content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def cbar_for_line_plot(axis, num_steps, discrete_ticks=True, **kwargs): """ Adds a colorbar next to a line plot axis Parameters ---------- axis : matplotlib.axes.Axes Axis with multiple line objects num_steps : uint Number of steps in the colorbar discrete_ticks : (optional) bool Whether or not to have the ticks match the number of number of steps. Default = True """ if not isinstance(axis, mpl.axes.Axes): raise TypeError('axis must be a matplotlib.axes.Axes object') if not isinstance(num_steps, int) and num_steps > 0: raise TypeError('num_steps must be a whole number') assert isinstance(discrete_ticks, bool) cmap = get_cmap_object(kwargs.pop('cmap', None)) cmap = discrete_cmap(num_steps, cmap=cmap.name) sm = make_scalar_mappable(0, num_steps - 1, cmap=cmap) if discrete_ticks: kwargs.update({'ticks': np.arange(num_steps)}) cbar = plt.colorbar(sm, ax=axis, orientation='vertical', pad=0.04, use_gridspec=True, **kwargs) return cbar
b9d83d93f7b86259a796cc71638a0bef0c81dce7
9,797
from typing import Union def get_config_based_on_config_file(path: str) -> Union[Config, None]: """ load config and check if section exist or not :param path: path to config file :return: None if section [laziest] not exist in Config object updated with params from section if exist """ cfg = load_config(path) if section_name not in cfg.sections(): return None else: cfg = config[section_name] common_params = deepcopy(default_settings) params_from_config = {key: cfg[key] for key in cfg.keys()} common_params.update(params_from_config) return Config(common_params)
1a537aace82528ff1163deadeea3c48b9289c622
9,798
import typing import asyncio import concurrent def threadpooled( # noqa: F811 func: typing.Optional[typing.Callable[..., typing.Union["typing.Awaitable[typing.Any]", typing.Any]]] = None, *, loop_getter: typing.Union[None, typing.Callable[..., asyncio.AbstractEventLoop], asyncio.AbstractEventLoop] = None, loop_getter_need_context: bool = False, ) -> typing.Union[ ThreadPooled, typing.Callable[..., "typing.Union[concurrent.futures.Future[typing.Any], typing.Awaitable[typing.Any]]"], ]: """Post function to ThreadPoolExecutor. :param func: function to wrap :type func: typing.Optional[typing.Callable[..., typing.Union[typing.Awaitable, typing.Any]]] :param loop_getter: Method to get event loop, if wrap in asyncio task :type loop_getter: typing.Union[ None, typing.Callable[..., asyncio.AbstractEventLoop], asyncio.AbstractEventLoop ] :param loop_getter_need_context: Loop getter requires function context :type loop_getter_need_context: bool :return: ThreadPooled instance, if called as function or argumented decorator, else callable wrapper :rtype: typing.Union[ThreadPooled, typing.Callable[..., typing.Union[concurrent.futures.Future, typing.Awaitable]]] """ if func is None: return ThreadPooled(func=func, loop_getter=loop_getter, loop_getter_need_context=loop_getter_need_context) return ThreadPooled( # type: ignore func=None, loop_getter=loop_getter, loop_getter_need_context=loop_getter_need_context )(func)
77a91a627569a069728531e2baaa92d8ee5609b3
9,799
def koven_temp_atten(soiltemp, airtemp): """Define thermal attenuation ratios as in Koven et al 2013.""" # read in list of observed lats and lons from Koven paper ex_points = permafrost_koven_sites.site_points # make amplitudes airtemp_ampl = make_monthly_amp(airtemp) soiltemp_ampl = make_monthly_amp(soiltemp) # interpolate the log to the correct depth soiltemp_log = iris.analysis.maths.log(soiltemp_ampl) linear = iris.analysis.Linear() soiltemp_log_surf = soiltemp_log.interpolate([('depth', 0.0)], linear) soiltemp_ampl_surf = iris.analysis.maths.exp(soiltemp_log_surf) soiltemp_log_1m = soiltemp_log.interpolate([('depth', 1.0)], linear) soiltemp_ampl_1m = iris.analysis.maths.exp(soiltemp_log_1m) # extract points for eachsite airtemp_ampl_1d = extract_sites(ex_points, airtemp_ampl) if len(airtemp_ampl_1d.shape) > 1: airtemp_ampl_1d = airtemp_ampl_1d[:, 0] soiltemp_ampl_surf_1d = extract_sites(ex_points, soiltemp_ampl_surf) soiltemp_ampl_1m_1d = extract_sites(ex_points, soiltemp_ampl_1m) # assign metrics metrics = {} metrics['attenuation 1m over surface'] = np.median( soiltemp_ampl_1m_1d / soiltemp_ampl_surf_1d) metrics['attenuation surface over air'] = np.median( soiltemp_ampl_surf_1d / airtemp_ampl_1d) return metrics
a9d0ab18cef1a311ee72fc653089acf96f157cf6
9,800
def clipup(step_size: float, momentum: float = 0.9, max_speed: float = 0.15, fix_gradient_size: bool = True): """Construct optimizer triple for ClipUp.""" step_size = optimizers.make_schedule(step_size) def init(x0): v0 = jnp.zeros_like(x0) return x0, v0 def update(i, g, state): x, v = state g = jax.lax.cond(fix_gradient_size, lambda p: p / jnp.sqrt(jnp.sum(p * p)), lambda p: p, g) step = g * step_size(i) v = momentum * v + step # Clip. length = jnp.sqrt(jnp.sum(v * v)) v = jax.lax.cond(length > max_speed, lambda p: p * max_speed / length, lambda p: p, v) return x - v, v def get_params(state): x, _ = state return x return init, update, get_params
7ab67ba4bfb164c2816b6dc478d0a99b85324b66
9,801
def ramsey_echo_sequence(length, target): """ Generate a gate sequence to measure dephasing time in a two-qubit chip including a flip in the middle. This echo reduce effects detrimental to the dephasing measurement. Parameters ---------- length : int Number of Identity gates. Should be even. target : str Which qubit is measured. Options: "left" or "right" Returns ------- list Dephasing sequence. """ wait = ["Id:Id"] hlength = length // 2 if target == "left": rotate_90_p = ["X90p:Id"] rotate_90_m = ["X90m:Id"] elif target == "right": rotate_90_p = ["Id:X90p"] rotate_90_m = ["Id:X90m"] S = [] S.extend(rotate_90_p) S.extend(wait * hlength) S.extend(rotate_90_p) S.extend(rotate_90_p) S.extend(wait * hlength) S.extend(rotate_90_m) return S
0fbe66b915e94b568b5c051c5982ee4e8aeaf945
9,802
import sympy def gauss_elimination(matrix) -> np.array: """ This function compute Gauss elimination process :param matrix: generic matrix :return: matrix after the Gauss elimination """ return np.array(sympy.Matrix(matrix).rref()[0])
e25cb59808ac189bd858d3fc564aec034d7fc841
9,803
def prune(value, is_removable_function=is_removable): """ Deletes ``None`` and empty lists and dicts, recursively. """ if isinstance(value, list): for i, v in enumerate(value): if is_removable_function(value, i, v): del value[i] else: prune(v, is_removable_function) elif isinstance(value, dict): for k, v in value.items(): if is_removable_function(value, k, v): del value[k] else: prune(v, is_removable_function) return value
1e254cf2df988f4c7e782b7dace82222e7f09910
9,804
import math def n_permutations(n, r=None): """Number of permutations (unique by position) :param n: population length :param r: sample length :return: int """ if r is None: r = n if n < 0 or r < 0: raise ValueError("n and r must be positive") if n == 0 or r > n: return 0 return math.factorial(n) // math.factorial(n - r)
441081c534c07bb98b6a32cce4c87d64b030a5a7
9,806
def parse_s3_event(event): """Decode the S3 `event` message generated by message write operations. See S3 docs: https://docs.aws.amazon.com/AmazonS3/latest/userguide/notification-content-structure.html See also the callers of this function. Returns bucket_name, ipppssoot """ log.verbose("S3 Event:", event) message = event["Records"][0]["s3"]["object"]["key"] bucket_name = event["Records"][0]["s3"]["bucket"]["name"] ipst = message.split("-")[-1] log.info(f"received {message} : bucket = {bucket_name}, ipppssoot = {ipst}") return "s3://" + bucket_name, ipst
bf9530d49191f29d1132188507da55c7568e26a6
9,807
def clip_2d_liang_barsky(xmin, ymin, xmax, ymax, x0, y0, x1, y1): """Clips the two-dimensional line segment by the algorithm of Liang and Barsky. Adapted from James D. Foley, ed., __Computer Graphics: Principles and Practice__ (Reading, Mass. [u.a.]: Addison-wesley, 1998), 122. Parameters ---------- xmin, ymin, xmax, ymax, x0, y0, x1, y1 : float Returns ------- is_visible : bool x0, y0, x1, y1 : float """ dx = x1 - x0 dy = y1 - y0 if dx == 0 and dy == 0 and clip_point(xmin, ymin, xmax, ymax, x0, y0): return False, x0, y0, x1, y1 tE_tL = np.array((0.0, 1.2)) if clip_t(dx, xmin - x0, tE_tL): if clip_t(-dx, x0 - xmax, tE_tL): if clip_t(dy, ymin - y0, tE_tL): if clip_t(-dy, y0 - ymax, tE_tL): # compute PL intersection, if tL has moved tE, tL = tE_tL if tL < 1: x1 = x0 + tL * dx y1 = y0 + tL * dy # compute PE intersection, if tE has moved if tE > 0: x0 += tE * dx y0 += tE * dy return True, x0, y0, x1, y1 return False, x0, y0, x1, y1
d38dc2fcda72fe186d95befd1e0e2ef2c688297e
9,808
import re def _(pattern, key_path: str, case_ignored=False) -> bool: """Called when the concerned Key is defined as a re.Pattern, and case_ignored flag is neglected.""" return re.fullmatch(pattern, key_path) is not None
c5759a7940dcb9babc791322cac1397a640dc94d
9,809
def sophos_firewall_web_filter_update_command(client: Client, params: dict) -> CommandResults: """Update an existing object Args: client (Client): Sophos XG Firewall Client params (dict): params to update the object with Returns: CommandResults: Command results object """ return generic_save_and_get(client, WEB_FILTER['endpoint_tag'], params, web_filter_builder, WEB_FILTER['table_headers'], True)
f8306dcce60de64dea3114137f0a27813f455a56
9,810
def transition_with_random_block(block_randomizer): """ Build a block transition with randomized data. Provide optional sub-transitions to advance some number of epochs or slots before applying the random block. """ return { "block_producer": block_randomizer, }
acf0d285a7633b40ffb46853831412dafa6617e5
9,811
def vmobj_to_list(o): """Converts TVM objects returned by VM execution to Python List. Parameters ---------- o : Obj VM Object as output from VM runtime executor. Returns ------- result : list Numpy objects as list with equivalent values to the input object. """ if isinstance(o, tvm.nd.NDArray): result = [o.numpy()] elif isinstance(o, tvm.runtime.container.ADT): result = [] for f in o: result.extend(vmobj_to_list(f)) elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): if o.constructor.name_hint == "Cons": tl = vmobj_to_list(o.fields[1]) hd = vmobj_to_list(o.fields[0]) hd.extend(tl) result = hd elif o.constructor.name_hint == "Nil": result = [] elif "tensor_nil" in o.constructor.name_hint: result = [0] elif "tensor" in o.constructor.name_hint: result = [o.fields[0].numpy()] else: raise RuntimeError("Unknown object type: %s" % o.constructor.name_hint) else: raise RuntimeError("Unknown object type: %s" % type(o)) return result
8ecc9e22b47072adea98f1fc23f00a696619d0a4
9,812
import logging def fetch_run(workspace: Workspace, run_recovery_id: str) -> Run: """ Finds an existing run in an experiment, based on a recovery ID that contains the experiment ID and the actual RunId. The run can be specified either in the experiment_name:run_id format, or just the run_id. :param workspace: the configured AzureML workspace to search for the experiment. :param run_recovery_id: The Run to find. Either in the full recovery ID format, experiment_name:run_id or just the run_id :return: The AzureML run. """ experiment, run = split_recovery_id(run_recovery_id) try: experiment_to_recover = Experiment(workspace, experiment) except Exception as ex: raise Exception(f"Unable to retrieve run {run} in experiment {experiment}: {str(ex)}") run_to_recover = fetch_run_for_experiment(experiment_to_recover, run) logging.info("Fetched run #{} {} from experiment {}.".format(run, run_to_recover.number, experiment)) return run_to_recover
91255f02888ef1186d18e21e42c4343713bb3b29
9,813
def get_wl_band(radar_frequency): """Returns integer corresponding to radar frequency. Args: radar_frequency (float): Radar frequency (GHz). Returns: int: 0=35GHz radar, 1=94Ghz radar. """ return 0 if (30 < radar_frequency < 40) else 1
cf2eaa12f111f7ad6751fb31f58e0bc01666494a
9,814
def get_topology_node(name: str, topology: ServiceTopology) -> TopologyNode: """ Fetch a topology node by name :param name: node name :param topology: service topology with all nodes :return: TopologyNode """ node = topology.__dict__.get(name) if not node: raise ValueError(f"{name} node not found in {topology}") return node
996e6cc1e69a44eb1ce8e4e041d7af84d592e894
9,815
import hashlib def md5hash(string): """ Return the MD5 hex digest of the given string. """ return hashlib.md5(string).hexdigest()
cfc0d44c3c84fb08d277d7b397a5aca453025d96
9,816
def userlist(request): """Shows a user list.""" return common_userlist(request, locale=request.view_lang)
bdfd4477d352d62076d644e045d746a5912993e6
9,817
def return_heartrates(patient_id): """ access database to get heart rate history for a patient :param patient_id: integer ID of patient to get heart rates of :return: json with the heart rate list for patient, or error message """ patient_id = int(patient_id) if heart_server_helpers.validate_patient(pat_id) is False: return jsonify({"Error": "invalid patient ID"}) if heart_server_helpers.existing_beats(pat_id) is False: return jsonify({"Error": "no heartbeats recorded for patient"}) for user in Patient.objects.raw({"_id": patient_id}): patient = user heartrate_list = patient.heart_rate print(heartrate_list) heart_list = {"heat_rates": heartrate_list} return jsonify(heart_list)
864c3912bcd5be43c43c6ccfc17c0e6f675c7d6d
9,818
def describe_vpn_connections_header(): """generate output header""" return misc.format_line(( "Account", "Region", "VpcId", "VpcCidr", "VpnName", "VpnId", "State", "CutomerGwId", "CutomerGwAddress", "Type" ))
5539f2beb017f9c2aaaa4b4a70952f1c17fa5761
9,819
def to_numpy(a): """Convert an object to NumPy. Args: a (object): Object to convert. Returns: `np.ndarray`: `a` as NumPy. """ return convert(a, NPOrNum)
4af733bd61256505d7db49d74d0dc1f96e10701d
9,820
def transpose(self, perm=None, copy=True): """Return a tensor with permuted axes. Parameters ---------- perm : Union[Sequence[int], dragon.Tensor]], optional The output permutation. copy : bool, optional, default=True Return a new tensor or transpose in-place. Returns ------- dragon.Tensor The output tensor. See Also -------- `dragon.transpose(...)`_ """ return array_ops.transpose(self, perm=perm, copy=copy)
be340cf2797555870020d55c163d2765346fd6fa
9,821
def brainrender_vis(regions, colors=None, atlas_name="allen_mouse_25um"): """Visualise regions in atlas using brainrender""" if colors is None: cm = ColorManager(num_colors=len(regions), method="rgb") colors = cm.colors def get_n_random_points_in_region(region, N): """ Gets N random points inside (or on the surface) of a mes """ region_bounds = region.mesh.bounds() X = np.random.randint(region_bounds[0], region_bounds[1], size=10000) Y = np.random.randint(region_bounds[2], region_bounds[3], size=10000) Z = np.random.randint(region_bounds[4], region_bounds[5], size=10000) pts = [[x, y, z] for x, y, z in zip(X, Y, Z)] ipts = region.mesh.insidePoints(pts).points() if N < ipts.shape[0]: return ipts[np.random.choice(ipts.shape[0], N, replace=False), :] else: return ipts scene = brainrender.Scene(root=True, title="Labelled cells", atlas_name=atlas_name) # Get a numpy array with (fake) coordinates of some labelled cells brain_region_actors = [] for region, color in zip(regions, colors): brain_region = scene.add_brain_region(region, alpha=0.15, color=color) coordinates = get_n_random_points_in_region(brain_region.mesh, 2000) color = [color] * coordinates.shape[0] # Add to scene scene.add( brainrender.actors.Points(coordinates, name=f"{region} CELLS", colors=color) ) brain_region_actors.append(brain_region) hemisphere_points = [ get_points_in_hemisphere(scene.atlas, brain_region_actor) for brain_region_actor in brain_region_actors ] p1 = hemisphere_points[0].mean(axis=0) p2 = hemisphere_points[1].mean(axis=0) mesh = vedo.shapes.Cylinder(pos=[p1, p2], c="blue", r=100, alpha=0.5) cylinder = brainrender.actor.Actor(mesh, name="Cylinder", br_class="Cylinder") scene.add(cylinder) # render scene.content scene.render()
a85fda126f482a5ee1be9b7d129f7b091bc26c79
9,822
def randsel(path, minlen=0, maxlen=None, unit="second"): """Randomly select a portion of audio from path. Parameters ---------- path: str File path to audio. minlen: float, optional Inclusive minimum length of selection in seconds or samples. maxlen: float, optional Exclusive maximum length of selection in seconds or samples. unit: str, optional The unit in which `minlen` and `maxlen` are interpreted. Options are: - 'second' (default) - 'sample' Returns ------- tstart, tend: tuple of int integer index of selection """ info = audioinfo(path) sr, sigsize = info.samplerate, info.frames if unit == 'second': minoffset = int(minlen*sr) maxoffset = int(maxlen*sr) if maxlen else sigsize else: minoffset = minlen maxoffset = maxlen if maxlen else sigsize assert (minoffset < maxoffset) and (minoffset <= sigsize), \ f"""BAD: siglen={sigsize}, minlen={minoffset}, maxlen={maxoffset}""" # Select begin sample tstart = randrange(max(1, sigsize-minoffset)) tend = randrange(tstart+minoffset, min(tstart+maxoffset, sigsize+1)) return tstart, tend
de9e328eb025ab54f6a25bf1b028212470339c8d
9,823
import splunklib from datetime import datetime def parse_datetime(splunk_uri, session_key, time_str): """ Leverage splunkd to do time parseing, :time_str: ISO8601 format, 2011-07-06T21:54:23.000-07:00 """ if not time_str: return None scheme, host, port = tuple(splunk_uri.replace("/", "").split(":")) service = splunklib.client.Service(token=session_key, scheme=scheme, host=host, port=port) endpoint = splunklib.client.Endpoint(service, "search/timeparser/") r = endpoint.get(time=time_str, output_time_format="%s") response = splunklib.data.load(r.body.read()).response seconds = response[time_str] return datetime.datetime.utcfromtimestamp(float(seconds))
bece967102ae37ec0cd1a1eb84e3bfc3eb5bef0f
9,824
def _get_assessment_url(assessment): """Returns string URL for assessment view page.""" return urlparse.urljoin(utils.get_url_root(), utils.view_url_for(assessment))
fd6c7a8dcb4a28a244645dcd93610d18682672b4
9,825
from typing import Set def get_secret_setting_names(settings: dict) -> Set[str]: """guess the setting names that likely contain sensitive values""" return { key for key in settings.keys() if AUTOFIND_SECRET_SETTINGS.match(key) and key not in AUTOFIND_SECRET_SETTINGS_EXCLUDED } | { key for key, value in settings['SETTINGS_DEFAULTS'].items() if value == PLACEHOLDER_FOR_SECRET and key not in AUTOFIND_SECRET_SETTINGS_EXCLUDED }
7cd7c8d90299d0bb3b143d10901ed33a90e85645
9,826
import base64 import requests def main(dict): """ Function that allows to send a get request to twitter API and retrieve the last 3 tweets of a specific account name. The parameter of the account is passed by Watson Assistant throught a context variable. Args: dict (dict): containing the parameter - in our case only one is used : "account" (e.g. @blackmirror) Return: list_tweets (list) : list containing text (and image) of the last three tweets. """ account_name = dict.get("account")[1:] client_key = '// your twitter dev account client_key //' client_secret = '// your twitter dev account client_secret //' key_secret = '{}:{}'.format(client_key, client_secret).encode('ascii') b64_encoded_key = base64.b64encode(key_secret) b64_encoded_key = b64_encoded_key.decode('ascii') base_url = 'https://api.twitter.com/' auth_url = '{}oauth2/token'.format(base_url) auth_headers = { 'Authorization': 'Basic {}'.format(b64_encoded_key), 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8' } auth_data = { 'grant_type': 'client_credentials' } auth_resp = requests.post(auth_url, headers=auth_headers, data=auth_data) access_token = auth_resp.json()['access_token'] search_headers = { 'Authorization': 'Bearer {}'.format(access_token) } search_url = '{}1.1/statuses/user_timeline.json?screen_name={}&count=3'.format(base_url, account_name) search_resp = requests.get(search_url, headers=search_headers) tweet_data = search_resp.json() list_tweets =[] for i in range(len(tweet_data)): # store the text of the tweet text = tweet_data[i].get("text") # if the tweet contains an image add this to the tweet text if(tweet_data[i].get("entities").get("media")): image = tweet_data[i].get("entities").get("media")[0].get("media_url_https") width = tweet_data[i].get("entities").get("media")[0].get("sizes").get("small").get("w") height = tweet_data[i].get("entities").get("media")[0].get("sizes").get("small").get("h") url = tweet_data[i].get("entities").get("media")[0].get("url") final = text + "<a href = '" + url + "'>" + "<img src = '" +image + "' height =" + str(height) + " width = "+ str(width) + ">" + "</a>" list_tweets.append(final) # if there is no image, then just save the text of the tweet else: list_tweets.append(text) return {"result": list_tweets}
5dddf4ad7c4ee45d1bf3a61f308989dffc451cc2
9,827
def build_classifier_model(tfhub_handle_preprocess, tfhub_handle_encoder): """Builds a simple binary classification model with BERT trunk.""" text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text') preprocessing_layer = hub.KerasLayer(tfhub_handle_preprocess, name='preprocessing') encoder_inputs = preprocessing_layer(text_input) encoder = hub.KerasLayer(tfhub_handle_encoder, trainable=True, name='BERT_encoder') outputs = encoder(encoder_inputs) net = outputs['pooled_output'] net = tf.keras.layers.Dropout(0.1)(net) net = tf.keras.layers.Dense(1, activation=None, name='classifier')(net) return tf.keras.Model(text_input, net)
03267ac3ab89acf3b6e7381e0149917371e1f29f
9,828
def execute_sql(sql: str, param: list): """ 执行查询sql, 返回列表 :param param: 执行参数 :param sql: 执行的sql语句 :return: 结果列表 """ cursor = connection.cursor() res = cursor.execute(sql, param) return res
cf33a7f4d6b6486def88e6a8256ebbfe8a5a2b0d
9,829
def query_jwt_required(fn): """ A decorator to protect a query resolver. If you decorate an resolver with this, it will ensure that the requester has a valid access token before allowing the resolver to be called. This does not check the freshness of the access token. """ @wraps(fn) def wrapper(*args, **kwargs): print(args[0]) token = kwargs.pop(current_app.config['JWT_TOKEN_ARGUMENT_NAME']) try: verify_jwt_in_argument(token) except Exception as e: return AuthInfoField(message=str(e)) return fn(*args, **kwargs) return wrapper
74d665dd853deb180554db13cfb40af5815d2858
9,830
def callers_for_code(code): """ Return all users matching the code. :param code: :return: """ return db.session.query(Caller).filter(Caller.code==code).all()
b8b1779c880144e8455e17a6f8c5051daa0839b2
9,831
import numpy import collections import json def WriteJsonFile(filename, params, database): """Write database out as a .dat file. Args: filename: Name of output file to write database to. params: Parameter structure used to generate the database. database: Dictionary of ndarrays of aerodynamic coefficients and derivatives. """ def _PrepareCoefficientArray(array): return numpy.reshape(numpy.rollaxis(array, -1), (array.size,)).tolist() keys_and_values = [ ('num_alphas', len(database['alphas'])), ('num_betas', len(database['betas'])), ('num_deltas', [len(database['delta1s']), len(database['delta2s']), len(database['delta3s']), len(database['delta4s']), len(database['delta5s']), len(database['delta6s']), len(database['delta7s']), len(database['delta8s'])]), ('reynolds_number', database['reynolds_number']), ('alphas', database['alphas']), ('betas', database['betas']), ('delta1s', database['delta1s']), ('delta2s', database['delta2s']), ('delta3s', database['delta3s']), ('delta4s', database['delta4s']), ('delta5s', database['delta5s']), ('delta6s', database['delta6s']), ('delta7s', database['delta7s']), ('delta8s', database['delta8s']), ('cfm', _PrepareCoefficientArray(database['cfm'])), ('dcfm_dp', _PrepareCoefficientArray(database['dcfm_dp'])), ('dcfm_dq', _PrepareCoefficientArray(database['dcfm_dq'])), ('dcfm_dr', _PrepareCoefficientArray(database['dcfm_dr'])), ('dcfm1', _PrepareCoefficientArray(database['dcfm1'])), ('dcfm1_dp', _PrepareCoefficientArray(database['dcfm1_dp'])), ('dcfm1_dq', _PrepareCoefficientArray(database['dcfm1_dq'])), ('dcfm1_dr', _PrepareCoefficientArray(database['dcfm1_dr'])), ('dcfm2', _PrepareCoefficientArray(database['dcfm2'])), ('dcfm2_dp', _PrepareCoefficientArray(database['dcfm2_dp'])), ('dcfm2_dq', _PrepareCoefficientArray(database['dcfm2_dq'])), ('dcfm2_dr', _PrepareCoefficientArray(database['dcfm2_dr'])), ('dcfm3', _PrepareCoefficientArray(database['dcfm3'])), ('dcfm3_dp', _PrepareCoefficientArray(database['dcfm3_dp'])), ('dcfm3_dq', _PrepareCoefficientArray(database['dcfm3_dq'])), ('dcfm3_dr', _PrepareCoefficientArray(database['dcfm3_dr'])), ('dcfm4', _PrepareCoefficientArray(database['dcfm4'])), ('dcfm4_dp', _PrepareCoefficientArray(database['dcfm4_dp'])), ('dcfm4_dq', _PrepareCoefficientArray(database['dcfm4_dq'])), ('dcfm4_dr', _PrepareCoefficientArray(database['dcfm4_dr'])), ('dcfm5', _PrepareCoefficientArray(database['dcfm5'])), ('dcfm5_dp', _PrepareCoefficientArray(database['dcfm5_dp'])), ('dcfm5_dq', _PrepareCoefficientArray(database['dcfm5_dq'])), ('dcfm5_dr', _PrepareCoefficientArray(database['dcfm5_dr'])), ('dcfm6', _PrepareCoefficientArray(database['dcfm6'])), ('dcfm6_dp', _PrepareCoefficientArray(database['dcfm6_dp'])), ('dcfm6_dq', _PrepareCoefficientArray(database['dcfm6_dq'])), ('dcfm6_dr', _PrepareCoefficientArray(database['dcfm6_dr'])), ('dcfm7', _PrepareCoefficientArray(database['dcfm7'])), ('dcfm7_dp', _PrepareCoefficientArray(database['dcfm7_dp'])), ('dcfm7_dq', _PrepareCoefficientArray(database['dcfm7_dq'])), ('dcfm7_dr', _PrepareCoefficientArray(database['dcfm7_dr'])), ('dcfm8', _PrepareCoefficientArray(database['dcfm8'])), ('dcfm8_dp', _PrepareCoefficientArray(database['dcfm8_dp'])), ('dcfm8_dq', _PrepareCoefficientArray(database['dcfm8_dq'])), ('dcfm8_dr', _PrepareCoefficientArray(database['dcfm8_dr'])) ] output_dict = collections.OrderedDict( keys_and_values + [('params', dict_util.OrderDict(params))]) class _ParamsEncoder(json.JSONEncoder): """JSON encoder which handles the Airfoil objects and numpy arrays.""" def default(self, o): if isinstance(o, airfoil.Airfoil): return str(o) elif isinstance(o, numpy.ndarray): return o.tolist() return json.JSONEncoder.default(self, o) with open(filename, 'w') as f: output_string = json.dumps(output_dict, separators=(', ', ':\n '), cls=_ParamsEncoder) output_string = (output_string .replace(', \"', ',\n\"') .replace('], [', '],\n [') .replace(' [[', '[[') .replace('{', '{\n') .replace('}', '\n}')) + '\n' f.write(output_string)
38fe51e463bb099ecb7f1a5beb3c427f471b7611
9,832
def headers(): """ default HTTP headers for all API calls """ return {"Content-type": "application/json"}
e601410c7ba22f28a88e47742349087744495c6b
9,833
import logging def preprocess_confidence(train_df, test_df=None): """ Feature creation that should be done given training data and then merged \ with test data. """ ATTRIBUTION_CATEGORIES = [ # V1 Features # ############### ['ip'], ['app'], ['device'], ['os'], ['channel'], # V2 Features # ############### ['app', 'channel'], ['app', 'os'], ['app', 'device'], # V3 Features # ############### ['channel', 'os'], ['channel', 'device'], ['os', 'device'] ] # Find frequency of is_attributed for each unique value in column logging.info("Calculating new features: Confidence rates...") for cols in ATTRIBUTION_CATEGORIES: # New feature name new_feature = '_'.join(cols) + '_confRate' logging.info(new_feature) # Perform the groupby group_object = train_df.groupby(cols) # Group sizes group_sizes = group_object.size() # Print group size descriptives once if test_df is None: logging.info( "Calculating confidence-weighted rate for: {}.\n Saving to: {}. \ Group Max / Mean / Median / Min: {} / {} / {} / {}".format( cols, new_feature, group_sizes.max(), np.round(group_sizes.mean(), 2), np.round(group_sizes.median(), 2), group_sizes.min() )) # Merge function def merge_new_features(group_object, df): df = df.merge( group_object['is_attributed']. \ apply(rate_calculation). \ reset_index(). \ rename( index=str, columns={'is_attributed': new_feature} )[cols + [new_feature]], on=cols, how='left' ) # Replace NaNs by average of column df = df.fillna(df.mean()) return df # Perform the merge if test_df is None: train_df = merge_new_features(group_object, train_df) elif test_df is not None: test_df = merge_new_features(group_object, test_df) # Return the relevant data frame if test_df is None: return train_df elif test_df is not None: return test_df
ff157a02ac9253fb1fd2e2306fb207f6c0022317
9,834
def ancestral_state_pair(aln,tree,pos1,pos2,\ ancestral_seqs=None,null_value=gDefaultNullValue): """ """ ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree) ancestral_names_to_seqs = \ dict(zip(ancestral_seqs.Names,ancestral_seqs.ArraySeqs)) distances = tree.getDistances() tips = tree.getNodeNames(tipsonly=True) # map names to nodes (there has to be a built-in way to do this # -- what is it?) nodes = dict([(n,tree.getNodeMatchingName(n)) for n in tips]) # add tip branch lengths as distance b/w identical tips -- this is # necessary for my weighting step, where we want correlated changes # occuring on a single branch to be given the most weight distances.update(dict([((n,n),nodes[n].Length) for n in nodes])) result = 0 names_to_seqs = dict(zip(aln.Names,aln.ArraySeqs)) for i in range(len(tips)): org1 = tips[i] seq1 = names_to_seqs[org1] for j in range(i,len(tips)): org2 = tips[j] seq2 = names_to_seqs[org2] ancestor = nodes[org1].lastCommonAncestor(nodes[org2]).Name if ancestor == org1 == org2: # we're looking for correlated change along a # single branch ancestral_seq = ancestral_names_to_seqs[\ nodes[org1].ancestors()[0].Name] else: # we're looking for correlated change along different # branches (most cases) ancestral_seq = ancestral_names_to_seqs[ancestor] # get state of pos1 in org1, org2, and ancestor org1_p1 = seq1[pos1] org2_p1 = seq2[pos1] ancestor_p1 = ancestral_seq[pos1] # if pos1 has changed in both organisms since their lca, # this is a position of interest if org1_p1 != ancestor_p1 and org2_p1 != ancestor_p1: # get state of pos2 in org1, org2, and ancestor org1_p2 = seq1[pos2] org2_p2 = seq2[pos2] ancestor_p2 = ancestral_seq[pos2] # if pos2 has also changed in both organisms since their lca, # then we add a count for a correlated change if org1_p2 != ancestor_p2 and org2_p2 != ancestor_p2: # There are a variety of ways to score. The simplest is # to increment by one, which seems to be what was done # in other papers.) This works well, but in a quick test # (alpha helices/myoglobin with several generally # high scoring alphabets) weighting works better. A more # detailed analysis is in order. #result += 1 # Now I weight based on distance so # changes in shorter time are scored higher than # in longer time. (More ancient changes # are more likely to be random than more recent changes, # b/c more time has passed for the changes to occur in.) # This gives results # that appear to be better under some circumstances, # and at worst, about the same as simply incrementing # by 1. result += (1/distances[(org1,org2)]) # Another one to try might involve discounting the score # for a pair when one changes and the other doesn't. return result
f5f1b58231dea83f2d546cc3ffb42ae94b769107
9,835
def get_a(i,j,k): """returns between tad coordinates""" i,j,k = np.sort([i,j,k]) ax,ay=[],[] for x_ in range(i,j+1): for y_ in range(j+1,k+1): ax.append(x_) ay.append(y_) return ax,ay
ed32978045b32d4bf6863919177a726f5ee55d76
9,836
def get_mode(input_list: list): """ Get's the mode of a certain list. If there are few modes, the function returns False. This is a very slow way to accomplish this, but it gets a mode, which can only be 4 things, so it should be OK """ if len(input_list) == 0: return False distinguished_elements = {} for element in input_list: if element not in distinguished_elements: distinguished_elements[element] = 0 # Count all of the elements and save them in a dictionary for key, value in distinguished_elements.items(): distinguished_elements[key] = input_list.count(key) # Get the mode max_key = None max_value = 0 for key, value in distinguished_elements.items(): if value > max_value: max_key = key max_value = value # If there's a second mode, return False for key, value in distinguished_elements.items(): if value == max_value and key != max_key: return False return max_key
552620bb68e3922dff7b19f52f5da9dbee813ca3
9,837
def qqe(close, length=None, smooth=None, factor=None, mamode=None, drift=None, offset=None, **kwargs): """Indicator: Quantitative Qualitative Estimation (QQE)""" # Validate arguments length = int(length) if length and length > 0 else 14 smooth = int(smooth) if smooth and smooth > 0 else 5 factor = float(factor) if factor else 4.236 wilders_length = 2 * length - 1 mamode = mamode if isinstance(mamode, str) else "ema" close = verify_series(close, max(length, smooth, wilders_length)) drift = get_drift(drift) offset = get_offset(offset) if close is None: return # Calculate Result rsi_ = rsi(close, length) _mode = mamode.lower()[0] if mamode != "ema" else "" rsi_ma = ma(mamode, rsi_, length=smooth) # RSI MA True Range rsi_ma_tr = rsi_ma.diff(drift).abs() # Double Smooth the RSI MA True Range using Wilder's Length with a default # width of 4.236. smoothed_rsi_tr_ma = ma("ema", rsi_ma_tr, length=wilders_length) dar = factor * ma("ema", smoothed_rsi_tr_ma, length=wilders_length) # Create the Upper and Lower Bands around RSI MA. upperband = rsi_ma + dar lowerband = rsi_ma - dar m = close.size long = Series(0, index=close.index) short = Series(0, index=close.index) trend = Series(1, index=close.index) qqe = Series(rsi_ma.iloc[0], index=close.index) qqe_long = Series(npNaN, index=close.index) qqe_short = Series(npNaN, index=close.index) for i in range(1, m): c_rsi, p_rsi = rsi_ma.iloc[i], rsi_ma.iloc[i - 1] c_long, p_long = long.iloc[i - 1], long.iloc[i - 2] c_short, p_short = short.iloc[i - 1], short.iloc[i - 2] # Long Line if p_rsi > c_long and c_rsi > c_long: long.iloc[i] = npMaximum(c_long, lowerband.iloc[i]) else: long.iloc[i] = lowerband.iloc[i] # Short Line if p_rsi < c_short and c_rsi < c_short: short.iloc[i] = npMinimum(c_short, upperband.iloc[i]) else: short.iloc[i] = upperband.iloc[i] # Trend & QQE Calculation # Long: Current RSI_MA value Crosses the Prior Short Line Value # Short: Current RSI_MA Crosses the Prior Long Line Value if (c_rsi > c_short and p_rsi < p_short) or (c_rsi <= c_short and p_rsi >= p_short): trend.iloc[i] = 1 qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i] elif (c_rsi > c_long and p_rsi < p_long) or (c_rsi <= c_long and p_rsi >= p_long): trend.iloc[i] = -1 qqe.iloc[i] = qqe_short.iloc[i] = short.iloc[i] else: trend.iloc[i] = trend.iloc[i - 1] if trend.iloc[i] == 1: qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i] else: qqe.iloc[i] = qqe_short.iloc[i] = short.iloc[i] # Offset if offset != 0: rsi_ma = rsi_ma.shift(offset) qqe = qqe.shift(offset) long = long.shift(offset) short = short.shift(offset) # Handle fills if "fillna" in kwargs: rsi_ma.fillna(kwargs["fillna"], inplace=True) qqe.fillna(kwargs["fillna"], inplace=True) qqe_long.fillna(kwargs["fillna"], inplace=True) qqe_short.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: rsi_ma.fillna(method=kwargs["fill_method"], inplace=True) qqe.fillna(method=kwargs["fill_method"], inplace=True) qqe_long.fillna(method=kwargs["fill_method"], inplace=True) qqe_short.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it _props = f"{_mode}_{length}_{smooth}_{factor}" qqe.name = f"QQE{_props}" rsi_ma.name = f"QQE{_props}_RSI{_mode.upper()}MA" qqe_long.name = f"QQEl{_props}" qqe_short.name = f"QQEs{_props}" qqe.category = rsi_ma.category = "momentum" qqe_long.category = qqe_short.category = qqe.category # Prepare DataFrame to return data = { qqe.name: qqe, rsi_ma.name: rsi_ma, # long.name: long, short.name: short qqe_long.name: qqe_long, qqe_short.name: qqe_short } df = DataFrame(data) df.name = f"QQE{_props}" df.category = qqe.category return df
9f1da38313effb6a585dd4b6a162034b83989557
9,838
def reference_col( tablename, nullable=False, pk_name="id", foreign_key_kwargs=None, column_kwargs=None ): """Column that adds primary key foreign key reference. Usage: :: category_id = reference_col('category') category = relationship('Category', backref='categories') """ foreign_key_kwargs = foreign_key_kwargs or {} column_kwargs = column_kwargs or {} return Column( db.ForeignKey("{0}.{1}".format(tablename, pk_name), **foreign_key_kwargs), nullable=nullable, **column_kwargs )
a266d81ac1c323dcf6d19e511b147b2b190b3c7e
9,839
def Ei(x, minfloat=1e-7, maxfloat=10000): """Ei integral function.""" minfloat = min(np.abs(x), minfloat) maxfloat = max(np.abs(x), maxfloat) def f(t): return np.exp(t) / t if x > 0: return (quad(f, -maxfloat, -minfloat)[0] + quad(f, minfloat, x)[0]) else: return quad(f, -maxfloat, x)[0]
6c6630f4d9a188ccb7a2e7a77b26a8c89a976e65
9,840
def _MaybeMatchCharClassEsc (text, position, include_sce=True): """Attempt to match a U{character class escape <http://www.w3.org/TR/xmlschema-2/#nt-charClassEsc>} expression. @param text: The complete text of the regular expression being translated @param position: The offset of the backslash that would begin the potential character class escape @param include_sce: Optional directive to include single-character escapes in addition to character cllass escapes. Default is C{True}. @return: C{None} if C{position} does not begin a character class escape; otherwise a pair C{(cps, p)} as in L{_MatchCharPropBraced}.""" if '\\' != text[position]: return None position += 1 if position >= len(text): raise RegularExpressionError(position, "Incomplete character escape") nc = text[position] np = position + 1 cs = None if include_sce: cs = unicode.SingleCharEsc.get(nc) if cs is None: cs = unicode.MultiCharEsc.get(nc) if cs is not None: return (cs, np) if 'p' == nc: return _MatchCharPropBraced(text, np) if 'P' == nc: (cs, np) = _MatchCharPropBraced(text, np) return (cs.negate(), np) if (not include_sce) and (nc in unicode.SingleCharEsc): return None raise RegularExpressionError(np, "Unrecognized escape identifier '\\%s'" % (nc,))
55394c636b94ea2008161e350ba9e9de3250555d
9,841
import urllib import http def request(command, url, headers={}, data=None): """Mini-requests.""" class Dummy: pass parts = urllib.parse.urlparse(url) c = http.client.HTTPConnection(parts.hostname, parts.port) c.request( command, urllib.parse.urlunparse(parts._replace(scheme="", netloc="")), headers=headers, body=data, ) r = c.getresponse() result = Dummy() result.status_code = r.status result.headers = r.headers result.content = r.read() return result
a08c0be0549ebe133f42ca56b77c4f113627db2a
9,842
import time def sum_of_n_2(n): """ 迭代求和,仅使用加法。 :param n: 1 到 n 的和 :return: 元组(元素的组合),第一位为值,第二位为所花时间 """ start = time.time() the_sum = 0 for i in range(1, n + 1): the_sum = the_sum + i end = time.time() return the_sum, end - start
45a07d5a8d02f515b8d0730a9a10bf71398092e8
9,844
def TSA_t_g( temperature, temperature_vegetation, vegetation_fraction): """ //Temperature of ground from Tvegetation //Based on two sources pixel split //Chen et al., 2005. IJRS 26(8):1755-1762. //Estimation of daily evapotranspiration using a two-layer remote sensing model. Ground temperature, bare soil TSA_t_g( temperature, temperature_vegetation, vegetation_fraction) """ result = (temperature - (vegetation_fraction*temperature_vegetation)) / (1 - vegetation_fraction) return result
c1189f2554e3f7dba13a2c8fd8698f906d343611
9,845
def get_dict_buildin(dict_obj, _type=(int, float, bool, str, list, tuple, set, dict)): """ get a dictionary from value, ignore non-buildin object """ non_buildin = {key for key in dict_obj if not isinstance(dict_obj[key], _type)} return dict_obj if not non_buildin else {key: dict_obj[key] for key in dict_obj if key not in non_buildin}
14e68e5cc5c35a5e4a440dfb4c842a987c441da6
9,846
def start(timeout=5, backlog_reassign_delay=None): """Create, start, and return the block pipeline.""" pipeline = create_pipeline(timeout=timeout, backlog_reassign_delay=backlog_reassign_delay) pipeline.start() return pipeline
cb157de13af43af5830ffc75654fdba16de4da44
9,848
def preprocess_variable_features(features, interaction_augmentation, normalization): """ Features preprocessing following Khalil et al. (2016) Learning to Branch in Mixed Integer Programming. Parameters ---------- features : 2D np.ndarray The candidate variable features to preprocess. interaction_augmentation : bool Whether to augment features with 2-degree interactions (useful for linear models such as SVMs). normalization : bool Wether to normalize features in [0, 1] (i.e., query-based normalization). Returns ------- variable_features : 2D np.ndarray The preprocessed variable features. """ # 2-degree polynomial feature augmentation if interaction_augmentation: interactions = ( np.expand_dims(features, axis=-1) * \ np.expand_dims(features, axis=-2) ).reshape((features.shape[0], -1)) features = np.concatenate([features, interactions], axis=1) # query-based normalization in [0, 1] if normalization: features -= features.min(axis=0, keepdims=True) max_val = features.max(axis=0, keepdims=True) max_val[max_val == 0] = 1 features /= max_val return features
2b8d32a69e4ebe645fc942e7fe57ecea1560f158
9,849
def reverse_inverse_from_cholesky_band_proto(S, l): """ S -> L :param S: sparse subset inverse of banded matrix L :param l: number of subdiagonals in S :return: Ls: reconstructed cholesky decomposition """ # forward pass k = l + 1 # bandwidth n = S.shape[1] # construct vector e = [1, 0, ..., 0] V = np.zeros_like(S) e = np.zeros((k)) e[0] = 1 for i in range(n): chol_S = np.linalg.cholesky(S[i : i + k, i : i + k]) V[i : i + k, i] = cho_solve((chol_S, True), e[: n - i]) Ls = V / np.sqrt(np.diag(V)[None, :]) return Ls
90c421fc71a76be0adff7ce49d62bc5b364fdf94
9,851
def fused_bn_grad_5D_run_2(shape, dtype, eps, kernel_name, attrs): """ test bnGrad_2 """ def get_expect(dgamma_red_hw, dbeta_red_hw, var, gamma, eps, data_shape): m = data_shape[0] * data_shape[2] * data_shape[3] neg_m_rec = -1.0 / m eps = np.array([eps], dtype=var.dtype).reshape([1] * 5) neg_m_rec = np.array([neg_m_rec], dtype=var.dtype).reshape([1] * 5) s = (1.0 / np.sqrt(var + eps)).astype(var.dtype) dgamma = s * np.sum(dgamma_red_hw, axis=0, keepdims=True) dbeta = np.sum(dbeta_red_hw, axis=0, keepdims=True) rs = gamma * s dgamma_dx = neg_m_rec * rs * s * dgamma dbeta_dx = neg_m_rec * rs * dbeta return [dgamma, dbeta, rs, dgamma_dx, dbeta_dx] shape_nc1c0 = (shape[0], shape[1], 1, 1, shape[4]) shape_c1c0 = (1, shape[1], 1, 1, shape[4]) bng2_shapes = [shape_nc1c0, shape_nc1c0, shape_c1c0, shape_c1c0] bng2_dtypes = ["float32"] * len(bng2_shapes) bng2_opattrs = [eps, shape] # np.random.seed(0) inputs = [np.random.rand(*s).astype(t) for (s, t) in zip(bng2_shapes, bng2_dtypes)] out_shapes = [shape_c1c0, shape_c1c0, shape_c1c0, shape_c1c0, shape_c1c0] if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(fused_batch_norm_grad_split.fused_bn_grad_2, bng2_shapes, bng2_dtypes, bng2_opattrs, kernel_name=kernel_name + "_step2", attrs=attrs, tuning=t) if t: outputs = [np.full(s, np.nan, "float32") for s in out_shapes] expects = get_expect(*inputs, *bng2_opattrs) return mod, expects, {"args": (*inputs, *outputs), 'outputs': tuple(range(-len(outputs), 0)), 'tuning': False} else: return mod mod = utils.op_build_test(fused_batch_norm_grad_split.fused_bn_grad_2, bng2_shapes, bng2_dtypes, bng2_opattrs, kernel_name=kernel_name + "_step2", attrs=attrs) outputs = [np.full(s, np.nan, "float32") for s in out_shapes] outputs = list(utils.mod_launch(mod, (*inputs, *outputs), outputs=tuple(range(-len(outputs), 0)), expect=get_expect(*inputs, *bng2_opattrs))) expects = get_expect(*inputs, *bng2_opattrs) rtol, atol = get_rtol_atol("fused_batch_norm_grad", dtype) results = list(map(lambda x, y: np.allclose(x, y, rtol=rtol, atol=atol), outputs, expects)) print("results", results) return inputs, outputs, expects, all(results)
0d792e48be537c7415c9e3ac465f39de5d1c136c
9,852
import numpy def get_best_distance(pdb_file, reference_point, resname="GRW"): """ Finds fragment atom closest to the user-defined reference point. Parameters ---------- pdb_file : str Path to PDB file. reference_point : list[float] Coordinates of the reference point to which the distance should be calculated. resname : str Residue name of the grown fragment, default = "GRW". Returns ------- Distance from the closest atom to the reference point and closes atom name. """ struct = parser.get_structure("epoch", pdb_file) ref_vector = numpy.array(reference_point) best_dist = None for residue in struct.get_residues(): if residue.resname == resname: for atom in residue.get_atoms(): atom_vector = numpy.array(atom.get_coord()) dist = numpy.linalg.norm(atom_vector - ref_vector) if not best_dist or dist < best_dist: best_atom = atom best_dist = dist return best_dist, best_atom
5ad05055ddede103e2f24d91adbb6c950f6bf886
9,853
def default_IM_weights(IM_j: IM, IMs: np.ndarray) -> pd.Series: """ Returns the default IM weights based on the conditioning IM If the conditioning IM (IM_j) is spectral acceleration (SA) the weighting is 70% across the SAs and 30% across all other IMs Otherwise a uniform weighting distribution is used Parameters ---------- IM_j: IM Conditioning IM IMs: list of IM IM types for which to get the default weights Returns ------- im_weights: pandas series Weigths for the specified IM types """ # Use 70% (SA) / 30% (other) weighting if # conditioning IM is SA if IM_j.is_pSA(): pSA_mask = np.asarray([cur_im.im_type is IMType.pSA for cur_im in IMs]) n_pSA_IMs = np.count_nonzero(pSA_mask) n_other_IMs = IMs.size - n_pSA_IMs if n_other_IMs == 0: im_weights = np.ones(n_pSA_IMs, dtype=float) / n_pSA_IMs else: im_weights = np.full(IMs.size, np.nan) im_weights[pSA_mask] = (1.0 / n_pSA_IMs) * 0.7 im_weights[~pSA_mask] = (1.0 / n_other_IMs) * 0.3 # Otherwise, default to uniform weighting else: print( f"WARNING: Defaulting to uniform IM weighting as the " f"conditioning is not SA." ) im_weights = np.ones(IMs.size, dtype=float) / IMs.size return pd.Series(data=im_weights, index=IMs)
d13dcd0e1022923512e35b798307e27e90aba40f
9,854
from typing import Type import mimetypes def guess_file_type(filename: FileSystemPath) -> Type[PackFile]: """Helper to figure out the most appropriate file type depending on a filename.""" filename = str(filename) if filename.endswith(".json"): return JsonFile elif filename.endswith((".yml", ".yaml")): return YamlFile elif filename.endswith(".png"): return PngFile mime_type, _ = mimetypes.guess_type(filename, strict=False) if mime_type and mime_type.startswith("text/"): return TextFile return BinaryFile
eedb9f90f8caa754334614017f48ccafea6d2a07
9,855
import math def _fcn_mg_joint_pos(t, q_init, q_end, t_strike_end): """Helper function for `create_mg_joint_pos_policy()` to fit the `TimePolicy` scheme""" return ((q_end - q_init) * min(t / t_strike_end, 1) + q_init) / 180 * math.pi
892a494ea5ee2033d2f29efe7400bce8aab30c1c
9,856
def test_circuit_run(default_compilation_configuration): """Test function for `run` method of `Circuit`""" def f(x): return x + 42 x = hnp.EncryptedScalar(hnp.UnsignedInteger(3)) inputset = range(2 ** 3) circuit = hnp.compile_numpy_function(f, {"x": x}, inputset, default_compilation_configuration) for x in inputset: assert circuit.run(x) == circuit.engine.run(x)
068473b1390e9af69ef11d9c4189012ffa2c403e
9,857
def detection(): """ Programmed by: David Williams, Aspen Henry, and Slate Hayes Description: detection is a state where the server tries to find all the faces in a frame, if a face is registered then it looks for fingers held up next to the face. """ #STEP 1: Get and Process frame # print("Detection!") frame = '' if not queues["rawFrame"].empty(): frame = queues["rawFrame"].get_nowait() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: ID, conf = recognizer.predict(cv2.resize(gray[y:y+h, x:x+w], (400, 400))) #print("User ID:",ID, "\tconf:", conf) # print(conf) global registered_ids if ID in registered_ids: cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0, 2)) cv2.rectangle(frame, (x-int(1.5*w), y-int(1.5*h/2)), (x-2, y+int(1.5*(h/2))), (255, 0, 0, 2)) cv2.putText(frame, usernames[ID], (x, y+h+40), font, 2,(255,255,255),1,cv2.LINE_AA) fingers = -1 roi = frame[y-int(1.5*h/2):y+int(1.5*h/2), x-int(1.5*w):x-2] fingers = gesture.get_fingers(roi, True) cv2.putText(frame, str(fingers), (x-int(1.5*w), y+int(1.5*h/2)+5), font, 2, (255,255,255), 1, cv2.LINE_AA) tagProcessing(usernames[ID], fingers) #print("User ID:",ID," Fingers:", fingers) else: cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255, 2)) cv2.putText(frame, "unkown", (x, y+h+40), font, 1,(255,255,255),1,cv2.LINE_AA) #STEP 2: Facial Recognition #STEP 3: Gesture Recognition #STEP 4: Build CoMPES Tag #STEP 5: Send processed frame to webpage return frame
b5b36a8cceeb38467ae5f63840dfc13c8af9cfe7
9,858
import re def rex_coverage(patterns, example_freqs, dedup=False): """ Given a list of regular expressions and a dictionary of examples and their frequencies, this counts the number of times each pattern matches a an example. If ``dedup`` is set to ``True``, the frequencies are ignored, so that only the number of keys is returned. """ results = [] for p in patterns: p = '%s%s%s' % ('' if p.startswith('^') else '^', p, '' if p.endswith('$') else '$') r = re.compile(p, re.U) if dedup: results.append(sum(1 if re.match(r, k) else 0 for k in example_freqs)) else: results.append(sum(n if re.match(r, k) else 0 for (k, n) in example_freqs.items())) return results
a9ac988348d1fa037508b0a2b6c71e077ca41627
9,859
def build_diamond(validated_letter): """ >:param str validated_letter: A capital letter, that will be used to generate the list of strings needed to print out the diamond. >**Returns:** A list a strings that contains the correct spacing for printing the diamond. build_diamond is used to generate the list of strings needed to print the diamond structure. It takes a single argument of a letter (in string format), and returns a list of strings. This list of strings can then be printed with newline characters (using join) to output the diamond structure. """ a_ascii = ord('A') rows = ord(validated_letter) - a_ascii + 1 diamond = [] for row in list(range(rows)) + list(reversed(range(rows-1))): if row == 0: diamond.append('{: <{w1}}{current_letter}'.format('', w1=rows-1, current_letter=chr(a_ascii+row))) else: diamond.append('{: <{w1}}{current_letter}{: <{w2}}{current_letter}'.format('', '', w1=rows-row-1, current_letter=chr(a_ascii+row), w2=row*2-1)) return diamond
bd55281ee275d402d4f35701daacb3be0246812e
9,860
from datetime import datetime def human_timestamp(timestamp, now=datetime.datetime.utcnow): """Turn a :py:class:`datetime.datetime` into a human-friendly string.""" fmt = "%d %B at %H:%M" if timestamp.year < now().year: fmt = "%d %B %Y at %H:%M" return timestamp.strftime(fmt)
37cc6a3918aaa3622945f6650903f64a371e86a9
9,861
from typing import Concatenate def inception_block(x: tf.keras.layers.Layer, nb_filters: int=64, name: str="block1"): """ 3D inception block, as per Itzik et al. (2018) """ conv3d = partial(Conv3D, activation="linear", use_bias=False, padding="same") batchn = partial(BatchNormalization, momentum=0.99, fused=True) activn = partial(Activation, activation="relu") conv_1x1 = conv3d(nb_filters, (1, 1, 1), name=name + "_1x1_conv3d")(x) conv_1x1 = batchn(name=name + "_1x1_bn")(conv_1x1) conv_1x1 = activn(name=name + "_1x1_relu")(conv_1x1) conv_3x3 = conv3d(nb_filters // 2, (3, 3, 3), name=name + "_3x3_conv3d")(conv_1x1) conv_3x3 = batchn(name=name + "_3x3_bn")(conv_3x3) conv_3x3 = activn(name=name + "_3x3_relu")(conv_3x3) conv_5x5 = conv3d(nb_filters // 2, (5, 5, 5), name=name + "_5x5_conv3d")(conv_1x1) conv_5x5 = batchn(name=name + "_5x5_bn")(conv_5x5) conv_5x5 = activn(name=name + "_5x5_relu")(conv_5x5) avgpool = AvgPool3D(strides=(1, 1, 1), pool_size=(3, 3, 3), padding="same", name=name+"_avgpool")(x) avgpool = conv3d(nb_filters, (1, 1, 1), name=name + "_avgpool_conv3d")(avgpool) avgpool = batchn(name=name + "_avgpool_bn")(avgpool) avgpool = activn(name=name + "_avgpool_relu")(avgpool) return Concatenate(axis=-1, name=name+"_concat")([conv_1x1, conv_3x3, conv_5x5, avgpool])
8cfebd2a147fb1d8b6174df87dd220ab15a56205
9,862
import collections def _flatten_dict(d, parent_key='', sep='/'): """Flattens a dictionary, keeping empty leaves.""" items = [] for k, v in d.items(): path = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(_flatten_dict(v, path, sep=sep).items()) else: items.append((path, v)) # Keeps the empty dict if it was set explicitly. if parent_key and not d: items.append((parent_key, {})) return dict(items)
4bfb4c19209cb7997856a337c7ad66965598571a
9,863
def secret(): """ Authenticated only route @authenticated will flash a message if not authed """ return render_template('secret.html')
4c0708d3e65942d3afbeaa2159f55a735a31a6a9
9,864
def mk_graph(img_dim, num_labels, poly_width = 3, depth = 3, hidd_repr_size = 512): """ The function that creates and returns the graph required to img_dim = image dimensions (Note, that the image needs to be flattened out before feeding here) num_labels = no_of classes to classify into """ comp_graph = tf.Graph() with comp_graph.as_default(): # step 1: Create the input placeholders for the input to the computation with tf.name_scope("Input"): tf_input_images = tf.placeholder(tf.float32, shape=(None, img_dim), name="Input_Labels") tf_input_labels = tf.placeholder(tf.float32, shape=(None, num_labels), name="Input_Labels") print("\nInput Placeholder Tensors:", tf_input_images, tf_input_labels) # step 2: Construct the network architecture based on the width and the depth specified # Note that this is static graph creation # There doesn't seem to be any reason for dynamic graph building def neural_layer(input, out_dim, step): """ The method that defines a single neural layer """ # method to calculate the factorial of a number factorial = lambda x: 1 if(x <= 1) else x * factorial(x - 1) with tf.variable_scope("neural_layer"+str(step)): # create the variable tensors -> # additive bias bias = tf.get_variable("bias", shape=(out_dim), initializer=tf.zeros_initializer()) # additive weight transformations inp_dim = input.get_shape()[-1] weights = [tf.get_variable("weight"+str(i), shape=(inp_dim, out_dim), initializer=tf.contrib.layers.xavier_initializer(seed = FLAGS.seed_value)) for i in range(1, poly_width)] # attach the summary ops to the biases and weights bias_summary = tf.summary.histogram("Layer"+str(step)+"/bias", bias) weights_summary = [tf.summary.histogram("Layer"+str(step)+"/"+weight.name, weight) for weight in weights] # define the compuataion ops for this layer out = bias # initialize the output tensor for degree in range(1, poly_width): out = out + tf.matmul(tf.pow(input, degree) / factorial(degree), weights[degree - 1]) return out # return the calculated tensor if(depth > 1): lay1_out = neural_layer(tf_input_images, hidd_repr_size, 1) else: lay1_out = neural_layer(tf_input_images, num_labels, 1) # define the while loop for creating the hidden layer computations lay_out = lay1_out # initialize to output of first layer for lay_no in range(2, depth): lay_out = neural_layer(lay_out, hidd_repr_size, lay_no) # define the output layer if(depth > 1): output = neural_layer(lay_out, num_labels, depth) else: output = lay1_out print("Final output:", output) return comp_graph, {"output": output, "labels": tf_input_labels, "input": tf_input_images}
a6d63bd967762289f1998af391112a682f89234f
9,865
def createrawtransaction(inputs, outputs, outScriptGenerator=p2pkh): """ Create a transaction with the exact input and output syntax as the bitcoin-cli "createrawtransaction" command. If you use the default outScriptGenerator, this function will return a hex string that exactly matches the output of bitcoin-cli createrawtransaction. But this function is extended beyond bitcoin-cli in the following ways: inputs can have a "sig" field which is a binary hex string of the signature script outputs can be a list of tuples rather than a dictionary. In that format, they can pass complex objects to the outputScriptGenerator (use a tuple or an object), be a list (that is passed to CScript()), or a callable """ if not type(inputs) is list: inputs = [inputs] tx = CTransaction() for i in inputs: sigScript = i.get("sig", b"") tx.vin.append(CTxIn(COutPoint(i["txid"], i["vout"]), sigScript, 0xffffffff)) pairs = [] if type(outputs) is dict: for addr, amount in outputs.items(): pairs.append((addr,amount)) else: pairs = outputs for addr, amount in pairs: if callable(addr): tx.vout.append(CTxOut(amount * BTC, addr())) elif type(addr) is list: tx.vout.append(CTxOut(amount * BTC, CScript(addr))) elif addr == "data": tx.vout.append(CTxOut(0, CScript([OP_RETURN, unhexlify(amount)]))) else: tx.vout.append(CTxOut(amount * BTC, outScriptGenerator(addr))) tx.rehash() return hexlify(tx.serialize()).decode("utf-8")
05d41c89356513d989eaffdfc3a89fb4e987e0a5
9,868
from typing import List def get_versions() -> List[str]: """ Gets a list of recognized CRSD urns. Returns ------- List[str] """ return list(sorted(urn_mapping.keys()))
e1730f386a4e26197800069a8f93b1a8ff850512
9,869
import math def k2_factor_sq(df=inf,p=95): """Return a squared coverage factor for an elliptical uncertainty region :arg df: the degrees-of-freedom (>=2) :arg p: the coverage probability (%) :type df: float :type p: int or float Evaluates the square of the coverage factor for an elliptical uncertainty region with coverage probability ``p`` and ``df`` degrees of freedom based on the F-distribution. **Example**:: >>> reporting.k2_factor_sq(3) 56.99999999999994 """ p = p / 100.0 if df > inf_dof: return -2.0 * math.log(1-p) elif(df>1): # norm = l * (n-1) / (n - l) in the general # 'l'-dimensional case for 'n' observations # here l = 2, df = n-1 norm = 2*df / (df-1) # `fdtri` is the inverse of the cumulative F distribution # returning `x` such that `fdtr(dfn, dfd, x) = p` return norm*special.fdtri(2.0,df-1.0,p) else: raise RuntimeError("invalid df={!r}".format( df ) )
b6c4fbb0eb1bbb5a9c15ab44c791d937bc7bebd2
9,870
def get_cluster_version_path(cluster_id): """ Gives s3 full path of cluster_version file of a given cluster_id """ base_path = s3.get_cluster_info_base_path() return "%s/%s/cluster_version.json"%(base_path, cluster_id)
ef514cde40aa582aa265ac2fd912077e3e1e17c9
9,871
import importlib def import_module_attribute(function_path): """Import and return a module attribute given a full path.""" module, attribute = function_path.rsplit(".", 1) app_module = importlib.import_module(module) return getattr(app_module, attribute)
ce2647bb193c2a6c07949073f7c0d142ee8cd1b5
9,872
def rgb_to_hex(red, green, blue): """Give three color arrays, return a list of hex RGB strings""" pat = "#{0:02X}{1:02X}{2:02X}" return [pat.format(r & 0xff, g & 0xff, b & 0xff) for r, g, b in zip(red, green, blue)]
9126ae9e05d4a005d397f13fd4f0d9400efe5a65
9,873
from typing import Tuple def run_cli(cmd: str, print_output: bool = True, check: bool = False,) -> Tuple[int, str, str]: """Runs the command with `dcos` as the prefix to the shell command and returns a tuple containing exit code, stdout, and stderr. eg. `cmd`= "package install pkg-name" results in: $ dcos package install pkg-name """ dcos_cmd = "dcos {}".format(cmd) log.info("(CLI) {}".format(dcos_cmd)) return _run_cmd(dcos_cmd, print_output, check)
3c6697061dab28fd3f741931d7f2430360f037ae
9,874
def get_initialization(arg, indent_count): """Get the initialization string to use for this argument.""" t = get_base_c_type(arg) if arg.is_array(): if t == "char*": init = '[] = { "String 1", "String 2", "String 0" }' else: if arg.is_dictionary() or arg.is_structure(): indent = indent_count * " " si0 = __make_structure_init_string(arg, 0) si1 = __make_structure_init_string(arg, 1) si2 = __make_structure_init_string(arg, 2) f = "[3] =\n{0}{{ {1},\n{0} {2},\n{0} {3} }}" init = f.format(indent, si0, si1, si2) else: init = "[10] = { 0 }" else: if arg.arg_type == "b": init = " = FALSE" elif arg.arg_type == "d": init = " = 0.0" elif arg.is_structure(): init = " = {0}".format(__make_structure_init_string(arg)) else: init = " = 0" return init
cc9867966b40bf9a0ce1a43c13cfd0040a3322db
9,875
import re from datetime import datetime def get_time_source_from_output(output): """ Parse out 'Time Source' value from output Time source output example : 'Time source is NTP, 23:59:38.461 EST Thu Jun 27 2019' 'Time source is NTP, *12:33:45.355 EST Fri Feb 7 2020' Args: output ('str'): Text output from command Returns: Datetime object Format : datetime(year, month, day, hour, minute, second, microseconds) """ r1 = re.compile( r"Time\ssource\sis\sNTP\,\s\.*\*?(?P<hour>\d+)\:(?P<minute>\d+)\:" r"(?P<seconds>\d+)\.(?P<milliseconds>\d+)\s(?P<time_zone>" r"\S+)\s(?P<day_of_week>\S+)\s(?P<month>\S+)\s(?P<day>\d+)" r"\s(?P<year>\d+)") for line in output.splitlines(): line = line.strip() result = r1.match(line) if result: group = result.groupdict() hour = int(group["hour"]) minute = int(group["minute"]) second = int(group["seconds"]) milliseconds = int(group["milliseconds"]) month = strptime(group["month"], "%b").tm_mon day = int(group["day"]) year = int(group["year"]) return datetime(year, month, day, hour, minute, second, milliseconds * 1000) log.warning('Time source could not be found in output')
aae9c208e06d99ff6eb4ae9699946d0b17e53ca7
9,876
def getStyleFX(): """ Defines and returns the style effects Returns: style effects (list of MNPR_FX) """ # general effects distortionFX = MNPR_FX("distortion", "Substrate distortion", "controlSetB", [[1, 0, 0, 0]], ["distort", "revert"], ["noise"]) gapsOverlapsFX = MNPR_FX("gaps-overlaps", "Gaps and overlaps", "controlSetC", [[0, 0, 1, 0]], ["overlaps", "gaps"], ["noise"]) # watercolor effects densityFX_WC = MNPR_FX("density", "Pigment turbulence", "controlSetA", [[0, 0, 1, 0]], ["accumulate", "dilute"], ["noise"]) applicationFX_WC = MNPR_FX("application", "Granulate | Dry-brush", "controlSetA", [[0, 1, 0, 0]], ["granulate", "dry-brush"], ["noise"]) blendingFX_WC = MNPR_FX("blending", "Color bleeding (wet-in-wet)", "controlSetC", [[0, 0, 0, 1]], ["bleed", "revert"], ["noise"]) edgeFX_WC = MNPR_FX("edge manip", "Edge darkening", "controlSetC", [[1, 0, 0, 0], [0, 1, 0, 0]], ["darken", "lighten", "wider", "narrower"], ["n. dark", "n. wide"]) watercolorFX = [densityFX_WC, applicationFX_WC, distortionFX, edgeFX_WC, gapsOverlapsFX, blendingFX_WC] # oil effects densityFX_OP = MNPR_FX("density", "Pigment turbulence", "controlSetA", [[0, 0, 1, 0]], ["accumulate", "dilute"], ["noise"]) blendingFX_OP = MNPR_FX("blending", "Paint stroke length", "controlSetC", [[0, 0, 0, 1]], ["increase", "decrease"], ["noise"]) detailFX_OP = MNPR_FX("detail", "Paint stroke width", "controlSetA", [[0, 0, 0, 1]], ["increase", "decrease"], ["noise"]) applicationFX_OP = MNPR_FX("application", "Impasto | Dry-brush", "controlSetA", [[0, 1, 0, 0]], ["impasto", "dry-brush"], ["noise"]) oilFX = [densityFX_OP, blendingFX_OP, detailFX_OP, applicationFX_OP, distortionFX, gapsOverlapsFX] # charcoal effects densityFX_CH = MNPR_FX("density", "Pigment density", "controlSetA", [[0, 0, 1, 0]], ["accumulate", "dilute"], ["noise"]) applicationFX_CH = MNPR_FX("application", "Pigment application", "controlSetA", [[0, 1, 0, 0]], ["even", "granulation"], ["noise"]) mixingFX_CH = MNPR_FX("mixing", "Mixing", "controlSetC", [[0, 0, 0, 1]], ["mix", "separate"], ["noise"]) smudgingFX_CH = MNPR_FX("smudging", "Smudging", "controlSetA", [[0, 0, 0, 1]], ["smudge", "revert"], ["noise"]) edgeFX_CH = MNPR_FX("edge manip", "Edge manipulation", "controlSetC", [[1, 0, 0, 0]], ["soften", "revert"], ["n. soften", "n. darken"]) charcoalFX = [distortionFX, densityFX_CH, applicationFX_CH, mixingFX_CH, smudgingFX_CH, edgeFX_CH] # query mnpr style and return style = cmds.mnpr(style=True, q=True).encode('latin1') # some users have had problems without encode('latin1') if style == "Watercolor": return watercolorFX elif style == "Oil": return oilFX elif style == "Charcoal": return charcoalFX return []
acb9382e041b99c9c76a6baa821b220192176bdd
9,877
def deaths_this_year() -> dict: """Get number of deaths this year.""" return get_metric_of(label='deaths_this_year')
ae6f9ee5d00ebbf7dc7fea0c3702695268a38a17
9,878
def get_cls_dropdown_tree_view_item(object_name): """Get and return class of TreeViewItem Dropdown object according to snapshotability """ base_cls = tree_view_item.CommonDropdownTreeViewItem if object_name in objects.ALL_SNAPSHOTABLE_OBJS: base_cls = tree_view_item.SnapshotsDropdownTreeViewItem return _factory(cls_name=object_name, parent_cls=base_cls)
f9ee30bb75b2cd84e381293be1b0e2f6dc7a5d7b
9,879
def make_webhdfs_url(host, user, hdfs_path, op, port=50070): """ Forms the URL for httpfs requests. INPUT ----- host : str The host to connect to for httpfs access to HDFS. (Can be 'localhost'.) user : str The user to use for httpfs connections. hdfs_path : str The full path of the file or directory being checked. op : str The httpfs operation string. E.g., 'GETFILESTATUS'. port : int The port to use for httpfs connections. OUTPUT ------ str : The string to use for an HTTP request to httpfs. """ url = 'http://' + host + ':' + str(port) + '/webhdfs/v1' url += hdfs_path + '?user.name=' + user + '&op=' + op return url
c4899d75fd54558c6216889cbc749f5d0fe403df
9,880
def get_slash_mapping(bot: commands.Bot): """Get all the prefix commands groupped by category.""" categories = {} for command in bot.slash_commands: if command: category_name = get_cog_category(command.cog) # categories are organized by cog folders try: categories[category_name].append(command) except KeyError: categories[category_name] = [command] return categories
dfb7eef9aac5df011ee2801a9976723f8f4f8c7a
9,881
def part_to_text(part): """ Converts an e-mail message part into text. Returns None if the message could not be decoded as ASCII. :param part: E-mail message part. :return: Message text. """ if part.get_content_type() != 'text/plain': return None charset = part.get_content_charset() if not charset: return None text = str(part.get_payload(decode=True), encoding=charset, errors='ignore') try: text = str(text.encode('ascii'), 'ascii') except UnicodeEncodeError: return None except UnicodeDecodeError: return None if part.get_param('format') == 'flowed': text = unflow_text(text, part.get_param('delsp', False)) return text
f6831014a5100e6addaebc5889a5e1c40f74381b
9,883
def icwt(Wx, wavelet='gmw', scales='log-piecewise', nv=None, one_int=True, x_len=None, x_mean=0, padtype='zero', rpadded=False, l1_norm=True): """The inverse Continuous Wavelet Transform of `Wx`, via double or single integral. # Arguments: Wx: np.ndarray CWT computed via `ssqueezepy.cwt`. wavelet: str / tuple[str, dict] / `wavelets.Wavelet` Wavelet sampled in Fourier frequency domain. - str: name of builtin wavelet. `ssqueezepy.wavs()` - tuple[str, dict]: name of builtin wavelet and its configs. E.g. `('morlet', {'mu': 5})`. - `wavelets.Wavelet` instance. Can use for custom wavelet. scales: str['log', 'linear', 'log:maximal', ...] / np.ndarray See help(cwt). nv: int / None Number of voices. Suggested >= 32. Needed if `scales` isn't array (will default to `cwt`'s). one_int: bool (default True) Whether to use one-integral iCWT or double. Current one-integral implementation performs best. - True: Eq 2.6, modified, of [3]. Explained in [4]. - False: Eq 4.67 of [1]. Explained in [5]. x_len: int / None. Length of `x` used in forward CWT, if different from Wx.shape[1] (default if None). x_mean: float. mean of original `x` (not picked up in CWT since it's an infinite scale component). Default 0. padtype: str Pad scheme to apply on input, in case of `one_int=False`. See `help(utils.padsignal)`. rpadded: bool (default False) True if Wx is padded (e.g. if used `cwt(, rpadded=True)`). l1_norm: bool (default True) True if Wx was obtained via `cwt(, l1_norm=True)`. # Returns: x: np.ndarray The signal, as reconstructed from Wx. # References: 1. Wavelet Tour of Signal Processing, 3rd ed. S. Mallat. https://www.di.ens.fr/~mallat/papiers/WaveletTourChap1-2-3.pdf 2. The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. G. Thakur, E. Brevdo, N.-S. Fučkar, and H.-T. Wu. https://arxiv.org/abs/1105.0010 3. Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition. I. Daubechies, J. Lu, H.T. Wu. https://arxiv.org/pdf/0912.2437.pdf 4. One integral inverse CWT. OverLordGoldDragon. https://dsp.stackexchange.com/a/71274/50076 5. Inverse CWT derivation. OverLordGoldDragon. https://dsp.stackexchange.com/a/71148/50076 6. Synchrosqueezing Toolbox, (C) 2014--present. E. Brevdo, G. Thakur. https://github.com/ebrevdo/synchrosqueezing/blob/master/synchrosqueezing/ synsq_cwt_fw.m """ #### Prepare for inversion ############################################### na, n = Wx.shape x_len = x_len or n if not isinstance(scales, np.ndarray) and nv is None: nv = 32 # must match forward's; default to `cwt`'s wavelet = _process_gmw_wavelet(wavelet, l1_norm) wavelet = Wavelet._init_if_not_isinstance(wavelet) # will override `nv` to match `scales`'s scales, scaletype, _, nv = process_scales(scales, x_len, wavelet, nv=nv, get_params=True) assert (len(scales) == na), "%s != %s" % (len(scales), na) #### Handle piecewise scales case ######################################## # `nv` must be left unspecified so it's inferred automatically from `scales` # in `process_scales` for each piecewise case if scaletype == 'log-piecewise': kw = dict(wavelet=wavelet, one_int=one_int, x_len=x_len, x_mean=x_mean, padtype=padtype, rpadded=rpadded, l1_norm=l1_norm) idx = logscale_transition_idx(scales) x = icwt(Wx[:idx], scales=scales[:idx], **kw) x += icwt(Wx[idx:], scales=scales[idx:], **kw) return x ########################################################################## #### Invert ############################################################## if one_int: x = _icwt_1int(Wx, scales, scaletype, l1_norm) else: x = _icwt_2int(Wx, scales, scaletype, l1_norm, wavelet, x_len, padtype, rpadded) # admissibility coefficient Cpsi = (adm_ssq(wavelet) if one_int else adm_cwt(wavelet)) if scaletype == 'log': # Eq 4.67 in [1]; Theorem 4.5 in [1]; below Eq 14 in [2] # ln(2**(1/nv)) == ln(2)/nv == diff(ln(scales))[0] x *= (2 / Cpsi) * np.log(2 ** (1 / nv)) else: x *= (2 / Cpsi) x += x_mean # CWT doesn't capture mean (infinite scale) return x
dc41ac93ab5e9b71fb6afa34e9e545da4b9e81d5
9,884
def AdvApp2Var_MathBase_msc_(*args): """ :param ndimen: :type ndimen: integer * :param vecte1: :type vecte1: doublereal * :param vecte2: :type vecte2: doublereal * :rtype: doublereal """ return _AdvApp2Var.AdvApp2Var_MathBase_msc_(*args)
e8204854d32b2bcb174a779b4eb5e1617563dd1e
9,885
def chunkify(arr, n): """Breaks a list into n chunks. Last chunk may not be equal in size to other chunks """ return [arr[i : i + n] for i in range(0, len(arr), n)]
10df800440e8c1d5e4070dc48dd8c7ecc12f3c83
9,886
def _run_command(command, targets, options): # type: (str, List[str], List[str]) -> bool """Runs `command` + `targets` + `options` in a subprocess and returns a boolean determined by the process return code. >>> result = run_command('pylint', ['foo.py', 'some_module'], ['-E']) >>> result True :param command: str :param targets: List[str] :param options: List[str] :return: bool """ print('{0}: targets={1} options={2}'.format(command, targets, options)) cmd = [command] + targets + options process = Popen(cmd) process.wait() return bool(process.returncode)
def38e07dd55b5c45d591e6a677937774185962d
9,887
from typing import Counter from typing import List from typing import Dict def find_untranscribed_words( gt: Counter, machine: Counter ) -> List[Dict[str, any]]: """ Finds untranscribed words. That is, we find if there exist words in the GT which never occur in the machine transcription. :param gt: Counter of GT words. :param machine: Counter of machine words. :return: List of word/counts which occur in GT but not (or infrequently) in the machine transcription. """ result: List[Dict[str, any]] = [] for word, gt_count in gt.most_common(): if word not in machine: machine_count = 0 else: machine_count = machine[word] if gt_count > 0 and machine_count == 0: r = {"word": word, "machine": machine_count, "gt": gt_count} result.append(r) return result
e120898ce32f98cedcfb6831cd288e1700d14189
9,888
def set_line_length(length): """ set_line_length(int length) Sets the maximum line length for log messages. Messages longer than this amount will be broken up into multiline messages. Parameters ---------- * length : the maximum log message line length in characters """ return _openmoc.set_line_length(length)
4269b8fb1f28f700cb4150e217e3b85f1491b91d
9,890
def get_teams(pbp_json): """ Get teams :param pbp_json: raw play by play json :return: dict with home and away """ return {'Home': shared.get_team(pbp_json['gameData']['teams']['home']['name'].upper()), 'Away': shared.get_team(pbp_json['gameData']['teams']['away']['name'].upper())}
925c079a0a4a04de70154e78d6ccb25bd846071d
9,891
def register(args): """Register a new user using email and password. Return CONFLICT is a user with the same email already exists. """ if db.session.query(User).filter_by(email=args['email']).first(): return conflict("User already exists.") new_user = User(args['email'], args['password']) db.session.add(new_user) db.session.commit() user_schema = UserSchema() return created(data=user_schema.dump(new_user).data)
b7979090683b231f71c319590a120242932229fd
9,892
def _scale_value_to_rpm(value, total): """Scale value to reads per million""" return value * 1 / (total / 1e6)
c3a49c8df8cbb22bd055a2f8076065463041bb72
9,893
import itertools def poly_vals_in_range(minimum, maximum, roots): """Return a list of all results of a given polynomial within a range based on the roots of the polynomial itself. These roots will be selected by a user from the GUI. Arguments: minimum -- the lowest value in the dataset maximum -- the highest value in the dataset roots -- the roots of the polynomial """ poly = polyfromroots(roots) vals = itertools.takewhile(lambda x: x <= maximum, [int(polyval(y, poly)) for y in range(minimum, maximum + 1)]) vals = sorted(filter(lambda x: minimum <= x <= maximum, vals)) return vals
439c56cd04a70a858340712e66ffbe6144c49e04
9,895
def width_angle(rectangle: Polygon): """Returns the length and angle(in degrees) of the longest side of a rotated rectangle """ point_a, point_b, point_c = rectangle.exterior.coords[:3] a = distance(point_a, point_b) b = distance(point_b, point_c) if a > b: angle = line_angle(point_a, point_b) return a, b, angle angle = line_angle(point_b, point_c) return b, a, angle
074cd38e90f83af15bd09113bafa58e035960fd5
9,896
def mean_absolute_error(y_true, y_pred, discretise = False): """ requires input arrays to be same np.dtype. returns average, not sum of errors discretising (for classification problems) makes little sense to me, but may be necessary in some obscure scenarios """ if discretise: y_p = tools.round_probabilities(y_pred) else: y_p = y_pred mae_a = tf.Session().run(tf.keras.losses.mean_absolute_error(y_true, y_p)) return mae_a.mean()
879607b78856cdc6367dbf1f6e4c7cecad48df24
9,897
def population_fit_feature_cal(population, fitFunction, fitFunctionInput, ite): """Parallel population fitness calculation function Args: population (list): Single population fitFunction (function): Fitness calculation function fitFunctionInput (list): Auxiliary input of fitness calculation function ite (int): Current population number Returns: [int, list]: Current population number, population characteristics (mean, variance, maximum) """ # Calculate population fitness populationFit = [] for individual in population: Fit = fitFunction(individual, fitFunctionInput) populationFit.append(Fit) # Calculate population fitness characteristics mean, std, max = np.mean(populationFit), np.std(populationFit), np.max(populationFit) return ite, [mean, std, max]
671ddb5acd5d8dee8d8dba660efbb1e86509094c
9,898
def intilise_database2(): """ Initilse the database and make a table instance Returns pymongo object of the table """ myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb=myclient['subreddit'] maintable2 = mydb["posts2"] return maintable2
d70497f837cddcaf0a7383d826a705a77e26dda5
9,899
def first(id_): """The first service of the station.""" return jsonify( [ (n.removeprefix("_"), t) for n, t in r.zrange(f"Station:_{id_}:first", 0, -1, withscores=True) ] )
5de7ef49c1deb0edea3f3d4ddcc30da8c4ae2d3a
9,900
def sample(df, n, shape): """ randomly sample patch images from DataFrame Parameters ---------- df : pd.DataFrame DataFrame containing name of image files n : int number of patches to extract shape : list shape of patches to extract Returns ------- images : (n, n_channels, shape[0], shape[1], ...) ndarray input patches labels : (n, shape[0], shape[1], ...) ndarray label patches """ N = len(df) assert N >= n, "n should be smaller than or equal to " + str(N) indices = np.random.choice(N, n, replace=False) image_files = df["image"][indices] label_files = df["label"][indices] images = [] labels = [] for image_file, label_file in zip(image_files, label_files): image = load_nifti(image_file) label = load_nifti(label_file).astype(np.int32) mask = np.int32(label > 0) slices = [slice(len_ / 2, -len_ / 2) for len_ in shape] mask[slices] *= 2 indices = np.where(mask > 1.5) i = np.random.choice(len(indices[0])) slices = [ slice(index[i] - len_ / 2, index[i] + len_ / 2) for index, len_ in zip(indices, shape)] image_patch = image[slices] label_patch = label[slices] image_patch = image_patch.transpose(3, 0, 1, 2) images.append(image_patch) labels.append(label_patch) images = np.array(images) labels = np.array(labels) return images, labels
a0f655ad71a7ef47c71ecc23f45365f721bc2085
9,901
def bitsizeof_varint32(value: int) -> int: """ Gets bit size of variable 32-bit signed integer value. :param value: Value to use for bit size calculation. :returns: Bit size of the value. :raises PythonRuntimeException: Throws if given value is out of range for varint32 type. """ return _bitsizeof_varnum(abs(value), VARINT32_MAX_VALUES, "varint32")
16fd942d23b6ec26a300119e56fbbad6f37a203d
9,902
import requests import json def slack(channel, message, subject=''): """ Sends a notification to meerkat slack server. Channel is '#deploy' only if in live deployment, otherwise sent privately to the developer via slackbot. Args: channel (str): Required. The channel or username to which the message should be posted. message (str): Required. The message to post to slack. subject (str): Optional. Placed in bold and seperated by a pipe. return "sent" """ # Assemble the message text string text = str(message) if subject: text = "*_{}_* | {}".format(subject, message) # Send the slack message message = {'text': text, 'channel': channel, 'username': 'Meerkat'} url = ('https://hooks.slack.com/services/T050E3XPP/' 'B0G7UKUCA/EtXIFB3CRGyey2L7x5WbT32B') headers = {'Content-Type': 'application/json'} r = requests.post(url, data=json.dumps(message), headers=headers) # Return the slack response return r
274111901fd3b7545c8e2128ce3e98716eca8406
9,903
def compute_similarity(img_one,img_two): """Performs image resizing just to compute the cosine similarity faster Input: Two images Output: Cosine Similarity """ x = cv2.resize(img_one, dsize=(112, 112), interpolation=cv2.INTER_CUBIC) y = cv2.resize(img_two, dsize=(112, 112), interpolation=cv2.INTER_CUBIC) x = x.ravel().reshape(-1, 1) y = y.ravel().reshape(-1, 1) if x.shape[0] != y.shape[0]: dist = 0 else: dist = 1 - distance.cosine(x, y) return dist
24d02db8c685480572fae2ab02f9648e3798fdf3
9,904
def get_results_from_firebase(firebase): """ The function to download all results from firebase Parameters ---------- firebase : pyrebase firebase object initialized firebase app with admin authentication Returns ------- results : dict The results in a dictionary with the following format: { "task_id" { "user1_id": { "data": {...} }, "user2_id": { "data": {...} }, } } """ fb_db = firebase.database() results = fb_db.child("results").get().val() return results
ca06c24367d778d4b601eab6fa31009fe6ecb372
9,905