] = font return font
04f12244126efd8cf6f274991193a2d71f8797f5
13,164
def change_box(base_image,box,change_array): """ Assumption 1: Contents of box are as follows [x1 ,y2 ,width ,height] """ height, width, _ = base_image.shape new_box = [0,0,0,0] for i,value in enumerate(change_array): if value != 0: new_box[i] = box[i] + value else: new_box[i] = box[i] assert new_box[0] >= 0 assert new_box[1] >= 0 assert new_box[0]+new_box[2] <= width assert new_box[1]+new_box[3] <= height return new_box
960b9f2c3ab1b65e9c7a708eac700dfaf65c67ac
13,165
def fetchRepositoryFilter(critic, filter_id): """Fetch a RepositoryFilter object with the given filter id""" assert isinstance(critic, api.critic.Critic) return api.impl.filters.fetchRepositoryFilter(critic, int(filter_id))
76aa247ddf63838ff16131d0d7f1a04092ef3c41
13,166
def load_it(file_path: str, verbose: bool = False) -> object: """Loads from the given file path a saved object. Args: file_path: String file path (with extension). verbose: Whether to print info about loading successfully or not. Returns: The loaded object. Raises: None. """ obj = None with open(file_path, 'rb') as handle: obj = pk.load(handle) if verbose: print('{} is successfully loaded.'.format(file_path)) return obj
59795488dffbc1a69556b2619e8502cfa23d6d63
13,167
def connect_contigs(contigs, align_net_file, fill_min, out_dir): """Connect contigs across genomes by forming a graph that includes net format aligning regions and contigs. Compute contig components as connected components of that graph.""" # construct align net graph and write net BEDs if align_net_file is None: graph_contigs_nets = nx.Graph() else: graph_contigs_nets = make_net_graph(align_net_file, fill_min, out_dir) # add contig nodes for ctg in contigs: ctg_node = GraphSeq(ctg.genome, False, ctg.chr, ctg.start, ctg.end) graph_contigs_nets.add_node(ctg_node) # intersect contigs BED w/ nets BED, adding graph edges. intersect_contigs_nets(graph_contigs_nets, 0, out_dir) intersect_contigs_nets(graph_contigs_nets, 1, out_dir) # find connected components contig_components = [] for contig_net_component in nx.connected_components(graph_contigs_nets): # extract only the contigs cc_contigs = [contig_or_net for contig_or_net in contig_net_component if contig_or_net.net is False] if cc_contigs: # add to list contig_components.append(cc_contigs) # write summary stats comp_out = open('%s/contig_components.txt' % out_dir, 'w') for ctg_comp in contig_components: ctg_comp0 = [ctg for ctg in ctg_comp if ctg.genome == 0] ctg_comp1 = [ctg for ctg in ctg_comp if ctg.genome == 1] ctg_comp0_nt = sum([ctg.end-ctg.start for ctg in ctg_comp0]) ctg_comp1_nt = sum([ctg.end-ctg.start for ctg in ctg_comp1]) ctg_comp_nt = ctg_comp0_nt + ctg_comp1_nt cols = [len(ctg_comp), len(ctg_comp0), len(ctg_comp1)] cols += [ctg_comp0_nt, ctg_comp1_nt, ctg_comp_nt] cols = [str(c) for c in cols] print('\t'.join(cols), file=comp_out) comp_out.close() return contig_components
dc262d7469f524d8b37eebc50787a6e687a1ff90
13,168
import torch import time def train(loader, model, crit, opt, epoch): """Training of the CNN. Args: loader (torch.utils.data.DataLoader): Data loader model (nn.Module): CNN crit (torch.nn): loss opt (torch.optim.SGD): optimizer for every parameters with True requires_grad in model except top layer epoch (int) """ batch_time = AverageMeter() losses = AverageMeter() data_time = AverageMeter() forward_time = AverageMeter() backward_time = AverageMeter() # switch to train mode model.train() # create an optimizer for the last fc layer optimizer_tl = torch.optim.SGD( model.top_layer.parameters(), lr=args.lr, weight_decay=10 ** args.wd, ) end = time.time() print(epoch) for i, (input_tensor, target) in enumerate(loader): data_time.update(time.time() - end) # save checkpoint n = len(loader) * epoch + i input_var = torch.autograd.Variable(input_tensor.cuda()) target_var = torch.autograd.Variable(target.cuda()) output = model(input_var) loss = crit(output, target_var) # record loss # losses.update(loss.data[0], input_tensor.size(0)) # compute gradient and do SGD step opt.zero_grad() optimizer_tl.zero_grad() loss.backward() opt.step() optimizer_tl.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # sava_params(epoch, model, opt, r'mobilenetv1_30') if (epoch + 1) / 10 == 1: save_net(model, epoch) sava_params(epoch, model, opt, r'mobilenetv3_small_10') if (epoch + 1) / 30 == 1: save_net(model, epoch) sava_params(epoch, model, opt, r'mobilenetv3_small_30') if (epoch + 1) / 60 == 1: save_net(model, epoch) sava_params(epoch, model, opt, r'mobilenetv3_small_60') if (epoch + 1) / 90 == 1: save_net(model, epoch) sava_params(epoch, model, opt, r'mobilenetv3_small_90') if (epoch + 1) / 100 == 1: save_net(model, epoch) sava_params(epoch, model, opt, r'mobilenetv3_small_100') return losses.avg
64a8213d103f57b3305060b42f41c94a3d710759
13,169
import ostap.logger.table as T def _h1_cmp_prnt_ ( h1 , h2 , head1 = '' , head2 = '' , title = '' , density = False , max_moment = 10 , exp_moment = True , prefix = '' ) : """ Calculate and print some statistic information for two histos >>> h1 , h2 = ... >>> h1.cmp_prnt ( h2 ) """ assert isinstance ( h1 , ROOT.TH1 ) and 1 == h1.dim () , \ "cmp_prnt: invalid type of h1 %s/%s" % ( h1 , type ( h1 ) ) if isinstance ( h2 , ROOT.TH1 ) : assert 1 == h2.dim () , "cmp_prnt: invalid type of h2 %s/%s" % ( h2 , type ( h2 ) ) if density : h1_ = h1.density() if hasattr ( h1 , 'density' ) else h1 h2_ = h2.density() if hasattr ( h2 , 'density' ) else h2 cmp = _h1_cmp_prnt_ ( h1_ , h2_ , head1 = head1 , head2 = head2 , title = title , density = False , prefix = prefix , max_moment = max_moment , exp_moment = exp_moment ) if h1_ is not h1 : del h1_ if h2_ is not h2 : del h2_ return cmp if not head1 : head1 = h1.GetName() if not head2 : head2 = h2.GetName() fmt = '%+11.4g +- %-10.4g' wid0 = 25 values = [ 'Mean' , 'Rms' , 'Skewness' , 'Kurtosis' ] numbers = [] mean = h1.mean () , h2.mean () rms = h1.rms () , h2.rms () skew = h1.skewness () , h2.skewness () kurt = h1.kurtosis () , h2.kurtosis () numbers.append ( mean ) numbers.append ( rms ) numbers.append ( skew ) numbers.append ( kurt ) if 4 < max_moment : for i in range ( 5 , max_moment + 1 ) : v1 = h1.stdMoment ( i , exp_moment ) v2 = h2.stdMoment ( i , exp_moment ) item = v1 , v2 numbers.append ( item ) if exp_moment : values .append ( 'ExpMom/%d' % i ) else : values .append ( 'StdMom/%d' % i ) numbers = tuple ( numbers ) values = tuple ( values ) wid1 = max ( len ( v ) for v in values ) wid1 = max ( wid1 , len ( 'Quantity' ) ) wid2 = max ( wid0 , len ( head1 ) ) wid3 = max ( wid0 , len ( head2 ) ) wid4 = max ( wid0 , len ( 'Delta' ) ) header = ( ( '{:^%d}' % wid1 ).format ( 'Quantity' ) , ( '{:^%d}' % wid2 ).format ( head1 ) , ( '{:^%d}' % wid3 ).format ( head2 ) , ( '{:^%d}' % wid4 ).format ( 'Delta' ) ) table_data = [ header ] for v , item in zip ( values , numbers ) : v1 , v2 = item dv = v1 - v2 row = allright ( v ) , v1.toString ( fmt ) , v2.toString( fmt ) , dv.toString ( fmt ) table_data.append ( row ) title = title if title else '%s vs %s' % ( head1 , head2 ) return T.table ( table_data , title = title , prefix = prefix )
99757ebd016b5a7c9d63b431fc5aee92c08d90e5
13,170
def add_scatter(x, scatter, in_place=False): """ Add a Gaussian scatter to x. Parameters ---------- x : array_like Values to add scatter to. scatter : float Standard deviation (sigma) of the Gaussian. in_place : bool, optional Whether to add the scatter to x in place or return a new array. Returns ------- x : array_like x with the added scatter. """ if in_place: x += np.random.randn(*x.shape)*float(scatter) else: x = np.asarray(x) x = x + np.random.randn(*x.shape)*float(scatter) return x
27c1423441f7841284201afd873c2c6050812d5f
13,171
def validate_job_state(state): """ Validates whether a returned Job State has all the required fields with the right format. If all is well, returns True, otherwise this prints out errors to the command line and returns False. Can be just used with assert in tests, like "assert validate_job_state(state)" """ required_fields = { "job_id": str, "user": str, "wsid": int, "authstrat": str, "job_input": dict, "updated": int, "created": int, "status": str, } optional_fields = { "estimating": int, "queued": int, "running": int, "finished": int, "error_code": int, "terminated_code": int, "errormsg": str, } timestamp_fields = [ "created", "updated", "estimating", "queued", "running", "completed", ] # fields that have to be present based on the context of different statuses valid_statuses = vars(Status)["_member_names_"] status_context = { "estimating": ["estimating"], "running": ["running"], "completed": ["completed"], "error": ["error_code", "errormsg"], "terminated": ["terminated_code"], } # 1. Make sure required fields are present and of the correct type missing_reqs = list() wrong_reqs = list() for req in required_fields.keys(): if req not in state: missing_reqs.append(req) elif not isinstance(state[req], required_fields[req]): wrong_reqs.append(req) if missing_reqs or wrong_reqs: print(f"Job state is missing required fields: {missing_reqs}.") for req in wrong_reqs: print( f"Job state has faulty req - {req} should be of type {required_fields[req]}, but had value {state[req]}." ) return False # 2. Make sure that context-specific fields are present and the right type status = state["status"] if status not in valid_statuses: print(f"Job state has invalid status {status}.") return False if status in status_context: context_fields = status_context[status] missing_context = list() wrong_context = list() for field in context_fields: if field not in state: missing_context.append(field) elif not isinstance(state[field], optional_fields[field]): wrong_context.append(field) if missing_context or wrong_context: print(f"Job state is missing status context fields: {missing_context}.") for field in wrong_context: print( f"Job state has faulty context field - {field} should be of type {optional_fields[field]}, but had value {state[field]}." ) return False # 3. Make sure timestamps are really timestamps bad_ts = list() for ts_type in timestamp_fields: if ts_type in state: is_second_ts = is_timestamp(state[ts_type]) if not is_second_ts: print(state[ts_type], "is not a second ts") is_ms_ts = is_timestamp(state[ts_type] / 1000) if not is_ms_ts: print(state[ts_type], "is not a millisecond ts") if not is_second_ts and not is_ms_ts: bad_ts.append(ts_type) if bad_ts: for ts_type in bad_ts: print( f"Job state has a malformatted timestamp: {ts_type} with value {state[ts_type]}" ) raise MalformedTimestampException() return True
f108b7a80dee7777931aae994384d47f4a474d67
13,172
def get_urls(session): """ Function to get all urls of article in a table. :param session: session establishes all conversations with the database and represents a “holding zone”. :type session: sqlalchemy.session :returns: integer amount of rows in table """ url = session.query(Article.url) return [u[0] for u in url]
ad5e4797c1a41c63ef225becaee1a9b8814a3ea2
13,173
import pkg_resources def check_min_package_version(package, minimum_version, should_trunc_to_same_len=True): """Helper to decide if the package you are using meets minimum version requirement for some feature.""" real_version = pkg_resources.get_distribution(package).version if should_trunc_to_same_len: minimum_version = minimum_version[0 : len(real_version)] logger.debug( "package %s, version: %s, minimum version to run certain features: %s", package, real_version, minimum_version ) return real_version >= minimum_version
62bbed35905bf4aa38fb1596cf164a66eac30594
13,174
def bboxes_protection(boxes, width, height): """ :param boxes: :param width: :param height: :return: """ if not isinstance(boxes, np.ndarray): boxes = np.asarray(boxes) if len(boxes) > 0: boxes[:, [0, 2]] = np.clip(boxes[:, [0, 2]], 0, width - 1) boxes[:, [1, 3]] = np.clip(boxes[:, [1, 3]], 0, height - 1) return boxes
8ab0c64788815f6ec66f42c90a4c2debc0627548
13,175
def mark_astroids(astroid_map): """ Mark all coordiantes in the grid with an astroid (# sign) """ astroids = [] for row, _ in enumerate(astroid_map): for col, _ in enumerate(astroid_map[row]): if astroid_map[row][col] == "#": astroid_map[row][col] = ASTROID astroids.append((row, col)) else: astroid_map[row][col] = SPACE return astroids
36ac179f1cbc040142bea8381c4c85f90c81ecba
13,176
def process_player_data( prefix, season=CURRENT_SEASON, gameweek=NEXT_GAMEWEEK, dbsession=session ): """ transform the player dataframe, basically giving a list (for each player) of lists of minutes (for each match, and a list (for each player) of lists of ["goals","assists","neither"] (for each match) """ df = get_player_history_df( prefix, season=season, gameweek=gameweek, dbsession=dbsession ) df["neither"] = df["team_goals"] - df["goals"] - df["assists"] df.loc[(df["neither"] < 0), ["neither", "team_goals", "goals", "assists"]] = [ 0.0, 0.0, 0.0, 0.0, ] alpha = get_empirical_bayes_estimates(df) y = df.sort_values("player_id")[["goals", "assists", "neither"]].values.reshape( ( df["player_id"].nunique(), df.groupby("player_id").count().iloc[0]["player_name"], 3, ) ) minutes = df.sort_values("player_id")["minutes"].values.reshape( ( df["player_id"].nunique(), df.groupby("player_id").count().iloc[0]["player_name"], ) ) nplayer = df["player_id"].nunique() nmatch = df.groupby("player_id").count().iloc[0]["player_name"] player_ids = np.sort(df["player_id"].unique()) return ( dict( nplayer=nplayer, nmatch=nmatch, minutes=minutes.astype("int64"), y=y.astype("int64"), alpha=alpha, ), player_ids, )
dcbf210242509fa3df1ae5ca35614d802c460381
13,177
def copy_to_table(_dal, _values, _field_names, _field_types, _table_name, _create_table=None, _drop_existing=None): """Copy a matrix of data into a table on the resource, return the table name. :param _dal: An instance of DAL(qal.dal.DAL) :param _values: The a list(rows) of lists(values) with values to be inserted :param _field_names: The name of the fields(columns) :param _field_types: The field types(qal.sql.types) :param _table_name: The name of the destination tables :param _create_table: Create the destination table based on _field_names, _field_types :param _drop_existing: If a table with the same name as the destination table already exists, drop it :return: The name of the destination table. """ if _drop_existing: try: _dal.execute(VerbDropTable(_table_name).as_sql(_dal.db_type)) _dal.commit() except Exception as e: print("copy_to_table - Ignoring error when dropping the table \"" + _table_name + "\": " + str(e)) if _create_table: # Always create temporary table even if it ends up empty. _create_table_sql = create_table_skeleton(_table_name, _field_names, _field_types).as_sql(_dal.db_type) print("Creating " + _table_name + " table in "+ str(_dal) +"/" + str(_dal.connection) +", sql:\n" + _create_table_sql) _dal.execute(_create_table_sql) _dal.commit() if len(_values) == 0: print("copy_to_table: No source data, inserting no rows.") else: _insert_sql = make_insert_sql_with_parameters(_table_name, _field_names, _dal.db_type, _field_types) print("Inserting " + str(len(_values)) + " rows (" + str(len(_values[0])) + " columns)") _dal.executemany(_insert_sql, _values) _dal.commit() return _table_name
765ae0310811fe64b063c88182726174411960a0
13,178
import os def build_file_path(base_dir, base_name, *extensions): """Build a path to a file in a given directory. The file may have an extension(s). :returns: Path such as: 'base_dir/base_name.ext1.ext2.ext3' """ file_name = os.extsep.join([base_name] + list(extensions)) return os.path.expanduser(os.path.join(base_dir, file_name))
26e5998c5ba53fd9c99677991ff4cf2e82141f15
13,179
from scipy.optimize import minimize def Uni(A, b, x=None, maxQ=False, x0=None, tol=1e-12, maxiter=1e3): """ Вычисление распознающего функционала Uni. В случае, если maxQ=True то находится максимум функционала. Parameters: A: Interval Матрица ИСЛАУ. b: Interval Вектор правой части ИСЛАУ. Optional Parameters: x: float, array_like Точка в которой вычисляется распознающий функционал. По умолчанию x равен массиву из нулей. maxQ: bool Если значение параметра равно True, то производится максимизация функционала. x0: float, array_like Первоначальная догадка. tol: float Погрешность для прекращения оптимизационного процесса. maxiter: int Максимальное количество итераций. Returns: out: float, tuple Возвращается значение распознающего функционала в точке x. В случае, если maxQ=True, то возвращается кортеж, где первый элемент -- корректность завершения оптимизации, второй элемент -- точка оптимума, третий элемент -- значение функции в этой точке. """ __uni = lambda x: min(b.rad - (b.mid - A @ x).mig) __minus_uni = lambda x: -__uni(x) if maxQ==False: if x is None: x = np.zeros(A.shape[1]) return __uni(x) else: if x0 is None: x0 = np.zeros(A.shape[1])+1 maximize = minimize(__minus_uni, x0, method='Nelder-Mead', tol=tol, options={'maxiter': maxiter}) return maximize.success, maximize.x, -maximize.fun
d81f8f38e4b2f196c79eaaa00c1b604cf119b1bb
13,180
def boqa(alpha, beta, query, items_stat): """Implementation of the BOQA algorithm. Args: alpha (float): False positive rate. beta (float): False negative rate. query (dict): Dict of query terms (standard terms). Key: term name, value: presence value items_stat (dict): Dictionnary of items statistics. Key: disease, Value: list of items Returns: [dict]: Dictionnary of disease and their prediction probability. """ hidden = {} p = {} a = {} a_init = 0 # For each disease for disease in items_stat: # We initiliaze Hidden Layer with values from the stats for term in query: if term in items_stat[disease]["feature"].keys(): proba = items_stat[disease]["feature"][term] hidden[term] = np.random.choice([1, 0], p=[proba, 1 - proba]) else: hidden[term] = 0 # Cardinality calculation of terms between H and Q m = matrix_m(query, hidden) a[disease] = ( pow(beta, m[0, 1]) * pow(1 - beta, m[1, 1]) * pow(1 - alpha, m[0, 0]) * pow(alpha, m[1, 0]) ) a_init += a[disease] for disease in items_stat: p[disease] = a[disease] / a_init return p
37ea565fa05b4a9bceeeb50f31e79394e9534966
13,181
from operator import inv def d2c(sys,method='zoh'): """Continous to discrete conversion with ZOH method Call: sysc=c2d(sys,method='log') Parameters ---------- sys : System in statespace or Tf form method: 'zoh' or 'bi' Returns ------- sysc: continous system ss or tf """ flag = 0 if isinstance(sys, TransferFunction): sys=tf2ss(sys) flag=1 a=sys.A b=sys.B c=sys.C d=sys.D Ts=sys.dt n=shape(a)[0] nb=shape(b)[1] nc=shape(c)[0] tol=1e-12 if method=='zoh': if n==1: if b[0,0]==1: A=0 B=b/sys.dt C=c D=d else: tmp1=hstack((a,b)) tmp2=hstack((zeros((nb,n)),eye(nb))) tmp=vstack((tmp1,tmp2)) s=logm(tmp) s=s/Ts if norm(imag(s),ord='inf') > sqrt(sp.finfo(float).eps): print("Warning: accuracy may be poor") s=real(s) A=s[0:n,0:n] B=s[0:n,n:n+nb] C=c D=d elif method=='foh': a=mat(a) b=mat(b) c=mat(c) d=mat(d) Id = mat(eye(n)) A = logm(a)/Ts A = real(around(A,12)) Amat = mat(A) B = (a-Id)**(-2)*Amat**2*b*Ts B = real(around(B,12)) Bmat = mat(B) C = c D = d - C*(Amat**(-2)/Ts*(a-Id)-Amat**(-1))*Bmat D = real(around(D,12)) elif method=='bi': a=mat(a) b=mat(b) c=mat(c) d=mat(d) poles=eigvals(a) if any(abs(poles-1)<200*sp.finfo(float).eps): print("d2c: some poles very close to one. May get bad results.") I=mat(eye(n,n)) tk = 2 / sqrt (Ts) A = (2/Ts)*(a-I)*inv(a+I) iab = inv(I+a)*b B = tk*iab C = tk*(c*inv(I+a)) D = d- (c*iab) else: print("Method not supported") return sysc=StateSpace(A,B,C,D) #print("Teste ", sysc) if flag==1: sysc=ss2tf(sysc) return sysc
41bb37fcf5b8726b5f20f54f492a568f508725fc
13,182
import ipaddress def ipv4(value): """ Parses the value as an IPv4 address and returns it. """ try: return ipaddress.IPv4Address(value) except ValueError: return None
499918424fe6a94d555379b5fc907367666f1cde
13,183
from typing import Callable from typing import Mapping from typing import cast from typing import Any def test_from( fork: str, ) -> Callable[ [Callable[[], StateTest]], Callable[[str], Mapping[str, Fixture]] ]: """ Decorator that takes a test generator and fills it for all forks after the specified fork. """ fork = fork.capitalize() def decorator( fn: Callable[[], StateTest] ) -> Callable[[str], Mapping[str, Fixture]]: def inner(engine) -> Mapping[str, Fixture]: return fill_state_test(fn(), forks_from(fork), engine) cast(Any, inner).__filler_metadata__ = { "fork": fork, "name": fn.__name__.lstrip("test_"), } return inner return decorator
6c8704978c3ab37bb2ad8434b65359683bd76bbb
13,184
import hashlib def get_hash_name(feed_id): """ 用户提交的订阅源,根据hash值生成唯一标识 """ return hashlib.md5(feed_id.encode('utf8')).hexdigest()
edd1caf943635a091c79831cc6151ecfa840e435
13,185
from typing import TextIO def _load_transition_probabilities(infile: TextIO) -> tuple[list, int]: """ For summary files with new syntax (post 2021-11-24). Parameters ---------- infile : TextIO The KSHELL summary file at the starting position of either of the transition probability sections. Returns ------- transitions : list List of transition data. negative_spin_counts : int The number of negative spin levels encountered. Example ------- B(E2) ( > -0.0 W.u.) mass = 50 1 W.u. = 10.9 e^2 fm^4 e^2 fm^4 (W.u.) J_i pi_i idx_i Ex_i J_f pi_f idx_f Ex_f dE B(E2)-> B(E2)->[wu] B(E2)<- B(E2)<-[wu] 5 + 1 0.036 6 + 1 0.000 0.036 70.43477980 6.43689168 59.59865983 5.44660066 4 + 1 0.074 6 + 1 0.000 0.074 47.20641983 4.31409897 32.68136758 2.98668391 """ negative_spin_counts = 0 transitions = [] for _ in range(2): infile.readline() for line in infile: line_split = line.split() if not line_split: break spin_initial = float(Fraction(line_split[0])) parity_initial = _parity_string_to_integer(line_split[1]) idx_initial = int(line_split[2]) Ex_initial = float(line_split[3]) spin_final = float(Fraction(line_split[4])) parity_final = _parity_string_to_integer(line_split[5]) idx_final = int(line_split[2]) Ex_final = float(line_split[7]) E_gamma = float(line_split[8]) reduced_transition_prob_decay = float(line_split[9]) reduced_transition_prob_excite = float(line_split[11]) if (spin_final < 0) or (spin_initial < 0): """ -1 spin states in the KSHELL data file indicates bad states which should not be included. """ negative_spin_counts += 1 # Debug. continue # reduced_transition_prob_decay_list.append([ # 2*spin_initial, parity_initial, Ex_initial, 2*spin_final, # parity_final, Ex_final, E_gamma, reduced_transition_prob_decay, # reduced_transition_prob_excite # ]) transitions.append([ 2*spin_initial, parity_initial, idx_initial, Ex_initial, 2*spin_final, parity_final, idx_final, Ex_final, E_gamma, reduced_transition_prob_decay, reduced_transition_prob_excite ]) return transitions, negative_spin_counts
9d0b8ebc4ffe78517cb548ae3bbd329b48868589
13,186
from typing import Dict from typing import Counter def merge_lineages(counts: Dict[str, int], min_count: int) -> Dict[str, str]: """ Given a dict of lineage counts and a min_count, returns a mapping from all lineages to merged lineages. """ assert isinstance(counts, dict) assert isinstance(min_count, int) assert min_count > 0 # Merge rare children into their parents. counts: Dict[str, int] = Counter({decompress(k): v for k, v in counts.items()}) mapping = {} for child in sorted(counts, key=lambda k: (-len(k), k)): if counts[child] < min_count: parent = get_parent(child) if parent is None: continue # at a root counts[parent] += counts.pop(child) mapping[child] = parent # Transitively close. for old, new in list(mapping.items()): while new in mapping: new = mapping[new] mapping[old] = new # Recompress. mapping = {compress(k): compress(v) for k, v in mapping.items()} return mapping
3eea022d840e4e61d46041dffb188cbd73ed097b
13,187
def str2bool(s): """特定の文字列をbool値にして返す。 s: bool値に変換する文字列(true, false, 1, 0など)。 """ if isinstance(s, bool): return s else: s = s.lower() if s == "true": return True elif s == "false": return False elif s == "1": return True elif s == "0": return False else: raise ValueError("%s is incorrect value!" % (s))
54b991e234896c0ad684ce5f0f2ccceeada65d8e
13,188
def merge_aoistats(main_AOI_Stat,new_AOI_Stat,total_time,total_numfixations): """a helper method that updates the AOI_Stat object of this Scene with a new AOI_Stat object Args: main_AOI_Stat: AOI_Stat object of this Scene new_AOI_Stat: a new AOI_Stat object total_time: total_numfixations: Returns: the updated AOI_Sata object """ maois = main_AOI_Stat maois.features['numfixations'] += new_AOI_Stat.features['numfixations'] maois.features['longestfixation'] = max(maois.features['longestfixation'],new_AOI_Stat.features['longestfixation']) maois.features['totaltimespent'] += + new_AOI_Stat.features['totaltimespent'] maois.features['proportiontime'] = float(maois.features['totaltimespent'])/total_time maois.features['proportionnum'] = float(maois.features['numfixations'])/total_numfixations if maois.features['totaltimespent']>0: maois.features['fixationrate'] = float(maois.features['numfixations'])/maois.features['totaltimespent'] else: maois.features['fixationrate'] = 0.0 #calculating the transitions to and from this AOI and other active AOIs at the moment new_AOI_Stat_transition_aois = filter(lambda x: x.startswith(('numtransto_','numtransfrom_')),new_AOI_Stat.features.keys()) if params.DEBUG: print("segement's transition_aois",new_AOI_Stat_transition_aois) maois.total_tans_to += new_AOI_Stat.total_tans_to #updating the total number of transition to this AOI maois.total_tans_from += new_AOI_Stat.total_tans_from #updating the total number of transition from this AOI for feat in new_AOI_Stat_transition_aois: if feat in maois.features.copy(): maois.features[feat] += new_AOI_Stat.features[feat] else: maois.features[feat] = new_AOI_Stat.features[feat] # if feat.startswith('numtransto_'): # sumtransto += maois.features[feat] # else: # sumtransfrom += maois.features[feat] # updating the proportion tansition features based on new transitions to and from this AOI maois_transition_aois = list(filter(lambda x: x.startswith(('numtransto_','numtransfrom_')),maois.features.keys())) #all the transition features for this AOI should be aupdated even if they are not active for this segment for feat in maois_transition_aois.copy(): if feat.startswith('numtransto_'): aid = feat.lstrip('numtransto_') if maois.total_tans_to > 0: maois.features['proptransto_%s'%(aid)] = float(maois.features[feat]) / maois.total_tans_to else: maois.features['proptransto_%s'%(aid)] = 0 else: aid = feat.lstrip('numtransfrom_') if maois.total_tans_from > 0: maois.features['proptransfrom_%s'%(aid)] = float(maois.features[feat]) / maois.total_tans_from else: maois.features['proptransfrom_%s'%(aid)] = 0 ###endof trnsition calculation return maois
8bea60667fa2cc3c187a1fa288c4c3053ba6484e
13,189
import six from typing import OrderedDict def catalog_xmatch_circle(catalog, other_catalog, radius='Association_Radius', other_radius=Angle(0, 'deg')): """Find associations within a circle around each source. This is convenience function built on `~astropy.coordinates.SkyCoord.search_around_sky`, extending it in two ways: 1. Each source can have a different association radius. 2. Handle source catalogs (`~astropy.table.Table`) instead of `~astropy.coordinates.SkyCoord`. Sources are associated if the sum of their radii is smaller than their separation on the sky. Parameters ---------- catalog : `~astropy.table.Table` Main source catalog other_catalog : `~astropy.table.Table` Other source catalog of potential associations radius, other_radius : `~astropy.coordinates.Angle` or `str` Main source catalog association radius. For `str` this must be a column name (in degrees if without units) Returns ------- associations : `~astropy.table.Table` The list of associations. """ if isinstance(radius, six.text_type): radius = Angle(catalog[radius]) if isinstance(other_radius, six.text_type): other_radius = Angle(other_catalog[other_radius]) skycoord = skycoord_from_table(catalog) other_skycoord = skycoord_from_table(other_catalog) association_catalog_name = other_catalog.meta.get('name', 'N/A') # Compute associations as list of dict and store in `Table` at the end associations = [] for source_index in range(len(catalog)): # TODO: check if this is slower or faster than calling `SkyCoord.search_around_sky` here!? separation = skycoord[source_index].separation(other_skycoord) max_separation = radius[source_index] + other_radius other_indices = np.nonzero(separation < max_separation)[0] for other_index in other_indices: association = OrderedDict( Source_Index=source_index, Source_Name=catalog['Source_Name'][source_index], Association_Index=other_index, Association_Name=other_catalog['Source_Name'][other_index], Association_Catalog=association_catalog_name, # There's an issue with scalar `Quantity` objects to init the `Table` # https://github.com/astropy/astropy/issues/3378 # For now I'll just store the values without unit Separation=separation[other_index].degree, ) associations.append(association) # Need to define columns if there's not a single association if len(associations) == 0: log.debug('No associations found.') table = Table() table.add_column(Column([], name='Source_Index', dtype=int)) table.add_column(Column([], name='Source_Name', dtype=str)) table.add_column(Column([], name='Association_Index', dtype=int)) table.add_column(Column([], name='Association_Name', dtype=str)) table.add_column(Column([], name='Association_Catalog', dtype=str)) table.add_column(Column([], name='Separation', dtype=float)) else: log.debug('Found {} associations.'.format(len(associations))) table = Table(associations, names=associations[0].keys()) return table
1c56f35d7610c4f2d23e7eb5fd3007329f3dc298
13,190
def show_map_room(room_id=None): """Display a room on a map.""" return get_map_information(room_id=room_id)
84c1e90ce5b0a210b75f104da429f03dff7b2ca1
13,191
import os def color_enabled(): """Check for whether color output is enabled If the configuration value ``datalad.ui.color`` is ``'on'`` or ``'off'``, that takes precedence. If ``datalad.ui.color`` is ``'auto'``, and the environment variable ``NO_COLOR`` is defined (see https://no-color.org), then color is disabled. Otherwise, enable colors if a TTY is detected by ``datalad.ui.ui.is_interactive``. Returns ------- bool """ ui_color = cfg.obtain('datalad.ui.color') return (ui_color == 'on' or ui_color == 'auto' and os.getenv('NO_COLOR') is None and ui.is_interactive)
5db8ac3de0fa8b3e452d82244208987c8816cfb4
13,192
def parse_line_regex(line): """Parse raw data line into list of floats using regex. This regex approach works, but is very slow!! It also requires two helper functions to clean up malformed data written by ls-dyna (done on purpose, probably to save space). Args: line (str): raw data line from nodout Returns: raw_data (list of floats): [nodeID, xdisp, ydisp, zdisp] """ try: raw_data = line.split() raw_data = [float(x) for x in raw_data] except ValueError: line = correct_neg(line) line = correct_Enot(line) raw_data = line.split() raw_data = [float(x) for x in raw_data[0:4]] return raw_data
b8b18a8d47f5f1c9a682ca86668bf311282b0439
13,193
def create_page_metadata(image_dir, image_dir_path, font_files, text_dataset, speech_bubble_files, speech_bubble_tags): """ This function creates page metadata for a single page. It includes transforms, background addition, random panel removal, panel shrinking, and the populating of panels with images and speech bubbles. :param image_dir: List of images to pick from :type image_dir: list :param image_dir_path: Path of images dir to add to panels :type image_dir_path: str :param font_files: list of font files for speech bubble text :type font_files: list :param text_dataset: A dask dataframe of text to pick to render within speech bubble :type text_dataset: pandas.dataframe :param speech_bubble_files: list of base speech bubble template files :type speech_bubble_files: list :param speech_bubble_tags: a list of speech bubble writing area tags by filename :type speech_bubble_tags: list :return: Created Page with all the bells and whistles :rtype: Page """ # Select page type page_type = np.random.choice( list(cfg.vertical_horizontal_ratios.keys()), p=list(cfg.vertical_horizontal_ratios.values()) ) # Select number of panels on the page # between 1 and 8 number_of_panels = np.random.choice( list(cfg.num_pages_ratios.keys()), p=list(cfg.num_pages_ratios.values()) ) page = get_base_panels(number_of_panels, page_type) if np.random.random() < cfg.panel_transform_chance: page = add_transforms(page) page = shrink_panels(page) page = populate_panels(page, image_dir, image_dir_path, font_files, text_dataset, speech_bubble_files, speech_bubble_tags ) if np.random.random() < cfg.panel_removal_chance: page = remove_panel(page) if number_of_panels == 1: page = add_background(page, image_dir, image_dir_path) else: if np.random.random() < cfg.background_add_chance: page = add_background(page, image_dir, image_dir_path) return page
45499abf5374c8eaaa55a03f8ef0bb7fca6e18f5
13,194
def __merge_results( result_list: tp.List[tp.Dict[str, tp.Dict[str, tp.Set[tp.Union[CVE, CWE]]]]] ) -> tp.Dict[str, tp.Dict[str, tp.Set[tp.Union[CVE, CWE]]]]: """ Merge a list of results into one dictionary. Args: result_list: a list of ``commit -> cve`` maps to be merged Return: the merged dictionary with line number as key and commit hash, a list of unique CVE's and a list of unique CWE's as values """ results: tp.Dict[str, tp.Dict[str, tp.Set[tp.Union[ CVE, CWE]]]] = defaultdict(lambda: defaultdict(set)) for unmerged in result_list: for entry in unmerged.keys(): results[entry]['cve'].update(unmerged[entry]['cve']) results[entry]['cwe'].update(unmerged[entry]['cwe']) return results
685ce8e22483fc1dfe423763367857db22065a3c
13,195
def compactness(xyz): """ Input: xyz Output: compactness (V^2/SA^3) of convex hull of 3D points. """ xyz = np.array(xyz) ch = ConvexHull(xyz, qhull_options="QJ") return ch.volume**2/ch.area**3
b1185e8aaec5962e39866594aeccdd5d5ae2807d
13,196
import os def is_posix(): """Convenience function that tests different information sources to verify whether the operating system is POSIX compliant. .. note:: No assumption is made reading the POSIX level compliance. :return: True if the operating system is MacOS, False otherwise. :rtype: bool """ return os.name in OS_POSIX_NAMES
7f40b0b6d785b63b0c7af6ac78272a4823994681
13,197
def guide(batch, z_dim, hidden_dim, out_dim=None, num_obs_total=None): """Defines the probabilistic guide for z (variational approximation to posterior): q(z) ~ p(z|q) :param batch: a batch of observations :return: (named) sampled z from the variational (guide) distribution q(z) """ assert(jnp.ndim(batch) == 3) batch_size = jnp.shape(batch)[0] batch = jnp.reshape(batch, (batch_size, -1)) # squash each data item into a one-dimensional array (preserving only the batch size on the first axis) out_dim = jnp.shape(batch)[1] num_obs_total = batch_size if num_obs_total is None else num_obs_total encode = numpyro.module('encoder', encoder(hidden_dim, z_dim), (batch_size, out_dim)) with plate('batch', num_obs_total, batch_size): z_loc, z_std = encode(batch) # obtain mean and variance for q(z) ~ p(z|x) from encoder z = sample('z', dist.Normal(z_loc, z_std).to_event(1)) # z follows q(z) return z
1198ee7b12bed9118d7bb865ed45ff10eef917d4
13,198
def trip2str(trip): """ Pretty-printing. """ header = "{} {} {} - {}:".format(trip['departureTime'], trip['departureDate'], trip['origin'], trip['destination']) output = [header] for subtrip in trip['trip']: originstr = u'{}....{}'.format(subtrip['departureTime'], subtrip['origin']) output.append(originstr) for subsubtrip in subtrip['trip']: t = subsubtrip['arrivalTime'] d = subsubtrip['stop'] intermediatestr = t+u'.'*8+d output.append(intermediatestr) destinationstr = u'{}....{}'.format(subtrip['arrivalTime'], subtrip['destination']) output.append(destinationstr) return "\n".join(output)
67daf3feb6b81d40d3102a8c610b20e68571b131
13,199