content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def requires_site(site): """Skip test based on where it is being run""" skip_it = bool(site != SITE) return pytest.mark.skipif(skip_it, reason='SITE is not %s.' % site)
b436e6390828af2ffdca6e972b5a55fccafed64b
13,000
import traceback def handle_error(e): """ Handle errors, formatting them as JSON if requested """ error_type = type(e).__name__ message = str(e) trace = None description = None status_code = 500 if isinstance(e, werkzeug.exceptions.HTTPException): status_code = e.code description = e.description if app.debug: trace = traceback.format_exc() if request_wants_json(): details = { 'message': message, 'type': error_type, } if description is not None: details['description'] = description if trace is not None: details['trace'] = trace.split('\n') return flask.jsonify({'error': details}), status_code else: message = message.replace('\\n', '<br />') if isinstance(e, digits.frameworks.errors.NetworkVisualizationError): trace = message message = '' return flask.render_template('error.html', title=error_type, message=message, description=description, trace=trace, ), status_code
c2b1b3d3e9b97c9c28896d2ef04e2f33b64d6a18
13,001
def iou(bbox_1, bbox_2): """Computes intersection over union between two bounding boxes. Parameters ---------- bbox_1 : np.ndarray First bounding box, of the form (x_min, y_min, x_max, y_max). bbox_2 : np.ndarray Second bounding box, of the form (x_min, y_min, x_max, y_max). Returns ------- float Intersection over union value between both bounding boxes. """ x_min = np.maximum(bbox_1[0], bbox_2[0]) y_min = np.maximum(bbox_1[1], bbox_2[1]) x_max = np.minimum(bbox_1[2], bbox_2[2]) y_max = np.minimum(bbox_1[3], bbox_2[3]) width = np.maximum(0.0, x_max - x_min) height = np.maximum(0.0, y_max - y_min) intersection = width * height return ( intersection ) / ( (bbox_1[2] - bbox_1[0]) * (bbox_1[3] - bbox_1[1]) + (bbox_2[2] - bbox_2[0]) * (bbox_2[3] - bbox_2[1]) - intersection )
c076290d386a2c6740f7cd6aaee18a42f9c850ce
13,002
def GetIntensityArray(videofile, threshold, scale_percent): """Finds pixel coordinates within a videofile (.tif, .mp4) for pixels that are above a brightness threshold, then accumulates the brightness event intensities for each coordinate, outputting it as a 2-D array in the same size as the video frames Input: -videofile: file containing an image stack of fluorescent events -threshold: minimum brightness for detection -scale_percent: helps resize image for faster computing speeds Output: 2-d Array of accumulated intensity values for each pixel above a calculated brightness threshold in the video""" # Reading video file and convert to grayscale ret, img = cv2.imreadmulti(videofile, flags=cv2.IMREAD_GRAYSCALE) # Setting Resizing Dimensions width = int(img[0].shape[1] * scale_percent / 100) height = int(img[0].shape[0] * scale_percent / 100) dim = (width, height) img_resized = cv2.resize(img[0], dim, interpolation=cv2.INTER_AREA) # Creating empty array to add intensity values to int_array = np.zeros(np.shape(img_resized)) for frame in range(len(img)): # Resize Frame frame_resized = cv2.resize(img[frame], dim, interpolation=cv2.INTER_AREA) intensity = GetIntensityValues(frame_resized, threshold) if len(np.where(intensity >= 1)) > 0: # Get coordinates of the single pixel counts row, col = np.where(intensity >= 1) for i in range(len(row)): for j in range(len(col)): # Add single count to freq_array in location of event int_array[row[i], col[j]] += intensity[row[i], col[j]] else: pass return int_array
720b50da3eb04698c62b2afa67ca3cd7b4f3661d
13,003
def _check_data(handler, data): """Check the data.""" if 'latitude' not in data or 'longitude' not in data: handler.write_text("Latitude and longitude not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Latitude and longitude not specified.") return False if 'device' not in data: handler.write_text("Device id not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Device id not specified.") return False if 'id' not in data: handler.write_text("Location id not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Location id not specified.") return False if 'trigger' not in data: handler.write_text("Trigger is not specified.", HTTP_UNPROCESSABLE_ENTITY) _LOGGER.error("Trigger is not specified.") return False return True
829681db92b0b7a6368ca143b6c656b46c972430
13,004
import requests from bs4 import BeautifulSoup def get_soup(page_url): """ Returns BeautifulSoup object of the url provided """ try: req = requests.get(page_url) except Exception: print('Failed to establish a connection with the website') return if req.status_code == 404: print('Page not found') return content = req.content soup = BeautifulSoup(content, 'html.parser') return soup
d837e3b6aa6184285857428b2c796172379f3a1f
13,005
def foreign_key_constraint_sql(table): """Return the SQL to add foreign key constraints to a given table""" sql = '' fk_names = list(table.foreign_keys.keys()) for fk_name in sorted(fk_names): foreign_key = table.foreign_keys[fk_name] sql += "FOREIGN KEY({fn}) REFERENCES {tn}({kc}), ".format( fn=foreign_key.from_col, tn=foreign_key.to_table.name, kc=foreign_key.to_col ) return sql
0883050d2b9d302ab9099ef27abd400e4d4fe69e
13,006
from typing import Optional def expandDimConst(term: AST.PPTerm, ntId: int) -> Optional[AST.PPTerm]: """ Expand dimension constant to integer constants (Required for fold zeros) """ nt = ASTUtils.getNthNT(term, ntId) if type(nt.sort) != AST.PPDimConst: return None subTerm = AST.PPIntConst(nt.sort.value) termExpanded = ReprUtils.replaceNthNT(term, ntId, subTerm) return termExpanded
b048d8ed0ec743a88c17a1f120a57d5e548e7d69
13,007
from scipy.optimize import minimize_scalar def _fit_amplitude_scipy(counts, background, model, optimizer='Brent'): """ Fit amplitude using scipy.optimize. Parameters ---------- counts : `~numpy.ndarray` Slice of count map. background : `~numpy.ndarray` Slice of background map. model : `~numpy.ndarray` Model template to fit. flux : float Starting value for the fit. Returns ------- amplitude : float Fitted flux amplitude. niter : int Number of function evaluations needed for the fit. """ args = (counts, background, model) amplitude_min, amplitude_max = _amplitude_bounds_cython(counts, background, model) try: result = minimize_scalar(f_cash, bracket=(amplitude_min, amplitude_max), args=args, method=optimizer, tol=10) return result.x, result.nfev except ValueError: result = minimize_scalar(f_cash, args=args, method=optimizer, tol=0.1) return result.x, result.nfev
51faafd7a81ff70196075bacac6b36db6b7e09f8
13,008
import psutil import subprocess def account_key__sign(data, key_pem=None, key_pem_filepath=None): """ This routine will use crypto/certbot if available. If not, openssl is used via subprocesses :param key_pem: (required) the RSA Key in PEM format :param key_pem_filepath: (optional) the filepath to a PEM encoded RSA account key file. """ log.info("account_key__sign >") if openssl_crypto: pkey = openssl_crypto.load_privatekey(openssl_crypto.FILETYPE_PEM, key_pem) if PY3: if not isinstance(data, bytes): data = data.encode() signature = pkey.to_cryptography_key().sign( data, cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15(), cryptography.hazmat.primitives.hashes.SHA256(), ) return signature log.debug(".account_key__sign > openssl fallback") _tmpfile = None try: if key_pem_filepath is None: _tmpfile = new_pem_tempfile(key_pem) key_pem_filepath = _tmpfile.name with psutil.Popen( [openssl_path, "dgst", "-sha256", "-sign", key_pem_filepath], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) as proc: if PY3: if not isinstance(data, bytes): data = data.encode() signature, err = proc.communicate(data) if proc.returncode != 0: raise IOError("account_key__sign\n{0}".format(err)) return signature finally: if _tmpfile: _tmpfile.close()
bc7ee73fe71a54937ef8626f2b54d14f800badd1
13,009
from pathlib import Path def get_world_paths() -> list: """ Returns a list of paths to the worlds on the server. """ server_dir = Path(__file__).resolve().parents[1] world_paths = [] for p in server_dir.iterdir(): if p.is_dir and (p / "level.dat").is_file(): world_paths.append(p.absolute()) return world_paths
bf1c23c6a1c928dc66470db2e11b49ad2fc9e5d9
13,010
def derivative_p(α_L, α_G, ρ_G, v_L, v_G): # (1) """ Calculates pressure spatial derivative to be pluged into the expression for pressure at the next spatial step (see first equation of the model). It returns the value of pressure spatial derivative at the current time step and, hence, takes as arguments volume fractions, velocities, and gas density at the current spatial step. Args: α_L (float) - liquid phase volume fraction. Can assume any value from 0 to 1. α_G (float) - gaseous phase volume fraction. Can assume any value from 0 to 1. ρ_G (float) - gaseous phase density. Can assume any positive value. v_L (float) - liquid phase velocity. Can assume either positive or negative values. v_G (float) - gaseous phase velocity. Can assume any positive value. Returns: float: the return value (pressure derivative at the current spatial step). Can assume any value from negative infinity to 0. """ derivative_p = (-1)*(ρ_L*α_L + ρ_G*α_G) \ * ( g + (2*f/D) * (α_L*v_L + α_G*v_G)**2 ) # line continuation operator return(derivative_p)
e2aa8a4967b121b798058aa963b0685080b7eb8b
13,011
def fit_sigmoid(colors, a=0.05): """Fits a sigmoid to raw contact temperature readings from the ContactPose dataset. This function is copied from that repo""" idx = colors > 0 ci = colors[idx] x1 = min(ci) # Find two points y1 = a x2 = max(ci) y2 = 1-a lna = np.log((1 - y1) / y1) lnb = np.log((1 - y2) / y2) k = (lnb - lna) / (x1 - x2) mu = (x2*lna - x1*lnb) / (lna - lnb) ci = np.exp(k * (ci-mu)) / (1 + np.exp(k * (ci-mu))) # Apply the sigmoid colors[idx] = ci return colors
2024e32cd454cb27cf3d0fef9f270a22abba5ea0
13,012
def deprecated(func): """Decorator for reporting deprecated function calls Use this decorator sparingly, because we'll be charged if we make too many Rollbar notifications """ @wraps(func) def wrapped(*args, **kwargs): # try to get a request, may not always succeed request = get_current_request() # notify a maximum of once per function per request/session if request: if DEPRECATED_ROLLBAR_NOTIFIED not in request.session: deprecated_notifications = {} request.session[DEPRECATED_ROLLBAR_NOTIFIED] = deprecated_notifications deprecated_notifications = request.session[DEPRECATED_ROLLBAR_NOTIFIED] key = '%s' % func # first get it already_notified = deprecated_notifications.get(key, False) # then mark it deprecated_notifications[key] = True else: already_notified = False if not already_notified: rollbar.report_message('Deprecated function call warning: %s' % func, 'warning', request) return func(*args, **kwargs) return wrapped
d01f53acd584faa3c3b15771c76a00210ffbeb83
13,013
from sys import path def read_file(path_file: path) -> str: """ Reads the content of the file at path_file :param path_file: :return: """ content = None with open(path_file, 'r') as file: content = file.read() return content
0a49a13ddc855abfdbb4cefd2396a7832c1e26a8
13,014
import bisect def absorptionCoefficient_Voigt(Components=None,SourceTables=None,partitionFunction=PYTIPS, Environment=None,OmegaRange=None,OmegaStep=None,OmegaWing=None, IntensityThreshold=DefaultIntensityThreshold, OmegaWingHW=DefaultOmegaWingHW, ParameterBindings=DefaultParameterBindings, EnvironmentDependencyBindings=DefaultEnvironmentDependencyBindings, GammaL='gamma_air', HITRAN_units=True, LineShift=True, File=None, Format=None, OmegaGrid=None): """ INPUT PARAMETERS: Components: list of tuples [(M,I,D)], where M - HITRAN molecule number, I - HITRAN isotopologue number, D - abundance (optional) SourceTables: list of tables from which to calculate cross-section (optional) partitionFunction: pointer to partition function (default is PYTIPS) (optional) Environment: dictionary containing thermodynamic parameters. 'p' - pressure in atmospheres, 'T' - temperature in Kelvin Default={'p':1.,'T':296.} OmegaRange: wavenumber range to consider. OmegaStep: wavenumber step to consider. OmegaWing: absolute wing for calculating a lineshape (in cm-1) IntensityThreshold: threshold for intensities OmegaWingHW: relative wing for calculating a lineshape (in halfwidths) GammaL: specifies broadening parameter ('gamma_air' or 'gamma_self') HITRAN_units: use cm2/molecule (True) or cm-1 (False) for absorption coefficient File: write output to file (if specified) Format: c-format of file output (accounts significant digits in OmegaStep) OUTPUT PARAMETERS: Omegas: wavenumber grid with respect to parameters OmegaRange and OmegaStep Xsect: absorption coefficient calculated on the grid --- DESCRIPTION: Calculate absorption coefficient using Voigt profile. Absorption coefficient is calculated at arbitrary temperature and pressure. User can vary a wide range of parameters to control a process of calculation (such as OmegaRange, OmegaStep, OmegaWing, OmegaWingHW, IntensityThreshold). The choise of these parameters depends on properties of a particular linelist. Default values are a sort of guess which gives a decent precision (on average) for a reasonable amount of cpu time. To increase calculation accuracy, user should use a trial and error method. --- EXAMPLE OF USAGE: nu,coef = absorptionCoefficient_Voigt(((2,1),),'co2',OmegaStep=0.01, HITRAN_units=False,GammaL='gamma_self') --- """ # warn user about too large omega step if OmegaStep>0.1: warn('Too small omega step: possible accuracy decline') # "bug" with 1-element list Components = listOfTuples(Components) SourceTables = listOfTuples(SourceTables) # determine final input values Components,SourceTables,Environment,OmegaRange,OmegaStep,OmegaWing,\ IntensityThreshold,Format = \ getDefaultValuesForXsect(Components,SourceTables,Environment,OmegaRange, OmegaStep,OmegaWing,IntensityThreshold,Format) # get uniform linespace for cross-section #number_of_points = (OmegaRange[1]-OmegaRange[0])/OmegaStep + 1 #Omegas = linspace(OmegaRange[0],OmegaRange[1],number_of_points) if OmegaGrid is not None: Omegas = npsort(OmegaGrid) else: Omegas = arange(OmegaRange[0],OmegaRange[1],OmegaStep) number_of_points = len(Omegas) Xsect = zeros(number_of_points) # reference temperature and pressure Tref = __FloatType__(296.) # K pref = __FloatType__(1.) # atm # actual temperature and pressure T = Environment['T'] # K p = Environment['p'] # atm # create dictionary from Components ABUNDANCES = {} NATURAL_ABUNDANCES = {} for Component in Components: M = Component[0] I = Component[1] if len(Component) >= 3: ni = Component[2] else: try: ni = ISO[(M,I)][ISO_INDEX['abundance']] except KeyError: raise Exception('cannot find component M,I = %d,%d.' % (M,I)) ABUNDANCES[(M,I)] = ni NATURAL_ABUNDANCES[(M,I)] = ISO[(M,I)][ISO_INDEX['abundance']] # precalculation of volume concentration if HITRAN_units: factor = __FloatType__(1.0) else: factor = volumeConcentration(p,T) # SourceTables contain multiple tables for TableName in SourceTables: # get line centers nline = LOCAL_TABLE_CACHE[TableName]['header']['number_of_rows'] # loop through line centers (single stream) for RowID in range(nline): # get basic line parameters (lower level) LineCenterDB = LOCAL_TABLE_CACHE[TableName]['data']['nu'][RowID] LineIntensityDB = LOCAL_TABLE_CACHE[TableName]['data']['sw'][RowID] LowerStateEnergyDB = LOCAL_TABLE_CACHE[TableName]['data']['elower'][RowID] MoleculeNumberDB = LOCAL_TABLE_CACHE[TableName]['data']['molec_id'][RowID] IsoNumberDB = LOCAL_TABLE_CACHE[TableName]['data']['local_iso_id'][RowID] #Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data']['gamma_air'][RowID] #Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data']['gamma_self'][RowID] Gamma0DB = LOCAL_TABLE_CACHE[TableName]['data'][GammaL][RowID] TempRatioPowerDB = LOCAL_TABLE_CACHE[TableName]['data']['n_air'][RowID] #TempRatioPowerDB = 1.0 # for planar molecules if LineShift: Shift0DB = LOCAL_TABLE_CACHE[TableName]['data']['delta_air'][RowID] else: Shift0DB = 0 # filter by molecule and isotopologue if (MoleculeNumberDB,IsoNumberDB) not in ABUNDANCES: continue # partition functions for T and Tref # TODO: optimize SigmaT = partitionFunction(MoleculeNumberDB,IsoNumberDB,T) SigmaTref = partitionFunction(MoleculeNumberDB,IsoNumberDB,Tref) # get all environment dependences from voigt parameters # intensity LineIntensity = EnvironmentDependency_Intensity(LineIntensityDB,T,Tref,SigmaT,SigmaTref, LowerStateEnergyDB,LineCenterDB) # FILTER by LineIntensity: compare it with IntencityThreshold # TODO: apply wing narrowing instead of filtering, this would be more appropriate if LineIntensity < IntensityThreshold: continue # doppler broadening coefficient (GammaD) # V1 >>> #GammaDDB = cSqrtLn2*LineCenterDB/cc*sqrt(2*cBolts*T/molecularMass(MoleculeNumberDB,IsoNumberDB)) #GammaD = EnvironmentDependency_GammaD(GammaDDB,T,Tref) # V2 >>> cMassMol = 1.66053873e-27 # hapi #cMassMol = 1.6605402e-27 # converter m = molecularMass(MoleculeNumberDB,IsoNumberDB) * cMassMol * 1000 GammaD = sqrt(2*cBolts*T*log(2)/m/cc**2)*LineCenterDB # lorentz broadening coefficient Gamma0 = EnvironmentDependency_Gamma0(Gamma0DB,T,Tref,p,pref,TempRatioPowerDB) # get final wing of the line according to Gamma0, OmegaWingHW and OmegaWing # XXX min or max? OmegaWingF = max(OmegaWing,OmegaWingHW*Gamma0,OmegaWingHW*GammaD) # shift coefficient Shift0 = Shift0DB*p/pref # XXX other parameter (such as Delta0, Delta2, anuVC etc.) will be included in HTP version #PROFILE_VOIGT(sg0,GamD,Gam0,sg) # sg0 : Unperturbed line position in cm-1 (Input). # GamD : Doppler HWHM in cm-1 (Input) # Gam0 : Speed-averaged line-width in cm-1 (Input). # sg : Current WaveNumber of the Computation in cm-1 (Input). # XXX time? BoundIndexLower = bisect(Omegas,LineCenterDB-OmegaWingF) BoundIndexUpper = bisect(Omegas,LineCenterDB+OmegaWingF) lineshape_vals = PROFILE_VOIGT(LineCenterDB+Shift0,GammaD,Gamma0,Omegas[BoundIndexLower:BoundIndexUpper])[0] Xsect[BoundIndexLower:BoundIndexUpper] += factor / NATURAL_ABUNDANCES[(MoleculeNumberDB,IsoNumberDB)] * \ ABUNDANCES[(MoleculeNumberDB,IsoNumberDB)] * \ LineIntensity * lineshape_vals if File: save_to_file(File,Format,Omegas,Xsect) return Omegas,Xsect
6c4b909999ea4e6cc14bae7fbda04f2b6ba6ddb8
13,015
def stellar_mags_scatter_cube_pair(file_pair, min_relative_flux=0.5, save=False): """Return the scatter in stellar colours within a star datacube pair.""" hdulist_pair = [pf.open(path, 'update') for path in file_pair] flux = np.vstack( [hdulist[0].data for hdulist in hdulist_pair]) noise = np.sqrt(np.vstack( [hdulist['VARIANCE'].data for hdulist in hdulist_pair])) wavelength = np.hstack( [get_coords(hdulist[0].header, 3) for hdulist in hdulist_pair]) smoothed_flux = flux.copy() smoothed_flux[~np.isfinite(smoothed_flux)] = 0.0 smoothed_flux = median_filter(smoothed_flux, (201, 1, 1)) image = np.sum(smoothed_flux, 0) keep = (image >= (min_relative_flux * np.max(image))) flux = flux[:, keep] noise = noise[:, keep] mags = [] for flux_i, noise_i in zip(flux.T, noise.T): mags_i = measure_mags(flux_i, noise_i, wavelength) mags.append([mags_i['g'], mags_i['r']]) mags = np.array(mags) colour = mags[:, 0] - mags[:, 1] scatter = np.std(colour) if save: for hdulist in hdulist_pair: hdulist[0].header['COLORSTD'] = ( scatter, 'Scatter in g-r within cubes') hdulist.flush() for hdulist in hdulist_pair: hdulist.close() return scatter
b1f823a9ab33f7deadb1651aaa728690b0a08cf6
13,016
import os def get_data_filename(relative_path): """Get the full path to one of the reference files shipped for testing In the source distribution, these files are in ``examples/*/``, but on installation, they're moved to somewhere in the user's python site-packages directory. Parameters ---------- relative_path : str Name of the file to load, with respect to the yank egg folder which is typically located at something like ``~/anaconda/lib/python3.6/site-packages/yank-*.egg/examples/`` Returns ------- fn : str Resource Filename """ fn = resource_filename('yank', relative_path) if not os.path.exists(fn): raise ValueError("Sorry! {} does not exist. If you just added it, you'll have to re-install".format(fn)) return fn
3e400d6b386c5b5a1be7c6f89bd219329258514f
13,017
import hmac import hashlib def is_valid_webhook_request(webhook_token: str, request_body: str, webhook_signature_header: str) -> bool: """This method verifies that requests to your Webhook URL are genuine and from Buycoins. Args: webhook_token: your webhook token request_body: the body of the request webhook_signature_header: the X-Webhook-Signature header from BuyCoins Returns: a Boolean stating whether the request is valid or not """ hmac_request_body = hmac.new(webhook_token.encode(), request_body.encode(), hashlib.sha1) return hmac.compare_digest(hmac_request_body.hexdigest(), webhook_signature_header)
1ce1ef0a9e1386ebbea7773d8cd9d40df2544792
13,018
import torch def logsigsoftmax(logits): """ Computes sigsoftmax from the paper - https://arxiv.org/pdf/1805.10829.pdf """ max_values = torch.max(logits, 1, keepdim=True)[0] exp_logits_sigmoided = torch.exp(logits - max_values) * torch.sigmoid(logits) sum_exp_logits_sigmoided = exp_logits_sigmoided.sum(1, keepdim=True) log_probs = logits - max_values + F.logsigmoid(logits) - torch.log(sum_exp_logits_sigmoided) return log_probs
d7f6c2ef4279d511ff81fc30cfa1db5875c5ea4a
13,019
def multi(dispatch_fn): """Initialise function as a multimethod""" def _inner(*args, **kwargs): return _inner.__multi__.get( dispatch_fn(*args, **kwargs), _inner.__multi_default__ )(*args, **kwargs) _inner.__multi__ = {} _inner.__multi_default__ = lambda *args, **kwargs: None # Default default return _inner
29023826b3e67ccc39a458fc90bd817cd725c35f
13,020
def choose_key(somemap, default=0, prompt="choose", input=input, error=default_error, lines=LINES, columns=COLUMNS): """Select a key from a mapping. Returns the key selected. """ keytype = type(print_menu_map(somemap, lines=lines, columns=columns)) while 1: try: userinput = get_input(prompt, default, input) except EOFError: return default if not userinput: return default try: idx = keytype(userinput) except ValueError: error("Not a valid entry. Please try again.") continue if idx not in somemap: error("Not a valid selection. Please try again.") continue return idx
d3c2438c85afae48980f772a06a7e622866197c5
13,021
import os def image_model_saver(image_model, model_type, output_directory, training_dict, labels1, labels2, preds, results1, results2): """ Saves Keras image model and other outputs image_model: Image model to be saved model_type (string): Name of model output_directory: Directory to folder to save file in training_dict: Dictionary of training and validation values labels1: List of multimodal labels for test set labels2: List of unimodal labels for test set preds: List of model predictions after passed through argmax() results1: Dictionary of metrics on multimodal labels results2: Dictionary of metrics on uniimodal labels tokenizer: Tokenizer to be saved. Defaulted to None. """ output_directory = os.path.join(output_directory, model_type) if not os.path.exists(output_directory): os.makedirs(output_directory) os.chdir(output_directory) np.save(model_type+"_dogwhistle_train_results.npy", training_dict) #save training dict np.save(model_type+"_dogwhistle_test_results_multimodal.npy", results1) #save test metrics np.save(model_type+"_dogwhistle_test_results_unimodal.npy", results2) #save test metrics test_predictions = pd.DataFrame([labels1, labels2, preds]) #save predictions and labels test_predictions = test_predictions.T test_predictions = test_predictions.rename(columns={0: 'Multimodal Labels', 1: 'Unimodal Labels', 2: 'Predictions'}) test_predictions.to_csv(model_type+"_dogwhistle_predictions.csv") image_model.save("image_model.h5") #save model return print("Saving complete.")
044674f289a73be4e285ccd472fc5428e419e080
13,022
from typing import Tuple def predicted_orders( daily_order_summary: pd.DataFrame, order_forecast_model: Tuple[float, float] ) -> pd.DataFrame: """Predicted orders for the next 30 days based on the fit paramters""" a, b = order_forecast_model start_date = daily_order_summary.order_date.max() future_dates = pd.date_range(start=start_date, end=start_date + pd.DateOffset(days=30)) predicted_data = model_func(x=future_dates.astype(np.int64), a=a, b=b) return pd.DataFrame({"order_date": future_dates, "num_orders": predicted_data})
48f79b1076c32f93bdf148d1b986c6892cd3a8af
13,023
import subprocess def _try_command_line(command_line): """Returns the output of a command line or an empty string on error.""" _logging.debug("Running command line: %s" % command_line) try: return subprocess.check_output(command_line, stderr=subprocess.STDOUT) except Exception as e: _print_process_error(command_line, e) return None
b37c67fbcaf28a7fdd7b7cd5fbafc2b2e9561f9f
13,024
import torch import tqdm def eval_loop(model, ldr, device): """Runs the evaluation loop on the input data `ldr`. Args: model (torch.nn.Module): model to be evaluated ldr (torch.utils.data.DataLoader): evaluation data loader device (torch.device): device inference will be run on Returns: list: list of labels, predictions, and confidence levels for each example in the dataloader """ all_preds = []; all_labels = []; all_preds_dist=[] all_confidence = [] with torch.no_grad(): for batch in tqdm.tqdm(ldr): batch = list(batch) inputs, targets, inputs_lens, targets_lens = model.collate(*batch) inputs = inputs.to(device) probs, rnn_args = model(inputs, softmax=True) probs = probs.data.cpu().numpy() preds_confidence = [decode(p, beam_size=3, blank=model.blank)[0] for p in probs] preds = [x[0] for x in preds_confidence] confidence = [x[1] for x in preds_confidence] all_preds.extend(preds) all_confidence.extend(confidence) all_labels.extend(batch[1]) return list(zip(all_labels, all_preds, all_confidence))
ca96192b1cd104ea3c86b5c5234ab5bf708613c8
13,025
def get_total_frts(): """ Get total number of FRTs for a single state. Arguments: Returns: {JSON} -- Returns headers of the columns and data in list """ query = """ SELECT place.state AS state , COUNT(DISTINCT frt.id) AS state_total FROM panoptic.place AS place LEFT JOIN panoptic.frt_place_link AS link ON place.id = link.place__key LEFT JOIN panoptic.frt AS frt ON link.frt__key = frt.id GROUP BY place.state """ headers, data = execute_select_query(query) results = [] while data: results.append(dict(zip(headers, data.pop()))) return results
0f054ef795f09ea01b28c139fd353bf237ed10a4
13,026
def newton_sqrt(n: float, a: float) -> float: """Approximate sqrt(n) starting from a, using the Newton-Raphson method.""" r = within(0.00001, repeat_f(next_sqrt_approx(n), a)) return next(r)
4d7186bd55e4f4d4511078bcb0fff4959a182a3b
13,027
def prismatic(xyz, rpy, axis, qi): """Returns the dual quaternion for a prismatic joint. """ # Joint origin rotation from RPY ZYX convention roll, pitch, yaw = rpy[0], rpy[1], rpy[2] # Origin rotation from RPY ZYX convention cr = cs.cos(roll/2.0) sr = cs.sin(roll/2.0) cp = cs.cos(pitch/2.0) sp = cs.sin(pitch/2.0) cy = cs.cos(yaw/2.0) sy = cs.sin(yaw/2.0) # The quaternion associated with the origin rotation # Note: quat = w + ix + jy + kz x_or = cy*sr*cp - sy*cr*sp y_or = cy*cr*sp + sy*sr*cp z_or = sy*cr*cp - cy*sr*sp w_or = cy*cr*cp + sy*sr*sp # Joint origin translation as a dual quaternion x_ot = 0.5*xyz[0]*w_or + 0.5*xyz[1]*z_or - 0.5*xyz[2]*y_or y_ot = - 0.5*xyz[0]*z_or + 0.5*xyz[1]*w_or + 0.5*xyz[2]*x_or z_ot = 0.5*xyz[0]*y_or - 0.5*xyz[1]*x_or + 0.5*xyz[2]*w_or w_ot = - 0.5*xyz[0]*x_or - 0.5*xyz[1]*y_or - 0.5*xyz[2]*z_or Q_o = [x_or, y_or, z_or, w_or, x_ot, y_ot, z_ot, w_ot] # Joint displacement orientation is just identity x_jr = 0.0 y_jr = 0.0 z_jr = 0.0 w_jr = 1.0 # Joint displacement translation along axis x_jt = qi*axis[0]/2.0 y_jt = qi*axis[1]/2.0 z_jt = qi*axis[2]/2.0 w_jt = 0.0 Q_j = [x_jr, y_jr, z_jr, w_jr, x_jt, y_jt, z_jt, w_jt] # Get resulting dual quaternion return product(Q_o, Q_j)
898db39d01a7b26daf2657c69c42af12bd8fef60
13,028
def markov_chain(bot_id, previous_posts): """ Caches are triplets of consecutive words from the source Beginning=True means the triplet was the beinning of a messaeg Starts with a random choice from the beginning caches Then makes random choices from the all_caches set, constructing a markov chain 'randomness' value determined by totalling the number of words that were chosen randomly """ bot = TwitterBot.objects.get(id=bot_id) beginning_caches = bot.twitterpostcache_set.filter(beginning=True) if not len(beginning_caches): print "Not enough data" return # Randomly choose one of the beginning caches to start with seed_index = random.randint(0, len(beginning_caches) - 1) seed_cache = beginning_caches[seed_index] # Start the chain new_markov_chain = [seed_cache.word1, seed_cache.word2] # Add words one by one to complete the markov chain all_caches = bot.twitterpostcache_set.all() next_cache = seed_cache while next_cache: new_markov_chain.append(next_cache.final_word) all_next_caches = all_caches.filter( word1=next_cache.word2, word2=next_cache.final_word ) if len(all_next_caches): next_cache = random.choice(all_next_caches) else: all_next_caches = all_caches.filter(word1=next_cache.final_word) if len(all_next_caches): next_cache = random.choice(all_next_caches) new_markov_chain.append(next_cache.word2) else: next_cache = None return " ".join(new_markov_chain)
652690d61c97de420e88f53cfd05c5d59e9229af
13,029
from re import T def SurfaceNet_fn_trainVal(N_viewPairs4inference, default_lr, input_cube_size, D_viewPairFeature, \ num_hidden_units, CHANNEL_MEAN, return_train_fn=True, return_val_fn=True, with_weight=True): """ This function only defines the train_fn and the val_fn while training process. There are 2 training process: 1. only train the SurfaceNet without weight 2. train the softmaxWeight with(out) finetuning the SurfaceNet For the val_fn when only have validation, refer to the [TODO]. =================== >> SurfaceNet_fn_trainVal(with_weight = True) >> SurfaceNet_fn_trainVal(with_weight = False) """ train_fn = None val_fn = None tensor5D = T.TensorType('float32', (False,)*5) input_var = tensor5D('X') output_var = tensor5D('Y') similFeature_var = T.matrix('similFeature') net = __weightedAverage_net__(input_var, similFeature_var, input_cube_size, N_viewPairs4inference,\ D_viewPairFeature, num_hidden_units, with_weight) if return_val_fn: pred_fuse_val = lasagne.layers.get_output(net["output_fusionNet"], deterministic=True) # accuracy_val = lasagne.objectives.binary_accuracy(pred_fuse_val, output_var) # in case soft_gt accuracy_val = __weighted_accuracy__(pred_fuse_val, output_var) # fuseNet_val_fn = theano.function([input_var, output_var], [accuracy_val,pred_fuse_val]) val_fn_input_var_list = [input_var, similFeature_var, output_var] if with_weight\ else [input_var, output_var] val_fn_output_var_list = [accuracy_val,pred_fuse_val] if with_weight\ else [accuracy_val,pred_fuse_val] val_fn = theano.function(val_fn_input_var_list, val_fn_output_var_list) if return_train_fn: pred_fuse = lasagne.layers.get_output(net["output_fusionNet"]) output_softmaxWeights_var= lasagne.layers.get_output(net["output_softmaxWeights"]) if with_weight \ else None #loss = __weighted_MSE__(pred_fuse, output_var, w_for_1 = 0.98) \ loss = __weighted_mult_binary_crossentropy__(pred_fuse, output_var, w_for_1 = 0.96) \ + regularize_layer_params(net["output_fusionNet"],l2) * 1e-4 \ aggregated_loss = lasagne.objectives.aggregate(loss) if not params.__layer_range_tuple_2_update is None: updates = __updates__(net=net, cost=aggregated_loss, layer_range_tuple_2_update=params.__layer_range_tuple_2_update, \ default_lr=default_lr, update_algorithm='nesterov_momentum') else: params = lasagne.layers.get_all_params(net["output_fusionNet"], trainable=True) updates = lasagne.updates.nesterov_momentum(aggregated_loss, params, learning_rate=params.__lr) # accuracy = lasagne.objectives.binary_accuracy(pred_fuse, output_var) # in case soft_gt accuracy = __weighted_accuracy__(pred_fuse, output_var) train_fn_input_var_list = [input_var, similFeature_var, output_var] if with_weight \ else [input_var, output_var] train_fn_output_var_list = [loss,accuracy, pred_fuse, output_softmaxWeights_var] if with_weight \ else [loss,accuracy, pred_fuse] train_fn = theano.function(train_fn_input_var_list, train_fn_output_var_list, updates=updates) return net, train_fn, val_fn
47734ee865738706a68bc62a1d0c51db3b1b4c46
13,030
def _assign_data_radial(root, sweep="sweep_1"): """Assign from CfRadial1 data structure. Parameters ---------- root : xarray.Dataset Dataset of CfRadial1 file sweep : str, optional Sweep name to extract, default to first sweep. If None, all sweeps are extracted into a list. """ var = root.variables.keys() remove_root = var ^ root_vars remove_root &= var root1 = root.drop_vars(remove_root).rename({"fixed_angle": "sweep_fixed_angle"}) sweep_group_name = [] for i in range(root1.dims["sweep"]): sweep_group_name.append(f"sweep_{i + 1}") # keep all vars for now # keep_vars = sweep_vars1 | sweep_vars2 | sweep_vars3 # remove_vars = var ^ keep_vars # remove_vars &= var remove_vars = {} data = root.drop_vars(remove_vars) data.attrs = {} start_idx = data.sweep_start_ray_index.values end_idx = data.sweep_end_ray_index.values data = data.drop_vars({"sweep_start_ray_index", "sweep_end_ray_index"}) sweeps = [] for i, sw in enumerate(sweep_group_name): if sweep is not None and sweep != sw: continue tslice = slice(start_idx[i], end_idx[i] + 1) ds = data.isel(time=tslice, sweep=slice(i, i + 1)).squeeze("sweep") ds.sweep_mode.load() sweep_mode = ds.sweep_mode.item().decode() dim0 = "elevation" if sweep_mode == "rhi" else "azimuth" ds = ds.swap_dims({"time": dim0}) ds = ds.rename({"time": "rtime"}) ds.attrs["fixed_angle"] = np.round(ds.fixed_angle.item(), decimals=1) time = ds.rtime[0].reset_coords(drop=True) # get and delete "comment" attribute for time variable key = [key for key in time.attrs.keys() if "comment" in key] for k in key: del time.attrs[k] coords = { "longitude": root1.longitude, "latitude": root1.latitude, "altitude": root1.altitude, "azimuth": ds.azimuth, "elevation": ds.elevation, "sweep_mode": sweep_mode, "time": time, } ds = ds.assign_coords(**coords) sweeps.append(ds) return sweeps
7734917c8b4aced4812896e3269981c984241202
13,031
def get_memory_usage(): """This method returns the percentage of total memory used in this machine""" stats = get_memstats() mfree = float(stats['buffers']+stats['cached']+stats['free']) return 1-(mfree/stats['total'])
27bcf8866b6b57253acf6a282265949dcfd3af61
13,032
def gamma0(R, reg=1e-13, symmetrize=True): """Integrals over the edges of a triangle called gamma_0 (line charge potentials). **NOTE: MAY NOT BE VERY PRECISE FOR POINTS DIRECTLY AT TRIANGLE EDGES.** Parameters ---------- R : (N, 3, 3) array of points (Neval, Nverts, xyz) Returns ------- res: array (Neval, Nverts) The analytic integrals for each vertex/edge """ edges = np.roll(R[0], 1, -2) - np.roll(R[0], 2, -2) # dotprods1 = np.sum(np.roll(R, 1, -2)*edges, axis=-1) # dotprods2 = np.sum(np.roll(R, 2, -2)*edges, axis=-1) dotprods1 = np.einsum("...i,...i", np.roll(R, 1, -2), edges) dotprods2 = np.einsum("...i,...i", np.roll(R, 2, -2), edges) en = norm(edges) del edges n = norm(R) # Regularize s.t. neither the denominator or the numerator can be zero # Avoid numerical issues directly at the edge nn1 = np.roll(n, 2, -1) * en nn2 = np.roll(n, 1, -1) * en res = np.log((nn1 + dotprods2 + reg) / (nn2 + dotprods1 + reg)) # Symmetrize the result since on the negative extension of the edge # there's division of two small values resulting numerical instabilities # (also incompatible with adding the reg value) if symmetrize: res2 = -np.log((nn1 - dotprods2 + reg) / (nn2 - dotprods1 + reg)) res = np.where(dotprods1 + dotprods2 > 0, res, res2) res /= en return -res
c3ed9c624a5f14922d3c76a3eb2ae2f616f82cac
13,033
def is_even(x): """ True if obj is even. """ return (x % 2) == 0
f19563063515eb4d39b8b607cf68f6f188af409e
13,034
def get_http_proxy(): """ Get http_proxy and https_proxy from environment variables. Username and password is not supported now. """ host = conf.get_httpproxy_host() port = conf.get_httpproxy_port() return host, port
f04dc8580d9fdd3d867c5b28fa3694fe82a6739a
13,035
def get_parser_udf( structural=True, # structural information blacklist=["style", "script"], # ignore tag types, default: style, script flatten=["span", "br"], # flatten tag types, default: span, br language="en", lingual=True, # lingual information lingual_parser=None, strip=True, replacements=[("[\u2010\u2011\u2012\u2013\u2014\u2212]", "-")], tabular=True, # tabular information visual=False, # visual information visual_parser=None, ): """Return an instance of ParserUDF.""" parser_udf = ParserUDF( structural=structural, blacklist=blacklist, flatten=flatten, lingual=lingual, lingual_parser=lingual_parser, strip=strip, replacements=replacements, tabular=tabular, visual=visual, visual_parser=visual_parser, language=language, ) return parser_udf
cf12b36fe9219aabfd746b2ad1f1f39e62ad7fe9
13,036
def img_preprocess2(image, target_shape,bboxes=None, correct_box=False): """ RGB转换 -> resize(resize不改变原图的高宽比) -> normalize 并可以选择是否校正bbox :param image_org: 要处理的图像 :param target_shape: 对图像处理后,期望得到的图像shape,存储格式为(h, w) :return: 处理之后的图像,shape为target_shape """ h_target, w_target = target_shape h_org, w_org, _ = image.shape image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) resize_ratio = min(1.0 * w_target / w_org, 1.0 * h_target / h_org) resize_w = int(resize_ratio * w_org) resize_h = int(resize_ratio * h_org) image_resized = cv2.resize(image, (resize_w, resize_h)) image_paded = np.full((h_target, w_target, 3), 128.0) dw = int((w_target - resize_w) / 2) dh = int((h_target - resize_h) / 2) image_paded[dh:resize_h+dh, dw:resize_w+dw,:] = image_resized image = image_paded / 255.0 image = normalize(image) if correct_box: bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * resize_ratio + dw bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * resize_ratio + dh return image, bboxes return image,resize_ratio,dw,dh
e950e0e8cca4f31449feb12203ee9a9ef74baa8c
13,037
def pivot_timeseries(df, var_name, timezone=None): """ Pivot timeseries DataFrame and shift UTC by given timezone offset Parameters ---------- df : pandas.DataFrame Timeseries DataFrame to be pivoted with year, month, hour columns var_name : str Name for new column describing data timezone : int, optional UTC offset to apply to DatetimeIndex, by default None Returns ------- pandas.DataFrame Seaborn style long table with source, year, month, hour columns """ sns_df = [] for name, col in df.iteritems(): col = col.to_frame() col.columns = [var_name] col['source'] = name col['year'] = col.index.year col['month'] = col.index.month col['hour'] = col.index.hour if timezone is not None: td = pd.to_timedelta('{:}h'.format(timezone)) col['local_hour'] = (col.index + td).hour sns_df.append(col) return pd.concat(sns_df)
914ba75929caacd16da5170e98a95f2135a1682f
13,038
def _preprocess_stored_query(query_text, config): """Inject some default code into each stored query.""" ws_id_text = " LET ws_ids = @ws_ids " if 'ws_ids' in query_text else "" return '\n'.join([ config.get('query_prefix', ''), ws_id_text, query_text ])
bc63391724773cd4a60f3dc9686d243d6d733b40
13,039
def handler_request_exception(response: Response): """ Args: response (Response): """ status_code = response.status_code data = response.json() if "details" in data and len(data.get("details")) > 0: data = data.get("details")[0] kwargs = { "error_code": data.get("error_code") or data.get("error") or str(data.get("status_code")), "description": data.get("description_detail") or data.get("description") or data.get("error_description") or data.get("message"), "response": response, } message = "{} {} ({})".format( kwargs.get("error_code"), kwargs.get("description"), response.url, ) if status_code == 400: return errors.BadRequest(message, **kwargs) elif status_code == 402: return errors.BusinessError(message, **kwargs) elif status_code == 404: return errors.NotFound(message, **kwargs) elif status_code == 500: return errors.ServerError(message, **kwargs) elif status_code == 503: return errors.ServiceUnavailable(message, **kwargs) elif status_code == 504: return errors.GatewayTimeout(message, **kwargs) else: return errors.RequestError(message, **kwargs)
8847b4a1fd6f90d6e25d0ef8dc33a32e38e81617
13,040
import abc import sys def n_real_inputs(): """This gives the number of 'real' inputs. This is determined by trimming away inputs that have no connection to the logic. This is done by the ABC alias 'trm', which changes the current circuit. In some applications we do not want to change the circuit, but just to know how may inputs would go away if we did this. So the current circuit is saved and then restored afterwards.""" ## abc('w %s_savetempreal.aig; logic; trim; st ;addpi'%f_name) abc('w %s_savetempreal.aig'%f_name) with redirect.redirect( redirect.null_file, sys.stdout ): ## with redirect.redirect( redirect.null_file, sys.stderr ): reparam() n = n_pis() abc('r %s_savetempreal.aig'%f_name) return n
ed4f87bc9a380df4d650019b5c60a836eeeeea30
13,041
import os def get_stats_for_dictionary_file(dictionary_path): """Calculate size of manual and recommended sections of given dictionary.""" if not dictionary_path or not os.path.exists(dictionary_path): return 0, 0 dictionary_content = utils.read_data_from_file( dictionary_path, eval_data=False) dictionaries = dictionary_content.split(RECOMMENDED_DICTIONARY_HEADER) # If there are any elements before RECOMMENDED_DICTIONARY_HEADER, those are # from "manual" dictionary stored in the repository. manual_dictionary_size = get_dictionary_size(dictionaries[0]) if len(dictionaries) < 2: return manual_dictionary_size, 0 # Any elements after RECOMMENDED_DICTIONARY_HEADER are recommended dictionary. recommended_dictionary_size = get_dictionary_size(dictionaries[1]) return manual_dictionary_size, recommended_dictionary_size
f149e4cfcde6b61345b15d773bca8d4f7a32410b
13,042
def mlrPredict(W, data): """ mlrObjFunction predicts the label of data given the data and parameter W of Logistic Regression Input: W: the matrix of weight of size (D + 1) x 10. Each column is the weight vector of a Logistic Regression classifier. X: the data matrix of size N x D Output: label: vector of size N x 1 representing the predicted label of corresponding feature vector given in data matrix """ label = np.zeros((data.shape[0], 1)) ################## # YOUR CODE HERE # ################## # HINT: Do not forget to add the bias term to your input data """ Add the bias term at the beginning """ n_data = data.shape[0] bias = np.ones((n_data,1)) """ Concatenate the bias to the training data """ data = np.concatenate( (bias,data),axis=1) outputs = np.zeros([n_data,W.shape[1]],dtype=float) outputs = np.dot(data,W) #print (outputs[0]) i = 0 for i in range(n_data): label[i][0] = np.argmax(outputs[i],axis=0) return label
18bf0c86195cf144eb63f5b6c440f92c57d2fe9b
13,043
from .error_pages import add_error_pages from .global_variables import init_global from .home import home_page from .rules import rule_page from .create_game import create_game_page, root_url_games from .global_stats import global_stats_page, page_url from .utils.add_dash_table import add_dash as add_dash_table from .utils.add_dash_games import add_dash_games from .admin import admin_page def create_app(): """Create Flask application.""" app = Flask(__name__, instance_relative_config=False) app = add_error_pages(app) app.config.from_object("config") with app.app_context(): init_global() # # Import parts of our application bootstrap = Bootstrap() app.register_blueprint(home_page) Markdown(app) app.register_blueprint(rule_page) app.register_blueprint(create_game_page) app.register_blueprint(global_stats_page) bootstrap.init_app(app) app = add_dash_table(app, page_url) app = add_dash_games(app, root_url_games) app.register_blueprint(admin_page) return app
665ab7beda7ff79e4b81c22d5f28409a31dc896f
13,044
def process_integration(request, case_id): """Method to process case.""" try: case = OVCBasicCRS.objects.get(case_id=case_id, is_void=False) county_code = int(case.county) const_code = int(case.constituency) county_id, const_id = 0, 0 crs_id = str(case_id).replace('-', '') user_counties, user_geos = get_person_geo(request) # Get person orgs ou_ids = get_person_orgs(request) if request.method == 'POST': response = handle_integration(request, case, case_id) print(response) check_fields = ['sex_id', 'case_category_id', 'case_reporter_id', 'family_status_id', 'household_economics', 'risk_level_id', 'mental_condition_id', 'perpetrator_status_id', 'other_condition_id', 'physical_condition_id', 'yesno_id'] vals = get_dict(field_name=check_fields) category = OVCBasicCategory.objects.filter( case_id=case_id, is_void=False) person = OVCBasicPerson.objects.filter(case_id=case_id, is_void=False) # Attached Geos and Org Units for the user # ou_ids = [] org_id = request.session.get('ou_primary', 0) ou_ids.append(org_id) ou_attached = request.session.get('ou_attached', 0) user_level = request.session.get('user_level', 0) user_type = request.session.get('user_type', 0) print(org_id, ou_attached, user_level, user_type) # person_id = request.user.reg_person_id county = SetupGeography.objects.filter( area_code=county_code, area_type_id='GPRV') for c in county: county_id = c.area_id # Get constituency constituency = SetupGeography.objects.filter( area_code=const_code, area_type_id='GDIS') for c in constituency: const_id = c.area_id ous = RegOrgUnit.objects.filter(is_void=False) counties = SetupGeography.objects.filter(area_type_id='GPRV') if user_counties: counties = counties.filter(area_id__in=user_counties) if request.user.is_superuser: all_ou_ids = ['TNGD'] ous = ous.filter(org_unit_type_id__in=all_ou_ids) geos = SetupGeography.objects.filter( area_type_id='GDIS', parent_area_id=county_id) else: ous = ous.filter(id__in=ou_ids) geos = SetupGeography.objects.filter( area_type_id='GDIS', parent_area_id=county_id) return render(request, 'management/integration_process.html', {'form': {}, 'case': case, 'vals': vals, 'category': category, 'person': person, 'geos': geos, 'ous': ous, 'counties': counties, 'county_id': county_id, 'const_id': const_id, 'crs_id': crs_id}) except Exception as e: print('Error processing integration - %s' % (e)) else: pass
bd383b624a072fec634bc28bbba71c2d635eeac2
13,045
def get_aabb(pts): """axis-aligned minimum bounding box""" x, y = np.floor(pts.min(axis=0)).astype(int) w, h = np.ceil(pts.ptp(axis=0)).astype(int) return x, y, w, h
68cffaf0b1cacf702a2dd3c6c22af6323d220e93
13,046
from re import S def _solve(f, *symbols, **flags): """Return a checked solution for f in terms of one or more of the symbols. A list should be returned except for the case when a linear undetermined-coefficients equation is encountered (in which case a dictionary is returned). If no method is implemented to solve the equation, a NotImplementedError will be raised. In the case that conversion of an expression to a Poly gives None a ValueError will be raised.""" not_impl_msg = "No algorithms are implemented to solve equation %s" if len(symbols) != 1: soln = None free = f.free_symbols ex = free - set(symbols) if len(ex) != 1: ind, dep = f.as_independent(*symbols) ex = ind.free_symbols & dep.free_symbols if len(ex) == 1: ex = ex.pop() try: # soln may come back as dict, list of dicts or tuples, or # tuple of symbol list and set of solution tuples soln = solve_undetermined_coeffs(f, symbols, ex, **flags) except NotImplementedError: pass if soln: if flags.get('simplify', True): if isinstance(soln, dict): for k in soln: soln[k] = simplify(soln[k]) elif isinstance(soln, list): if isinstance(soln[0], dict): for d in soln: for k in d: d[k] = simplify(d[k]) elif isinstance(soln[0], tuple): soln = [tuple(simplify(i) for i in j) for j in soln] else: raise TypeError('unrecognized args in list') elif isinstance(soln, tuple): sym, sols = soln soln = sym, {tuple(simplify(i) for i in j) for j in sols} else: raise TypeError('unrecognized solution type') return soln # find first successful solution failed = [] got_s = set([]) result = [] for s in symbols: xi, v = solve_linear(f, symbols=[s]) if xi == s: # no need to check but we should simplify if desired if flags.get('simplify', True): v = simplify(v) vfree = v.free_symbols if got_s and any([ss in vfree for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(xi) result.append({xi: v}) elif xi: # there might be a non-linear solution if xi is not 0 failed.append(s) if not failed: return result for s in failed: try: soln = _solve(f, s, **flags) for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(s) result.append({s: sol}) except NotImplementedError: continue if got_s: return result else: raise NotImplementedError(not_impl_msg % f) symbol = symbols[0] # /!\ capture this flag then set it to False so that no checking in # recursive calls will be done; only the final answer is checked flags['check'] = checkdens = check = flags.pop('check', True) # build up solutions if f is a Mul if f.is_Mul: result = set() for m in f.args: if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): result = set() break soln = _solve(m, symbol, **flags) result.update(set(soln)) result = list(result) if check: # all solutions have been checked but now we must # check that the solutions do not set denominators # in any factor to zero dens = flags.get('_denominators', _simple_dens(f, symbols)) result = [s for s in result if all(not checksol(den, {symbol: s}, **flags) for den in dens)] # set flags for quick exit at end; solutions for each # factor were already checked and simplified check = False flags['simplify'] = False elif f.is_Piecewise: result = set() for i, (expr, cond) in enumerate(f.args): if expr.is_zero: raise NotImplementedError( 'solve cannot represent interval solutions') candidates = _solve(expr, symbol, **flags) # the explicit condition for this expr is the current cond # and none of the previous conditions args = [~c for _, c in f.args[:i]] + [cond] cond = And(*args) for candidate in candidates: if candidate in result: # an unconditional value was already there continue try: v = cond.subs(symbol, candidate) _eval_simpify = getattr(v, '_eval_simpify', None) if _eval_simpify is not None: # unconditionally take the simpification of v v = _eval_simpify(ratio=2, measure=lambda x: 1) except TypeError: # incompatible type with condition(s) continue if v == False: continue result.add(Piecewise( (candidate, v), (S.NaN, True))) # set flags for quick exit at end; solutions for each # piece were already checked and simplified check = False flags['simplify'] = False else: # first see if it really depends on symbol and whether there # is only a linear solution f_num, sol = solve_linear(f, symbols=symbols) if f_num is S.Zero or sol is S.NaN: return [] elif f_num.is_Symbol: # no need to check but simplify if desired if flags.get('simplify', True): sol = simplify(sol) return [sol] result = False # no solution was obtained msg = '' # there is no failure message # Poly is generally robust enough to convert anything to # a polynomial and tell us the different generators that it # contains, so we will inspect the generators identified by # polys to figure out what to do. # try to identify a single generator that will allow us to solve this # as a polynomial, followed (perhaps) by a change of variables if the # generator is not a symbol try: poly = Poly(f_num) if poly is None: raise ValueError('could not convert %s to Poly' % f_num) except GeneratorsNeeded: simplified_f = simplify(f_num) if simplified_f != f_num: return _solve(simplified_f, symbol, **flags) raise ValueError('expression appears to be a constant') gens = [g for g in poly.gens if g.has(symbol)] def _as_base_q(x): """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) """ b, e = x.as_base_exp() if e.is_Rational: return b, e.q if not e.is_Mul: return x, 1 c, ee = e.as_coeff_Mul() if c.is_Rational and c is not S.One: # c could be a Float return b**ee, c.q return x, 1 if len(gens) > 1: # If there is more than one generator, it could be that the # generators have the same base but different powers, e.g. # >>> Poly(exp(x) + 1/exp(x)) # Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') # # If unrad was not disabled then there should be no rational # exponents appearing as in # >>> Poly(sqrt(x) + sqrt(sqrt(x))) # Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') bases, qs = list(zip(*[_as_base_q(g) for g in gens])) bases = set(bases) if len(bases) > 1 or not all(q == 1 for q in qs): funcs = set(b for b in bases if b.is_Function) trig = set([_ for _ in funcs if isinstance(_, TrigonometricFunction)]) other = funcs - trig if not other and len(funcs.intersection(trig)) > 1: newf = TR1(f_num).rewrite(tan) if newf != f_num: # don't check the rewritten form --check # solutions in the un-rewritten form below flags['check'] = False result = _solve(newf, symbol, **flags) flags['check'] = check # just a simple case - see if replacement of single function # clears all symbol-dependent functions, e.g. # log(x) - log(log(x) - 1) - 3 can be solved even though it has # two generators. if result is False and funcs: funcs = list(ordered(funcs)) # put shallowest function first f1 = funcs[0] t = Dummy('t') # perform the substitution ftry = f_num.subs(f1, t) # if no Functions left, we can proceed with usual solve if not ftry.has(symbol): cv_sols = _solve(ftry, t, **flags) cv_inv = _solve(t - f1, symbol, **flags)[0] sols = list() for sol in cv_sols: sols.append(cv_inv.subs(t, sol)) result = list(ordered(sols)) if result is False: msg = 'multiple generators %s' % gens else: # e.g. case where gens are exp(x), exp(-x) u = bases.pop() t = Dummy('t') inv = _solve(u - t, symbol, **flags) if isinstance(u, (Pow, exp)): # this will be resolved by factor in _tsolve but we might # as well try a simple expansion here to get things in # order so something like the following will work now without # having to factor: # # >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) # >>> eq.subs(exp(x),y) # fails # exp(I*(-x - 2)) + exp(I*(x + 2)) # >>> eq.expand().subs(exp(x),y) # works # y**I*exp(2*I) + y**(-I)*exp(-2*I) def _expand(p): b, e = p.as_base_exp() e = expand_mul(e) return expand_power_exp(b**e) ftry = f_num.replace( lambda w: w.is_Pow or isinstance(w, exp), _expand).subs(u, t) if not ftry.has(symbol): soln = _solve(ftry, t, **flags) sols = list() for sol in soln: for i in inv: sols.append(i.subs(t, sol)) result = list(ordered(sols)) elif len(gens) == 1: # There is only one generator that we are interested in, but # there may have been more than one generator identified by # polys (e.g. for symbols other than the one we are interested # in) so recast the poly in terms of our generator of interest. # Also use composite=True with f_num since Poly won't update # poly as documented in issue 8810. poly = Poly(f_num, gens[0], composite=True) # if we aren't on the tsolve-pass, use roots if not flags.pop('tsolve', False): soln = None deg = poly.degree() flags['tsolve'] = True solvers = {k: flags.get(k, True) for k in ('cubics', 'quartics', 'quintics')} soln = roots(poly, **solvers) if sum(soln.values()) < deg: # e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + # 5000*x**2 + 6250*x + 3189) -> {} # so all_roots is used and RootOf instances are # returned *unless* the system is multivariate # or high-order EX domain. try: soln = poly.all_roots() except NotImplementedError: if not flags.get('incomplete', True): raise NotImplementedError( filldedent(''' Neither high-order multivariate polynomials nor sorting of EX-domain polynomials is supported. If you want to see any results, pass keyword incomplete=True to solve; to see numerical values of roots for univariate expressions, use nroots. ''')) else: pass else: soln = list(soln.keys()) if soln is not None: u = poly.gen if u != symbol: try: t = Dummy('t') iv = _solve(u - t, symbol, **flags) soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) except NotImplementedError: # perhaps _tsolve can handle f_num soln = None else: check = False # only dens need to be checked if soln is not None: if len(soln) > 2: # if the flag wasn't set then unset it since high-order # results are quite long. Perhaps one could base this # decision on a certain critical length of the # roots. In addition, wester test M2 has an expression # whose roots can be shown to be real with the # unsimplified form of the solution whereas only one of # the simplified forms appears to be real. flags['simplify'] = flags.get('simplify', False) result = soln # fallback if above fails # ----------------------- if result is False: # try unrad if flags.pop('_unrad', True): try: u = unrad(f_num, symbol) except (ValueError, NotImplementedError): u = False if u: eq, cov = u if cov: isym, ieq = cov inv = _solve(ieq, symbol, **flags)[0] rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} else: try: rv = set(_solve(eq, symbol, **flags)) except NotImplementedError: rv = None if rv is not None: result = list(ordered(rv)) # if the flag wasn't set then unset it since unrad results # can be quite long or of very high order flags['simplify'] = flags.get('simplify', False) else: pass # for coverage # try _tsolve if result is False: flags.pop('tsolve', None) # allow tsolve to be used on next pass try: soln = _tsolve(f_num, symbol, **flags) if soln is not None: result = soln except PolynomialError: pass # ----------- end of fallback ---------------------------- if result is False: raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) if flags.get('simplify', True): result = list(map(simplify, result)) # we just simplified the solution so we now set the flag to # False so the simplification doesn't happen again in checksol() flags['simplify'] = False if checkdens: # reject any result that makes any denom. affirmatively 0; # if in doubt, keep it dens = _simple_dens(f, symbols) result = [s for s in result if all(not checksol(d, {symbol: s}, **flags) for d in dens)] if check: # keep only results if the check is not False result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False] return result
af2c8de5f2ee7cdfc41856ffe438c2bf0fcaee78
13,047
import numpy def get_object_ratio(obj): """Calculate the ratio of the object's size in comparison to the whole image :param obj: the binarized object image :type obj: numpy.ndarray :returns: float -- the ratio """ return numpy.count_nonzero(obj) / float(obj.size)
fd18e460be32037c73fe75c8fa5eef5ba6c1c217
13,048
def get_region(ds, region): """ Return a region from a provided DataArray or Dataset Parameters ---------- region_mask: xarray DataArray or list Boolean mask of the region to keep """ return ds.where(region, drop=True)
102b672f8040b722ec346435775cba1056485ae2
13,049
def read_borehole_file(path, fix_df=True): """Returns the df with the depths for each borehole in one single row instead instead being each chunck a new row""" df = pd.read_table(path, skiprows=41, header=None, sep='\t', ) df.rename(columns={1: 'x', 2: 'y', 3: 'name', 4: 'num', 5: 'z', 6: 'year', 10: 'altitude'}, inplace=True) if fix_df: df['name'] = df['name'] + df['num'] n_fixed_columns = 11 n_segments_per_well = 15 n_wells = df.shape[0] # Repeat fixed rows (collar name and so) df_fixed = df.iloc[:, :n_fixed_columns] df_fixed = df_fixed.loc[df_fixed.index.repeat( n_segments_per_well)] # Add a formation to each segment tiled_formations = pd.np.tile(formations, (n_wells)) df_fixed['formation'] = tiled_formations # Add the segments base to the df df_bottoms = df.iloc[:, n_fixed_columns:n_fixed_columns + n_segments_per_well] df_fixed['base'] = df_bottoms.values.reshape(-1, 1, order='C') # Adding tops column from collar and base df_fixed = ss.io.wells.add_tops_from_base_and_altitude_in_place( df_fixed, 'name', 'base', 'altitude' ) # Fixing boreholes that have the base higher than the top top_base_error = df_fixed["top"] > df_fixed["base"] df_fixed["base"][top_base_error] = df_fixed["top"] + 0.01 # Add real coord df_fixed['z'] = df_fixed['altitude'] - df_fixed['md'] df = df_fixed return df
50c3df5a3d2aae2a0f58b555380efb9fd63a90e1
13,050
def cpl_parse(path): """ Parse DCP CPL """ cpl = generic_parse( path, "CompositionPlaylist", ("Reel", "ExtensionMetadata", "PropertyList")) if cpl: cpl_node = cpl['Info']['CompositionPlaylist'] cpl_dcnc_parse(cpl_node) cpl_reels_parse(cpl_node) return cpl
a025bf82bdeac13d6c7cfbca95d667f2ae58c8f9
13,051
def notfound(): """Serve 404 template.""" return make_response(render_template('404.html'), 404)
d81d794bad67c8128b8f6e55dbc5383bda7a1405
13,052
from typing import Tuple from typing import List def read_network(file: str) -> Tuple[int, int, List[int]]: """ Read a Boolean network from a text file: Line 1: number of state variables Line 2: number of control inputs Line 3: transition matrix of the network (linear representation of a logical matrix) :param file: a text file :return: (n, m, Lm), where n: number of state variables m: number of control inputs Lm: network transition matrix """ with open(file, 'r') as f: n = int(f.readline().strip()) m = int(f.readline().strip()) N = 2 ** n M = 2 ** m line = f.readline().strip() assert line, f'network transition matrix must be provided!' numbers = line.split() assert len(numbers) == M * N, f'The transition matrix must have {M * N} columns' L = [int(num) for num in numbers] for i in L: assert 1 <= i <= N, f'All integers in the network transition matrix must be in range [1, {N}]' return n, m, L
217bd86f8d00cf27cf80d1a199b76b023a374f10
13,053
import os import fnmatch import shutil def copy(srcpath, destpath, pattern=None, pred=_def_copy_pred): """ Copies all files in the source path to the specified destination path. The source path can be a file, in which case that file will be copied as long as it matches the specified pattern. If the source path is a directory, all directories in it will be recursed and any files matching the specified pattern will be copied. :param srcpath: Source path to copy files from. :param destpath: Destination path to copy files to. :param pattern: Pattern to match filenames against. :param pred: Predicate to decide which files to copy/overwrite. :return: Number of files copied. """ if os.path.isfile(srcpath): if pattern and not fnmatch.fnmatch(srcpath, pattern): return 0 if pred and pred(srcpath, destpath) == False: return 0 path, filename = os.path.split(destpath) if not os.path.exists(path): # Make sure all directories needed to copy the file exist. create_dir(path) shutil.copyfile(srcpath, destpath) return 1 num_files_copied = 0 for s in os.listdir(srcpath): src = os.path.join(srcpath , s) dest = os.path.join(destpath, s) num_files_copied += copy(src, dest, pattern) return num_files_copied
daa4487e77642319f04a0556c238f84e47f513cf
13,054
def bundle_products_list(request,id): """ This view Renders Bundle Product list Page """ bundle = get_object_or_404(Bundle, bundle_id=id) bundleProd = BundleProducts.objects.filter(bundle=id) stocks = Stock.objects.all() context = { "title": "Bundle Products List", "bundle": bundle, "bundleproducts": bundleProd, "stocks": stocks } return render(request, 'bundle_products.html',context)
3afef4fdd2886300bc2fbda306bc05b499a47d0f
13,055
def rot_x(theta): """ Rotation matrix around X axis :param theta: Rotation angle in radians, right-handed :return: Rotation matrix in form of (3,3) 2D numpy array """ return rot_axis(0,theta)
d4a892ed5ede6ffd2353b0121bec640e81c23ec7
13,056
def ValidateEntryPointNameOrRaise(entry_point): """Checks if a entry point name provided by user is valid. Args: entry_point: Entry point name provided by user. Returns: Entry point name. Raises: ArgumentTypeError: If the entry point name provided by user is not valid. """ return _ValidateArgumentByRegexOrRaise(entry_point, _ENTRY_POINT_NAME_RE, _ENTRY_POINT_NAME_ERROR)
7175e63562b04aba430044e0898db7368b68fb23
13,057
def park2_4_z(z, x): """ Computes the Parkd function. """ y1 = x[0][0] y2 = x[0][1] chooser = x[1] y3 = (x[2] - 103.0) / 91.0 y4 = x[3] + 10.0 x = [y1, y2, y3, y4] if chooser == 'rabbit': ret = sub_park_1(x) elif chooser == 'dog': ret = sub_park_2(x) elif chooser == 'gerbil': ret = sub_park_3(x) elif chooser in ['hamster', 'ferret']: ret = sub_park_4(x) return ret * np.exp(z - 1)
458ba79ada010b3c93419719b68f7a953908b184
13,058
import re def get_string_coords(line): """return a list of string positions (tuple (start, end)) in the line """ result = [] for match in re.finditer(STRING_RGX, line): result.append( (match.start(), match.end()) ) return result
a8fd7443ce242ce4f84196947fb4d82c2ff0d20e
13,059
def array_from_pixbuf(p): """Convert from GdkPixbuf to numpy array" Args: p (GdkPixbuf): The GdkPixbuf provided from some window handle Returns: ndarray: The numpy array arranged for the pixels in height, width, RGBA order """ w,h,c,r=(p.get_width(), p.get_height(), p.get_n_channels(), p.get_rowstride()) assert p.get_colorspace() == GdkPixbuf.Colorspace.RGB assert p.get_bits_per_sample() == 8 if p.get_has_alpha(): assert c == 4 else: assert c == 3 assert r >= w * c a=np.frombuffer(p.get_pixels(),dtype=np.uint8) if a.shape[0] == w*c*h: return a.reshape( (h, w, c), order = 'C' ) else: b=np.zeros((h,w*c),'uint8') for j in range(h): b[j,:]=a[r*j:r*j+w*c] return b.reshape( (h, w, c) )
da2e980d804c283e2993049c63e3dacf67f7f0bd
13,060
def entropy(x,k=3,base=2): """ The classic K-L k-nearest neighbor continuous entropy estimator x should be a list of vectors, e.g. x = [[1.3],[3.7],[5.1],[2.4]] if x is a one-dimensional scalar and we have four samples """ assert k <= len(x)-1, "Set k smaller than num. samples - 1" d = len(x[0]) N = len(x) intens = 1e-10 #small noise to break degeneracy, see doc. x = [list(p + intens*nr.rand(len(x[0]))) for p in x] tree = ss.cKDTree(x) nn = [tree.query(point,k+1,p=float('inf'))[0][k] for point in x] const = digamma(N)-digamma(k) + d*log(2) return (const + d*np.mean(map(log,nn)))/log(base)
41d55d2bef2475ece27a487afb1e54d433bad5f0
13,061
import logging def respond_to_command(slack_client, branch, thread_ts): """Take action on command.""" logging.debug("Responding to command: Deploy Branch-%s", branch) is_production = False if branch == 'develop': message = "Development deployment started" post_to_channel(slack_client, message, thread_ts, announce=is_production) result = deploy_develop() elif branch == 'master': is_production = True message = "Production deployment started" post_to_channel(slack_client, message, thread_ts, announce=is_production) result = deploy_production() else: # Do nothing return None if result.return_code == 0: message = "Branch {} deployed successfully.".format(branch) post_to_channel(slack_client, message, thread_ts, announce=is_production) else: message = "FAILED: Branch {} failed to deploy.".format(branch) post_to_channel(slack_client, message, thread_ts) logging.debug("Failed build stdout: %s", result.out) logging.debug("Failed build stderr: %s", result.err)
b008456d94cdd7e52e626ddd386ed2606cb22f02
13,062
from typing import Optional def s3upload_start( request: HttpRequest, workflow: Optional[Workflow] = None, ) -> HttpResponse: """Upload the S3 data as first step. The four step process will populate the following dictionary with name upload_data (divided by steps in which they are set STEP 1: initial_column_names: List of column names in the initial file. column_types: List of column types as detected by pandas src_is_key_column: Boolean list with src columns that are unique step_1: URL name of the first step :param request: Web request :return: Creates the upload_data dictionary in the session """ # Bind the form with the received data form = UploadS3FileForm( request.POST or None, request.FILES or None, workflow=workflow) if request.method == 'POST' and form.is_valid(): # Dictionary to populate gradually throughout the sequence of steps. It # is stored in the session. request.session['upload_data'] = { 'initial_column_names': form.frame_info[0], 'column_types': form.frame_info[1], 'src_is_key_column': form.frame_info[2], 'step_1': reverse('dataops:csvupload_start')} return redirect('dataops:upload_s2') return render( request, 'dataops/upload1.html', { 'form': form, 'wid': workflow.id, 'dtype': 'S3 CSV', 'dtype_select': _('S3 CSV file'), 'valuerange': range(5) if workflow.has_table() else range(3), 'prev_step': reverse('dataops:uploadmerge')})
b3fc1ac6c3754df836d8c219b0fb416f9d5973ce
13,063
def search_explorations(query, limit, sort=None, cursor=None): """Searches through the available explorations. args: - query_string: the query string to search for. - sort: a string indicating how to sort results. This should be a string of space separated values. Each value should start with a '+' or a '-' character indicating whether to sort in ascending or descending order respectively. This character should be followed by a field name to sort on. When this is None, results are based on 'rank'. See _get_search_rank to see how rank is determined. - limit: the maximum number of results to return. - cursor: A cursor, used to get the next page of results. If there are more documents that match the query than 'limit', this function will return a cursor to get the next page. returns: a tuple: - a list of exploration ids that match the query. - a cursor if there are more matching explorations to fetch, None otherwise. If a cursor is returned, it will be a web-safe string that can be used in URLs. """ return search_services.search( query, SEARCH_INDEX_EXPLORATIONS, cursor, limit, sort, ids_only=True)
bead5de6f9803a7715ad497bb1f5c22da1faf296
13,064
import pkgutil def find_resourceadapters(): """ Finds all resource adapter classes. :return List[ResourceAdapter]: a list of all resource adapter classes """ subclasses = [] def look_for_subclass(module_name): module = __import__(module_name) d = module.__dict__ for m in module_name.split('.')[1:]: d = d[m].__dict__ for key, entry in d.items(): if key == tortuga.resourceAdapter.resourceAdapter.ResourceAdapter.__name__: continue try: if issubclass(entry, tortuga.resourceAdapter.resourceAdapter.ResourceAdapter): subclasses.append(entry) except TypeError: continue for _, modulename, _ in pkgutil.walk_packages( tortuga.resourceAdapter.__path__): look_for_subclass('tortuga.resourceAdapter.{0}'.format(modulename)) return subclasses
3aab6e6b28fa69cf9e7b1c8bc04589c69e43a3ee
13,065
def print_scale(skill, points): """Return TeX lines for a skill scale.""" lines = ['\\cvskill{'] lines[0] += skill lines[0] += '}{' lines[0] += str(points) lines[0] += '}\n' return lines
c88de0c6db9e7b92dbcee025f42f56817a4aa033
13,066
from typing import Union from typing import TextIO from typing import BinaryIO import os import io def getsize(file: Union[TextIO, BinaryIO]) -> int: """ Overview: Get the size of the given ``file`` stream. :param file: File which size need to access. :return: File's size. Examples:: >>> import io >>> from hbutils.file import getsize >>> >>> with io.BytesIO(b'\\xde\\xad\\xbe\\xef') as file: ... print(getsize(file)) 4 >>> with open('README.md', 'r') as file: ... print(getsize(file)) 2582 .. note:: Only seekable stream can use :func:`getsize`. """ if file.seekable(): try: return os.stat(file.fileno()).st_size except OSError: with keep_cursor(file): return file.seek(0, io.SEEK_END) else: raise OSError(f'Given file {repr(file)} is not seekable, ' # pragma: no cover f'so its size is unavailable.')
3b88fc21c52b53ad13dcbfd074542f4b392450d8
13,067
def print_(fh, *args): """Implementation of perl $fh->print method""" global OS_ERROR, TRACEBACK, AUTODIE try: print(*args, end='', file=fh) return True except Exception as _e: OS_ERROR = str(_e) if TRACEBACK: cluck(f"print failed: {OS_ERROR}",skip=2) if AUTODIE: raise return False
8289aba67cb81b710d04da609ea63c65fa986e21
13,068
def _expm_multiply_interval(A, B, start=None, stop=None, num=None, endpoint=None, balance=False, status_only=False): """ Compute the action of the matrix exponential at multiple time points. Parameters ---------- A : transposable linear operator The operator whose exponential is of interest. B : ndarray The matrix to be multiplied by the matrix exponential of A. start : scalar, optional The starting time point of the sequence. stop : scalar, optional The end time point of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced time points, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of time points to use. endpoint : bool, optional If True, `stop` is the last time point. Otherwise, it is not included. balance : bool Indicates whether or not to apply balancing. status_only : bool A flag that is set to True for some debugging and testing operations. Returns ------- F : ndarray :math:`e^{t_k A} B` status : int An integer status for testing and debugging. Notes ----- This is algorithm (5.2) in Al-Mohy and Higham (2011). There seems to be a typo, where line 15 of the algorithm should be moved to line 6.5 (between lines 6 and 7). """ if balance: raise NotImplementedError if len(A.shape) != 2 or A.shape[0] != A.shape[1]: raise ValueError('expected A to be like a square matrix') if A.shape[1] != B.shape[0]: raise ValueError('the matrices A and B have incompatible shapes') ident = _ident_like(A) n = A.shape[0] if len(B.shape) == 1: n0 = 1 elif len(B.shape) == 2: n0 = B.shape[1] else: raise ValueError('expected B to be like a matrix or a vector') u_d = 2**-53 tol = u_d mu = _trace(A) / float(n) # Get the linspace samples, attempting to preserve the linspace defaults. linspace_kwargs = {'retstep' : True} if num is not None: linspace_kwargs['num'] = num if endpoint is not None: linspace_kwargs['endpoint'] = endpoint samples, step = np.linspace(start, stop, **linspace_kwargs) # Convert the linspace output to the notation used by the publication. nsamples = len(samples) if nsamples < 2: raise ValueError('at least two time points are required') q = nsamples - 1 h = step t_0 = samples[0] t_q = samples[q] # Define the output ndarray. # Use an ndim=3 shape, such that the last two indices # are the ones that may be involved in level 3 BLAS operations. X_shape = (nsamples,) + B.shape X = np.empty(X_shape, dtype=float) t = t_q - t_0 A = A - mu * ident A_1_norm = _exact_1_norm(A) if t*A_1_norm == 0: m_star, s = 0, 1 else: ell = 2 norm_info = LazyOperatorNormInfo(t*A, A_1_norm=t*A_1_norm, ell=ell) m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell) # Compute the expm action up to the initial time point. X[0] = _expm_multiply_simple_core(A, B, t_0, mu, m_star, s) # Compute the expm action at the rest of the time points. if q <= s: if status_only: return 0 else: return _expm_multiply_interval_core_0(A, X, h, mu, m_star, s, q) elif q > s and not (q % s): if status_only: return 1 else: return _expm_multiply_interval_core_1(A, X, h, mu, m_star, s, q, tol) elif q > s and (q % s): if status_only: return 2 else: return _expm_multiply_interval_core_2(A, X, h, mu, m_star, s, q, tol) else: raise Exception('internal error')
941c4e2d51f0bf524beff52350466a743b51eadf
13,069
def subprocess(mocker): """ Mock the subprocess and make sure it returns a value """ def with_return_value(value: int = 0, stdout: str = ""): mock = mocker.patch( "subprocess.run", return_value=CompletedProcess(None, returncode=0) ) mock.returncode.return_value = value mock.stdout = stdout return mock return with_return_value
4b7140127eeb2d9202ed976518a121fed5fac302
13,070
def ljust(string, width): """ A version of ljust that considers the terminal width (see get_terminal_width) """ width -= get_terminal_width(string) return string + " " * width
e9c6ab8bbeeb268bc82f479e768be32f74fab488
13,071
import operator def device_sort (device_set): """Sort a set of devices by self_id. Can't be used with PendingDevices!""" return sorted(device_set, key = operator.attrgetter ('self_id'))
92a22a87b5b923771cd86588180a8c6eb15b9fdf
13,072
def _ontology_value(curie): """Get the id component of the curie, 0000001 from CL:0000001 for example.""" return curie.split(":")[1]
7ef1f0874e698c498ccef16294c0469f67cd5233
13,073
import os def get_current_joblist(JobDir): """ -function to return current, sorted, joblist in /JobDir """ if os.path.exists(JobDir): jobdirlist = os.walk(JobDir).next()[1] jobdirlist.sort() return jobdirlist
79f8feb20ccdcb2984b81a236ddcd3cac6fcc351
13,074
def readpacket( timeout=1000, hexdump=False ): """Reads a HP format packet (length, data, checksum) from device. Handles error recovery and ACKing. Returns data or prints hexdump if told so. """ data = protocol.readpacket() if hexdump == True: print hpstr.tohexstr( data ) else: return data
d673e61974058fc73a47bd0e5856563c9f5370bf
13,075
def df_down_next_empty_pos(df, pos): """ Given a position `pos` at `(c, r)`, reads down column `c` from row `r` to find the next empty cell. Returns the position of that cell if found, or `None` otherwise. """ return df_down_next_matching_pos(df, pos, pd.isna)
79fdba60e6a5846c39fb1141f3d21430230c2a31
13,076
def optimise_f2_thresholds(y, p, verbose=False, resolution=100): """Optimize individual thresholds one by one. Code from anokas. Inputs ------ y: numpy array, true labels p: numpy array, predicted labels """ n_labels = y.shape[1] def mf(x): p2 = np.zeros_like(p) for i in range(n_labels): p2[:, i] = (p[:, i] > x[i]).astype(np.int) score = fbeta_score(y, p2, beta=2, average='samples') return score x = [0.2]*n_labels for i in range(n_labels): best_i2 = 0 best_score = 0 for i2 in range(resolution): i2 /= resolution x[i] = i2 score = mf(x) if score > best_score: best_i2 = i2 best_score = score x[i] = best_i2 if verbose: print(i, best_i2, best_score) return x
5f1ad6dda86229cffb7167f5cc3365c601048937
13,077
def holding_vars(): """ input This is experimental, used to indicate unbound (free) variables in a sum or list comprehensive. This is inspired by Harrison's {a | b | c} set comprehension notation. >>> pstream(holding_vars(),', holding x,y,z') Etok(holding_vars,', holding x , y , z') """ def f(acc): ((_,_),cs) = acc return Etok(name='holding_vars',etoks=cs[0::2],raw=acc) return (comma + next_word('holding') + c.plus_comma(var())).treat(f,'holding_vars')
5566bc97e2fa972b1ccde4d24f30fb06635bdcb7
13,078
import re def select_with_several_genes(accessions, name, pattern, description_items=None, attribute='gene', max_items=3): """ This will select the best description for databases where more than one gene (or other attribute) map to a single URS. The idea is that if there are several genes we should use the lowest one (RNA5S1, over RNA5S17) and show the names of genes, if possible. This will list the genes if there are few, otherwise provide a note that there are several. """ getter = op.attrgetter(attribute) candidate = min(accessions, key=getter) genes = set(getter(a) for a in accessions if getter(a)) if not genes or len(genes) == 1: description = candidate.description # Append gene name if it exists and is not present in the description # already if genes: suffix = genes.pop() if suffix not in description: description += ' (%s)' % suffix return description regexp = pattern % getter(candidate) basic = re.sub(regexp, '', candidate.description) func = getter if description_items is not None: func = op.attrgetter(description_items) items = sorted([func(a) for a in accessions if func(a)], key=item_sorter) if not items: return basic return add_term_suffix(basic, items, name, max_items=max_items)
04df56e64259aafd1e0d5b0d68839d8016514cb7
13,079
def list_messages_matching_query(service, user_id, query=''): """List all Messages of the user's mailbox matching the query. Args: service: Authorized Gmail API service instance. user_id: User's email address. The special value "me" can be used to indicate the authenticated user. query: String used to filter messages returned. Eg.- 'from:user@some_domain.com' for Messages from a particular sender. Returns: List of Messages that match the criteria of the query. Note that the returned list contains Message IDs, you must use get with the appropriate ID to get the details of a Message. """ try: response = service.users().messages().list(userId=user_id, q=query).execute() messages = [] if 'messages' in response: messages.extend(response['messages']) while 'nextPageToken' in response: page_token = response['nextPageToken'] response = service.users().messages().list( userId=user_id, q=query, pageToken=page_token).execute() messages.extend(response['messages']) return messages except errors.HttpError as error: print('An error occurred: %s' % error)
a6ec376d7cfb4a6c724646a0e4d9ac1b86526ae7
13,080
def write_to_string(input_otio, **profile_data): """ :param input_otio: Timeline, Track or Clip :param profile_data: Properties passed to the profile tag describing the format, frame rate, colorspace and so on. If a passed Timeline has `global_start_time` set, the frame rate will be set automatically. Please note that numeric values must be passed as strings. Please check MLT website for more info on profiles. You may pass an "image_producer" argument with "pixbuf" to change image sequence producer. The default image sequence producer is "image2" :return: MLT formatted XML :rtype: `str` """ mlt_adapter = MLTAdapter(input_otio, **profile_data) return mlt_adapter.create_mlt()
36a0e7fe741b4c216bd068b8544d68c63176d679
13,081
import re def parse_IS(reply: bytes, device: str): """Parses the reply to the shutter IS command.""" match = re.search(b"\x00\x07IS=([0-1])([0-1])[0-1]{6}\r$", reply) if match is None: return False if match.groups() == (b"1", b"0"): if device in ["shutter", "hartmann_right"]: return "open" else: return "closed" elif match.groups() == (b"0", b"1"): if device in ["shutter", "hartmann_right"]: return "closed" else: return "open" else: return False
827b5ebf5c98bcc65b823276d5ab5b8086a2c069
13,082
def quatXYZWFromRotMat(rot_mat): """Convert quaternion from rotation matrix""" quatWXYZ = quaternions.mat2quat(rot_mat) quatXYZW = quatToXYZW(quatWXYZ, 'wxyz') return quatXYZW
2a0a736c3950dca481c993e9801e14b362f78940
13,083
import sqlite3 def schema_is_current(db_connection: sqlite3.Connection) -> bool: """ Given an existing database, checks to see whether the schema version in the existing database matches the schema version for this version of Gab Tidy Data. """ db = db_connection.cursor() db.execute( """ select metadata_value from _gab_tidy_data where metadata_key = 'schema_version' """ ) db_schema_version = db.fetchone()[0] return db_schema_version == data_mapping.schema_version
183502c292f9bb92e18a4ea7767028bea4e746fb
13,084
import xattr def xattr_writes_supported(path): """ Returns True if the we can write a file to the supplied path and subsequently write a xattr to that file. """ try: except ImportError: return False def set_xattr(path, key, value): xattr.setxattr(path, "user.%s" % key, value) # We do a quick attempt to write a user xattr to a temporary file # to check that the filesystem is even enabled to support xattrs fake_filepath = os.path.join(path, 'testing-checkme') result = True with open(fake_filepath, 'wb') as fake_file: fake_file.write(b"XXX") fake_file.flush() try: set_xattr(fake_filepath, 'hits', b'1') except IOError as e: if e.errno == errno.EOPNOTSUPP: result = False else: # Cleanup after ourselves... if os.path.exists(fake_filepath): os.unlink(fake_filepath) return result
4992f2f5808575eac1f816aa09d80ff881286368
13,085
def _lovasz_softmax(probabilities, targets, classes="present", per_image=False, ignore=None): """The multiclass Lovasz-Softmax loss. Args: probabilities: [B, C, H, W] class probabilities at each prediction (between 0 and 1). Interpreted as binary (sigmoid) output with outputs of size [B, H, W]. targets: [B, H, W] ground truth targets (between 0 and C - 1) classes: "all" for all, "present" for classes present in targets, or a list of classes to average. per_image: compute the loss per image instead of per batch ignore: void class targets """ if per_image: loss = mean( _lovasz_softmax_flat( *_flatten_probabilities(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes ) for prob, lab in zip(probabilities, targets) ) else: loss = _lovasz_softmax_flat( *_flatten_probabilities(probabilities, targets, ignore), classes=classes ) return loss
c46006c921d1f40b5b86ff861750a9d89ec4bbdc
13,086
def encodeDERTRequest(negoTypes = [], authInfo = None, pubKeyAuth = None): """ @summary: create TSRequest from list of Type @param negoTypes: {list(Type)} @param authInfo: {str} authentication info TSCredentials encrypted with authentication protocol @param pubKeyAuth: {str} public key encrypted with authentication protocol @return: {str} TRequest der encoded """ negoData = NegoData().subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 1)) #fill nego data tokens i = 0 for negoType in negoTypes: s = Stream() s.writeType(negoType) negoToken = NegoToken() negoToken.setComponentByPosition(0, s.getvalue()) negoData.setComponentByPosition(i, negoToken) i += 1 request = TSRequest() request.setComponentByName("version", univ.Integer(2).subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 0))) if i > 0: request.setComponentByName("negoTokens", negoData) if not authInfo is None: request.setComponentByName("authInfo", univ.OctetString(authInfo).subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 2))) if not pubKeyAuth is None: request.setComponentByName("pubKeyAuth", univ.OctetString(pubKeyAuth).subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 3))) return der_encoder.encode(request)
bba9ed483eec2ef39927689a8924cbcc15a2093e
13,087
import os def generate_s3_strings(path): """Generates s3 bucket name, s3 key and s3 path with an endpoint from a path with path (string): s3://BUCKETNAME/KEY x --> path.find(start) returns index 0 + len(start) returns 5 --> 0 + 5 = 5 Y --> path[len(start):] = BUCKENAME/KEY --> .find(end) looking for forward slash in BUCKENAME/KEY --> returns 10 Y --> now we have to add len(start) to 10 because the index was relating to BUCKENAME/KEY and not to s3://BUCKETNAME/KEY bucket_name = path[X:Y] Prefix is the string behind the slash that is behind the bucket_name - so path.find(bucket_name) find the index of the bucket_name, add len(bucket_name) to get the index to the end of the bucket name - add 1 because we do not want the slash in the Key Args: path (string): s3://BUCKETNAME/KEY Returns: strings: path = s3://endpoint@BUCKETNAME/KEY prefix = KEY bucket_name = BUCKETNAME """ start = 's3://' end = '/' bucket_name = path[path.find(start)+len(start):path[len(start):].find(end)+len(start)] prefix = path[path.find(bucket_name)+len(bucket_name)+1:] if not prefix.endswith('/'): prefix = prefix+'/' path = 's3://'+os.environ['S3_ENDPOINT']+'@'+bucket_name+'/'+prefix return bucket_name, prefix, path
601b20514c93e2159f9d5747063ce70d265d6e6e
13,088
def hierholzer(network: Network, source=0): """ Hierholzer's algorithm for finding an Euler cycle Args: network (Network): network object source(int): node where starts (and ends) the path Raises: NotEulerianNetwork: if exists at least one node with odd degree NotNetworkNode: if source is not in the network Returns: list of nodes that form a path visiting all edges References: .. [1] sanjeev2552, heruslu, Code_Mech, Geeks For Geeks, A computer science portal for geeks https://www.geeksforgeeks.org/hierholzers-algorithm-directed-graph/ .. [2] Reinhard Diestel, Graph Theory, Springer, Volume 173 of Graduate texts in mathematics, ISSN 0072-5285 """ if source > network.n: raise NotNetworkNode(f"Source node {source} is not in the network (N={network.n})") path = [] temp_path = [] degrees_list = deepcopy(network.degrees_list) edges_basket = deepcopy(network.edges_basket) if network.n == 0: return path eulerian, odd_degree_nodes = is_eulerian(network) if not eulerian: raise NotEulerianNetwork(f"Network is not Eulerian, not all nodes are even degree: {odd_degree_nodes}") temp_path.append(source) temp_node = source while len(temp_path): if degrees_list[temp_node]: temp_path.append(temp_node) next_node = edges_basket[temp_node][-1] degrees_list[temp_node] -= 1 edges_basket[temp_node].pop() if not network.directed: degrees_list[next_node] -= 1 i = edges_basket[next_node].index(temp_node) del edges_basket[next_node][i] temp_node = next_node else: path.append(temp_node) temp_node = temp_path[-1] temp_path.pop() # If the network is directed we will revert the path if network.directed: return path[::-1] return path
9a1fb1107e9a2b086d1716cea7708dba9849fb4e
13,089
def fit1d(xdata,zdata,degree=1,reject=0,ydata=None,plot=None,plot2d=False,xr=None,yr=None,zr=None,xt=None,yt=None,zt=None,pfit=None,log=False,colorbar=False,size=5) : """ Do a 1D polynomial fit to data set and plot if requested Args: xdata : independent variable zdata : dependent variable to be fit Keyword args: degree: degree of polynomial to fit (default=1 for linear fit) reject : single iteration rejection of points that deviate from initial by more than specified value (default=0, no rejection) ydata : auxiliary variable for plots (default=None) plot : axes to plot into (default=None) plot2d (bool) : set to make a 2D plot with auxiliary variable, rather than 1D color-coded by auxiliary variable xr[2] : xrange for plot yr[2] : yrange for plot zr[2] : zrange for plot xt : xtitle for plot yt : ytitle for plot zt : ztitle for plot Returns : pfit : 1D polynomial fit """ # set up fitter and do fit if pfit is None : fit_p = fitting.LinearLSQFitter() p_init = models.Polynomial1D(degree=degree) pfit = fit_p(p_init, xdata, zdata) # rejection of points? if reject > 0 : gd=np.where(abs(zdata-pfit(xdata)) < reject)[0] bd=np.where(abs(zdata-pfit(xdata)) >= reject)[0] print('rejected ',len(xdata)-len(gd),' of ',len(xdata),' points') pfit = fit_p(p_init, xdata[gd], zdata[gd]) print('1D rms: ',(zdata-pfit(xdata)).std()) # plot if requested if plot is not None : if xr is None : xr = [xdata.min(),xdata.max()] if yr is None and ydata is not None : yr = [ydata.min(),ydata.max()] if log : zplot=10.**zdata else : zplot=zdata if zr is None : zr = [zplot.min(),zplot.max()] if ydata is None : x = np.linspace(xr[0],xr[1],200) if log : zfit=10.**pfit(x) else : zfit=pfit(x) # straight 1D plot plots.plotp(plot,xdata,zplot,xr=xr,yr=yr,zr=zr, xt=xt,yt=yt,size=size) plots.plotl(plot,x,zfit) elif plot2d : # 2D image plot with auxiliary variable y, x = np.mgrid[yr[1]:yr[0]:200j, xr[1]:xr[0]:200j] if log : zfit=10.**pfit(x) else : zfit=pfit(x) plots.plotc(plot,xdata,ydata,zplot,xr=xr,yr=yr,zr=zr, xt=xt,yt=xt,zt=yt,colorbar=True,size=size,cmap='rainbow') plot.imshow(zfit,extent=[xr[1],xr[0],yr[1],yr[0]], aspect='auto',vmin=zr[0],vmax=zr[1], origin='lower',cmap='rainbow') else : # 1D plot color-coded by auxiliary variable x = np.linspace(xr[0],xr[1],200) if log : zfit=10.**pfit(x) else : zfit=pfit(x) plots.plotc(plot,xdata,zplot,ydata,xr=xr,yr=zr,zr=yr, xt=xt,yt=yt,zt=zt,size=size,colorbar=colorbar) plots.plotl(plot,x,zfit,color='k') return pfit
0c40a2b1af72c0df8523a92cd5cc80c99f631472
13,090
import torch def nucleus_sampling(data, p, replace=0, ascending=False, above=True): """ :param tensor data: Input data :param float p: Probability for filtering (or be replaced) :param float replace: Default value is 0. If value is provided, input data will be replaced by this value if data match criteria. :param bool ascending: Return ascending order or descending order. Sorting will be executed if replace is None. :param bool above: If True is passed, only value smaller than p will be kept (or not replaced) :return: tensor Filtered result """ sorted_data, sorted_indices = torch.sort(data, descending=not ascending) cum_probas = torch.cumsum(F.softmax(sorted_data, dim=-1), dim=-1) if replace is None: if above: replace_idxes = cum_probas < p else: replace_idxes = cum_probas > p idxes = sorted_indices[replace_idxes] else: if above: replace_idxes = cum_probas > p else: replace_idxes = cum_probas < p idxes = sorted_indices[~replace_idxes] if replace is None: sorted_data = sorted_data[replace_idxes] else: sorted_data[replace_idxes] = replace return sorted_data, idxes
6332e9f5e04fa2ec0130fa2db7dd5a8aad26caec
13,091
from datetime import datetime import json def mark_ready_for_l10n_revision(request, document_slug, revision_id): """Mark a revision as ready for l10n.""" revision = get_object_or_404(Revision, pk=revision_id, document__slug=document_slug) if not revision.document.allows(request.user, 'mark_ready_for_l10n'): raise PermissionDenied if revision.can_be_readied_for_localization(): # We don't use update(), because that wouldn't update # Document.latest_localizable_revision. revision.is_ready_for_localization = True revision.readied_for_localization = datetime.now() revision.readied_for_localization_by = request.user revision.save() ReadyRevisionEvent(revision).fire(exclude=request.user) return HttpResponse(json.dumps({'message': revision_id})) return HttpResponseBadRequest()
64d7d84ceab204a3d3fea98e9753fde486c4490c
13,092
def is_all_maxed_out(bad_cube_counts, bad_cube_maximums): """Determines whether all the cubes of each type are at their maximum amounts.""" for cube_type in CUBE_TYPES: if bad_cube_counts[cube_type] < bad_cube_maximums[cube_type]: return False return True
23332712b46d33a1a8e552ecf30389d4b0a10c90
13,093
def get_local_vars(*args): """ get_local_vars(prov, ea, out) -> bool """ return _ida_dbg.get_local_vars(*args)
ebed21c8b90c48e76734f07a5e83c11bf5b9dd0c
13,094
def gcc(): """ getCurrentCurve Get the last curve that was added to the last plot plot :return: The last curve :rtype: pg.PlotDataItem """ plotWin = gcf() try: return plotWin.plotWidget.plotItem.dataItems[-1] except IndexError: return None
2f9226c51a84d39b43f1d8ef83969b94a2c308cd
13,095
import requests import json def searchDevice(search): """ Method that searches the ExtraHop system for a device that matches the specified search criteria Parameters: search (dict): The device search criteria Returns: dict: The metadata of the device that matches the criteria """ url = urlunparse(("https", HOST, "/api/v1/devices/search", "", "", "")) headers = {"Authorization": "ExtraHop apikey=%s" % APIKEY} r = requests.post( url, headers=headers, verify=False, data=json.dumps(search) ) return r.json()[0]
9b65346054f099e4a2aa78035802b2de799850ac
13,096
def regularmeshH8(nelx, nely, nelz, lx, ly, lz): """ Creates a regular H8 mesh. Args: nelx (:obj:`int`): Number of elements on the X-axis. nely (:obj:`int`): Number of elements on the Y-axis. nelz (:obj:`int`): Number of elements on the Z-axis. lx (:obj:`float`): X-axis length. ly (:obj:`float`): Y-axis length. lz (:obj:`float`): Z-axis length. Returns: Tuple with the coordinate matrix, connectivity, and the indexes of each node. """ x, y, z = np.linspace(0, lx, num=nelx + 1), np.linspace(0, ly, num=nely + 1), np.linspace(0, lz, num=nelz + 1) nx, ny, nz = len(x), len(y), len(z) mat_x = (x.reshape(nx, 1)@np.ones((1, ny*nz))).T mat_y = y.reshape(ny, 1)@np.ones((1, nx)) mat_z = z.reshape(nz, 1)@np.ones((1, nx*ny)) x_t, y_t, z_t = mat_x.flatten(), np.tile(mat_y.flatten(), nz), mat_z.flatten() ind_coord = np.arange(1, (nz)* nx * ny + 1, 1, dtype=int) coord = (np.array([ind_coord, x_t, y_t, z_t])).T # processing of connectivity matrix ind_connect = np.arange(1, nelz * nelx * nely + 1, dtype=int) mat_aux = ind_connect.reshape(nely, nelx, nelz) a = np.arange(0, nely * nelz, 1) for ind in range(nely, len(a), nely): a[ind:] += nelx + 1 c = (a.reshape(len(a),1)@np.ones((1, nelx))).reshape(nely, nelx, nelz) b = (mat_aux + c).flatten() connect = np.array([ind_connect, b+(nelx+1), b, b+1, b+(nelx+2), \ b+(nelx+1)*(nely+1)+(nelx+1), b+(nelx+1)*(nely+1), \ b+1+(nelx+1)*(nely+1), b+(nelx+1)*(nely+1)+(nelx+2)], dtype=int).T return coord, connect
1c0050b8c48438f548e67f7776194a067c77ae39
13,097
def only_t1t2(src, names): """ This function... :param src: :param names: :return: """ if src.endswith("TissueClassify"): # print "Keeping T1/T2!" try: names.remove("t1_average_BRAINSABC.nii.gz") except ValueError: pass try: names.remove("t2_average_BRAINSABC.nii.gz") except ValueError: pass else: names.remove("TissueClassify") # print "Ignoring these files..." # for name in names: # print "\t" + name return names
60116fbc602bbe03f7c18776b623ef3680b9dfc1
13,098
def distanceEucl(a, b): """Calcul de la distance euclidienne en dimension quelconque""" dist = np.linalg.norm(a - b) return dist
572d98aecf17cd1f0e34dcad9e07beb3bcf6d06d
13,099