content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def clique_ring(n_cluster=3, n_in_cluster=5): """Get adjacency matrix for cluster domain used by Schapiro et al 2013. Args: n_cluster: number of clusters, connected in a ring. n_in_cluster: number of nodes in each cluster. Each node is connected to all other nodes in cluster, except the edge connecting the two nodes with outgoing edges is severed. Returns: adjmat: adjacency matrix xy: xy coordinates of each state for plotting. Obtained by arranging nodes within a cluster into evenly spaced circles, and then arranging those clusters evenly around a circle. labels: (n_state) array containing cluster index of each state """ n_state = n_cluster * n_in_cluster clq, _, _ = clique(n_in_cluster) clq[0, n_in_cluster-1] = 0 clq[n_in_cluster-1, 0] = 0 adj = clq for i in range(n_cluster-1): adj = block_diag(adj, clq) for i in range(n_cluster): i_curr = np.mod(i * n_in_cluster-1, n_state) i_next = np.mod(i * n_in_cluster, n_state) adj[i_curr, i_next] = 1 adj[i_next, i_curr] = 1 # get xy clu_ind = np.repeat(np.arange(0, n_cluster).reshape(-1, 1), n_in_cluster, axis=0).reshape(-1) ang_clu = clu_ind * 1.0 / n_cluster * 2 * np.pi x_clu = np.cos(ang_clu).reshape(-1, 1) * 2 y_clu = np.sin(ang_clu).reshape(-1, 1) * 2 offset = np.pi - ang_clu - np.pi/n_in_cluster # turn clusters toward center ang_in_clu = np.linspace(0, 2*np.pi, n_in_cluster+1)[:n_in_cluster] ang_in_clus = np.stack([ang_in_clu]*n_cluster).reshape(-1) ang_in_clus = ang_in_clus - offset x_in_clu = np.cos(ang_in_clus).reshape(-1, 1) y_in_clu = np.sin(ang_in_clus).reshape(-1, 1) # get cluster labels labels = np.concatenate([np.ones(n_in_cluster) * i for i in range(n_cluster)]) return adj, np.concatenate([x_clu+x_in_clu, y_clu+y_in_clu], axis=1), labels
2b8dad4b52e456a933c66af7198b6363eb839c41
10,033
def get_halfnormal_mean_from_scale(scale: float) -> float: """Returns the mean of the half-normal distribition.""" # https://en.wikipedia.org/wiki/Half-normal_distribution return scale * np.sqrt(2) / np.sqrt(np.pi)
d5d0ac1e460d30ad544982a5f0bb7f463c64ede9
10,034
def cal_pr(y_hat, y_score): """ calculate the precision and recall curve :param y_hat: ground-truth label, [n_sample] :param y_score: predicted similarity score, [n_sample] :return: [n_sample] """ thresholds = np.arange(1, -0.001, -0.001) fps, tps = cal_binary_cls_curve(y_hat, y_score, thresholds) pos_idx = tps > 0 tps = tps[pos_idx] fps = fps[pos_idx] thresholds = thresholds[pos_idx] precision = tps / (tps + fps) recall = tps / np.sum(y_hat) return precision, recall, thresholds
a64e38a51b5e8c8bdb6bbc26f4c99ae3746dfc64
10,035
def alert_source_create(context, values): """Create an alert source.""" return IMPL.alert_source_create(context, values)
7d55eed069b644c718ffb55f27d22a56c7483f73
10,036
def sanitise_utf8(s): """Ensure an 8-bit string is utf-8. s -- 8-bit string (or None) Returns the sanitised string. If the string was already valid utf-8, returns the same object. This replaces bad characters with ascii question marks (I don't want to use a unicode replacement character, because if this function is doing anything then it's likely that there's a non-unicode setup involved somewhere, so it probably wouldn't be helpful). """ if s is None: return None try: s.decode("utf-8") except UnicodeDecodeError: return (s.decode("utf-8", 'replace') .replace(u"\ufffd", u"?") .encode("utf-8")) else: return s
11b864ade1c36e2b42ffbdd76ee2851f01ca7803
10,037
def trans_r2xy(r, phi, r_e, phi_e): """r,phi -> x,y """ x = np.array(r) * np.cos(phi) y = np.array(r) * np.sin(phi) err = np.array( [polar_err(i, j, k, l) for i, j, k, l in zip(r, phi, r_e, phi_e)] ) return x, y, err[:, 0], err[:, 1]
dcc9e1433bb40dd76d41b1031420600cdab96d67
10,038
def ldpc_bp_decode(llr_vec, ldpc_code_params, decoder_algorithm, n_iters): """ LDPC Decoder using Belief Propagation (BP). Parameters ---------- llr_vec : 1D array of float Received codeword LLR values from the channel. ldpc_code_params : dictionary Parameters of the LDPC code. decoder_algorithm: string Specify the decoder algorithm type. SPA for Sum-Product Algorithm MSA for Min-Sum Algorithm n_iters : int Max. number of iterations of decoding to be done. Returns ------- dec_word : 1D array of 0's and 1's The codeword after decoding. out_llrs : 1D array of float LLR values corresponding to the decoded output. """ n_cnodes = ldpc_code_params['n_cnodes'] n_vnodes = ldpc_code_params['n_vnodes'] max_cnode_deg = ldpc_code_params['max_cnode_deg'] max_vnode_deg = ldpc_code_params['max_vnode_deg'] cnode_adj_list = ldpc_code_params['cnode_adj_list'] cnode_vnode_map = ldpc_code_params['cnode_vnode_map'] vnode_adj_list = ldpc_code_params['vnode_adj_list'] vnode_cnode_map = ldpc_code_params['vnode_cnode_map'] cnode_deg_list = ldpc_code_params['cnode_deg_list'] vnode_deg_list = ldpc_code_params['vnode_deg_list'] dec_word = np.zeros(n_vnodes, int) out_llrs = np.zeros(n_vnodes, int) cnode_msgs = np.zeros(n_cnodes*max_cnode_deg) vnode_msgs = np.zeros(n_vnodes*max_vnode_deg) _limit_llr_v = np.vectorize(_limit_llr) if decoder_algorithm == 'SPA': check_node_update = sum_product_update elif decoder_algorithm == 'MSA': check_node_update = min_sum_update else: raise NameError('Please input a valid decoder_algorithm string.') # Initialize vnode messages with the LLR values received for vnode_idx in range(n_vnodes): start_idx = vnode_idx*max_vnode_deg offset = vnode_deg_list[vnode_idx] vnode_msgs[start_idx : start_idx+offset] = llr_vec[vnode_idx] # Main loop of Belief Propagation (BP) decoding iterations for iter_cnt in range(n_iters): continue_flag = 0 # Check Node Update for cnode_idx in range(n_cnodes): check_node_update(cnode_idx, cnode_adj_list, cnode_deg_list, cnode_msgs, vnode_msgs, cnode_vnode_map, max_cnode_deg, max_vnode_deg) # Variable Node Update for vnode_idx in range(n_vnodes): # Compute sum of all incoming messages at the variable node start_idx = vnode_idx*max_vnode_deg offset = vnode_deg_list[vnode_idx] cnode_list = vnode_adj_list[start_idx:start_idx+offset] cnode_list_msgs = cnode_msgs[cnode_list*max_cnode_deg + vnode_cnode_map[start_idx:start_idx+offset]] msg_sum = np.sum(cnode_list_msgs) # Compute messages on outgoing edges using the incoming message sum vnode_msgs[start_idx:start_idx+offset] = _limit_llr_v(llr_vec[vnode_idx] + msg_sum - cnode_list_msgs) # Update output LLRs and decoded word out_llrs[vnode_idx] = llr_vec[vnode_idx] + msg_sum if out_llrs[vnode_idx] > 0: dec_word[vnode_idx] = 0 else: dec_word[vnode_idx] = 1 # Compute if early termination using parity check matrix for cnode_idx in range(n_cnodes): p_sum = 0 for i in range(cnode_deg_list[cnode_idx]): p_sum ^= dec_word[cnode_adj_list[cnode_idx*max_cnode_deg + i]] if p_sum != 0: continue_flag = 1 break # Stop iterations if continue_flag == 0: break return dec_word, out_llrs
c9bd44c386ead2f9b968eb3a8c211d7af5e26a25
10,039
def edit_style_formats(style_format_id, **kwargs): """Create or edit styles formats. :param style_format_id: identifier of a specific style format """ if request.method == "POST": args = request.get_json() errors = StyleFormatsSchema().validate(args) if errors: return abort(400, str(errors)) style_format = data.create_style_format(**args) return jsonify(StyleFormatsSchema().dump(style_format)), 201 if request.method == "DELETE": data.delete_style_format(style_format_id) return {'message': 'deleted'}, 204 if request.method == "PUT": args = request.get_json() errors = StyleFormatsMetadataSchema().validate(args) if errors: return abort(400, str(errors)) style_format = data.update_style_format(style_format_id, **args) return jsonify(StyleFormatsSchema().dump(style_format)), 200
a9c0cc004fb840ffcf2b9c0b45f43dc3535ea103
10,040
def volume_to_vtk(volelement, origin=(0.0, 0.0, 0.0)): """Convert the volume element to a VTK data object. Args: volelement (:class:`omf.volume.VolumeElement`): The volume element to convert """ output = volume_grid_geom_to_vtk(volelement.geometry, origin=origin) shp = get_volume_shape(volelement.geometry) # Add data to output for data in volelement.data: arr = data.array.array arr = np.reshape(arr, shp).flatten(order='F') output[data.name] = arr return output
710152ebdb56592a1485fa0c451bf135679cc949
10,042
def _in_delta(value, target_value, delta) -> bool: """ Check if value is equal to target value within delta """ return abs(value - target_value) < delta
92ab62a381fc1cfc6bbb82635f196ec4498babf4
10,043
def getpar(key, file='DATA/Par_file', sep='=', cast=str): """ Reads parameter from SPECFEM parfile """ val = None with open(file, 'r') as f: # read line by line for line in f: if find(line, key) == 0: # read key key, val = _split(line, sep) if not key: continue # read val val, _ = _split(val, '#') val.strip() break if val: if cast == float: val = val.replace('d', 'e') return cast(val) else: print 'Not found in parameter file: %s\n' % key raise Exception
05a2cf904dd1c5cdb71dd302e2a74c3397a6d1e2
10,044
from typing import Dict def create_ok_response() -> flask.Response: """Creates a 200 OK response. :return: flask.Response. """ ok_body: Dict[str, str] = {"status": "OK"} return make_response(jsonify(ok_body), HTTP_200_OK)
4b60c712a1b123c8daa976239cf5abd813e50221
10,046
import time def format_timestamp(timestamp): """Formats an UTC timestamp into a date string. >>> format_timestamp("2014-04-08T12:41:34+0100") 'Tue, 08 Apr 2014 12:41:34' """ t = iso8601.parse_date(timestamp).timetuple() return time.strftime("%a, %d %b %Y %H:%M:%S", t)
f551c5bb984ad9d23d0c1d21103f340e6e4b104b
10,049
def _flat(xvals): """ Function for flat surface y=0, with boundary conditions Parameters ---------- xvals : np.array x-values of the surface. Returns ------- yvals : np.array y-Values of the initialized surface. """ yvals = np.zeros_like(xvals) return yvals
632ad5fa9acc30e7fae07942890dd9060ab6c859
10,050
import torch def regularized_laplacian(weights, labels, alpha): """Uses the laplacian graph to smooth the labels matrix by "propagating" labels Args: weights: Tensor of shape (batch, n, n) labels: Tensor of shape (batch, n, n_classes) alpha: Scaler, acts as a smoothing factor apply_log: if True, it is assumed that the label propagation methods returns un-normalized probabilities. Hence to return logits, applying logarithm is necessary. epsilon: value added before applying log Returns: Tensor of shape (batch, n, n_classes) representing the logits of each classes """ n = weights.shape[1] diag = torch.diag_embed(torch.sum(weights, dim=2)) laplacian = diag - weights identity = torch.eye(n, dtype=laplacian.dtype, device=laplacian.device)[None, :, :] propagator = torch.inverse(identity + alpha * laplacian) return _propagate(labels, propagator), propagator
12725881a121a3fb3455c0905d8db1a90b08dc4d
10,051
def weight_variable_glorot(input_dim, output_dim, name=""): """Create a weight variable with Glorot & Bengio (AISTATS 2010) initialization. """ init_range = np.sqrt(6.0 / (input_dim + output_dim)) initial = tf.random_uniform([input_dim, output_dim], minval=-init_range, maxval=init_range, dtype=tf.float32) return tf.Variable(initial, name=name)
85b7ba1f46d0e154425cc884202021faf621bc0e
10,052
from typing import Tuple def pareto_plot(column: pd.Series, use_given_index: bool = False, figsize: Tuple[int, int] = (12, 8), return_freq_df: bool = False): """ Draw Pareto plot for categorical variable Arguments: ---------- column: pd.Series Categorical input figsize: Tuple size of the figure return_freq_df: bool Returns frequency dataframe if True Example: -------- >>> pareto_plot(df['state'], figsize=(20, 10)) >>> df = pareto_plot(df['area code'], return_freq_df=True) >>> df label frequency cumpercentage 0 415 1655 49.654965 1 510 840 74.857486 2 408 838 100.000000 """ freq = column.copy() if use_given_index: freq = column.value_counts().sort_values(ascending=False) freq_df = pd.DataFrame({'label': freq.index, 'frequency': freq.values}) freq_df['cumpercentage'] = freq_df['frequency'].cumsum()/freq_df['frequency'].sum()*100 # plot fig, ax = plt.subplots(figsize=figsize) ax.bar(freq_df.index, freq_df['frequency'], color='C0') ax2 = ax.twinx() ax2.plot(freq_df.index, freq_df['cumpercentage'], color='C1', marker='D', ms=7) ax2.yaxis.set_major_formatter(PercentFormatter()) ax.set_xticks(freq_df.index) ax.set_xticklabels(freq_df['label'], fontsize=10, rotation=35) ax.tick_params(axis='y', colors='C0') ax2.tick_params(axis='y', colors='C1') plt.show() if return_freq_df: return freq_df
8bf2f098a93076356ae00e702a05e4b831811609
10,053
from typing import Optional from typing import Dict import json def remove_external_id( role_name: str, dir_path: Optional[str], session=None, client=None, backup_policy: Optional[str] = "", bucket: Optional[str] = None, ) -> Dict: """The remove_external_id method takes a role_name as a string to allow the removal of an externalId condition. """ if session: iam_client = session.client("iam") elif client: iam_client = client else: iam_client = boto3.client("iam") role = iam_client.get_role(RoleName=role_name) arpd = role["Role"]["AssumeRolePolicyDocument"] if backup_policy: if backup_policy.lower() == "local": if dir_path: retain_policy( policy=arpd, role_name=role_name, location_type="local", dir_path=dir_path, ) else: retain_policy(policy=arpd, role_name=role_name, location_type="local") elif backup_policy.lower() == "s3": retain_policy( policy=arpd, role_name=role_name, location_type="s3", bucket=bucket ) arpd["Statement"][0]["Condition"] = {} try: iam_client.update_assume_role_policy( RoleName=role_name, PolicyDocument=json.dumps(arpd) ) return arpd except ClientError as error: raise error
711fbe0bf12206688b3d372d97fe0e10f1aa59e1
10,056
def find_binaries(fw_path): """ Gets a list of possible binaries within a firmare sample. The list might contain false positives, angr will ignore them. :param fw_path: firmware path :return: a list of binaries """ cmd = "find \""+ fw_path + "\"" cmd += " -executable -type f -exec file {} \; | grep -iv image | grep -iv text | awk -F':' '{print $1}'" p = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, shell=True) o, e = p.communicate() if o: return o.split('\n') return []
53d4a8f8a9abcc9404392a1ba317fde2e583bc93
10,057
def get_core_count(): """ Find out how many CPU cores this system has. """ try: cores = str(compat.enum_cpus()) # 3.4 and up except NotImplementedError: cores = "1" # 3.2-3.3 else: if compat.enum_cpus() is None: cores = "1" return cores
2bd49d6189ba4f6ee92ae3e54cb629a8fb70e440
10,058
def vec2str(vec): """ transform the vector to captcha str""" _str = "" for i in range(4): v = vec[i*43: (i+1)*43] _str += chr(np.argwhere(v == 1)[0][0] + ord('0')) return _str
9f927b9b084b2aeff26686a0066bdbfb9ad4e3f3
10,060
def mnist(path=None, batchsize=20, xpreptrain=None, ypreptrain=None, dataset="train", **kwargs): """ Legacy MNIST loader. :type path: str :param path: Path to MNIST pickle file. :type batchsize: int :param batchsize: Batch size (no shit sherlock) :type xpreptrain: prepkit.preptrain :param xpreptrain: Train of preprocessing functions on X. See preptrain's documentation in prepkit. :type ypreptrain: prepkit.preptrain :param ypreptrain: Train of preprocessing functions on Y. Can be set to -1 to channel X,Y through xpreptrain. :type dataset: str :param dataset: Which dataset to use ('train', 'test' or 'validate') :rtype: tincan """ # Compatibility patch if "preptrain" in kwargs.keys(): xpreptrain = kwargs["preptrain"] # Parse path if path is None: path = "/Users/nasimrahaman/Documents/Python/DeepBrain/Datasets/mnist.pkl" # Unpickle data data = pkl.load(open(path)) # Load the correct X and Y data assert dataset in ["train", "test", "validate"], "Dataset can be either of the three strings: " \ "'train', 'test', 'validate'. " datindex = 0 if dataset is "train" else 1 if dataset is "test" else 2 X, Y = data[datindex] # Generate MNIST tincan return tincan(data=(X, Y), numclasses=10, batchsize=batchsize, xpreptrain=xpreptrain, ypreptrain=ypreptrain, xhowtransform=['b', 1, 's', 's'], yhowtransform=['b', 'nc', 1, 1])
65ab0c0ad529f5b9b6803585d00fb044a82db2a5
10,061
def rand_pad(ctvol): """Introduce random padding between 0 and 15 pixels on each of the 6 sides of the <ctvol>""" randpad = np.random.randint(low=0,high=15,size=(6)) ctvol = np.pad(ctvol, pad_width = ((randpad[0],randpad[1]), (randpad[2],randpad[3]), (randpad[4], randpad[5])), mode = 'constant', constant_values = np.amin(ctvol)) return ctvol
83dd1de5c9914127c1d7fcc8d5e5068aa9f2864c
10,062
from typing import Tuple def _improve(tour: np.ndarray, matrix: np.ndarray, neighbours: np.ndarray, dlb: np.ndarray, it1: int, t1: int, solutions: set, k: int) -> Tuple[float, np.ndarray]: """ Последовательный 2-opt для эвристики Лина-Кернига tour: список городов matrix: матрица весов neighbours: набор кандидатов dlb: don't look bits it1, t1: индекс, значение города, с которого начинать solutions: полученные ранее туры set_x, set_y: наборы удаленных, добавленных ребер k: k-opt, k - кол-во сколько можно сделать последовательных улучшений return: выигрыш, новый тур """ around_t1 = around(tour, it1) for it2, t2 in around_t1: set_x = {make_pair(t1, t2)} for t3 in neighbours[t2]: gain = matrix[t1][t2] - matrix[t2][t3] if t3 == around_t1[0][1] or t3 == around_t1[1][1] or not gain > 1.e-10: continue set_y = {make_pair(t2, t3)} it3 = np.where(tour == t3)[0][0] _gain, _tour = __choose_t4(tour, matrix, it1, it2, it3, neighbours, gain, set_x, set_y, dlb, solutions, k) if _gain > 1.e-10: return _gain, _tour return 0., tour
982a575fcde8e78186259f1970dc18850fd3b93e
10,063
def plot_step_with_errorbar(lefts, widths, y_coords, y_errs, errors_enabled=True, use_errorrects_for_legend=False, **kwargs): """Makes a step plot with error bars.""" lefts.append(lefts[-1] + widths[-1]) y_coords.append(y_coords[-1]) # prevent that we have labels for the step and the errorbar, # otherwise we have two legend entries per data set step_kwargs = dict(kwargs) rect_kwargs = dict(kwargs) if errors_enabled and "label" in kwargs: if use_errorrects_for_legend: del step_kwargs["label"] else: del rect_kwargs["label"] # delete kw args that are not defined for plt.step try: del step_kwargs["hatch"] except KeyError: pass step_result = plt.step(lefts, y_coords, where='post', **step_kwargs) if errors_enabled: try: ecolor = rect_kwargs["color"] del rect_kwargs["color"] except KeyError: ecolor = plt.gca().lines[-1].get_color() # do not use the next color from the color cycle try: del rect_kwargs["marker"] except KeyError: pass try: del rect_kwargs["zorder"] except KeyError: pass zorder = plt.gca().lines[-1].get_zorder() - 1 # make sure it's drawn below errorrects_result = plot_errorrects(lefts, y_coords, y_errs, ecolor, zorder, **rect_kwargs) # x_mids = [left + width / 2.0 for left, width in zip(lefts[:-1], widths)] # plt.errorbar(x_mids, y_coords[:-1], fmt='none', yerr=y_errs, ecolor=ecolor) else: errorrects_result = None return step_result, errorrects_result
e532e71ada503474e5d52b24a1bf2a7fb2418e82
10,064
def intensity_modification(x): """ Intensity modification Parameters x: Tensor Returns x: Tensor """ x = x + tf.random.uniform(shape=[], minval=-0.05, maxval=0.05, dtype=tf.dtypes.float32) return x
c2ad13b6b123b3f053b88373ecfe7f4adfec87a3
10,065
def FormIdProperty(expression, **kwargs): """ Create a StringProperty that references a form ID. This is necessary because form IDs change when apps are copied so we need to make sure we update any references to the them. :param expression: jsonpath expression that can be used to find the field :param kwargs: arguments to be passed to the underlying StringProperty """ path_expression = parse(expression) assert isinstance(path_expression, jsonpath.Child), "only child path expressions are supported" field = path_expression.right assert len(field.fields) == 1, 'path expression can only reference a single field' form_id_references.append(path_expression) return StringProperty(**kwargs)
5ac621dbd69df060de5280e8d893149ecb715b6f
10,066
import secrets def do_roll(dice: int, sides: int, _: int): """Given an amount of dice and the number of sides per die, simulate a dice roll and return a list of ints representing the outcome values. Modifier is ignored. """ dice = dice or 1 sides = sides or 1 values = sorted(((secrets.randbelow(sides) + 1) for _ in range(0, dice)), reverse=True) return values
2073a37e5b76a85182e8cf786707ed18ca3f2474
10,067
def compute_logp_independent_block(X, alpha=None): """Compute the analytical log likelihood of a matrix under the assumption of independence. """ if alpha is None: alpha = np.ones(X.shape[1]) logp_ib = gammaln(alpha.sum()) - (gammaln(alpha)).sum() logp_ib += gammaln(X.sum(0) + alpha).sum() - gammaln(X.sum() + alpha.sum()) logp_ib += gammaln(X.sum(1) + 1).sum() - gammaln(X + 1).sum() return logp_ib
831cdc63f8e131d3dfb797e054dfcd421f939ed5
10,068
def check_validity_label(labels): """ Check to see whether it makes a valid tuple Parameters: ----------- labels: A tuple of labels (Object_1, Object_2, Object_3, Return: ------- """ # Event is None -> All other values are None if labels[3] == 0: for i in xrange(5): if labels[i] != 0: return False return True # If two roles have the same object return False for i in xrange(3): for j in xrange(3): if i != j and labels[i] == labels[j] and labels[i] != 0: return False # If there is a Theme, there needs to be a Preposition and vice versa if labels[2] != 0 and labels[4] == 0: return False if labels[2] == 0 and labels[4] != 0: return False return True
c5a3d75813ab521b1e56789d64e7f14861075fb0
10,069
def flat_proj(v1, v2): """ Returns the flat projection of direction unit vector, v1 onto v2 """ temp1 = np.cross(v1, v2) temp2 = np.cross(temp1, v1) return proj(temp2, v2)
8a75dc118940cad6735f361ae3214358d78881e9
10,070
import torch from typing import Optional from typing import Tuple from typing import List def marching_cubes_naive( volume_data_batch: torch.Tensor, isolevel: Optional[float] = None, spacing: int = 1, return_local_coords: bool = True, ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """ Runs the classic marching cubes algorithm, iterating over the coordinates of the volume_data and using a given isolevel for determining intersected edges of cubes of size `spacing`. Returns vertices and faces of the obtained mesh. This operation is non-differentiable. This is a naive implementation, and is not optimized for efficiency. Args: volume_data_batch: a Tensor of size (N, D, H, W) corresponding to a batch of 3D scalar fields isolevel: the isosurface value to use as the threshold to determine whether points are within a volume. If None, then the average of the maximum and minimum value of the scalar field will be used. spacing: an integer specifying the cube size to use return_local_coords: bool. If True the output vertices will be in local coordinates in the range [-1, 1] x [-1, 1] x [-1, 1]. If False they will be in the range [0, W-1] x [0, H-1] x [0, D-1] Returns: verts: [(V_0, 3), (V_1, 3), ...] List of N FloatTensors of vertices. faces: [(F_0, 3), (F_1, 3), ...] List of N LongTensors of faces. """ volume_data_batch = volume_data_batch.detach().cpu() batched_verts, batched_faces = [], [] D, H, W = volume_data_batch.shape[1:] volume_size_xyz = volume_data_batch.new_tensor([W, H, D])[None] if return_local_coords: # Convert from local coordinates in the range [-1, 1] range to # world coordinates in the range [0, D-1], [0, H-1], [0, W-1] local_to_world_transform = Translate( x=+1.0, y=+1.0, z=+1.0, device=volume_data_batch.device ).scale((volume_size_xyz - 1) * spacing * 0.5) # Perform the inverse to go from world to local world_to_local_transform = local_to_world_transform.inverse() for i in range(len(volume_data_batch)): volume_data = volume_data_batch[i] curr_isolevel = ( ((volume_data.max() + volume_data.min()) / 2).item() if isolevel is None else isolevel ) edge_vertices_to_index = {} vertex_coords_to_index = {} verts, faces = [], [] # Use length - spacing for the bounds since we are using # cubes of size spacing, with the lowest x,y,z values # (bottom front left) for x in range(0, W - spacing, spacing): for y in range(0, H - spacing, spacing): for z in range(0, D - spacing, spacing): cube = Cube((x, y, z), spacing) new_verts, new_faces = polygonise( cube, curr_isolevel, volume_data, edge_vertices_to_index, vertex_coords_to_index, ) verts.extend(new_verts) faces.extend(new_faces) if len(faces) > 0 and len(verts) > 0: verts = torch.tensor(verts, dtype=torch.float32) # Convert vertices from world to local coords if return_local_coords: verts = world_to_local_transform.transform_points(verts[None, ...]) verts = verts.squeeze() batched_verts.append(verts) batched_faces.append(torch.tensor(faces, dtype=torch.int64)) return batched_verts, batched_faces
a7a4ac4a08bbc270091acc2ddd6a84eb4ee0ba37
10,071
def gc_resnet101(num_classes): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(GCBottleneck, [3, 4, 23, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
e6bb2e5e97fcf81d6abba34a2ee6c0638d39edf8
10,073
def compute_seatable_votes(votes, votetypes): """Compute the seatable votes. Parameters ---------- votes: pandas.DataFrame the votes of the seatable votes. votetypes: dict the information of the different types of vote variables. Returns ------- seatable_votes: numpy.ndarray the variables which have votes which can be transformed into seats. """ votetypes = prepare_votetypes(votes, votetypes) seatable_votes = votes[votetypes['seatable']] return seatable_votes
1f8a32589918236e00d1c702cb23ecbc19d0cccb
10,075
from typing import Optional async def read_cookie(refresh_token: Optional[str] = Cookie(None)) -> JSONResponse: """Reads a cookie. Args: refresh_token: Name of the cookie. Returns: JSONResponse: Returns the value of the cookie as a json blurb. """ if refresh_token: return JSONResponse( content={ "refresh_token": refresh_token }, status_code=200, headers=RESET_HEADERS ) else: return JSONResponse( content={ "refresh_token": status.HTTP_404_NOT_FOUND }, status_code=404, headers=RESET_HEADERS )
f7e4e20f138b24a6d1beda76b2c2e565f28e513c
10,076
def readAirfoilFile(fileName, bluntTe=False, bluntTaperRange=0.1, bluntThickness=0.002): """Load the airfoil file""" f = open(fileName) line = f.readline() # Read (and ignore) the first line r = [] try: r.append([float(s) for s in line.split()]) except Exception: pass while 1: line = f.readline() if not line: break # end of file if line.isspace(): break # blank line r.append([float(s) for s in line.split()]) rr = np.array(r) x = rr[:, 0] y = rr[:, 1] npt = len(x) xMin = min(x) # There are 4 possibilites we have to deal with: # a. Given a sharp TE -- User wants a sharp TE # b. Given a sharp TE -- User wants a blunt TE # c. Given a blunt TE -- User wants a sharp TE # d. Given a blunt TE -- User wants a blunt TE # (possibly with different TE thickness) # Check for blunt TE: if bluntTe is False: if y[0] != y[-1]: print("Blunt Trailing Edge on airfoil: %s" % (fileName)) print("Merging to a point over final %f ..." % (bluntTaperRange)) yAvg = 0.5 * (y[0] + y[-1]) xAvg = 0.5 * (x[0] + x[-1]) yTop = y[0] yBot = y[-1] xTop = x[0] xBot = x[-1] # Indices on the TOP surface of the wing indices = np.where(x[0 : npt // 2] >= (1 - bluntTaperRange))[0] for i in range(len(indices)): fact = (x[indices[i]] - (x[0] - bluntTaperRange)) / bluntTaperRange y[indices[i]] = y[indices[i]] - fact * (yTop - yAvg) x[indices[i]] = x[indices[i]] - fact * (xTop - xAvg) # Indices on the BOTTOM surface of the wing indices = np.where(x[npt // 2 :] >= (1 - bluntTaperRange))[0] indices = indices + npt // 2 for i in range(len(indices)): fact = (x[indices[i]] - (x[-1] - bluntTaperRange)) / bluntTaperRange y[indices[i]] = y[indices[i]] - fact * (yBot - yAvg) x[indices[i]] = x[indices[i]] - fact * (xBot - xAvg) elif bluntTe is True: # Since we will be rescaling the TE regardless, the sharp TE # case and the case where the TE is already blunt can be # handled in the same manner # Get the current thickness curThick = y[0] - y[-1] # Set the new TE values: xBreak = 1.0 - bluntTaperRange # Rescale upper surface: for i in range(0, npt // 2): if x[i] > xBreak: s = (x[i] - xMin - xBreak) / bluntTaperRange y[i] += s * 0.5 * (bluntThickness - curThick) # Rescale lower surface: for i in range(npt // 2, npt): if x[i] > xBreak: s = (x[i] - xMin - xBreak) / bluntTaperRange y[i] -= s * 0.5 * (bluntThickness - curThick) return x, y
3b3da70ff36dc3a4ab2a186ee9712978f2658294
10,077
import re def depListToArtifactList(depList): """Convert the maven GAV to a URL relative path""" regexComment = re.compile('#.*$') #regexLog = re.compile('^\[\w*\]') artifactList = [] for nextLine in depList: nextLine = regexComment.sub('', nextLine) nextLine = nextLine.strip() gav = maven_repo_util.parseGATCVS(nextLine) if gav: artifactList.append(MavenArtifact.createFromGAV(gav)) return artifactList
52d27c3310a4fd17df857df4725079a4d93faa76
10,079
def configure_plugins_plugin_install_to_version(request, pk, version): """ View rendering for the install to version modal interface :param request: Request :param pk: The primary key for the plugin :param version: The version to install :return: a renderer """ plugin = get_object_or_404(Plugin, pk=pk) action = reverse( "api_dispatch_install_to_version", kwargs={ "api_name": "v1", "resource_name": "plugin", "pk": pk, "version": version, }, ) _installVersionedName = Plugin(name=plugin.name, version=version).versionedName() ctx = RequestContext( request, { "method": "POST", "action": action, "i18n": { "title": ugettext_lazy( "configure_plugins_plugin_install_to_version.title" ), # 'Confirm Install Plugin' "confirmmsg": ugettext_lazy( "configure_plugins_plugin_install_to_version.messages.confirmmsg.singular" ) % { # 'Are you sure you want to install %(versionedName)s?' "versionedName": _installVersionedName }, "submit": ugettext_lazy( "configure_plugins_plugin_install_to_version.action.submit" ), # 'Yes, Upgrade!' "cancel": ugettext_lazy("global.action.modal.cancel"), "submitmsg": ugettext_lazy( "configure_plugins_plugin_install_to_version.messages.submitmsg" ), # 'Now upgrading, please wait.' }, }, ) return render_to_response( "rundb/configure/modal_confirm_plugin_install_to_version.html", context_instance=ctx, )
96e1076bdb84d6e0758d5ba03777a6576889cfdc
10,080
def _parameters_to_vector(parameters): """ This fix is required for pytorch >= 1.6.0, due to the change in memory format promotion rule. For more info, check: * https://github.com/pytorch/pytorch/pull/37968 * https://github.com/pytorch/pytorch/releases/tag/v1.6.0 and search "Note: BC-breaking memory format changes" """ parameters = [p.contiguous() for p in parameters] return th.nn.utils.parameters_to_vector(parameters)
f3b7d4cb8262cbbcbe2e5abace6e8e8162fb3a57
10,081
from utils.snowflake.id_worker import IdWorker from utils.limiter import limiter as lmt from utils.logging import create_logger from utils.converters import register_converters from redis.sentinel import Sentinel from rediscluster import StrictRedisCluster from models import db from .resources.user import user_bp from .resources.news import news_bp from .resources.notice import notice_bp from .resources.search import search_bp def create_app(config, enable_config_file=False): """ 创建应用 :param config: 配置信息对象 :param enable_config_file: 是否允许运行环境中的配置文件覆盖已加载的配置信息 :return: 应用 """ app = create_flask_app(config, enable_config_file) # 创建Snowflake ID worker app.id_worker = IdWorker(app.config['DATACENTER_ID'], app.config['WORKER_ID'], app.config['SEQUENCE']) # 限流器 lmt.init_app(app) # 配置日志 create_logger(app) # 注册url转换器 register_converters(app) _sentinel = Sentinel(app.config['REDIS_SENTINELS']) app.redis_master = _sentinel.master_for(app.config['REDIS_SENTINEL_SERVICE_NAME']) app.redis_slave = _sentinel.slave_for(app.config['REDIS_SENTINEL_SERVICE_NAME']) app.redis_cluster = StrictRedisCluster(startup_nodes=app.config['REDIS_CLUSTER']) # rpc # app.rpc_reco = grpc.insecure_channel(app.config['RPC'].RECOMMEND) # Elasticsearch app.es = Elasticsearch( app.config['ES'], # sniff before doing anything sniff_on_start=True, # refresh nodes after a node fails to respond sniff_on_connection_fail=True, # and also every 60 seconds sniffer_timeout=60 ) # socket.io # app.sio = socketio.KombuManager(app.config['RABBITMQ'], write_only=True) # MySQL数据库连接初始化 db.init_app(app) # # 添加请求钩子 # from utils.middlewares import jwt_authentication # app.before_request(jwt_authentication) # 注册用户模块蓝图 app.register_blueprint(user_bp) # 注册新闻模块蓝图 app.register_blueprint(news_bp) # 注册通知模块 app.register_blueprint(notice_bp) # 搜索 app.register_blueprint(search_bp) return app
1284a53c24d7fc4bf2ce0a0f00d6a3defea642d6
10,082
def select_variables(expr): """When called on an expression, will yield selectors to the variable. A selector will either return the variable (or equivalent fragment) in an expression, or will return an entirely new expression with the fragment replaced with the value of `swap`. e.g. >>> from qiime2.core.type.tests.test_grammar import (MockTemplate, ... MockPredicate) >>> Example = MockTemplate('Example', fields=('x',)) >>> Foo = MockTemplate('Foo') >>> Bar = MockPredicate('Bar') >>> T = TypeMatch([Foo]) >>> U = TypeMatch([Bar]) >>> select_u, select_t = select_variables(Example[T] % U) >>> t = select_t(Example[T] % U) >>> assert T is t >>> u = select_u(Example[T] % U) >>> assert U is u >>> frag = select_t(Example[Foo] % Bar) >>> assert frag is Foo >>> new_expr = select_t(Example[T] % U, swap=frag) >>> assert new_expr == Example[Foo] % U """ if type(expr) is TypeVarExp: def select(x, swap=None): if swap is not None: return swap return x yield select return if type(expr) is not TypeExp: return if type(expr.full_predicate) is TypeVarExp: def select(x, swap=None): if swap is not None: return x.duplicate(predicate=swap) return x.full_predicate yield select for idx, field in enumerate(expr.fields): for sel in select_variables(field): # Without this closure, the idx in select will be the last # value of the enumerate, same for sel # (Same problem as JS with callbacks inside a loop) def closure(idx, sel): def select(x, swap=None): if swap is not None: new_fields = list(x.fields) new_fields[idx] = sel(x.fields[idx], swap) return x.duplicate(fields=tuple(new_fields)) return sel(x.fields[idx]) return select yield closure(idx, sel)
a147b1f1fc66373597b98085b13ffd326baf72e1
10,083
from typing import Callable from typing import Optional import glob def get_login(name_p: str, pass_p: str, auth_error: bytes = b'') -> Callable: """Decorator to ensure a player's login information is correct.""" # NOTE: this function does NOT verify whether the arguments have # been passed into the connection, and assumes you have already # called the appropriate decorator above, @required_x. def wrapper(f: Callable) -> Callable: # modify the handler code to get the player # object before calling the handler itself. @wraps(f) async def handler(conn: Connection) -> Optional[bytes]: # args may be provided in regular args # or multipart, but only one at a time. argset = conn.args or conn.multipart_args if not ( p := await glob.players.get_login( name = unquote(argset[name_p]), pw_md5 = argset[pass_p] ) ): # player login incorrect return auth_error # login verified, call the handler return await f(p, conn) return handler return wrapper
3b3a1eb36d92de373eab9414abef6dd44bf14502
10,084
import math def map_visualize(df: gpd.GeoDataFrame, lyrs='s', scale=0.5, figsize = (12,9), color = "red", ax = None, fig=None, *args, **kwargs): """Draw the geodataframe with the satellite image as the background Args: `df` (gpd.GeoDataFrame): the gpd.GeoDataFrame need to plot `ax`: the ax define to draw `lyrs` (str, optional): [ m 路线图; t 地形图; p 带标签的地形图; s 卫星图; y 带标签的卫星图; h 标签层(路名、地名等)]. Defaults to 'p'. `scale` (float): border percentage `color`: the color the the geometry drawed Returns: [ax]: [description] """ # lyrs='y';scale=0.5;figsize = (12,9); color = "red";ax = None;fig=None; if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) df.plot(color = color, ax=ax, zorder=1, *args, **kwargs) # df.plot(color = color, zorder=1) [x0, x1], [y0, y1] = plt.xlim(), plt.ylim() gap_x, gap_y = (x1-x0), (y1-y0) [a, b, c, d] = df.total_bounds if a == c: x0, x1 = a - 0.001, c + 0.001 gap_x = x1- x0 if b == d: y0, y1 = b - 0.001, d + 0.001 gap_y = y1 - y0 if not 0.4 <= gap_y / gap_x <= 2.5: mid_x, mid_y = (x1+x0)/2, (y1+y0)/2 gap = max(gap_x, gap_y) * (1 + scale) / 2 [x0, y0, x1, y1] = [mid_x - gap, mid_y - gap, mid_x + gap, mid_y + gap] else: [x0, y0, x1, y1] = [x0-(x1-x0) * scale, y0+(y0-y1) * scale, x1+(x1-x0) * scale, y1-(y0-y1) * scale] zoom = 15 - int(math.log2(haversine((x0, y1), (x1, y0))/3)) # print([x0, x1], [y0, y1], haversine((x0, y1), (x1, y0))/3) # warming: if zoom big than 19 then there will be somthing wrong zoom = 19 if zoom > 19 else zoom img = tile.Tiles() f_lst, img_bbox = img.get_tiles_by_bbox([x0, y1, x1, y0], zoom, lyrs) to_image = merge_tiles(f_lst) background, _ = clip_background( to_image, img_bbox, [x0, y1, x1, y0], False) ax.imshow(background, extent=[x0, x1, y0, y1], alpha=.6, zorder=0) plt.xlim(x0, x1) plt.ylim(y0, y1) # 去除科学记数法 ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_yaxis().get_major_formatter().set_useOffset(False) # set_major_locator # ax.xaxis.set_major_locator(plt.NullLocator()) # ax.yaxis.set_major_locator(plt.NullLocator()) return fig, ax
f59c72079f789e63ad7910e5c4ee62d93e5015e9
10,085
def unorm_to_byte(x): """float x in [0, 1] to an integer [0, 255]""" return min(int(256 * x), 255)
a6870a339b9b0d5466962a9129c717876d8d0a50
10,086
def eigh(a, largest: bool = False): """ Get eigenvalues / eigenvectors of hermitian matrix a. Args: a: square hermitian float matrix largest: if True, return order is based on descending eigenvalues, otherwise ascending. Returns: w: [m] eigenvalues v: [m, m] eigenvectors """ return _eigh(a, largest)
254f243bd5c70f606cc67111df03626a0eae25b0
10,087
def lowpass(x, dt, fc, order=5): """ Low pass filter data signal x at cut off frequency fc, blocking harmonic content above fc. Parameters ---------- x : array_like Signal dt : float Signal sampling rate (s) fc : float Cut off frequency (Hz) order : int, optional Butterworth filter order. Default 5. Returns ------- array Filtered signal See Also -------- scipy.signal.butter, scipy.signal.filtfilt """ nyq = 0.5 * 1. / dt # nyquist frequency normal_cutoff = fc / nyq # normalized cut off frequency b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, x) return y
fd3cd4f7ccca9c2244c82420a560199633d082ab
10,088
def doRunFixPlanets(msName): """Generate code for running fixplanets on fields with (0,0) coordinates""" print('\n*** doRunFixPlanets ***') fieldIds = sfsdr.getFieldsForFixPlanets(msName) if len(fieldIds) != 0: casaCmd = '' mytb = aU.createCasaTool(tbtool) mytb.open(msName+'/FIELD') fieldNames = mytb.getcol('NAME') mytb.close() fieldNames = ['%s' %fieldNames[i] for i in fieldIds] fieldNames = ','.join(fieldNames) fieldIds = ['%s' %i for i in fieldIds] fieldIds = ','.join(fieldIds) casaCmd = casaCmd + "fixplanets(vis = '"+msName+"',\n" casaCmd = casaCmd + " field = '"+fieldIds+"', # "+fieldNames+"\n" casaCmd = casaCmd + " fixuvw = True)\n" return casaCmd
2656505e91eeea545c1c91c169b183ac5dd5413a
10,089
def add_name_suffix( suffix, obj_names=None, filter_type=None, add_underscore=False, search_hierarchy=False, selection_only=True, **kwargs): """ Add prefix to node name :param suffix: str, string to add to the end of the current node :param obj_names: str or list(str), name of list of node names to rename :param filter_type: str, name of object type to filter the objects to apply changes ('Group, 'Joint', etc) :param add_underscore: bool, Whether or not to add underscore before the suffix :param search_hierarchy: bool, Whether to search objects in hierarchies :param selection_only: bool, Whether to search only selected objects or all scene objects :param kwargs: """ rename_shape = kwargs.get('rename_shape', True) if filter_type: return name.add_suffix_by_filter( suffix=suffix, filter_type=filter_type, add_underscore=add_underscore, rename_shape=rename_shape, search_hierarchy=search_hierarchy, selection_only=selection_only, dag=False, remove_maya_defaults=True, transforms_only=True) else: return name.add_suffix( suffix=suffix, obj_names=obj_names, add_underscore=add_underscore, rename_shape=rename_shape)
c9355a5030c430d6efa6d8abc6b6d9128f77cb8e
10,090
def checksum(hdpgroup: list, algorithm: str = 'CRC32', chktag: str = '\'α') -> list: """List of checksums-like for detection of Non-intentional data corruption See https://en.wikipedia.org/wiki/Cksum See https://en.wikipedia.org/wiki/Checksum Args: hdpgroup (list): list of HDP-like objects type (str): The type of checker htag (str): select only by special tags (for complex documents) mixing several hashings. See hashable() Returns: list: List of strings optimized to be used as input for hashing >>> import hxlm.core as HXLm >>> UDUR_LAT = HXLm.util.load_file(HXLm.HDATUM_UDHR + '/udhr.lat.hdp.yml') >>> checksum(UDUR_LAT) ['(CRC32 \\'\\'α "3839021470")'] >>> UDUR_RUS = HXLm.util.load_file(HXLm.HDATUM_UDHR + '/udhr.rus.hdp.yml') >>> checksum(UDUR_RUS) ['(CRC32 \\'\\'α "3839021470")'] """ if algorithm != 'CRC32': raise NotImplementedError('algorithm [' + str(algorithm) + '] not implemented') # Escape ' is not an walk in the park. Just to simplify, we will replace # double '' with ' if chktag.find("''") > -1: chktag = chktag.replace("''", "'") result = [] for hsilo in hdpgroup: hashable_str = hashable([hsilo])[0] hashable_code = _get_checksum(hashable_str, chktag=chktag) result.append(hashable_code) return result
66566fbef3c962d5bcdf56727ff66ddfdd8af9b7
10,091
def dsum(i0,i1,step = 1, box=[]): """ for a range of fits files compute the mean and dispersion from the mean """ for i in range(i0,i1+1,step): ff = 'IMG%05d.FIT' % i h1, d1 = getData(ff,box) #very specific for 16 bit data, since we want to keep the data in uint16 bzero = h1['BZERO'] bscale = h1['BSCALE'] if i == i0: sum0 = 1.0 sum1 = d1*bscale+bzero sum2 = sum1*sum1 #sum1 = d1 #sum2 = d1*d1 h = h1 nx = d1.shape[1] ny = d1.shape[0] nz = i1 + 1 - i0 c = np.zeros((nz, ny, nx)) c[0,:,:] = d1.reshape(ny,nx) else: sum0 = sum0 + 1.0 sum1 = sum1 + (d1 * bscale + bzero) sum2 = sum2 + (d1 * bscale + bzero) * (d1 * bscale + bzero) #sum2 = sum2+d1*d1 c[i - i0,:,:] = d1.reshape(ny,nx) sum1 = sum1 / sum0 sum2 = sum2 / sum0 - sum1*sum1 print (type(sum1), type(sum2)) return (h,sum1,np.sqrt(sum2),c)
6e0048461e29a7de4f7c4322fa1e3213f8248e60
10,092
def _env_translate_obs(obs): """ This should only be used for the Tiger ENV. Parameters ---------- obs : list or array-like The observation to be translated. Returns ------- str A representation of the observation in English. """ if obs[0] == 1: return 'GROWL_LEFT' elif obs[1] == 1: return 'GROWL_RIGHT' elif obs[2] == 1: return 'START' elif obs[3] == 1: return 'END' else: raise ValueError('Invalid observation: '.format(obs))
761ff3f3269e41b44bdab098d3682630d928cdc6
10,093
def voter(address): """ Returns voter credentials. Parameters: address: address Returns: list of three values addresss (str), is_voter (bool), voted (bool). """ return contract.functions.voters(address).call()
91fd7adca6f8ed2e02dbe60b6241eb92f34a81b6
10,094
def E_disp_z(m, N, j_star=3.): """Vertical displacement as a function of vertical wavenumber.""" num = E0*b**3*N0**2 den = 2*j_star*np.pi*N**2 * (1 + m/beta_star(N, j_star))**2 return num/den
39e6b9b5d512d577c8109ecfb5657a0ef5a8ea42
10,095
def get_stereo_image(): """Retrieve one stereo camera image Returns: (mat): cv2 image """ img = core.get_stereo_image() if img is not None: return img else: return None
72e570672885e8ef8c14c9cd29d3f7c648f9abac
10,096
import time import requests def request_set_arm_state(token: str, arm_state: str): """Request set arm state.""" headers = { 'Authorization': 'Bearer %s' % token, 'Content-Type': 'application/json' } payload = { "Created": int(time.time()), "AppVersion": APP_VERSION, "AppType": APPTYPE, "App": APP } response = requests.post( _build_url('Location/{}'.format(arm_state)), headers=headers, json=payload) response.raise_for_status() return response.json()
28a8ad2a0d49305d80581c2257d3fb9495b3f680
10,097
def get_all_config(filename=None): """ Set default configuration options for configparse Config with defaults settings if no file will be passed Also with defaults sections and defaults keys for missing options in config :param filename: options config file to read :return: configparser object with default config for missing sections """ _config = parse_config2(filename) default_config = set_defaults() # Verify each section in default_config for s in range(len(default_config.sections())): section = default_config.sections()[s] # Add the missing section to the config obtained if not _config.has_section(section): _config.add_section(section) # Add missing keys to config obtained for key in default_config[section]: if not _config.has_option(section, key): _config[section][key] = default_config[section][key] return _config
9a5bdcd272f49be5bd8374e06f5b6579da91d64a
10,098
def check_for_end_or_abort(e): """Return a closure checking for END or ABORT notifications Arguments: e -- event to signal when the action is completed (will be set when an END or ABORT occurs) """ def check(notification, e = e): print("EVENT : " + \ Base_pb2.ActionEvent.Name(notification.action_event)) if notification.action_event == Base_pb2.ACTION_END \ or notification.action_event == Base_pb2.ACTION_ABORT: e.set() return check
91809c705666f4fd3aae7273760d5845fa35eadb
10,099
def check_vacancy_at_cell(house_map, cell): """ Return True if the given cell is vacant. Vacancy is defined as a '0' in the house map at the given coordinates. (i.e. there is no wall at that location) """ x = cell[0] y = cell[1] if not 0 <= x < MAP_WIDTH: return False if not 0 <= y < MAP_HEIGHT: return False return house_map[y][x] == '0'
78a24b25a6954b6411aa686512066b25c6f4e1d5
10,100
from typing import Dict def extract_text_and_vertices(x: Dict[str, str]): """Extracts all annotations and bounding box vertices from a single OCR output from Google Cloud Vision API. The first element is the full OCR. It's equivalent to the output of `extract_full_text_annotation` for the same OCR output. Args: x (Dict[str, str]): whole OCR output. Returns: list where each item is a tuple where the first element is the text and the second are the 4 vertices of the corresponding bounding box. """ blocks = [] for annotation in x["textAnnotations"]: text = annotation['description'] vertices = [ tuple(x.values()) for x in annotation['boundingPoly']['vertices'] ] blocks.append((text, vertices)) return blocks
6fde2bc71ceccfd580a6f5f0da7fa0b76e045bad
10,101
def cspace3(obs, bot, theta_steps): """ Compute the 3D (x, y, yaw) configuration space obstacle for a lit of convex 2D obstacles given by [obs] and a convex 2D robot given by vertices in [bot] at a variety of theta values. obs should be a 3D array of size (2, vertices_per_obstacle, num_obstacles) bot should be a 2d array of size (2, num_bot_vertices) theta_steps can either be a scalar, in which case it specifies the number of theta values, evenly spaced between -pi and +pi; or it can be a vector of theta values. """ bot = -np.array(bot) if np.isscalar(theta_steps): thetas = np.linspace(-np.pi, np.pi, num=theta_steps) else: thetas = theta_steps c_obs = [] for k in range(obs.shape[2]): for j in range(len(thetas)-1): th0 = thetas[j] th1 = thetas[j+1] bot_rot0 = rotmat(th0).dot(bot) c_obs0 = minkowski_sum(bot_rot0, obs[:,:,k]) bot_rot1 = rotmat(th1).dot(bot) c_obs1 = minkowski_sum(bot_rot1, obs[:,:,k]) c_pts = np.vstack((np.hstack((c_obs0, c_obs1)), np.hstack((th0 + np.zeros(c_obs0.shape[1]), th1 + np.zeros(c_obs1.shape[1]))))) c_obs.append(c_pts) if len(c_obs) == 0: return np.zeros((3, bot.shape[1] * 2, 0)) max_n_vert = max((x.shape[1] for x in c_obs)) return np.dstack((np.pad(c, pad_width=((0,0), (0,max_n_vert-c.shape[1])), mode='edge') for c in c_obs))
723e1b885a19ae0416226856f7b03aecb045e139
10,102
from typing import Optional def Graph(backend:Optional[str]=None) -> BaseGraph: """Returns an instance of an implementation of :class:`~pyzx.graph.base.BaseGraph`. By default :class:`~pyzx.graph.graph_s.GraphS` is used. Currently ``backend`` is allowed to be `simple` (for the default), or 'graph_tool' and 'igraph'. This method is the preferred way to instantiate a ZX-diagram in PyZX. Example: To construct an empty ZX-diagram, just write:: g = zx.Graph() """ if backend is None: backend = 'simple' if backend not in backends: raise KeyError("Unavailable backend '{}'".format(backend)) if backend == 'simple': return GraphS() if backend == 'graph_tool': return GraphGT() if backend == 'igraph': return GraphIG() if backend == 'quizx-vec': return quizx.VecGraph() # type: ignore return GraphS()
9d2d759096016e0df770863448305b627df0ce73
10,103
from datetime import datetime def get_carb_data(data, offset=0): """ Load carb information from an issue report cached_carbs dictionary Arguments: data -- dictionary containing cached carb information offset -- the offset from UTC in seconds Output: 3 lists in (carb_values, carb_start_dates, carb_absorption_times) format """ carb_values = [float(dict_.get("quantity")) for dict_ in data] start_dates = [ datetime.strptime( dict_.get("startDate"), " %Y-%m-%d %H:%M:%S %z" ) + timedelta(seconds=offset) for dict_ in data ] absorption_times = [ float(dict_.get("absorptionTime")) / 60 if dict_.get("absorptionTime") is not None else None for dict_ in data ] assert len(start_dates) == len(carb_values) == len(absorption_times),\ "expected input shapes to match" return (start_dates, carb_values, absorption_times)
cc2e54859f3f4635e9724260f277dd3c191c32ac
10,104
def _discover_bounds(cdf, tol=1e-7): """ Uses scipy's general continuous distribution methods which compute the ppf from the cdf, then use the ppf to find the lower and upper limits of the distribution. """ class DistFromCDF(stats.distributions.rv_continuous): def cdf(self, x): return cdf(x) dist = DistFromCDF() # the ppf is the inverse cdf lower = dist.ppf(tol) upper = dist.ppf(1. - tol) return lower, upper
bb882065ed74a34c61c60aa48481b2737a2496da
10,105
def ml_app_instances_ml_app_instance_id_get(ml_app_instance_id): # noqa: E501 """ml_app_instances_ml_app_instance_id_get # noqa: E501 :param ml_app_instance_id: MLApp instance identifier :type ml_app_instance_id: str :rtype: None """ return 'do some magic!'
e702d106b6dd4999ed536f77347ca84675be3716
10,106
import random def generate_name(style: str = 'underscore', seed: int = None) -> str: """Generate a random name.""" if seed is not None: random.seed(seed) return format_names(random_names(), style=style)
2f74460f5492c3b4788800d6e33a44b856df91aa
10,107
def argunique(a, b): """ 找出a--b对应体中的唯一对应体,即保证最终输出的aa--bb没有重复元素,也没有多重对应 :param a: :param b: :return: aaa, bbb 使得aaa-bbb是唯一对 """ # 先对a中元素进行逐个检查,如果第一次出现,那么添加到aa中,如果不是第一次,那么检查是否一致,不一致则设置成-1 # 设置成-1,代表a中当前元素i有过一对多纪录,剔除。同时-1也不会被再匹配到 seta = {} for i, j in zip(a, b): if i not in seta: seta[i] = j elif seta[i] != j: seta[i] = -1 aa = [i for i in seta if seta[i] != -1] bb = [seta[i] for i in seta if seta[i] != -1] # 再反过来做一遍,以b为索引,剔除重复项 setb = {} for i, j in zip(aa, bb): if j not in setb: setb[j] = i elif setb[j] != i: setb[j] = -1 aaa = [setb[j] for j in setb if setb[j] != -1] bbb = [j for j in setb if setb[j] != -1] return aaa, bbb
e804436203496d5f3109511967a0d75eaca330da
10,108
def move(obj, direction): """ Moves object by (dx, dy). Returns true if move succeeded. """ goal = obj.pos + direction if (goal.x < 0 or goal.y < 0 or goal.x >= obj.current_map.width or goal.y >= obj.current_map.height): # try_ catches this for the player, but need to # check here for NPCs return False if not obj.current_map.is_blocked_from(obj.pos, goal): obj.pos = goal if obj.fighter: obj.fighter.exhaustion += MOVE_EXHAUSTION return True return False
23917e448ed953acb2bb864d7a14d01c72f07a85
10,109
def addMedicine(medicine: object): """Data required are "name", "description", "price", "quantity", "medicalId" """ return mr.makePostRequest(mr.API + "/medicine/", medicine)
f488ecd16d6e2986944ae26e5776ca9f9be7e170
10,110
from benchbuild.utils.db import create_run from benchbuild.utils import schema as s from benchbuild.settings import CFG from datetime import datetime def begin(command, project, ename, group): """ Begin a run in the database log. Args: command: The command that will be executed. pname: The project name we belong to. ename: The experiment name we belong to. group: The run group we belong to. Returns: (run, session), where run is the generated run instance and session the associated transaction for later use. """ db_run, session = create_run(command, project, ename, group) db_run.begin = datetime.now() db_run.status = 'running' log = s.RunLog() log.run_id = db_run.id log.begin = datetime.now() log.config = repr(CFG) session.add(log) session.commit() return db_run, session
a33a5e809b20b6d1f92545bd0df5de9fbc230f91
10,111
def fortran_library_item(lib_name, sources, **attrs ): #obsolete feature """ Helper function for creating fortran_libraries items. """ build_info = {'sources':sources} known_attrs = ['module_files','module_dirs', 'libraries','library_dirs'] for key,value in attrs.items(): if key not in known_attrs: raise TypeError,\ "fortran_library_item() got an unexpected keyword "\ "argument '%s'" % key build_info[key] = value return (lib_name,build_info)
720802933b9ebcaab566f3deeb063341b85dba7e
10,112
def copy_generator(generator): """Copy an existing numpy (random number) generator. Parameters ---------- generator : numpy.random.Generator or numpy.random.RandomState The generator to copy. Returns ------- numpy.random.Generator or numpy.random.RandomState In numpy <=1.16 a ``RandomState``, in 1.17+ a ``Generator``. Both are copies of the input argument. """ if isinstance(generator, np.random.RandomState): return _copy_generator_np116(generator) return _copy_generator_np117(generator)
57f5c3b9ad934330b1eedb6460943204f97b9436
10,113
def test_pages_kingdom_successful(args, protein_gen_success, cazy_home_url, monkeypatch): """Test parse_family_by_kingdom() when all is successful.""" test_fam = Family("famName", "CAZyClass", "http://www.cazy.org/GH14.html") def mock_get_pag(*args, **kwargs): return ["http://www.cazy.org/GH14_all.html"] def mock_get_pages(*args, **kwargs): return protein_gen_success monkeypatch.setattr(get_cazy_pages, "get_pagination_pages_kingdom", mock_get_pag) monkeypatch.setattr(get_cazy_pages, "get_html_page", mock_get_pages) get_cazy_pages.parse_family_by_kingdom( family=test_fam, cazy_home=cazy_home_url, args=args["args"], kingdoms=["Bacteria"], )
b5fdbeac6a4a54170c17a98689ae5cc6bbca9542
10,116
def _truncate_and_pad_token_ids(token_ids, max_length): """Truncates or pads the token id list to max length.""" token_ids = token_ids[:max_length] padding_size = max_length - len(token_ids) if padding_size > 0: token_ids += [0] * padding_size return token_ids
a8f29fdbc99c3dcac42b9275037d3a3c39c22e12
10,117
def build_bundletoperfectsensor_pipeline(pan_img, ms_img): """ This function builds the a pipeline that performs P+XS pansharpening :param pan_img: Path to the panchromatic image :type pan_img: string :param ms_img: Path to the multispectral image :type ms_img: string :returns: resample_image :rtype: otb application """ pansharpening_app = otbApplication.Registry.CreateApplication( "BundleToPerfectSensor" ) pansharpening_app.SetParameterString("inp", pan_img) pansharpening_app.SetParameterString("inxs", ms_img) pansharpening_app.Execute() return pansharpening_app
f40aa0828ef50ef8f81f901f93dbaf8690a14d4f
10,118
def get_argparser_ctor_args(): """ This method returns a dict containing the kwargs for constructing an argparse.ArgumentParser (either directly or as a subparser). """ return { 'prog': 'CodeChecker store', 'formatter_class': arg.RawDescriptionDefaultHelpFormatter, # Description is shown when the command's help is queried directly 'description': """ Store the results from one or more 'codechecker-analyze' result files in a database.""", # Epilogue is shown after the arguments when the help is queried # directly. 'epilog': """ Environment variables ------------------------------------------------ CC_PASS_FILE The location of the password file for auto login. By default CodeChecker will use '~/.codechecker.passwords.json' file. It can also be used to setup different credential files to login to the same server with a different user. CC_SESSION_FILE The location of the session file where valid sessions are stored. This file will be automatically created by CodeChecker. By default CodeChecker will use '~/.codechecker.session.json'. This can be used if restrictive permissions forbid CodeChecker from creating files in the users home directory (e.g. in a CI environment). The results can be viewed by connecting to such a server in a Web browser or via 'CodeChecker cmd'.""", # Help is shown when the "parent" CodeChecker command lists the # individual subcommands. 'help': "Save analysis results to a database." }
9debf6233652052782295aeb5b630ee2b4b3b19e
10,119
def castep_geom_count(dot_castep): """Count the number of geom cycles""" count = 0 with open(dot_castep) as fhandle: for line in fhandle: if 'starting iteration' in line: count += 1 return count
6a619b5853a02a8c118af1fc19da0d803941c84f
10,120
def nav_login(request, text="Login", button=False): """Navigation login button Args: request (Request): Request object submitted by template text (str, optional): Text to be shown in button. Defaults to "Login". button (bool, optional): Is this to be styled as a button or as a link. Defaults to False. Returns: SafeText: HTML form """ url = reverse("login") return nav_next(request, url, text, button)
ddbc3de38c47425ec9f095577d178c068cce74c2
10,121
def parse_adapter(name: str, raw: dict) -> dict: """Parse a single adapter.""" parsed = { "name": strip_right(obj=name, fix="_adapter"), "name_raw": name, "name_plugin": raw["unique_plugin_name"], "node_name": raw["node_name"], "node_id": raw["node_id"], "status": raw["status"], "features": raw["supported_features"], } generic_name = GENERIC_NAME discovery_name = DISCOVERY_NAME specific_name = get_specific_name(raw=raw) config = raw["config"] specific_schema = config.get(specific_name, {}).get("schema", {}) specific_schema = parse_schema(raw=specific_schema) generic_schema = config[generic_name]["schema"] generic_schema = parse_schema(raw=generic_schema) discovery_schema = config[discovery_name]["schema"] discovery_schema = parse_schema(raw=discovery_schema) cnx_schema = parse_schema(raw=raw["schema"]) cnx_schema["connection_label"] = { "name": "connection_label", "title": "Connection Label", "type": "string", "required": False, } parsed["schemas"] = { "cnx": cnx_schema, "specific": specific_schema, "generic": generic_schema, "discovery": discovery_schema, "generic_name": generic_name, "specific_name": specific_name, "discovery_name": discovery_name, } parsed["config"] = { "specific": raw["config"].get(specific_name, {}).get("config", {}), "generic": raw["config"].get(generic_name, {}).get("config", {}), "discovery": raw["config"].get(discovery_name, {}).get("config", {}), } parsed["cnx"] = parse_cnx(raw=raw, parsed=parsed) parsed["cnx_count_total"] = len(parsed["cnx"]) parsed["cnx_count_broken"] = len([x for x in parsed["cnx"] if not x["working"]]) parsed["cnx_count_working"] = len([x for x in parsed["cnx"] if x["working"]]) return parsed
085b8a38561d6ffda12ca27d2f2089759b34e1ed
10,122
def export_phones(ucm_axl): """ Export Phones """ try: phone_list = ucm_axl.get_phones( tagfilter={ "name": "", "description": "", "product": "", "model": "", "class": "", "protocol": "", "protocolSide": "", "callingSearchSpaceName": "", "devicePoolName": "", "commonDeviceConfigName": "", "commonPhoneConfigName": "", "networkLocation": "", "locationName": "", "mediaResourceListName": "", "networkHoldMohAudioSourceId": "", "userHoldMohAudioSourceId": "", "loadInformation": "", "securityProfileName": "", "sipProfileName": "", "cgpnTransformationCssName": "", "useDevicePoolCgpnTransformCss": "", "numberOfButtons": "", "phoneTemplateName": "", "primaryPhoneName": "", "loginUserId": "", "defaultProfileName": "", "enableExtensionMobility": "", "currentProfileName": "", "loginTime": "", "loginDuration": "", # "currentConfig": "", "ownerUserName": "", "subscribeCallingSearchSpaceName": "", "rerouteCallingSearchSpaceName": "", "allowCtiControlFlag": "", "alwaysUsePrimeLine": "", "alwaysUsePrimeLineForVoiceMessage": "", } ) all_phones = [] for phone in phone_list: # print(phone) phone_details = { "name": phone.name, "description": phone.description, "product": phone.product, "model": phone.model, "protocol": phone.protocol, "protocolSide": phone.protocolSide, "callingSearchSpaceName": phone.callingSearchSpaceName._value_1, "devicePoolName": phone.defaultProfileName._value_1, "commonDeviceConfigName": phone.commonDeviceConfigName._value_1, "commonPhoneConfigName": phone.commonPhoneConfigName._value_1, "networkLocation": phone.networkLocation, "locationName": phone.locationName._value_1, "mediaResourceListName": phone.mediaResourceListName._value_1, "networkHoldMohAudioSourceId": phone.networkHoldMohAudioSourceId, "userHoldMohAudioSourceId": phone.userHoldMohAudioSourceId, "loadInformation": phone.loadInformation, "securityProfileName": phone.securityProfileName._value_1, "sipProfileName": phone.sipProfileName._value_1, "cgpnTransformationCssName": phone.cgpnTransformationCssName._value_1, "useDevicePoolCgpnTransformCss": phone.useDevicePoolCgpnTransformCss, "numberOfButtons": phone.numberOfButtons, "phoneTemplateName": phone.phoneTemplateName._value_1, "primaryPhoneName": phone.primaryPhoneName._value_1, "loginUserId": phone.loginUserId, "defaultProfileName": phone.defaultProfileName._value_1, "enableExtensionMobility": phone.enableExtensionMobility, "currentProfileName": phone.currentProfileName._value_1, "loginTime": phone.loginTime, "loginDuration": phone.loginDuration, # "currentConfig": phone.currentConfig, "ownerUserName": phone.ownerUserName._value_1, "subscribeCallingSearchSpaceName": phone.subscribeCallingSearchSpaceName._value_1, "rerouteCallingSearchSpaceName": phone.rerouteCallingSearchSpaceName._value_1, "allowCtiControlFlag": phone.allowCtiControlFlag, "alwaysUsePrimeLine": phone.alwaysUsePrimeLine, "alwaysUsePrimeLineForVoiceMessage": phone.alwaysUsePrimeLineForVoiceMessage, } line_details = ucm_axl.get_phone(name=phone.name) # print(line_details.lines.line) try: for line in line_details.lines.line: # print(line) phone_details[f"line_{line.index}_dirn"] = line.dirn.pattern phone_details[f"line_{line.index}_routePartitionName"] = line.dirn.routePartitionName._value_1 phone_details[f"line_{line.index}_display"] = line.display phone_details[f"line_{line.index}_e164Mask"] = line.e164Mask except Exception as e: print(e) all_phones.append(phone_details) print( f"exporting: {phone.name}: {phone.model} - {phone.description}") print("-" * 35) print(f"number of phones: {len(all_phones)}") return all_phones except Exception as e: print(e) return []
1487cef48c5666224da57173b968e9988f587a57
10,123
def is_various_artists(name, mbid): """Check if given name or mbid represents 'Various Artists'.""" return name and VA_PAT.match(name) or mbid == VA_MBID
084f1d88b99ec7f5b6eac0774a05e901bd701603
10,124
def validate_ruletype(t): """Validate *bounds rule types.""" if t not in ["typebounds"]: raise exception.InvalidBoundsType("{0} is not a valid *bounds rule type.".format(t)) return t
a8ae173f768837cdc35d1a8f6429614b58a74988
10,125
def decode_section_flags(sflags: str) -> int: """Map readelf's representation of section flags to ELF flag values.""" d = { 'W': elftools.elf.constants.SH_FLAGS.SHF_WRITE, 'A': elftools.elf.constants.SH_FLAGS.SHF_ALLOC, 'X': elftools.elf.constants.SH_FLAGS.SHF_EXECINSTR, 'M': elftools.elf.constants.SH_FLAGS.SHF_MERGE, 'S': elftools.elf.constants.SH_FLAGS.SHF_STRINGS, 'I': elftools.elf.constants.SH_FLAGS.SHF_INFO_LINK, 'L': elftools.elf.constants.SH_FLAGS.SHF_LINK_ORDER, 'O': elftools.elf.constants.SH_FLAGS.SHF_OS_NONCONFORMING, 'G': elftools.elf.constants.SH_FLAGS.SHF_GROUP, 'T': elftools.elf.constants.SH_FLAGS.SHF_TLS, 'C': 0x800, # SHF_COMPRESSED 'E': elftools.elf.constants.SH_FLAGS.SHF_EXCLUDE, 'y': 0x20000000, # SHF_ARM_PURECODE } flags = 0 for k, v in d.items(): if k in sflags: flags |= v return flags
e007f1f370f6203bafe92a1a6422100f2d9626ae
10,127
def nCr(n,r): """ Implements multiplicative formula: https://en.wikipedia.org/wiki/Binomial_coefficient#Multiplicative_formula """ if r < 0 or r > n: return 0 if r == 0 or r == n: return 1 c = 1 for i in xrange(min(r, n - r)): c = c * (n - i) // (i + 1) return c
8c0dc30b4cdab47c99bf98459e435147ac0b92fd
10,128
import inspect def _get_init_arguments(cls, *args, **kwargs): """Returns an OrderedDict of args passed to cls.__init__ given [kw]args.""" init_args = inspect.signature(cls.__init__) bound_args = init_args.bind(None, *args, **kwargs) bound_args.apply_defaults() arg_dict = bound_args.arguments del arg_dict['self'] return arg_dict
116c01f9edb838e4b392fa624a454fdf4c455f1a
10,130
def MatchCapture(nfa: NFA, id: CaptureGroup) -> NFA: """Handles: (?<id>A)""" captures = {(s, i): {id} for (s, i) in nfa.transitions if i != Move.EMPTY} return NFA(nfa.start, nfa.end, nfa.transitions, merge_trans(nfa.captures, captures))
08805d01be73480cfea4d627c6a67969290c1d11
10,131
def get_all_state_events(log): """ Returns a list of tuples of event id, state_change_id, block_number and events""" return [ (InternalEvent(res[0], res[1], res[2], log.serializer.deserialize(res[3]))) for res in get_db_state_changes(log.storage, 'state_events') ]
c75307c930add3e142996e19c441c84fd663e36a
10,133
def iff(a: NNF, b: NNF) -> Or[And[NNF]]: """``a`` is true if and only if ``b`` is true.""" return (a & b) | (a.negate() & b.negate())
82ea5bfe9c4e1f79361319b2d8455cba898e77ec
10,134
def redact_access_token(e: Exception) -> Exception: """Remove access token from exception message.""" if not isinstance(e, FacebookError): return e e.args = (redact_access_token_from_str(str(e.args[0])),) return e
63d7a7422cb7315866e9c25552fa96b403673261
10,135
def _get_ext_comm_subtype(type_high): """ Returns a ByteEnumField with the right sub-types dict for a given community. http://www.iana.org/assignments/bgp-extended-communities/bgp-extended-communities.xhtml """ return _ext_comm_subtypes_classes.get(type_high, {})
5b5782659f1d261162d8f9d5becfe65b852f3bdc
10,136
import click def _filter_classes(classes, filters, names_only, iq): """ Filter a list of classes for the qualifiers defined by the qualifier_filter parameter where this parameter is a list of tuples. each tuple contains the qualifier name and a dictionary with qualifier name as key and tuple containing the option_value(True or False) and a list of booleans where each boolean represents one of the scope types () whether to display or not display if it exists. This method only works for boolean qualifiers Parameters: classes (list of :class:`~pywbem.CIMClass`): list of classes to be filtered qualifier_filters (dict): Dictionary defining the filtering to be performed. It contains an entry for each qualifier filter that is defined. See _build_qualifier_filters for a definition of this list. names_only (:class:`py:bool`): If True, return only the classnames. Otherwise returns the filtered classes. This is because we must get the classes from the server to perform the filtering iq (:class:`py:bool`): If not True, remove any qualifiers from the classes. This is because we must get the classes from the server with qualifiers to perform the filtering. """ def class_has_qualifier(cls, qname, scopes): """ Determine if the qualifier defined by qname exists in the elements of the class where the elements are defined by the scopes parameter for this filter. Parameters: cls (:class:`~pywbem.CIMClass`): The class to be inspected for the qualifier defined by qname qname (:term:`string`): The qualifier for which we are searching scopes (tuple of booleans): A tuple containing a boolean value for each of the possible scopes (class, property, method, parameter) Returns: True if the qualifier with name quname is found in the elements where the scope is True. Otherwise, False is returned """ # Test class scope if scopes[0] and qname in cls.qualifiers: return True # if property scope, test properties if scopes[1]: for prop in cls.properties.values(): if qname in prop.qualifiers: return True # If method scope, test methods and if parameter scope, test parameters if scopes[2]: for method in cls.methods.values(): if qname in method.qualifiers: return True if scopes[3]: params = method.parameters for param in params.values(): if qname in param.qualifiers: return True return False # Test all classes in the input property for the defined filters. filtered_classes = [] subclass_names = [] # Build list of subclass names that will be used later as a filter on the # classes to be returned if 'subclass_of' in filters: try: subclass_names = get_subclass_names( classes, classname=filters['subclass_of'].optionvalue, deep_inheritance=True) except ValueError: raise click.ClickException( 'Classname {} for "subclass-of" not found in returned classes.' .format(filters['subclass_of'].optionvalue)) # Build a list of leaf class names that will be used later as a filter on # the classes to be returned. if 'leaf_classes' in filters: try: if subclass_names: clsx = [cls for cls in classes if cls.classname in subclass_names] leafclass_names = get_leafclass_names(clsx) else: leafclass_names = get_leafclass_names(classes) except ValueError: raise click.ClickException( 'Classname {} for "leaf_classes-of" not found in returned ' 'classes.'.format(filters['leaf_classes'].optionvalue)) for cls in classes: show_class_list = [] for filter_name, filter_ in filters.items(): if filter_name == 'qualifier': option_value = filter_.optionvalue if class_has_qualifier(cls, filter_.qualifiername, filter_.scopes): if filter_.qualifiername == 'version': if filter_.qualifiername in cls.qualifiers: cls_version = \ cls.qualifiers[filter_.qualifiername].value val = parse_version_value(cls_version, cls.classname) option_value = bool(val >= filter_.optionvalue) show_class_list.append(option_value) else: show_class_list.append(not option_value) elif filter_name == 'schema': show_class_list.append( cls.classname.lower().startswith(filter_.optionvalue)) elif filter_name == 'subclass_of': show_class_list.append(cls.classname in subclass_names) elif filter_name == 'leaf_classes': show_class_list.append(cls.classname in leafclass_names) else: assert False # Future for other test_types # Show if all options are True for this class show_this_class = all(show_class_list) if show_this_class: # If returning instances, honor the names_only option if not names_only and not iq: cls.qualifiers = [] for p in cls.properties.values(): p.qualifiers = [] for m in cls.methods.values(): m.qualifiers = [] for p in m.parameters.values(): p.qualifiers = [] filtered_classes.append(cls) # If names_only parameter create list of classnames if names_only: filtered_classes = [cls.classname for cls in filtered_classes] return filtered_classes
eecee9f5a1ccf6c793000faf11cd0f666a0c0f7b
10,137
def template2(): """load_cep_homo""" script = """ ## (Store,figure) << host = chemml << function = SavePlot << kwargs = {'normed':True} << output_directory = plots << filename = amwVSdensity >> 0 fig ## (Visualize,artist) << host = chemml << function = decorator << title = AMW vs. Density << grid_color = g << xlabel = density (Kg/m3) << ylabel = atomic molecular weight << grid = True << size = 18 >> fig 0 >> 4 fig ## (Enter,python script) << host = chemml << function = PyScript << line01 = print (iv1.head()) >> 1 iv1 ## (Enter,datasets) << host = chemml << function = load_organic_density >> smiles 1 >> density 2 >> features 3 ## (Visualize,plot) << host = chemml << function = scatter2D << y = 0 << marker = o << x = 'AMW' >> 2 dfy >> 3 dfx >> fig 4 """ return script.strip().split('\n')
2d6dfbab0ef3093645b67da756491fd1b1639649
10,138
from typing import Tuple from typing import Any def get_target_and_encoder_gpu(train: GpuDataset) -> Tuple[Any, type]: """Get target encoder and target based on dataset. Args: train: Dataset. Returns: (Target values, Target encoder). """ target = train.target if isinstance(target, cudf.Series): target = target.values target_name = train.target.name if train.task.name == 'multiclass': n_out = cp.max(target)+1 target = (target[:, cp.newaxis] == cp.arange(n_out)[cp.newaxis, :]) encoder = MultiClassTargetEncoder_gpu else: encoder = TargetEncoder_gpu return target, encoder
64cfee3ec9c58bf07d9eb28977b4e5cb7ebadc80
10,139
import functools def once(f): """Cache result of a function first call""" @functools.wraps(f) def wrapper(*args, **kwargs): rv = getattr(f, 'rv', MISSING) if rv is MISSING: f.rv = f(*args, **kwargs) return f.rv return wrapper
25d096f76d156c7a8a26f8f159b65b9b31c8d927
10,141
import torch def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_config(args, cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.MODEL.BUA.EXTRACTOR.MODE = 1 default_setup(cfg, args) cfg.MODEL.DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' cfg.freeze() return cfg
76a8a21714a1fed96fe7b6f33cb948aee30bffcf
10,142
def build_audit_stub(obj): """Returns a stub of audit model to which assessment is related to.""" audit_id = obj.audit_id if audit_id is None: return None return { 'type': 'Audit', 'id': audit_id, 'context_id': obj.context_id, 'href': '/api/audits/%d' % audit_id, 'issue_tracker': obj.audit.issue_tracker, }
705f066975bf9dae8704944c71eeb3e313cf445f
10,143
def calculate_widths(threshold_img, landmarks): """ Calcula a largura dos vasos sanguíneos nos pontos de potenciais bifurcação. Esse cálculo é feito pegando a menor distância percorrida a partir do ponto em cada uma das direções (8 direções são utilizadas). A função retorna o que seria equivalente ao diametro do vasos em cada ponto. :param threshold_img: imagem (binária) usada para calculo da largura dos vasos sanguíneos :param landmarks: pontos onde calcular as larguras :return: vetor com larguras de cada um dos pontos (diametro dos vasos) """ N, M = threshold_img.shape widths = [] for x, y, mark_type in landmarks: # down i = x j = y vert_dist = 0 while(j < M and threshold_img[i, j] != 0): vert_dist += 1 j += 1 # up i = x j = y while(j >= 0 and threshold_img[i, j] != 0): vert_dist += 1 j -= 1 # right horiz_dist = 0 i = x j = y while(i < N and threshold_img[i, j] != 0): horiz_dist += 1 i += 1 # left i = x j = y while(i >= 0 and threshold_img[i, j] != 0): horiz_dist += 1 i -= 1 # down right i = x j = y s_diag_dist = 0 while(i < N and j < M and threshold_img[i, j] != 0): i += 1 j += 1 s_diag_dist += 1 # up left i = x j = y while(i >= 0 and j >= 0 and threshold_img[i, j] != 0): i -= 1 j -= 1 s_diag_dist += 1 # down left i = x j = y p_diag_dist = 0 while(i >= 0 and j < M and threshold_img[i, j] != 0): i -= 1 j += 1 p_diag_dist += 1 # up right i = x j = y while(i < N and j >= 0 and threshold_img[i, j] != 0): i += 1 j -= 1 p_diag_dist += 1 min_width = np.min([vert_dist, horiz_dist, p_diag_dist, s_diag_dist]) widths.append([(x, y), np.ceil(min_width).astype(int), mark_type]) return widths
304ce6bec19faba0a0520b63435fcbf66f8989f0
10,144
from typing import Optional def smi_to_fp(smi: str, fingerprint: str, radius: int = 2, length: int = 2048) -> Optional[np.ndarray]: """fingerprint functions must be wrapped in a static function so that they may be pickled for parallel processing Parameters ---------- smi : str the SMILES string of the molecule to encode fingerprint : str the the type of fingerprint to generate radius : int the radius of the fingerprint length : int the length of the fingerprint Returns ------- T_comp the compressed feature representation of the molecule """ mol = Chem.MolFromSmiles(smi) if mol is None: return None if fingerprint == 'morgan': fp = rdmd.GetMorganFingerprintAsBitVect( mol, radius=radius, nBits=length, useChirality=True) elif fingerprint == 'pair': fp = rdmd.GetHashedAtomPairFingerprintAsBitVect( mol, minLength=1, maxLength=1+radius, nBits=length) elif fingerprint == 'rdkit': fp = rdmd.RDKFingerprint( mol, minPath=1, maxPath=1+radius, fpSize=length) elif fingerprint == 'maccs': fp = rdmd.GetMACCSKeysFingerprint(mol) else: raise NotImplementedError( f'Unrecognized fingerprint: "{fingerprint}"') x = np.empty(len(fp)) DataStructs.ConvertToNumpyArray(fp, x) return x
fa768c5b53a4a1b637b1928127ef85506d375fd7
10,145
def f(x, t): """function to learn.""" return tf.square(tf.cast(t, tf.float32) / FLAGS.tm) * (tf.math.sin(5 * x) + 1)
9138b7a2acf43a1c62d5da8157725ff10e6f7f78
10,146
def render_cells(cells, width=80, col_spacing=2): """Given a list of short (~10 char) strings, display these aligned in columns. Example output:: Something like this can be used to neatly arrange long sequences of values in a compact format. Parameters ---------- cells : [(strlen, str), ...] Gives the cells to print as tuples giving the strings length in visible characters and the string to display. width : int The width of the terminal. col_spacing : int Size of the gap to leave between columns. """ # Special case (since max below will fail) if len(cells) == 0: return "" # Columns should be at least as large as the largest cell with padding # between columns col_width = max(strlen for strlen, s in cells) + col_spacing lines = [""] cur_length = 0 for strlen, s in cells: # Once line is full, move to the next if cur_length + strlen > width: lines.append("") cur_length = 0 # Add the current cell (with spacing) lines[-1] += s + (" "*(col_width - strlen)) cur_length += col_width return "\n".join(map(str.rstrip, lines))
714b915430be84980c3a9b74f3c5b2cb89b6acba
10,147
def separate_types(data): """Separate out the points from the linestrings.""" if data['type'] != 'FeatureCollection': raise TypeError('expected a FeatureCollection, not ' + data['type']) points = [] linestrings = [] for thing in data['features']: if thing['type'] != 'Feature': raise TypeError('expected Feature, not ' + thing['type']) geometry_type = thing['geometry']['type'] if geometry_type == 'Point': points.append(thing) elif geometry_type == 'LineString': linestrings.append(thing) else: raise TypeError('expected Point or LineString, not ' + geometry_type) return points, linestrings
28ab8eb7e2cdf1206f4908a15506a9b9af1aa428
10,148