content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def state(state_vec):
""" Qiskit wrapper of qobj
"""
return gen_operator.state(state_vec) | 74094c7c6e3c33cff28777f54d8852245c31f276 | 10,149 |
def get_games_for_platform(platform_id):
"""Return the list of all the games for a given platform"""
controller = GameController
return controller.get_list_by_platform(MySQLFactory.get(), platform_id) | 83855b6cdb4d39442e255d14d2f94d76a702a0ea | 10,151 |
def validate_dataset(elem: object) -> Dataset:
"""Check that `elem` is a :class:`~pydicom.dataset.Dataset` instance."""
if not isinstance(elem, Dataset):
raise TypeError('Sequence contents must be Dataset instances.')
return elem | d4744b06f0ccdc8dca0deab57585706c1ee91db9 | 10,152 |
def conv3x3(in_channels, out_channels, stride=1):
"""3x3 convolution """
weight_shape = (out_channels, in_channels, 3, 3)
weight = Tensor(np.ones(weight_shape).astype(np.float32))
conv = Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=0, weight_init=weight, has_bias=False,
pad_mode="same")
conv.conv2d.shard(strategy_weight)
return conv | 011a3f74e8665669f9ecf5d4b9e8abf14f52e053 | 10,154 |
def _workflow_complete(workflow_stage_dict: dict):
"""Check if the workflow is complete.
This function checks if the entire workflow is complete.
This function is used by `execute_processing_block`.
Args:
workflow_stage_dict (dict): Workflow metadata dictionary.
Returns:
bool, True if the workflow is complete, otherwise False.
"""
# Check if all stages are complete, if so end the PBC by breaking
# out of the while loop
complete_stages = []
for _, stage_config in workflow_stage_dict.items():
complete_stages.append((stage_config['status'] == 'complete'))
if all(complete_stages):
LOG.info('PB workflow complete!')
return True
return False | 4e5be4c4768d82e8b1e76d1964c3effb2e604dd2 | 10,155 |
def get_name(f, opera_format=True):
"""Load dataset and extract radar name from it"""
ds = xr.open_dataset(f)
if hasattr(ds, 'source'):
radar = ds.source
else:
filename = osp.splitext(osp.basename(f))[0]
radar = filename.split('_')[-1]
if opera_format:
if '/' in radar:
radar = (radar[:2]+radar[-3:]).lower()
else:
if radar.islower():
radar = radar[:2] + '/' + radar[-3:]
return radar | 8c50bebfde1300aa6de55981537cbc23171e6ee8 | 10,157 |
import six
def range_join(numbers, to_str=False, sep=",", range_sep=":"):
"""
Takes a sequence of positive integer numbers given either as integer or string types, and
returns a sequence 1- and 2-tuples, denoting either single numbers or inclusive start and stop
values of possible ranges. When *to_str* is *True*, a string is returned in a format consistent
to :py:func:`range_expand` with ranges constructed by *range_sep* and merged with *sep*.
Example:
.. code-block:: python
range_join([1, 2, 3, 5])
# -> [(1, 3), (5,)]
range_join([1, 2, 3, 5, 7, 8, 9])
# -> [(1, 3), (5,), (7, 9)]
range_join([1, 2, 3, 5, 7, 8, 9], to_str=True)
# -> "1:3,5,7:9"
"""
if not numbers:
return "" if to_str else []
# check type, convert, make unique and sort
_numbers = []
for n in numbers:
if isinstance(n, six.string_types):
try:
n = int(n)
except ValueError:
raise ValueError("invalid number format '{}'".format(n))
if isinstance(n, six.integer_types):
_numbers.append(n)
else:
raise TypeError("cannot handle non-integer value '{}' in numbers to join".format(n))
numbers = sorted(set(_numbers))
# iterate through numbers, keep track of last starts and stops and fill a list of range tuples
ranges = []
start = stop = numbers[0]
for n in numbers[1:]:
if n == stop + 1:
stop += 1
else:
ranges.append((start,) if start == stop else (start, stop))
start = stop = n
ranges.append((start,) if start == stop else (start, stop))
# convert to string representation
if to_str:
ranges = sep.join(
(str(r[0]) if len(r) == 1 else "{1}{0}{2}".format(range_sep, *r))
for r in ranges
)
return ranges | c1b2d10ec1b47fa5c917fccead2ef8d5fc506370 | 10,158 |
def power_spectrum(x, fs, N=None):
"""
Power spectrum of instantaneous signal :math:`x(t)`.
:param x: Instantaneous signal :math:`x(t)`.
:param fs: Sample frequency :math:`f_s`.
:param N: Amount of FFT bins.
The power spectrum, or single-sided autospectrum, contains the squared RMS amplitudes of the signal.
A power spectrum is a spectrum with squared RMS values. The power spectrum is
calculated from the autospectrum of the signal.
.. warning:: Does not include scaling to reference value!
.. seealso:: :func:`auto_spectrum`
"""
N = N if N else x.shape[-1]
f, a = auto_spectrum(x, fs, N=N)
a = a[..., N//2:]
f = f[..., N//2:]
a *= 2.0
a[..., 0] /= 2.0 # DC component should not be doubled.
if not N%2: # if not uneven
a[..., -1] /= 2.0 # And neither should fs/2 be.
return f, a | f665c529541420ada0ae4819e53de1e73035d83f | 10,159 |
def CreateInstanceTemplate(task, task_dir):
"""Create the Compute Engine instance template that will be used to create the
instances.
"""
backend_params = task.BackendParams()
instance_count = backend_params.get('instance_count', 0)
if instance_count <= 0:
clovis_logger.info('No template required.')
return True
bucket = backend_params.get('storage_bucket')
if not bucket:
clovis_logger.error('Missing bucket in backend_params.')
return False
return instance_helper.CreateTemplate(task.BackendParams()['tag'], bucket,
task_dir) | 558e4ed3152bb87a51bd2bb7dd107af5dd76bcd1 | 10,160 |
def get_config_string(info_type, board_num, dev_num, config_item, max_config_len):
"""Returns configuration or device information as a null-terminated string.
Parameters
----------
info_type : InfoType
The configuration information for each board is grouped into different categories. This
parameter specifies which category you want. Always set this parameter to
InfoType.BOARDINFO.
board_num : int
The number associated with the board when it was installed with InstaCal or created
with :func:`.create_daq_device`.
dev_num : int
The purpose of the dev_num parameter depends on the value of the config_item parameter. It
can serve as a channel number, an index into the config_item, or it can be ignored.
Unless otherwise noted in the "config_item parameter values" section below, this value is
ignored.
config_item : BoardInfo
The type of information to read from the device. Set it to one of the constants listed in
the "config_item parameter values" section below.
max_config_len : int
The maximum number of bytes to be read from the device into config_val.
Returns
-------
string
The specified configuration item
.. table:: **config_item parameter values**
============ =============================================================================
config_item Description
============ =============================================================================
DEVMACADDR MAC address of an Ethernet device.
------------ -----------------------------------------------------------------------------
DEVSERIALNUM Factory serial number of a USB or Bluetooth device.
dev_num specifies either a base board (0) or an expansion board (1).
------------ -----------------------------------------------------------------------------
DEVUNIQUEID Unique identifier of a discoverable device, such as the serial number of a
USB device or MAC address of an Ethernet device.
------------ -----------------------------------------------------------------------------
DEVVERSION Firmware version and FPGA version installed on a device.
Use this setting in conjunction with one of these dev_num settings:
- MAIN (main firmware version)
- MEASUREMENT (measurement firmware version)
- MEASUREMENT_EXP (expansion board measurement firmware version)
- RADIO (radio firmware version)
- FPGA (FPGA version)
------------ -----------------------------------------------------------------------------
USERDEVID User-configured string identifier of up to maxConfigLen character/bytes from
an Ethernet, Bluetooth, or USB device.
============ =============================================================================
"""
config_val = create_string_buffer(max_config_len)
_check_err(_cbw.cbGetConfigString(
info_type, board_num, dev_num, config_item,
config_val, byref(c_int(max_config_len))))
return config_val.value.decode('utf-8') | 72a35d984cb35e38a5e0742c7d790dc72ccbc928 | 10,161 |
import inspect
def _get_kwargs(func, locals_dict, default=None):
"""
Convert a function's args to a kwargs dict containing entries that are not identically default.
Parameters
----------
func : function
The function whose args we want to convert to kwargs.
locals_dict : dict
The locals dict for the function.
default : object
Don't include arguments whose values are this object.
Returns
-------
dict
The non-default keyword args dict.
"""
return {n: locals_dict[n] for n in inspect.signature(func).parameters
if locals_dict[n] is not default} | ae0a06cb4e17b5512a03e89d7ca2119c58ea762b | 10,162 |
from datetime import datetime
def iso_to_date(iso_str: str):
"""Convert a date string with iso formating to a datetime date object"""
if not iso_str:
return None
return datetime.date(*map(int, iso_str.split('-'))) | a0d0541298ed538d7df9940ceef7b2bac121af27 | 10,163 |
def call_with_error(error_type):
"""Collects a bunch of errors and returns them all once.
Decorator that collects the errors in the decorated function so that the
user can see everything they need to fix at once. All errors are thrown
with the same error type.
The decorated must have an `error` keyword parameter. The `error` parameter
is then ignored if the end user passes in that argument.
Parameters
----------
error_type: type
The type of error to throw. For example, `ValueError`.
Returns
-------
Callable[Callable[[Any], Any], Callable[[Any], Any]]
Returns a decorator
Example
-------
>>> @call_with_error(ValueError)
>>> def func(a: int, b: int, error: Callable[[str], None]) -> int:
... if a < 0:
... error("a must be zero or greater")
... if b < 0:
... error("b must be zero or greater")
... return a + b
>>> func(-1, 0)
ValueError("a must be zero or greater")
>>> func(0, -1)
ValueError("b must be zero or greater")
>>> func(-1, -1)
ValueError("a must be zero or greater\nb must be zero or greater")
"""
def _call_with_error(f):
@curry
def error(log, msg):
log.append(msg)
@wraps(f)
def wrapped(*args, **kwargs):
log = []
result = f(*args, error=error(log), **kwargs)
if len(log) > 0:
raise error_type("\n".join(log))
return result
return wrapped
return _call_with_error | 9a64fb630b0a491bc9e01d77ebe35199df47ab55 | 10,164 |
def _get_metadata_and_fingerprint(instance_name, project, zone):
"""Return the metadata values and fingerprint for the given instance."""
instance_info = _get_instance_info(instance_name, project, zone)
if not instance_info:
logs.log_error('Failed to fetch instance metadata')
return None, None
fingerprint = instance_info['metadata']['fingerprint']
metadata_items = instance_info['metadata']['items']
return metadata_items, fingerprint | 7049805d538c7942dc8249e91c27faa2c1867936 | 10,165 |
def solve_token_pair_and_fee_token_economic_viable(
token_pair, accounts, b_orders, s_orders, f_orders, fee,
xrate=None
):
"""Match orders between token pair and the fee token, taking into
account all side constraints, including economic viability.
If xrate is given, then it will be used instead of trying to find
optimal xrate.
Sets b_orders/s_orders/f_orders (integral) buy_amounts for the best execution.
Also returns the (integral) prices found.
"""
b_buy_token, s_buy_token = token_pair
orders, prices = TRIVIAL_SOLUTION
# Search for an economically viable solution.
while len(b_orders) > 0 or len(s_orders) > 0:
# Solve current problem.
orders, prices = solve_token_pair_and_fee_token(
token_pair, accounts, b_orders, s_orders, f_orders, fee, xrate
)
# If solution is economically viable, exit.
# Hopefully, in large majority of cases this will occur in the first iteration.
if is_economic_viable(orders, prices, fee, IntegerTraits) or is_trivial(orders):
break
# If solution cannot be made economically viable (assuming prices wouldn't change)
if len(compute_approx_economic_viable_subset(
orders, prices, fee, IntegerTraits
)) == 0:
orders, prices = TRIVIAL_SOLUTION
break
# Note: to increase performance, we could consider removing all orders that do not
# satisfy min_abs_fee_per_order here at once, instead of removing one at a time as
# it is currently. The advantage of removing one by one is that it will not remove
# more than needed (note that prices, and hence order fees, keep changing).
# Find and remove the order paying the least fee.
b_order_with_min_buy_amount = min(
[o for o in b_orders if o.buy_amount > 0],
key=lambda o: o.buy_amount
)
s_order_with_min_buy_amount = min(
[o for o in s_orders if o.buy_amount > 0],
key=lambda o: o.buy_amount
)
if b_order_with_min_buy_amount.buy_amount * prices[b_buy_token]\
< s_order_with_min_buy_amount.buy_amount * prices[s_buy_token]:
b_orders = [
o for o in b_orders if o.id != b_order_with_min_buy_amount.id
]
else:
s_orders = [
o for o in s_orders if o.id != s_order_with_min_buy_amount.id
]
# Make sure the solution is correct.
validate(accounts, orders, prices, fee)
return orders, prices | f6fcf5bccdf498f29852614751cf120a8e2addd4 | 10,166 |
def two_categorical(df, x, y, plot_type="Cross tab"):
"""
['Cross tab', "Stacked bone_numeric_one_categorical"]
"""
if plot_type is None:
plot_type = 'Cross tab'
if plot_type == 'Stacked bar': # 20
df_cross = pd.crosstab(df[x], df[y])
data = []
for x in df_cross.columns:
data.append(go.Bar(name=str(x), x=df_cross.index, y=df_cross[x]))
fig = go.Figure(data)
fig.update_layout(barmode = 'stack')
#For you to take a look at the result use
if plot_type == "Cross tab": # 21
df_cross = pd.crosstab(df[x], df[y])
return df_cross
return fig | 5c0908055848d9de02920f8e2718de0918f4b460 | 10,167 |
def yices_bvconst_one(n):
"""Set low-order bit to 1, all the other bits to 0.
Error report:
if n = 0
code = POS_INT_REQUIRED
badval = n
if n > YICES_MAX_BVSIZE
code = MAX_BVSIZE_EXCEEDED
badval = n.
"""
# let yices deal with int32_t excesses
if n > MAX_INT32_SIZE:
n = MAX_INT32_SIZE
return libyices.yices_bvconst_one(n) | 6a70c4773a6558e068d2bbafb908657d5b5b4d1d | 10,168 |
def showItem(category_id):
"""Show all Items"""
category = session.query(Category).filter_by(id=category_id).one()
items = session.query(Item).filter_by(
category_id=category_id).all()
return render_template('item.html', items=items, category=category) | 230cc9b7e8043b0bb3e78866b2a27a0aec287828 | 10,169 |
def get_standard_t_d(l, b, d):
"""
Use NE2001 to estimate scintillation time at 1 GHz and 1 km/s transverse velocity.
Parameters
----------
l : float
Galactic longitude
b : float
Galactic latitude
d : float
Distance in kpc
Returns
-------
t_d : float
Scintillation timescale in s
"""
return query_ne2001(l, b, d, field='SCINTIME') | e1743ae75a6893376c5e13126deda6f0eb41d38f | 10,170 |
def match(pattern: str, text: str) -> bool:
"""
匹配同样长度的字符串
"""
if pattern:
return True
elif pattern == "$" and text == "":
return True
elif pattern[1] == "?":
return _match_question(pattern, text)
elif pattern[1] == "*":
return _match_star(pattern, text)
else:
return match_one(pattern[0], text[0]) and match(pattern[1:], text[1:]) | 0dc71f00323502de7c1a2e00c502c99d75f56fc1 | 10,172 |
def config_func(tools, index, device_id, config_old: {}, config_new: {}):
"""
CANedge configuration update function
:param tools: A collection of tools used for device configuration
:param index: Consecutive device index (from 0)
:param device_id: Device ID
:param config_old: The current device configuration
:param config_new: Default new device configuration
:return: Update configuration
"""
# This is an example of how to upgrade existing access point and S3 credentials from plain to encrypted form. Note
# that below assumes that the existing configuration holds the information in unencrypted form.
# Devices already using encrypted credentials are skipped (no configuration returned)
# New configuration uses same structure. The old configuration can safely be copied to the new.
config_new = config_old
# Only update configurations unencrypted credentials
if config_new["connect"]["wifi"]["keyformat"] == 0 and config_new["connect"]["s3"]["server"]["keyformat"] == 0:
# Set the server kpub
config_new["general"]["security"] = {"kpub": tools.security.user_public_key_base64}
# Set the access point key format to 1 (encrypted)
config_new["connect"]["wifi"]["keyformat"] = 1
# Loop each accesspoint in list
for ap in config_new["connect"]["wifi"]["accesspoint"]:
# Encrypt the wifi password
unencrypted_wifi_pwd = ap["pwd"]
ap["pwd"] = tools.security.encrypt_encode(unencrypted_wifi_pwd)
# Encrypt the S3 secret key
unencrypted_s3_secretkey = config_new["connect"]["s3"]["server"]["secretkey"]
config_new["connect"]["s3"]["server"]["keyformat"] = 1
config_new["connect"]["s3"]["server"]["secretkey"] = tools.security.encrypt_encode(unencrypted_s3_secretkey)
return config_new | c0585c3a268fb40e3e00a2613e03001bc561566a | 10,173 |
def load_figure(file_path: str) -> matplotlib.figure.Figure:
"""Fully loads the saved figure to be able to be modified.
It can be easily showed by:
fig_object.show()
Args:
file_path: String file path without file extension.
Returns:
Figure object.
Raises:
None.
"""
with open(file_path + '.pkl', 'rb') as handle:
fig_object = pk.load(handle)
return fig_object | 76dcc0a27a3ae04e574a3d69fb431eedbc0c618a | 10,174 |
def cluster_vectors(vectors, k=500, n_init=100, **kwargs):
"""Build NearestNeighbors tree."""
kwargs.pop('n_clusters', None)
kwargs.pop('init', None)
kwargs.pop('n_init', None)
return KMeans(n_clusters=k, init='k-means++', n_init=n_init,
**kwargs).fit(vectors) | 28984811ea58a2a2c123d36cdb5e56c1d5b8d0db | 10,175 |
import torch
import math
def positional_encoding(d_model, length):
"""
:param d_model: dimension of the model
:param length: length of positions
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model))
pe = torch.zeros(length, d_model)
position = torch.arange(0, length).unsqueeze(1)
div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
return pe | de41f0c99b46f16dbe300d59527e11b98a0b1f14 | 10,176 |
def invert_hilbert_QQ(n=40, system='sage'):
"""
Runs the benchmark for calculating the inverse of the hilbert
matrix over rationals of dimension n.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.invert_hilbert_QQ(30)
sage: tm = b.invert_hilbert_QQ(30, system='magma') # optional - magma
"""
if system == 'sage':
A = hilbert_matrix(n)
t = cputime()
d = A**(-1)
return cputime(t)
elif system == 'magma':
code = """
h := HilbertMatrix(%s);
tinit := Cputime();
d := h^(-1);
s := Cputime(tinit);
delete h;
"""%n
if verbose: print(code)
magma.eval(code)
return float(magma.eval('s')) | 153e7400467a57cf07f839042d31d4800fe161bd | 10,179 |
def getModelListForEnumProperty(self, context):
"""Returns a list of (str, str, str) elements which contains the models
contained in the currently selected model category.
If there are no model categories (i.e. '-') return ('-', '-', '-').
Args:
context:
Returns:
"""
category = context.window_manager.category
if category == '-' or category == '':
return [('-',) * 3]
return sorted(model_previews[category].enum_items) | 46f642933dd220b0f71431ff4a9cb7410858fbf0 | 10,180 |
import logging
def run_wcs(*args, **kwargs):
"""
Set up the environment and run the bundled wcs.exe (from the Talon distribution)
using the supplied command line arguments
"""
# Pull out keyword args that we are interested in
write_stdout_to_console = kwargs.get("write_stdout_to_console", False)
# Override the TELHOME environment variable so that we can use relative
# paths when specifying the location of the GSC directory and ip.cfg
environment = dict(TELHOME=paths.talon_wcs_path())
stdout_destination = PIPE
if write_stdout_to_console:
stdout_destination = None
# Make sure all passed-in arguments are strings
args = [str(x) for x in args]
args = [
WCS_EXE,
# wcs.exe will use the last-specified values for -i and -c, so
# we'll provide defaults below but they can be overridden by values
# coming in via the *args array
"-i", "ip.cfg", # Specify the path to ip.cfg (relative to TELHOME)
"-c", "gsc" # Specify the path to the GSC catalog (relative to TELHOME)
] + list(args) # Include additional args specified by the user
process = Popen(
args,
env=environment,
stdout=stdout_destination,
stderr=PIPE
)
(stdout, stderr) = process.communicate() # Obtain stdout and stderr output from the wcs tool
exit_code = process.wait() # Wait for process to complete and obtain the exit code
if not write_stdout_to_console:
logging.info(stdout.decode("utf-8"))
if exit_code != 0:
logging.info("Error finding WCS solution.\n" +
"Exit code: " + str(exit_code) + "\n" +
"Error output: " + stderr.decode("utf-8"))
return False
return True | 51461fcbc4ed5a08063d630aea926d312b9da825 | 10,182 |
def store_exposure_fp(fp, exposure_type):
"""
Preserve original exposure file extention if its in a pandas supported
compressed format
compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’
For on-the-fly decompression of on-disk data. If ‘infer’ and
filepath_or_buffer is path-like, then detect compression from
the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’
(otherwise no decompression).
If using ‘zip’, the ZIP file must contain only one data file
to be read in. Set to None for no decompression.
New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.
"""
compressed_ext = ('.gz', '.bz2', '.zip', '.xz')
filename = SOURCE_FILENAMES[exposure_type]
if fp.endswith(compressed_ext):
return '.'.join([filename, fp.rsplit('.')[-1]])
else:
return filename | c187e79d4cce7ea79b66671a2e7378a35de4841f | 10,184 |
def velocity_genes(data, vkey='velocity', min_r2=0.01, highly_variable=None, copy=False):
"""Estimates velocities in a gene-specific manner
Arguments
---------
data: :class:`~anndata.AnnData`
Annotated data matrix.
vkey: `str` (default: `'velocity'`)
Name under which to refer to the computed velocities for `velocity_graph` and `velocity_embedding`.
min_r2: `float` (default: 0.01)
Minimum threshold for coefficient of determination
highly_variable: `bool` (default: `None`)
Whether to include highly variable genes only.
copy: `bool` (default: `False`)
Return a copy instead of writing to `adata`.
Returns
-------
Updates `adata` attributes
velocity_genes: `.var`
genes to be used for further velocity analysis (velocity graph and embedding)
"""
adata = data.copy() if copy else data
if vkey + '_genes' not in adata.var.keys(): velocity(data, vkey)
adata.var[vkey + '_genes'] = np.array(adata.var[vkey + '_genes'], dtype=bool) & (adata.var[vkey + '_r2'] > min_r2)
if highly_variable and 'highly_variable' in adata.var.keys():
adata.var[vkey + '_genes'] &= adata.var['highly_variable']
logg.info('Number of obtained velocity_genes:', np.sum(adata.var[vkey + '_genes']))
return adata if copy else None | 7d2a0b86d2fb4402cdef9ab56fe2638f89d09fac | 10,185 |
def update_graphics_labels_from_node_data(node, n_id_map, add_new_props):
"""Updates the graphics labels so they match the node-data"""
try:
gfx = select_child(node, n_id_map, 'nodegraphics').getchildren()[0].getchildren()
except:
return None
node_label = select_child(node, n_id_map, 'labelcount').text
node_props = select_child(node, n_id_map, 'node_prop_text').text
# Nodes have either 0, 1, or 2 node labels. If 1, its just title and count
# If 2, the first one is title count, second is properties and counts
i = 0
for elem in gfx:
if elem.tag.endswith('NodeLabel'):
if i == 0:
elem.text = node_label
i += 1
# not all nodes have a props-label
elif i == 1 and node_props:
# Add all properties to the label text, even if new
elem.text = node_props | c2d3104dbc3a20ff6c34de754ff681b176091787 | 10,186 |
def ProcuraPalavra(dicionário, palavra):
"""
Procura as possíveis palavras para substituir
a palavra passada, e as devolve numa lista
"""
#Antes de mais nada tornamos a palavra maiuscula
#para realizar as comparações
palavra = palavra.upper()
#Primeiro olhamos para o caso de haver uma
#primeira letra selecionada, o que facilitaria
#a nossa busca
if palavra[0] != '*':
#Primeiro nós encontramos o ponto do dionário
#onde começa nossa letra
for i in range(len(dicionário)):
if i % 100 == 0:
print('Procurando Letra no dicionário...')
if dicionário[i][0] == palavra[0]:
break
#E também o ponto do dicionário onde nossa
#letra acaba
for j in range(i, len(dicionário)):
if j % 100 == 0:
print('Procurando Letra no dicionário...')
if dicionário[j][0] != palavra[0]:
break
return SeparaPorTamanho(dicionário[i:j], palavra)
else:
return SeparaPorTamanho(dicionário, palavra) | 1a283aec6670c0e2fe6ca6f4366ef43c6ba97e9f | 10,189 |
import json
import six
def _build_auth_record(response):
"""Build an AuthenticationRecord from the result of an MSAL ClientApplication token request"""
try:
id_token = response["id_token_claims"]
if "client_info" in response:
client_info = json.loads(_decode_client_info(response["client_info"]))
home_account_id = "{uid}.{utid}".format(**client_info)
else:
# MSAL uses the subject claim as home_account_id when the STS doesn't provide client_info
home_account_id = id_token["sub"]
# "iss" is the URL of the issuing tenant e.g. https://authority/tenant
issuer = six.moves.urllib_parse.urlparse(id_token["iss"])
# tenant which issued the token, not necessarily user's home tenant
tenant_id = id_token.get("tid") or issuer.path.strip("/")
# AAD returns "preferred_username", ADFS returns "upn"
username = id_token.get("preferred_username") or id_token["upn"]
return AuthenticationRecord(
authority=issuer.netloc,
client_id=id_token["aud"],
home_account_id=home_account_id,
tenant_id=tenant_id,
username=username,
)
except (KeyError, ValueError) as ex:
auth_error = ClientAuthenticationError(
message="Failed to build AuthenticationRecord from unexpected identity token"
)
six.raise_from(auth_error, ex) | 96aed71945c354e41cafd89bf5d7a7d62c31a40a | 10,191 |
def loc_data_idx(loc_idx):
"""
Return tuple of slices containing the unflipped idx corresponding to loc_idx.
By 'unflipped' we mean that if a slice has a negative step, we wish to retrieve
the corresponding indices but not in reverse order.
Examples
--------
>>> loc_data_idx(slice(11, None, -3))
(slice(2, 12, 3),)
"""
retval = []
for i in as_tuple(loc_idx):
if isinstance(i, slice) and i.step is not None and i.step == -1:
if i.stop is None:
retval.append(slice(0, i.start+1, -i.step))
else:
retval.append(slice(i.stop+1, i.start+1, -i.step))
elif isinstance(i, slice) and i.step is not None and i.step < -1:
if i.stop is None:
lmin = i.start
while lmin >= 0:
lmin += i.step
retval.append(slice(lmin-i.step, i.start+1, -i.step))
else:
retval.append(slice(i.stop+1, i.start+1, -i.step))
elif is_integer(i):
retval.append(slice(i, i+1, 1))
else:
retval.append(i)
return as_tuple(retval) | d30b1b27957e24ff30caf19588487645ac198dc8 | 10,192 |
def eat_descriptor(descr):
"""
Read head of a field/method descriptor. Returns a pair of strings, where
the first one is a human-readable string representation of the first found
type, and the second one is the tail of the parameter.
"""
array_dim = 0
while descr[0] == '[':
array_dim += 1
descr = descr[1:]
if (descr[0] == 'L'):
try:
end = descr.find(';')
except Exception:
raise ParserError("Not a valid descriptor string: " + descr)
type = descr[1:end]
descr = descr[end:]
else:
global code_to_type_name
try:
type = code_to_type_name[descr[0]]
except KeyError:
raise ParserError("Not a valid descriptor string: %s" % descr)
return (type.replace("/", ".") + array_dim * "[]", descr[1:]) | 411ce48ce250fe15438cd89f43b91ee9b87908a6 | 10,193 |
def legendre(a, p):
"""Legendre symbol"""
tmp = pow(a, (p-1)//2, p)
return -1 if tmp == p-1 else tmp | 66b86dce23ae10ba226ffb19942b98550bb7c218 | 10,194 |
def precheck_arguments(args):
""" Make sure the argument choices are valid """
any_filelist = (len(args.filelist_name[0]) > 0 or len(args.output_dir[0]) > 0 or args.num_genomes[0] > 0)
if len(args.filelist_name[0]) > 0 and len(args.output_dir[0]) == 0:
print("Error: Need to specify output directory with -O if using -F")
exit(1)
if len(args.filelist_name[0]) == 0 and len(args.output_dir[0]) > 0:
print("Error: Need to specify a filelist with -F if using -O")
exit(1)
if len(args.input_fasta[0]) > 0 and any_filelist:
print("Error: When using -i flag, cannot use any of other options that imply multiple files")
exit(1)
if len(args.input_fasta[0]) > 0 and not any_filelist:
return "single"
elif any_filelist and len(args.input_fasta[0]) == 0:
return "multi"
else:
print("Error: Need to specify either -i or the combination of -F and -O")
exit(1) | 984865d214cca63eae8bacf5bc7be238e7209ddb | 10,196 |
def get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors) | 6d72ea1ffcdf20bbf05f75f6084a9027e771196a | 10,197 |
def get_expr_fields(self):
"""
get the Fields referenced by switch or list expression
"""
def get_expr_field_names(expr):
if expr.op is None:
if expr.lenfield_name is not None:
return [expr.lenfield_name]
else:
# constant value expr
return []
else:
if expr.op == '~':
return get_expr_field_names(expr.rhs)
elif expr.op == 'popcount':
return get_expr_field_names(expr.rhs)
elif expr.op == 'sumof':
# sumof expr references another list,
# we need that list's length field here
field = None
for f in expr.lenfield_parent.fields:
if f.field_name == expr.lenfield_name:
field = f
break
if field is None:
raise Exception("list field '%s' referenced by sumof not found" % expr.lenfield_name)
# referenced list + its length field
return [expr.lenfield_name] + get_expr_field_names(field.type.expr)
elif expr.op == 'enumref':
return []
else:
return get_expr_field_names(expr.lhs) + get_expr_field_names(expr.rhs)
# get_expr_field_names()
# resolve the field names with the parent structure(s)
unresolved_fields_names = get_expr_field_names(self.expr)
# construct prefix from self
prefix = [('', '', p) for p in self.parents]
if self.is_container:
prefix.append(('', '', self))
all_fields = _c_helper_resolve_field_names (prefix)
resolved_fields_names = list(filter(lambda x: x in all_fields.keys(), unresolved_fields_names))
if len(unresolved_fields_names) != len(resolved_fields_names):
raise Exception("could not resolve all fields for %s" % self.name)
resolved_fields = [all_fields[n][1] for n in resolved_fields_names]
return resolved_fields | 103aa0ac54be37b23d9695dddfda9972a9f0d7f0 | 10,198 |
import math
def add_bias_towards_void(transformer_class_logits, void_prior_prob=0.9):
"""Adds init bias towards the void (no object) class to the class logits.
We initialize the void class with a large probability, similar to Section 3.3
of the Focal Loss paper.
Reference:
Focal Loss for Dense Object Detection, ICCV 2017.
https://arxiv.org/abs/1708.02002
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár.
Args:
transformer_class_logits: A [batch, num_mask_slots, num_classes] tensor, the
class logits predicted by the transformer. It concats (num_classes - 1)
non-void classes, including both thing classes and stuff classes, and the
void class (the last channel). If the dataset class IDs do not follow this
order, MaX-DeepLab loss functions will handle the mapping and thus the
architecture still supports any dataset.
void_prior_prob: A float, the desired probability (after softmax) of the
void class at initialization. Defaults to 0.9 as in MaX-DeepLab.
Returns:
updated_transformer_class_logits: A [batch, num_mask_slots, num_classes]
Raises:
ValueError: If the rank of transformer_class_logits is not 3.
"""
class_logits_shape = transformer_class_logits.get_shape().as_list()
if len(class_logits_shape) != 3:
raise ValueError('Input transformer_class_logits should have rank 3.')
init_bias = [0.0] * class_logits_shape[-1]
init_bias[-1] = math.log(
(class_logits_shape[-1] - 1) * void_prior_prob / (1 - void_prior_prob))
# Broadcasting the 1D init_bias to the 3D transformer_class_logits.
return transformer_class_logits + tf.constant(init_bias, dtype=tf.float32) | f5b3439fc7fbc987bbcbc3b64fd689208db7c5e6 | 10,199 |
def trajnet_batch_multi_eval(preds, gt, seq_start_end):
"""Calculate Top-k ADE, Top-k FDE for batch of samples.
pred = Num_modes x Num_ped x Num_timesteps x 2
gt = Num_ped x Num_timesteps x 2
seq_start_end (batch delimiter) = Num_batches x 2
"""
s_topk_ade = 0
s_topk_fde = 0
for (start, end) in seq_start_end:
s_preds = [pred[start:end] for pred in preds]
s_topk_ade += topk_ade(s_preds, gt[start:end])
s_topk_fde += topk_fde(s_preds, gt[start:end])
return s_topk_ade, s_topk_fde | ff93309e61d871a2d337810cc1836950f883c184 | 10,200 |
def disemvowel(sentence):
"""Disemvowel:
Given a sentence, return the sentence with all vowels removed.
>>> disemvowel('the quick brown fox jumps over the lazy dog')
'th qck brwn fx jmps vr th lzy dg'
"""
vowels = ('a','e','i','o','u')
for x in sentence:
if x in vowels:
sentence = sentence.replace(x,"")
return sentence
pass | d9b6d873c29e82cb65e43f71e2b6298af18b25fd | 10,201 |
def runPolyReg(xValueList, yValueList, degrees):
"""
Preforms *Polynomial Regression* based on the arguments provided.
Note that we split the data by the *First* 80 percent of the data and then the *Last* 20 percent of the data, rather than randomly splitting the data by 80/20 for the Train/Test split.
Args:
xValueList (list of floats) : List of X values used for polynomial regression. Offset 1 day earlier than the y values so we have something to predict. Prepared by *prepDataSets*. Can change based on the values in saved in the configuration file.
yValueList (list of floats) : Close values tied to the X value list for the following day.
degrees (int) : Level of degress the polynomial will be operating at.
:return:
model: The actual machine Learning model.
float: the R^2 score for the model.
"""
splitValue = int(len(xValueList) * 0.2)
xTrain, xTest, yTrain, yTest = (
xValueList.iloc[:-splitValue],
xValueList.iloc[splitValue:],
yValueList[:-splitValue],
yValueList[splitValue:],
)
polyreg = make_pipeline(PolynomialFeatures(degree=degrees), LinearRegression())
polyreg.fit(xTrain, yTrain)
yPred = polyreg.predict(xTest)
results = metrics.rmse_score(yTest, yPred)
return (polyreg, results) | 25d4699f720d943dc49264edc12f2246df51f053 | 10,202 |
def unfold_phi_vulpiani(phidp, kdp):
"""Alternative phase unfolding which completely relies on :math:`K_{DP}`.
This unfolding should be used in oder to iteratively reconstruct
:math:`Phi_{DP}` and :math:`K_{DP}` (see :cite:`Vulpiani2012`).
Parameters
----------
phidp : :class:`numpy:numpy.ndarray`
array of floats
kdp : :class:`numpy:numpy.ndarray`
array of floats
"""
# unfold phidp
shape = phidp.shape
phidp = phidp.reshape((-1, shape[-1]))
kdp = kdp.reshape((-1, shape[-1]))
for beam in range(len(phidp)):
below_th3 = kdp[beam] < -20
try:
idx1 = np.where(below_th3)[0][2]
phidp[beam, idx1:] += 360
except Exception:
pass
return phidp.reshape(shape) | 72386a05500c4ba11385e3b57288655e0a207352 | 10,203 |
def get_result_df(session):
"""
query the match table and put results into pandas dataframe,
to train the team-level model.
"""
df_past = pd.DataFrame(
np.array(
[
[s.fixture.date, s.fixture.home_team, s.fixture.away_team, s.home_score, s.away_score]
for s in session.query(Result).all()
]
),
columns=["date", "home_team", "away_team", "home_goals", "away_goals"],
)
df_past["home_goals"] = df_past["home_goals"].astype(int)
df_past["away_goals"] = df_past["away_goals"].astype(int)
df_past["date"] = pd.to_datetime(df_past["date"])
return df_past | 364d9e7f9ef1a97018402fa964f246954f51f945 | 10,204 |
def permute1d(preserve_symmetry = True):
"""Choose order to rearrange rows or columns of puzzle."""
bp = block_permutation(preserve_symmetry)
ip = [block_permutation(False),block_permutation(preserve_symmetry)]
if preserve_symmetry:
ip.append([2-ip[0][2],2-ip[0][1],2-ip[0][0]])
else:
ip.append(block_permutation(False))
return [bp[i]*3+ip[i][j] for i in [0,1,2] for j in [0,1,2]] | a9ccd2cb486e0ee3d50840c6ab41871396f3ca93 | 10,205 |
from typing import Iterable
from typing import List
def take(n: int, iterable: Iterable[T_]) -> List[T_]:
"""Return first n items of the iterable as a list"""
return list(islice(iterable, n)) | 491cdaaa20ad67b480ea92acaeb53e4edf2b4d56 | 10,208 |
def abs(rv):
"""
Returns the absolute value of a random variable
"""
return rv.abs() | 6bf2f8420f8a5e883dfddfc9a93106662a8f1a74 | 10,209 |
def compute_ssm(X, metric="cosine"):
"""Computes the self-similarity matrix of X."""
D = distance.pdist(X, metric=metric)
D = distance.squareform(D)
for i in range(D.shape[0]):
for j in range(D.shape[1]):
if np.isnan(D[i, j]):
D[i, j] = 0
D /= D.max()
return 1 - D | 646d9af2134db13b69391817ddfeace0fef1217d | 10,210 |
def escape(instruction):
"""
Escape used dot graph characters in given instruction so they will be
displayed correctly.
"""
instruction = instruction.replace('<', r'\<')
instruction = instruction.replace('>', r'\>')
instruction = instruction.replace('|', r'\|')
instruction = instruction.replace('{', r'\{')
instruction = instruction.replace('}', r'\}')
instruction = instruction.replace(' ', ' ')
return instruction | 936ed1d6c55650bf5f9ce52af8f113a9d466a534 | 10,211 |
def _json_object_hook(d):
"""
JSON to object helper
:param d: data
:return: namedtuple
"""
keys = []
for k in d.keys():
if k[0].isdigit():
k = 'd_{}'.format(k)
keys.append(k)
return namedtuple('X', keys)(*d.values()) | a4a534a975d6faff440f66065d4954e2a5a91ff2 | 10,212 |
def _fourier_interpolate(x, y):
""" Simple linear interpolation for FFTs"""
xs = np.linspace(x[0], x[-1], len(x))
intp = interp1d(x, y, kind="linear", fill_value="extrapolate")
ys = intp(xs)
return xs, ys | cfe663b9e261bbaea2ab6fe58366f4ec3726468c | 10,213 |
import hashlib
def compute_hash_json_digest(*args, **kwargs):
"""compute json hash of given args and kwargs and return md5 hex digest"""
as_json = compute_hash_json(*args, **kwargs)
return hashlib.md5(as_json).hexdigest() | 98dfedb000e2780dba5007d9fe6abd7a74a43a31 | 10,214 |
def hello_world():
"""Print welcome message as the response body."""
return '{"info": "Refer to internal http://metadata-db for more information"}' | ecb2208053e4ff530bcc0dcc117172449a51afbd | 10,215 |
import google
from datetime import datetime
def build_timestamp(timestamp=None) -> google.protobuf.timestamp_pb2.Timestamp:
"""Convert Python datetime to Protobuf Timestamp"""
# https://github.com/protocolbuffers/protobuf/issues/3986
proto_timestamp = google.protobuf.timestamp_pb2.Timestamp()
return proto_timestamp.FromDatetime(timestamp or datetime.datetime.utcnow()) | ae2278b66c200f007240ca5f683a60ebc1ebddf2 | 10,217 |
def read_blosum():
"""Read blosum dict and delete some keys and values."""
with open('./psiblast/blosum62.pkl', 'rb') as f:
blosum_dict = cPickle.load(f)
temp = blosum_dict.pop('*')
temp = blosum_dict.pop('B')
temp = blosum_dict.pop('Z')
temp = blosum_dict.pop('X')
temp = blosum_dict.pop('alphas')
for key in blosum_dict:
for i in range(4):
temp = blosum_dict[key].pop()
return blosum_dict | ddbf71c03e05bd156ad688a9fe9692da1d0a3dc4 | 10,219 |
from typing import List
from typing import Tuple
def parse_spans_bio_with_errors(seq: List[str]) -> Tuple[List[Span], List[Error]]:
"""Parse a sequence of BIO labels into a list of spans but return any violations of the encoding scheme.
Note:
In the case where labels violate the span encoded scheme, for example the
tag is a new type (like ``I-ORG``) in the middle of a span of another type
(like ``PER``) without a proper starting token (``B-ORG``) we will finish
the initial span and start a new one, resulting in two spans. This follows
the ``conlleval.pl`` script.
Note:
Span are returned sorted by their starting location. Due to the fact that
spans are not allowed to overlap there is no resolution policy when two
spans have same starting location.
Note:
Errors are returned sorted by the location where the violation occurred. In the
case a single transition triggered multiple errors they are sorted lexically based
on the error type.
Args:
seq: The sequence of labels
Returns:
A list of spans and a list of errors.
"""
errors = []
spans = []
# This tracks the type of the span we are building out
span = None
# This tracks the tokens of the span we are building out
tokens = []
for i, s in enumerate(seq):
func = extract_function(s)
_type = extract_type(s)
# A `B` ends a span and starts a new one
if func == BIO.BEGIN:
# Save out the old span
if span is not None:
spans.append(Span(span, start=tokens[0], end=tokens[-1] + 1, tokens=tuple(tokens)))
# Start the new span
span = _type
tokens = [i]
# An `I` will continue a span when types match and start a new one otherwise.
elif func == BIO.INSIDE:
# A span is already being built
if span is not None:
# The types match so we just add to the current span
if span == _type:
tokens.append(i)
# Types mismatch so create a new span
else:
# Log error from type mismatch
LOGGER.warning("Illegal Label: I doesn't match previous token at %d", i)
errors.append(Error(i, "Illegal Transition", s, safe_get(seq, i - 1), safe_get(seq, i + 1)))
# Save out the previous span
spans.append(Span(span, start=tokens[0], end=tokens[-1] + 1, tokens=tuple(tokens)))
# Start a new span
span = _type
tokens = [i]
# No span was being build so start a new one with this I
else:
# Log error from starting with I
LOGGER.warning("Illegal Label: starting a span with `I` at %d", i)
errors.append(Error(i, "Illegal Start", s, safe_get(seq, i - 1), safe_get(seq, i + 1)))
span = _type
tokens = [i]
# An `O` will cut off a span being built out.
else:
if span is not None:
spans.append(Span(span, start=tokens[0], end=tokens[-1] + 1, tokens=tuple(tokens)))
# Set so no span is being built
span = None
tokens = []
# If we fell off the end so save the entity that we were making.
if span is not None:
spans.append(Span(span, start=tokens[0], end=tokens[-1] + 1, tokens=tuple(tokens)))
return sort_spans(spans), sort_errors(errors) | 6cea777cfb8bf96325f2695af2c48cc22c4884cf | 10,220 |
from typing import Sequence
from typing import Tuple
def find_best_similar_match(i1: int, i2: int, j1: int, j2: int, a: Sequence, b: Sequence, sm: SequenceMatcher = None) \
-> Tuple[int, int, float]:
"""
Finds most similar pair of elements in sequences bounded by indexes a[i1:i2], b[j1: j2].
:param i1: starting index in "a" sequence.
:param i2: ending index in "a" sequence.
:param j1: starting index in "b" sequence.
:param j2: ending index in "b" sequence.
:param a: first sequence.
:param b: second sequence.
:param sm: SequenceMatcher object. Creates new difflib.SequenceMatcher instance if not passed.
:return: Tuple (best_i, best_j, best_ratio) where:
best_i: is index of most similar element in sequence "a".
best_j: is index of most similar element in sequence "b".
best_ratio: similarity ratio of elements a[best_i] and b[best_j], where 1.0 means elements are identical
and 0.0 means that elements are completely different.
"""
best_ratio = 0.0
best_i = best_j = None
if not sm:
sm = SequenceMatcher()
for i in range(i1, i2):
sm.set_seq1(a[i])
for j in range(j1, j2):
if a[i] == b[j]:
continue
sm.set_seq2(b[j])
if sm.real_quick_ratio() > best_ratio and sm.quick_ratio() > best_ratio and sm.ratio() > best_ratio:
best_i = i
best_j = j
best_ratio = sm.ratio()
return best_i, best_j, best_ratio | ca6e73c2315e2d2419b631cb505131f3daabea4b | 10,221 |
def ConvUpscaleBlock(inputs, n_filters, kernel_size=[3, 3], scale=2):
"""
Basic conv transpose block for Encoder-Decoder upsampling
Apply successivly Transposed Convolution, BatchNormalization, ReLU nonlinearity
"""
net = slim.conv2d_transpose(inputs, n_filters, kernel_size=[3, 3], stride=[2, 2], activation_fn=None)
net = tf.nn.relu(slim.batch_norm(net, fused=True))
return net | 787104a3015bd901105383b203551573f9f07fcb | 10,222 |
def make_random_password(self, length = 10, allowed_chars = 'abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789'):
"""
Generate a random password with the given length and given
allowed_chars. The default value of allowed_chars does not have "I" or
"O" or letters and digits that look similar -- just to avoid confusion.
"""
return get_random_string(length, allowed_chars) | be155b2537b062a396ed1d5aed6367857b21d49e | 10,224 |
def autocov_vector(x, nlags=None):
"""
This method computes the following function
.. math::
R_{xx}(k) = E{ x(t)x^{*}(t-k) } = E{ x(t+k)x^{*}(k) }
k \in {0, 1, ..., nlags-1}
(* := conjugate transpose)
Note: this is related to
the other commonly used definition for vector autocovariance
.. math::
R_{xx}^{(2)}(k) = E{ x(t-k)x^{*}(k) } = R_{xx}^{*}(k) = R_{xx}(-k)
Parameters
----------
x: ndarray (nc, N)
nlags: int, optional
compute lags for k in {0, ..., nlags-1}
Returns
-------
rxx : ndarray (nc, nc, nlags)
"""
return crosscov_vector(x, x, nlags=nlags) | 8725b2695b51c014e8234605bc5e64ad1ca0c26b | 10,225 |
def sequence_masking(x, mask, mode=0, axis=None, heads=1):
"""为序列条件mask的函数
mask: 形如(batch_size, sequence)的0-1矩阵;
mode: 如果是0,则直接乘以mask;
如果是1,则在padding部分减去一个大正数。
axis: 序列所在轴,默认为1;
heads: 相当于batch这一维要被重复的次数。
"""
if mask is None or mode not in [0, 1]:
return x
else:
if heads is not 1:
mask = K.expand_dims(mask, 1)
mask = K.tile(mask, (1, heads, 1))
mask = K.reshape(mask, (-1, K.shape(mask)[2]))
if axis is None:
axis = 1
if axis == -1:
axis = K.ndim(x) - 1
assert axis > 0, "axis must be greater than 0"
for _ in range(axis - 1):
mask = K.expand_dims(mask, 1)
for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 0:
return x * mask
else:
return x - (1 - mask) * 1e12 | ac7e0da24eca87ab3510c1c274f0caeb2d527816 | 10,226 |
def __long_description() -> str:
"""Returns project long description."""
return f"{__readme()}\n\n{__changelog()}" | 53260637e4e4f1e59e6a67238577fb6969e7769c | 10,228 |
def captains_draft(path=None, config=None):
"""Similar to captains mode with a 27 heroes, only 3 bans per teams"""
game = _default_game(path, config=config)
game.options.game_mode = int(DOTA_GameMode.DOTA_GAMEMODE_CD)
return game | 05af49626cff0827ff1b78ffb1da082bba160d29 | 10,229 |
def create(width, height, pattern=None):
"""Create an image optionally filled with the given pattern.
:note: You can make no assumptions about the return type; usually it will
be ImageData or CompressedImageData, but patterns are free to return
any subclass of AbstractImage.
:Parameters:
`width` : int
Width of image to create
`height` : int
Height of image to create
`pattern` : ImagePattern or None
Pattern to fill image with. If unspecified, the image will
initially be transparent.
:rtype: AbstractImage
"""
if not pattern:
pattern = SolidColorImagePattern()
return pattern.create_image(width, height) | dcd287353c84924afcdd0a56e9b51f00cde7bb85 | 10,230 |
import logging
def compute_conformer(smile: str, max_iter: int = -1) -> np.ndarray:
"""Computes conformer.
Args:
smile: Smile string.
max_iter: Maximum number of iterations to perform when optimising MMFF force
field. If set to <= 0, energy optimisation is not performed.
Returns:
A tuple containing index, fingerprint and conformer.
Raises:
RuntimeError: If unable to convert smile string to RDKit mol.
"""
mol = rdkit.Chem.MolFromSmiles(smile)
if not mol:
raise RuntimeError('Unable to convert smile to molecule: %s' % smile)
conformer_failed = False
try:
mol = generate_conformers(
mol,
max_num_conformers=1,
random_seed=45,
prune_rms_thresh=0.01,
max_iter=max_iter)
except IOError as e:
logging.exception('Failed to generate conformers for %s . IOError %s.',
smile, e)
conformer_failed = True
except ValueError:
logging.error('Failed to generate conformers for %s . ValueError', smile)
conformer_failed = True
except: # pylint: disable=bare-except
logging.error('Failed to generate conformers for %s.', smile)
conformer_failed = True
atom_features_list = []
conformer = None if conformer_failed else list(mol.GetConformers())[0]
for atom in mol.GetAtoms():
atom_features_list.append(atom_to_feature_vector(atom, conformer))
conformer_features = np.array(atom_features_list, dtype=np.float32)
return conformer_features | 0b923d7616741312d8ac129d7c7c99081a2c3f97 | 10,231 |
def get_api_key():
"""Load API key."""
api_key_file = open('mailgun_api_key.txt', 'r')
api_key = api_key_file.read()
api_key_file.close()
return api_key.strip() | 55c87d15d616f0f6dfbc727253c2222128b63560 | 10,232 |
def bitserial_conv2d_strategy_hls(attrs, inputs, out_type, target):
"""bitserial_conv2d hls strategy"""
strategy = _op.OpStrategy()
layout = attrs.data_layout
if layout == "NCHW":
strategy.add_implementation(
wrap_compute_bitserial_conv2d(topi.nn.bitserial_conv2d_nchw),
wrap_topi_schedule(topi.hls.schedule_bitserial_conv2d_nchw),
name="bitserial_conv2d_nchw.hls",
)
elif layout == "NHWC":
strategy.add_implementation(
wrap_compute_bitserial_conv2d(topi.nn.bitserial_conv2d_nhwc),
wrap_topi_schedule(topi.hls.schedule_bitserial_conv2d_nhwc),
name="bitserial_conv2d_nhwc.hls",
)
else:
raise ValueError("Data layout {} not supported.".format(layout))
return strategy | f009b1f7ac073573877b1ddab616868cdf1d42c7 | 10,233 |
def get_fpga_bypass_mode(serverid):
""" Read back FPGA bypass mode setting
"""
try:
interface = get_ipmi_interface(serverid, ["ocsoem", "fpgaread", "mode"])
return parse_get_fpga_bypass_mode(interface, "mode")
except Exception, e:
return set_failure_dict("get_fpga_bypass_mode() Exception {0}".format(e), completion_code.failure) | b572a372c6c73bb0f65686b3235e3362d31e8655 | 10,235 |
def lookup_complement(binding):
"""
Extracts a complement link from the scope of the given binding.
Returns an instance of :class:`htsql.core.tr.binding.Recipe`
or ``None`` if a complement link is not found.
`binding` (:class:`htsql.core.tr.binding.Binding`)
A binding node.
"""
probe = ComplementProbe()
return lookup(binding, probe) | 104f7b0139a8ca6390cb90dc10529d3be9a723ea | 10,236 |
import itertools
def flatten(colours):
"""Flatten the cubular array into one long list."""
return list(itertools.chain.from_iterable(itertools.chain.from_iterable(colours))) | 41576ef947354c30d1995fefdd30ad86bddbfe6f | 10,237 |
import numpy
def create_word_search_board(number: int):
"""
This function creates a numpy array of zeros, with dimensions of
number x number, which is set by the user. The array is then
iterated through, and zeros are replaced with -1's to avoid
confusion with the alphabet (A) beginning at 0.
"""
board = numpy.zeros((number, number))
for i in range(len(board)):
for x in range(number):
board[i][x] = -1
return board | 31f22d56c947f61840ba87d028eb7de275d33cc9 | 10,239 |
def get_parent_choices(menu, menu_item=None):
"""
Returns flat list of tuples (possible_parent.pk, possible_parent.caption_with_spacer).
If 'menu_item' is not given or None, returns every item of the menu. If given, intentionally omit it and its descendant in the list.
"""
def get_flat_tuples(menu_item, excepted_item=None):
if menu_item == excepted_item:
return []
else:
choices = [(menu_item.pk, mark_safe(menu_item.caption_with_spacer()))]
if menu_item.has_children():
for child in menu_item.children():
choices += get_flat_tuples(child, excepted_item)
return choices
return get_flat_tuples(menu.root_item, menu_item) | c88ca93f7e8a7907425a51323ba53bb75bdf29c2 | 10,240 |
def _update_jacobian(state, jac):
"""
we update the jacobian using J(t_{n+1}, y^0_{n+1})
following the scipy bdf implementation rather than J(t_n, y_n) as per [1]
"""
J = jac(state.y0, state.t + state.h)
n_jacobian_evals = state.n_jacobian_evals + 1
LU = jax.scipy.linalg.lu_factor(state.M - state.c * J)
n_lu_decompositions = state.n_lu_decompositions + 1
return state._replace(
J=J,
n_jacobian_evals=n_jacobian_evals,
LU=LU,
n_lu_decompositions=n_lu_decompositions,
) | 31570ad29dca3ee01281819865e6efe1aec4050d | 10,241 |
from typing import Tuple
from typing import List
def reduce_pad(sess: tf.Session, op_tensor_tuple: Tuple[Op, List[tf.Tensor]], _) -> (str, tf.Operation, tf.Operation):
"""
Pad module reducer
:param sess: current tf session
:param op_tensor_tuple: tuple containing the op to reduce, and a list of input tensors to the op
"""
name = "reduced_" + op_tensor_tuple[0].dotted_name
pad_op = op_tensor_tuple[0].get_module()
# Get padding tensor dimensions
# Padding dimension information is captured in an input tensor to the pad op, index 1 of pad op inputs
# Dimensions of this tensor are always (N, 2), where N is the dimensionality of the input tensor coming into pad.
# The value of padding[N][0] gives the amount to pad in dimension N prior to the contents of the input to pad, while
# padding[N][1] gives the amount to pad in dimension N after the contents of the input.
# Currently we do not support reducing a pad op that modifies the channel dimension, which is the last dimension,
# indexed by -1 below. So check to make sure that indices [-1][0] and [-1][1] remain 0 (no padding).
padding_tensor_eval = sess.run(pad_op.inputs[1])
if padding_tensor_eval[-1][0] != 0 or padding_tensor_eval[-1][1] != 0:
raise NotImplementedError("Attempting to reduce pad operation that modifies channel size, not supported.")
new_padding_tensor = tf.constant(padding_tensor_eval) # No need to actually modify padding tensor
# Get constant value for padding
# If pad op takes a non default constant value (default = 0), it appears as a third input tensor to pad op, index 2
const_val = 0
if len(pad_op.inputs) > 2:
const_val = sess.run(pad_op.inputs[2])
# Get mode
# Mode can be 'CONSTANT', 'SYMMETRIC', or 'REFLECT'. 'CONSTANT' is default, and will not appear as a mode attribute
# if it is the case.
try:
mode = pad_op.get_attr('mode')
mode = mode.decode('utf-8')
except ValueError:
mode = 'CONSTANT'
new_tensor = tf.pad(op_tensor_tuple[1][0],
new_padding_tensor,
constant_values=const_val,
mode=mode,
name=name)
module = sess.graph.get_operation_by_name(name)
return name, new_tensor.op, module | 29d7e8daf85a9fe8fee118fd5ec5dc00018120a9 | 10,242 |
def parse_fastq(fh):
""" Parse reads from a FASTQ filehandle. For each read, we
return a name, nucleotide-string, quality-string triple. """
reads = []
while True:
first_line = fh.readline()
if len(first_line) == 0:
break # end of file
name = first_line[1:].rstrip()
seq = fh.readline().rstrip()
fh.readline() # ignore line starting with +
qual = fh.readline().rstrip()
reads.append((name, seq, qual))
return reads | d33d3efebdd1c5f61e25397328c6b0412f1911dd | 10,243 |
def minhash_256(features):
# type: (List[int]) -> bytes
"""
Create 256-bit minimum hash digest.
:param List[int] features: List of integer features
:return: 256-bit binary from the least significant bits of the minhash values
:rtype: bytes
"""
return compress(minhash(features), 4) | 1dba3d02dd05bfd2358211fa97d99ce136cc198d | 10,244 |
def coalesce(*values):
"""Returns the first not-None arguement or None"""
return next((v for v in values if v is not None), None) | 245177f43962b4c03c2347725a2e87f8eb5dc08a | 10,245 |
from mitsuba.core.xml import load_string
def test06_load_various_features(variant_scalar_rgb, mesh_format, features, face_normals):
"""Tests the OBJ & PLY loaders with combinations of vertex / face normals,
presence and absence of UVs, etc.
"""
def test():
shape = load_string("""
<shape type="{0}" version="2.0.0">
<string name="filename" value="resources/data/tests/{0}/rectangle_{1}.{0}" />
<boolean name="face_normals" value="{2}" />
</shape>
""".format(mesh_format, features, str(face_normals).lower()))
assert shape.has_vertex_normals() == (not face_normals)
positions = shape.vertex_positions_buffer()
normals = shape.vertex_normals_buffer()
texcoords = shape.vertex_texcoords_buffer()
faces = shape.faces_buffer()
(v0, v2, v3) = [positions[i*3:(i+1)*3] for i in [0, 2, 3]]
assert ek.allclose(v0, [-2.85, 0.0, -7.600000], atol=1e-3)
assert ek.allclose(v2, [ 2.85, 0.0, 0.599999], atol=1e-3)
assert ek.allclose(v3, [ 2.85, 0.0, -7.600000], atol=1e-3)
if 'uv' in features:
assert shape.has_vertex_texcoords()
(uv0, uv2, uv3) = [texcoords[i*2:(i+1)*2] for i in [0, 2, 3]]
# For OBJs (and .serialized generated from OBJ), UV.y is flipped.
if mesh_format in ['obj', 'serialized']:
assert ek.allclose(uv0, [0.950589, 1-0.988416], atol=1e-3)
assert ek.allclose(uv2, [0.025105, 1-0.689127], atol=1e-3)
assert ek.allclose(uv3, [0.950589, 1-0.689127], atol=1e-3)
else:
assert ek.allclose(uv0, [0.950589, 0.988416], atol=1e-3)
assert ek.allclose(uv2, [0.025105, 0.689127], atol=1e-3)
assert ek.allclose(uv3, [0.950589, 0.689127], atol=1e-3)
if shape.has_vertex_normals():
for n in [normals[i*3:(i+1)*3] for i in [0, 2, 3]]:
assert ek.allclose(n, [0.0, 1.0, 0.0])
return fresolver_append_path(test)() | a0117fe48b53e448181014e006ce13368c777d90 | 10,246 |
import torch
def euc_reflection(x, a):
"""
Euclidean reflection (also hyperbolic) of x
Along the geodesic that goes through a and the origin
(straight line)
"""
xTa = torch.sum(x * a, dim=-1, keepdim=True)
norm_a_sq = torch.sum(a ** 2, dim=-1, keepdim=True).clamp_min(MIN_NORM)
proj = xTa * a / norm_a_sq
return 2 * proj - x | 83b5a8559e783b24d36a18fb30059dce82bf9cf7 | 10,247 |
def is_online():
"""Check if host is online"""
conn = httplib.HTTPSConnection("www.google.com", timeout=1)
try:
conn.request("HEAD", "/")
return True
except Exception:
return False
finally:
conn.close() | 4dd9d2050c94674ab60e0dfbcfa0c713915aa2f3 | 10,248 |
def text_value(s):
"""Convert a raw Text property value to the string it represents.
Returns an 8-bit string, in the encoding of the original SGF string.
This interprets escape characters, and does whitespace mapping:
- linebreak (LF, CR, LFCR, or CRLF) is converted to \n
- any other whitespace character is replaced by a space
- backslash followed by linebreak disappears
- other backslashes disappear (but double-backslash -> single-backslash)
"""
s = _newline_re.sub(b"\n", s)
s = s.translate(_whitespace_table)
is_escaped = False
result = []
for chunk in _chunk_re.findall(s):
if is_escaped:
if chunk != b"\n":
result.append(chunk)
is_escaped = False
elif chunk == b"\\":
is_escaped = True
else:
result.append(chunk)
return b"".join(result) | 24d40367dbefcfbdd0420eb466cf6d09657b2768 | 10,249 |
def modifica_immobile_pw():
"""La funzione riceve l' ID immobile da modificare e ne modifica un attibuto scelto dall'utente """
s = input("Vuoi la lista degli immobili per scegliere il ID Immobile da modificare? (S/N)")
if s == "S" or s =="s":
stampa_immobili_pw()
s= input("Dammi ID Immobile da modificare -")
immo = Immobile.select().where(Immobile.id == int(s)).get()
scel = input("Cosa vuoi modificare?\ni=ID proprietario -\nd=Indirizzo -\np=Prezzo -\nc=ClasseEnergetica ")
if scel == "i":
#controllare se immo e' una lista va iterata se oggetto no
id_cliente = (input("Dammi il nuovo ID Cliente del Proprietario -"))
immo.cliente_id=int(id_cliente)
elif scel == "d":
new_indirizzo = input("Dammi il nuovo indirizzo dell'immobile -")
immo.indirizzo = new_indirizzo
elif scel == "p":
new_prezzo = input("Dammi il nuovo prezzo dell'Immobile -")
immo.prezzo = int(new_prezzo)
elif scel == "c":
new_classe = input("Dammi la nuova Classe Energetica dell'Immobile -")
immo.classe_energ = new_classe
immo.save()
return True | 99905d61d91178092dba8860265b2034b3f8430b | 10,250 |
def hpat_pandas_series_len(self):
"""
Pandas Series operator :func:`len` implementation
.. only:: developer
Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_len
Parameters
----------
series: :class:`pandas.Series`
Returns
-------
:obj:`int`
number of items in the object
"""
_func_name = 'Operator len().'
if not isinstance(self, SeriesType):
raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self))
def hpat_pandas_series_len_impl(self):
return len(self._data)
return hpat_pandas_series_len_impl | 57bdd2a7f7ae54861943fb44f3bc51f1f6544911 | 10,251 |
from typing import List
def arrays_not_same_size(inputs: List[np.ndarray]) -> bool:
"""Validates that all input arrays are the same size.
Args:
inputs (List[np.ndarray]): Input arrays to validate
Returns:
true if the arrays are the same size and false if they are not
"""
shapes = [i.shape for i in inputs]
shp_first = shapes[0]
shp_rest = shapes[1:]
return not np.array_equiv(shp_first, shp_rest) | 8b9988f49d766bc7a27b79cf6495182e98a8fe18 | 10,252 |
def GetReaderForFile(filename):
"""
Given a filename return a VTK reader that can read it
"""
r = vtkPNGReader()
if not r.CanReadFile(filename):
r = vtkPNMReader()
if not r.CanReadFile(filename):
r = vtkJPEGReader()
if not r.CanReadFile(filename):
r = vtkTIFFReader()
if not r.CanReadFile(filename):
return None
r.SetFileName(filename)
return r | f574417df44f8a43277e62967ec6fd4c986fa85a | 10,253 |
def build_figure_nn(df, non_private, semantic):
"""
Dataframe with one semantic and one model
"""
l = df.query("epsilon > 0").sort_values(["train_size", "epsilon"])
naive, low, high = get_plot_bounds(df)
fig = px.line(
l,
x="train_size",
y="accuracy",
range_y=[low, high],
color="epsilon",
hover_data=["n_blocks", "delta", "noise"],
title=f"{list(l['task'])[0]} {list(l['model'])[0]} {semantic} accuracy",
log_y=False,
).update_traces(mode="lines+markers")
fig.add_trace(
go.Scatter(
x=non_private.sort_values("train_size")["train_size"],
y=non_private.sort_values("train_size")["accuracy"],
mode="lines+markers",
name="Non private",
)
)
fig.add_trace(
go.Scatter(
x=l["train_size"],
y=[naive] * len(l),
mode="lines",
name="Naive baseline",
)
)
return fig | 5eab366e20eaec721d7155d82e42d9222cacd3b5 | 10,254 |
def get_incomplete_sample_nrs(df):
""" Returns sample nrs + topologies if at least 1 algorithm result is missing """
topology_incomplete_sample_nr_map = dict()
n_samples = df.loc[df['sample_idx'].idxmax()]['sample_idx'] + 1
for ilp_method in np.unique(df['algorithm_complete']):
dfx = df[df['algorithm_complete'] == ilp_method]
dfg_tops = dfx.groupby(by='topology_name')
for key, group in dfg_tops:
if n_samples > group.shape[0]:
if key not in topology_incomplete_sample_nr_map:
topology_incomplete_sample_nr_map[key] = set()
for s_nr in range(n_samples):
if s_nr not in list(group['sample_idx']):
topology_incomplete_sample_nr_map[key].add(s_nr)
return topology_incomplete_sample_nr_map | 2d816d80bb2f0c2686780ca49d0c01e89c69e7b5 | 10,255 |
from typing import Optional
def _read_pos_at_ref_pos(rec: AlignedSegment,
ref_pos: int,
previous: Optional[bool] = None) -> Optional[int]:
"""
Returns the read or query position at the reference position.
If the reference position is not within the span of reference positions to which the
read is aligned an exception will be raised. If the reference position is within the span
but is not aligned (i.e. it is deleted in the read) behavior is controlled by the
"previous" argument.
Args:
rec: the AlignedSegment within which to find the read position
ref_pos: the reference position to be found
previous: Controls behavior when the reference position is not aligned to any
read position. True indicates to return the previous read position, False
indicates to return the next read position and None indicates to return None.
Returns:
The read position at the reference position, or None.
"""
if ref_pos < rec.reference_start or ref_pos >= rec.reference_end:
raise ValueError(f"{ref_pos} is not within the reference span for read {rec.query_name}")
pairs = rec.get_aligned_pairs()
index = 0
read_pos = None
for read, ref in pairs:
if ref == ref_pos:
read_pos = read
break
else:
index += 1
if not read_pos and previous is not None:
if previous:
while read_pos is None and index > 0:
index -= 1
read_pos = pairs[index][0]
else:
while read_pos is None and index < len(pairs):
read_pos = pairs[index][0]
index += 1
return read_pos | 51270a1c1a5f69b179e3623824632443775ec9c7 | 10,256 |
from astropy.io import fits as pf
import numpy as np
import logging
def load_gtis(fits_file, gtistring=None):
"""Load GTI from HDU EVENTS of file fits_file."""
gtistring = _assign_value_if_none(gtistring, 'GTI')
logging.info("Loading GTIS from file %s" % fits_file)
lchdulist = pf.open(fits_file, checksum=True)
lchdulist.verify('warn')
gtitable = lchdulist[gtistring].data
gti_list = np.array([[a, b]
for a, b in zip(gtitable.field('START'),
gtitable.field('STOP'))],
dtype=np.longdouble)
lchdulist.close()
return gti_list | c1a8019d052ce437680e6505e65134a5ed66a1a3 | 10,257 |
import requests
def macro_australia_unemployment_rate():
"""
东方财富-经济数据-澳大利亚-失业率
http://data.eastmoney.com/cjsj/foreign_5_2.html
:return: 失业率
:rtype: pandas.DataFrame
"""
url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
params = {
"type": "GJZB",
"sty": "HKZB",
"js": "({data:[(x)],pages:(pc)})",
"p": "1",
"ps": "2000",
"mkt": "5",
"stat": "2",
"_": "1625474966006",
}
r = requests.get(url, params=params)
data_text = r.text
data_json = demjson.decode(data_text[1:-1])
temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
temp_df.columns = [
"时间",
"前值",
"现值",
"发布日期",
]
temp_df["前值"] = pd.to_numeric(temp_df["前值"])
temp_df["现值"] = pd.to_numeric(temp_df["现值"])
return temp_df | 260debcfaf342d08acacfe034da51b3d3162393e | 10,258 |
from typing import List
import math
def _convert_flattened_paths(
paths: List,
quantization: float,
scale_x: float,
scale_y: float,
offset_x: float,
offset_y: float,
simplify: bool,
) -> "LineCollection":
"""Convert a list of FlattenedPaths to a :class:`LineCollection`.
Args:
paths: list of FlattenedPaths
quantization: maximum length of linear elements to approximate curve paths
scale_x, scale_y: scale factor to apply
offset_x, offset_y: offset to apply
simplify: should Shapely's simplify be run
Returns:
new :class:`LineCollection` instance containing the converted geometries
"""
lc = LineCollection()
for result in paths:
# Here we load the sub-part of the path element. If such sub-parts are connected,
# we merge them in a single line (e.g. line string, etc.). If there are disconnection
# in the path (e.g. multiple "M" commands), we create several lines
sub_paths: List[List[complex]] = []
for elem in result:
if isinstance(elem, svg.Line):
coords = [elem.start, elem.end]
else:
# This is a curved element that we approximate with small segments
step = int(math.ceil(elem.length() / quantization))
coords = [elem.start]
coords.extend(elem.point((i + 1) / step) for i in range(step - 1))
coords.append(elem.end)
# merge to last sub path if first coordinates match
if sub_paths:
if sub_paths[-1][-1] == coords[0]:
sub_paths[-1].extend(coords[1:])
else:
sub_paths.append(coords)
else:
sub_paths.append(coords)
for sub_path in sub_paths:
path = np.array(sub_path)
# transform
path += offset_x + 1j * offset_y
path.real *= scale_x
path.imag *= scale_y
lc.append(path)
if simplify:
mls = lc.as_mls()
lc = LineCollection(mls.simplify(tolerance=quantization))
return lc | 876421cd7f89dc5f3d64357e76f302c633e41ba7 | 10,259 |
def _CustomSetAttr(self, sAttr, oValue):
""" Our setattr replacement for DispatchBaseClass. """
try:
return _g_dCOMForward['setattr'](self, ComifyName(sAttr), oValue)
except AttributeError:
return _g_dCOMForward['setattr'](self, sAttr, oValue) | 8a0fea986531aec66564bafcc679fed3b8631c10 | 10,260 |
def reduce_to_contemporaneous(ts):
"""
Simplify the ts to only the contemporaneous samples, and return the new ts + node map
"""
samples = ts.samples()
contmpr_samples = samples[ts.tables.nodes.time[samples] == 0]
return ts.simplify(
contmpr_samples,
map_nodes=True,
keep_unary=True,
filter_populations=False,
filter_sites=False,
record_provenance=False,
filter_individuals=False,
) | 7661a58b6f4b95d5cb4b711db39bb28852151304 | 10,261 |
def get_name(tree, from_='name'):
"""
Get the name (token) of the AST node.
:param tree ast:
:rtype: str|None
"""
# return tree['name']['name']
if 'name' in tree and isinstance(tree['name'], str):
return tree['name']
if 'parts' in tree:
return djoin(tree['parts'])
if from_ in tree:
return get_name(tree[from_])
return None | b5f1e97eb570859b01bf9489c6b9d4874511fdcc | 10,264 |
def pcaTable(labels,vec_mean,vec_std,val_mean,val_std):
"""Make table with PCA formation mean and std"""
header="\\begin{center}\n\\begin{tabular}{| l |"+" c |"*6+"}\\cline{2-7}\n"
header+="\\multicolumn{1}{c|}{} & \\multicolumn{2}{c|}{PC1} & \multicolumn{2}{c|}{PC2} & \multicolumn{2}{c|}{PC3} \\\\\\cline{2-7}"
header+="\\multicolumn{1}{c|}{} & $\mu$ & $\sigma$ & $\mu$ & $\sigma$ & $\mu$ & $\sigma$ \\\\\\hline\n"
tt=n.zeros((vec_mean.shape[0],6))
tt[:,::2]=vec_mean
tt[:,1::2]=vec_std
tt_=n.zeros(6)
tt_[::2]=val_mean
tt_[1::2]=val_std
tab_data=n.vstack((tt,tt_))
footer="\\hline\\end{tabular}\n\\end{center}"
table=header + makeTables(labels,tab_data,True) + footer
return table | 646fc1b5344a716b8f30714f112a477063bf91ce | 10,265 |
def render_reference_page(conn: Connection, reference: str) -> str:
"""Create HTML section that lists all notes that cite the reference."""
sql = """
SELECT note, Bibliography.html,Notes.html FROM Citations
JOIN Notes ON Citations.note = Notes.id
JOIN Bibliography ON Bibliography.key = Citations.reference
WHERE reference = ?
ORDER BY note
"""
notes = []
text = ""
for note, _text, html in conn.execute(sql, (reference,)):
assert not text or text == _text
text = _text
notes.append(Note(note, get_section_title(html)))
section = Elem("section",
Elem("h1", '@' + reference[4:]),
Elem("p", text),
note_list(notes),
id=reference,
title=reference,
**{"class": "level1"})
return render(section) | 6ab73d0d85da28676e7bb3cf42b3304cd0d6ad47 | 10,266 |
import logging
def normalize_bridge_id(bridge_id: str):
"""Normalize a bridge identifier."""
bridge_id = bridge_id.lower()
# zeroconf: properties['id'], field contains semicolons after each 2 char
if len(bridge_id) == 17 and sum(True for c in "aa:bb:cc:dd:ee:ff"
if c == ":"):
return bridge_id.replace(':', '')
# nupnp: contains 4 extra characters in the middle: "fffe"
if len(bridge_id) == 16 and bridge_id[6:10] == "fffe":
return bridge_id[0:6] + bridge_id[-6:]
# SSDP/UPNP and Hue Bridge API contains right ID.
if len(bridge_id) == 12:
return bridge_id
logging.getLogger(__name__).warn("Received unexpected bridge id: %s",
bridge_id)
return bridge_id | 5370cc49e4c0272da2a471006bbbf3fd5e5521bf | 10,267 |
import imp
def pyc_file_from_path(path):
"""Given a python source path, locate the .pyc.
See http://www.python.org/dev/peps/pep-3147/
#detecting-pep-3147-availability
http://www.python.org/dev/peps/pep-3147/#file-extension-checks
"""
has3147 = hasattr(imp, 'get_tag')
if has3147:
return imp.cache_from_source(path)
else:
return path + "c" | 459011ca1f07a023b139695cd2368767d46ca396 | 10,268 |
def get_bytes_per_data_block(header):
"""Calculates the number of bytes in each 128-sample datablock."""
N = 128 # n of amplifier samples
# Each data block contains N amplifier samples.
bytes_per_block = N * 4 # timestamp data
bytes_per_block += N * 2 * header['num_amplifier_channels']
# DC amplifier voltage (absent if flag was off)
# bytes_per_block += N * 2 * header['dc_amplifier_data_saved']
if header['dc_amplifier_data_saved'] > 0:
bytes_per_block += N * 2 * header['num_amplifier_channels']
# Stimulation data, one per enabled amplifier channels
bytes_per_block += N * 2 * header['num_amplifier_channels']
# Board analog inputs are sampled at same rate as amplifiers
bytes_per_block += N * 2 * header['num_board_adc_channels']
# Board analog outputs are sampled at same rate as amplifiers
bytes_per_block += N * 2 * header['num_board_dac_channels']
# Board digital inputs are sampled at same rate as amplifiers
if header['num_board_dig_in_channels'] > 0:
bytes_per_block += N * 2
# Board digital outputs are sampled at same rate as amplifiers
if header['num_board_dig_out_channels'] > 0:
bytes_per_block += N * 2
return bytes_per_block | 524e9015dacaf99042dd1493b24a418fff8c6b04 | 10,269 |
def recovered():
"""
Real Name: b'Recovered'
Original Eqn: b'INTEG ( RR, 0)'
Units: b'Person'
Limits: (None, None)
Type: component
b''
"""
return integ_recovered() | 1a5133a3cc9231e3f7a90b54557ea9e836975eae | 10,270 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.