content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import torch def compute_accuracy(outputs, targets, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = targets.size(0) _, preds = outputs.topk(maxk, 1, True, True) preds = preds.t() corrects = preds.eq(targets[None]) result_list = [] for k in topk: correct_k = corrects[:k].flatten().sum(dtype=torch.float32) result_list.append(correct_k * (100.0 / batch_size)) return result_list
6cfcc9e43aaaed09baae567f9cc27818c555fe5f
9,566
import io def unpack_text_io_wrapper(fp, encoding): """ If *fp* is a #io.TextIOWrapper object, this function returns the underlying binary stream and the encoding of the IO-wrapper object. If *encoding* is not None and does not match with the encoding specified in the IO-wrapper, a #RuntimeError is raised. """ if isinstance(fp, io.TextIOWrapper): if fp.writable() and encoding is not None and fp.encoding != encoding: msg = 'TextIOWrapper.encoding({0!r}) != {1!r}' raise RuntimeError(msg.format(fp.encoding, encoding)) if encoding is None: encoding = fp.encoding fp = fp.buffer return fp, encoding
f2c93babab4bff1f08e6fe5c04fbd97dd1ee8a84
9,567
def dummy_blob(size_arr=(9, 9, 9), pixdim=(1, 1, 1), coordvox=None): """ Create an image with a non-null voxels at coordinates specified by coordvox. :param size_arr: :param pixdim: :param coordvox: If None: will create a single voxel in the middle of the FOV. If tuple: (x,y,z): Create single voxel at specified coordinate If list of tuples: [(x1,y1,z1), (x2,y2,z2)]: Create multiple voxels. :return: Image object """ # nx, ny, nz = size_arr data = np.zeros(size_arr) # if not specified, voxel coordinate is set at the middle of the volume if coordvox is None: coordvox = tuple([round(i / 2) for i in size_arr]) elif isinstance(coordvox, list): for icoord in coordvox: data[icoord] = 1 elif isinstance(coordvox, tuple): data[coordvox] = 1 else: ValueError("Wrong type for coordvox") # Create image with default orientation LPI affine = np.eye(4) affine[0:3, 0:3] = affine[0:3, 0:3] * pixdim nii = nib.nifti1.Nifti1Image(data, affine) img = Image(data, hdr=nii.header, dim=nii.header.get_data_shape()) return img
2426ca5cddfa3da660bd5e7436f8093b1d7fa109
9,568
import torch def poly_edges(P, T): """ Returns the ordered edges from the given polygons Parameters ---------- P : Tensor a (N, D,) points set tensor T : LongTensor a (M, T,) topology tensor Returns ------- tuple a tuple containing the edges of the given polygons """ p = P[torch.cat((T, T[0].unsqueeze(0)), dim=0)] return tuple(p[1:]-p[:-1])
c8d838bf1ada319cebc5c08719f66846959ce2c2
9,569
def make_list(v): """ If the object is not a list already, it converts it to one Examples: [1, 2, 3] -> [1, 2, 3] [1] -> [1] 1 -> [1] """ if not jsoncfg.node_is_array(v): if jsoncfg.node_is_scalar(v): location = jsoncfg.node_location(v) line = location.line column = location.column else: line = v.line column = v.column a = jsoncfg.config_classes.ConfigJSONArray(line, column) a._append(v) return a return v
c5288cc726d103667e5f51055bc4e8cd4a90816e
9,570
def score_game(game_core): """Запускаем игру 1000 раз, чтобы узнать, как быстро игра угадывает число""" count_ls = [] np.random.seed(1) # фиксируем RANDOM SEED, чтобы ваш эксперимент был воспроизводим! random_array = np.random.randint(1, 101, 1000) for number in random_array: count_ls.append(game_core(number)) score = int(np.mean(count_ls)) print(f"Ваш алгоритм угадывает число в среднем за {score} попыток") return score
74a8c4b44ff2caec31f38f136c3fc2336909759f
9,571
def add_plot( lon, lat, kind=None, props=None, ax=None, break_on_change=False, transform=identity ): """Add a plot with different props for different 'kind' values to an existing map Parameters ---------- lon : sequence of float lat : sequence of float kind : sequence of hashable, optional Controls what props are used. Length must match lon/lat and values are used to index into the `props` map. props : dict, optional. Maps `kind` of first and last point of each segment to plot style. By default, sorted values from `kind` are mapped to 'axes.prop_cycle'. `props` for segments between points with different `kind` value are looked up under `None`. If `None` is missing, these points are not plotted. ax : matplotlib axes object, optional break_on_change : bool, optional Whether to create a new segment when kind changes. Generally True for fishing plots and False for vessel plots. transform : cartopy.crs.Projection, optional Returns ------- dict mapping keys to Line2D Values are suitable for passing to legend. """ if ax is None: ax = plt.gca() assert len(lon) == len(lat) if kind is None: kind = np.ones(len(lon)) else: kind = np.asarray(kind) assert len(kind) == len(lon) if props is None: props = styles.create_props(np.unique(kind)) handles = {} for k1, k2 in sorted(props.keys()): mask = _build_mask(kind, k1, k2, break_on_change) if mask.sum(): ml_coords = _build_multiline_string_coords(lon, lat, mask, break_on_change) mls = MultiLineString(ml_coords) p = props[k1, k2].copy() if "legend" in p: key = p.pop("legend") else: key = k1 if (k1 == k2) else f"{k1}-{k2}" ax.add_geometries([mls], crs=transform, **p) if key: handles[key] = Line2D( [0], [0], color=p["edgecolor"], lw=p.get("linewidth", 1) ) return handles
c5d6b5234fe560e9d954d4ea8d0a7aef0e810f89
9,572
def can_review_faults(user): """ users can review faults if one of the the following applies: a) No fault review groups exist and they have can_review permissions b) Fault review groups exist, they are a member of one, and they have review permissions """ can_review = user.has_perm("faults.can_review") review_groups = [frg.group for frg in FaultReviewGroup.objects.select_related("group")] if review_groups: can_review = can_review and len(set(review_groups) & set(user.groups.all())) > 0 return can_review
c66f022b6f52144d8e9fde6865f0a8a263819813
9,573
import requests def create_freshservice_object(obj_type, data): """Use the Freshservice v2 API to create an object. Accepts an object name (string) and a dict of key values. """ url = '{}/{}'.format(settings.FRESHSERVICE_ENDPOINT, obj_type) resp = requests.post(url, auth=FRESHSERVICE_AUTH, json=data) return resp
597348b744d6193beb12dcf2a3a4958808f09d24
9,574
def print_begin(*args, sep=' ', end='\n', file=None, ret_value='') -> str: """Print the function name and start.""" print(_prefix('begin'), *args, sep=sep, end=end, file=file, flush=True) return ret_value
8e9ac418d161a0d2b5b7c0c9de7b81da42ea5017
9,575
def scale_bounding_box(bounding_box,scale): """Scales bounding box coords (in dict from {x1,y1,x2,y2}) by x and y given by sclae in dict form {x,y}""" scaled_bounding_box = { "x1" : int(round(bounding_box["x1"]*scale["x"])) ,"y1" : int(round(bounding_box["y1"]*scale["y"])) ,"x2" : int(round(bounding_box["x2"]*scale["x"])) ,"y2" : int(round(bounding_box["y2"]*scale["y"])) } return scaled_bounding_box
8aa374537ed2ae3ae2324bd8a4819e981f281b71
9,576
import click def is_command(obj) -> bool: """ Return whether ``obj`` is a click command. :param obj: """ return isinstance(obj, click.Command)
8159aea42baca70b3218a0b82e2f4dc3f34278aa
9,577
def GetContigs(orthologs): """get map of contigs to orthologs. An ortholog can be part of only one contig, but the same ortholog_id can be part of several contigs. """ contigs = {} for id, oo in orthologs.items(): for o in oo: if o.contig not in contigs: contigs[o.contig] = [] contigs[o.contig].append(o) return contigs
0c449a31e60f1a149317de815d630c4d8a817ca1
9,578
def set_backwards_pass(op, backwards): """ Returns new operation which behaves like `op` in the forward pass but like `backwards` in the backwards pass. """ return backwards + tf.stop_gradient(op - backwards)
13287ac73c52ac01808c41c81ba5311bc3f49b91
9,580
def remove_hydrogens(list_of_lines): """ Removes hydrogen from the pdb file. To add back the hydrogens, run the reduce program on the file. """ return (line for line in list_of_lines if line['element']!=" H")
164ac79171cf6b3632fe7909ace91ffe75192b61
9,581
def crash_random_instance(org: str, space: str, appname: str, configuration: Configuration, count: int = 1): """ Crash one or more random application instances. :param org: String; Cloud Foundry organization containing the application. :param space: String; Cloud Foundry space containing the application. :param appname: String; Application in Cloud Foundry which is to be targeted. :param count: int; Number of instances to kill. :param configuration: Configuration; Configuration details, see `README.md`. :return: A JSON Object representing the application which was targeted. """ return run_ctk( lambda app: app.crash_random_instance(count=count), configuration, org, space, appname, "Crashing {} random app instance(s)...".format(count) )
652ab95038d405b6a193809804aae7f3bc15978f
9,582
def spc_dict_from_spc_info(spc_info: dict, resonance: bool = True) -> dict: """ Generate a species dictionary from species info. Args: spc_info (dict): Species info contains the label and species geom info. resonance (bool): Whether generate resonance geom in the species dictionary. Returns: dict: The species dictionary generated from the spc_info. """ spc_dict = {} for label, spc in spc_info.items(): species = species_from_spc_info(spc) if not species: continue if resonance: species.generate_resonance_structures() spc_dict[label] = species return spc_dict
0a291f2fd50134b1c1259adc36b5637e30e21118
9,583
import torch def label_smooth_loss(log_prob, label, confidence=0.9): """ :param log_prob: log probability :param label: one hot encoded :param confidence: we replace one (in the one hot) with confidence. 0 <= confidence <= 1. :return: """ N = log_prob.size(0) C = log_prob.size(1) smoothed_label = torch.full(size=(N, C), fill_value=(1-confidence) / (C - 1)).to(log_prob) smoothed_label.scatter_(dim=1, index=torch.unsqueeze(label, dim=1), value=confidence) loss = - torch.sum(log_prob * smoothed_label) / N return loss
f1164d1a41d2c275ae4e406e2a46a0d50a2d240d
9,584
def update(self, using=None, **kwargs): """ Updates specified attributes on the current instance. """ assert self.pk, "Cannot update an instance that has not yet been created." using = using or router.db_for_write(self.__class__, instance=self) for field in self._meta.fields: if getattr(field, 'auto_now', False) and field.name not in kwargs: kwargs[field.name] = field.pre_save(self, False) affected = self.__class__._base_manager.using(using).filter(pk=self.pk).update(**kwargs) for k, v in kwargs.iteritems(): if isinstance(v, ExpressionNode): v = resolve_expression_node(self, v) setattr(self, k, v) if affected == 1: signals.post_save.send(sender=self.__class__, instance=self, created=False) return True elif affected == 0: return False elif affected < 0: raise ValueError("Somehow we have updated a negative amount of rows, you seem to have a problem with your db backend.") else: raise ValueError("Somehow we have updated multiple rows, and you are now royally fucked.")
b3400f43c0a744de17225ee6c029fc41465b784d
9,585
def differential_privacy_with_risk( dfg_freq, dfg_time, delta, precision, aggregate_type=AggregateType.SUM): """ This method adds the differential privacy to the DFG of both time and frequencies. * It calculates the epsilon using the guessing advantage technique. * It adds laplace noise to the DFGs. * It calculates the distance resulted from the noise """ accuracy=1 # calculate epsilon epsilon_freq,senstivity_freq=calculate_epsilon_freq(dfg_freq,delta) epsilon_time,senstivity_time=calculate_epsilon_time(dfg_time,delta,precision, aggregate_type) # adding laplace noise to DFG freq dfg_freq_new = add_laplace_noise_freq(dfg_freq, epsilon_freq) # adding laplace noise to DFG time dfg_time, dfg_time_new = add_laplace_noise_time(aggregate_type, dfg_time, epsilon_time) # Calculate earth moving distance emd_freq=earth_mover_dist(dfg_freq,dfg_freq_new) emd_time=earth_mover_dist(dfg_time,dfg_time_new) #calculating the APE, MAPE, and SMAPE MAPE_freq, SMAPE_freq, APE_dist_freq,SMAPE_dist_freq=error_calculation(dfg_freq,dfg_freq_new) MAPE_time, SMAPE_time, APE_dist_time, SMAPE_dist_time = error_calculation(dfg_time,dfg_time_new) # return dfg_freq_new, dfg_time_new, epsilon_freq,epsilon_time, emd_freq, emd_time, percent_freq,percent_time,percent_freq_dist,percent_time_dist return dfg_freq_new, dfg_time_new, epsilon_freq,epsilon_time, MAPE_freq, SMAPE_freq, APE_dist_freq, MAPE_time, SMAPE_time, APE_dist_time, SMAPE_dist_freq, SMAPE_dist_time
a85035b8786bb6bf9a5cc0af88433a490faac77f
9,586
from typing import Iterable from typing import Counter def get_all_values(string: str) -> Iterable[int]: """Return all kinds of candidates, with ordering: Dec, Hex, Oct, Bin.""" if string.startswith('0x'): return filter(bool, [parse_hex(string[2:])]) # type: ignore[list-item] if string.startswith('0o'): return filter(bool, [parse_oct(string[2:])]) # type: ignore[list-item] if string.startswith('0b'): return filter(bool, [parse_bin(string[2:])]) # type: ignore[list-item] # try each base when no prefix return Counter(filter(bool, map(lambda f: f(string), # type: ignore[arg-type,return-value] [parse_dec, parse_hex, parse_oct, parse_bin])))
d9e12290339cbf31dc572c9e3d49ec503949250d
9,587
def svn_auth_get_simple_provider(*args): """svn_auth_get_simple_provider(apr_pool_t pool)""" return _core.svn_auth_get_simple_provider(*args)
e91c2198f5ee214fb1db9e8969711a806caf19c6
9,588
def preferred_language(): """ It just returns first language from acceptable """ return acceptable_languages()[0]
6e5c2b069f84c5a6601b579616858457598f2cf4
9,589
def get_frequencies(trial = 1): """ get frequency lists """ if trial =="run_fast_publish": lb_targ, ub_targ, obs_hz = 340, 350, 10 elif trial == 1: lb_targ, ub_targ, obs_hz = 210, 560, int(320 / 2) elif trial == 2: lb_targ, ub_targ, obs_hz = 340, 640, 280 elif trial == 3: lb_targ, ub_targ, obs_hz = 340, 350, 20#40 elif trial == 4: lb_targ, ub_targ, obs_hz = 60, 350, 40 elif trial == 5: lb_targ, ub_targ, obs_hz = 50, 200, 40 if trial == 6: lb_targ, ub_targ, obs_hz = 130, 530, 130 if trial == 7: lb_targ, ub_targ, obs_hz = 500, 900, 250 obs_list = list( range( lb_targ - obs_hz, lb_targ)) obs_list += list( range( ub_targ, ub_targ + obs_hz)) resp_list = list( range( lb_targ, ub_targ)) return obs_list, resp_list
e6c7f33865ffd76532a19426f0748d4dd22e37f8
9,590
import re def parse_field_pubblicazione(field): """ Extracts year, place and publisher from the field `pubblicazione` by applying a cascade of regexps. """ exp2 = r'^(?P<place>\D+)(?:\s?\W\s?)(?P<publisher>.*?)\D{1}?(?P<year>\d+)?$' exp1 = r'^(?P<place>.*?)(?::)(?P<publisher>.*?)\D{1}?(?P<year>\d+)?$' exp3 = r'(?:.*?)?(?P<year>\d{4})' exp4 = r'^(?P<place>\D{3,})$' not_matched = 0 partly_matched = 0 result = {} result1 = re.match(exp1,field) if(result1 is None): result2 = re.match(exp2,field) if(result2 is None): result3 = re.match(exp3,field) if(result3 is None): result4 = re.match(exp4,field) if(result4 is None): not_matched += 1 else: result = result4.groupdict() else: result = result3.groupdict() else: result = result2.groupdict() else: result = result1.groupdict() return result
91aee4dabf62b3ec5bccff2a07d664312226448c
9,592
def test_api_calendar(): """Return a test calendar object used in API responses.""" return TEST_API_CALENDAR
1c73e63bf19cef92dbbe328825c2ae4e867c1e84
9,593
def apply_custom_colormap(image_gray, cmap=plt.get_cmap("seismic")): """ Implementation of applyColorMap in OpenCV using colormaps in Matplotlib. """ assert image_gray.dtype == np.uint8, "must be np.uint8 image" if image_gray.ndim == 3: image_gray = image_gray.squeeze(-1) # Initialize the matplotlib color map sm = plt.cm.ScalarMappable(cmap=cmap) # Obtain linear color range color_range = sm.to_rgba(np.linspace(0, 1, 256))[:, 0:3] # color range RGBA => RGB color_range = (color_range * 255.0).astype(np.uint8) # [0,1] => [0,255] color_range = np.squeeze( np.dstack([color_range[:, 2], color_range[:, 1], color_range[:, 0]]), 0 ) # RGB => BGR # Apply colormap for each channel individually channels = [cv2.LUT(image_gray, color_range[:, i]) for i in range(3)] return np.dstack(channels)
e2f3c9a8900f47c0e7183f4ebe72f41a7f6d26b9
9,594
from typing import Callable def _cond_with_per_branch_args(pred, true_operand, true_fun: Callable, false_operand, false_fun: Callable): """Conditionally apply ``true_fun`` or ``false_fun``. Has equivalent semantics to this Python implementation:: def cond(pred, true_operand, true_fun, false_operand, false_fun): if pred: return true_fun(true_operand) else: return false_fun(false_operand) Pred has to be a scalar type, collection types (list, tuple) are not supported """ if not (callable(true_fun) and callable(false_fun)): raise TypeError("lax.cond: true_fun and false_fun arguments should be callable.") return _cond(pred, lambda op: true_fun(op[0]), lambda op: false_fun(op[1]), (true_operand, false_operand))
e942124beafebb69fed80e3175164a34f088cb9e
9,595
import urllib def msgSet(key, notUsed, queryString, body): """no treatment on the body (we send exactly the body like we received it)""" dict = urllib.parse.parse_qs(body.decode('utf-8')) #sendSMS.writeRawMsg(body) user = dict['user'][0] print(dict) sendSMS.writeMsgUser(dict['msg'][0], user) return "Message sent to " + user
b67663f516f54af9a7dbbece67933ee1d04ee7a2
9,596
import re def _strip_build_number(api_version): """Removes the build number component from a full api version string.""" match = re.match(r"^([A-Z]+-)?([0-9]+)(\.[0-9]+){2}$", api_version) if match: return api_version[:match.start(3)] # if there aren't exactly 3 version number components, just leave it unchanged return api_version
20d8023281f05dfcb8c9fdd021b77796c72e1001
9,597
def get_me(): """サインインしている自分自身の情報を取得""" jia_user_id = get_user_id_from_session() return {"jia_user_id": jia_user_id}
c31f6a1a8c794e4a2aa70779f9c8b2559baccd84
9,598
def dec_file(name, out=None, **kwargs): """ This is a helper function to decrypt a file and return its contents. You can provide an optional output file using `out` `name` can be a local file or when not using `salt-run` can be a url like `salt://`, `https://` etc. CLI Examples: .. code-block:: bash salt-run nacl.dec_file name=/tmp/id_rsa.nacl salt-call nacl.dec_file name=salt://crt/mycert.nacl out=/tmp/id_rsa salt-run nacl.dec_file name=/tmp/id_rsa.nacl box_type=secretbox \ sk_file=/etc/salt/pki/master/nacl.pub """ kwargs["opts"] = __opts__ return salt.utils.nacl.dec_file(name, out, **kwargs)
3ff74b9300fa8b441a22daf65d546f329e414447
9,599
async def conversation_steps(month: int = Query(default=1, ge=2, le=6), current_user: User = Depends(Authentication.get_current_user_and_bot)): """ Fetches the number of conversation steps that took place in the chat between the users and the agent """ return Utility.trigger_history_server_request( current_user.get_bot(), f'/api/history/{current_user.get_bot()}/metrics/conversation/steps', {'month': month} )
9845cf39290f056395351953e3d7accbcb14ae06
9,600
def off(app: str) -> dict: """ Switches the app offline, if it isn't already. :param app: The name of the Heroku app in which you want formation :return: dictionary containing information about the app """ return Herokron(app).off()
8aa6cef16d8924ce682fa9a7b886cee87d4e02c5
9,601
def count_weekday(start, stop, wd_target=0): """ Returns the number of days between start and stop inclusive which is the first day of the month and is the specified weekday, with 0 being Monday. """ counter = 0 while start != stop + timedelta(days=1): if start.weekday() == wd_target and start.day == 1: counter += 1 start += timedelta(days=1) return counter
27dd8ce6493ac1c24c65c92208767159a6406348
9,603
import collections def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i+order]) ngram_counts[ngram] += 1 return ngram_counts
c4b388d71b2c16e6c324718b8a07db8531c83413
9,604
def pkg_topics_list(data_dict): """ Get a list of topics """ pkg = model.Package.get(data_dict['id']) vocabulary = model.Vocabulary.get('Topics') topics = [] if vocabulary: topics = pkg.get_tags(vocab=vocabulary) return topics
7594ea421ade2a530d8e08490b542bbd05d1a962
9,605
def five_five(n): """ This checks if n is a power of 2 (or 0). This is because the only way that n and (n-1) have none of the same bits (the & check) is when n is a power of 2, or 0. """ return ((n & (n-1)) == 0)
0b1cc310b5d8bd6dab6299b6a999a5dd0720ea80
9,607
from main import bot from typing import Optional import asyncio async def send_message(user_id: int, text: str, buttons: Optional[list[dict[str, str]]] = None, disable_notification: bool = False) -> bool: """ Safe messages sender :param user_id: :param text: :param buttons: List of inline buttons in format [{'text': 'text', 'callback_data': 'callback_data', **kwargs}]. A button can have all the same keys that InlineKeyboardButton() take :param disable_notification: :return: """ try: await bot.send_message(user_id, text, reply_markup=InlineKeyboardMarkup( row_width=2, resize_keyboard=True, one_time_keyboard=True, ).add( *[InlineKeyboardButton(**button) for button in buttons]) if buttons else None, disable_notification=disable_notification) log.info(f"Sent message to target [ID:{user_id}]") except exceptions.BotBlocked: log.error(f"Target [ID:{user_id}]: blocked by user") except exceptions.ChatNotFound: log.error(f"Target [ID:{user_id}]: invalid user ID") except exceptions.RetryAfter as e: log.error(f"Target [ID:{user_id}]: Flood limit is exceeded. Sleep {e.timeout} seconds.") await asyncio.sleep(e.timeout) return await send_message(user_id, text, buttons) # Recursive call except exceptions.UserDeactivated: log.error(f"Target [ID:{user_id}]: user is deactivated") except exceptions.TelegramAPIError: log.exception(f"Target [ID:{user_id}]: failed") else: log.info(f"Target [ID:{user_id}]: success") return True return False
e2cb9879a1eea95d639f6ff3c7b7bf7c5b19ef68
9,608
def convert_bytes_to_size(some_bytes): """ Convert number of bytes to appropriate form for display. :param some_bytes: A string or integer :return: A string """ some_bytes = int(some_bytes) suffix_dict = { '0': 'B', '1': 'KiB', '2': 'MiB', '3': 'GiB', '4': 'TiB', '5': 'PiB' } counter = 0 while some_bytes > 1 and counter <= 5: tmp = some_bytes / 1024 if tmp < 1: break else: some_bytes = tmp counter += 1 return str(format(some_bytes, '.2f')) + ' ' + str(suffix_dict[str(counter)])
d1579e0fc0850a98145910c056b3fac8be7c66f1
9,609
def create_bbregister_func_to_anat(fieldmap_distortion=False, name='bbregister_func_to_anat'): """ Registers a functional scan in native space to structural. This is meant to be used after create_nonlinear_register() has been run and relies on some of it's outputs. Parameters ---------- fieldmap_distortion : bool, optional If field map-based distortion correction is being run, FLIRT should take in the appropriate field map-related inputs. name : string, optional Name of the workflow. Returns ------- register_func_to_anat : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.func : string (nifti file) Input functional scan to be registered to MNI space inputspec.anat_skull : string (nifti file) Corresponding full-head scan of subject inputspec.linear_reg_matrix : string (mat file) Affine matrix from linear functional to anatomical registration inputspec.anat_wm_segmentation : string (nifti file) White matter segmentation probability mask in anatomical space inputspec.bbr_schedule : string (.sch file) Boundary based registration schedule file for flirt command Workflow Outputs:: outputspec.func_to_anat_linear_xfm : string (mat file) Affine transformation from functional to anatomical native space outputspec.anat_func : string (nifti file) Functional data in anatomical space """ register_bbregister_func_to_anat = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['func', 'anat_skull', 'linear_reg_matrix', 'anat_wm_segmentation', 'bbr_schedule', 'fieldmap', 'fieldmapmask' ]), name='inputspec') inputNode_echospacing = pe.Node( util.IdentityInterface(fields=['echospacing']), name='echospacing_input') inputNode_pedir = pe.Node(util.IdentityInterface(fields=['pedir']), name='pedir_input') outputspec = pe.Node(util.IdentityInterface(fields=['func_to_anat_linear_xfm', 'anat_func']), name='outputspec') wm_bb_mask = pe.Node(interface=fsl.ImageMaths(), name='wm_bb_mask') wm_bb_mask.inputs.op_string = '-thr 0.5 -bin' register_bbregister_func_to_anat.connect(inputspec, 'anat_wm_segmentation', wm_bb_mask, 'in_file') def bbreg_args(bbreg_target): return '-cost bbr -wmseg ' + bbreg_target bbreg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='bbreg_func_to_anat') bbreg_func_to_anat.inputs.dof = 6 register_bbregister_func_to_anat.connect(inputspec, 'bbr_schedule', bbreg_func_to_anat, 'schedule') register_bbregister_func_to_anat.connect(wm_bb_mask, ('out_file', bbreg_args), bbreg_func_to_anat, 'args') register_bbregister_func_to_anat.connect(inputspec, 'func', bbreg_func_to_anat, 'in_file') register_bbregister_func_to_anat.connect(inputspec, 'anat_skull', bbreg_func_to_anat, 'reference') register_bbregister_func_to_anat.connect(inputspec, 'linear_reg_matrix', bbreg_func_to_anat, 'in_matrix_file') if fieldmap_distortion: def convert_pedir(pedir): # FSL Flirt requires pedir input encoded as an int conv_dct = {'x': 1, 'y': 2, 'z': 3, '-x': -1, '-y': -2, '-z': -3} if not isinstance(pedir, str): raise Exception("\n\nPhase-encoding direction must be a " "string value.\n\n") if pedir not in conv_dct.keys(): raise Exception("\n\nInvalid phase-encoding direction " "entered: {0}\n\n".format(pedir)) return conv_dct[pedir] register_bbregister_func_to_anat.connect(inputNode_pedir, ('pedir', convert_pedir), bbreg_func_to_anat, 'pedir') register_bbregister_func_to_anat.connect(inputspec, 'fieldmap', bbreg_func_to_anat, 'fieldmap') register_bbregister_func_to_anat.connect(inputspec, 'fieldmapmask', bbreg_func_to_anat, 'fieldmapmask') register_bbregister_func_to_anat.connect(inputNode_echospacing, 'echospacing', bbreg_func_to_anat, 'echospacing') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_matrix_file', outputspec, 'func_to_anat_linear_xfm') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_file', outputspec, 'anat_func') return register_bbregister_func_to_anat
0598cef86fdebe697bfdc1627554c4340303a86b
9,610
def pointShiftFromRange(dataSize, x = all, y = all, z = all, **args): """Calculate shift of points given a specific range restriction Arguments: dataSize (str): data size of the full image x,y,z (tuples or all): range specifications Returns: tuple: shift of points from original origin of data to origin of range reduced data """ if isinstance(dataSize, str): dataSize = self.dataSize(dataSize) dataSize = list(dataSize) d = len(dataSize) rr = [] if d > 0: rr.append(toDataRange(dataSize[0], r = x)) if d > 1: rr.append(toDataRange(dataSize[1], r = y)) if d > 2: rr.append(toDataRange(dataSize[2], r = z)) if d > 3 or d < 1: raise RuntimeError('shiftFromRange: dimension %d to big' % d) return [r[0] for r in rr]
dbe5c2049c5b76bfdbb839faa2a3e6cb942c8249
9,611
def callparser(): """Parses a group of expressions.""" def cull_seps(tokens): return tokens[0] or tokens[1] return RepeatParser(exprparser() + OptionParser(dlmparser(',')) ^ cull_seps)
af8fbf81044b90d6a1a9ea769a513109237692d4
9,612
def write_section(section_name, section, keys, writer) -> bool: """ Saves the specified section to the specified writer starting at the current point in the writer. It will not throw an exception. On error (IO exception or not being able to write the section) it will return false. WARNING: It can not scan the destination to see if this section has already been written, so typically this method is called when writing out an entire configuration with multiple sections in sequence. Returns True on success and False on failure. """ keys = keys if keys else section.keys() ret = False # OBSOLETE with io.TextIOWrapper(writer) as writer2: try: writer.write(section_name + ":\n") for k in keys: val = section.get(k) if val: output = " " + k + _COLONSPACE + val + "\n" writer.write(output) ret = True except OSError as err: _printerr(err) # Just return false return ret
368f0cac04d392b9ea8946d30538a3fb0265c593
9,613
def _rotation_270(image): """Rotate an image with 270 degrees (clockwise). Parameters ---------- image : np.ndarray Image to rotate with shape (y, x, channels). Returns ------- image_rotated : np.ndarray Image rotated with shape (y, x, channels). """ image_rotated = _flip_v(image) image_rotated = _transpose(image_rotated) return image_rotated
3cd291c9283a32d0bc66902bff7861db855f4420
9,614
def classification_id_for_objs(object_id: str, url: str, token: str): """ Get classification id for a given object Arguments ---------- object_id : str Object id to get classification id for url : str Skyportal url token : str Skyportal token Returns ---------- status_code : int HTTP status code data : list List of classification ids and their author ids """ classifications = api( "GET", f"{url}/api/sources/{object_id}/classifications", token=token, ) data = {} if classifications.status_code == 200: data = { "id": classifications.json()["data"][0]["id"], "author_id": classifications.json()["data"][0]["author_id"], } return classifications.status_code, data
b03bb7ff18235cafd1b171e5042d64c65c19cffc
9,615
import math def ciede2000(Lab_1, Lab_2): """Calculates CIEDE2000 color distance between two CIE L*a*b* colors.""" C_25_7 = 6103515625 # 25**7 L1, a1, b1 = Lab_1[0], Lab_1[1], Lab_1[2] L2, a2, b2 = Lab_2[0], Lab_2[1], Lab_2[2] C1 = math.sqrt(a1**2 + b1**2) C2 = math.sqrt(a2**2 + b2**2) C_ave = (C1 + C2) / 2 G = 0.5 * (1 - math.sqrt(C_ave**7 / (C_ave**7 + C_25_7))) L1_, L2_ = L1, L2 a1_, a2_ = (1 + G) * a1, (1 + G) * a2 b1_, b2_ = b1, b2 C1_ = math.sqrt(a1_**2 + b1_**2) C2_ = math.sqrt(a2_**2 + b2_**2) if b1_ == 0 and a1_ == 0: h1_ = 0 elif a1_ >= 0: h1_ = math.atan2(b1_, a1_) else: h1_ = math.atan2(b1_, a1_) + 2 * math.pi if b2_ == 0 and a2_ == 0: h2_ = 0 elif a2_ >= 0: h2_ = math.atan2(b2_, a2_) else: h2_ = math.atan2(b2_, a2_) + 2 * math.pi dL_ = L2_ - L1_ dC_ = C2_ - C1_ dh_ = h2_ - h1_ if C1_ * C2_ == 0: dh_ = 0 elif dh_ > math.pi: dh_ -= 2 * math.pi elif dh_ < -math.pi: dh_ += 2 * math.pi dH_ = 2 * math.sqrt(C1_ * C2_) * math.sin(dh_ / 2) L_ave = (L1_ + L2_) / 2 C_ave = (C1_ + C2_) / 2 _dh = abs(h1_ - h2_) _sh = h1_ + h2_ C1C2 = C1_ * C2_ if _dh <= math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 elif _dh > math.pi and _sh < 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 + math.pi elif _dh > math.pi and _sh >= 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 - math.pi else: h_ave = h1_ + h2_ T = 1 - 0.17 * math.cos(h_ave - math.pi / 6) + 0.24 * math.cos(2 * h_ave) + 0.32 * math.cos(3 * h_ave + math.pi / 30) - 0.2 * math.cos(4 * h_ave - 63 * math.pi / 180) h_ave_deg = h_ave * 180 / math.pi if h_ave_deg < 0: h_ave_deg += 360 elif h_ave_deg > 360: h_ave_deg -= 360 dTheta = 30 * math.exp(-(((h_ave_deg - 275) / 25)**2)) R_C = 2 * math.sqrt(C_ave**7 / (C_ave**7 + C_25_7)) S_C = 1 + 0.045 * C_ave S_H = 1 + 0.015 * C_ave * T Lm50s = (L_ave - 50)**2 S_L = 1 + 0.015 * Lm50s / math.sqrt(20 + Lm50s) R_T = -math.sin(dTheta * math.pi / 90) * R_C k_L, k_C, k_H = 1, 1, 1 f_L = dL_ / k_L / S_L f_C = dC_ / k_C / S_C f_H = dH_ / k_H / S_H dE_00 = math.sqrt(f_L**2 + f_C**2 + f_H**2 + R_T * f_C * f_H) return dE_00
f95bc8338fbabe09f2038cea34e7a8fcad87f3bf
9,616
import torch def ifft2c_new(data: torch.Tensor) -> torch.Tensor: """ Apply centered 2-dimensional Inverse Fast Fourier Transform. Args: data: Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: The IFFT of the input. """ if not data.shape[-1] == 2: raise ValueError("Tensor does not have separate complex dim.") data = ifftshift(data, dim=[-3, -2]) data = torch.view_as_real( torch.fft.ifftn( # type: ignore torch.view_as_complex(data), dim=(-2, -1), norm="ortho" ) ) data = fftshift(data, dim=[-3, -2]) return data
6752dd94c690d8a8d3d0d625a693cd711c12c9c0
9,617
def _make_options(context, base): """Return pyld options for given context and base.""" options = {} if context is None: context = default_context() options['expandContext'] = context if base is not None: options['base'] = base return options
8fcd514d9b0d11020ea197a29af6e76a53201306
9,618
def datatable(table_config: DatatableConfig, table_id: str, class_name: str = ''): """ Deprecated, use instead <table id="{table_id}" data-datatable-url="{url}" class="{class_name}"></table> """ return { "rich_columns": table_config.enabled_columns, "search_box_enabled": table_config.search_box_enabled, "table_id": table_id, "class_name": class_name, "expand_client_renderer": table_config.expand_client_renderer }
777d19f0eaa6f1adbb53cc1fa6042fbec3df4398
9,619
def npelpt(point, ellipse): """npelpt(ConstSpiceDouble [3] point, ConstSpiceDouble [NELLIPSE] ellipse)""" return _cspyce0.npelpt(point, ellipse)
f81ff9a993f0166ed4899338c66b58e5329382ce
9,620
def register_module(): """Registers this module in the registry.""" # provide parser to verify verify.parse_content = content.parse_string_in_scope # setup routes courses_routes = [('/faq', utils_faq.FaqHandler),('/allresources', utils_allresources.AllResourcesHandler)] global custom_module custom_module = custom_modules.Module( 'Course', 'FAQ Module', [], courses_routes, notify_module_enabled = notify) return custom_module
e4fe1ae4d3b05a4c396155ae3b471e941de56f7d
9,621
def degreeList(s): """Convert degrees given on command line to a list. For example, the string '1,2-5,7' is converted to [1,2,3,4,5,7].""" l = [] for r in s.split(','): t = r.split('-') if len(t) == 1: l.append(int(t[0])) else: a = int(t[0]) b = int(t[1]) l.extend(range(a,b+1, (1 if a <= b else -1))) return sorted(l)
3b517831ddab47da5cd0e36fa5913d6d59e73715
9,622
def _get_corrected_msm(msm: pd.DataFrame, elevation: float, ele_target: float): """MSMデータフレーム内の気温、気圧、重量絶対湿度を標高補正 Args: df_msm(pd.DataFrame): MSMデータフレーム ele(float): 平均標高 [m] elevation(float): 目標地点の標高 [m] Returns: pd.DataFrame: 補正後のMSMデータフレーム """ TMP = msm['TMP'].values PRES = msm['PRES'].values MR = msm['MR'].values # 標高差 ele_gap = ele_target - elevation # 気温補正 TMP_corr = get_corrected_TMP(TMP, ele_gap) # 気圧補正 PRES_corr = get_corrected_PRES(PRES, ele_gap, TMP_corr) # 重量絶対湿度補正 MR_corr = get_corrected_mixing_ratio( MR=MR, TMP=TMP_corr, PRES=PRES_corr ) # 補正値をデータフレームに戻す msm = msm.copy() msm['TMP'] = TMP_corr msm['PRES'] = PRES_corr msm['MR'] = MR_corr # なぜ 気圧消すのか? # msm.drop(['PRES'], axis=1, inplace=True) return msm
5cbfafa077c02ff5b7b74e47eff30c99e6201ff8
9,624
def get_answers_by_qname(sim_reads_sam_file): """Get a dictionary of Direction Start CIGAR MDtag by ReadID (qname).""" answers_by_qname = {} reads_file = open(sim_reads_sam_file) reads_file.next() #skip header line for line in reads_file: id, dir, start, cigar, mdtag = line.strip().split('\t') answers_by_qname[id] = (dir, start, cigar, mdtag) reads_file.close() return answers_by_qname
eae27387f4ac0e20b16392ca699fad7e6489c6e9
9,625
def post_times(post: Post) -> html_tag: """Display time user created post. If user has edited their post show the timestamp for that as well. :param post: Post ORM object. :return: Rendered paragraph tag with post's timestamp information. """ p = tags.p(cls="small") p.add(f"{_('Posted')}: ") p.add(moment(post.created).fromNow()) if post.edited is not None: p.add(tags.br(), f"{_('Edited')}: ", moment(post.edited).fromNow()) return p
8e64d6f49ed5bcf8f9a9ea1f3a5350880bbe7b39
9,626
def read_articles_stat(path): """ 读取articles_stat文件,生成可以读取法条正负样本数量的字典列表 :param path: articles_stat文件位置 :return: ret: [{'第一条': (负样本数量, 正样本数量), ...}, {...}, ..., {...}] """ df = pd.read_csv(path, header=0, index_col=0) ret = [{} for i in range(4)] for index, row in df.iterrows(): ret[row['name']][row['number']] = (row['negatives'], row['positives']) # print(ret) return ret
be35e11a508e22241188b4719dc6fa0db14f4395
9,627
def get_bounding_box(font): """ Returns max and min bbox of given truetype font """ ymin = 0 ymax = 0 if font.sfntVersion == 'OTTO': ymin = font['head'].yMin ymax = font['head'].yMax else: for g in font['glyf'].glyphs: char = font['glyf'][g] if hasattr(char, 'yMin') and ymin > char.yMin: ymin = char.yMin if hasattr(char, 'yMax') and ymax < char.yMax: ymax = char.yMax return ymin, ymax
98161ef3426c2bb9b6dc4079c69f5c1f9d4e93a2
9,628
def create_user(client, profile, user, resend=False): """ Creates a new user in the specified user pool """ try: if resend: # Resend confirmation email for get back password response = client.admin_create_user( UserPoolId=profile["user_pool_id"], Username=user.email, MessageAction="RESEND", ) else: response = client.admin_create_user( UserPoolId=profile["user_pool_id"], Username=user.email, UserAttributes=[ {"Name": "email", "Value": user.email}, {"Name": "email_verified", "Value": "true"}, ], ) if response["ResponseMetadata"]["HTTPStatusCode"] == 200: if resend: print(f"Resend confirmation to user {user.email} successfully") else: print(f"User {user.email} was created successfully") return response except client.exceptions.UsernameExistsException as error: print(f"User {user.email} exists") return error.response except client.exceptions.ClientError as error: print(f"Fail to create user {user.email}: {error.response}") return error.response
4c1f83c0ab7fd28dc7b1e2d8f2efa224360dfdb1
9,629
def generate_move_probabilities( in_probs: np.ndarray, move_dirn: float, nu_par: float, dir_bool: np.ndarray ): """ create move probabilities from a 1d array of values""" out_probs = np.asarray(in_probs.copy()) if np.isnan(out_probs).any(): print('NANs in move probabilities!') out_probs = get_directional_probs(move_dirn * np.pi / 180.) out_probs = out_probs.clip(min=0.) out_probs[4] = 0. out_probs = [ix * float(iy) for ix, iy in zip(out_probs, dir_bool)] if np.count_nonzero(out_probs) == 0: out_probs = get_directional_probs(move_dirn * np.pi / 180.) #out_probs = np.random.rand(len(out_probs)) out_probs[4] = 0. out_probs = [ix * float(iy) for ix, iy in zip(out_probs, dir_bool)] if np.count_nonzero(out_probs) == 0: out_probs = get_directional_probs(move_dirn * np.pi / 180.) out_probs /= np.sum(out_probs) out_probs = np.power(out_probs, nu_par) out_probs /= np.sum(out_probs) return out_probs
4ea9ef914b905b6ab79933ba90a3604b0391f038
9,630
def _is_diagonal(x): """Helper to identify if `LinearOperator` has only a diagonal component.""" return (isinstance(x, tf.linalg.LinearOperatorIdentity) or isinstance(x, tf.linalg.LinearOperatorScaledIdentity) or isinstance(x, tf.linalg.LinearOperatorDiag))
de3bb0ab2313c5432abab4bf7b0c1e227bc682d7
9,631
def index(): """Index Controller""" return render_template('login.html')
53499d68c734e6315e3f24927d70cb7cddca346a
9,632
def match_twosided(desc1,desc2): """ Two-sided symmetric version of match(). """ matches_12 = match(desc1,desc2) matches_21 = match(desc2,desc1) ndx_12 = matches_12.nonzero()[0] # remove matches that are not symmetric for n in ndx_12: if matches_21[int(matches_12[n])] != n: matches_12[n] = 0 return matches_12
a86d1cfb19afa5404d8c4950dd8b24a130a6a003
9,633
import re def parse_header_links(value): """Return a list of parsed link headers proxies. i.e. Link: <http:/.../front.jpeg>; rel=front; type="image/jpeg",<http://.../back.jpeg>; rel=back;type="image/jpeg" :rtype: list """ links = [] replace_chars = ' \'"' value = value.strip(replace_chars) if not value: return links for val in re.split(', *<', value): try: url, params = val.split(';', 1) except ValueError: url, params = val, '' link = {'url': url.strip('<> \'"')} for param in params.split(';'): try: key, value = param.split('=') except ValueError: break link[key.strip(replace_chars)] = value.strip(replace_chars) links.append(link) return links
58e1a73a524333cbd019387866047d434c7de494
9,634
def _friends_bootstrap_radius(args): """Internal method used to compute the radius (half-side-length) for each ball (cube) used in :class:`RadFriends` (:class:`SupFriends`) using bootstrapping.""" # Unzipping. points, ftype = args rstate = np.random # Resampling. npoints, ndim = points.shape idxs = rstate.randint(npoints, size=npoints) # resample idx_in = np.unique(idxs) # selected objects sel = np.ones(npoints, dtype='bool') sel[idx_in] = False idx_out = np.where(sel)[0] # "missing" objects if len(idx_out) < 2: # edge case idx_out = np.append(idx_out, [0, 1]) points_in, points_out = points[idx_in], points[idx_out] # Construct KDTree to enable quick nearest-neighbor lookup for # our resampled objects. kdtree = spatial.KDTree(points_in) if ftype == 'balls': # Compute distances from our "missing" points its closest neighbor # among the resampled points using the Euclidean norm # (i.e. "radius" of n-sphere). dists, ids = kdtree.query(points_out, k=1, eps=0, p=2) elif ftype == 'cubes': # Compute distances from our "missing" points its closest neighbor # among the resampled points using the Euclidean norm # (i.e. "half-side-length" of n-cube). dists, ids = kdtree.query(points_out, k=1, eps=0, p=np.inf) # Conservative upper-bound on radius. dist = max(dists) return dist
0492f316c53b434faf79445313ec853830f87867
9,636
def _clip_grad(clip_value, grad): """ Clip gradients. Inputs: clip_value (float): Specifies how much to clip. grad (tuple[Tensor]): Gradients. Outputs: tuple[Tensor], clipped gradients. """ dt = ops.dtype(grad) new_grad = nn.ClipByNorm()(grad, ops.cast(ops.tuple_to_array((clip_value,)), dt)) return new_grad
31cd4693a2bd80af7d3dd4be6a830b2982f8fce8
9,638
def sample_cast(user, name='David'): """Creates a sample Cast""" return Cast.objects.create(user=user, name=name)
3e4d03878697dfac931babbeaacaa7687d520189
9,639
import re def sort_special_vertex_groups(vgroups, special_vertex_group_pattern='STYMO:', global_special_vertex_group_suffix='Character'): """ Given a list of special vertex group names, all with the prefix of special_vertex_group_pattern, selects all that start with global_special_vertex_group_suffix and puts them at the start of the list. This enables e.g. to easily define top-level vertex groups that always go first, followed by details that overwrite top level assignments. """ global_vg_name_pattern = special_vertex_group_pattern + \ global_special_vertex_group_suffix first = [] last = [] for g in vgroups: if re.match(global_vg_name_pattern, g) is not None: first.append(g) else: last.append(g) first.sort() last.sort() first.extend(last) return first
0cc8f0992553e5da5b37ea9a9886996cb9013582
9,640
def _GetFullDesktopName(window_station, desktop) -> str: """Returns a full name to a desktop. Args: window_station: Handle to window station. desktop: Handle to desktop. """ return "\\".join([ win32service.GetUserObjectInformation(handle, win32service.UOI_NAME) for handle in [window_station, desktop] ])
e9a2aeebdb6f705efab1a0c1997ca66f4079cc07
9,641
def decrypt(plain_text: str, a: np.ndarray, b: np.ndarray, space: str) -> str: """Decrypts the given text with given a, b and space :param plain_text: Text you want to decrypt :type plain_text: str :param a: An integer that corresponds to the A parameter in block cypher :type a: np.ndarray :param b: An integer that corresponds to the B parameter in block cypher :type b: np.ndarray :param space: Target space :type space: str :return: Decrypted text in string form :rtype: str """ result = [] t = math_utils.get_inverse_matrix(a) pairs = cryption_utils.get_pairs_of_int_two_from_text(plain_text, space) for pair in pairs: c = math_utils.create_nested_list_from_flat_list(pair) subtracted_matrix = math_utils.sub_matrices(c, b) dot_product = math_utils.dot_product_with_multiple_matrices( [t, np.array(subtracted_matrix)] ) result_list = space_utils.convert_nested_ints_to_char(dot_product, space) result.append("".join(result_list)) return "".join(result)
642b47d3459c64c5c7b280401aa96bd8f37cfa59
9,642
def well2D_to_df1D(xlsx_path, sheet, data_col): """ Convert new 2D output format (per well) to 1D dataframe :param str xlsx_path: path to the xlsx file :param str sheet: sheet name to load :param str data_col: new column name of the linearized values :return dataframe df: linearized dataframe """ df = pd.read_excel(xlsx_path, sheet_name=sheet, index_col=0) df = df.unstack().reset_index(name=data_col) # unpivot (linearize) the table df.rename(columns={'level_1': 'row_id', 'level_0': 'col_id'}, inplace=True) df['well_id'] = df.row_id + df.col_id.map(str) df = df[['well_id', data_col]] return df
0d8403b311c50cbc7f723e044f3aa93c50f17e80
9,644
import hashlib def obtain_file_hash(path, hash_algo="md5"): """Obtains the hash of a file using the specified hash algorithm """ hash_algo = hashlib.sha256() if hash_algo=="sha256" else hashlib.md5() block_size = 65535 with open(path, 'rb') as f: for chunk in iter(lambda: f.read(block_size),b''): hash_algo.update(chunk) return hash_algo.hexdigest()
daa996339c638eaab4f3d067dcaaa4b865a6f923
9,645
def b_q_bar(z_c): """Result of integrating from z_c to 1/2 of the hard collinear part of the quark splitting function""" b_q_zc = CF * (-3. + 6. * z_c + 4.* np.log(2. - 2.*z_c))/2. return b_q_zc
c7e68a2b4b17e035081fd07784aeef017fcedabc
9,646
def getsize(store, path=None): """Compute size of stored items for a given path.""" path = normalize_storage_path(path) if hasattr(store, 'getsize'): # pass through return store.getsize(path) elif isinstance(store, dict): # compute from size of values prefix = _path_to_prefix(path) size = 0 for k in listdir(store, path): try: v = store[prefix + k] except KeyError: pass else: try: size += buffer_size(v) except TypeError: return -1 return size else: return -1
e537a231c49ac1edb6153d4751bd7f1b01979778
9,647
def split_2DL5AB(GL, cursor, log): """ splits the KIR2DL5 GL-string into 2 separate GL strings for 2DL5A and 2DL5B :param GL: GL-string for KIR2DL5, combining both A and B :param cursor: cursor to a connection to the nextype archive :param log: logger instance """ log.info("Splitting 2DL5-alleles...") proc_name = "GL_STRINGS_MGMT.SPLIT_GL_STRING_2DL5@ngsa" proc_params = [GL] proc_params2 = [2, 'KIR', 'J', 'J', '2DL5', 'J', '2DL5', 'N'] success, values = call_procedure(proc_name, proc_params, 2, proc_params2, cursor, log) if success: log.info("\t=> Success!") [part1, part2] = values if "2DL5A" in part1: A = part1 B = part2 else: A = part2 B = part1 A_alleles = A.replace("2DL5A*", "") B_alleles = B.replace("2DL5B*", "") else: log.info("\t=> Procedure call did not work. :-(") A_alleles = "" B_alleles = "" return A_alleles, B_alleles
e4c5eb51927b9e9cd607f95c1e2d1f853f4f2a3e
9,648
def set_system_bios(context, settings, system_id=None, workaround=False): """ Finds a system matching the given ID and sets the BIOS settings Args: context: The Redfish client object with an open session settings: The settings to apply to the system system_id: The system to locate; if None, perform on the only system workaround: Indicates if workarounds should be attempted for non-conformant services Returns: The response of the PATCH """ # Locate the system system = get_system(context, system_id) # Get the BIOS resource and determine if the settings need to be applied to the resource itself or the settings # object if "Bios" not in system.dict: raise RedfishSystemBiosNotFoundError("System '{}' does not support representing BIOS".format(system.dict["Id"])) bios_uri = system.dict["Bios"]["@odata.id"] bios = context.get(bios_uri) etag = bios.getheader("ETag") if "@Redfish.Settings" in bios.dict: bios_settings = get_system_bios_settings(context, bios, system.dict["Id"], workaround) bios_uri = bios_settings.dict["@odata.id"] etag = bios_settings.getheader("ETag") # Update the settings payload = {"Attributes": settings} headers = None if etag is not None: headers = {"If-Match": etag} response = context.patch(bios_uri, body=payload, headers=headers) verify_response(response) return response
c28f52db53363399df534efacc506a7e25c99930
9,649
def geometric_augmentation(images, flow = None, mask = None, crop_height = 640, crop_width = 640, probability_flip_left_right = 0.5, probability_flip_up_down = 0.1, probability_scale = 0.8, probability_relative_scale = 0., probability_stretch = 0.8, probability_rotation = 0.0, probability_relative_rotation = 0.0, probability_crop_offset = 0.0, min_bound_scale = -0.2, max_bound_scale = 0.6, max_strech_scale = 0.2, min_bound_relative_scale = -0.1, max_bound_relative_scale = 0.1, max_rotation_deg = 15, max_relative_rotation_deg = 3, max_relative_crop_offset = 5, return_full_scale=False): """Applies geometric augmentations to an image pair and corresponding flow. Args: images: Image pair of shape [2, height, width, channels]. flow: Corresponding forward flow field of shape [height, width, 2]. mask: Mask indicating which positions in the flow field hold valid flow vectors of shape [height, width, 1]. Non-valid poisitions are encoded with 0, valid positions with 1. crop_height: Height of the final augmented output. crop_width: Width of the final augmented output. probability_flip_left_right: Probability of applying left/right flip. probability_flip_up_down: Probability of applying up/down flip probability_scale: Probability of applying scale augmentation. probability_relative_scale: Probability of applying scale augmentation to only the second frame of the the image pair. probability_stretch: Probability of applying stretch augmentation (scale without keeping the aspect ratio). probability_rotation: Probability of applying rotation augmentation. probability_relative_rotation: Probability of applying rotation augmentation to only the second frame of the the image pair. probability_crop_offset: Probability of applying a relative offset while cropping. min_bound_scale: Defines the smallest possible scaling factor as 2**min_bound_scale. max_bound_scale: Defines the largest possible scaling factor as 2**max_bound_scale. max_strech_scale: Defines the smallest and largest possible streching factor as 2**-max_strech_scale and 2**max_strech_scale. min_bound_relative_scale: Defines the smallest possible scaling factor for the relative scaling as 2**min_bound_relative_scale. max_bound_relative_scale: Defines the largest possible scaling factor for the relative scaling as 2**max_bound_relative_scale. max_rotation_deg: Defines the maximum angle of rotation in degrees. max_relative_rotation_deg: Defines the maximum angle of rotation in degrees for the relative rotation. max_relative_crop_offset: Defines the maximum relative offset in pixels for cropping. return_full_scale: bool. If this is passed, the full size images will be returned in addition to the geometrically augmented (cropped and / or resized) images. In addition to the resized images, the crop height, width, and any padding applied will be returned. Returns: if return_full_scale is False: Augmented images, flow and mask (if not None). if return_full_scale is True: Augmented images, flow, mask, full_size_images, crop_h, crop_w, pad_h, and pad_w. """ # apply geometric augmentation if probability_flip_left_right > 0: images, flow, mask = random_flip_left_right( images, flow, mask, probability_flip_left_right) if probability_flip_up_down > 0: images, flow, mask = random_flip_up_down( images, flow, mask, probability_flip_up_down) if probability_scale > 0 or probability_stretch > 0: images, flow, mask = random_scale( images, flow, mask, min_scale=min_bound_scale, max_scale=max_bound_scale, max_strech=max_strech_scale, probability_scale=probability_scale, probability_strech=probability_stretch) if probability_relative_scale > 0: images, flow, mask = random_scale_second( images, flow, mask, min_scale=min_bound_relative_scale, max_scale=max_bound_relative_scale, probability_scale=probability_relative_scale) if probability_rotation > 0: images, flow, mask = random_rotation( images, flow, mask, probability=probability_rotation, max_rotation=max_rotation_deg, not_empty_crop=True) if probability_relative_rotation > 0: images, flow, mask = random_rotation_second( images, flow, mask, probability=probability_relative_rotation, max_rotation=max_relative_rotation_deg, not_empty_crop=True) images_uncropped = images images, flow, mask, offset_h, offset_w = random_crop( images, flow, mask, crop_height, crop_width, relative_offset=max_relative_crop_offset, probability_crop_offset=probability_crop_offset) # Add 100 / 200 pixels to crop height / width for full scale warp pad_to_size_h = crop_height + 200 pad_to_size_w = crop_width + 400 if return_full_scale: if pad_to_size_w: uncropped_shape = tf.shape(images_uncropped) if images.shape[1] > uncropped_shape[1] or images.shape[ 2] > uncropped_shape[2]: images_uncropped = images uncropped_shape = tf.shape(images_uncropped) offset_h = tf.zeros_like(offset_h) offset_w = tf.zeros_like(offset_w) if uncropped_shape[1] > pad_to_size_h: crop_ht = offset_h - (200 // 2) crop_hb = offset_h + crop_height + (200 // 2) crop_hb += tf.maximum(0, -crop_ht) crop_ht -= tf.maximum(0, -(uncropped_shape[1] - crop_hb)) crop_ht = tf.maximum(crop_ht, 0) crop_hb = tf.minimum(crop_hb, uncropped_shape[1]) offset_h -= crop_ht images_uncropped = images_uncropped[:, crop_ht:crop_hb, :, :] if uncropped_shape[2] > pad_to_size_w: crop_wt = offset_w - (400 // 2) crop_wb = offset_w + crop_width + (400 // 2) crop_wb += tf.maximum(0, -crop_wt) crop_wt -= tf.maximum(0, -(uncropped_shape[2] - crop_wb)) crop_wt = tf.maximum(crop_wt, 0) crop_wb = tf.minimum(crop_wb, uncropped_shape[2]) offset_w -= crop_wt images_uncropped = images_uncropped[:, :, crop_wt:crop_wb, :] uncropped_shape = tf.shape(images_uncropped) # remove remove_pixels_w from the width while keeping the crop centered pad_h = pad_to_size_h - uncropped_shape[1] pad_w = pad_to_size_w - uncropped_shape[2] with tf.control_dependencies([ tf.compat.v1.assert_greater_equal(pad_h, 0), tf.compat.v1.assert_greater_equal(pad_w, 0) ]): images_uncropped = tf.pad(images_uncropped, [[0, 0], [pad_h, 0], [pad_w, 0], [0, 0]]) images_uncropped = tf.ensure_shape(images_uncropped, [2, pad_to_size_h, pad_to_size_w, 3]) return images, flow, mask, images_uncropped, offset_h, offset_w, pad_h, pad_w return images, flow, mask
f1a9ce6983edfd47388360b9d777ad5909c046e7
9,650
def edit_distance_between_seqs(seq1, seq2): """Input is two strings. They are globally aligned and the edit distance is returned. An indel of any length is counted as one edit""" aln1, aln2 = _needleman_wunsch(seq1, seq2) return edit_distance_from_aln_strings(aln1, aln2)
88e98475c1652311745af69c6f521bba0497e633
9,651
import torch def sentence_prediction(sentence): """Predict the grammar score of a sentence. Parameters ---------- sentence : str The sentence to be predicted. Returns ------- float The predicted grammar probability. """ tokenizer = config.TOKENIZER.from_pretrained( config.MODEL_PATH, local_files_only=True ) model = config.MODEL.from_pretrained(config.MODEL_PATH, local_files_only=True) max_len = config.MAX_LEN sentence = str(sentence) sentence = " ".join(sentence.split()) inputs = tokenizer.encode_plus( sentence, add_special_tokens=True, max_length=max_len, pad_to_max_length=True, return_attention_mask=True, return_tensors="pt", truncation=True, ) ids = torch.LongTensor(inputs["input_ids"][0]).unsqueeze(0) mask = torch.LongTensor(inputs["attention_mask"][0]).unsqueeze(0) ids = ids.to(DEVICE) mask = mask.to(DEVICE) model.to(DEVICE) outputs = model(ids, token_type_ids=None, attention_mask=mask, return_dict=True) outputs = torch.sigmoid(outputs.logits).cpu().detach().numpy() return outputs[0][0]
14d7c8efa76df4727419c2d99d685707ef46eb25
9,652
def build_seq(variants, phased_genotype, ref, pre_start, ref_end=None): """ Build or extend the haplotype according to provided genotype. We marked the start position iterator of each haplotype and update with variant alternative base. """ seqs = "" position = pre_start for variant, phased in zip(variants, phased_genotype): if variant.start < pre_start: if variant.start == pre_start - 1 and phased != 0: # this only happen when pre pos is deletion and current pos is insertion ref_base = variant.reference_bases alt_base = variant.alternate_bases[phased - 1] if len(alt_base) > len(ref_base): # is an insertion # print ('has insertion and deletion overlap'.format(variant.start)) return alt_base[1:], position if phased != 0: # impossible # sometimes happen in true vcf return None, None else: return "", pre_start # do not do anything if 0 allele else: seqs += ref.query(pre_start, variant.start) allele = variant.reference_bases if phased == 0 else variant.alternate_bases[phased - 1] if phased == 0: allele = allele[0] position = variant.start + 1 seqs += allele # only add one ref base else: ref_base = variant.reference_bases alt_base = variant.alternate_bases[phased-1] ref_base, alt_base = remove_common_suffix(ref_base, [alt_base]) end = variant.start + len(ref_base) position = end seqs += alt_base[0] return seqs, position
b5f5168603b941fe8a55df5bd3bbf69898db3804
9,654
def handle_str(x): """ handle_str returns a random string of the same length as x. """ return random_string(len(x))
856341d0e3ff6d41c4c0f14beda5133b7285478c
9,655
def get_process_causality_network_activity_query(endpoint_ids: str, args: dict) -> str: """Create the process causality network activity query. Args: endpoint_ids (str): The endpoint IDs to use. args (dict): The arguments to pass to the query. Returns: str: The created query. """ process_causality_id_list = args.get('process_causality_id', '') if not process_causality_id_list: raise DemistoException('Please provide a process_causality_id argument.') process_causality_id_list = wrap_list_items_in_double_quotes(process_causality_id_list) return f'''dataset = xdr_data | filter agent_id in ({endpoint_ids}) and event_type = NETWORK and actor_process_causality_id in ({process_causality_id_list}) | fields agent_hostname, agent_ip_addresses,agent_id, action_local_ip, action_remote_ip, action_remote_port, dst_action_external_hostname,dns_query_name, action_app_id_transitions, action_total_download, action_total_upload, action_country,action_as_data, actor_process_image_sha256, actor_process_image_name , actor_process_image_path,actor_process_signature_vendor, actor_process_signature_product, actor_causality_id,actor_process_image_command_line, actor_process_instance_id'''
97330c89f7599cf4096322088ed7e7bad0699d49
9,657
async def validate_input(hass: core.HomeAssistant, data): """Validate the user input allows us to connect. Data has the keys from DATA_SCHEMA with values provided by the user. """ try: client = TickTick() client.login(data.get("username"), data.get("password")) except RequestException as exc: raise CannotConnect from exc except ValueError as exc: raise InvalidAuth from exc # Return some info we want to store in the config entry. return {"title": "TickTick"}
7f6989ae0a87579f2270aab479247634b7d1f7e8
9,658
def _shard_batch(xs): """Shards a batch for a pmap, based on the number of devices.""" local_device_count = jax.local_device_count() def _prepare(x): return x.reshape((local_device_count, -1) + x.shape[1:]) return jax.tree_map(_prepare, xs)
5c6fb53a97af3543b9e147abfb896719f83a0a28
9,659
def get_time_limit(component_limit, overall_limit): """ Return the minimum time limit imposed by the component and overall limits. """ limit = component_limit if overall_limit is not None: try: elapsed_time = util.get_elapsed_time() except NotImplementedError: returncodes.exit_with_driver_unsupported_error(CANNOT_LIMIT_TIME_MSG) else: remaining_time = max(0, overall_limit - elapsed_time) if limit is None or remaining_time < limit: limit = remaining_time return limit
4699ff18459a434a93fb50f8ac8bcc569ceb5e63
9,660
def keras_decay(step, decay=0.0001): """Learning rate decay in Keras-style""" return 1. / (1. + decay * step)
f26f1f100ecf1622d6da9958d0a6cd95a37b8b2a
9,661
def get_swagger(): """ Request handler for the /swagger path. GET: returns the My Cars API spec as a swagger json doc. """ try: return _make_response(response=validator.get_swagger_spec()) except Exception as e: return _make_error(500, e.message)
a7ce1def456264d180dcb15e6039cd32e4df7597
9,662
def subtract(value, *args, **kwargs): """ Return the difference between ``value`` and a :class:`relativedelta`. :param value: initial date or datetime. :param args: positional args to pass directly to :class:`relativedelta`. :param kwargs: keyword args to pass directly to :class:`relativedelta`. :return: the resulting date/datetime. """ return value - relativedelta(*args, **kwargs)
9f3c17b07c4010d9b1bfcff93280f0a59247fc5f
9,663
def plot_coastline( axes, bathymetry, coords='grid', isobath=0, xslice=None, yslice=None, color='black', server='local', zorder=2, ): """Plot the coastline contour line from bathymetry on the axes. The bathymetry data may be specified either as a file path/name, or as a :py:class:`netCDF4.Dataset` instance. If a file path/name is given it is opened and read into a :py:class:`netCDF4.Dataset` so, if this function is being called in a loop, it is best to provide it with a bathymetry dataset to avoid the overhead of repeated file reads. :arg axes: Axes instance to plot the coastline contour line on. :type axes: :py:class:`matplotlib.axes.Axes` :arg bathymetry: File path/name of a netCDF bathymetry data file or a dataset object containing the bathymetry data. :type bathymetry: str or :py:class:`netCDF4.Dataset` :arg coords: Type of plot coordinates to set the aspect ratio for; either :kbd:`grid` (the default) or :kbd:`map`. :type coords: str :arg isobath: Depth to plot the contour at; defaults to 0. :type isobath: float :arg xslice: X dimension slice to defined the region for which the contour is to be calculated; defaults to :kbd:`None` which means the whole domain. If an xslice is given, a yslice value is also required. :type xslice: :py:class:`numpy.ndarray` :arg yslice: Y dimension slice to defined the region for which the contour is to be calculated; defaults to :kbd:`None` which means the whole domain. If a yslice is given, an xslice value is also required. :type yslice: :py:class:`numpy.ndarray` :arg color: Matplotlib colour argument :type color: str, float, rgb or rgba tuple :arg zorder: Plotting layer specifier :type zorder: integer :returns: Contour line set :rtype: :py:class:`matplotlib.contour.QuadContourSet` """ # Index names based on results server if server == 'local': lon_name = 'nav_lon' lat_name = 'nav_lat' bathy_name = 'Bathymetry' elif server == 'ERDDAP': lon_name = 'longitude' lat_name = 'latitude' bathy_name = 'bathymetry' else: raise ValueError('Unknown results server name: {}'.format(server)) if any(( xslice is None and yslice is not None, xslice is not None and yslice is None, )): raise ValueError('Both xslice and yslice must be specified') if not hasattr(bathymetry, 'variables'): bathy = nc.Dataset(bathymetry) else: bathy = bathymetry depths = bathy.variables[bathy_name] if coords == 'map': lats = bathy.variables[lat_name] lons = bathy.variables[lon_name] if xslice is None and yslice is None: contour_lines = axes.contour( np.array(lons), np.array(lats), np.array(depths), [isobath], colors=color, zorder=zorder) else: contour_lines = axes.contour( lons[yslice, xslice], lats[yslice, xslice], depths[yslice, xslice].data, [isobath], colors=color, zorder=zorder) else: if xslice is None and yslice is None: contour_lines = axes.contour( np.array(depths), [isobath], colors=color, zorder=zorder) else: contour_lines = axes.contour( xslice, yslice, depths[yslice, xslice].data, [isobath], colors=color, zorder=zorder) if not hasattr(bathymetry, 'variables'): bathy.close() return contour_lines
1166ea3e942bf5c9212cf07e69326c38f6e77f96
9,664
def safelog(func): """Version of prism.log that has prism as an optional dependency. This prevents the sql database, which may not be available, from becoming a strict dependency.""" @wraps(func) def inner(self, update, context): try: self.bot.cores["prism"].log_user(update.effective_user) if update.effective_user.id != update.effective_chat.id: # If the chat is not a one-to-one chat with the user. self.bot.cores["prism"].log_chat(update.effective_chat) except KeyError: # If the prism core is not loaded. pass func(self, update, context) return inner
fbd1ad03417151705640f0fd20c0caa685896496
9,665
def draw(args): """ Draw a GraphML with the tribe draw method. """ G = nx.read_graphml(args.graphml[0]) draw_social_network(G, args.write) return ""
f5347dceaf6f79ab22218eb8838944d4f3e5a8ea
9,666
import re def extract_stem_voc(x): """extract word from predefined vocbulary with stemming and lemmatization Args: x ([string]): [a sentence] Returns: [list]: [word after stemming and lemmatization] """ stem = PorterStemmer() # wnl = WordNetLemmatizer() all_words = set(words.words()) # lemma_word = [word for word in map(lambda x: wnl.lemmatize(stem.stem(x)), re.findall('[a-zA-Z][-._a-zA-Z]*[a-zA-Z]', x)) if word in all_words] lemma_word = [word for word in map(lambda x: stem.stem(x), re.findall('[a-zA-Z][-._a-zA-Z]*[a-zA-Z]', x)) if word in all_words] return lemma_word
0e882eb8f9b938fc8eb50e69dda2864d2d8a12da
9,667
from typing import Union from typing import Optional from typing import List from typing import Dict def plot_without_vis_spec( conditions_df: Union[str, pd.DataFrame], grouping_list: Optional[List[IdsList]] = None, group_by: str = 'observable', measurements_df: Optional[Union[str, pd.DataFrame]] = None, simulations_df: Optional[Union[str, pd.DataFrame]] = None, plotted_noise: str = MEAN_AND_SD, subplot_dir: Optional[str] = None, plotter_type: str = 'mpl', format_: str = 'png', ) -> Optional[Dict[str, plt.Subplot]]: """ Plot measurements and/or simulations. What exactly should be plotted is specified in a grouping_list. If grouping list is not provided, measurements (simulations) will be grouped by observable, i.e. all measurements for each observable will be visualized on one plot. Parameters ---------- grouping_list: A list of lists. Each sublist corresponds to a plot, each subplot contains the Ids of datasets or observables or simulation conditions for this plot. group_by: Grouping type. Possible values: 'dataset', 'observable', 'simulation' conditions_df: A condition DataFrame in the PEtab format or path to the condition file. measurements_df: A measurement DataFrame in the PEtab format or path to the data file. simulations_df: A simulation DataFrame in the PEtab format or path to the simulation output data file. plotted_noise: A string indicating how noise should be visualized: ['MeanAndSD' (default), 'MeanAndSEM', 'replicate', 'provided'] subplot_dir: A path to the folder where single subplots should be saved. PlotIDs will be taken as file names. plotter_type: Specifies which library should be used for plot generation. Currently, only matplotlib is supported format_: File format for the generated figure. (See :py:func:`matplotlib.pyplot.savefig` for supported options). Returns ------- ax: Axis object of the created plot. None: In case subplots are saved to a file. """ if measurements_df is None and simulations_df is None: raise TypeError('Not enough arguments. Either measurements_data ' 'or simulations_data should be provided.') vis_spec_parser = VisSpecParser(conditions_df, measurements_df, simulations_df) figure, dataprovider = vis_spec_parser.parse_from_id_list( grouping_list, group_by, plotted_noise) if plotter_type == 'mpl': plotter = MPLPlotter(figure, dataprovider) else: raise NotImplementedError('Currently, only visualization with ' 'matplotlib is possible.') return plotter.generate_figure(subplot_dir, format_=format_)
dba21fae889057e83dd8084b727e7c6312c3cd0f
9,668
import torch def _get_culled_faces(face_verts: torch.Tensor, frustum: ClipFrustum) -> torch.Tensor: """ Helper function used to find all the faces in Meshes which are fully outside the view frustum. A face is culled if all 3 vertices are outside the same axis of the view frustum. Args: face_verts: An (F,3,3) tensor, where F is the number of faces in the packed representation of Meshes. The 2nd dimension represents the 3 vertices of a triangle, and the 3rd dimension stores the xyz locations of each vertex. frustum: An instance of the ClipFrustum class with the information on the position of the clipping planes. Returns: faces_culled: An boolean tensor of size F specifying whether or not each face should be culled. """ clipping_planes = ( (frustum.left, 0, "<"), (frustum.right, 0, ">"), (frustum.top, 1, "<"), (frustum.bottom, 1, ">"), (frustum.znear, 2, "<"), (frustum.zfar, 2, ">"), ) faces_culled = torch.zeros( [face_verts.shape[0]], dtype=torch.bool, device=face_verts.device ) for plane in clipping_planes: clip_value, axis, op = plane # If clip_value is None then don't clip along that plane if frustum.cull and clip_value is not None: if op == "<": verts_clipped = face_verts[:, axis] < clip_value else: verts_clipped = face_verts[:, axis] > clip_value # If all verts are clipped then face is outside the frustum faces_culled |= verts_clipped.sum(1) == 3 return faces_culled
edb9594b4a9d5fe6c3d7fcf24e9b0e312b94d3cb
9,669
import collections def _build_pep8_output(result): """ Build the PEP8 output based on flake8 results. Results from both tools conform to the following format: <filename>:<line number>:<column number>: <issue code> <issue desc> with some issues providing more details in the description within parentheses. :param result: output from flake8 :returns: list of flake8 output lines by error """ # Aggregate individual errors by error _dict = collections.defaultdict(list) for line in str(result).split("\n"): if line: # Preserve only the code and brief description for each issue to # facilitate aggregating the results. For example, # # E501 line too long (178 > 79 characters) -> E501 line too long # E303 too many blank lines (4) -> E303 too many blank lines parts = line.replace("(", ":").split(":") line_num, col_num, base_issue = parts[1:4] # Strip the whitespace around the base <issue code> <description>. # # Also restore the missing colon, stripped above, if the issue # was 'missing whitespace' surrounding a colon. issue = base_issue.strip() key = "{}:'".format(issue) if issue.endswith("after '") else issue _dict[key].append("{} ({})".format(line_num, col_num)) # Build the output as one issue per entry return ["{}: {}".format(k, ", ".join(_dict[k])) for k in sorted(_dict.keys())]
a4abda2f9d3a2d9b3524c60429b047cbfe0285d9
9,670
def form_value(request, entity, attribute): """ Return value from request params or the given entity. :param request: Pyramid request. :param entity: Instance to get attribute from if it isn't found in the request params. :param str attribute: Name of attribute to search for in the request params or on as an attribute of the given entity. """ # Check for contains, because we want the request value even if it's empty if attribute in request.params: return request.params.get(attribute, '') if entity: # Don't provide a default value, because we want to make attribute typos clear return getattr(entity, attribute) return ''
1daea77474dae5a1cb6fdab0b075a5b2f5c40865
9,671
def process_batch_data(batch_words, batch_tags=None): """ Padding batched dataset. Args: batch_words: Words in a batch. batch_tags: Punctuations in a batch. Returns: Words and punctuations after padding. """ b_words, b_words_len = pad_sequences(batch_words) if batch_tags is None: return {"words": b_words, "seq_len": b_words_len, "batch_size": len(b_words)} else: b_tags, _ = pad_sequences(batch_tags) return {"words": b_words, "tags": b_tags, "seq_len": b_words_len, "batch_size": len(b_words)}
2428b1009cfcaf55df8ef5be275d87f1053643fd
9,672
import torch import math def adjust_learning_rate( optimizer: torch.optim, base_lr: float, iteration: int, warm_iter: int, max_iter: int, ) -> float: """ warmup + cosine lr decay """ start_lr = base_lr / 10 if iteration <= warm_iter: lr = start_lr + (base_lr - start_lr) * iteration / warm_iter else: lr = start_lr + (base_lr - start_lr) * 0.5 * (1 + math.cos((iteration - warm_iter) * math.pi / (max_iter - warm_iter))) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr
1304e22abb712cfb6c589a2adf199971c058986f
9,675
def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename).drop_duplicates() df = filter_data(df) return df.drop("price", axis=1), df.filter(['price'])
a5d044fa5be8ceefdb3cee7fb212608110f8dae5
9,677
def face_at_link(shape, actives=None, inactive_link_index=BAD_INDEX_VALUE): """Array of faces associated with links. Returns an array that maps link ids to face ids. For inactive links, which do not have associated faces, set their ids to *inactive_link_index*. Use the *actives* keyword to specify an array that contains the ids of all active links in the grid. The default assumes that only the perimeter nodes are inactive. Examples -------- >>> from landlab.utils.structured_grid import face_at_link >>> faces = face_at_link((3, 4), inactive_link_index=-1) >>> faces # doctest: +NORMALIZE_WHITESPACE array([-1, 0, 1, -1, -1, 2, 3, -1, -1, -1, -1, 4, 5, 6, -1, -1, -1]) """ if actives is None: actives = active_links(shape) num_links = link_count(shape) link_faces = np.empty(num_links, dtype=np.int) link_faces.fill(inactive_link_index) link_faces[actives] = np.arange(len(actives)) return link_faces
db7e3e87144354fb850b0741a7531d06e73227f6
9,678